

Conference of Radiation Control Program Directors, Inc.

Office of Executive Director + 205 Capital Avenue + Frankfort, KY 40601 Phone: 502/227-4543 Fax: 502/227-7862 Web Site: www.crcpd.org Central E-mail: staff@crcpd.org

Paul H. Lohaus, Director Office of State and Tribal Programs US Nuclear Regulatory Commission Washington, DC 20555-0001

Board of Directors

Chairperson Cynthia C Cardwell Texas

Chairperson-Elect Richard A Ratliff Texas

Past Chairperson Paul J. Merges, Ph.D. New York

> Treasurer Terry C. Frazee Washington

Members-at-Large Julia A. Schmitt Nebraska

Russell S. Takata Hawaii

Debbie B. Gilley Florida

Office of **Executive Director**

Executive Director Ronald G Fraass Kentucky

Administrative Officer Patricia C. Gorman Kentucky

· Paul

Dear Mr. Dohaus

Enclosed is a copy of the final revisions to the Suggested State Regulations for Control of Radiation:

Part A - General Provisions

Part D - Standards for Protection Against Radiation

Part J - Notices, Instructions and Reports to Workers; Inspections

These Parts are the equivalent NRC regulations in 10 CFR Sections 19 and 20.

We have incorporated the sole comment of NRC and changed all references from "eye dose" to "lens dose" per RATS ID 1998-5. A mistyped summation symbol has also been corrected per the suggestion of NRC.

We believe that adoption of these revisions satisfies the compatibility and health and safety categories established in the Office of State and Tribal Programs (STP) Procedures SA-200.

If you have any questions, please feel free to contact me at 502 227 4543 or Bruce Hirschler of my staff.

Sincerely,

Ronald G. Fraass Executive Director, CRCPD

Enclosures: As stated

Recid mare 18,2003

A Partnership Dedicated to Radiation Protection

March 13, 2003

.

r

_

,

CONTENTS

~

,

•

 \smile

	, Page
PART A - GENERA	L PROVISIONS
Section A.1	ScopeA1
Section A.2	DefinitionsA1
Exemptions from the	e Regulatory Requirements
Section A.3	ExemptionsA12
General Regulatory	Requirements
Section A.4	RecordsA13
Section A.5	InspectionsA13
Section A.6	TestsA13
Additional Regulate	ory Requirements
~ . ! ! !!!	
Section A.7	Additional Requirements
Enforcement Requi	rements
Section A.8	ViolationsA14
Section A.9	ImpoundingA14
Section A.10	Prohibited Uses
Interpretations	· · · ·
Section A.11	InterpretationsA14
Communications	, <u>-</u>
Section A.12	Communications
Section A.13	Units of Exposure and Dose
Section A.14	Units of ActivityA17
Rationale for Revision	ons, Part A (2003, 1995, 1988, 1982, 1978 and 1974)
PART B - REGIST	RATION OF RADIATION MACHINE FACILITIES AND SERVICES
Castion D 1	Burnore and Scone B1
Section B.1	r mhose and poohe

Part B - REGISTRATION OF RADIATION MACHINE FACILITIES AND SERVICES *(Continued)*

Section B.2	Definitions	B1
Section B.3	Exemptions	B1

General Regulatory Provisions

Section B.4	Shielding Plan Review	B2
Section B.5	Registration of Radiation Machine Facilities	B3
Section B.6	Application for Registration of Servicing and Services	B3
Section B.7	Issuance of Notice of Registration	B4
Section B.8	Expiration of Notice of Registration	B5
Section B.9	Renewal of Notice of Registration	B5
Section B.10	Report of Changes	B5
Section B.11	Approval Not Implied	B5
Section B.12	Assembler and/or Transfer Obligation	B5
Section B.13	Reciprocal Recognition of Out-of-State Radiation Machines	B6

Appendices

Appendix A	Information on Radiation Shielding Required for Plan Reviews	B7 、	
Appendix B	Design Requirements for an Operator's Booth	B8	

Rationale for Revisions, Part B (1995, 1988, 1982, 1978 and 1974)

PART C - LICENSING OF RADIOACTIVE MATERIAL

Section C.1	Purpose and Scope	.C	1
-------------	-------------------	----	---

Exemptions from the Regulatory Requirements

Section C.3	Source MaterialCl	l
Section C.4	Radioactive Material Other Than Source Material	ł

Licenses

Section C.20	Types of Licenses	С9
Section C.21	General Licenses - Source Material	C10
Section C.22	General Licenses - Radioactive Material Other Than	
	Source Material	C12
Section C.23	Reserved	C22

. 1. ya

ξ

, [,]

PART C - LICENSING OF RADIOACTIVE MATERIAL (Continued)

Specific Licenses

Section C.24	Filing Application for Specific Licenses	C22
Section C.25	General Requirements for the Issuance of Specific Licenses	C23
Section C.26	Special Requirements for Issuance of Certain Specific Licenses	
	for Radioactive Material	C25
Section C.27	Special Requirements for Specific Licenses of Broad Scope	C26
Section C.28	Special Requirements for a Specific License to Manufacture,	
	Assemble, Repair, or Distribute Commodities, Products, or	-
	Devices which Contain Radioactive Material	C30
Section C.29	Reserved	C46
Section C.30	Issuance of Specific Licenses	C46
Section C.31	Specific Terms and Conditions of Licenses	C46
Section C.32	Expiration and Termination of Licenses	Č47
Section C.33	Renewal of Licenses	C49
Section C 34	Amendment of Licenses at Request of Licensee	C49
Section C.35	Agency Action on Applications to Renew or Amend	C49

.

Licenses Held at the Time of the Effective Date of These Regulations

,	Section C.36	Persons Possessing a License for Source, Byproduct, or	
· .	4	Special Nuclear Material in Quantities Not Sufficient to Form	
		a Critical Mass on Effective Date of These Regulations	C49
	Section C.37	Persons Possessing Naturally Occurring and Accelerator-Produced Radioactive	
		Material on Effective Date of	
		These Regulations	C50

...

.

、 '

Transfer of Material

1

Section C.40	Transfer of Material	C50
Modification and R	evocation of Licenses	
Section C.50	Modification and Revocation of Licenses	.C51
Reciprocity		
Section C.90	Reciprocal Recognition of Licenses	.C52
Transportation		
Section C.100	Reserved	.C55

PART C - LICENSING OF RADIOACTIVE MATERIAL, Appendices (Continued)

Section C.101	ReservedC55
Section C.102	Reserved
Section C.103	Reserved
Section C.104	Reserved

Appendices

Appendix A	Exempt Concentrations	C57
Appendix B	Exempt Quantities	C63
Appendix C	Reserved	C68
Appendix D	Limits for Broad Licenses	C69

Rationale for Revisions, Part C (1988, 1984, 1982, 1978 and 1974)

PART D - STANDARDS FOR PROTECTION AGAINST RADIATION

General Provisions

Section D.1001	Purpose		D1
Section D.1002	Scope.	· · · · · · · · · · · · · · · · · · ·	D1
Section D.1003	Definitions	*****	D1
Section D.1004	Implementation	•••••••••••••••••••••••••••••••••••••••	D3

Radiation Protection Programs

Section D.1101	Radiation Protection ProgramsD4	
----------------	---------------------------------	--

Occupational Dose Limits

Section D.1201	Occupational Dose Limits for Adults	D4
Section D.1202	Compliance with Requirements for Summation of External and	
	Internal Doses	D6
Section D.1203	Determination of External Dose from Airborne Radioactive Material	D6
Section D.1204	Determination of Internal Exposure	D7
Section D.1206	Planned Special Exposures	D8
Section D.1207	Occupational Dose Limits for Minors	D9
Section D.1208	Dose to an Embryo/Fetus	D9

Radiation Dose Limits for Individual Members of the Public

Section D.1301	Dose Limits for Individual Members of the Public	D10
Section D.1302	Compliance with Dose Limits for Individual Members of the Public	D11 、

PART D - STANDARDS FOR PROTECTION AGAINST RADIATION, Radiation Dose Limits for Individual Members of the Public (Continued)

[Testing for Leaka	ge or Contamination of Sealed Sources	,
Section D.1310	Testing for Leakage or Contamination of Sealed Sources	D12]
Surveys and Monit	toring	•
Section D.1501	General	D13
Section D.1502	Conditions Requiring Individual Monitoring of External and Internal	D14
Section D.1503	Location of Individual Monitoring Devices	D14
Control of Exposu	re from External Sources in Restricted Areas	·
Section D.1601	Control of Access to High Radiation Areas	D16
Section D 1602	Control of Access to Very High Radiation Areas	D17
Section D.1603	Control of Access to Very High Radiation Areas Irradiators	D18
Respiratory Prote	ction and Controls to Restrict Internal Exposure in Restricted Areas	
Section D.1701	Use of Process or Other Engineering Controls	D20
Section D.1702	Use of Other Controls	D20
Section D.1703	Use of Individual Respiratory Protection Equipment	D21
Section D.1704	Further Restrictions on the Use of Respiratory Protection Equipment	D23
Section D.1705	Application for use of Higher Assigned Protection Factors	D23
Storage and Contr	rol of Licensed or Registered Sources of Radiation	
Section D.1801	Security and Control of Licensed or Registered Sources of Radiation	D24
Precautionary Pro	ocedures	
G D 1001	Continue Cinera	· D24
Section D.1901	Caution Signs	D25
Section D.1902	Posting Requirements	D25
Section D.1903	Exceptions to Posting requirements	D26
Section D.1904	Labeling Containers and Radiation Machines	· D27
Section D.1905 Section D.1906	Procedures for Receiving and Opening Packages	D27
Waste Disposal		,
Section D 2001	General Requirements	
Section D.2002	Method for Obtaining Approval of Proposed Disposal Procedures	D29

PART D - STANDARDS FOR PROTECTION AGAINST RADIATION, Waste Disposal (Continued)

Section D.2003	Disposal by Release into Sanitary Sewerage	
Section D.2004	Treatment or Disposal by Incineration	D30
Section D.2005	Disposal of Specific Wastes	D30
Section D.2006	Transfer for Disposal and Manifests	
Section D.2007	Compliance with Environmental and Health Protection Regulations	D31

Records

Section D.2101	General Provisions	D31
Section D.2102	Records of Radiation Protection Programs	D32
Section D.2103	Records of Surveys	D32
Section D.2104	Determination and Records of Prior Occupational Dose	D32
Section D.2105	Records of Planned Special Exposures	D34
Section D.2106	Records of Individual Monitoring Results	D34
Section D.2107	Records of Dose to Individual Members of the Public	D35
Section D.2108	Records of Waste Disposal	D36
Section D.2109	Records of Testing Entry Control Devices for Very High Radiation Areas	D36
Section D.2110	Form of Records	D35
Section D.2111	Records of Tests for Leakage or Contamination of Sealed Sources	D36

Reports

Section D.2201	Reports of Stolen, Lost, or Missing Licensed or Registered Sources	
	of Radiation	D36
Section D.2202	Notification of Incidents	D37
Section D.2203	Reports of Exposures, Radiation Levels, and Concentrations of	•
	Radioactive Material Exceeding the Limits	D39
Section D.2204	Reports of Planned Special Exposures	D 40
Section D.2205	Reports to Individuals of Exceeding Dose Limits	D40
Section D.2206	Reports of Individual Monitoring	D40
Section D.2207	Notifications and Reports to Individuals	D41
Section D.2208	Reports of Leaking or Contaminated Sealed Sources	D41

Additional Requirements

Section D.2301	Vacating PremisesD	41

Appendices

Appendix A	Assigned Protection Factors (APF) for Respira	torsD42
------------	---	---------

PART D - STANDARDS FOR PROTECTION AGAINST RADIATION, Appendices (Continued)

Appendix B	Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure;	•
-	Effluent Concentrations; Concentrations for Release to Sanitary Sewerage	D46
Appendix C	Quantities of Licensed or Registered Material Requiring Labeling	D113
Appendix D	Reserved	D124
Appendix E	Reserved	D124
Appendix F	Quantities for Use with Decommissioning	D125
Appendix G	Requirements for Transfer of Low-Level Radioactive Waste	
	for Disposal at Land Disposal Facilities and Manifests	D131
Appendix G-attach	ment Classification and Characteristics of Low-Level Radioactive Waste	D145

, , , ,

Rationale for Revisions, Part D (2003, 1995, 1988, 1984, 1982, 1978 and 1974)

PART E - RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS

	•••	
Section E.1	Purpose	E1
Section E.2	. Scope	E1
Section E.3	Definitions	E1
Section E.4	Exemptions	E5
Section E.5	Licensing and Registration Requirements for Industrial	
-	Radiography Operations	E5
Section E.6	Performance Requirements for Industrial Radiography Equipment	E7
Section E.7	Limits on External Radiation Levels From Storage Containers	
	and Source Changers	E9
Section E.8	Locking of Sources of Radiation, Storage Containers and	
	Source Changers	E9
Section E.9	Radiation Survey Instruments	E10
Section E.10	Leak Testing and Replacement of Sealed Sources	E10
Section E.11	Quarterly Inventory	E11
Section E.12	Inspection and Maintenance of Radiation Machines, Radiographic	
	Exposure Devices, Transport and Storage Containers, Associated Equipment	t,
	Source Changers, and Survey Instruments	E12
Section E.13	Permanent Radiographic Installations	E12
Section E.14	Labeling, Storage, and Transportation	E13
Section E.15	Conducting Industrial Radiographic Operations	E14
Section E.16	Radiation Safety Officer	E14
Section E.17	Training	E15
Section E.18	Operating and Emergency Procedures	E18
Section E.19	Supervision of Radiographer's Assistants	E19
Section E.20	Personnel Monitoring	E19
Section E.21	Radiation Surveys	E21

PART E - RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS (Continued)

Section E.22	Surveillance	Ė21
Section E.23	Posting	E21
Section E.24	Records for Industrial Radiography	E21
Section E.25	Records of Receipt and Transfer of Sources of Radiation	E22
Section E.26	Records of Radiation Survey Instruments	E22
Section E.27	Records of Leak Testing of Sealed Sources and Devices Containing DU	E22
Section E.28	Records of Quarterly Inventory	E22
Section E.29	Utilization Logs	E22
Section E.30	Records of Inspection and Maintenance of Radiation Machines,	
	Radiographic Exposure Devices, Transport and Storage Containers, Associated	
	Equipment, Source Changers, and Survey Instruments	E23
Section E.31	Records of Alarm System and Entrance Control Checks at	
	Permanent Radiographic Installations	E23
Section E.32	Records Of Training and Certification	E23
Section E.33	Copies of Operating and Emergency Procedures	E23
Section E.34	Records of Personnel Monitoring	E23
Section E.35	Records of Radiation Surveys	E24
Section E.36	Form of Records	E24
Section E.37	Location Of Documents and Records	E24
Section E.38	Notifications	E25 \
Section E.39	Application and Examinations	E26
Section E.40	Certification Identification (ID) Care	E27
Section E.41	Reciprocity	E28
Section E.42	Specific Requirements for Radiographic Personnel Performing	
	Industrial Radiography	E29

Appendix

Appendix A Subjects for Instruction of Radiographer Trainees E	30
--	----

Rationale for Revisions, Part E (1999,1988, 1982, and 1978)

PART F - USE OF DIAGNOSTIC X-RAYS IN THE HEALING ARTS

Section F.1	Purpose and Scope	
Section F.2	Definitions	F1
Section F.3	General and Administrative Requirements	F9
Section F.4	General Requirements for All Diagnostic X-Ray Systems	
Section F.5	Fluoroscopic X-Ray Systems	
Section F.6	Radiographic Systems Other Than Fluoroscopic, Dental Intraoral,	
	or Computed Tomography X-Ray Systems	F25

PART F - USE OF DIAGNOSTIC X-RAYS IN THE HEALING ARTS (Continued)

Section F.7	Intraoral Dental Radiographic Systems	F31
Section F.11	Computed Tomography X-Ray Systems	F33
Section F.12	. Mammography Requirements for States Without FDA	•
	Certifying Authority	F42
Section F.13	Mammography Definitions for States With Certifying Authority	F42
Section F.14	Mammography Requirements for States With Certifying Authority	F47
Section F.15	Bone Densitometry	F75
Appendices		,
Appendix A	Determination of Competence	F76
Appendix B	Information To Be Submitted by Persons Proposing To Conduct	
	Healing Arts Screening	F77
Appendix C	Exemptions From Shielding For Certain Fluoroscopic Procedures	F79
Appendix D	Focal Spot Tolerance Limit	F80
Appendix E	X-Ray Tube Voltage (Kilovolt Peak) and Minimum HVL	F81

....

. '

Rationale for Revisions, Part F (2001,1995, 1988, 1984, 1982, 1978 and 1974)

• • • • PART G - USE OF RADIONUCLIDES IN THE HEALING ARTS

Section G 1		Purpose and Scope	G1
Section G.2		Definitions	G1
Section G.3		Maintenance of Records	G6
Section G.4		Provisions for Research Involving Human Subjects	G6
Section G.5		U.S. Food and Drug Administration, Federal, and State Requirements	G6
Section G.6		Implementation.	G6
Section G.7		License Required	G7
Section G 8		Application for License, Amendment, or Renewal	G7
Section G 9	,	Mobile Medical Service Administrative Requirements	G8
Section G 10		License Amendments.	G9
Section G 11		Notifications	G10
Section G 15		Exemptions Regarding Type A Specific Licenses of Broad Scope	G10
Section G 16	•	License Issuance	G11
Section 0.10	• /	Livonijo ibbuuitoonininininininininininininininininini	

General Administrative Requirements

. .

. .

Castion C 17	Specific Exemptions	G11
Section G.17	Authority and Responsibilities for the Radiation Protection Program	
Section G.18	Automy and Responsionnes for the Radiation Protection Program Changes	G13
Section G.19	Duties of Authorized User and Authorized Medical Physicist	G13
Section G 21	Supervision	G13
Section 0.21	Supervision	

SSRCR Volume I - March 2003

PART G - USE OF RADIONUCLIDES IN THE HEALING ARTS, Specific Requirements for the Use of Sealed Sources for Diagnosis (Continued)

Section G.22	Written Directives	
Section G.23	Procedures for Administrations Requiring a Written Directive	.G15
Section G.24	Suppliers for Sealed Sources or Devices for Medical Use	.G16
Section G.25	Training for Radiation Safety Officer	.G16
Section G.26	Training for Authorized Medical Physicist	.G17
Section G.27	Training for an Authorized Nuclear Pharmacist	.G18
[Section G.28	Training and Technical Requirements for Nuclear Medicine Technologists and Radiation Therapists.	.G191
Section G.29	Provisions for Experienced Radiation Safety Officer, Medical Physicist, Authoriz User, and Nuclear Pharmacist	xed G22
Section G.30	Recentness of Training	.G22

General Technical Requirements

.

. .

Section G.31 Quality Control of Diagnostic Equipment	
Section G.32 Possession, Use, and Testing of Instruments to Measure the A	ctivity of Unsealed
Radioactive Materials	
Section G.33 Calibration of Survey Instruments	
Section G.34 Determination of Dosages of Radioactive Material for Medica	al UseG23
Section G.35 Authorization for Calibration, Transmission and Reference Sc	ourcesG24
Section G.36 Requirements for Possession of Sealed Sources and Brachythe	erapy Sources
Section G.37 Labels	
[Section G.38 Vial Shields	
Section G.39 Surveys for Ambient Radiation Dose Rate and Contamination	G25
Section G.40 Release of Individuals Containing Radioactive Drugs or Impla	ants
Section G.41 Mobile Medical Service Technical Requirements	
[Section G.42 Storage and Control of Volatiles and Gases	
Section G.43 Decay-in-Storage	

Specific Requirements for the Use of Radioactive Material for Uptake, Dilution, or Excretion Studies

Section G.44	Use of Unsealed Radioactive Material for Uptake, Dilution, or	
·· ·	Excretion Studies for which a Written Directive is Not Required	G28
[Section G.45	Possession of Survey Instrument	G29]
Section G.46	Training for Uptake, Dilution, and Excretion Studies	G29

Specific Requirements for the Use of Unsealed Radioactive Material - Written Directive Not Required

٠,

Section G.47	Use of Unsealed Radioactive Material for Imaging and	
	Localization Studies for which a Written Directive is Not Required	G30
Section G.48	Radionuclide Contaminants	G31

.

PART G - USE OF RADIONUCLIDES IN THE HEALING ARTS, Specific Requirements for the Use of Sealed Sources for Diagnosis (Continued)

Specific Requirements for the Use of a Sealed Source in Teletherapy

Section G.49	Reserved	G31
Section G.50	Possession of Survey Instruments	G31
Section G.51	Training for Imaging and Localization Studies	G32
Section G.52	Use of Unsealed Radioactive Material for which a Written Directive is Require	edG33
Section G.53	Safety Instruction	G33
Section G.54	Safety Precautions	G34
[Section G.55	Possession of Survey Instruments	G35]
Section G.56	Training for Use of Unsealed Radioactive Material for which	_
	a Written Directive is Required.	G35
Section G.57	Training for the Oral Administration of Sodium Iodide I-131 in Quantities	
	Less than or Equal to 1.22 Gigabecquerels (33 millicuries) for which a	
	Written Directive is Required	G36
Section G.58	Training for the Oral Administration of Sodium Iodide I-131 in Quantities	
- • •	Greater than 1.22 Gigabecquerels (33 millicuries) for which a	•
	Written Directive is Required	G38
Section G.59	Use of Sealed Sources for Manual Brachytherapy	G39
Section G.60	Surveys After Source Implant and Removal	G39
Section G.61	Brachytherapy Sources Inventory	G40
Section G.62	Safety Instruction	G40
Section G.63	Safety Precautions for Patients or Human Research Subjects	
	Receiving Brachytherapy	G40
Section G.64	. Calibration Measurements of Brachytherapy Sealed Sources	G41
Section G.65	Therapy-related Computer Systems	G42
[Section G.66	Possession of Survey Instruments	G42]
Section G.67	Training for Use of Manual Brachytherapy Sources	G42
Section G.68	Training for ophthalmic use of strontium-90	G43
Sealed Sources I	for Diagnosis	
Section G 69	Use of Sealed Sources for Diagnosis	G44
Section G.70	Training for Use of Sealed Sources for Diagnosis	G44
•		
Photon Emitting	Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic	
Radiosurgery U	nits	÷
Section G 71	Use of Sealed Sources in a Remote Afterloader Unit.	
	Teletherapy Unit, or Gamma Stereotactic Radiosurgery Unit	G45
Section G.72	Surveys of Patients and Human Research Subjects Treated with	
	Remote Afterloader Unit	G45
Section G.73	Installation, Maintenance, Adjustment, and Repair	G46

SSRCR Volume I - March 2003

Section G.74

PART G - USE OF RADIONUCLIDES IN THE HEALING ARTS, Specific Requirements for the Use of Sealed Sources for Diagnosis (Continued)

Safety Procedures and Instructions for Remote Afterloader Units,

	Teletherapy Units, and Gamma Stereotactic Radiosurgery Units	G46
Section G.75	Safety Precautions for Remote Afterloader Units, Teletherapy Units, and	
	Gamma Stereotactic Radiosurgery Units	G47
Section G.76	Dosimetry Equipment	G48
Section G.77	Full Calibration Measurements on Teletherapy Units	G49
Section G.78	Full Calibration Measurements on Remote Afterloader Units	G50
Section G.79	Full Calibration Measurements on Gamma Stereotactic Radiosurgery Units	G51
Section G.80	Periodic Spot-Checks for Teletherapy Units	G53
Section G.81	Periodic Spot-Checks for Remote Afterloader Units	G54
Section G.82	Periodic Spot-Checks for Gamma Stereotactic Radiosurgery Units	G55
Section G.83	Additional Technical Requirements for Mobile Remote Afterloader Units	G57
Section G.84	Radiation Surveys	G57
Section G.85	Five-Year Inspection for Teletherapy and Gamma Stereotactic	
	Radiosurgery Units	G58
Section G.86	Therapy-Related Computer Systems	G58
[Section G.87	Possession of Survey Instruments	G58]
Section G.88	Training for Use of Remote Afterloader Units, Teletherapy	_
	Units, and Gamma Stereotactic Radiosurgery Units	G58
Other Medical U	ses of Radioactive Material or Radiation from Radioactive Material	
Section G.89	Other Medical Uses of Radioactive Material or Radiation	
	From Radioactive Material	G60
Records		
Section G.90	Records of Authority and Responsibilities for Radiation Protection Programs.	G60
Section G.91	Records of Radiation Protection Program Safety Changes	G61
Section G.92	Records of Written Directives	G61
Section G.93	Records of Misadministrations	G61
Section G.94	Record of a Dose to an Embryo/Fetus or a Nursing Child	G61
Section G.95	Records of Calibrations of Instruments Used to Measure the Activity	
	of Unsealed Radioactive Material	G61
Section G.96	Records of Survey Instrument Calibrations	G61
Section G.97	Records of Dosages of Unsealed Radioactive Material for Medical Use	G61
Section G.98	Records of Possession of Sealed Sources and Brachytherapy Sources	G62
Section G.99	Records of Surveys for Ambient Radiation Exposure Rate	G62
Section G.100	Records of the Release of Individuals Containing Radioactive	
	Drugs or Implants Containing Radioactive Material	G62
Section G.101	Records of Administrative and Technical Requirements that	
	Apply to the Provision of Mobile Services	G62 \

4

PART G - USE OF RADIONUCLIDES IN THE HEALING ARTS, Specific Requirements for the Use of Sealed Sources for Diagnosis (Continued)

Records of Decay-in-Storage	G62
Records of Radionuclide Purity	G62
Records of Training	G63]
Records of Safety Instruction and Training	G63 ⁻
Records of Radiation Surveys of Patients and Human Research Subjects	G63
Records of Brachytherapy Source Inventory	G63
Records of Calibration Measurements on Brachytherapy Sources	G63
Records of Decay of Strontium-90 Sources for Ophthalmic Treatments	G64
Records of Installation, Maintenance, Adjustment, and Repair	G64
Records of Dosimetry Equipment	G64
Records of Teletherapy, Remote Afterloader, and Gamma Stereotactic	
Radiosurgery Full Calibrations	G64
Records of Periodic Spot-Checks for Teletherapy Units	G65
Records of Periodic Spot-Checks for Remote Afterloader Units	G65
Records of Periodic Spot-Checks for Gamma	
Stereotactic Radiosurgery Units	G66
Records of Additional Technical Requirements for	
Mobile Remote Afterloader Units	G66
Records of Surveys of Therapeutic Treatment Units	G67
Records of 5-Year Inspection for Teletherapy and	•
Gamma Stereotactic Surgery Units	G67
	Records of Decay-in-Storage Records of Radionuclide Purity Records of Training Records of Safety Instruction and Training Records of Safety Instruction and Training Records of Radiation Surveys of Patients and Human Research Subjects Records of Brachytherapy Source Inventory Records of Calibration Measurements on Brachytherapy Sources Records of Calibration Measurements on Brachytherapy Sources Records of Decay of Strontium-90 Sources for Ophthalmic Treatments Records of Installation, Maintenance, Adjustment, and Repair Records of Dosimetry Equipment Records of Teletherapy, Remote Afterloader, and Gamma Stereotactic Radiosurgery Full Calibrations Records of Periodic Spot-Checks for Teletherapy Units Records of Periodic Spot-Checks for Remote Afterloader Units Records of Periodic Spot-Checks for Gamma Stereotactic Radiosurgery Units Records of Additional Technical Requirements for Mobile Remote Afterloader Units Records of Surveys of Therapeutic Treatment Units Records of Surveys of Therapeutic Treatment Units Records of 5-Year Inspection for Teletherapy and Gamma Stereotactic Surgery Units

Reports

Sec. G.119	Reports and Notifications of Misadministrations
Sec. G.120	Report and Notification of a Dose to an Embryo/Fetus or a Nursing Child
Sec. G.121	Reports of Leaking Sources
Sec. G.122	Reports of Patient Departure Prior to Authorized Release
Sec. G.123	Notification of Deceased Patients or Human Research
	Subjects Containing Radioactive MaterialG72

Rationale for Revisions, Part G (2003,1995, 1988, 1984, 1982, 1978 and 1974)

PART H - RADIATION SAFETY REQUIREMENTS FOR ANALYTICAL X-RAY EQUIPMENT

	• • •	• •	,		
Section H.1	Purpose and Scope.			-	H1
Section H.2	Definitions				H1

SSRCR Volume I - March 2003

PART H - RADIATION SAFETY REQUIREMENTS FOR ANALYTICAL X-RAY EQUIPMENT (Continued)

General Regulatory Provisions and Specific Requirements

Section H.3	Equipment Requirements	H1
Section H.4	Area Requirements	H3
Section H.5	Operating Requirements	H4
Section H.6	Personnel Requirements	H5

Rationale for Revisions, Part H (1988, 1982, 1978 and 1974)

PART I - RADIATION SAFETY REQUIREMENTS FOR PARTICLE ACCELERATORS

Section I.1	Purpose and Scope	. I 1
-------------	-------------------	--------------

Registration Procedure

Section I.2	Registration Requirements I1
Section I.3	General Requirements for the Issuance of a Registration
	for Particle Accelerators I1
Section I.4	Human Use of Particle Accelerators 12

Radiation Safety Requirements for the Use of Particle Accelerators

Section I.5	Reserved	I2
Section I.6	Limitations	I2
Section I.7	Shielding and Safety Design Requirements	I3
Section I.8	Particle Accelerator Controls and Interlock Systems	I3
Section I.9	Warning Devices	I3
Section I.10	Operating Procedures	I4
Section I.11	Radiation Monitoring Requirements	I4
Section I.12	Ventilation Systems	I5

Rationale for Revisions, Part I (1988, 1982, 1978 and 1974)

PART J - NOTICES, INSTRUCTIONS, AND REPORTS TO WORKERS; INSPECTIONS

Section I 1	Durnose and Scone	[1
Section J.1	Purpose and Scope	11

General Regulatory Provisions and Specific Requirements

Section J.11	Posting of Notices to Workers	
Section J.12	Instructions to WorkersJ2	

PART J - NOTICES, INSTRUCTIONS, AND REPORTS TO WORKERS; INSPECTIONS (Continued)

Section J.13	Notifications and Reports to Individuals	J2
Section J.14	Presence of Representatives of Licensees or Registrants and Workers	
x	During Inspection	J3
Section J.15	Consultation with Workers During Inspections	J4
Section J.16	Requests by Workers for Inspections	J5
Section J.17	Inspections Not Warranted; Informal Review	J5

Rationale for Revisions, Part J (2003, 1995, 1988, 1982, 1978 and 1974)

.

٠ PART M - LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE

.

Section M.1	Purpose and Scope	M1
Section M.2	Definitions	M1
		r

<u>ر</u>٠

General Regulatory Provisions

License Required	M3
Reserved	M3
Content of Application	M3
General Information	M3
Specific Technical Information	M4
Technical Analyses	M6
Institutional Information	M6
Financial Information	M7
Requirements for Issuance of a License	M7
Conditions of Licenses	
Application for Renewal or Closure	M9
Contents of Application for Site Closure and Stabilization	M10
Post-Closure Observation and Maintenance	M10
Transfer of License	M10
Termination of License	M11
	License Required Reserved Content of Application General Information Specific Technical Information Technical Analyses Institutional Information Financial Information Requirements for Issuance of a License Conditions of Licenses Application for Renewal or Closure Contents of Application for Site Closure and Stabilization Post-Closure Observation and Maintenance Transfer of License Termination of License

General Performance Objectives

		,
Section M.19	Protection of the General Population from Releases	
Section M.20	of Radioactivity Protection of Individuals from Inadvertent Intrusion	M12
Section M.21	Protection of Individuals During Operations	M12 M12
Section M.22	Stadinty of the Disposal Site After Closure	•••••••••••••••••••••••••••••••••••••••

PART M - LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE, (Continued)

Technical Requirements for Land Disposal Facilities

Section M.23	Disposal Site Suitability Requirements for Land Disposal	M12
Section M.24	Disposal Site Design for Land Disposal	M13
Section M.25	Land Disposal Facility Operation and Disposal Site Closure	M14
Section M.26	Environmental Monitoring.	M16
Section M.27	Alternative Requirements for Design and Operations	M16
Section M.28	Institutional Requirements	M16
Section M.29	Alternative Requirements for Waste Classification	
	and Characteristics	M17

Financial Assurances

Section M.30	Applicant Qualifications and Assurances	M17
Section M.31	Funding for Disposal Site Closure and Stabilization	M17
Section M.32	Financial Assurances for Institutional Controls	M18

Records, Reports, Tests, and Inspections

Section M.33	Maintenance of Records, Reports, and Transfers	M19
Section M.34	Tests on Land Disposal Facilities	M20
Section M.35	Agency Inspections of Land Disposal Facilities	M21

Rationale for Revisions, Part M (1988 and 1984)

PART N - REGULATION AND LICENSING OF TECHNOLOGICALLY ENHANCED NATURALLY OCCURRING RADIOACTIVE MATERIALS (TENORM)

Section N.1	Purpose	N1
Section N.2	Scope	N1
Section N.3	Definitions	N1
Section N.4	Exemptions	N2
Section N.5	Standards for Radiation Protection for TENORM	N2
Section N.6	Protection of Workers During Operations	N3
Section N.7	Release for Unrestricted Use.	N3
Section N.8	Disposal and Transfer of Waste for Disposal	N3

General License

Section N.10 General License]	N4
------------------------------	---	----

PART N - REGULATION AND LICENSING OF TECHNOLOGICALLY ENHANCED NATURALLY OCCURRING RADIOACTIVE MATERIALS (TENORM) (Continued) ;

Specific Licenses

-	-	
Section N.20	Specific Licenses	N5
Section N.21	Filing Application for Specific Licenses	N6
Section N.22	Requirements for the Issuance of Specific Licenses	N7
Section N.23	Safety Criteria for Products	N9
Section N.24	Table of Organ Doses	N10
Section N.25	Issuance of Specific Licenses	N10
Section N.26	Conditions of Specific Licenses issued Under N.22	N11
Section N.27	Expiration and Termination of Specific Licenses	N12
Section N.28	Renewal of Specific Licenses	N14
Section N.29	Amendment of Specific Licenses at Request of Licensee	N14
Section N.30	Agency Action on Applications to Renew and Amend Specific Licenses	N14
Section N.31	Modification and Revocation of Specific Licenses	N14
Reciprocity		•
Section N.40	Reciprocal Recognition of Specific Licenses	N14
	• • •	

Section N.40	Reciprocal Recognition of Specific Licenses	N14
Section N.50	Financial Surety Arrangements	N15
[Section N.51]	[Effective Date]	N16
Appendix A	Acceptable Surface Contamination Levels for TENORM	N17

. .

. × . Rationale for Revisions, Part N (1999)

PART O - DECOMMISSIONING

Section O.1	Purpose	01
Section O.2	Scope	01
Section O.3	Definitions	01
Section O.4	Minimization of Contamination	02
Section O.5	An Expired License Remains in Effect Until Final Agency Action	03
Section O.6	Decommissioning Timeliness	03
Section 0.7	Decommissioning Plan	04
Section O.8	Completion of Decommissioning	05
Section 0.9	Termination of a License Without Restriction	07
Section O.10	License Termination Under Restricted Conditions	07
Section 0.11	Alternate Criteria for License Termination	
Section 0.12	Public Notification and Public Participation	010
Section O.13	Applicability of Decommissioning Criteria Following License Termination	011

SSRCR Volume I - March 2003

.

PART O – DECC	OMMISSIONING (Continued)	
ł	1	
Attachment A	Form T - Certificate Of Termination And	,
	Disposition Of Radioactive Material	012

•

Rationale for Revisions, Part O (2000)

PART P – CONTINGENCY PLANNING FOR RESPONSE TO RADIOACTIVE MATERIAL EMERGENCIES

Section P.1	Purpose	P1
Section P.2	Scope	P1
Section P.3	Definitions	P1
Section P.4	Dose Evaluation and Contingency Planning	P3
Section P.5	Evaluation of Potential Dose	P3
Section P.6	Contents of a Contingency Plan	P3
Section P.7	Comment from Offsite Response Organizations	P6
Section P.8	Hazardous Chemicals	P6
Section P.9	Training	P6
Section P.10	Conduct of Drills and Exercises	P6
Section P.11	Plan Implementation	P7
Section P.12	Plan Revision	P7 🔪
Section P.13	Documentation and Recordkeeping	P7
Appendix A	Quantities of Radioactive Materials Requiring Consideration of the Need for a Contingency Plan for Responding to a Release	P8

Rationale For Part P (2001)

PART Q – LICENSING AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS

Section Q.1	Purpose and Scope	Q1
Section Q.2	Definitions	Õ1
Section Q.3	Application for a Specific License.	Q2
Section Q.4	Specific Licenses for Irradiators	Q3
Section Q.5	Start of Construction	Õ4
Section Q.6	Applications for Exemptions	Õ4
Section Q.7	Request for Written Statements	Q4
Section Q.8	Performance Criteria for Sealed Sources	Q4
Section Q.9	Access Control	
Section Q.10	Shielding	Õ7
Section Q.11	Fire Protection	Õ7
Section Q.12	Radiation Monitors	Q7

PART Q – LICENSING AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS (Continued)

Section Q.13	Control of Source Movement	Q8
Section Q.14	Irradiator Pools	Q8
Section Q.15	Source Rack Protection	Q9
Section Q.16	Power Failures	Q9
Section Q.17	Design Requirements	Q9
Section Q.18	Construction Monitoring and Acceptance Testing	Q10
Section Q.19	Training	Q12
Section Q.20	Operating and Emergency Procedures	Q13
Section Q.21	Personnel Monitoring	Q14
Section Q.22	Radiation Surveys	Q15
Section Q.23	Detection of Leaking Sources	Q15
Section Q.24	Inspection and Maintenance	Q16
Section Q.25	Pool Water Purity	Q17
Section Q.26	Attendance During Operation	Q17
Section Q.27	Entering and Leaving the Radiation Room	Q18
Section Q.28	Irradiation of Explosive or Flammable Materials	Q18
Section Q.29	Records and Retention Periods	Q19
Section Q.30	Reports	Q20

Rationale for Revisions, Part Q (1998)

PART T - TRANSPORTATION OF RADIOACTIVE MATERIAL

..

Section T.1	Purpose and Scope	T1
Section T.2	Definitions	T1
		-

General Regulatory Provisions

Section T.3	Requirement for License	5
Section T.4	Exemptions	5
Section T.5	Transportation of Licensed Material	5

General Licenses

Section T.6	General Licenses for Carriers	Ť7
Section T.7	General License: Nuclear Regulatory Commission-Approved Packages	T7
Section T.8	General License: Previously Approved Packages	T8
Section T.9	General License: US Dept. of Transportation Specification Container	Т9
Section T.10	General License: Use of Foreign Approved Package	T9
Section T.11	General License: Fissile Material, Limited Quantity Per Package	T10
Section T.12	General License: Fissile Material, Limited Moderator Per Package	T11

PART T - TRANSPORTATION OF RADIOACTIVE MATERIAL (Continued)

Operating Controls and Procedures

Section T.13	Assumptions as to Unknown Properties of Fissile Material	
Section T.14	Preliminary Determinations.	
Section T.15	Routine Determinations	
Section T.16	Air Transport of Plutonium	
Section T.17	Shipment Records	
Section T.18	Reports	
Section T.19	Advance Notification of Transport of Nuclear Waste	

Quality Assurance

Section T.20	Quality Assurance Requirements
Appendix	
Appendix A	Determination of A ₁ and A ₂

Rationale for Part T (1999 and 1988)

PART W - RADIATION SAFETY REQUIREMENTS FOR WIRELINE SERVICE OPERATIONS AND SUBSURFACE TRACER STUDIES

Section W.1	Purpose	W1
Section W.2	Scope	W1
Section W.3	Definitions	W1
Section W.4	Prohibition	W2

Equipment Control

Section W.101	Limits on Levels of Radiation	W2
Section W.102	Storage Precautions	W3
Section W.103	Transport Precautions	W3
Section W.104	Radiation Survey Instruments	W3
Section W.105	Leak Testing of Sealed Sources	W3
Section W.106	Quarterly Inventory	W4
Section W.107	Utilization Records	W5
Section W.108	Design, Performance, and Certification Criteria for Sealed	
	Sources Used in Downhole Operations	W5
Section W.109	Labeling	W6
Section W.110	Inspection and Maintenance	W6

- 2

PART W - RADIATION SAFETY REQUIREMENTS FOR WIRELINE SERVICE OPERATIONS AND SUBSURFACE TRACER STUDIES (Continued)

ł

Requirements for Personnel Safety

Section W.201	Training Requirements	7
Section W.202	Operating and Emergency Procedures	7
Section W.203	Personnel Monitoring	3

Precautionary Procedures in Logging and Subsurface Tracer Studies

Section W.301	Security	W9
Section W.302	Handling Tools	W9
Section W.303	Subsurface Tracer Studies	W9
Section W.304	Particle Accelerators	W9

Radiation Surveys and Records

Section W.401	Radiation Surveys	W9
Section W.402	Documents and Records Required at Field Stations	W10
Section W.403	Documents and Records Required at Temporary Jobsites	W10

Notification

Section W.501	Notification of Incidents, Abandonment, and Lost Sources
Appendices	~
Appendix A	Subjects to be Included in Training Courses for Logging Supervisors
Appendix B	Example of Plaque for Identifying Wells Containing Sealed Sources Containing Radioactive Material Abandoned Downhole

Rationale for Revisions, Part W (1988 and 1982)

PART X - THERAPEUTIC RADIATION MACHINES

Section X.1	Purpose and Scope	X1
Section X.2	Definitions	X1
Section X.3	General Administrative Requirements for Facilities Using	
	Therapeutic Radiation Machines	X6
Section X.4	General Technical Requirements for Facilities Using Therapeutic	
	Radiation Machines	X10
Section X.5	Quality Management Program	X13

PART X - THERAPEUTIC RADIATION MACHINES (Continued)

Section X.6	Therapeutic Radiation Machines of Less Than 500 kV	X13
Section A.7	and Electron Therapy Systems (500 keV and Above)	
Section X.8	Calibration of Survey Instruments	X32
Section X.9	Shielding and Safety Design Requirements	X33
Appendices	~	
Appendix A	Information on Radiation Shielding Required for Plan Reviews	X34
Appendix B	Quality Management Program	X38
Appendix C	Alternative Quality Management Program	X42

Rationale for Revisions, Part X (1999)

FORMS

PART A

GENERAL PROVISIONS

<u>Sec. A.1 - Scope.</u> Except as otherwise specifically provided, these regulations apply to all persons who receive, possess, use, transfer, own, or acquire any source of radiation; provided that nothing in these regulations shall apply to any person to the extent such person is subject to regulation by the Nuclear Regulatory Commission.^{1/}

<u>Sec. A.2 - Definitions.</u> As used in these regulations, these terms have the definitions set forth below. Additional definitions used only in a certain Part will be found in that Part.

" A_1 " means the maximum activity of special form radioactive material permitted in a Type A package. " A_2 " means the maximum activity of radioactive material, other than special form radioactive material, permitted in a Type A package. These values are either listed in Appendix A of Part T of these regulations, Table I, or may be derived in accordance with the procedure prescribed in Appendix A of Part T of these regulations.

"Absorbed dose" means the energy imparted by ionizing radiation per unit mass of irradiated material. The units of absorbed dose are the gray (Gy) and the rad.

"Accelerator" means any machine capable of accelerating electrons, protons, deuterons, or other charged particles in a vacuum and of discharging the resultant particulate or other radiation into a medium at energies usually in excess of 1 MeV. For purposes of this definition, "particle accelerator" is an equivalent term.

"Accelerator-produced material" means any material made radioactive by a particle accelerator.

"Act" means [cite State Radiation Control Act].

"Activity" means the rate of disintegration or transformation or decay of radioactive material. The units of activity are the becquerel (Bq) and the curie (Ci).

"Adult" means an individual 18 or more years of age.

"Agency" means [cite appropriate State agency].

"Agreement State" means any State with which the Nuclear Regulatory Commission or the Atomic Energy Commission has entered into an effective agreement under subsection 274b. of the Atomic Energy Act of 1954, as amended (73 Stat. 689).

1' Attention is directed to the fact that regulation by the State of source material, byproduct material, and special nuclear material in quantities not sufficient to form a critical mass is subject to the provisions of the agreement between the State and the Nuclear Regulatory Commission and to 10 CFR Part 150 of the Commission's regulations.

"Airborne radioactive material" means any radioactive material dispersed in the air in the form of dusts, fumes, particulates, mists, vapors, or gases.

"Airborne radioactivity area" means a room, enclosure, or area in which airborne radioactive materials exist in concentrations:

- (1) In excess of the derived air concentrations (DAC's) specified in Appendix B, Table I of Part D of these regulations; or
- (2) To such a degree that an individual present in the area without respiratory protective equipment could exceed, during the hours an individual is present in a week, an intake of 0.6 percent of the annual limit on intake (ALI) or 12 DAC-hours.

"Airline respirator" (see "Supplied-air respirator (SAR)").

"Air-purifying respirator" means a respirator with an air-purifying filter, cartridge, or canister that removes specific air contaminants by passing ambient air through the air-purifying element.

"As low as is reasonably achievable" (ALARA) means making every reasonable effort to maintain exposures to radiation as far below the dose limits in these regulations as is practical, consistent with the purpose for which the licensed or registered activity is undertaken, taking into account the state of technology, the economics of improvements in relation to state of technology, the economics of improvements in relation to benefits to the public health and safety, and other societal and socioeconomic considerations, and in relation to utilization of nuclear energy and licensed or registered sources of radiation in the public interest.

"Assigned Protection Factor (APF)" means the expected workplace level of respiratory protection that would be provided by a properly functioning respirator or a class of respirators to properly trained and fitted users. Operationally, the inhaled concentration can be estimated by dividing the ambient airborne concentration by the APF.

"Atmosphere-supplying respirator" means a respirator that supplies the respirator user with breathing air from a source independent of the ambient atmosphere, and includes supplied-air respirators (SAR's) and self-contained breathing apparatus (SCBA) units.

"Background radiation" means radiation from cosmic sources, naturally occurring radioactive materials, (which has not been technologically enhanced) including radon, except as a decay product of source or special nuclear material, and including global fallout as it exists in the environment from the testing of nuclear explosive devices, or from past nuclear accidents such as Chernobyl that contribute to background radiation and are not under the control of the licensee or registrant. "Background radiation" does not include sources of radiation from radioactive materials regulated by the Agency.

57

"Becquerel" (Bq) means the SI unit of activity. One becquerel is equal to 1 disintegration or transformation per second (dps or tps).

"Bioassay" means the determination of kinds, quantities or concentrations, and, in some cases, the locations of radioactive material in the human body, whether by direct measurement, in vivo counting, or by analysis and evaluation of materials excreted or removed from the human body. For purposes of these regulations, "radiobioassay" is an equivalent term.

"Brachytherapy" means a method of radiation therapy in which sealed sources are utilized to deliver a radiation dose at a distance of up to a few centimeters, by surface, intracavitary, or interstitial application.

"Byproduct material" means:

- (1) Any radioactive material, except special nuclear material, yielded in or made radioactive by exposure to the radiation incident to the process of producing or utilizing special nuclear material; and
- (2) The tailings or wastes produced by the extraction or concentration of uranium or thorium from ore processed primarily for its source material content, including discrete surface wastes resulting from uranium or thorium solution extraction processes. Underground ore bodies depleted by these solution extraction operations do not constitute "byproduct material" within this definition.

"Calendar quarter" means not less than 12 consecutive weeks nor more than 14 consecutive weeks. The first calendar quarter of each year shall begin in January and subsequent calendar quarters shall be so arranged such that no day is included in more than one calendar quarter and no day in any one year is omitted from inclusion within a calendar quarter. The method observed by the licensee or registrant for determining calendar quarters shall only be changed at the beginning of a year.

"Calibration" means the determination of (1) the response or reading of an instrument relative to a series of known radiation values over the range of the instrument, or (2) the strength of a source of radiation relative to a standard.

"CFR" means Code of Federal Regulations.

"Chelating agent" means amine polycarboxylic acids, hydroxycarboxylic acids, gluconic acid, and polycarboxylic acids.

"Collective dose" means the sum of the individual doses received in a given period of time by a specified population from exposure to a specified source of radiation.

"Committed dose equivalent" $(H_{T,50})$ means the dose equivalent to organs or tissues of reference (T) that will be received from an intake of radioactive material by an individual during the 50-year period following the intake.

"Committed effective dose equivalent" ($H_{E, 50}$) is the sum of the products of the weighting factors (w_T) applicable to each of the body organs or tissues that are irradiated and the committed dose equivalent to each of these organs or tissues ($H_{E,50} = \Sigma w_T H_{T,50}$).

"Critical group" means the group of individuals reasonably expected to receive the greatest exposure to residual radioactivity for any applicable set of circumstances.

"Curie" means a unit of quantity of activity. One curie (Ci) is that quantity of radioactive material, which decays at the rate of 3.7E+10 disintegrations or transformations per second (dps or tps).

"Deep dose equivalent" (H_d), which applies to external whole body exposure, means the dose equivalent at a tissue depth of 1 centimeter (1000 mg/cm²).

"Demand respirator" means an atmosphere-supplying respirator that admits breathing air to the face piece only when a negative pressure is created inside the facepiece by inhalation

"Department of Energy" means the Department of Energy established by Public Law 95-91, August 4, 1977, 91 Stat. 565, 42 U.S.C. 7101 *et seq.*, to the extent that the Department exercises functions formerly vested in the Atomic Energy Commission, its Chairman, members, officers and components and transferred to the Energy Research and Development Administration and to the Administrator thereof pursuant to sections 104(b), (c) and (d) of the Energy Reorganization Act of 1974 (Public Law 93-438, October 11, 1974, 88 Stat. 1233 at 1237, 42 U.S.C. 5814, effective January 19, 1975) and re-transferred to the Secretary of Energy pursuant to section 301(a) of the Department of Energy Organization Act (Public Law 95-91, August 4, 1977, 91 Stat. 565 at 577-578, 42 U.S.C. 7151, effective October 1, 1977.)

"Depleted uranium" means the source material uranium in which the isotope uranium-235 is less than 0.711 weight percent of the total uranium present. Depleted uranium does not include special nuclear material.

"Disposable respirator" means a respirator for which maintenance is not intended and that is designed to be discarded after excessive breathing resistance, sorbent exhaustion, physical damage, or end-of-service-life renders it unsuitable for use. Examples of this type of respirator are a disposable half-mask respirator or a disposable escape-only self-contained breathing apparatus (SCBA).

"Distinguishable from background" means that the detectable concentration of a radionuclide is statistically different from the background concentration of that radionuclide in the vicinity of the site or, in the case of structures, in similar materials using adequate measurement technology, survey, and statistical techniques.

"Dose" is a generic term that means absorbed dose, dose equivalent, effective dose equivalent, committed dose equivalent, committed effective dose equivalent, total organ dose equivalent, or total effective dose equivalent. For purposes of these regulations, "radiation dose" is an equivalent term.

Sec. A.2

"Dose equivalent (H_T) " means the product of the absorbed dose in tissue, quality factor, and all other necessary modifying factors at the location of interest. The units of dose equivalent are the sievert (Sv) and rem.

"Dose limits" means the permissible upper bounds of radiation doses established in accordance with these regulations. For purposes of these regulations, "limits" is an equivalent term.

"Effective dose equivalent (H_E)" means the sum of the products of the dose equivalent to the organ or tissue (H_T) and the weighting factor (w_T) applicable to each of the body organs or tissues that are irradiated (H_E = Σ w_TH_T).

"Embryo/fetus" means the developing human organism from conception until the time of birth.

"Entrance or access point" means any location through which an individual could gain access to radiation areas or to licensed or registered radioactive materials. This includes entry or exit portals of sufficient size to permit human entry, irrespective of their intended use.

"Explosive material" means any chemical compound, mixture, or device, which produces a substantial instantaneous release of gas and heat spontaneously or by contact with, sparks or flame.

"Exposure" means being exposed to ionizing radiation or to radioactive material.

"<u>Exposure</u>" means the quotient of dQ by dm where "dQ" is the absolute value of the total charge of the ions of one sign produced in air when all the electrons (negatrons and positrons) liberated by photons in a volume element of air having mass "dm" are completely stopped in air. The SI unit of <u>exposure</u> is the coulomb per kilogram (C/kg). See A.13 Units of Exposure and Dose for the special unit.^{*/}

"<u>Exposure</u> rate" means the <u>exposure</u> per unit of time, such as roentgen per minute and milliroentgen per hour.

"External dose" means that portion of the dose equivalent received from any source of radiation outside the body.

"Extremity" means hand, elbow, and arm below the elbow, foot, knee, and leg below the knee.

"Filtering facepiece (dust mask)" means a negative pressure particulate respirator with a filter as an integral part of the facepiece or with the entire facepiece composed of the filtering medium, not equipped with elastomeric sealing surfaces and adjustable straps.

^{*} States may wish to distinguish throughout their regulations, and to include a footnote here specifying a distinction, between the International Commission on Radiation Units and Measurements definition of exposure and the general use of exposure. The footnote could be similar to the following: "When not underlined as above [or indicated as 'exposure'(X)], the term 'exposure' has a more general meaning in these regulations."

SSRCR Volume I – March 2003

"Fit factor" means a quantitative estimate of the fit of a particular respirator to a specific individual, and typically estimates the ratio of the concentration of a substance in ambient air to its concentration inside the respirator when worn.

"Fit Test" means the use of a protocol to qualitatively evaluate the fit of a respirator on an individual.

"Former Atomic Energy Commission or Nuclear Regulatory Commission licensed facilities" means nuclear reactors, nuclear fuel reprocessing plants, uranium enrichment plants, or critical mass experimental facilities where Atomic Energy Commission or Nuclear Regulatory Commission licenses have been terminated.

"Generally applicable environmental radiation standards" means standards issued by the Environmental Protection Agency under the authority of the Atomic Energy Act of 1954, as amended, that impose limits on radiation exposures or levels, or concentrations or quantities of radioactive material, in the general environment outside the boundaries of locations under the control of persons possessing or using radioactive material.

"Gray" (Gy) means the SI unit of absorbed dose. One gray is equal to an absorbed dose of 1 joule per kilogram (100 rad).

"Hazardous waste" means those wastes designated as hazardous by the Environmental Protection Agency regulations in 40 CFR Part 261.

"Healing arts" means [cite appropriate State definition].

"Helmet" means a rigid respiratory inlet covering that also provides head protection against impact and penetration.

"High radiation area" means an area, accessible to individuals, in which radiation levels from radiation sources external to the body could result in an individual receiving a dose equivalent in excess of 1 mSv (0.1 rem) in 1 hour at 30 centimeters from any source of radiation or 30 centimeters from any surface that the radiation penetrates.

"Hood" means a respiratory inlet covering that completely covers the head and neck and may also cover portions of the shoulders and torso.

"Human use" means the internal or external administration of radiation or radioactive material to human beings.

"Individual" means any human being.

"Individual monitoring" means the assessment of:

(1) Dose equivalent (a) by the use of individual monitoring devices or (b) by the use of survey data; or

Sec. A.2

(2) Committed effective dose equivalent (a) by bioassay or (b) by determination of the time-weighted air concentrations to which an individual has been exposed, that is, DAC-hours. [See the definition of DAC-hours in Part D.]

"Individual monitoring devices" means devices designed to be worn by a single individual for the assessment of dose equivalent. For purposes of these regulations, "personnel dosimeter" and "dosimeter" are equivalent terms. Examples of individual monitoring devices are film badges, thermoluminescence dosimeters (TLDs), pocket ionization chambers, optically stimulated luminescence (OSL) dosimeters and personal (lapel) air sampling devices.

"Inspection" means an official examination or observation including, but not limited to, tests, surveys, and monitoring to determine compliance with rules, regulations, orders, requirements, and conditions of the Agency.

"Instrument traceability" (for ionizing radiation measurements) means the ability to show that an instrument has been calibrated at specified time intervals using a national standard or a transfer standard. If a transfer standard is used, the calibration must be at a laboratory accredited by a program, which requires continuing participation in measurement quality assurance with the National Institute of Standards and Technology, or other equivalent national or international program.

"Interlock" means a device arranged or connected such that the occurrence of an event or condition is required before a second event or condition can occur or continue to occur.

"Internal dose" means that portion of the dose equivalent received from radioactive material taken into the body.

"Lens dose equivalent (LDE)" means the external exposure to the lens of the eye as the dose equivalent at a tissue depth of 0.3 centimeter (300 mg/cm^2).

"License" means a license issued by the Agency in accordance with the regulations adopted by the Agency.

"Licensed [or registered] material" means radioactive material received, possessed, used, transferred or disposed of under a general or specific license [or registration] issued by the Agency.

"Licensee" means any person who is licensed by the Agency in accordance with these regulations and the Act.

"Licensing State" means any Sstate, which has been finally designated as such by the Conference of Radiation Control Program Directors, Inc., which reviews state regulations to establish equivalency with the Suggested State Regulations and ascertains whether a State has an effective program for control of natural occurring or accelerator produced radioactive material (NARM). The Conference will designate as Licensing States those states with regulations for control of radiation relating to, and an effective program for, the regulatory control of NARM.

"Loose-fitting facepiece" means a respiratory inlet covering that is designed to form a partial seal with the face.

"Lost or missing source of radiation" means licensed [or registered] source of radiation whose location is unknown. This definition includes, but is not limited to, radioactive material that has been shipped but has not reached its planned destination and whose location cannot be readily traced in the transportation system.

"Major processor" means a user processing, handling, or manufacturing radioactive material exceeding Type A quantities as unsealed sources or material, or exceeding 4 times Type B quantities as sealed sources, but does not include nuclear medicine programs, universities, industrial radiographers, or small industrial programs. Type A and B quantities are defined in T.2 of these regulations.

"Member of the public" means an individual except when that individual is receiving an occupational dose.

"Minor" means an individual less than 18 years of age.

"Monitoring" means the measurement of radiation, radioactive material concentrations, surface area activities or quantities of radioactive material and the use of the results of these measurements to evaluate potential exposures and doses. For purposes of these regulations, "radiation monitoring" and "radiation protection monitoring" are equivalent terms.

"NARM" means any naturally occurring or accelerator-produced radioactive material. It does not include byproduct, source, or special nuclear material. "Natural radioactivity" means radioactivity of naturally convering nuclides

"Natural radioactivity" means radioactivity of naturally occurring nuclides.

"Negative pressure respirator (tight fitting) " means a respirator in which the air pressure inside the facepiece is negative during inhalation with respect to the ambient air pressure outside the respirator.

"NORM" means any naturally occurring radioactive material. It does not include accelerator produced, byproduct, source, or special nuclear material.

"Nuclear Regulatory Commission" means the Nuclear Regulatory Commission or its duly authorized representatives.

"Occupational dose" means the dose received by an individual in the course of employment in which the individual's assigned duties for the licensee or registrant involve exposure to sources of radiation, whether or not the sources of radiation are in the possession of the licensee, registrant, or other person. Occupational dose does not include doses received: from background radiation, or from any medical administration the individual has received, from exposure to individuals administered

A8

14

1205

radioactive material and released in accordance with [cite appropriate Part G reference], from voluntary participation in medical research programs, or as a member of the public.

"Package" means the packaging together with its radioactive contents as presented for transport.

"Particle accelerator" [See "Accelerator"].

"Person" means any individual, corporation, partnership, firm, association, trust, estate, public or private institution, group, agency, political subdivision of this State, any other State or political subdivision or agency thereof, and any legal successor, representative, agent, or agency of the foregoing [, but shall not include federal government agencies].

"Personnel monitoring equipment" [See "Individual monitoring devices"].

"Pharmacist" means [an individual licensed by this State to compound and dispense drugs, prescriptions, and poisons or cite appropriate State definition].

"Physician" means [cite appropriate State definition].

"Positive pressure respirator" means a respirator in which the pressure inside the respiratory inlet covering exceeds the ambient air pressure outside the respirator.

"Powered air-purifying respirator (PAPR)" means an air-purifying respirator that uses a blower to force the ambient air through air-purifying elements to the inlet covering.

"Pressure demand respirator" means a positive pressure atmosphere-supplying respirator that admits breathing air to the facepiece when the positive pressure is reduced inside the facepiece by inhalation.

"Protective apron" means an apron made of radiation-attenuating materials used to reduce exposure to radiation.

"Public dose" means the dose received by a member of the public from exposure to sources of radiation released by the licensee or registrant, or to any other source of radiation under the control of the licensee or registrant. Public dose does not include occupational dose, or doses received from background radiation, from any medical administration the individual has received, from exposure to individuals administered radioactive material and released in accordance with [cite appropriate Part G regulation], or from voluntary participation in medical research programs.

"Pyrophoric material" means any liquid that ignites spontaneously in dry or moist air at or below 130 degrees F (54.4 degrees C) or any solid material, other than one classed as an explosive, which under normal conditions is liable to cause fires through friction, retained heat from manufacturing or processing, or which can be ignited readily and, when ignited, burns so vigorously and persistently as to create a serious transportation, handling, or disposal hazard. Included are spontaneously combustible and water-reactive materials.

1.0

Sec. A.2

["Qualified expert" means an individual having the knowledge and training to measure ionizing radiation, to evaluate safety techniques, and to advise regarding radiation protection needs, for example, individuals certified in the appropriate field by the American Board of Radiology, or the American Board of Health Physics, or the American Board of Medical Physics, or those having equivalent qualifications. With reference to the calibration of radiation therapy equipment, an individual having, in addition to the above qualifications, training and experience in the clinical applications of radiation physics to radiation therapy, for example, individuals certified in Therapeutic Radiological Physics or X-Ray and Radium Physics by the American Board of Radiology, or those having equivalent qualifications.]

"Qualitative fit test (QLFT)" means a pass/fail fit test to assess the adequacy of respirator fit that relies on the individual's response to the test agent.

"Quality factor" (Q) means the modifying factor, listed in Tables I and II of A.13, that is used to derive dose equivalent from absorbed dose.

"Quantitative fit test (QNFT)" means an assessment of the adequacy of respirator fit by numerically measuring the amount of leakage into the respirator.

"Rad" means the special unit of absorbed dose. One rad is equal to an absorbed dose of 100 erg per gram or 0.01 joule per kilogram (0.01 gray).

"Radiation" means alpha particles, beta particles, gamma rays, x rays, neutrons, high-speed electrons, high-speed protons, and other particles capable of producing ions. For purposes of these regulations, ionizing radiation is an equivalent term. Radiation, as used in these regulations, does not include non-ionizing radiation, such as radiowaves or microwaves, visible, infrared, or ultraviolet light.

"Radiation area" means any area, accessible to individuals, in which radiation levels could result in an individual receiving a dose equivalent in excess of 0.05 mSv (0.005 rem) in 1 hour at 30 centimeters from the source of radiation or from any surface that the radiation penetrates.

"Radiation dose" [See "Dose"].

"Radiation machine" means any device capable of producing radiation except those devices with radioactive material as the only source of radiation.

"Radiation safety officer" means an individual who has the knowledge and responsibility to apply appropriate radiation protection regulations and has been assigned such responsibility by the licensee or registrant.

"Radioactive material" means any solid, liquid or gas which emits radiation spontaneously.

"Radioactivity" means the transformation of unstable atomic nuclei by the emission of radiation.

"Radiobioassay" [See "Bioassay"].

"Registrant" means any person who is registered with the Agency and is legally obligated to register with the Agency pursuant to these regulations and the Act.

"Registration" means registration with the Agency in accordance with the regulations adopted by the Agency.

"Regulations of the Department of Transportation" means the regulations in 49 CFR Parts 100-189.

"Rem" means the special unit of any of the quantities expressed as dose equivalent. The dose equivalent in rem is equal to the absorbed dose in rad multiplied by the quality factor. (1 rem = 0.01 Sv)

"Research and development" means (1) theoretical analysis, exploration, or experimentation; or (2) the extension of investigative findings and theories of a scientific or technical nature into practical application for experimental and demonstration purposes, including the experimental production and testing of models, devices, equipment, materials, and processes. Research and development does not include the internal or external administration of radiation or radioactive material to human beings.

"Residual radioactivity" means radioactivity in structures, materials, soils, groundwater, and other media at a site resulting from activities under the licensee's control. This includes radioactivity from all licensed and unlicensed sources used by the licensee, but excludes background radiation. It also includes radioactive materials remaining at the site as a result of routine or accidental releases of radioactive materials at the site and previous burials at the site, even if those burials were made in accordance with the provisions of Part D of these regulations.

"Restricted area" means an area, access to which is limited by the licensee or registrant for the purpose of protecting individuals against undue risks from exposure to sources of radiation. Restricted area does not include areas used as residential quarters, but separate rooms in a residential building may be set apart as a restricted area.

"Roentgen" means the special unit of <u>exposure</u>. One roentgen (R) equals 2.58E-4 coulombs per kilogram of air (see "<u>Exposure</u>" and A.13).

"Sealed source" means any container of radioactive material, which has been constructed in such a manner as to prevent the escape of any radioactive material.

"Sealed Source and Device Registry (SSD)" means the national registry that contains the registration certificates, maintained by the Nuclear Regulatory Commission (NRC), that summarize the radiation safety information for sealed sources and devices, and describe the licensing and use conditions approved for the product.

"Self-contained breathing apparatus (SCBA)" means an atmosphere-supplying respirator for which the breathing air source is designed to be carried by the user.

SSRCR Volume I – March 2003

"Shallow dose equivalent" (H_s), which applies to the external exposure of the skin or an extremity, means the dose equivalent at a tissue depth of 0.007 centimeter (7 mg/cm²) averaged over an area of 1 square centimeter.

"SI" means the abbreviation for the International System of Units.

"Sievert" means the SI unit of any of the quantities expressed as dose equivalent. The dose equivalent in sievert is equal to the absorbed dose in gray multiplied by the quality factor. (1 Sv = 100 rem)

"Source material" means:

- (1) Uranium or thorium, or any combination thereof, in any physical or chemical form; or
- (2) Ores that contain by weight one-twentieth of 1 percent (0.05 percent) or more of uranium, thorium or any combination of uranium and thorium. Source material does not include special nuclear material.

"Source material milling" means any activity that results in the production of byproduct material as defined by definition (2) of byproduct material.

"Source of radiation" means any radioactive material or any device or equipment emitting, or capable of producing, radiation.

"Source traceability" means the ability to show that a radioactive source has been calibrated either by the national standards laboratory of the National Institute of Standards and Technology, or by a laboratory which participates in a continuing measurement quality assurance program with National Institute of Standards and Technology or other equivalent national or international program.

"Special form radioactive material" means radioactive material that satisfies the following conditions:

- (1) It is either a single solid piece or is contained in a sealed capsule that can be opened only by destroying the capsule;
- (2) The piece or capsule has at least one dimension not less than 5 millimeters (0.2 inch); and
- (3) It satisfies the test requirements specified by the Nuclear Regulatory Commission. A special form encapsulation designed in accordance with the Nuclear Regulatory Commission requirements in effect on June 30, 1983, and constructed prior to July 1, 1985, may continue to be used. A special form encapsulation either designed or constructed after June 30, 1985, must meet requirements of this definition applicable at the time of its design or construction.

A12

Sec. A.2

"Special nuclear material" means:

- (1) Plutonium, uranium-233, uranium enriched in the isotope 233 or in the isotope 235, and any other material that [the Agency declares by order to be special nuclear material after]^{**/} the Nuclear Regulatory Commission, pursuant to the provisions of section 51 of the Atomic Energy Act of 1954, as amended, determines to be special nuclear material, but does not include source material; or
 - (2) Any material artificially enriched by any of the foregoing but does not include source material.

"Special nuclear material in quantities not sufficient to form a critical mass" means uranium enriched in the isotope U-235 in quantities not exceeding 350 grams of contained U-235; uranium-233 in quantities not exceeding 200 grams; plutonium in quantities not exceeding 200 grams; or any combination of them in accordance with the following formula: For each kind of special nuclear material, determine the ratio between the quantity of that special nuclear material and the quantity specified above for the same kind of special nuclear material. The sum of such ratios for all of the kinds of special nuclear material in combination shall not exceed 1. For example, the following quantities in combination would not exceed the limitation and are within the formula:

$$\frac{175 \text{ (grams contained U-235)}}{350} + \frac{50 \text{ (grams U-233)}}{200} + \frac{50 \text{ (grams Pu)}}{200} = 1$$

"Supplied-air respirator (SAR)" means an atmosphere-supplying respirator for which the source of breathing air is not designed to be carried by the user.

"Survey" means an evaluation of the radiological conditions and potential hazards incident to the production, use, transfer, release, disposal, or presence of sources of radiation. When appropriate, such evaluation includes, but is not limited to, tests, physical examinations, and measurements of levels of radiation or concentrations of radioactive material present.

"Test" means the process of verifying compliance with an applicable regulation.

"These regulations" mean all parts of [cite appropriate rules or regulations].

"Tight-fitting facepiece" means a respiratory inlet covering that forms a complete seal with the face.

"Total effective dose equivalent" (TEDE) means the sum of the deep dose equivalent for external exposures and the committed effective dose equivalent for internal exposures.

· •

"Total organ dose equivalent" (TODE) means the sum of the deep dose equivalent and the committed dose equivalent to the organ receiving the highest dose as described in D.1107a.vi. of these regulations.

^{**&#}x27; This wording is provided for states that cannot automatically adopt changes made by the Nuclear Regulatory Commission.
"Unrefined and unprocessed ore" means ore in its natural form prior to any processing such as grinding, roasting, beneficiating, or refining.

"Unrestricted area" means an area, access to which is neither limited nor controlled by the licensee or registrant. For purposes of these regulations, "uncontrolled area" is an equivalent term.

"User seal check (fit check)" means an action conducted by the respirator user to determine if the respirator is properly seated to the face. Examples include negative pressure check, positive pressure check, irritant smoke check, or isoamyl acetate check.

"Very high radiation area" means an area, accessible to individuals, in which radiation levels from radiation sources external to the body could result in an individual receiving an absorbed dose in excess of 5 Gy (500 rad) in 1 hour at 1 meter from a source of radiation or 1 meter from any surface that the radiation penetrates.^{2/}

"Waste" means those low-level radioactive wastes that are acceptable for disposal in a land disposal facility. For the purposes of this definition, low-level waste has the same meaning as in the Low-Level Radioactive Waste Policy Act, P.L. 96-573, as amended by P.L. 99-240, effective January 15, 1986; that is, radioactive waste (a) not classified as high-level radioactive waste, spent nuclear fuel, or byproduct material as defined in Section 11e.(2) of the Atomic Energy Act (uranium or thorium tailings and waste) and (b) classified as low-level radioactive waste consistent with existing law and in accordance with (a) by the Nuclear Regulatory Commission.

"Waste handling licensees" mean persons licensed to receive and store radioactive wastes prior to disposal and/or persons licensed to dispose of radioactive waste.

"Week" means 7 consecutive days starting on Sunday.

"Whole body" means, for purposes of external exposure, head, trunk including male gonads, arms above the elbow, or legs above the knee.

"Worker" means an individual engaged in activities under a license or registration issued by the Agency and controlled by a licensee or registrant, but does not include the licensee or registrant.

"Working level" (WL) means any combination of short-lived radon daughters in 1 liter of air that will result in the ultimate emission of 1.3E+5 MeV of potential alpha particle energy. The short-lived radon daughters of radon-222 are polonium-218, lead-214, bismuth-214, and polonium-214; and those of radon-220 are polonium-216, lead-212, bismuth-212, and polonium-212.

"Working level month" (WLM) means an exposure to 1 working level for 170 hours. 2,000 working

٠,

^{2/} At very high doses received at high dose rates, units of absorbed dose, gray and rad, are appropriate, rather than units of dose equivalent, sievert and rem.

hours per year divided by 12 months per year is approximately equal to 170 hours per month.

"Year" means the period of time beginning in January used to determine compliance with the provisions of these regulations. The licensee or registrant may change the starting date of the year, used to determine compliance by the licensee or registrant provided that the change is made at the beginning of the year. If a licensee or registrant changes in a year, the licensee or registrant shall assure that no day is omitted or duplicated in consecutive years.

Exemptions from the Regulatory Requirements

Sec. A.3 - Exemptions.

- a. <u>General Provision</u>. The Agency may, upon application or upon its own initiative, grant such exemptions or exceptions from the requirements of these regulations as it determines are authorized by law and will not result in undue hazard to public health and safety or property.
- b. <u>Department of Energy Contractors and Nuclear Regulatory Commission Contractors</u>. Any Department of Energy contractor or subcontractor and any Nuclear Regulatory Commission contractor or subcontractor of the following categories operating within this State is exempt from these regulations to the extent that such contractor or subcontractor under his contract receives, possesses, uses, transfers, or acquires sources of radiation:
 - i. Prime contractors performing work for the Department of Energy at U.S. Government-owned or -controlled sites, including the transportation of sources of radiation to or from such sites and the performance of contract services during temporary interruptions of such transportation;
 - ii. Prime contractors of the Department of Energy performing research in, or development, manufacture, storage, testing, or transportation of, atomic weapons or components thereof;
 - iii. Prime contractors of the Department of Energy using or operating nuclear reactors or other nuclear devices in a United States Government-owned vehicle or vessel; and
 - iv. Any other prime contractor or subcontractor of the Department of Energy or of the Nuclear Regulatory Commission when the State and the Nuclear Regulatory Commission jointly determine:
 - (1) That the exemption of the prime contractor or subcontractor is authorized by law; and
 - (2) That, under the terms of the contract or subcontract, there is adequate assurance that the work thereunder can be accomplished without undue risk to the public health and safety.

General Regulatory Requirements

<u>Sec. A.4 - Records.</u> Each licensee and registrant shall maintain records showing the receipt, transfer, and disposal of all sources of radiation. Additional record requirements are specified elsewhere in these regulations.

Sec. A.5 - Inspections.

- a. Each licensee and registrant shall afford the Agency at all reasonable times opportunity to inspect sources of radiation and the premises and facilities wherein such sources of radiation are used or stored.
- b. Each licensee and registrant shall make available to the Agency for inspection, upon reasonable notice, records maintained pursuant to these regulations.

<u>Sec. A.6 - Tests.</u> Each licensee and registrant shall perform upon instructions from the Agency, or shall permit the Agency to perform, such reasonable tests as the Agency deems appropriate or necessary including, but not limited to, tests of:

- a. Sources of radiation;
- b. Facilities wherein sources of radiation are used or stored;
- c. Radiation detection and monitoring instruments; and
- d. Other equipment and devices used in connection with utilization or storage of licensed or registered sources of radiation.

Additional Regulatory Requirements

<u>Sec. A.7 - Additional Requirements.</u> The Agency may, by rule, regulation, or order, impose upon any licensee or registrant such requirements in addition to those established in these regulations as it deems appropriate or necessary to minimize danger to public health and safety or property.

Enforcement Requirements

<u>Sec. A.8 - Violations.</u> An injunction or other court order may be obtained prohibiting any violation of any provision of the Act or any regulation or order issued thereunder. Any person who willfully violates any provision of the Act or any regulation or order issued thereunder may be guilty of a [felony, misdemeanor or crime] and, upon conviction, may be punished by fine or imprisonment or both, as provided by law.

<u>Sec. A.9 - Impounding.</u> Sources of radiation shall be subject to impoundment pursuant to [cite appropriate reference.]

Sec. A.10 - Prohibited Uses.

- a. A hand-held fluoroscopic screen shall not be used with x-ray equipment unless it has been listed in the Registry of Sealed Source and Devices or accepted for certification by the Food and Drug Administration, Center for Devices and Radiological Health.
- b. A shoe-fitting fluoroscopic device shall not be used.

[Interpretations]

[Sec. A.11 - Interpretations. Except as specifically authorized by the Agency in writing, no interpretation of these regulations by an officer or employee of the Agency other than a written interpretation by the legal counsel will be recognized to be binding upon the Agency.]

Communications

<u>Sec. A.12</u> - <u>Communications.</u> All communications and reports concerning these regulations, and applications filed thereunder, should be addressed to the Agency at its office located at [insert appropriate address.]

Sec. A.13 - Units of Exposure and Dose.

- a. As used in these regulations, the unit of <u>exposure</u> is the coulomb per kilogram (C/kg) of air. One roentgen is equal to 2.58E-4 coulomb per kilogram of air.
- b. As used in these regulations, the units of dose are:
 - i. Gray (Gy) is the SI unit of absorbed dose. One gray is equal to an absorbed dose of 1 joule per kilogram (100 rad).
 - ii. Rad is the special unit of absorbed dose. One rad is equal to an absorbed dose of 100 erg per gram or 0.01 joule per kilogram. (0.01 Gy)
 - iii. Rem is the special unit of any of the quantities expressed as dose equivalent. The dose equivalent in rem is equal to the absorbed dose in rad multiplied by the quality factor. (1 rem = 0.01 Sv)
 - iv. Sievert is the SI unit of any of the quantities expressed as dose equivalent. The dose equivalent in sievert is equal to the absorbed dose in gray multiplied by the quality

factor. (1 Sv = 100 rem)

c. As used in these regulations, the quality factors for converting absorbed dose to dose equivalent are shown in Table I:

TABLE I

Type of Radiation	Quality Factor (Q)	Absorbed Dose Equal to a Unit Dose Equivalent ^{a/}
X, gamma, or beta radiation and high-speed electrons	1	1
Alpha particles, multiple-charged particles, fission fragments and heavy particles of unknown charge	20	0.05
Neutrons of unknown energy	10	0.1
High-energy protons	10	0.1

QUALITY FACTORS AND ABSORBED DOSE EQUIVALENCIES

^{3/} Absorbed dose in gray equal to 1 Sv or the absorbed dose in rad equal to 1 rem.

d. If it is more convenient to measure the neutron fluence rate than to determine the neutron dose equivalent rate in sievert per hour or rem per hour, as provided in A.13c., 0.01 Sv (1 rem) of neutron radiation of unknown energies may, for purposes of these regulations, be assumed to result from a total fluence of 25 million neutrons per square centimeter incident upon the body. If sufficient information exists to estimate the approximate energy distribution of the neutrons, the licensee or registrant may use the fluence rate per unit dose equivalent or the appropriate Q value from Table II to convert a measured tissue dose in gray or rad to dose equivalent in sievert or rem.

Sec. A.13

3.

TABLE II

-		-	· ·	
	Neutron Energy (MeV)	Quality Factor ^{a/} (Q)	Fluence per Unit Dose Equivalent ^{b/} (Neutrons cm ⁻² rem ⁻¹)	Fluence per Unit Dose Equivalent ^{b/} (Neutrons, cm^{-2} Sv ⁻¹)
(1)				
(thermal)	0.577.0	•		
	2.5E-8	2	980E+6	980E+8
	1E-7	2	980E+6	980E+8
	1E-6	2	810E+6	810E+8
	1E-5	2	810E+6	810E+8
	1E-4	2	840E+6	840E+8
	1E-3	2	980E+6	980E+8
	1E-2	2.5	1010E+6	1010E+8
	1E-1	7.5	170E+6	170E+8
	5E-1	11	39E+6	39E+8
	1	11	27E+6	27E+8
	2.5	9	29E+6	29E+8
	5	8	23E+6	23E+8
	7	7	24E+6	24E+8
	10	6.5	24E+6	24E+8
	14	7.5	17E+6	17E+8
	20	8	16E+6	16E+8
	40	7	14E+6	14E+8
	-10 60	55	16F+6	16E+8
	1E+7	Δ	20F+6	20E+8
	2ET3	35	10F+6	10F+8
		3.J 2 E	17ETU 14E44	16210
	3E+2	3.3	10570	
	4E+2	3.3	14上十0	14E+0

MEAN QUALITY FACTORS, Q, AND FLUENCE PER UNIT DOSE EQUIVALENT FOR MONOENERGETIC NEUTRONS

 \mathbf{R}^{\prime} Value of quality factor (Q) at the point where the dose equivalent is maximum in a 30-centimeter diameter cylinder tissueequivalent phantom.

b' Monoenergetic neutrons incident normally on a 30-centimeter diameter cylinder tissue-equivalent phantom.

<u>Sec. A.14</u> - <u>Units of Activity</u>. For purposes of these regulations, activity is expressed in the SI unit of becquerel (Bq) or in the special unit of curie (Ci), or their multiples, or disintegrations or transformations per unit of time.

- a. One becquerel (Bq) = 1 disintegration or transformation per second (dps or tps).
- b. One curie (Ci) = 3.7E+10 disintegrations or transformations per second (dps or tps) = 3.7E+10 becquerel (Bq) = 2.22E+12 disintegrations or transformations per minute (dpm or tpm).

×

2003 RATIONALE FOR REVISIONS

PART A GENERAL PROVISIONS

Introduction

The Nuclear Regulatory Commission continues to revise its Standards for Protection Against Ionizing Radiation found in 10 CFR Part 20. The revisions incorporated in Part A of the Suggested State Regulations for Control of Radiation are as follows:

Compatibility Requirements

The revisions to Part 20 were published in the following <u>Federal Register</u> notices:

1: On July 13, 1995 (60 FR 36038) and became effective on August 15, 1995.

2: On January 29, 1997 (62 FR 4120) and became effective May 29, 1997.

3: On July 23, 1998 (63 FR 39477) and became effective October 26, 1998.

4: On October 7, 1999 (64 FR 54543) and became effective February 4, 2000.

The Nuclear Regulatory Commission considers the adoption of these regulations a matter of compatibility for all Agreement States. Compatibility designations are noted as a separate attachment to the draft Parts A, D, & J.

Other editorial changes consistent with the Conference of Radiation Control Program Directors, Inc., *Policies and Procedures for the Preparation and Publication of the Suggested State Regulations for Control of Radiation* will not specifically be noted in the rationale discussion for each section.

Specific Provisions

Sec. A.2 - Definitions.

"Background radiation" (revised). This definition has been revised to be consistent with the definition in the revised 10 CFR Part 20. It also has been revised to exclude Technologically Enhanced Naturally Occurring Materials (TENORM) from being considered in background radiation.

"Entrance or access point" (revised). This definition is consistent with the definition in the revised 10 CFR Part 20.

"High radiation area" (revised). This definition is consistent with the definition in the revised 10 CFR Part 20.

2003 Rationale for Part A

"Lens dose equivalent" (revised). This definition is consistent with the definition in the revised 10 CFR Part 20.

"Licensing state" (revised). This definition of licensing state was revised for additional clarification , and had been recommended in the 1995 Matters for Future Consideration.

"Individual monitoring devices" (revised). This definition is consistent with the definition in the revised 10 CFR Part 20.

"Occupational dose" (revised). This definition is consistent with the definition in the revised 10 CFR Part 20.

"Public dose" (revised). This definition is consistent with the definition in the revised 10 CFR Part 20.

"Radiation safety officer" (revised). This definition of radiation safety officer was revised for additional clarification and had been recommended in the 1995 Matters for Future Consideration.

"Sealed source and device registry" new definition, a recommendation from the Part G working group

"Year" (revised). This definition of year was revised for additional clarification and had been recommended in the 1995 Matters for Future Consideration.

The following definitions are being added as a result of the new regulations found in Part D entitled "Respirator Protection and Controls to Restrict Internal Exposures," (64 FR 54543, October 7, 1999 and 64 FR 55524, October 13, 1999), effective February 2, 2000:

"Air Purifying Respirator"; "Assigned Protection Factor"; "Atmosphere Supplying Respirator"; "Class"; "Demand Respirator"; Disposable Respirator"; "Fit Factor"; "Fit Test"; "Filtering Facepiece"; "Helmet"; "Hood"; "Loose Fitting Facepiece"; "Negative Pressure Respirator"; "Positive Pressure Respirator"; "Pressure Demand Respirator"; "Qualitative Fit Test"; "Quantitative Fit Test"; Self Contained Breathing Apparatus"; "Supplied Air Respirator"; "Tight Fitting Facepiece"; and "User Seal Check."

Matters for Future Consideration

- Presently, the Food and Drug Administration is considering replacing "exposure" with the term "air kerma" in the diagnostic x-ray system performance standard (21 CFR, Subchapter J). Air kerma is currently in use by the National Council on Radiation Protection and Measurements and international organizations. The Suggested State Regulations should be amended when the federal definition is amended.
- 2. The Working Group recommended that the definition of "waste" be referred to the Working Group for Part M to consider inclusion of NARM and NORM waste.

- 3. When Part U has been approved, the Working Group will revise the definition of "byproduct material."
- 4. The Working Group has decided to consider the following changes during 1994:

"Exposure" means either:*

the quotient of dQ divided by dm where "dQ" is the absolute value of the total charge of the ions of one sign produced in air when all the electrons (negatrons and positrons) liberated by photons in a volume element of air having mass "dm" are completely stopped in air. (See A.14 for the SI unit coulomb per kilogram (C/kg) and the special unit roentgen (R).); or

irradiation by ionizing radiation or radioactive material.

* The context makes clear which is the appropriate definition.

5. The Working Group will consider new definitions for the following:

industrial radiography,

qualified expert (e.g., Mammography Quality Standards Act of 1992 and American Association of Physicists in Medicine),

worker, manufacturing distribution commercial distribution processing

- 6. The Working Group is considering the consolidation of the Qualified Expert definitions in various Parts into Part A.
- 7. The Working Group will consider input from other SR workgroups to create an all encompassing document for all definitions found in the SSRCRS's. This will enable a licensee to only have to go to one location to find a definition.
- 8. The working group will look at intravascular depending upon Part G requirements

PART D

STANDARDS FOR PROTECTION AGAINST RADIATION

General Provisions

Sec. D.1001 - Purpose.

- a. Part D establishes standards for protection against ionizing radiation resulting from activities conducted pursuant to licenses or registrations issued by the Agency. These regulations are issued pursuant to the [cite Radiation Control Act, as amended].
- b. The requirements of Part D are designed to control the receipt, possession, use, transfer, and disposal of sources of radiation by any licensee or registrant so the total dose to an individual, including doses resulting from all sources of radiation other than background radiation, does not exceed the standards for protection against radiation prescribed in Part D. However, nothing in Part D shall be construed as limiting actions that may be necessary to protect health and safety.

<u>Sec. D.1002</u> - <u>Scope</u>. Except as specifically provided in other Parts of these regulations, Part D applies to persons licensed or registered by the Agency to receive, possess, use, transfer, or dispose of sources of radiation. The limits in Part D do not apply to doses due to background radiation, to exposure of patients to radiation for the purpose of medical diagnosis or therapy, to exposure from individuals administered radioactive material and released in accordance with [cite appropriate Part G reference] or to voluntary participation in medical research programs.

Sec. D.1003 - Definitions. As used in Part D:

"Annual limit on intake" (ALI) means the derived limit for the amount of radioactive material taken into the body of an adult worker by inhalation or ingestion in a year. ALI is the smaller value of intake of a given radionuclide in a year by the reference man that would result in a committed effective dose equivalent of 0.05 Sievert (5 rem) or a committed dose equivalent of 0.5 Sievert (50 rem) to any individual organ or tissue. ALI values for intake by ingestion and by inhalation of selected radionuclides are given in Table I, Columns 1 and 2, of Appendix B.

"Class" means a classification scheme for inhaled material according to its rate of clearance from the pulmonary region of the lung. Materials are classified as D, W, or Y, which applies to a range of clearance half-times: for Class D, Days, of less than 10 days, for Class W, Weeks, from 10 to 100 days, and for Class Y, Years, of greater than 100 days. For purposes of these regulations, "lung class" and "inhalation class" are equivalent terms.

"Constraint (Dose constraint)" means a value above which specified license actions are required.

"Declared pregnant woman" means a woman who has voluntarily informed the licensee or registrant, in writing, of her pregnancy and the estimated date of conception. The declaration remains in effect until the declared pregnant woman withdraws the declaration in writing or is no longer pregnant.

D1

Sec. D.1003

"Derived air concentration" (DAC) means the concentration of a given radionuclide in air which, if breathed by the reference man for a working year of 2,000 hours under conditions of light work, results in an intake of one ALI. For purposes of these regulations, the condition of light work is an inhalation rate of 1.2 cubic meters of air per hour for 2,000 hours in a year. DAC values are given in Table I, Column 3, of Appendix B.

"Derived air concentration-hour" (DAC-hour) means the product of the concentration of radioactive material in air, expressed as a fraction or multiple of the derived air concentration for each radionuclide, and the time of exposure to that radionuclide, in hours. A licensee or registrant may take 2,000 DAC-hours to represent one ALI, equivalent to a committed effective dose equivalent of 0.05 Sievert (5 rem).

"Dosimetry processor" means an individual or an organization that processes and evaluates individual monitoring equipment in order to determine the radiation dose delivered to the monitoring equipment.

"Inhalation class" [see "Class"].

"Lung class" [see "Class"].

"Nonstochastic effect" means a health effect, the severity of which varies with the dose and for which a threshold is believed to exist. Radiation-induced cataract formation is an example of a nonstochastic effect. For purposes of these regulations, "deterministic effect" is an equivalent term.

"Planned special exposure" means an infrequent exposure to radiation, separate from and in addition to the annual dose limits.

"Quarter" means a period of time equal to one-fourth of the year observed by the licensee, approximately 13 consecutive weeks, providing that the beginning of the first quarter in a year coincides with the starting date of the year and that no day is omitted or duplicated in consecutive quarters.

"Reference man" means a hypothetical aggregation of human physical and physiological characteristics determined by international consensus. These characteristics may be used by researchers and public health employees to standardize results of experiments and to relate biological insult to a common base. A description of the reference man is contained in the International Commission on Radiological Protection report, ICRP Publication 23, "Report of the Task Group on Reference Man."

"Respiratory protective device" means an apparatus, such as a respirator, used to reduce an individual's intake of airborne radioactive materials.

"Sanitary sewerage" means a system of public sewers for carrying off waste water and refuse, but excluding sewage treatment facilities, septic tanks, and leach fields owned or operated by the licensee or registrant.

Sec. D.1003 - D.1004

"Stochastic effect" means a health effect that occurs randomly and for which the probability of the effect occurring, rather than its severity, is assumed to be a linear function of dose without threshold. Hereditary effects and cancer incidence are examples of stochastic effects. For purposes of these regulations, "probabilistic effect" is an equivalent term.

"Very high radiation area" means an area, accessible to individuals, in which radiation levels from radiation sources external to the body could result in an individual receiving an absorbed dose in excess of 5 Gray (500 rad) in 1 hour at 1 meter from a source of radiation or 1 meter from any surface that the radiation penetrates.

"Weighting factor" w_T for an organ or tissue (T) means the proportion of the risk of stochastic effects resulting from irradiation of that organ or tissue to the total risk of stochastic effects when the whole body is irradiated uniformly. For calculating the effective dose equivalent, the values of w_T are:

Organ or Tissue	WT
Gonads	0.25
Breast	0.15
Red bone marrow	0.12
Lung	0.12
Thyroid	0.03
Bone surfaces	0.03
Remainder	0.30
Whole Body	1.00

Organ Dose Weighting Factors

Sec. D.1004 - Implementation.

- a. Any existing license or registration condition that is more restrictive than Part D remains in force until there is an amendment or renewal of the license or registration.
- b. If a license or registration condition exempts a licensee or registrant from a provision of Part D in effect on or before [effective date of these regulations], it also exempts the licensee or registrant from the corresponding provision of Part D.
- c. If a license or registration condition cites provisions of Part D in effect prior to [effective date of these regulations], which do not correspond to any provisions of Part D, the license or registration condition remains in force until there is an amendment or renewal of the license

 $^{^{2&#}x27;}$ 0.30 results from 0.06 for each of 5 "remainder" organs, excluding the skin and the lens of the eye, that receive the highest doses.

For the purpose of weighting the external whole body dose, for adding it to the internal dose, a single weighting factor, $w_T = 1.0$, has been specified. The use of other weighting factors for external exposure will be approved on a case-by-case basis until such time as specific guidance is issued.

or registration that modifies or removes this condition.

Radiation Protection Programs

Sec. D.1101 - Radiation Protection Programs.

- a. Each licensee or registrant shall develop, document, and implement a radiation protection program sufficient to ensure compliance with the provisions of D.2102 for recordkeeping requirements relating to these programs.
- b. The licensee or registrant shall use, to the extent practical, procedures and engineering controls based upon sound radiation protection principles to achieve occupational doses and doses to members of the public that are as low as is reasonably achievable (ALARA).
- c. The licensee or registrant shall, at intervals not to exceed 12 months, review the radiation protection program content and implementation.
- d. To implement the ALARA requirements of D.1101b. and notwithstanding the requirements in D.1301, a constraint on air emissions of radioactive material to the environment, excluding Radon-222 and its daughters, shall be established by licensees other than those subject to 10 CFR Part 50.34a of the USNRC regulations, such that the individual member of the public likely to receive the highest dose will not be expected to receive a total effective dose equivalent in excess of 0.1 millisievert (10 mrem) per year from these emissions. If a licensee subject to this requirement exceeds this dose constraint, the licensee shall report the exceedance as provided in D.2203 and promptly take appropriate corrective action to ensure against recurrence.

Occupational Dose Limits

Sec. D.1201 - Occupational Dose Limits for Adults.

- a. The licensee or registrant shall control the occupational dose to individual adults, except for planned special exposures pursuant to D.1206, to the following dose limits:
 - i. An annual limit, which is the more limiting of:
 - (1) The total effective dose equivalent being equal to 0.05 Sievert (5 rem); or
 - (2) The sum of the deep dose equivalent and the committed dose equivalent to any individual organ or tissue other than the lens of the eye being equal to 0.5 Sievert (50 rem).
 - ii. The annual limits to the lens of the eye, to the skin, and to the extremities which are:
 - (1) A lens dose equivalent of 0.15 Sievert (15 rem); and

Sec. D.1201

- (2) A shallow dose equivalent of 0.5 Sievert (50 rem) to the skin or to any extremity.
- b. Doses received in excess of the annual limits, including doses received during accidents, emergencies, and planned special exposures, shall be subtracted from the limits for planned special exposures that the individual may receive during the current year and during the individual's lifetime. See D.1206e.i. and ii.
- c. The assigned deep dose equivalent and shallow dose equivalent shall be for the portion of the body receiving the highest exposure:
 - i. The deep dose equivalent, lens dose equivalent and shallow dose equivalent may be assessed from surveys or other radiation measurements for the purpose of demonstrating compliance with the occupational dose limits, if the individual monitoring device was not in the region of highest potential exposure, or the results of individual monitoring are unavailable; or
 - ii. When a protective apron is worn while working with medical fluoroscopic equipment and monitoring is conducted as specified in D.1502a.v., the effective dose equivalent for external radiation shall be determined as follows:
 - (1) When only one individual monitoring device is used and it is located at the neck (collar) outside the protective apron, the reported deep dose equivalent shall be the effective dose equivalent for external radiation; or
 - (2) When only one individual monitoring device is used and it is located at the neck (collar) outside the protective apron, and the reported dose exceeds 25 percent of the limit specified in D.1201a., the reported deep dose equivalent value multiplied by 0.3 shall be the effective dose equivalent for external radiation; or
 - (3) When individual monitoring devices are worn, both under the protective apron at the waist and outside the protective apron at the neck, the effective dose equivalent for external radiation shall be assigned the value of the sum of the deep dose equivalent reported for the individual monitoring device located at the waist under the protective apron multiplied by 1.5 and the deep dose equivalent reported for the individual monitoring device located at the neck outside the protective apron multiplied by 0.04.
- d. Derived air concentration (DAC) and annual limit on intake (ALI) values are specified in Table I of Appendix B and may be used to determine the individual's dose and to demonstrate compliance with the occupational dose limits. See D.2106.
- e. In addition to the annual dose limits, the licensee or registrant shall limit the soluble uranium intake by an individual to 10 milligrams in a week in consideration of chemical toxicity. See footnote \mathcal{L} of Appendix B.

D5

f. The licensee or registrant shall reduce the dose that an individual may be allowed to receive in the current year by the amount of occupational dose received while employed by any other person during the current year. See D.2104.

Sec. D.1202 - Compliance with Requirements for Summation of External and Internal Doses.

- a. If the licensee or registrant is required to monitor pursuant to both D.1502a. and b., the licensee or registrant shall demonstrate compliance with the dose limits by summing external and internal doses. If the licensee or registrant is required to monitor only pursuant to D.1502a. or only pursuant to D.1502b., then summation is not required to demonstrate compliance with the dose limits. The licensee or registrant may demonstrate compliance with the requirements for summation of external and internal doses pursuant to D.1202b., c. and d. The dose equivalents for the lens of the eye, the skin, and the extremities are not included in the summation, but are subject to separate limits.
- b. <u>Intake by Inhalation</u>. If the only intake of radionuclides is by inhalation, the total effective dose equivalent limit is not exceeded if the sum of the deep dose equivalent divided by the total effective dose equivalent limit, and one of the following, does not exceed unity:
 - i. The sum of the fractions of the inhalation ALI for each radionuclide; or
 - ii. The total number of derived air concentration-hours (DAC-hours) for all radionuclides divided by 2,000; or
 - iii. The sum of the calculated committed effective dose equivalents to all significantly irradiated organs or tissues (T) calculated from bioassay data using appropriate biological models and expressed as a fraction of the annual limit. For purposes of this requirement, an organ or tissue is deemed to be significantly irradiated if, for that organ or tissue, the product of the weighting factors, w_T , and the committed dose equivalent, $H_{T,50}$, per unit intake is greater than 10 percent of the maximum weighted value of $H_{T,50}$, that is, $w_T H_{T,50}$, per unit intake for any organ or tissue.
- c. <u>Intake by Oral Ingestion</u>. If the occupationally exposed individual receives an intake of radionuclides by oral ingestion greater than 10 percent of the applicable oral ALI, the licensee or registrant shall account for this intake and include it in demonstrating compliance with the limits.
- d. <u>Intake through Wounds or Absorption through Skin.</u> The licensee or registrant shall evaluate and, to the extent practical, account for intakes through wounds or skin absorption. The intake through intact skin has been included in the calculation of DAC for hydrogen-3 and does not need to be evaluated.

Sec. D.1203 - Determination of External Dose from Airborne Radioactive Material.

a. Licensees or registrants shall, when determining the dose from airborne radioactive material, include the contribution to the deep dose equivalent, lens dose equivalent, and shallow dose

D6

equivalent from external exposure to the radioactive cloud. See Appendix B, footnotes^a and ^b.

b. Airborne radioactivity measurements and DAC values shall not be used as the primary means to assess the deep dose equivalent when the airborne radioactive material includes radionuclides other than noble gases or if the cloud of airborne radioactive material is not relatively uniform. The determination of the deep dose equivalent to an individual shall be based upon measurements using instruments or individual monitoring devices.

Sec. D.1204 - Determination of Internal Exposure.

- a. For purposes of assessing dose used to determine compliance with occupational dose equivalent limits, the licensee or registrant shall, when required pursuant to D.1502, take suitable and timely measurements of:
 - i. Concentrations of radioactive materials in air in work areas; or
 - ii. Quantities of radionuclides in the body; or
 - iii. Quantities of radionuclides excreted from the body; or
 - iv. Combinations of these measurements.
- b. Unless respiratory protective equipment is used, as provided in D.1703, or the assessment of intake is based on bioassays, the licensee or registrant shall assume that an individual inhales radioactive material at the airborne concentration in which the individual is present.

c. When specific information on the physical and biochemical properties of the radionuclides taken into the body or the behavior of the material in an individual is known, the licensee or registrant may:

- i. Use that information to calculate the committed effective dose equivalent, and, if used, the licensee or registrant shall document that information in the individual's record; and
- ii. Upon prior approval of the Agency, adjust the DAC or ALI values to reflect the actual physical and chemical characteristics of airborne radioactive material, for example, aerosol size distribution or density; and
- Separately assess the contribution of fractional intakes of Class D, W, or Y compounds of a given radionuclide to the committed effective dose equivalent. See Appendix B.
- d. If the licensee or registrant chooses to assess intakes of Class Y material using the measurements given in D.1204a.ii. or iii., the licensee or registrant may delay the recording and reporting of the assessments for periods up to 7 months, unless otherwise required by D.2202 or D.2203. This delay permits the licensee or registrant to make additional measurements basic to the assessments.

- e. If the identity and concentration of each radionuclide in a mixture are known, the fraction of the DAC applicable to the mixture for use in calculating DAC-hours shall be either:
 - i. The sum of the ratios of the concentration to the appropriate DAC value, that is, D, W, or Y, from Appendix B for each radionuclide in the mixture; or
 - ii. The ratio of the total concentration for all radionuclides in the mixture to the most restrictive DAC value for any radionuclide in the mixture.
- f. If the identity of each radionuclide in a mixture is known, but the concentration of one or more of the radionuclides in the mixture is not known, the DAC for the mixture shall be the most restrictive DAC of any radionuclide in the mixture.
- g. When a mixture of radionuclides in air exists, a licensee or registrant may disregard certain radionuclides in the mixture if:
 - i. The licensee or registrant uses the total activity of the mixture in demonstrating compliance with the dose limits in D.1201 and in complying with the monitoring requirements in D.1502b.; and
 - ii. The concentration of any radionuclide disregarded is less than 10 percent of its DAC; and
 - iii. The sum of these percentages for all of the radionuclides disregarded in the mixture does not exceed 30 percent.
- h. When determining the committed effective dose equivalent, the following information may be considered:
 - i. In order to calculate the committed effective dose equivalent, the licensee or registrant may assume that the inhalation of one ALI, or an exposure of 2,000 DAC-hours, results in a committed effective dose equivalent of 0.05 Sievert (5 rem) for radionuclides that have their ALIs or DACs based on the committed effective dose equivalent;
 - ii. For an ALI and the associated DAC determined by the nonstochastic organ dose limit of 0.5 Sievert (50 rem), the intake of radionuclides that would result in a committed effective dose equivalent of 0.05 Sievert (5 rem), that is, the stochastic ALI, is listed in parentheses in Table I of Appendix B. The licensee or registrant may, as a simplifying assumption, use the stochastic ALI to determine committed effective dose equivalent. However, if the licensee or registrant uses the stochastic ALI, the licensee or registrant shall also demonstrate that the limit in D.1201a.i.(2) is met.

<u>Sec. D.1206 - Planned Special Exposures.</u> A licensee or registrant may authorize an adult worker to receive doses in addition to and accounted for separately from the doses received under the limits specified in D.1201 provided that each of the following conditions is satisfied:

- a. The licensee or registrant authorizes a planned special exposure only in an exceptional situation when alternatives that might avoid the dose estimated to result from the planned special exposure are unavailable or impractical;
- b. The licensee or registrant, and employer if the employer is not the licensee or registrant, specifically authorizes the planned special exposure, in writing, before the exposure occurs;
- c. Before a planned special exposure, the licensee or registrant ensures that each individual involved is:
 - i. Informed of the purpose of the planned operation; and
 - ii. Informed of the estimated doses and associated potential risks and specific radiation levels or other conditions that might be involved in performing the task; and
 - iii. Instructed in the measures to be taken to keep the dose ALARA considering other risks that may be present;
- d. Prior to permitting an individual to participate in a planned special exposure, the licensee or registrant ascertains prior doses as required by D.2104b. during the lifetime of the individual for each individual involved;
- e. Subject to D.1201b., the licensee or registrant shall not authorize a planned special exposure that would cause an individual to receive a dose from all planned special exposures and all doses in excess of the limits to exceed:
 - i. The numerical values of any of the dose limits in D.1201a. in any year; and
 - ii. Five times the annual dose limits in D.1201a. during the individual's lifetime;
- f. The licensee or registrant maintains records of the conduct of a planned special exposure in accordance with D.2105 and submits a written report in accordance with D.2204;
- g. The licensee or registrant records the best estimate of the dose resulting from the planned special exposure in the individual's record and informs the individual, in writing, of the dose within 30 days from the date of the planned special exposure. The dose from planned special exposures shall not be considered in controlling future occupational dose of the individual pursuant to D.1201a. but shall be included in evaluations required by D.1206d. and e.

<u>Sec. D.1207 - Occupational Dose Limits for Minors.</u> The annual occupational dose limits for minors are 10 percent of the annual occupational dose limits specified for adult workers in D.1201.

Sec. D.1208 - Dose Equivalent to an Embryo/Fetus.

a. The licensee or registrant shall ensure that the dose equivalent to an embryo/fetus during the entire pregnancy, due to occupational exposure of a declared pregnant woman, does not

SSRCR Volume I - March 2003

exceed 5 millisievert (0.5 rem). See D.2106d. for recordkeeping requirements.

- b. -The licensee or registrant shall make efforts to avoid substantial variation³ above a uniform monthly exposure rate to a declared pregnant woman so as to satisfy the limit in D.1208a.
- The dose equivalent to the embryo/fetus is the sum of: c.
 - i. The deep dose equivalent to the declared pregnant woman; and
 - ii. The dose equivalent resulting from radionuclides in the embryo/fetus and radionuclides in the declared pregnant woman.
- If the dose equivalent to the embryo/fetus is found to have exceeded 5 millisieverts (.5rem), d. or is within 0.5 millisieverts (0.05 rem) of this dose, by the time the woman declares the pregnancy to the licensee or registrant, the licensee or registrant shall be deemed to be in compliance with D.1208a. if the additional dose to the embryo/fetus does not exceed 0.5 millisievert (0.05 rem) during the remainder of the pregnancy.

Radiation Dose Limits for Individual Members of the Public

Sec. D.1301 - Dose Limits for Individual Members of the Public.

- Each licensee or registrant shall conduct operations so that: a.
 - i. The total effective dose equivalent to individual members of the public from the licensed or registered operation does not exceed 1 millisievert (0.1 rem) in a year, exclusive of the dose contribution from background radiation, from any medical administration the individual has received, from exposure to individuals administered radioactive material and released in accordance with [cite appropriate reference from Part G of these regulations], from voluntary participation in medical research programs, and from the licensee's or registrant's disposal of radioactive material into sanitary sewerage in accordance with D.2003;" and
 - ii. The dose in any unrestricted area from external sources exclusive of the dose contributions from patients administered radioactive material and released in accordance with [cite appropriate reference to Part G of these regulations], does not exceed 0.02 millisievert (0.002 rem) in any one hour; and
 - iii. The total effective dose equivalent to individual members of the public from infrequent exposure to radiation from radiation machines does not exceed

đ

3.54

⁹ The National Council on Radiation Protection and Measurements recommended in NCRP Report No. 91 "Recommendations on Limits for Exposure to Ionizing Radiation" (June 1, 1987) that no more than 0.5 millisievert (0.05 rem) to the embryo/fetus be received in any one month. "Retrofit shall not be required for locations within facilities where only radiation machines existed prior to [the effective date

of these regulations] and met the previous requirements of 5 millisievert (0.5 rem) in a year.

5 millisievert (0.5 rem).

- b. If the licensee or registrant permits members of the public to have access to restricted areas, the limits for members of the public continue to apply to those individuals.
 - c. A licensee, registrant, or an applicant for a license or registration may apply for prior Agency authorization to operate up to an annual dose limit for an individual member of the public of 5 millisievert (0.5 rem). This application shall include the following information:
 - i. Demonstration of the need for and the expected duration of operations in excess of the limit in D.1301a.; and
 - ii. The licensee's or registrant's program to assess and control dose within the 5 millisieverts (0.5 rem) annual limit; and
 - iii. The procedures to be followed to maintain the dose ALARA.
 - [d. In addition to the requirements of Part D, a licensee or registrant subject to the provisions of the Environmental Protection Agency's generally applicable environmental radiation standards in 40 CFR 190 shall comply with those standards.]
 - [e. The Agency may impose additional restrictions on radiation levels in unrestricted areas and on the total quantity of radionuclides that a licensee or registrant may release in effluents in order to restrict the collective dose.]
 - Sec. D.1302 Compliance with Dose Limits for Individual Members of the Public.
 - a. The licensee or registrant shall make or cause to be made surveys of radiation levels in unrestricted areas and radioactive materials in effluents released to unrestricted areas to demonstrate compliance with the dose limits for individual members of the public in D.1301.
 - b. A licensee or registrant shall show compliance with the annual dose limit in D.1301 by:
 - i. Demonstrating by measurement or calculation that the total effective dose equivalent to the individual likely to receive the highest dose from the licensed or registered operation does not exceed the annual dose limit; or
 - ii. Demonstrating that:

۱.

- (1) The annual average concentrations of radioactive material released in gaseous and liquid effluents at the boundary of the unrestricted area do not exceed the values specified in Table II of Appendix B; and
- (2) If an individual were continuously present in an unrestricted area, the dose from external sources would not exceed 0.02 millisievert (0.002 rem) in an hour and 0.5 millisievert (0.05 rem) in a year.

SSRCR Volume I - March 2003

c. Upon approval from the Agency, the licensee or registrant may adjust the effluent concentration values in Appendix B, Table II, for members of the public, to take into account the actual physical and chemical characteristics of the effluents, such as aerosol size distribution, solubility, density, radioactive decay equilibrium, and chemical form.

[Testing for Leakage or Contamination of Sealed Sources

Sec. D.1310 - Testing for Leakage or Contamination of Sealed Sources.

- a. The licensee or registrant in possession of any sealed source shall assure that:
 - i. Each sealed source, except as specified in D.1310b., is tested for leakage or contamination and the test results are received before the sealed source is put into use unless the licensee or registrant has a certificate from the transferor indicating that the sealed source was tested within 6 months before transfer to the licensee or registrant;
 - Each sealed source that is not designed to emit alpha particles is tested for leakage or contamination at intervals not to exceed 6 months or at alternative intervals approved by the Agency, after evaluation of information specified by C.281.iv. and v. of these regulations, an Agreement State, a Licensing State, or the Nuclear Regulatory Commission;
 - iii. Each sealed source that is designed to emit alpha particles is tested for leakage or contamination at intervals not to exceed 3 months or at alternative intervals approved by the Agency, after evaluation of information specified by C.281.iv. and v. of these regulations, an Agreement State, a Licensing State, or the Nuclear Regulatory Commission;
 - iv. For each sealed source that is required to be tested for leakage or contamination, at any other time there is reason to suspect that the sealed source might have been damaged or might be leaking, the licensee or registrant shall assure that the sealed source is tested for leakage or contamination before further use;
 - v. Tests for leakage for all sealed sources, except brachytherapy sources manufactured to contain radium, shall be capable of detecting the presence of 185 becquerel (0.005 μ Ci) of radioactive material on a test sample. Test samples shall be taken from the sealed source or from the surfaces of the container in which the sealed source is stored or mounted on which one might expect contamination to accumulate. For a sealed source contained in a device, test samples are obtained when the source is in the "off" position;
 - vi. The test for leakage for brachytherapy sources manufactured to contain radium shall be capable of detecting an absolute leakage rate of 37 becquerel (0.001 μ Ci) of radon-222 in a 24 hour period when the collection efficiency for radon-222 and its daughters has been determined with respect to collection method, volume and time;

- vii. Tests for contamination from radium daughters shall be taken on the interior surface of brachytherapy source storage containers and shall be capable of detecting the presence of 185 becquerel (0.005 μ Ci) of a radium daughter which has a half-life greater than 4 days.
- b. A licensee or registrant need not perform test for leakage or contamination on the following sealed sources:
 - i. Sealed sources containing only radioactive material with a half-life of less than 30 days;
 - ii. Sealed sources containing only radioactive material as a gas;
 - iii. Sealed sources containing 3.7 megabecquerel (100 μ Ci) or less of beta or photonemitting material or 370 kilobecquerel(10 μ Ci) or less of alpha-emitting material;
 - iv. Sealed sources containing only hydrogen-3;
 - v. Seeds of iridium-192 encased in nylon ribbon; and
 - vi. Sealed sources, except teletherapy and brachytherapy sources, which are stored, not being used and identified as in storage. The licensee or registrant shall, however, test each such sealed source for leakage or contamination and receive the test results before any use or transfer unless it has been tested for leakage or contamination within 6 months before the date of use or transfer.
- c. Tests for leakage or contamination from sealed sources shall be performed by persons specifically authorized by the Agency, an Agreement State, a Licensing State, or the Nuclear Regulatory Commission to perform such services.
- d. Test results shall be kept in units of becquerel or microcurie and maintained for inspection by the Agency. Records of test results for sealed sources shall be made pursuant to D.1104.
- e. The following shall be considered evidence that a sealed source is leaking:
 - i. The presence of 185 becquerel (0.005 μ Ci) or more of removable contamination on any test sample;
 - ii. Leakage of 37 becquerel (0.001 μ Ci) of radon-222 per 24 hours for brachytherapy sources manufactured to contain radium;
 - iii. The presence of removable contamination resulting from the decay of 185 becquerel $(0.005 \ \mu\text{Ci})$ or more of radium.
- f. The licensee or registrant shall immediately withdraw a leaking sealed source from use and shall take action to prevent the spread of contamination. The leaking sealed source shall be repaired or disposed of in accordance with this Part.

g. Reports of test results for leaking or contaminated sealed sources shall be made pursuant to D.2208.]

Surveys and Monitoring

Sec. D.1501 - General.

- a. Each licensee or registrant shall make, or cause to be made, surveys that:
 - i. Are necessary for the licensee or registrant to comply with Part D; and
 - ii. Are necessary under the circumstances to evaluate:
 - (1) The magnitude and extent of radiation levels; and
 - (2) Concentrations or quantities of radioactive material; and
 - (3) The potential radiological hazards.
- b. The licensee or registrant shall ensure that instruments and equipment used for quantitative radiation measurements, for example, dose rate and effluent monitoring, are calibrated at intervals not to exceed 12 months for the radiation measured, except when a more frequent interval is specified in another applicable Part of these regulations or a license condition.
- c. All personnel dosimeters, except for direct and indirect reading pocket ionization chambers and those dosimeters used to measure the dose to any extremity, that require processing to determine the radiation dose and that are used by licensees and registrants to comply with D.1201, with other applicable provisions of these regulations, or with conditions specified in a license or registration shall be processed and evaluated by a dosimetry processor:
 - i. Holding current personnel dosimetry accreditation from the National Voluntary Laboratory Accreditation Program of the National Institute of Standards and Technology; and
 - ii. Approved in this accreditation process for the type of radiation or radiations included in the National Voluntary Laboratory Accreditation Program that most closely approximates the type of radiation or radiations for which the individual wearing the dosimeter is monitored.
- d. The licensee or registrant shall ensure that adequate precautions are taken to prevent a deceptive exposure of an individual monitoring device.

<u>Sec. D.1502</u> - Conditions Requiring Individual Monitoring of External and Internal Occupational <u>Dose</u>. Each licensee or registrant shall monitor exposures from sources of radiation at levels sufficient to demonstrate compliance with the occupational dose limits of Part D. As a minimum:

- a. Each licensee or registrant shall monitor occupational exposure to radiation from licensed and unlicensed radiation sources under its control and shall supply and require the use of individual monitoring devices by:
 - i. Adults likely to receive, in 1 year from sources external to the body, a dose in excess of 10 percent of the limits in D.1201a.; and
 - ii. Minors likely to receive, in 1 year from sources external to the body, a deep dose equivalent in excess of 1 millisievert (0.1 rem), a lens dose equivalent in excess of 1.5 millisievert (0.15 rem), or a shallow dose equivalent to the skin or to the extremities in excess of 5 millisievert (0.5 rem); and
 - iii. Declared pregnant women likely to receive during the entire pregnancy, from radiation sources external to the body, a deep dose equivalent in excess of 1 millisievert (0.1 rem); and
 - iv. Individuals entering a high or very high radiation area;
 - v. Individuals working with medical fluoroscopic equipment.
 - (1) An individual monitoring device used for the dose to an embryo/fetus of a declared pregnant woman, pursuant to D.1208a., shall be located under the protective apron at the waist.
 - (2) An individual monitoring device used for lens dose equivalent shall be located at the neck (collar), or an unshielded location closer to the eye, outside the protective apron.
 - (3) When only 1 individual monitoring device is used to determine the effective dose equivalent for external radiation pursuant to D.1201c.ii., it shall be located at the neck (collar) outside the protective apron. When a second individual monitoring device is used for the same purpose, it shall be located under the protective apron at the waist. The second individual monitoring device is required for a declared pregnant woman.
- b. Each licensee or registrant shall monitor, to determine compliance with D.1204, the occupational intake of radioactive material by and assess the committed effective dose equivalent to:
 - i. Adults likely to receive, in 1 year, an intake in excess of 10 percent of the applicable ALI in Table I, Columns 1 and 2, of Appendix B; and
 - ii. Minors likely to receive, in 1 year, a committed effective dose equivalent in excess of 0.1 millisievert (0.01 rem).
 - iii. Declared pregnant women likely to receive, during the entire pregnancy, a committed dose equivalent in excess of 1 millisievert (0.1 rem).

<u>Sec. D.1503</u> - <u>Location of Individual Monitoring Devices</u>. Each licensee or registrant shall ensure that individuals who are required to monitor occupational doses in accordance with D.1502a. wear individual monitoring devices as follows:

- a. An individual monitoring device used for monitoring the dose to the whole body shall be worn at the unshielded location of the whole body likely to receive the highest exposure. When a protective apron is worn, the location of the individual monitoring device is typically at the neck (collar);
- b. An individual monitoring device used for monitoring the dose to an embryo/fetus of a declared pregnant woman, pursuant to D.1208a., shall be located at the waist under any protective apron being worn by the woman;
- c. An individual monitoring device used for monitoring the lens dose equivalent, to demonstrate compliance with D.1201a.ii.(1), shall be located at the neck (collar), outside any protective apron being worn by the monitored individual, or at an unshielded location closer to the eye;
- d. An individual monitoring device used for monitoring the dose to the extremities, to demonstrate compliance with D.1201a.ii.(2), shall be worn on the extremity likely to receive the highest exposure. Each individual monitoring device shall be oriented to measure the highest dose to the extremity being monitored.

Control of Exposure from External Sources in Restricted Areas

Sec. D.1601 - Control of Access to High Radiation Areas.

- a. The licensee or registrant shall ensure that each entrance or access point to a high radiation area has one or more of the following features:
 - i. A control device that, upon entry into the area, causes the level of radiation to be reduced below that level at which an individual might receive a deep dose equivalent of 1 millisievert (0.1 rem) in 1 hour at 30 centimeters from the source of radiation or from any surface that the radiation penetrates; or
 - ii. A control device that energizes a conspicuous visible or audible alarm signal so that the individual entering the high radiation area and the supervisor of the activity are made aware of the entry; or
 - iii. Entryways that are locked, except during periods when access to the areas is required, with positive control over each individual entry.
- b. In place of the controls required by D.1601a. for a high radiation area, the licensee or registrant may substitute continuous direct or electronic surveillance that is capable of

Sec. D.1601 - D.1602

preventing unauthorized entry.

- c. The licensee or registrant may apply to the Agency for approval of alternative methods for controlling access to high radiation areas.
 - d. The licensee or registrant shall establish the controls required by D.1601a. and D.1601c. in a way that does not prevent individuals from leaving a high radiation area.
 - e. The licensee or registrant is not required to control each entrance or access point to a room or other area that is a high radiation area solely because of the presence of radioactive materials prepared for transport and packaged and labeled in accordance with the regulations of the Department of Transportation provided that:
 - i. The packages do not remain in the area longer than 3 days; and
 - ii. The dose rate at 1 meter from the external surface of any package does not exceed 0.1 millisievert (0.01 rem) per hour.
 - f. The licensee or registrant is not required to control entrance or access to rooms or other areas in hospitals solely because of the presence of patients containing radioactive material, provided that there are personnel in attendance who are taking the necessary precautions to prevent the exposure of individuals to radiation or radioactive material in excess of the established limits in Part D and to operate within the ALARA provisions of the licensee's or registrant's radiation protection program.
 - g. The registrant is not required to control entrance or access to rooms or other areas containing sources of radiation capable of producing a high radiation area as described in D.1601 if the registrant has met all the specific requirements for access and control specified in other applicable Parts of these regulations, such as, Part E for industrial radiography, Part F for X-rays in the healing arts, and Part I for particle accelerators.

Sec. D.1602 - Control of Access to Very High Radiation Areas.

- a. In addition to the requirements in D.1601, the licensee or registrant shall institute measures to ensure that an individual is not able to gain unauthorized or inadvertent access to areas in which radiation levels could be encountered at 5 gray (500 rad) or more in 1 hour at 1 meter from a source of radiation or any surface through which the radiation penetrates. This requirement does not apply to rooms or areas in which diagnostic X-ray systems are the only source of radiation, or to non-self-shielded irradiators.
- b. The registrant is not required to control entrance or access to rooms or other areas containing sources of radiation capable of producing a very high radiation area as described in D.1602a. if the registrant has met all the specific requirements for access and control specified in other applicable Parts of these regulations, such as, Part E for industrial radiography, Part F for X-rays in the healing arts, and Part I for particle accelerators.

Sec. D.1603 - Control of Access to Very High Radiation Areas - Irradiators.

- a. Section D.1603 applies to licensees or registrants with sources of radiation in non-selfshielded irradiators. Section D.1603 does not apply to sources of radiation that are used in teletherapy, in industrial radiography, or in completely self-shielded irradiators in which the source of radiation is both stored and operated within the same shielding radiation barrier and, in the designed configuration of the irradiator, is always physically inaccessible to any individual and cannot create high levels of radiation in an area that is accessible to any individual.
- b. Each area in which there may exist radiation levels in excess of 5 gray (500 rad) in 1 hour at 1 meter from a source of radiation that is used to irradiate materials shall meet the following requirements:
 - i. Each entrance or access point shall be equipped with entry control devices which:
 - (1) Function automatically to prevent any individual from inadvertently entering a very high radiation area; and
 - (2) Permit deliberate entry into the area only after a control device is actuated that causes the radiation level within the area, from the source of radiation, to be reduced below that at which it would be possible for an individual to receive a deep dose equivalent in excess of 1 millisievert (0.1 rem) in 1 hour; and
 - (3) Prevent operation of the source of radiation if it would produce radiation levels in the area that could result in a deep dose equivalent to an individual in excess of 1 millisievert (0.1 rem) in 1 hour.
 - ii. Additional control devices shall be provided so that, upon failure of the entry control devices to function as required by D.1603b.i.:
 - (1) The radiation level within the area, from the source of radiation, is reduced below that at which it would be possible for an individual to receive a deep dose equivalent in excess of 1 millisievert (0.1 rem) in 1 hour; and
 - (2) Conspicuous visible and audible alarm signals are generated to make an individual attempting to enter the area aware of the hazard and at least one other authorized individual, who is physically present, familiar with the activity, and prepared to render or summon assistance, aware of the failure of the entry control devices.
 - iii. The licensee or registrant shall provide control devices so that, upon failure or removal of physical radiation barriers other than the sealed source's shielded storage container:
 - (1) The radiation level from the source of radiation is reduced below that at which it would be possible for an individual to receive a deep dose equivalent in

Sec. D.1603

excess of 1 millisievert (0.1 rem) in 1 hour; and

- (2) Conspicuous visible and audible alarm signals are generated to make potentially affected individuals aware of the hazard and the licensee or registrant or at least one other individual, who is familiar with the activity and prepared to render or summon assistance, aware of the failure or removal of the physical barrier.
- iv. When the shield for stored sealed sources is a liquid, the licensee or registrant shall provide means to monitor the integrity of the shield and to signal, automatically, loss of adequate shielding.
- v. Physical radiation barriers that comprise permanent structural components, such as walls, that have no credible probability of failure or removal in ordinary circumstances need not meet the requirements of D.1603b.iii. and D.1603b.iv.
- vi. Each area shall be equipped with devices that will automatically generate conspicuous visible and audible alarm signals to alert personnel in the area before the source of radiation can be put into operation and in time for any individual in the area to operate a clearly identified control device, which must be installed in the area and which can prevent the source of radiation from being put into operation.
- vii. Each area shall be controlled by use of such administrative procedures and such devices as are necessary to ensure that the area is cleared of personnel prior to each use of the source of radiation.
- viii. Each area shall be checked by a radiation measurement to ensure that, prior to the first individual's entry into the area after any use of the source of radiation, the radiation level from the source of radiation in the area is below that at which it would be possible for an individual to receive a deep dose equivalent in excess of 1 millisievert (0.1 rem) in 1 hour.
- ix. The entry control devices required in D.1603b.i. shall be tested for proper functioning. See D.2109 for recordkeeping requirements.
 - (1) Testing shall be conducted prior to initial operation with the source of radiation on any day, unless operations were continued uninterrupted from the previous day; and
 - (2) Testing shall be conducted prior to resumption of operation of the source of radiation after any unintentional interruption; and
 - (3) The licensee or registrant shall submit and adhere to a schedule for periodic tests of the entry control and warning systems.
- x. The licensee or registrant shall not conduct operations, other than those necessary to place the source of radiation in safe condition or to effect repairs on controls, unless

SSRCR Volume I - March 2003

control devices are functioning properly.

- xi. Entry and exit portals that are used in transporting materials to and from the irradiation area, and that are not intended for use by individuals, shall be controlled by such devices and administrative procedures as are necessary to physically protect and warn against inadvertent entry by any individual through these portals. Exit portals for irradiated materials shall be equipped to detect and signal the presence of any loose radioactive material that is carried toward such an exit and automatically to prevent loose radioactive material from being carried out of the area.
- c. Licensees, registrants, or applicants for licenses or registrations for sources of radiation within the purview of D.1603b. which will be used in a variety of positions or in locations, such as open fields or forests, that make it impracticable to comply with certain requirements of D.1603b., such as those for the automatic control of radiation levels, may apply to the Agency for approval of alternative safety measures. Alternative safety measures shall provide personnel protection at least equivalent to those specified in D.1603b. At least one of the alternative measures shall include an entry-preventing interlock control based on a measurement of the radiation that ensures the absence of high radiation levels before an individual can gain access to the area where such sources of radiation are used.
- d. The entry control devices required by D.1603b. and c. shall be established in such a way that no individual will be prevented from leaving the area.

Respiratory Protection and Controls to Restrict Internal Exposure in Restricted Areas

<u>Sec. D.1701</u> - Use of Process or Other Engineering Controls. The licensee or registrant shall use, to the extent practical, process or other engineering controls, such as, containment, decontamination or ventilation, to control the concentrations of radioactive material in air.

Sec. D.1702 - Use of Other Controls.

- a. When it is not practicable to apply process or other engineering controls to control the concentrations of radioactive material in air to values below those that define an airborne radioactivity area, the licensee or registrant shall, consistent with maintaining the total effective dose equivalent ALARA, increase monitoring and limit intakes by one or more of the following means:
 - i. Control of access; or
 - ii. Limitation of exposure times; or
 - iii.. Use of respiratory protection equipment; or
 - iv. Other controls.
- b. If the licensee performs an ALARA analysis to determine whether or not respirators should

Sec. D.1703

be used, the licensee may also consider the impact of respirator use on workers' industrial health and safety.

<u>Sec. D.1703</u> - <u>Use of Individual Respiratory Protection Equipment</u>. If the licensee or registrant uses respiratory protection equipment to limit intakes pursuant to D.1702:

- a. Except as provided in D.1703a.ii., the licensee or registrant shall use only respiratory protection equipment that is tested and certified by the National Institute for Occupational Safety and Health;
- b. If the licensee or registrant wishes to use equipment that has not been tested or certified by the National Institute for Occupational Safety, or for which there is no schedule for testing or certification, the licensee shall submit an application to the Agency for authorized use of this equipment, except as otherwise noted in this Part. The application must include evidence that the material and performance characteristics of the equipment are capable of providing the proposed degree of protection under anticipated conditions of use. This must be demonstrated either by the licensee's or registrant's testing or on the basis of reliable test information;
- c. The licensee or registrant shall implement and maintain a respiratory protection program that includes:
 - i. Air sampling sufficient to identify the potential hazard, permit proper equipment selection, and estimate doses;
 - ii. Surveys and bioassays, as necessary, to evaluate actual intakes;
 - iii. Testing of respirators for operability (user seal check for face sealing devices and functional check for others) immediately prior to each use; and
 - iv. Written procedures regarding:
 - (1) Monitoring, including air sampling and bioassays;
 - (2) Supervision and training or respirator users;
 - (3) Fit testing;
 - (4) Respirator selection;
 - (5) Breathing air quality;
 - (6) Inventory and control;
 - (7) Storage, issuance, maintenance, repair, testing, and quality assurance of respiratory protection equipment;

- (8) Recordkeeping; and
- (9) Limitations on periods of respirator use and relief from respirator use.
- v. Determination by a physician that the individual user is medically fit to use the respiratory protection equipment before:
 - (1) The initial fitting of a face sealing respirator;
 - (2) Before the first field use of non-face sealing respirators, and
 - (3) Either every 12 months thereafter, or periodically at a frequency determined by a physician.
- vi. Fit testing, with a fit factor ≥ 10 times the APF for negative pressure devices, and a fit factor ≥ 500 for any positive pressure, continuous flow, and pressure-demand devices, before the first field use of tight fitting, face sealing respirators and periodically thereafter at a frequency not to exceed 1 year. Fit testing must be performed with the facepiece operating in the negative pressure mode.
- d. The licensee or registrant shall advise each respirator user that the user may leave the area at any time for relief from respirator use in the event of equipment malfunction, physical or psychological distress, procedural or communication failure, significant deterioration of operating conditions, or any other conditions that might require such relief.
- e. The licensee or registrant shall also consider limitations appropriate to the type and mode of use. When selecting respiratory devices the licensee or registrant shall provide for vision correction, adequate communication, low temperature work environments and the concurrent use of other safety or radiological protection equipment. The licensee or registrant shall use equipment in such a way as not to interfere with the proper operation of the respirator.
- f. Standby rescue persons are required whenever one-piece atmosphere-supplying suits, or any combination of supplied air respiratory protection device and personnel protective equipment are used from which an unaided individual would have difficulty extricating himself or herself. The standby persons must be equipped with respiratory protection devices or other apparatus appropriate for the potential hazards. The standby rescue persons shall observe or otherwise maintain continuous communication with the workers (visual, voice, signal line, telephone, radio, or other suitable means), and be immediately available to assist them in case of a failure of the air supply or for any other reason that requires relief from distress. A sufficient number of standby rescue persons must be immediately available to assist all users of this type of equipment and to provide effective emergency rescue if needed.
- g. Atmosphere-supplying respirators must be supplied with respirable air of grade D quality or better as defined by the Compressed Gas Association in publication G-7.1, "Commodity Specification for Air," 1997 and included in the regulations of the Occupational Safety and Health Administration (29 CFR 1910.134(i)(1)(ii)(A) through (E). Grade D quality air criteria include:

- i. Oxygen content (v/v) of 19.5-23.5%;
- ii. Hydrocarbon (condensed) content of 5 milligrams per cubic meter of air or less;
- iii. Carbon Monoxide (CO) content of 10 ppm or less;
- iv. Carbon Dioxide content of 1,000 ppm or less; and
- v. Lack of noticeable odor
- h. The licensee shall ensure that no objects, materials or substances, such as facial hair, or any conditions that interfere with the face-facepiece seal or valve function, and that are under the control of the wearer, are present between the skin of the wearer's face and the sealing surface of a tight-fitting respirator facepiece.
- i. In estimating the dose to individuals from intake of airborne radioactive materials, the concentration of radioactive material in the air that is inhaled when respirators are worn is initially assumed to be the ambient concentration in air without the respiratory protection, divided by the assigned protection factor. If the dose is later found to be greater than the estimated dose, the corrected value must be used. If the dose is later found to be less than the estimated dose, the corrected value may be used.

<u>Sec. D.1704 – Further Restrictions on the Use of Respiratory Protection Equipment.</u> The Agency may impose restrictions in addition to the provisions of D.1702 and D.1703, and Appendix A of this Part, in order to:

- a. Ensure that the respiratory protection program of the licensee is adequate to limit doses to individuals from intakes of radioactive materials consistent with maintaining total effective dose equivalent ALARA; and
- b. Limit the extent to which a licensee may use respiratory protection equipment instead of process or other engineering controls.

<u>Sec. D.1705 – Application for use of Higher Assigned Protection Factors.</u> The licensee or registrant shall obtain authorization from the Agency before using assigned respiratory protection factors in excess of those specified in Appendix A. The Agency may authorize a licensee or registrant to use higher protection factors on receipt of an application that:

- a. Describes the situation for which a need exists for higher protection factors; and
- b. Demonstrates that the respiratory protection equipment provides these higher protection factors under the proposed conditions of use.

Storage and Control of Licensed or Registered Sources of Radiation

Sec. D.1801 - Security and Control of Licensed or Registered Sources of Radiation.

- a. The licensee or registrant shall secure licensed or registered radioactive material from unauthorized removal or access.
- b. The licensee or registrant shall maintain constant surveillance, and use devices or administrative procedures to prevent unauthorized use of licensed or registered radioactive material that is in an unrestricted area and that is not in storage.
- c. The registrant shall secure registered radiation machines from unauthorized removal.
- d. The registrant shall use devices or administrative procedures to prevent unauthorized use of registered radiation machines.

Precautionary Procedures

Sec. D.1901 - Caution Signs.

a. <u>Standard Radiation Symbol.</u> Unless otherwise authorized by the Agency, the symbol prescribed by this section shall use the colors magenta, or purple, or black on yellow background. The symbol prescribed is the three-bladed design as follows:

- 1. Cross-hatched area is to be magenta, or purple, or black, and
- 2. The background is to be yellow.

Figure 1. Radiation Symbol.

b. <u>Exception to Color Requirements for Standard Radiation Symbol.</u> Notwithstanding the requirements of D.1901a., licensees or registrants are authorized to label sources, source holders, or device components containing sources of radiation that are subjected to high temperatures, with conspicuously etched or stamped radiation caution symbols and without a

color requirement.

c. <u>Additional Information on Signs and Labels.</u> In addition to the contents of signs and labels prescribed in Part D, the licensee or registrant may provide, on or near the required signs and labels, additional information, as appropriate, to make individuals aware of potential radiation exposures and to minimize the exposures.

Sec. D.1902 - Posting Requirements.

- a. <u>Posting of Radiation Areas.</u> The licensee or registrant shall post each radiation area with a conspicuous sign or signs bearing the radiation symbol and the words "CAUTION, RADIATION AREA."
- b. <u>Posting of High Radiation Areas.</u> The licensee or registrant shall post each high radiation area with a conspicuous sign or signs bearing the radiation symbol and the words "CAUTION, HIGH RADIATION AREA" or "DANGER, HIGH RADIATION AREA."
- c. <u>Posting of Very High Radiation Areas.</u> The licensee or registrant shall post each very high radiation area with a conspicuous sign or signs bearing the radiation symbol and words "GRAVE DANGER [not required to use the word GRAVE, this may be omitted], VERY HIGH RADIATION AREA."
- d. <u>Posting of Airborne Radioactivity Areas.</u> The licensee or registrant shall post each airborne radioactivity area with a conspicuous sign or signs bearing the radiation symbol and the words "CAUTION, AIRBORNE RADIOACTIVITY AREA" or "DANGER, AIRBORNE RADIOACTIVITY AREA."
- e. <u>Posting of Areas or Rooms in which Licensed or Registered Material is Used or Stored</u>. The licensee or registrant shall post each area or room in which there is used or stored an amount of licensed or registered material exceeding 10 times the quantity of such material specified in Appendix C with a conspicuous sign or signs bearing the radiation symbol and the words "CAUTION, RADIOACTIVE MATERIAL(S)" or "DANGER, RADIOACTIVE MATERIAL(S)."

Sec. D.1903 - Exceptions to Posting Requirements.

- a. A licensee or registrant is not required to post caution signs in areas or rooms containing sources of radiation for periods of less than 8 hours, if each of the following conditions is met:
 - i. The sources of radiation are constantly attended during these periods by an individual who takes the precautions necessary to prevent the exposure of individuals to sources of radiation in excess of the limits established in Part D; and
 - ii. The area or room is subject to the licensee's or registrant's control.
- b. Rooms or other areas in hospitals that are occupied by patients are not required to be posted

SSRCR Volume I - March 2003

with caution signs pursuant to D.1902 provided that the patient could be released from confinement pursuant to [cite applicable Part G reference] of these regulations are met.

- c. Rooms or other areas in hospitals that are occupied by patients are not required to be posted with caution signs, provided that:
 - i. A patient being treated with a permanent implant could be released from confinement pursuant to [cite applicable Part G reference] of these regulations; or
 - ii. A patient being treated with a therapeutic radiopharmaceutical could be released from confinement pursuant to [cite applicable Part G reference] of these regulations.
- d. A room or area is not required to be posted with a caution sign because of the presence of a sealed source provided the radiation level at 30 centimeters from the surface of the sealed source container or housing does not exceed 0.05 millisievert (0.005 rem) per hour.
- e. A room or area is not required to be posted with a caution sign because of the presence of radiation machines used solely for diagnosis in the healing arts.
- f. Rooms in hospitals or clinics that are used for teletherapy are exempt from the requirement to post caution signs under D.1902 if:
 - i. Access to the room is controlled pursuant to [cite applicable Part G reference]; and
 - ii. Personnel in attendance take necessary precautions to prevent the inadvertent exposure of workers, other patients, and members of the public to radiation in excess of the limits established in this Part.

Sec. D.1904 - Labeling Containers and Radiation Machines.

- a. The licensee or registrant shall ensure that each container of licensed or registered material bears a durable, clearly visible label bearing the radiation symbol and the words "CAUTION, RADIOACTIVE MATERIAL" or "DANGER, RADIOACTIVE MATERIAL." The label shall also provide information, such as the radionuclides present, an estimate of the quantity of radioactivity, the date for which the activity is estimated, radiation levels, kinds of materials, and mass enrichment, to permit individuals handling or using the containers, or working in the vicinity of the containers, to take precautions to avoid or minimize exposures.
- b. Each licensee or registrant shall, prior to removal or disposal of empty uncontaminated containers to unrestricted areas, remove or deface the radioactive material label or otherwise clearly indicate that the container no longer contains radioactive materials.
- c. Each registrant shall ensure that each radiation machine is labeled in a conspicuous manner which cautions individuals that radiation is produced when it is energized.
Sec. D.1905 - D.1906

<u>Sec. D.1905</u> - Exemptions to Labeling Requirements. A licensee or registrant is not required to label:

- a. Containers holding licensed or registered material in quantities less than the quantities listed in Appendix C; or
- b. Containers holding licensed or registered material in concentrations less than those specified in Table III of Appendix B; or
- c. Containers attended by an individual who takes the precautions necessary to prevent the exposure of individuals in excess of the limits established by Part D; or
- d. Containers when they are in transport and packaged and labeled in accordance with the regulations of the Department of Transportation;² or
- e. Containers that are accessible only to individuals authorized to handle or use them, or to work in the vicinity of the containers, if the contents are identified to these individuals by a readily available written record. Examples of containers of this type are containers in locations such as water-filled canals, storage vaults, or hot cells. The record shall be retained as long as the containers are in use for the purpose indicated on the record; or
- f. Installed manufacturing or process equipment, such as piping and tanks.
- Sec. D.1906 Procedures for Receiving and Opening Packages.
- a. Each licensee or registrant who expects to receive a package containing quantities of radioactive material in excess of a Type A quantity, as defined in T.2 and Appendix A of Part T of these regulations, shall make arrangements to receive:
 - i. The package when the carrier offers it for delivery; or
 - ii. The notification of the arrival of the package at the carrier's terminal and to take possession of the package expeditiously.
- b. Each licensee or registrant shall:
 - i. Monitor the external surfaces of a labeled^{$\frac{1}{2}$} package for radioactive contamination unless the package contains only radioactive material in the form of gas or in special form as defined in A.2 of these regulations; and
 - ii. Monitor the external surfaces of a labeled $\frac{3}{2}$ package for radiation levels unless the

^{2'} Labeling of packages containing radioactive materials is required by the Department of Transportation if the amount and type of radioactive material exceeds the limits for an excepted quantity or article as defined and limited by Department of Transportation regulations 49 CFR 173.403(m) and (w) and 173.421–424.

³ Labeled means labeled with a Radioactive White I, Yellow II, or Yellow III label as specified in Department of Transportation regulations 49 CFR 172.403 and 172.436-440.

package contains quantities of radioactive material that are less than or equal to the Type A quantity, as defined in T.2 and Appendix A of Part T of these regulations; and

- iii. Monitor all packages known to contain radioactive material for radioactive contamination and radiation levels if there is evidence of degradation of package integrity, such as packages that are crushed, wet, or damaged.
- c. The licensee or registrant shall perform the monitoring required by D.1906b. as soon as practicable after receipt of the package, but not later than 3 hours after the package is received at the licensee's or registrant's facility if it is received during the licensee's or registrant's normal working hours or if there is evidence of degradation of package integrity, such as a package that is crushed, wet, or damaged. If a package is received after working hours, and has no evidence of degradation of package integrity, the package shall be monitored no later than 3 hours from the beginning of the next working day.
- d. The licensee or registrant shall immediately notify the final delivery carrier and, by telephone and either telegram, mailgram, or facsimile, the Agency when:
 - i. Removable radioactive surface contamination exceeds the limits of T.15h. of these regulations; or
 - ii. External radiation levels exceed the limits of T.15i. and j. of these regulations.
- e. Each licensee or registrant shall:
 - i. Establish, maintain, and retain written procedures for safely opening packages in which radioactive material is received; and
 - ii. Ensure that the procedures are followed and that due consideration is given to special instructions for the type of package being opened.
- f. Licensees or registrants transferring special form sources in vehicles owned or operated by the licensee or registrant to and from a work site are exempt from the contamination monitoring requirements of D.1906b., but are not exempt from the monitoring requirement in D.1906b. for measuring radiation levels that ensures that the source is still properly lodged in its shield.

Waste Disposal

Sec. D.2001 - General Requirements.

- a. A licensee or registrant shall dispose of licensed or registered material only:
 - i. By transfer to an authorized recipient as provided in D.2006 or in Parts C, M, or U^{***/} of these regulations, or to the Department of Energy; or

4.²⁰¹

 $[\]stackrel{\bullet\bullet\bullet\bullet}{\longrightarrow}$ Part U is in draft form.

- ii. By decay in storage; or
- iii. By release in effluents within the limits in D.1301; or
- iv. As authorized pursuant to D.2002, D.2003, D.2004, or D.2005.
- b. A person shall be specifically licensed or registered to receive waste containing licensed or registered material from other persons for:
 - i. Treatment prior to disposal; or
 - ii. Treatment or disposal by incineration; or
 - iii. Decay in storage; or
 - iv. Disposal at a land disposal facility licensed pursuant to Part M of these regulations; or
 - v. Storage until transferred to a storage or disposal facility authorized to receive the waste.

<u>Sec. D.2002</u> - Method for Obtaining Approval of Proposed Disposal Procedures. A licensee or registrant or applicant for a license or registration may apply to the Agency for approval of proposed procedures, not otherwise authorized in these regulations, to dispose of licensed or registered material generated in the licensee's or registrant's operations. Each application shall include:

- a. A description of the waste containing licensed or registered material to be disposed of, including the physical and chemical properties that have an impact on risk evaluation, and the proposed manner and conditions of waste disposal; and
- b. An analysis and evaluation of pertinent information on the nature of the environment; and
- c. The nature and location of other potentially affected facilities; and
- d. Analyses and procedures to ensure that doses are maintained ALARA and within the dose limits in Part D.

Sec. D.2003 - Disposal by Release into Sanitary Sewerage.

- a. A licensee or registrant may discharge licensed or registered material into sanitary sewerage if each of the following conditions is satisfied:
 - i. The material is readily soluble, or is readily dispersible biological material, in water; and
 - ii. The quantity of licensed or registered radioactive material that the licensee or registrant releases into the sewer in 1 month divided by the average monthly volume

of water released into the sewer by the licensee or registrant does not exceed the concentration listed in Table III of Appendix B; and

- iii. If more than one radionuclide is released, the following conditions must also be satisfied:
 - (1) The licensee or registrant shall determine the fraction of the limit in Table III of Appendix B represented by discharges into sanitary sewerage by dividing the actual monthly average concentration of each radionuclide released by the licensee or registrant into the sewer by the concentration of that radionuclide listed in Table III of Appendix B; and
 - (2) The sum of the fractions for each radionuclide required by D.2003a.iii.(1) does not exceed unity; and
- iv. The total quantity of licensed or registered radioactive material that the licensee or registrant releases into the sanitary sewerage in a year does not exceed 185
 Gigabecquerel (5 Ci) of hydrogen-3, 37 Gigabecquerel (1 Ci) of carbon-14, and 37
 Gigabecquerel (1 Ci) of all other radioactive materials combined.
- b. Excreta from individuals undergoing medical diagnosis or therapy with radioactive material are not subject to the limitations contained in D.2003a.

<u>Sec. D.2004</u> - <u>Treatment or Disposal by Incineration</u>. A licensee or registrant may treat or dispose of licensed or registered material by incineration only in the form and concentration specified in D.2005 or as specifically approved by the Agency pursuant to D.2002.

Sec. D.2005 - Disposal of Specific Wastes.

- a. A licensee or registrant may dispose of the following licensed or registered material as if it were not radioactive:
 - i. 1.85 kilobecquerel (0.05 μ Ci), or less, of hydrogen-3 or carbon-14 per gram of medium used for liquid scintillation counting; and
 - ii. 1.85 kilobecquerel (0.05 μ Ci), or less, of hydrogen-3 or carbon-14 per gram of animal tissue, averaged over the weight of the entire animal.
- b. A licensee or registrant shall not dispose of tissue pursuant to D.2005a.ii. in a manner that would permit its use either as food for humans or as animal feed.
- c. The licensee or registrant shall maintain records in accordance with D.2108.

Sec. D.2006 - Transfer for Disposal and Manifests.

a. <u>Requirements of D.2006 and Appendix G.</u>

- i. Control transfers of low-level radioactive waste by any waste generator, waste collector, or waste processor licensee, as defined in Appendix G of Part D, who ships low-level waste either directly, or indirectly through a waste collector or waste processor, to a licensed low-level waste land disposal facility as defined in Part A.2 of these regulations.
- ii. Establish a manifest tracking system; and

5

- iii. Supplement existing requirements concerning transfers and recordkeeping for those wastes
- b. <u>Shipment of Radioactive Waste.</u> Any licensee shipping radioactive waste intended for ultimate disposal at a licensed land disposal facility must document the information required on the Agency's Uniform Low-Level Radioactive Waste Manifest and transfer this recorded information to the intended consignee in accordance with Appendix G.
- c. Each shipment manifest shall include a certification by the waste generator as specified in Appendix G, as appropriate;
- d. Each person involved in the transfer of waste for disposal or in the disposal of waste, including the waste generator, waste collector, waste processor, and disposal facility operator, shall comply with the requirements specified in Appendix G, as appropriate.

<u>Sec. D.2007 - Compliance with Environmental and Health Protection Regulations.</u> Nothing in D.2001, D.2002, D.2003, D.2004, D.2005, or D.2006 relieves the licensee or registrant from complying with other applicable Federal, State and local regulations governing any other toxic or hazardous properties of materials that may be disposed of in accordance with D.2001, D.2002, D.2003, D.2004, D.2005, or D.2006.

Records

Sec. D.2101 - General Provisions.

- a. Each licensee or registrant shall use the SI units becquerel, gray, sievert and coulomb per kilogram, or the special units curie, rad, rem and roentgen, including multiples and subdivisions, and shall clearly indicate the units of all quantities on records required by Part D.
- b. Not withstanding the requirements of D.2101a, when recording information on shipment manifests, as required in D.2006, information must be recorded in SI units or in SI units and special units as specified in D.2101a.
- c. The licensee or registrant shall make a clear distinction among the quantities entered on the records required by Part D, such as, total effective dose equivalent shallow dose equivalent, lens dose equivalent, deep dose equivalent, or committed effective dose equivalent.

Sec. D.2102 - Records of Radiation Protection Programs.

- a. Each licensee or registrant shall maintain records of the radiation protection program, including:
 - i. The provisions of the program; and
 - ii. Audits and other reviews of program content and implementation.
- b. The licensee or registrant shall retain the records required by D.2102a.i. until the Agency terminates each pertinent license or registration requiring the record. The licensee or registrant shall retain the records required by D.2102a.ii. for 3 years after the record is made.

Sec. D.2103 - Records of Surveys.

- a. Each licensee or registrant shall maintain records showing the results of surveys and calibrations required by D.1501 and D.1906b. The licensee or registrant shall retain these records for 3 years after the record is made.
- b. The licensee or registrant shall retain each of the following records until the Agency terminates each pertinent license or registration requiring the record:
 - i. Records of the results of surveys to determine the dose from external sources of radiation used, in the absence of or in combination with individual monitoring data, in the assessment of individual dose equivalents; and
 - ii. Records of the results of measurements and calculations used to determine individual intakes of radioactive material and used in the assessment of internal dose; and
 - iii. Records showing the results of air sampling, surveys, and bioassays required pursuant to D.1703c.i. and ii. and;
 - iv. Records of the results of measurements and calculations used to evaluate the release of radioactive effluents to the environment.

Sec. D.2104 - Determination and Records of Prior Occupational Dose.

- a. For each individual who is likely to receive, in a year, an occupational dose requiring monitoring pursuant to D.1502, the licensee or registrant shall:
 - i. Determine the occupational radiation dose received during the current year; and
 - ii. Attempt to obtain the records of cumulative occupational radiation dose.
- b. Prior to permitting an individual to participate in a planned special exposure, the licensee or registrant shall determine:

٠

- i. The internal and external doses from all previous planned special exposures; and
- ii. All doses in excess of the limits, including doses received during accidents and emergencies, received during the lifetime of the individual; and
- c. In complying with the requirements of D.2104a., a licensee or registrant may:
 - i. Accept, as a record of the occupational dose that the individual received during the current year, a written signed statement from the individual, or from the individual's most recent employer for work involving radiation exposure, that discloses the nature and the amount of any occupational dose that the individual received during the current year; and
 - ii. Accept, as the record of cumulative radiation dose, an up-to-date Agency Form Y or equivalent, signed by the individual and countersigned by an appropriate official of the most recent employer for work involving radiation exposure, or the individual's current employer, if the individual is not employed by the licensee or registrant; and.
 - iii. Obtain reports of the individual's dose equivalent(s) from the most recent employer for work involving radiation exposure, or the individual's current employer, if the individual is not employed by the licensee or registrant, by telephone, telegram, facsimile, other electronic media or letter. The licensee or registrant shall request a written verification of the dose data if the authenticity of the transmitted report cannot be established.
- d. The licensee or registrant shall record the exposure history, as required by D.2104a., on Agency Form Y, or other clear and legible record, of all the information required on that form.
 - i. The form or record shall show each period in which the individual received occupational exposure to radiation or radioactive material and shall be signed by the individual who received the exposure. For each period for which the licensee or registrant obtains reports, the licensee or registrant shall use the dose shown in the report in preparing Agency form Y or equivalent. For any period in which the licensee or registrant shall place a notation on Agency Form Y or equivalent indicating the periods of time for which data are not available.
 - ii. For the purposes of complying with this requirement, licensees or registrants are not required to partition historical dose between external dose equivalent(s) and internal committed dose equivalent(s). Further, occupational exposure histories obtained and recorded on Agency Form Y or equivalent before [cite effective date of these regulations], would not have included effective dose equivalent, but may be used in the absence of specific information on the intake of radionuclides by the individual.
 - e. If the licensee or registrant is unable to obtain a complete record of an individual's current and previously accumulated occupational dose, the licensee or registrant shall assume:
 - i. In establishing administrative controls pursuant to D.1201f. for the current year, that

the allowable dose limit for the individual is reduced by 12.5 millisievert (1.25 rem) for each quarter for which records were unavailable and the individual was engaged in activities that could have resulted in occupational radiation exposure; and

- ii. That the individual is not available for planned special exposures.
- f. The licensee or registrant shall retain the records on AGENCY FORM Y or equivalent until the Agency terminates each pertinent license or registration requiring this record. The licensee or registrant shall retain records used in preparing AGENCY FORM Y or equivalent for 3 years after the record is made.
- g. Upon termination of the license or registration, the licensee or registrant shall permanently store records on AGENCY FORM Y or equivalent, or shall make provision with the Agency for transfer to the Agency.

Sec. D.2105 - Records of Planned Special Exposures.

- a. For each use of the provisions of D.1206 for planned special exposures, the licensee or registrant shall maintain records that describe:
 - i. The exceptional circumstances requiring the use of a planned special exposure; and
 - ii. The name of the management official who authorized the planned special exposure and a copy of the signed authorization; and
 - iii. What actions were necessary; and
 - iv. Why the actions were necessary; and
 - v. What precautions were taken to assure that doses were maintained ALARA; and
 - vi. What individual and collective doses were expected to result; and
 - vii. The doses actually received in the planned special exposure.
- b. The licensee or registrant shall retain the records until the Agency terminates each pertinent license or registration requiring these records.
- [c. Upon termination of the license or registration, the licensee or registrant shall permanently store records on Agency Form Y or equivalent, or shall make provision with the Agency for transfer to the Agency.]

Sec. D.2106 - Records of Individual Monitoring Results.

a. <u>Recordkeeping Requirement.</u> Each licensee or registrant shall maintain records of doses received by all individuals for whom monitoring was required pursuant to D.1502, and records of doses received during planned special exposures, accidents, and emergency conditions. Assessments of dose equivalent and records made using units in effect before

[the effective date of Part D] need not be changed. These records shall include, when applicable:

- i. The deep dose equivalent to the whole body, lens dose equivalent, shallow dose equivalent to the skin, and shallow dose equivalent to the extremities; and
- ii. The estimated intake of radionuclides, see D.1202; and
- iii. The committed effective dose equivalent assigned to the intake of radionuclides; and
- iv. The specific information used to calculate the committed effective dose equivalent pursuant to D.1204a. and D.1204c. and when required by D.1502; and
- v. The total effective dose equivalent when required by D.1202; and
- vi. The total of the deep dose equivalent and the committed dose to the organ receiving the highest total dose.
- b. <u>Recordkeeping Frequency</u>. The licensee or registrant shall make entries of the records specified in D.2106a. at intervals not to exceed 1 year.
- c. <u>Recordkeeping Format.</u> The licensee or registrant shall maintain the records specified in D.2106a. on Agency Form Z, in accordance with the instructions for Agency Form Z, or in clear and legible records containing all the information required by Agency Form Z.
- d. The licensee or registrant shall maintain the records of dose to an embryo/fetus with the records of dose to the declared pregnant woman. The declaration of pregnancy, including the estimated date of conception, shall also be kept on file, but may be maintained separately from the dose records.
- e. The licensee or registrant shall retain each required form or record until the Agency terminates each pertinent license or registration requiring the record.
- [f. Upon termination of the license or registration, the licensee or registrant shall permanently store records on Agency Form Y or equivalent, or shall make provision with the Agency for transfer to the Agency.]

Sec. D.2107 - Records of Dose to Individual Members of the Public.

- a. Each licensee or registrant shall maintain records sufficient to demonstrate compliance with the dose limit for individual members of the public. See D.1301.
- b. The licensee or registrant shall retain the records required by D.2107a. until the Agency terminates each pertinent license or registration requiring the record.

Sec. D. 2108 - Records of Waste Disposal.

- a. Each licensee or registrant shall maintain records of the disposal of licensed or registered materials made pursuant to D.2002, D.2003, D.2004, D.2005, Part M of these regulations, and disposal by burial in soil, including burials authorized before [insert effective date of rule, that removed the authorization].^{4/}
- b. The licensee or registrant shall retain the records required by D.2108a. until the Agency terminates each pertinent license or registration requiring the record.

Sec. D.2109 - Records of Testing Entry Control Devices for Very High Radiation Areas.

- a. Each licensee or registrant shall maintain records of tests made pursuant to D.1603b.ix. on entry control devices for very high radiation areas. These records must include the date, time, and results of each such test of function.
- b. The licensee or registrant shall retain the records required by D.2109a. for 3 years after the record is made.

<u>Sec. D.2110 - Form of Records.</u> Each record required by Part D shall be legible throughout the specified retention period. The record shall be the original or a reproduced copy or a microform, provided that the copy or microform is authenticated by authorized personnel and that the microform is capable of producing a clear copy throughout the required retention period or the record may also be stored in electronic media with the capability for producing legible, accurate, and complete records during the required retention period. Records, such as letters, drawings, and specifications, shall include all pertinent information, such as stamps, initials, and signatures. The licensee shall maintain adequate safeguards against tampering with and loss of records.

<u>Sec. D.2111 - Records of Tests for Leakage or Contamination of Sealed Sources.</u> Records of tests for leakage or contamination of sealed sources required by D.310 shall be kept in units of becquerel or microcurie and maintained for inspection by the Agency for 5 years after the records are made.

Reports

Sec. D.2201 - Reports of Stolen, Lost, or Missing Licensed or Registered Sources of Radiation.

- a. <u>Telephone Reports.</u> Each licensee or registrant shall report to the Agency by telephone as follows:
 - i. Immediately after its occurrence becomes known to the licensee or registrant, stolen, lost, or missing licensed or registered radioactive material in an aggregate quantity equal to or greater than 1,000 times the quantity specified in Appendix C under such circumstances that it appears to the licensee or registrant that an exposure could result

^{4/} A previous D.304 permitted burial of small quantities of licensed materials in soil before [date of rule that removed authorization], without specific Agency authorization.

to individuals in unrestricted areas; or

- ii. Within 30 days after its occurrence becomes known to the licensee or registrant, lost, stolen, or missing licensed or registered radioactive material in an aggregate quantity greater than 10 times the quantity specified in Appendix C that is still missing;
- iii. Immediately after its occurrence becomes known to the registrant, a stolen, lost, or missing radiation machine.
- b. <u>Written Reports.</u> Each licensee or registrant required to make a report pursuant to D.2201a. shall, within 30 days after making the telephone report, make a written report to the Agency setting forth the following information:
 - i. A description of the licensed or registered source of radiation involved, including, for radioactive material, the kind, quantity, and chemical and physical form; and, for radiation machines, the manufacturer, model and serial number, type and maximum energy of radiation emitted;
 - ii. A description of the circumstances under which the loss or theft occurred; and
 - iii. A statement of disposition, or probable disposition, of the licensed or registered source of radiation involved; and
 - iv. Exposures of individuals to radiation, circumstances under which the exposures occurred, and the possible total effective dose equivalent to persons in unrestricted areas; and
 - v. Actions that have been taken, or will be taken, to recover the source of radiation; and
 - vi. Procedures or measures that have been, or will be, adopted to ensure against a recurrence of the loss or theft of licensed or registered sources of radiation.
- c. Subsequent to filing the written report, the licensee or registrant shall also report additional substantive information on the loss or theft within 30 days after the licensee or registrant learns of such information.
- d. The licensee or registrant shall prepare any report filed with the Agency pursuant to D.2201 so that names of individuals who may have received exposure to radiation are stated in a separate and detachable portion of the report.

Sec. D.2202 - Notification of Incidents.

a. <u>Immediate Notification</u>. Notwithstanding other requirements for notification, each licensee or registrant shall immediately report each event involving a source of radiation possessed by the licensee or registrant that may have caused or threatens to cause any of the following conditions:

- i. An individual to receive:
 - (1) A total effective dose equivalent of 0.25 sievert (25 rem) or more; or
 - (2) A lens dose equivalent of 0.75 sievert (75 rem) or more; or
 - (3) A shallow dose equivalent to the skin or extremities or a total organ dose equivalent of 2.5 gray (250 rad) or more; or
- ii. The release of radioactive material, inside or outside of a restricted area, so that, had an individual been present for 24 hours, the individual could have received an intake five times the occupational ALI. This provision does not apply to locations where personnel are not normally stationed during routine operations, such as hot-cells or process enclosures.
- b. <u>Twenty-Four Hour Notification</u>. Each licensee or registrant shall, within 24 hours of discovery of the event, report to the Agency each event involving loss of control of a licensed or registered source of radiation possessed by the licensee or registrant that may have caused, or threatens to cause, any of the following conditions:
 - i. An individual to receive, in a period of 24 hours:
 - (1) A total effective dose equivalent exceeding 0.05 sievert (5 rem); or
 - (2) A lens dose equivalent exceeding 0.15 sievert (15 rem); or
 - (3) A shallow dose equivalent to the skin or extremities or a total organ dose equivalent exceeding 0.5 sievert (50 rem); or
 - ii. The release of radioactive material, inside or outside of a restricted area, so that, had an individual been present for 24 hours, the individual could have received an intake in excess of one occupational ALI. This provision does not apply to locations where personnel are not normally stationed during routine operations, such as hot-cells or process enclosures.
- c. Licensees or registrants shall make the reports required by D.2202a. and b. by initial contact by telephone to the Agency and shall confirm the initial contact by telegram, mailgram, or facsimile to the Agency.
- d. The licensee or registrant shall prepare each report filed with the Agency pursuant to D.2202 so that names of individuals who have received exposure to sources of radiation are stated in a separate and detachable portion of the report.
- e. The provisions of D.2202 do not apply to doses that result from planned special exposures, provided such doses are within the limits for planned special exposures and are reported pursuant to D.2204.

1

<u>Sec. D.2203</u> - Reports of Exposures, Radiation Levels, and Concentrations of Radioactive Material Exceeding the Limits.

- a. <u>Reportable Events.</u> In addition to the notification required by D.2202, each licensee or registrant shall submit a written report within 30 days after learning of any of the following occurrences:
 - i. Incidents for which notification is required by D.2202; or
 - ii. Doses in excess of any of the following:
 - (1) The occupational dose limits for adults in D.1201; or
 - (2) The occupational dose limits for a minor in D.1207; or
 - (3) The limits for an embryo/fetus of a declared pregnant woman in D.1208; or
 - (4) The limits for an individual member of the public in D.1301; or
 - (5) Any applicable limit in the license or registration; or
 - (6) The ALARA constraints for air emissions established under D.1101d.
 - iii. Levels of radiation or concentrations of radioactive material in:
 - (1) A restricted area in excess of applicable limits in the license or registration; or
 - An unrestricted area in excess of 10 times the applicable limit set forth in Part
 D or in the license or registration, whether or not involving exposure of any individual in excess of the limits in D.1301; or
 - iv. For licensees subject to the provisions of the Environmental Protection Agency's generally applicable environmental radiation standards in 40 CFR 190, levels of radiation or releases of radioactive material in excess of those standards, or of license conditions related to those standards.

b. <u>Contents of Reports.</u>

- i. Each report required by D.2203a. shall describe the extent of exposure of individuals to radiation and radioactive material, including, as appropriate:
 - (1) Estimates of each individual's dose; and
 - (2) The levels of radiation and concentrations of radioactive material involved; and
 - (3) The cause of the elevated exposures, dose rates, or concentrations; and

SSRCR Volume I - March 2003

- (4) Corrective steps taken or planned to ensure against a recurrence, including the schedule for achieving conformance with applicable limits, ALARA constraints generally applicable environmental standards, and associated license or registration conditions.
- Each report filed pursuant to D.2203a. shall include for each occupationally overexposed^{s/} individual: the name, Social Security account number, and date of birth. With respect to the limit for the embryo/fetus in D.1208, the identifiers should be those of the declared pregnant woman. The report shall be prepared so that this information is stated in a separate and detachable portion of the report.
- c. All licensees or registrants who make reports pursuant to D.2203a. shall submit the report in writing to the Agency.

<u>Sec. D.2204 - Reports of Planned Special Exposures.</u> The licensee or registrant shall submit a written report to the Agency within 30 days following any planned special exposure conducted in accordance with D.1206, informing the Agency that a planned special exposure was conducted and indicating the date the planned special exposure occurred and the information required by Sec. D.2105.

<u>Sec. D.2205</u> - <u>Reports to Individuals of Exceeding Dose Limits.</u> When a licensee or registrant is required, pursuant to D.2203, D.2204, or D.2206 to report to the Agency any exposure of an identified occupationally exposed individual, or an identified member of the public, to radiation or radioactive material, the licensee shall also provide a copy of the report submitted to the Agency to the individual. This report must be transmitted at a time no later than the transmittal to the Agency.

Sec. D.2206 - Reports of Individual Monitoring.

- a. This section applies to each person licensed or registered by the Agency to:
 - i. Possess or use sources of radiation for purposes of industrial radiography pursuant to Parts C and E of these regulations; or
 - ii. Possess or use at any time, for processing or manufacturing for distribution pursuant to Part C or G of these regulations, radioactive material in quantities exceeding any one of the following quantities:

 $[\]underline{a}$ with respect to the limit for the embryo-fetus (D.2208), the identifiers should be those of the declared pregnant woman

Radionuclide	Activity	<u>م</u>
	Ci	GBq
Cesium-137	- , 1	· 37
Cobalt-60	1	37
Gold-198	100	3,700
Iodine-131	1	37
Iridium-192	10	370
Krypton-85	1,000	37,000
Promethium-147	10	370
Technetium-99m	1,000	37,000

- b. Each licensee or registrant in a category listed in D.2206a. shall submit an annual report of the results of individual monitoring carried out by the licensee or registrant for each individual for whom monitoring was required by D.1502 during that year. The licensee or registrant may include additional data for individuals for whom monitoring was provided but not required. The licensee or registrant shall use Agency Form Z or equivalent or electronic media containing all the information required by Agency Form Z.
- c. The licensee or registrant shall file the report required by D.2206b., covering the preceding year, on or before April 30 of each year. The licensee or registrant shall submit the report to the Agency.

Sec D.2207 - Notifications and Reports to Individuals.

- a. Requirements for notification and reports to individuals of exposure to radiation or radioactive material are specified in J.13 of these regulations.
- b. When a licensee or registrant is required pursuant to D.2203 to report to the Agency any exposure of an individual to radiation or radioactive material, the licensee or registrant shall also notify the individual. Such notice shall be transmitted at a time not later than the transmittal to the Agency, and shall comply with the provisions of J.13a. of these regulations.

<u>Sec. D.2208</u> - <u>Reports of Leaking or Contaminated Sealed Sources.</u> The licensee or registrant shall file a report within 5 working days with the Agency if the test for leakage or contamination [required pursuant to D.1310] indicates a sealed source is leaking or contaminated. The report shall include the equipment involved, the test results and the corrective action taken.

Additional Requirements

<u>Sec. D.2301 - Vacating Premises.</u> Each specific licensee or registrant shall, no less than 30 days before vacating or relinquishing possession or control of premises which may have been contaminated with radioactive material as a result of his activities, notify the Agency in writing of intent to vacate. When deemed necessary by the Agency, the licensee shall decontaminate the premises in such a manner as the Agency may specify.

,

PART D

APPENDIX A

ASSIGNED PROTECTION FACTORS (APF) FOR RESPIRATORS^a

~

-

· · ·	Operating Mode	Assigned Protection Factors
I. Air purifying respirators (Particulate ^b only) ^c Filtering faceplate disposable ^d Facepiece, half ^c Facepiece, full Facepiece, full Helmet/hood	Negative Pressure	(^d) 10 100 50 1000 1000
racepiece, loosentuing II. Atmosphere supplying respirators (Particulate, gases, and vapors ^{f)} 1: Air-line respirator: Facepiece, half Facepiece, half Facepiece, half Facepiece, full Facepiece, full Facepiece, full Facepiece, full Facepiece, full Facepiece, full Suit	Demand	10 50 50 100 1000 1000 25 (^g)
2: Self-contained breathing apparatus (SCBA): Facepiece, full Facepiece, full Facepiece, full Facepiece, full	Demand Pressure Demand Demand, recirculating Positive Pressure Recirculating	^h 100 ⁱ 10,000 ^h 100 ⁱ 10,000
III.Combination respirators: Any combination of air-purifying and atmosphere-supplying respirators	Assigned protection factor for type operations as listed above	and mode of

See the following pages for footnotes.

- a. These assigned protection factors apply only in respiratory protection program that meets the requirements of this Part. They are applicable only to airborne radiological hazards and may not be appropriate to circumstances when chemical or other respiratory hazards exist instead of, or in addition to, radioactive hazards. Selection and use of respirators for such circumstances must also comply with Department of Labor regulations. Radioactive contaminants for which the concentration values in Table 1, column 3 of Appendix B to Part D are based on internal dose due to inhalation may, in addition, present external exposure hazards at higher concentrations. Under these circumstances, limitations on occupancy may have to be governed by external dose limits.
- b. Air purifying respirators with APF <100 must be equipped with particulate filters that are at least 95 percent efficient. Air purifying respirators with APF=100 must be equipped with particulate filters that are at least 99 percent efficient. Air purifying respirators with APF >100 must be equipped with particulate filters that are at least 99.97 percent efficient.
- c. The licensee may apply to the Agency for the use of an APF greater than 1 for sorbent cartridges as protection against airborne radioactive gases and vapors (e.g., radioiodine).
- d. Licensees may permit individuals to use this type of respirator who have not been medically screened or fit tested on the device provided that no credit be taken for their use in estimating intake or dose. It is also recognized that it is difficult to perform an effective positive or negative pressure pre-use user seal check on this type of device. All other respiratory protection program requirements listed in D.24 apply. An assigned protection factor has not been assigned for these devices. However, an APF equal to 10 may be used if the licensee can demonstrate a fit factor of at least 100 by use of a validated or evaluated, qualitative or quantitative fit test.
- e. Under-chin type only. No distinction is made in this Appendix between elastomeric halfmasks with replaceable cartridges and those designed with the filter medium as an integral part of the facepiece (e.g., disposable or reusable disposable). Both types are acceptable so long as the seal area of the latter contains some substantial type of seal enhancing material such as rubber or plastic, the two or more suspension straps are adjustable, the filter medium is at least 95 percent efficient and all other requirements of this Part are met.
- f. The assigned protection factors for gases and vapors are not applicable to radioactive contaminants that present an absorption or submersion hazard. For tritium oxide vapor, approximately one-third of the intake occurs by absorption through the skin so that an overall protection factor of 3 is appropriate when atmosphere-supplying respirators are used to protect against tritium oxide. Exposure to radioactive noble gases is not considered a significant respiratory hazard, and protective actions for these contaminants should be based on external (submersion) dose considerations.
- g. No NIOSH approval schedule is currently available for atmospheric supplying units. This

equipment may be used in an acceptable respiratory protection program as long as all the other minimum program requirements, with the exception of fit testing, are met (i.e., D.24).

- h. The licensee should implement institutional controls to assure that these devices are not used in areas immediately dangerous to life or health (IDLH).
- i. This type of respirator may be used as an emergency device in unknown concentrations for protection against inhalation hazards. External radiation hazards and other limitations to permitted exposure such as skin absorption shall be taken into account in these circumstances. This device may not be used by any individual who experiences perceptible outward leakage of breathing gas while wearing the device.

PART D

APPENDIX B

ANNUAL LIMITS ON INTAKE (ALI) AND DERIVED AIR CONCENTRATIONS (DAC) OF RADIONUCLIDES FOR OCCUPATIONAL EXPOSURE; EFFLUENT CONCENTRATIONS; CONCENTRATIONS FOR RELEASE TO SANITARY SEWERAGE

Introduction

For each radionuclide, Table I indicates the chemical form which is to be used for selecting the appropriate ALI or DAC value. The ALIs and DACs for inhalation are given for an aerosol with an activity median aerodynamic diameter (AMAD) of 1 μ m (micron), and for three classes (D,W,Y) of radioactive material, which refer to their retention (approximately days, weeks or years) in the pulmonary region of the lung. This classification applies to a range of clearance half-times for D if less than 10 days, for W from 10 to 100 days, and for Y greater than 100 days. The class (D, W, or Y) given in the column headed "Class" applies only to the inhalation ALIs and DACs given in Table I, column 2 and 3. Table II provides concentration limits for airborne and liquid effluents released to the general environment. Table III provides concentration limits for discharges to sanitary sewerage.

Note: The values in Tables I, II, and III are presented in the computer "E" notation. In this notation a value of 6E-02 represents a value of 6×10^{-2} or 0.06, 6E+2 represents 6×10^{2} or 600, and 6E+0 represents 6×10^{0} or 6.

Table I "Occupational Values"

Note that the columns in Table I of this appendix captioned "Oral Ingestion ALI," "Inhalation ALI," and "DAC," are applicable to occupational exposure to radioactive material.

The ALIs in this appendix are the annual intakes of given radionuclide by "reference man" which would result in either (1) a committed effective dose equivalent of 0.05 sievert (5 rem), stochastic ALI, or (2) a committed dose equivalent of 0.5 sievert (50 rem) to an organ or tissue, non-stochastic ALI. The stochastic ALIs were derived to result in a risk, due to irradiation of organs and tissues, comparable to the risk associated with deep dose equivalent to the whole body of 0.05 sievert (5 rem). The derivation includes multiplying the committed dose equivalent to an organ or tissue by a weighting factor, w_T . This weighting factor is the proportion of the risk of stochastic effects resulting from irradiation of the organ or tissue, T, to the total risk of stochastic effects when the whole body is irradiated uniformly. The values of w_T are listed under the definition of weighting factor in D.3. The non-stochastic ALIs were derived to avoid non-stochastic effects, such as prompt damage to tissue or reduction in organ function.

A value of $w_T = 0.06$ is applicable to each of the 5 organs or tissues in the "remainder" category receiving the highest dose equivalents, and the dose equivalents of all other remaining tissues may be disregarded. The following portions of the GI tract – stomach, small intestine, upper large intestine, and lower large intestine – are to be treated as 4 separate organs.

Appendix B

Note that the dose equivalents for an extremity, skin and lens of the eye are not considered in computing the committed effective dose equivalent, but are subject to limits that must be met separately.

When an ALI is defined by the stochastic dose limit, this value alone is given. When an ALI is determined by the non-stochastic dose limit to an organ, the organ or tissue to which the limit applies is shown, and the ALI for the stochastic limit is shown in parentheses. Abbreviated organ or tissue designations are used:

LLI wall = lower large intestine wall; St wall = stomach wall; Blad wall = bladder wall; and Bone surf = bone surface.

The use of the ALIs listed first, the more limiting of the stochastic and non-stochastic ALIs, will ensure that non-stochastic effects are avoided and that the risk of stochastic effects is limited to an acceptably low value. If, in a particular situation involving a radionuclide for which the nonstochastic ALI is limiting, use of that non-stochastic ALI is considered unduly conservative, the licensee may use the stochastic ALI to determine the committed effective dose equivalent. However, the licensee shall also ensure that the 0.5 sievert (50 rem) dose equivalent limit for any organ or tissue is not exceeded by the sum of the external deep dose equivalent plus the internal committed dose equivalent to that organ, not the effective dose. For the case where there is no external dose contribution, this would be demonstrated if the sum of the fractions of the nonstochastic ALIs (ALI_{ns}) that contribute to the committed dose equivalent to the organ receiving the highest dose does not exceed unity, that is, \sum (intake (in μ Ci) of each radionuclide/ALI_{ns}) <1.0. If there is an external deep dose equivalent contribution of H_d, then this sum must be less than 1 -(H_d/50), instead of < 1.0.

Note that the dose equivalents for an extremity, skin, and lens of the eye are not considered in computing the committed effective dose equivalent, but are subject to limits that must be met separately.

The derived air concentration (DAC) values are derived limits intended to control chronic occupational exposures. The relationship between the DAC and the ALI is given by:

DAC = ALI(in μ Ci)/(2000 hours per working year x 60 minutes/hour x 2 x 10⁴ ml per minute) = [ALI/2.4 x 10⁹] μ Ci/ml,

where $2 \ge 10^4$ ml is the volume of air breathed per minute at work by reference man under working conditions of light work.

The DAC values relate to 1 of 2 modes of exposure: either external submersion or the internal committed dose equivalents resulting from inhalation of radioactive materials. DACs based upon submersion are for immersion in a semi-infinite cloud of uniform concentration and apply to each radionuclide separately.

SSRCR Volume I - March 2003

The ALI and DAC values include contributions to exposure by the single radionuclide named and any in-growth of daughter radionuclides produced in the body by decay of the parent. However, intakes that include both the parent and daughter radionuclides should be treated by the general method appropriate for mixtures.

The values of ALI and DAC do not apply directly when the individual both ingests and inhales a radionuclide, when the individual is exposed to a mixture of radionuclides by either inhalation or ingestion or both, or when the individual is exposed to both internal and external irradiation. See D.1202. When an individual is exposed to radioactive materials which fall under several of the translocation classifications of the same radionuclide, such as, Class D, Class W, or Class Y, the exposure may be evaluated as if it were a mixture of different radionuclides.

It should be noted that the classification of a compound as Class D, W, or Y is based on the chemical form of the compound and does not take into account the radiological half-life of different radionuclides. For this reason, values are given for Class D, W, and Y compounds, even for very short-lived radionuclides.

Table II "Effluent Concentrations"

The columns in Table II of this appendix captioned "Effluents," "Air" and "Water" are applicable to the assessment and control of dose to the public, particularly in the implementation of the provisions of D.1302. The concentration values given in Columns 1 and 2 of Table II are equivalent to the radionuclide concentrations which, if inhaled or ingested continuously over the course of a year, would produce a total effective dose equivalent of 0.5 millisievert (0.05 rem).

Consideration of non-stochastic limits has not been included in deriving the air and water effluent concentration limits because non-stochastic effects are presumed not to occur at or below the dose levels established for individual members of the public. For radionuclides, where the non-stochastic limit was governing in deriving the occupational DAC, the stochastic ALI was used in deriving the corresponding airborne effluent limit in Table II. For this reason, the DAC and airborne effluent limits are not always proportional as was the case in Appendix A of Part D of the eighth edition of Volume I of the *Suggested State Regulations for Control of Radiation*.

The air concentration values listed in Table II, Column 1 were derived by one of two methods. For those radionuclides for which the stochastic limit is governing, the occupational stochastic inhalation ALI was divided by 2.4×10^9 (ml), relating the inhalation ALI to the DAC, as explained above, and then divided by a factor of 300. The factor of 300 includes the following components: a factor of 50 to relate the 0.05 sievert (5 rem) annual occupational dose limit to the 1 millisievert (0.1 rem) limit for members of the public, a factor of 3 to adjust for the difference in exposure time and the inhalation rate for a worker and that for members of the public; and a factor of 2 to adjust the occupational values, derived for adults, so that they are applicable to other age groups.

For those radionuclides for which submersion, that is external dose, is limiting, the occupational DAC in Table I, Column 3 was divided by 219. The factor of 219 is composed of a factor of 50, as described above, and a factor of 4.38 relating occupational exposure for 2,000 hours per year to full-time exposure (8,760 hours per year). Note that an additional factor of 2 for age considerations is not warranted in the submersion case.

PART J

NOTICES, INSTRUCTIONS AND REPORTS TO WORKERS; INSPECTIONS

<u>Sec. J.1</u> - <u>Purpose and Scope.</u> This Part establishes requirements for notices, instructions and reports by licensees or registrants to individuals engaged in activities under a license or registration and options available to such individuals in connection with Agency inspections of licensees or registrants to ascertain compliance with the provisions of the Act and regulations, orders, and licenses issued thereunder regarding radiological working conditions. The regulations in this Part apply to all persons who receive, possess, use, own, or transfer sources of radiation registered with or licensed by the Agency pursuant to Parts B and C of these regulations.

General Regulatory Provisions and Specific Requirements

: •

.

Sec. J.11 - Posting of Notices to Workers.

,

- a. Each licensee or registrant shall post current copies of the following documents:
 - i. The regulations in this Part and in Part D of these regulations;
 - ii. The license, certificate of registration, conditions or documents incorporated into the license by reference and amendments thereto;
 - iii. The operating procedures applicable to activities under the license or registration; and
 - iv. Any notice of violation involving radiological working conditions, proposed imposition of civil penalty, or order issued pursuant to Part A of these regulations, and any response from the licensee or registrant.
- b. If posting of a document specified in J.11a.i., ii., or iii. is not practicable, the licensee or registrant may post a notice which describes the document and states where it may be examined.
- c. Agency Form [X] "Notice to Employees" shall be posted by each licensee or registrant as required by these regulations.
- d. Agency documents posted pursuant to J.11a.iv. shall be posted within 5 working days after receipt of the documents from the Agency; the licensee's or registrant's response, if any, shall be posted within five working days after dispatch from the licensee or registrant. Such documents shall remain posted for a minimum of five working days or until action correcting the violation has been completed, whichever is later.
- e. Documents, notices, or forms posted pursuant to J.11 shall appear in a sufficient number of places to permit individuals engaged in work under the license or registration to observe them

- ;

، J1

on the way to or from any particular work location to which the document applies, shall be conspicuous, and shall be replaced if defaced or altered.

Sec. J.12 - Instructions to Workers.

- a. All individuals who in the course of employment are likely to receive in a year an occupational dose in excess of 1 millisievert (100 mrem):
 - i. Shall be kept informed of the storage, transfer, or use of sources of radiation in the licensee's or registrant's workplace;
 - ii. Shall be instructed in the health protection problems associated with exposure to radiation or radioactive material to the individual and potential offspring, in precautions or procedures to minimize exposure, and in the purposes and functions of protective devices employed;
 - iii. Shall be instructed in, and instructed to observe, to the extent within the worker's control, the applicable provisions of these regulations and licenses for the protection of personnel from exposures to radiation or radioactive material;
 - iv. Shall be instructed of their responsibility to report promptly to the licensee or registrant any condition which may constitute, lead to, or cause a violation of the Act, these regulations, or license condition, or any unnecessary exposure to radiation or radioactive material;
 - v. Shall be instructed in the appropriate response to warnings made in the event of any unusual occurrence or malfunction that may involve exposure to radiation or radioactive material; and
 - vi. Shall be advised as to the radiation exposure reports which workers shall be furnished pursuant to J.13.
- b. In determining those individuals subject to the requirements of J.12a., licensees must take into consideration assigned activities during normal and abnormal situations involving exposure to radiation and/or radioactive material which can reasonably be expected to occur during the life of a licensed facility. The extent of these instructions shall be commensurate with potential radiological health protection problems present in the workplace.

Sec. J.13 - Notifications and Reports to Individuals.

a. Radiation exposure data for an individual and the results of any measurements, analyses, and calculations of radioactive material deposited or retained in the body of an individual shall be reported to the individual as specified in this section. The information reported shall include data and results obtained pursuant to these regulations, orders, or license conditions, as shown in records maintained by the licensee or registrant pursuant to D.2106 of these regulations. Each notification and report shall:

Sec. J.13 - J.14

SSRCR Volume I - March 2003

i. Be in writing;

ii. Include appropriate identifying data such as: the name of the licensee or registrant, the name of the individual, and the individual's social security number;

iii. Include the individual's exposure information; and

iv. Contain the following statement:

"This report is furnished to you under the provisions of [cite appropriate Agency regulations] Part J. You should preserve this report for further reference."

- b. Each licensee or registrant shall furnish to each worker annually a written report of the worker's dose as shown in records maintained by the licensee or registrant pursuant to D.2106 of these regulations.
- c. Each licensee or registrant shall furnish a written report of the worker's exposure to sources of radiation at the request of a worker formerly engaged in activities controlled by the licensee or registrant. The report shall include the dose record for each year the worker was required to be monitored pursuant to D.1502 of these regulations. Such report shall be furnished within 30 days from the date of the request, or within 30 days after the dose of the individual has been determined by the licensee or registrant, whichever is later. The report shall cover the period of time that the worker's activities involved exposure to sources of radiation and shall include the dates and locations of work under the license or registration in which the worker participated during this period.
- d. When a licensee or registrant is required pursuant to D.2202, D.2203, D.2204, D.2205 or D.2206 of these regulations to report to the Agency any exposure of an individual to sources of radiation, the licensee or the registrant shall also provide the individual a written report on the exposure data included therein. Such reports shall be transmitted at a time not later than the transmittal to the Agency.
 - e. At the request of a worker who is terminating employment with the licensee or registrant in work involving exposure to radiation or radioactive material, during the current year, each licensee or registrant shall provide at termination to each such worker, or to the worker's designee, a written report regarding the radiation dose received by that worker from operations of the licensee or registrant during the current year or fraction thereof. If the most recent individual monitoring results are not available at that time, a written estimate of the dose shall be provided together with a clear indication that this is an estimate.

Sec. J.14 - Presence of Representatives of Licensees or Registrants and Workers During Inspection.

a. Each licensee or registrant shall afford to the Agency at all reasonable times opportunity to inspect materials, machines, activities, facilities, premises, and records pursuant to these regulations.

- b. During an inspection, Agency inspectors may consult privately with workers as specified in J.15. The licensee or registrant may accompany Agency inspectors during other phases of an inspection.
- c. If, at the time of inspection, an individual has been authorized by the workers to represent them during Agency inspections, the licensee or registrant shall notify the inspectors of such authorization and shall give the workers' representative an opportunity to accompany the inspectors during the inspection of physical working conditions.
- d. Each worker's representative shall be routinely engaged in work under control of the licensee or registrant and shall have received instructions as specified in J.12.
- e. Different representatives of licensees or registrants and workers may accompany the inspectors during different phases of an inspection if there is no resulting interference with the conduct of the inspection. However, only one workers' representative at a time may accompany the inspectors.
- f. With the approval of the licensee or registrant and the workers' representative, an individual who is not routinely engaged in work under control of the licensee or registrant, for example, a consultant to the licensee or registrant or to the workers' representative, shall be afforded the opportunity to accompany Agency inspectors during the inspection of physical working conditions.
- g. Notwithstanding the other provisions of J.14, Agency inspectors are authorized to refuse to permit accompaniment by any individual who deliberately interferes with a fair and orderly inspection. With regard to areas containing information classified by an Agency of the US Government in the interest of national security, an individual who accompanies an inspector may have access to such information only if authorized to do so. With regard to any area containing proprietary information, the workers' representative for that area shall be an individual previously authorized by the licensee or registrant to enter that area.

Sec. J.15 - Consultation with Workers During Inspections.

- a. Agency inspectors may consult privately with workers concerning matters of occupational radiation protection and other matters related to applicable provisions of these regulations and licenses to the extent the inspectors deem necessary for the conduct of an effective and thorough inspection.
- b. During the course of an inspection, any worker may bring privately to the attention of the inspectors, either orally or in writing, any past or present condition which the worker has reason to believe may have contributed to or caused any violation of the Act, these regulations, or license condition, or any unnecessary exposure of an individual to sources of radiation under the licensee's or registrant's control. Any such notice in writing shall comply with the requirements of J.16a.
- c. The provisions of J.15b. shall not be interpreted as authorization to disregard instructions pursuant to J.12.

Sec. J.16 - J.17

Sec. J.16 - Requests by Workers for Inspections.

- a. Any worker or representative of workers believing that a violation of the Act, these regulations, or license conditions exists or has occurred in work under a license or registration with regard to radiological working conditions in which the worker is engaged may request an inspection by giving notice of the alleged violation to the [Radiation Control Program]. Any such notice shall be in writing, shall set forth the specific grounds for the notice, and shall be signed by the worker or representative of the workers. A copy shall be provided to the licensee or registrant by the [Radiation Control Program] no later than at the time of inspection except that, upon the request of the worker giving such notice, such worker's name and the name of individuals referred to therein shall not appear in such copy or on any record published, released, or made available by the Agency, except for good cause shown.
- b. If, upon receipt of such notice, the [Radiation Control Program] determines that the complaint meets the requirements set forth in J.16a., and that there are reasonable grounds to believe that the alleged violation exists or has occurred, an inspection shall be made as soon as practicable to determine if such alleged violation exists or has occurred. Inspections pursuant to J.16 need not be limited to matters referred to in the complaint.
- c. No licensee, registrant, or contractor or subcontractor of a licensee or registrant shall discharge or in any manner discriminate against any worker because such worker has filed any complaint or instituted or caused to be instituted any proceeding under these regulations or has testified or is about to testify in any such proceeding or because of the exercise by such worker on behalf of such worker or others of any option afforded by this Part.

Sec. J.17 - Inspections Not Warranted; Informal Review.

- a. i. If the [Radiation Control Program] determines, with respect to a complaint under J.16, that an inspection is not warranted because there are no reasonable grounds to believe that a violation exists or has occurred, the [Radiation Control Program] shall notify the complainant in writing of such determination. The complainant may obtain review of such determination by submitting a written statement of position with the [cite appropriate State agency²]. Such Agency will provide the licensee or registrant with a copy of such statement by certified mail, excluding, at the request of the complainant, the name of the complainant. The licensee or registrant may submit an opposing written statement of position with the [cite appropriate State agency²]. Such agency of such statement by certified mail.
 - ii. Upon the request of the complainant, the [cite appropriate State agency²] may hold an informal conference in which the complainant and the licensee or registrant may orally present their views. An informal conference may also be held at the request of the licensee or registrant, but disclosure of the identity of the complainant will be made only following receipt of written authorization from the complainant. After considering all written and oral views presented, the [cite appropriate State agency²]

⁹ The agency cited here should be the agency which, under State administrative procedures, has the power to review decisions made by the Radiation Control Program.

shall affirm, modify, or reverse the determination of the [Radiation Control Program] and furnish the complainant and the licensee or registrant a written notification of the decision and the reason therefor.

b. If the [Radiation Control Program] determines that an inspection is not warranted because the requirements of J.16a. have not been met, the complainant shall be notified in writing of such determination. Such determination shall be without prejudice to the filing of a new complaint meeting the requirements of J.16a.

2003 RATIONALE FOR REVISIONS

PART J NOTICES, INSTRUCTIONS, AND REPORTS TO WORKERS; INSPECTIONS

Introduction

Part J of the Suggested State Regulations for Control of Radiation is based on 10 CFR Part 19, which is intended to provide options to workers concerning inspections of working conditions comparable to those provisions provided for inspections pursuant to the Occupational Safety and Health Act. The Nuclear Regulatory Commission continues to revise its standards for protection against ionizing radiation in 10 CFR Part 20. This revision incorporated updated scientific information and reflected changes in the basic philosophy of radiation protection councils for internal doses. Part 19 was revised to incorporate the necessary changes to accommodate the revisions to Part 20, thus necessitating associated changes to Part J.

Compatibility Requirements

The revision of Part 20, including corresponding changes to Part 19, was published in the <u>Federal</u> <u>Register</u> on July 13, 1995 (60 FR 36038) and became effective on August 15, 1995. The Nuclear Regulatory Commission considers the adoption of these regulations a matter of compatibility for all Agreement States.

See the July 13, 1995, <u>Federal Register</u> notice for further background information on specific changes to the revision to Part 19, which corresponds to the Part J revision. Other editorial changes consistent with the Conference of Radiation Control Program Directors, Inc., *Policies and Procedures for the Preparation and Publication of the Suggested State Regulations for Control of Radiation* will not specifically be noted in the rationale discussion for each section.

Specific Provisions

J.12a. and b. The Working Group revised these 2 sections to conform to the revision of Part 20.

<u>J.12a, b, c & d.</u> The Working Group made several reference changes to reflect the renumbering scheme in Part D.

Matters for Future Consideration

At this time there are no Matters for Future Consideration.

Appendix B

The water concentrations were derived by taking the most restrictive occupational stochastic oral ingestion ALI and dividing by 7.3×10^7 . The factor of 7.3×10^7 ml includes the following components: the factors of 50 and 2 described above and a factor of 7.3×10^5 ml which is the annual water intake of reference man.

Note 2 of this appendix provides groupings of radionuclides which are applicable to unknown mixtures of radionuclides. These groupings, including occupational inhalation ALIs and DACs, air and water effluent concentrations and releases to sewer, require demonstrating that the most limiting radionuclides in successive classes are absent. The limit for the unknown mixture is defined when the presence of one of the listed radionuclides cannot be definitely excluded as being present either from knowledge of the radionuclide composition of the source or from actual measurements.

Table III "Releases to Sewers"

The monthly average concentrations for release to sanitary sewerage are applicable to the provisions in D.2003. The concentration values were derived by taking the most restrictive occupational stochastic oral ingestion ALI and dividing by 7.3×10^6 ml. The factor of 7.3×10^6 ml is composed of a factor of 7.3×10^5 ml, the annual water intake by reference man, and a factor of 10, such that the concentrations, if the sewage released by the licensee were the only source of water ingested by a reference man during a year, would result in a committed effective dose equivalent of 5 millisievert (0.5 rem).

Name	Symbol	Atomic Number	Name	Symbol	Atomic Number
	<u> </u>				
Actinium	Ac	89	Chromium	Cr	24
Aluminum	Al	13	Cobalt	Со	27
Americium	Am	95	Copper	Cu	29
Antimony	Sb	51	Curium	Cm	96
Argon	Ar	18	Dysprosium	Dy	66
Arsenic	As	33	Einsteinium	Es	99 .
Astatine	At	85	Erbium	Er	68
Barium	Ba	56	Europium	Eu	63
Berkelium	Bk	97	Fermium	Fm	100
Bervllium	Be	4	Fluorine	F	9
Bismuth	Bi	83	Francium	Fr	87
Bromine	Br	35	Gadolinium	Gd	64
Cadmium	Cd	48	Gallium	Ga	31
Calcium	Ca	20	Germanium	Ge	32
Californium	Cf	98	Gold	Au	79
Carbon	С	6	Hafnium	Hf	72
Cerium	Ce	58	Holmium	Ho	67
Cesium	Cs	55	Hydrogen	Н	1
Chlorine	Cl	17	Indium	In	49

List of Elements

		Atomio			• • •	\bigcirc
Nomo	Comolo al	Atomic	N T	a 1 1	Atomic	
Iname	Symbol	Number	Name	Symbol	Number	<u></u>
Iodine	т	53	Technetium	Ta	12	-
Iridium	I T r	55 77	Tellurium		43	
Iron	II Fe	26	Terhium	10 Th	52	
Kramton	Nr.	20	Thelling	10 T1	05	
Lanthanum	NI La	50	Thainum	, 11 - Th	81	
Land	La Dh	57	Thuling	1n T	90	
Leau		02 71	Thunum	1m Se	09 50	
Magnagium	Lu	12	1 III Titonium	Sn Tr:	50	
Magnesium	Ma	12	Tungatan		22	
Mandalaurium		25	Tungsten	W	/4	
Mendelevium		101	Uranium	U	92	
Mercury	Hg	80	Vanadium	V	23	
Molybdenum	MO	42	Xenon	Xe	54	
Neodymium	Na	60	Ytterbium	Yb	70	
Neptunium	Np	93	Yttrium	Y	39	
Nickel	N1	28	Zinc	Zn	30	
Niobium	Nb	41	Zirconium	Zr	40	
Osmium	Os	76				
Palladium	Pđ	46				
Phosphorus	P	15				× /
Platinum	Pt	78				\bigcirc
Plutonium	Pu	94				
Polonium	Ро	84				
Potassium	K	19				
Praseodymium	Pr	59				
Promethium	Pm	61				
Protactinium	Pa	91				
Radium	Ra	88				
Radon	Rn	86				
Rhenium	Re	75				
Rhodium	Rh	45				
Rubidium	Rb	37				
Ruthenium	Ru	44				
Samarium	Sm	62				
Scandium	Sc	21				
Selenium	Se	34				
Silicon	Si	14				
Silver	Ag	47				
Sodium	Na	11				
Strontium	Sr	38			-	
Sulfur	S	16				
Tantalum	Ta	73				
		• =				

List of Elements (Continued)

D50

-

_

٩.

Appendix B

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage

Col 2 Water (µCi/ml) IE-3 ody to HTO.	Monthly Average Concentration (µCi/ml) 1E-2
Water (µCi/ml) IE-3 ody to HTO.	Concentration (µCi/ml)
IE-3 ody to HTO.	1E-2
IE-3 ody to HTO.	1E-2
ody to HTO.	
6E-4	6E-3
-	-
-	-
2E-5	2E-4
-	-
-	
-	-
6E-3	6E-2
-	-
_	-
3E-5	3E-4
-	-
7E-4	7E-3
-	-
6E-6	6E-5
5E-5	5E-4
9E-6	9E-5
-	-
	- 2E-5 - - 6E-3 - 3E-5 - 7E-4 - - 6E-6 5E-5 9E-6 -

Footnotes appear at the end of these three tables

SSRCR Volume I – March 2003

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

				Table I Occupational Values		Table II Effluent Concentrations		Table III Releases to Sewers Monthly Average Concentration (µC1/ml) 6E-5 — 1E-3 — — 4E-4 — — 9E-5 — 8E-4 — 8E-4 —
Atomic No.			Col. 1 Oral	Col. 2	Col. 3	Col. 1	Col. 2	Monthly
		~	Ingestion	Inha	alation			Average
	Radionuclide		ALI (μCi)	ΑLI (μCi)	DAC (µCı/ml)	Air (μCı/ml)	Water (µCı/ml)	Concentration (µCi/ml)
13	Aluminum-26	D, all compounds except	45.2		27 0	AE 11	<i>(</i>) <i>(</i>	<i>(</i> 1 •
		those given for w	46+2	02+1	3E-8	96-11	0E-0	0E-3
		W, oxides, hydroxides, carbides, halides, and						
		nitrates	-	9E+1	4E-8	1E-10	-	-
14	Silicon-31	D, all compounds except	0512	15.4	15.6	(F)		15.4
		those given for W and Y W, oxides, hydroxides,	9E+3	3E+4	1E-5	4E-8	IE-4	1E-3
		carbides, and nitrates Y aluminosilicate glass	-	3E+4 3E+4	1E-5 1E-5	5E-8 4E-8	-	-
14	Silicon-32	D, see "Si	2E+3 LLI wall	2E+2	1E-7	3E-10	-	-
			(3E+3)	-	-	-	4E-5	4E-4
		W, see ³¹ Si	-	1E+2	5E-8	2E-10	-	-
		Y, see ³¹ Si	-	5E+0	2E-9	7E-12	-	-
5	Phosphorus-32	D, all compounds except						
		phosphates given for W W, phosphates of Zn^{2+} , S ³⁺ , Mg ²⁺ , Fe ³⁺ , Bi ³⁺ ,	6E+2	9E+2	4E-7	1E-9	9E-6	9E-5
		and lanthanides	-	4E+2	2E-7	5E-10	-	-
5	Phosphorus-33	D, see ³² P	6E+3	8E+3	4E-6	1E-8	8E-5	8E-4
	-	W, see ^{32}P	-	3E+3	1E-6	4E-9	-	-
6	Sulfur-35	Vapor D, sulfides and sulfates	-	1E+4	6E-6	2E-8	-	-
		except those given for W	1E+4 LLI wall	2E+4	7E-6	2E-8	-	-
			(8E+3)	- ·	-	-	1E-4	1E-3
		sulfides of Sr, Ba, Ge, Sn, Pb, As, Sb, Bi, Cu,	02+3					Table III Releases to Sewers Monthly Average Concentration (µCl/ml) 6E-5 - 1E-3 - 9E-5 - 8E-4 - 9E-5 - 1E-3 - 1E-3
		Mo. Sulfates of Ca, Sr,						
		Ba, Ra, As, Sb, and Bi	-	2E+3	9E-7	3E-9	-	-
17	Chlorine-36	D, chlorides of H, Li,						
		Na, K, Rb, Cs, and Fr W, chlorides of lantha- nides, Be, Mg, Ca, Sr, Ba, Ra, Al, Ga, In, Tl, Ge, Sn, Pb, As, Sb, Bi, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au,	2E+3	2E+3	1E-6	3E-9	2E-5	2E-4
		Zn, Cd, Hg, Sc, Y, Ti, Zr, Hf V Nh To Cr						
		Mo, W, Mn, Tc, and Re	-	2E+2	1E-7	3E-10	-	_

Footnotes appear at the end of these three tables.

Appendix B

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (*Continued*)

				Table I Occupational Values			Table II Effluent Concentrations		
		-	Col 1 Oral	Col 2	Col. 3	Col. 1	Col 2	Monthly	
Atomic No.	Radionuclide	Class	ALI (μCi)	<u>imata</u> ALI (μCi)	DAC (μCι/ml)	Air (μCi/ml)	Water (µCı/ml)	Concentratio (µCı/ml)	
17	Chlorine-38 ^b	D, see ³⁶ Cl	2E+4 St wall	4E+4	2E-5	6E-8	-	_	
		W see ³⁶ Cl	(3E+4) –	- 5E+4	 2E-5	- 6E-8	3E-4	3E-3	
17	Chlorine-39 ^b	D, see ³⁶ Cl	2E+4 St wall	5E+4	2E-5	7E-8	-	-	
		W/ can 36C1	(4E+4)	 6F+4	 2F-5	- 8F-8	5E-4	5E-3	
		W, SCE CI		01.14	21-5	02-0			
18	Argon-37	Submersion [#]	-	-	1E+0	6E-3	-	-	
18	Argon-39	Submersion [®]	-	-	2E-4	8E-7	-	-	
18	Argon-41	Submersion ^{*/}	-	-	3E-6	1E-8	-	-	
19	Potassium-40	D, all compounds	` 3E+2	4E+2	2E-7	6E-10	4E-6	4E-5	
19	Potassium-42	D, all compounds	5E+3	5E+3	2E-6	7E-9	6E-5	6E-4	
19	Potassium-43	D, all compounds	6E+3	9E+3	4E-6	1E-8	9E-5	9E-4	
19	Potassium-44 ^b	D, all compounds	2E+4	7E+4	3E-5	9E-8	-	-	
		· ·	St wall (4E+4)	-	- ·	-	5E-4	5E-3	
19	Potassium-45 ^b	D, all compounds	3E+4	1E+5	5E-5	2E-7	-	-	
			St wall (5E+4)	-	-	-	7E-4	7E-3	
20	Calcium-41	W, all compounds	3E+3	4E+3	2E-6	_	-	-	
			Bone surf (4E+3)	Bone surf (4E+3)	-	5E-9	6E-5	6E-4	
20	Calcium-45	W, all compounds	2E+3	8E+2	4E-7	1E-9	2E-5	2E-4	
20	Calcium-47	W, all compounds	8E+2	9E+2	4E-7	1E-9	1E-5	1E-4	
21	Scandium-43	Y, all compounds	7E+3	2E+4	9E-6	3E-8	1E-4	1E-3	
21	Scandium-44m	Y, all compounds	5E+2	7E+2	3E-7	1E-9	7E-6	7E-5	
21	Scandium-44	Y, all compounds	4E+3	1E+4	5E-6	2E-8	5E-5	5E-4	
21	Scandium-46	Y, all compounds	9E+2	2E+2	1E-7	3E-10	1E-5	1E-4	
21	Scandium 47	Y. all compounds	2E+3	3E+3	1E-6	4E-9	-	-	
£1		es an compositor	LLI wall (3E+3)		_	-	4E-5	4E-4	
21	Scandium-48	Y. all compounds	8E+2	1E+3	6E-7	2E-9	1E-5	1E-4	
<u> </u>	Journaun-10	a 3 mer a cerebo meran			- ·				

Footnotes appear at the end of these three tables

SSRCR Volume I - March 2003

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (*Continued*)

				Table I Occupational Values		Table II Effluent Concentrations		Table III Releases to Sewers Monthly Average Concentration (µCı/ml) 3E-3 4E-5 - - 1E-3 - - 4E-3 - 9E-5 - - 1E-2 - 8E-4 - - 4E-3 -
			Col 1	Col. 2	Col. 3	Col. 1	Col. 2	
			Ingestion	Inhele	tion			Table III Releases to Sewers Monthly Average Concentration (µCt/ml) 3E-3 4E-5 - - 1E-3 - - 4E-3 - 9E-5 - - 1E-2 - 8E-4 - 8E-4 - - 5E-3 - - SE-3
Atomic	Radionuclide	Class	ATI		DAC	A :-	Watan	Average
No.			(μCi)	(μCi)	(μCi/ml)	(μCı/ml)	(µCı/ml)	(μCı/ml)
21	Scandium-49 ^{by}	Y, all compounds	2E+4	5E+4	2E-5	8E-8	3E-4	3E-3
22	Tıtanium-44	D, all compounds except						
		those given for W and Y W, oxides, hydroxides, carbides, halides, and	3E+2	1E+1	5E-9	2E-11	4E-6	4E-5
		nitrates	_	26-1	15.9	412 11		
		Y, SrTi0	-	6E+0	2E-9	4E-11 8E-12	-	-
22	Tutanium_45		05+3	35+4	15.5	35.0	112.4	15.4
dd .	i iaman-45	W see 44Ti	9215	JET4	16-5	36-8	16-4	IE-3
		$\frac{11}{1}$	_	4 <u>6</u> 74 2614	12-3	25-8	-	-
		1,500 11	-	3674	1E-3	4E-8	-	-
23	Vanadium-47 ^b	D, all compounds except those given for W	35-4	8E+4	2E 6	15.2		
		diose great for w	St wall	01274	36-3	12-7	-	-
			(3E+4)	-	-	-	4E-4	4E-3
		W, oxides, hydroxides, carbides, and halides	-	1F+5	4F-5	1E-7	_	_
				12.5	46-5	16-7	_	-
23	Vanadium-48	D see ⁴⁷ V	6F+2	15+3	5E-7	75.0	0E 6	05.6
		W, see ⁴⁷ V	-	6E+2	3E-7	9E-10	-	-
23	Vanadium-49	D, see ⁴⁷ V	7E+4	3E+4	1E-5	-	-	_
		• • •	LLI wall	Bone surf				
		47	(9E+4)	(3E+4)	-	5E-8	1E-3	1E-2
		W, see */V	-	2E+4	8E-6	2E-8	-	-
24	Chromium-48	D, all compounds except	(T) • 0		4			
		those given for W and Y	6E+3	1E+4	5E-6	2E-8	8E-5	8E-4
		W, halides and nitrates	-	7E+3	3E-6	1E-8	-	-
		Y, oxides and hydroxides	-	7E+3	3E-6	IE-8	-	-
24	Chromium-49b	D, see ⁴⁸ Cr	3E+4	8E+4	4E-5	1E-7	4E-4	4E-3
		W, see ⁴⁸ Cr	-	1E+5	4E-5	1E-7	-	_
		Y, see ⁴⁸ Cr	-	9E+4	4E-5	1E-7	-	-
24	Chromium-51	D, see ⁴⁸ Cr	4E+4	5E+4	2E-5	6E-8	5E-4	5E-3
		W, see ⁴⁸ Cr	-	2E+4	1E-5	3E-8	-	-
		Y, see ⁴⁵ Cr	-	2E+4	8E-6	3E-8	-	-
25	Manganese-51 ^{b'}	D, all compounds except						
		those given for W	2E+4	5E+4	2E-5	7E-8	3E-4	3E-3
		halides, and nitrates	-	6E+4	3E-5	8E-8	_	_
25	Managanasa Samb	D see ⁵¹ 3/m	2614	012+4	417 6	15.4		
<i></i>	wanganese-52m	D, See Min	SE+4 St wall	96+4	4 5- 3	IE-7	-	-
			(4E+4)	-	-	-	5E-4	Table III Releases to Sewers Monthly Average Concentration (µCt/ml) 3E-3 4E-5 - 1E-3 - 9E-5 - 1E-2 - 9E-5 - 1E-2 - 8E-4 - 8E-4 - - 8E-4 - - 1E-3 - - 3E-3 - - - - - - - - - - - - - -
		W, see ³¹ Mn	-	1E+5	4E-5	1E-7	-	-

Footnotes appear at the end of these three tables.

 \smile

Appendix B

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations

				Table I Occupational Values		Table II Effluent Concentrations		Table III Releases to Sewers	
			Col 1 Oral	Col. 2	Col. 3	Col. 1	ble II fluent mtrations Col 2 Water (µCi/ml) 1E-5 - 7E-4 - 3E-5 - 7E-5 - 1E-5 - 1E-5 - 1E-5 - 1E-5 - 2E-5 - 6E-6 - 6E-5 - 8E-4 - 2E-5 - 8E-4 - - 2E-5 - - 8E-4 - - - - - - - - - - - - -	Col 2	Monthly
			Ingestion	Inha	lation			Average	
Atomic	Radionuclide	Class	ALI	ALI	DAC	Air	Water	Concentration	
No.			(μCι)	(μCi)	(µCi/ml)	(µCı/ml)	(µCi/ml)	(µCı/ml)	
25	Manganese-52	D. sec ⁵¹ Mn	7E+2	1E+3	5E-7	2E-9	1E-5	1E-4	
		W, see ⁵¹ Mn	-	9E+2	4E-7	1E-9	-	-	
25	Manganese-53	D, see ⁵¹ Mn	5E+4	1E+4 Bone surf	5E-6	-	7E-4	7E-3	
			_	(7514)		36.8	_	-	
		ant and Six to	-	(2674)		25-0	_	_	
		W, see "Mn	-	1644	3E-0	26-9	-	-	
25	Manganese-54	D. see ⁵¹ Mn	2E+3	9E+2	4E-7	1E-9	3E-5	3E-4	
		W, see ⁵¹ Mn	-	8E+2	3E-7	1E-9	-	-	
25	Manganese-56	D, see ⁵¹ Mn	5E+3	2E+4	6E-6	2E-8	7E-5	7E-4	
	-	W, see ⁵¹ Mn	-	2E+4	9E-6	3E-8	-	-	
26	Iron-52	D, all compounds except							
		those given for W	9E+2	3E+3	1E-6	4E-9	1E-5	1E-4	
		and halides	- "	2E+3	1E-6	3E-9	-	-	
26	Iron-55	D. see ⁵² Fe	9E+3	2E+3	8E-7	3E-9	1E-4	1E-3	
		W, see ⁵² Fe	-	4E+3	2E-6	6E-9	-	-	
26	Iron-59	D, see ⁵² Fe	8E+2	3E+2	1E-7	5E-10	1E-5	1E-4	
		W, see ³² Fe	-	- 2E-7	7E-10	-	-	-	
26	Iron-60	D, see ⁵² Fe	3E+1	6E+0	3E-9	9E-12	4E-7	4E-6	
20		W, see ⁵² Fe	-1	8E-9	3E-11	-	-	-	
27	Cobalt-55	W, all compounds except	+			·			
		those given for Y	1E+3	3E+3	1E-6	4E-9	2E-5	26-4	
		Y, oxides, hydroxides, halides, and nitrates	_	E+3	1E-6	4E-9	-	-	
						12 10	(F (
27	Cobalt-56	W, see ³⁵ Co	5E+2	3E+2	IE-7	4E-10	6E-0	0E-3	
		Y, see ³⁵ Co	4E+2	2E+2	8E-8	3E-10		-	
27	Cobalt-57	W. see ⁵⁵ Co	8E+3	3E+3	1E-6	4E-9	6E-5	6E-4	
27	coour or	Y, see ⁵⁵ Co	4E+3	7E+2	3E-7	9E-10	-	-	
27	Cobalt-58m	W, see ⁵⁵ Co	6E+4	9E+4	4E-5	1E-7	8E-4	8E-3	
		Y, see ⁵⁵ Co	-	6E+4	3E-5	9E-8	-	-	
27	Cobalt-58	W, see ⁵⁵ Co	2E+3	1E+3	5E-7	2E-9	2E-5	2E-4	
		Y, see ⁵⁵ Co	1E+3	7E+2	3E-7	1E-9	-	-	
27	Cobalt-60mb'	W, see ⁵⁵ Co	1E+6	4E+6	2E-3	6E-6	-	-	
			SI Wall	_	_	-	2F-2	2E-1	
		V can 55Cc	(115·0) 	3646	1F-3	4F-6			
		1.800 00			11-0	-12-0			

Footnotes appear at the end of these three tables.
Appendix B

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (*Continued*)

			-	Table I Occupational Values	l	Tabl Effle Concen	le II uent trations	Table III Releases to Sewers	
			Col. 1	Col. 2	Col. 3	Col. 1	Col. 2	·	
			Oral	T-b.	- 1-+i			Monthly	
Atomic	Radionuclide	Class	ALI		DAC	Air	Water	Average	
No.			(μCī)	(μCi)	(µCi/ml)	(µCı/ml)	(μCı/ml)	(μCi/ml)	
27	Cobalt-60	W. see ⁵⁵ Co	5E+2	2E+2	7F-8	2E-10	3F-6	3F-5	
		Y, see ⁵⁵ Co	2E+2	3E+1	1E-8	5E-11	-	-	
7	Cobalt-61	W see 55Co	2E+4	6514	212 5	05.9	217 4	25.2	
	Coban-01	Y, see ^{si} Co	2E+4	6E+4	2E-5	9E-8	JE-4 -	3E-3	
7	Cabalt 62mb	W	4514	10.0	67 6				
.7	Cobalt-02m-	w, see "Co	4E+4 St wall	26+3	7E-5	2E-7	-	-	
			(5E+4)	-	-	-	7E-4	7E-3	
		Y, see ⁵⁵ Co	-	2E+5	6E-5	2E-7	-	-	
:8	Nickel-56	D, all compounds excent							
		those given for W W. oxides, hydroxides,	1E+3	2E+3	8E-7	3E-9	2E-5	2E-4	
		and carbides	-	1E+3	5E-7	2E-9	-	-	
		Vapor	-	1E+3	5E-7	2E-9	-	-	
8	Nickel-57	D, see ⁵⁶ Ni	2E+3	5E+3	2E-6	7E-9	2E-5	2E-4	
		W, see ⁵⁶ Ni	-	3E+3	1E-6	4E-9	-		
		Vapor	-	6E+3	3E-6	9E-9	-	-	
8	Nickel-59	D, see ⁵⁶ Ni	2E+4	4E+3	2E-6	5E-9	3E-4	3E-3	
		W, see ⁵⁶ Ni	-	7E+3	3E-6	1E-8	-	-	
		Vapor	-	2E+3	8E-7	3E-9	-	-	
8	Nickel-63	D. see ⁵⁶ Ni	9E+3	2E+3	7E-7	2E-9	1E-4	1E-3	
		W, see ⁵⁶ Ni	-	3E+3	1E-6	4E-9	_	-	
		Vapor	-	8E+2	3E-7	1E-9	-	-	
8	Nickel-65	D, see ⁵⁶ Ni	8E+3	2E+4	1E-5	3E-8	1E-4	1E-3	
		W, see ⁵⁶ Ni		3E+4	1E-5	4E-8	_	-	
		Vapor	-	2E+4	7E-6	2E-8	-	-	
8	Nickel-66	D, see ⁵⁶ Ni	4E+2	2E+3	7E-7	2E-9	-	-	
			LLI wall						
		337 56NT	(5E+2)	-	-	-	6E-6	6E-5	
		W, See TNI Vapor	-	6E+2 3E+3	3E-7 1E-6	9E-10 4E-9	-	-	
-	e cohi								
9	Copper-60"	D, all compounds except those given for W and V	36+4	QE+4	46.5	167	_	_	
		uiose given for the and I	St wall	71.14		12-7	-	_	
		337	(3E+4)	-	-	-	4E-4	4E-3	
		W, sulfides, halides,		17.0	6R 6				
		and nurates Y, oxides and hydroxides	_	1E+5 1E+5	5E-5 4E-5	2E-7 1E-7	-	-	
•									
9	Copper-61	D, see ⁶⁰ Cu	1E+4	3E+4	1E-5	4E-8	2E-4	2E-3	
		\mathbf{Y} , see ⁶⁰ Cu	-	46+4 46+4	2E-3 1E-5	0E-8 SF-8	_	_	

Footnotes appear at the end of these three tables.

D56

ч Ц

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (*Continued*)

				Table I Occupational Values	I	Tab Effi Concen	le II uent trations	Table III Releases to Sewers
			Col. 1 Oral	Col. 2	Col. 3	Col 1	Col. 2	Monthly
			Ingestion	Inh	alation			Average
Atomic No.	Radionuclide	Class	ALI		DAC	Air (uCı/ml)	Water	Concentration
			(µCI)	(μοι)	(µCPIIII)	(µ€₽лл)	(µermi)	(µCVIII)
29	Copper-64	D, sec ⁶⁰ Cu	1E+4	3E+4	1E-5	4E-8	2E-4	2E-3
		W, see ⁶⁰ Cu	-	2E+4	1E-5	3E-8		-
		Y, see ⁶⁰ Cu	-	2E+4	9E-6	3E-8	-	-
29	Copper-67	D, see ⁶⁰ Cu	5E+3	8E+3	3E-6	1E-8	6E-5	6E-4
		W, see ⁶⁰ Cu	-	5E+3	2E-6	7E-9	-	-
		Y, see ⁶⁰ Cu	-	5E+3	2E-6	6E-9	-	-
30	Zinc-62	Y, all compounds	1E+3	3E+3	1E-6	4E-9	2E-5	2E-4
30	Zinc-63 ^{b/}	Y, all compounds	2E+4	7E+4	3E-5	9E-8	-	• –
			(3E+4)	-	-	-	3E-4	3E-3 -
30	Zinc-65	Y, all compounds	4E+2	3E+2	1E-7	4E-10	5E-6	5E-5
30	Zinc-69m	Y, all compounds	4E+3	7E+3	3E-6	1E-8	6E-5	6E-4
30	Zinc-69 ^{b'}	Y, all compounds	6E+4	1E+5	6E-5	2E-7	8E-4	8E-3
30	Zinc-71m	Y, all compounds	6E+3	2E+4	7E-6	2E-8	8E-5	8E-4
30	Zinc-72	Y, all compounds	1E+3	1E+3	5E-7	2E-9	1E-5	1E-4
31	Gallium-65 ^{₺⁄}	D, all compounds except	5E+4	2E+5	7E-5	2F-7	_	<u>-</u>
		mose given for w	St wall	2213	12-5	22-7	0E 4	05.2
		W, oxides, hydroxides,	(0E+4)	-	-	-	96-4	96-3
		nitrates	-	2E+5	8E-5	3E-7	-	-
31	Gallum-66	D, see ⁶⁵ Ga	1E+3	4E+3	1E-6	5E-9	1E-5	1E-4
		W, see ⁶⁵ Ga		3E+3	1E-6	4E-9	-	-
21	Galluum 67	D see ⁶⁵ Ga	76+3	1E+4	6E-6	2E-8	1E-4	1E-3
51	Gamun-07	W, see ⁶³ Ga	-	1E+4	4E-6	1E-8	-	-
31	Gallium-68 ^{b/}	D. see ⁶³ Ga	2E+4	4E+4	2E-5	6E-8	2E-4	2E-3
51	Guindin VC	W, see ⁶⁵ Ga	-	5E+4	2E-5	7E-8	-	-
31	Gallium-70 ^{b/}	D, s ce ⁶⁵Ga	5E+4 St wall	2E+5	7E-5	2E-7	-	. –
			(7E+4)	-	-	-	1E-3	1E-2
		W, see ⁶⁵ Ga	_	2E+5	8E-5	3E-7	-	-
21	Calline 72	D can ⁶⁵ Ga	1E+3	4F+3	1F-6	5E-9	2E-5	2E-4
31	Gammi-12	W, see ⁶⁵ Ga	_	3E+3	1E-6	4E-9	-	-
31	Gallium-73	D, see ⁶⁵ Ga	5E+3	2E+4	6E-6	2E-8	7E-5	7E-4
-		W, see ⁶⁵ Ga	-	2E+4	6E-6	2E-8	-	-

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (*Continued*)

				Table I Occupational Values	I	Tabi Effle Concen	le II uent trations	Table III Releases to Sewers
			Col. 1 Oral	Col. 2	Col. 3	Col. 1	Col. 2	Monthly
		-	Ingestion	Inb	alation			Average
Atomic No.	Radionuclide	Class	ALI (μCı)	ALI (μCi)	DAC (µCı/ml)	Air (μCi/ml)	. Water (µCi/ml)	Concentration (µCi/ml)
32	Germanium-66	D, all compounds except		-			· · · · · · · · · ·	
		those given for W W, oxides, sulfides,	2E+4	3E+4	1E-5	4E-8	3E-4	3E-3
		and halides	-	2E+4	8E-6	3E-8	-	-
32	Germanium-67 ^{b/}	D, see ⁶⁶ Ge	3E+4 St wall	9E+4	4E-5	1E-7	-	-
			(4E+4)	-	-	_	6E-4	6E-3
		W, see "Ge	-	1E+5	4E-5	1E-7	-	-
32	Germanium-68	D, see ⁶⁶ Ge	5E+3	4E+3	2E-6	5E-9	6E-5	6E-4
		W, see ⁶⁶ Ge	-	1E+2	4E-8	1E-10	-	-
32	Germanium-69	D see ⁶⁶ Ge	1F+4	25+4	6F-6	212.9	25.4	25.3
52	Gamman-07	W, see "Ge	-	8E+3	3E-6	1E-8	-	-
32	Germanium-71	D, see ⁶⁶ Ge	5E+5	4E+5	2E-4	6E-7	7E-3	7E-2
		W, see ⁶⁶ Ge	-	4E+4	2E-5	6E-8	-	-
32	Germanium-75 ^{b/}	D, see ⁶⁶ Ge	4E+4 St wall	8E+4	3E-5	1E-7	-	-
			(7E+4)	-	-	-	9E-4	9E-3
		W, see "Ge	_	8E+4	4E-5	1E-7	-	-
32	Germanium-77	D see ⁶⁶ Ge	0F+3	1E+4	4F-6	15-8	1E-4	15-2
52	Germanican-, ,	W, see "Ge	-	6E+3	2E-6	8E-9	-	-
32	Germanium-78 ^{b/}	D, see ⁶⁶ Ge	2E+4 St wall	2E+4	9E-6	3E-8	-	-
		\$	(2E+4)	-	-	-	3E-4	3E-3
		W, see "Ge	`- ´	2E+4	9E-6	3E-8	-	-
33	Arsenic-69 ^{b/}	W, all compounds	3E+4 St wall	1E+5	5E-5	2E-7	-	-
			(4E+4)	-	-	-	6E-4	6E-3
33	Arsenic-70 [⊌]	W, all compounds	1E+4	5E+4	2E-5	7E-8	2E-4	2E-3
33	Arsenic-71	W, all compounds	4E+3	5E+3	2E-6	6E-9	5E-5	5E-4
33	Arsenic-72	W, all compounds	9E+2	1E+3	6E-7	2E-9	1E-5	1E-4
33	Arsenic-73	W, all compounds	8E+3	2E+3	7E-7	2E-9	1E-4	1E-3
33	Arsenic-74	W, all compounds	1E+3	8E+2	3E-7	1E-9	2E-5	2E-4
33	Arsenic-76	W, all compounds	1E+3	1E+3	6E-7	2E-9	1E-5	1E-4

.

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations

~

Concentrations for Release to Sanitary Sewerage (Continued)

Atomic No. 33 33 33 34 34 34 34 34 34 34 34 34 34				Table I Occupational Values	I	Tab Effi Concen	le II uent trations	Table III Releases to Sewers
			Col. 1 Oral	Col 2	Col. 3	Col. 1	Col. 2	Monthly
		-	Ingestion	Inha	alation			Average
Atomic No.	Radionuclide	Class -	ALI (μCi)	ALI (μCi)	DAC (µCı/ml)	Air (μCı/ml)	Water (μCi/ml)	Concentration (µCı/ml)
33	Arsenic-77	W, all compounds	4E+3 LLI wall	5E+3	2E-6	7E-9	-	-
			(5E+3)	. –	-	-	6E-5	6E-4
33	Arsenic-78 ^{b/}	W, all compounds	8E+3	2E+4	9E-6	3E-8	1E-4	1E-3
34	Selenium-70 ^{b/}	D, all compounds except those given for W W, oxides, hydroxides, carbides, and	2E+4	4E+4	2E-5	5E-8	1E-4	1E-3
		elemental Se	1E+4	4E+4	2E-5	6E-8	-	-
34	Selenium-73m ^b	D, see ⁷⁰ Se W, see ⁷⁰ Se	6E+4 3E+4	2E+5 1E+5	6E-5 6E-5	2E-7 2E-7	4E-4 -	4E-3 -
34	Selenium-73	D, see ⁷⁰ Se	3E+3	1E+4	5E-6	2E-8	4E-5	4E-4
		W, see ²⁰ Se	- ,	2E+4	7E-6	2E-8	-	-
34	Selenium-75	D, see ⁷⁰ Se W, see ⁷⁰ Se	5E+2	7E+2 6E+2	3E-7 3E-7	1E-9 8E-10	7E-6	7E-5
34	Selenium-79	D, see ⁷⁰ Se W, see ⁷⁰ Se	6E+2 -	8E+2 6E+2	3E-7 2E-7	1E-9 8E-10	8E-6	8E-5 -
34	Selenium-81m ^b	D, see ⁷⁰ Se W, see ⁷⁰ Se	4E+4 2E+4	7E+4 7E+4	3E-5 3E-5	9E-8 1E-7	3E-4	3E-3
34	Selenium-81 ^{b/}	D, see ⁷⁰ Se	6E+4 St wall	2E+5	9E-5	3E-7	-	-
		W, scc ⁷⁰ Se	(8E+4)	_ 2E+5	_ 1E-4	_ 3E-7	1E-3	1E-2
	a	D 700	4514	1516	6E 6	25.7	AE-A	4E-3
34	Selenium-83*	D, see ¹⁰ Se	4E+4 3E+4	1E+5	5E-5	2E-7 2E-7	-	-
35	Bromine-74m ^{b'}	D, bromides of H, Li, Na, K, Rb, Cs, and Fr	1E+4 St wall	4E+4	2E-5	5E-8	-	-
		W, bromides of lantha- nides, Be, Mg, Ca, Sr, Ba, Ra, Al, Ga, In, Tl, Ge, Sn, Pb, As, Sb, Bi, Fe, Ru, Os, Co, Rh, Ir, Ni, Bd, Pt, Cu, Ag, Au	(2E+4)	-	-		3E-4	3E-3
		Zn, Cd, Hg, Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Mn, Tc, and Re	-	4E+4	2E-5	6E-8	-	_

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

				Table I Occupational Values	l	Tab Effi Concen	le II uent trations	Table III Releases to Sewers	
			Col. 1 Oral Ingestion	Col. 2	CoL 3	Col. 1	Col. 2	Monthly	
Atomic No.	Radionuclide	Class	ΑĽΙ (μCi)	ΑLI (μCi)	DAC (µCı/ml)	Air (μCi/ml)	Water (µCı/ml)	Concentration (µCı/ml)	
35	Bromine-74 ^{b/}	D, see ⁷⁴ ^m Br	2E+4 St wall	7E+4	3E-5	1E-7	-	-	
		W, see ^{74m} Br	(4E+4) –	- 8E+4	- 4E-5	- 1E-7	5E-4	5E-3	
35	Bromine-75 ^{b/}	D, see ⁷⁴²⁸ Br	3E+4 St wall	5E+4	2E-5	7E-8	-	-	
		W con ^{74m} Br	(4E+4)	 5E+A	-	75.9	5E-4	5E-3	
		w, see Di	-	3574	26-3	/12-0	-	-	
35	Bromine-76	D, see ^{74m} Br W, see ^{74m} Br	4E+3 _	5E+3 4E+3	2E-6 2E-6	7E-9 6E-9	5E-5 -	5E-4 -	
35	Bromine-77	D, see ^{74m} Br W, see ^{74m} Br	2E+4 -	2E+4 2E+4	1E-5 8E-6	3E-8 3E-8	2E-4 -	2E-3 _	
35	Bromine-80m	D, see ^{74m} Br W, see ^{74m} Br	2E+4 _	2E+4 1E+4	7E-6 6E-6	2E-8 2E-8	3E-4 -	3E-3 -	
35	Bromine-80 ^b	D, see ^{74m} Br	5E+4 St wall	2E+5	8E-5	3E-7	-	-	
		W see ^{74m} Br	(9E+4)	- 2E+5	- 9F-5	- 3E-7	1E-3	1E-2	
				22.0	200	55-1			\bigcirc
35	Bromine-82	D, see ^{74m} Br W, see ^{74m} Br	3E+3 -	4E+3 4E+3	2E-6 2E-6	6E-9 5E-9	4E-5 -	4E-4 -	
35	Bromine-83	D, see ^{74m} Br	5E+4 St wall	6E+4	3E-5	9E-8	-	-	
		W, see ⁷⁴ Br	(7E+4) _	- 6E+4	3E-5	9E-8	9E-4 -	9E-3 -	
35	Bromine-84 ^b	D, see ^{74m} Br	2E+4 St wall	6E+4	2E-5	8E-8	-	-	
		W, see ^{74m} Br	(3E+4) –	- 6E+4	3E-5	9E-8	4E-4 	4E-3	
36	Krypton-74 ^{b/}	Submersion*	-	-	3E-6	1E-8	-	_	
36	Krypton-76	Submersion ^{s/}	-	-	9E-6	4E-8	-	-	
36	Krypton-77b	Submersion ^{a/}	-	-	4E-6	2E-8	-	-	
36	Krypton-79	Submersion ^a	-	-	2E-5	7E-8	-	-	
36 36	Krypton-81 Krypton-83m ^b	Submersion [#] Submersion [#]		-	7E-4 1E-2	3E-6 5E-5	-	-	
36	Krypton-85m	Submersion [*]	_	-	2E-5	1E-7	-	-	

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

	 Radionuclide Krypton-85 Krypton-87^{b/} Krypton-88 Rubidium-79^{b/} Rubidium-81 m^{b/} Rubidium-81 Rubidium-81 Rubidium-83 Rubidium-83 Rubidium-84 Rubidium-84 Rubidium-87 Rubidium-87 Rubidium-88^{b/} Rubidium-89^{b/} Strontium-80^{b/} Strontium-81^{b/} 			Table I Occupational Values		Tabl Efflu Concent	e II ient trations	Table III Releases to Sewers	
			Col. 1	Col 2	Col. 3	Col. 1	Col. 2		
			Oral Ingestion	Inha	lation			Average	
Atomic No	Radionuclide	Class	ALI (μCi)	ALI (μCi)	DAC (μCi/ml)	Air (µCı/ml)	Water (µCi/ml)	Concentration (µCı/ml)	
36	Krypton-85 Krypton-87 ^{b/}	Submersion ¹	-	-	1E-4 5E-6	7E-7 2E-8	-	-	
36	Krypton-88	Submersion [®]	_	-	2E-6	9E-9	-	-	
37	Rubidium-79 ^b	D, all compounds	4E+4	1E+5	5E-5	2E-7	-	-	
			St wall (6E+4)	_	-	-	8E-4	8E-3	
37	Rubidium-81m ^{b/}	D, all compounds	2E+5	3E+5	1E-4	5E-7	-	-	
			St wall (3E+5)	-	-	-	4E-3	4E-2	
37	Rubidium-81	D, all compounds	4E+4	5E+4	2E-5	7E-8	5E-4	5E-3	
37	Rubidium-82m	D, all compounds	1E+4	2E+4	7E-6	2E-8	2E-4	2E-3	
37	Rubidium-83	D, all compounds	6E+2	1E+3	4E-7	1E-9	9E-6	9E-5	
37	Rubidum-84	D, all compounds	5E+2	8E+2	3E-7	1E-9	7E-6	7E-5	
37	Rubidium-86	D, all compounds	5E+2	8E+2	3E-7	1E-9	7E-6	7E-5	
37	Rubidium-87	D, all compounds	1E+3	2E+3	6E-7	2E-9	1E-5	1E-4	
37	Rubidium-88 ^b	D, all compounds	2E+4 St wall	6E+4	3E-5	9E-8	-	-	
			(3E+4)	-	-	- '	· 4E-4	4E-3	
37	Rubidium-89 ^{b'}	D, all compounds	4E+4 St wall	1E+5	6E-5	2E-7	-	-	
			(6E+4)	-	-	-	9E-4	9E-3	
38	Strontium-80 ^{b'}	D, all soluble compounds except SrTiO ₃	4E+3	1E+4	5E-6	2E-8	6E-5	6E-4	
		Y, all insoluble com- pounds and SrTi0 ₃	-	1E+4	5E-6	2E-8	-	-	
38	Strontium-81 ^{1/2}	D, see 80 Sr	3E+4	8E+4	3E-5	1E-7	3E-4	3E-3	
		Y, see Sr	25+2	0ET4 4E10	3E-3 3E-7	6E-10		-	
38	Strontium-82	D, see "Sr	LLI wall	4672	20-7	-	3E-6	3E-5	
		Y, see ^{\$0} Sr	2E+2	9E+1	4E-8	1E-10	-	-	
38	Strontium-83	D, see ⁸⁰ Sr Y, see ⁸⁰ Sr	3E+3 2E+3	7E+3 4E+3	3E-6 1E-6	1E-8 5E-9	3E-5 -	3E-4 -	
38	Strontium-85m ^{b/}	D, see ⁸⁰ Sr Y, see ⁸⁰ Sr	2E+5	6E+5 8E+5	3E-4 4E-4	9E-7 1E-6	3E-3	3E-2	

*, ' , ~

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

				Table I Occupational Values		Tab Effi Concen	le II lent trations	Table III Releases to Sewers	
			Col. 1	Col. 2	Col. 3	Col. 1	Col. 2		
			Oral Ingestion	Inhala	tion			Monthly	
tomic	Radionuclide	Class	ALI	ALI	DAC	Air	Water	Concentration	
lo			(µCi)	(μCi)	(μCı/ml)	(µCı/ml)	(µCı/ml)	(µCı/ml)	
8	Strontium-85	D, see ⁸⁰ Sr	3E+3	3E+3	1E-6	4E-9	4E-5	4F-4	
		Y, see ^{BO} Sr	-	2E+3	6E-7	2E-9	-	-	
\$	Strontium-87m	D, see ⁸⁰ Sr	5E+4	1E+5	5E-5	2E-7	6E-4	6E-3	
		Y, see ⁸⁰ Sr	4E+4	2E+5	6E-5	2E-7	-	-	
8	Strontium-89	D, sœ ⁸⁰ Sr	6E+2 LLI wall	8E+2	4E-7	1E-9	-	_	
		•0-	(6E+2)	-	-	-	8E-6	8E-5	
		Y, see ^{so} Sr	5E+2	1E+2	6E-8	2E-10	-	-	
\$	Strontium-90	D, see ⁸⁰ Sr	3E+1 Bone surf	2E+1 Bone surf	8E-9	-	-	-	
		•0	(4E+1)	(2E+1)	-	3E-11	5E-7	5E-6	
		Y, see * ^o Sr	-	4E+0	2E-9	6E-12	-	-	
;	Strontium-91	D, see ⁸⁰ Sr	2E+3	6E+3	2E-6	8E-9	2E-5	2F-4	
		Y, see ⁴⁰ Sr	-	4E+3	1E-6	5E-9	-	-	
	Strontium-92	D, see ⁸⁰ Sr	3E+3	9E+3	4E-6	1E-8	4E-5	4E-4	
		Y, see ^{so} Sr	-	7E+3	3E-6	9E-9	_	_	
,	Yttrium-86m ^b	W, all compounds except							
		those given for Y	2E+4	6E+4	2E-5	8E-8	3E-4	3E-3	
		Y, oxides and hydroxides	-	5E+4	2E-5	8E-8	-	-	
)	Yttrium-86	W, see ^{86m} Y	1E+3	3E+3	1E-6	5E-9	2E-5	2E-4	
	~	Y, see ^{86m} Y	-	3E+3	1E-6	5E-9	-	-	
)	Yttrium-87	W, see ^{86m} Y	2E+3	3E+3	1E-6	5E-9	3E-5	3E-4	
		Y, see ^{86m} Y	-	3E+3	1E-6	5E-9	-	-	
9	Yttrium-88	W, see ^{86m} Y	1E+3	3E+2	1E-7	3E-10	1E-5	1E-4	
		Y, see ^{86m} Y	-	2E+2	1E-7	3E-10	-	-	
9	Yttrium-90m	W, see ^{86m} Y	8E+3	1E+4	5E-6	2E-8	1E-4	1E-3	
	-	Y, see ^{56ar} Y	-	1E+4	5E-6	2E-8	-	-	
9	Yttrium-90	W, see ³⁶ "Y	4E+2	7E+2	3E-7	9E-10	-	-	
			LLI wall (5E+2)	-	-	_	7E-6	7F-5	
		Y, see ^{86m} Y	-	6E+2	3E-7	9E-10	-	-	
9	Yttrium-91m ^b	W. see ⁸⁶	1E+5	2E+5	1E-4	3E-7	2E-3	2F-2	
-		Y, see ^{86m} Y	-	2E+5	7E-5	2E-7	-	-	
9	Vitrium-01	W cas \$6my	55+2	26+2	76-8	25 10	_		
	1 W MIN 71	17, 300 I	LLI wall	2612	112-0	2E-10	-	-	
			(6E+2)	-	-	-	8E-6	8E-5	
		Y, see ••••Y	-	1E+2	5E-8	2E-10	-	-	

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

					Table I Occupational Values		Tab Effle Concen	le II uent trations	Table III Releases to Sewers
				Col. 1 Oral	Col. 2	Col 3	Col. 1	Col. 2	Monthly
-	Atomic No.	Radionuclide	Class	ALI (µCi)	ALI (μCi)	DAC (μCι/ml)	Air (µCi/ml)	Water (µCı/ml)	Concentration (µCi/ml)
	39	Yttrium-92	W, see ^{86m} Y Y, see ^{86m} Y	3E+3 _	9E+3 8E+3	4E-6 3E-6	1E-8 1E-8	4E-5 -	4E-4 -
	39	Yttrium-93	W, see ^{\$6m} Y Y, see ^{\$6m} Y	1E+3 _	3E+3 2E+3	1E-6 1E-6	4E-9 3E-9	2E-5	2E-4 _
	39	Yttrium-94 ^{b'}	W, scc ^{\$6m} Y	2E+4 St wall	8E+4	3E-5	1E-7	-	-
			Y, see ^{\$6m} Y	(3E+4) -	- 8E+4	3E-5	1E-7	4E-4 -	4E-3 -
	39	Yttrium-95 ^{b/}	W, see ^{\$6m} Y	4E+4 St wall	2E+5	6E-5	2E-7	-	-
			Y, see ^{\$6m} Y	(5E+4) -	_ 1E+5	- 6E-5	2E-7	7E-4	7E-3
	40	Zirconium-86	D, all compounds except those given for W and Y W, oxides, hydroxides,	1E+3	4E+3	2E-6	6E-9	2E-5	2E-4
			halides, and nitrates Y, carbide	-	3E+3 2E+3	1E-6 1E-6	4E-9 3E-9	- -	-
ノ	40	Zirconium-88	D, see ⁸⁶ Zr W, see ⁸⁶ Zr Y, see ⁸⁶ Zr	4E+3 - -	2E+2 5E+2 3E+2	9E-8 2E-7 1E-7	3E-10 7E-10 4E-10	5E-5 	5E-4 - -
	40	Zirconium-89	D, see ^{\$6} Zr W, see ^{\$6} Zr	2E+3	4E+3 2E+3	1E-6 1E-6	5E-9 3E-9	2E-5 _	2E-4 -
			Y, see ⁸⁶ Zr	-	2E+3	1E-6	3E-9	-	-
	40	Zirconium-93	D, see ⁸⁶ Zr	1E+3 Bone surf (3E+3)	6E+0 Bone surf (2E+1)	3E-9	- 2E-11	 4E-5	- 4E-4
			W, see ³⁶ Zr	-	2E+1 Bone surf	1E-8	-	-	-
			Y, see ²⁶ Zr	-	(6E+1) 6E+1 Bone surf	2E-8	9E-11	-	-
				-	(7E+1)	-	9E-11	-	-
	40	Zirconium-95	D, s ce ⁸⁶Zr	1E+3	1E+2 Bone surf	5E-8	- 4E 10	2E-5	2E-4
			W, see ⁸⁶ Zr	- -	(3C+2) 4E+2	2E-7	5E-10	-	-
			Y, see ⁸⁶ Zr	-	3E+2	1E-7	4E-10	-	-
	40	Zirconium-97	D, see ⁸⁶ Zr W, see ⁸⁶ Zr	6E+2 -	2E+3 1E+3	8E-7 6E-7	3E-9 2E-9	9E-6	9E-5 —
			Y. see ^{\$6} Zr	-	1E+3	5E-7	2E-9	-	-

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

				Table I Occupational Values	I	Tab Effi Concen	le II uent trations	Table III Releases to Sewers			
				Col. 1 Oral		Col. 2	Col. 3	Col. 1	Col. 2		
			Investion	Inh	alation			Monthly			
Atomic	Radionuclide	Class	ALI	ALI	DAC	Air	Water	Concentration			
No.			(μCi)	(μCi)	(µCı/ml)	(µCı/ml)	(µCı/ml)	(μCı/ml)			
1	Niobium-88 ^b	W, all compounds except									
		those given for Y	5E+4 St wall	2E+5	9E-5	3E-7	-	-			
		Y, oxides and hydroxides	(7E+4) –	2E+5	9E-5	3E-7	1E-3	1E-2 -			
1	Niobium-89 ^b	W, see ¹⁸ Nb	1E+4	4E+4	2E-5	6E-8	1E-4	1E-3			
	(00 mill)	Y, see ⁸⁸ Nb	-	4E+4	2E-5	5E-8	-	-			
41	Niobium-89 (122 min)	W, see ³⁸ Nb	5E+3	2E+4	8E-6	3E-8	7E-5	7E-4			
	、 ,	Y, see ⁸⁸ Nb	-	2E+4	6E-6	2E-8	-	-			
41	Niobium-90	W. see ^{\$8} Nb	1E+3	3E+3	1E-6	4F-9	1E-5	1F_4			
-		Y, see ⁸⁸ Nb	-	2E+3	1E-6	3E-9	-	-			
1	Niobium-93m	W, see ²⁸ Nb	9E+3 LLI wall	2E+3	8E-7	3E-9	-	-			
			(1E+4)	-	-	-	2E-4	2E-3			
		Y, see ⁸⁸ Nb	-	2E+2	7E-8	2E-10	-	-			
1	Niobium-94	W, see ⁸⁸ Nb	9E+2	2E+2	8E-8	3E-10	1E-5	1E-4			
		Y, see ³³ Nb	-	2E+1	6E-9	2E-11	-	-			
\$1	Niobium-95m	W, see ⁸⁸ Nb	2E+3 LLI wall	3E+3	1E-6	4E-9	-	-			
			(2E+3)		-	-	3E-5	3E-4			
		Y, see "Nb	-	2E+3	9E-7	3E-9		-			
41	Niobium-95	W, see ⁸⁸ Nb	2E+3	1E+3	5E-7	2E-9	3E-5	3E-4			
		Y, see ⁵⁸ Nb	-	1E+3	5E-7	2E-9	-	-			
11	Niobium-96	W, see ⁸⁸ Nb	1E+3	3E+3	1E-6	4E-9	2E-5	2E-4			
		Y, see ⁸⁸ Nb	-	2E+3	1E-6	3E-9	_	-			
41	Niobium-97 ^b	W, see ⁸⁸ Nb	2E+4	8E+4	3E-5	1E-7	3E-4	3E-3			
		Y, see ¹¹ Nb	-	7E+4	3E-5	1E-7		-			
1	Niobium-98 ^{b'}	W, see ⁸⁸ Nb	1E+4	5E+4	2E-5	8E-8	2E-4	2E-3			
		1, SCE IND	-	3244	26-3	/ E-ð	-	-			
42	Molybdenum-90	D, all compounds except	46+2	75+3	2E 6	112 0	217 5	217.4			
		Y. oxides hydroxides	7673	1573	JE-0	12-8	JE-J	3E-4			
		and MoS ₂	2E+3	5E+3	2E-6	6E-9	-	-			
12	Molybdenum-93m	D, see ⁹⁰ Mo	9E+3	2E+4	7E-6	2E-8	6E-5	6E-4			
		Y, see ⁹⁰ Mo	4E+3	1E+4	6E-6	2E-8	-	-			

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations

Concentrations for	Release to Sanita	ry Sewerage (Continued)
--------------------	-------------------	-------------------------

				Table I Occupational Values		Tabl Efflu Concent	le II uent trations	Table III Releases to Sewers
			Col. 1	Col. 2	Col. 3	Col. 1	Col. 2	
			Oral	Inha	lation			Average
Atomic No	Radionuclide	Class	ALI (μCi)	ΑLI (μCi)	DAC (µCı/m!)	Air (µCı/ml)	Water (µCı/ml)	Concentration (µCi/ml)
42	Molybdenum-93	D, see ⁹⁰ Mo	4E+3	5E+3	2E-6	8E-9	5E-5	5E-4
	•	Y, see ⁹⁰ Mo	2E+4	2E+2	8E-8	2E-10	-	-
2	Molybdenum-99	D, see ⁹⁰ Mo	2E+3 LLI wall	3E+3	1E-6	4E-9	-	-
		V cas ⁹⁰ Mo	(1E+3) 1E+3	- 1E+3	- 6E-7		2E-3	26-4
		I, SCC MO	112.5	1215	02-7	22-5		
12	Molybdenum-101 ^{b/}	D, see ⁹⁰ Mo	4E+4 St wall	1E+5	6E-5	2E-7	-	-
			(5E+4)	-	-	-	7E-4	7E-3
		Y, sæ™Mo	-	1E+5	6E-5	2E-7	-	-
43	Technetium-93m ^{b'}	D, all compounds except those given for W	7E+4	2E+5	6E-5	2E-7	1E-3	1E-2
		W, oxides, hydroxides, halides, and nitrates	-	3E+5	1E-4	4E-7	-	-
13	Technetium-93	D. see ^{93m} Tc	3E+4	7E+4	3E-5	1E-7	4E-4	4E-3
, J	Technedum-75	W, see ^{93m} Tc	-	1E+5	4E-5	1E-7	-	-
3	Technetium-94mb	D see ^{93m} Tc	2E+4	4E+4	2E-5	6E-8	3E-4	3E-3
ŧ,	I connection-94m	W, see ^{93m} Tc	-	6E+4	2E-5	8E-8	-	-
43	Technetium-04	D see ^{93m} Tc	9E+3	2E+4	8E-6	3E-8	1E-4	1E-3
10	100micuum-94	W, see ^{93m} Tc	-	2E+4	1E-5	3E-8	-	-
12	Technotium 05m	D cas ^{93m} Te	4F+3	5F+3	2E-6	8E-9	5E-5	5E-4
43	1 connectum-95m	W, see ^{93m} Tc	-	2E+3	8E-7	3E-9	-	-
47	Tasha stimes 05	D cos ^{93m} To	15+4	26+4	0F.6	3F_8	1F-4	1E-3
7J	1 comenum-93	W, see ^{93m} Tc	-	2E+4	8E-6	3E-8	_	-
42	Technolic Of W	D and ^{93m} Te	ንፑታና	3572	1F.4	4E-7	2F-3	2F-2
43	Technetium-90m-	M, see ⁹³ Tc	2E+3 -	2E+5	1E-4 1E-4	3E-7	-	-
							AT 6	2 5 4
43	Technetium-96	D, see ^{93m} Tc	2E+3	3E+3 2E+3	1E-6 9E-7	5E-9 3E-9	3E-5	3E-4
		W, SCC 10	-	2013	<i>JL-1</i>	20,7		
43	Technetium-97m	D, see ^{93m} Tc	5E+3	7E+3 St wall	3E-6	-	6E-5	6E-4
		111 - 93apr-	-	(7E+3)	-	1E-8	-	-
		w, see	-	1643	JE-1	213-7	-	-
43	Technetium-97	D, see ^{93m} Tc	4E+4	5E+4	2E-5	7E-8	5E-4	5E-3
		W, sœ ^{93™} Tc	-	6E+3	2E-6	8E-9	-	-
43	Technetium-98	D. see ^{93m} Tc	1E+3	2E+3	7E-7	2E-9	1E-5	1E-4
		W, see ^{93m} Tc	-	3E+2	1E-7	- 4E-10	-	-
47	Technotium 00m	D cas ^{93m} Tc	85-4	2F+5	6F-5	2F-7	1E-3	1E-2
43	i ecnneuum-уут	W see ^{93m} Tc	01.74	2E+5	1E-4	3E-7	-	-

Appendix B

r

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

				Table I Occupational Values		Tab Effi Concen	le II uent trations	Table III Releases to ' Sewers	
			Col. 1 Oral	Col. 2	Col. 3	Col. 1	Col. 2	Monthly	
Atomic No.	Radionuclide	Class	ALI (μCi)	<u>Inha</u> ALI (μCi)	DAC (µCı/ml)	Aır (μCı/ml)	Water (µCı/ml)	Average Concentration (µCi/ml)	
43	Technetium-99	D, see ^{93m} Tc	4E+3	5E+3 St wall	2E-6		6E-5	6E-4	-
			-	(6E+3)	-	8E-9	-	-	
		W, see ^{93m} Tc	-	7E+2	3E-7	9E-10		-	
43	Technetium-101 ^{b/}	D, see ⁹³ Tc	9E+4 St wall	3E+5	1E-4	5E-7	-	-	
			(1E+5)	-	-	-	2E-3	2E-2	
		W, see ^{93m} Tc	-	4E+5	2E-4	5E-7	-	-	
43	Technetium-104 ^b	D, see ⁹³ Tc	2E+4 St wall	7E+4	3E-5	1E-7	-	-	
			(3E+4)	-		-	4E-4	4E-3	
		W, see ³³ Tc	-	9E+4	4E-5	1E-7	-	-	
11	Buthanium 041	D all compounds execut							
	Kuulanuni-74-	those given for W and V	25-4	AELA	25.6	(E 9	25.4	27. 2	
		W halides	2674	4674 661	2E-3 2E 5	05-8	2E-4	2E-3	
		Y orides and hydroxides	_	6F+4	2E-5	96-0 8F-8	_	-	
				02.4	2L-J	02-0		-	
44	Ruthenium-97	D, see ⁹⁴ Ru	8E+3	2E+4	8E-6	3E-8	1E-4	1E-3	
		W, see ⁹⁴ Ru	-	1E+4	5E-6	2E-8	-	-	1
		Y, see ⁹⁴ Ru	-	1E+4	5E-6	2E-8	-	-	\sim
		- 01-							
44	Ruthenium-103	D, see "Ru	2E+3	2E+3	7E-7	2E-9	3E-5	3E-4	
		W, sec ⁹⁴ Ru	-	1E+3	4E-7	1E-9	-	-	
		Y, see ⁹⁴ Ru	-	6E+2	3E-7	9E-10	-	-	
					() (
44	Ruthenium-105	D, see "Ru	SE+3	1E+4	6E-6	2E-8	7E-5	7E-4	
		W, see ~Ru	-	1E+4	6E-6	2E-8	-	-	
		Y, see Ru	-	16+4	5E-6	2E-8		-	
44	Ruthenium-106	D see ⁹⁴ Bu	2E+2	0F+1	45-8	1E-10	_	`_	
••	100100001111100	2,000 1.4	LLI wall	20.1	72-0	12-10	_	_	
			(2E+2)	_	_	_	3E-6	3E-5	
		W. see ⁹⁴ Ru	-	5E+1	2E-8	8E-11	-	-	
		Y, see ⁹⁴ Ru	_	1E+1	5E-9	2E-11		_	
45	Rhodium-99m	D, all compounds except							
		those given for W and Y	2E+4	6E+4	2E-5	8E-8	2E-4	2E-3	
		W, halides	-	8E+4	3E-5	1E-7	-	-	
		Y, oxides and hydroxides	-	7E+4	3E-5	9E-8	-	-	
	NI II								
45	Khodium-99	D, see ^{mar} Rh	2E+3	3E+3	1E-6	4E-9	3E-5	3E-4	
		W, see ⁷⁷ Rh	-	2E+3	9E-7	3E-9	-	-	
		Y, see ⁷⁷⁴ Rh	-	2E+3	8E-7	3E-9	-	-	
15	Dhadium 100	D	2512	67.10	AF (7 5 0	0F 6	AB 4	
43	Knoaium-100	D, SCC Kn	22+3	55+3	26-0	/E-9	2E-5	2E-4	
		W, SCC Kn	-	46+3	2E-6	6E-9	-	-	
		I, SCC KI	-	45+3	2E-0	35-9	-	-	

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

				Table I Occupational Values	l	Tabl Effic Concent	Table II Effluent Concentrations	
			Col. 1 Oral Ingestion	Col 2	Col 3	Col. 1	Col 2	Monthly
Atomic No	Radionuclide	Class	ALI (μCı)	ΑLI (μCι)	DAC (µCı/ml)	Air (μCi/ml)	Water (µCı/ml)	Concentratio (µCi/ml)
45	Rhodium-101m	D, see ^{99m} Rh	6E+3	1E+4	5E-6	2E-8	8E-5	8E-4
		W, see ^{99m} Rh	-	8E+3	4E-6	1E-8	-	-
		Y, see ^{99m} Rh	-	8E+3	3E-6	1E-8	-	-
45	Rhodium-101	D. see ^{99m} Rh	2E+3	5E+2	2E-7	7E-10	3E-5	3E-4
		W, see ^{99m} Rh	-	8E+2	3E-7	1E-9	-	-
		Y, see ^{99m} Rh	-	2E+2	6E-8	2E-10	-	-
45	Rhodium-102m	D, see ⁹⁹ "Rh	1E+3 LLI wall	5E+2	2E-7	7E-10	`_	-
			(1E+3)	_	-	-	2E-5	2E-4
		W. see ^{99m} Rh	-	4E+2	2E-7	5E-10	-	-
		Y, see ^{99m} Rh	-	1E+2	5E-8	2E-10	-	-
45	Rhodum-102	D. see ^{99m} Rh	6E+2	9E+1	4E-8	1E-10	8E-6	8E-5
		W. see ^{99m} Rh	_	2E+2	7E-8	2E-10	_	_
		Y, see ^{99m} Rh	-	6E+1	2E-8	8E-11	-	-
45	Rhodium-103m ^{b/}	D see ⁹⁹⁰ Rh	4E+5	1E+6	5E-4	2E-6	6E-3	6E-2
	Turouturit-Toom	$W_{\rm see}^{99\rm m}Rh$	-	1E+6	5E-4	2E-6	-	-
		Y, see ^{99m} Rh	-	1E+6	5E-4	2E-6	-	-
45	Rhodium-105	D, see ^{99m} Rh	4E+3 LLI wall	1E+4	5E-6	2E-8	-	-
			(4E+3)	-	-	-	5E-5	5E-4
		W, see ^{99m} Rh	`-´	6E+3	3E-6	9E-9		
		Y, see ^{99m} Rh	-	6E+3	2E-6	8E-9	-	-
45	Rhodium-106m	D. see ^{99m} Rh	8E+3	3E+4	1E-5	4E-8	1E-4	1E-3
		W, see ^{99m} Rh	-	4E+4	2E-5	5E-8	-	-
		Y, see ^{99m} Rh	-	4E+4	1E-5	5E-8	-	-
45	Rhodium-107 ^{b/}	D, see ^{99m} Rh	7E+4 St wall	2E+5	1E-4	3E-7	-	-
			(9E+4)	-	-	-	1E-3	1E-2
		W, see ^{99m} Rh	-	3E+5	1E-4	4E-7	-	-
		Y, see ^{yym} Rh	-	3E+5	1E-4	3E-7	-	-
46	Palladium-100	D, all compound44s except						
		those given for W and 4Y	1E+3	1E+3	6E-7	2E-9	2E-5	2E-4
		W, nitrates	-	1E+3	5E-7	2E-9	-	-
		Y, oxides and hydroxides	-	1E+3	6E-7	2E-9	-	-
46	Palladium-101	D, see ¹⁰⁰ Pd	1E+4	3E+4	1E-5	5E-8	2E-4	2E-3
		W, see ¹⁰⁰ Pd	-	、3E+4	1E-5	5E-8	-	-
		Nr 100m.4		1 3 12 14	15-5	4F-8	_	

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

ŧ

				Table I Occupational Values		Tab Effi Concen	le II uent trations	Table III ' Releases to Sewers
			Col. 1	Col. 2	Col. 3	Col. 1	Col. 2	
			Oral					Monthly
	Deducatida	Class	Ingestion	Inhal	ation	A	11/	Average
No.	Radionactice	Class	лц (μСî)	(μCi)	(μCi/ml)	Air (μCı/ml)	water (μCı/ml)	Concentration (μCi/ml)
46	Palladium-103	D, sæ ¹⁰⁰ Pd	6E+3	6E+3	3E-6	9E-9	-	_
			LLI wall					
		100	(7E+3)	-	-	-	1E-4	1E-3
		W, see ¹⁰⁰ Pd	-	4E+3	2E-6	6E-9	-	-
		Y, see ¹⁰⁰ Pd	-	4E+3	1E-6	5E-9	-	-
46	Palladium-107	D, see ¹⁰⁰ Pd	3E+4	2E+4	9E-6	-	-	-
			LLI wall	Kidneys				
			(4E+4)	(2E+4)	-	3E-8	5E-4	5E-3
		W, see ^m Pd	-	7E+3	3E-6	1E-8	-	-
		Y, see ^{nor} Pd	-	4E+2	2E-7	6E-10	-	-
46	Palladium-109	D, see ¹⁰⁰ Pd	2E+3	6E+3	3E-6	9E-9	3E-5	3E-4
		W, see ¹⁰⁰ Pd	-	5E+3	2E-6	8E-9	-	_
		Y, see 100 Pd	-	5E+3	2E-6	6E-9	-	-
47	Silver-102 ^{b/}	D. all compounds except						
		those given for W and Y	5E+4	2E+5	8E-5	2E-7	_	-
			St wall				<u> </u>	
			(6E+4)	-		-	9E-4	9E-3
		W, nitrates and sulfides	-	2E+5	9E-5	3E-7	-	-
		Y, oxides and hydroxides	-	2E+5	8E-5	3E-7	-	-
47	Silver-103 ^b	D, see ¹⁰² Ag	4E+4	1E+5	4E-5	1E-7	5E-4	5E-3
		W, see ¹⁰² Ag	-	1E+5	5E-5	2E-7	-	_
		Y, see 102 Ag		1E+5	5E-5	2E-7	-	-
47	Silver-104m ^b	D, see ¹⁰² Ag	3E+4	9E+4	4E-5	1E-7	4E-4	4E-3
		W, see ¹⁰² Ag	-	1E+5	5E-5	2E-7	-	_
		Y, see ¹⁰² Ag	-	1E+5	5E-5	2E-7	-	-
47	Silver-104 ^b		2F+4	7F+4	3F-5	1F-7	3F-4	3F-3
••	51110-101	W see ¹⁰² A g		16+5	6E-5	25-7	-	-
		Y, see ¹⁰² Ag	-	1E+5	6E-5	2E-7	_	_
47	Silver 105		36+3	15+2	AE 7	16.0	45-5	4E_4
4/	Silve-105	D, see Ag	3673	1573	4E-/	20.0	4E-J	76-7
		W, see ¹⁰² Ag	_	2E+3 2E+3	7E-7 7E-7	2E-9 2E-9	-	-
	01 107	D 1024	0710	75.0	ar a	17 4	15.4	15.4
47	Silver-106m	D, see Ag	8E+2	76+2	35-7	16-9	16-2	15-4
	-	W, see ^m Ag	-	9E+2	4E-7	1E-9	-	-
		Y, see "Ag	-	9E+2	4E-7	1E-9	-	-
47	Silver-106 ^b	D, see ¹⁰² Ag	6E+4 St wall	2E+5	8E-5	3E-7	-	-
			(6E+4)	-	-	-	9E-4	9E-3
		W, see ¹⁰² Ag	- ′	2E+5	9E-5	3E-7	-	-
		Y. sec ¹⁰² Ag	-	2E+5	8E-5	3E-7	-	-
		-,						

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

				Table I Occupational Values		Tabi Effic Concen	e II lent trations	Table III Releases to Sewers	
			Col. 1	Col. 2	CoL 3	Col. 1	Col 2		
			Oral					Monthly	
			Ingestion	Inhala	ation			Average	
Atomic	Radionuclide	Class	ALI	ALI	DAC	Air	Water	Concentration	
No.			(μCι)	(μCι)	(µCı/ml)	(µCi/ml)	(µCi/ml)	(µCı/ml)	
47	Silver-108m	D see ¹⁰² A g	6E+2	2E+2	8F-8	3E-10	9E-6	9E-5	
-11	Shver-room	W con ¹⁰² A c	-	35+2	15-7	4E-10	-	-	
		W, SEC Ag	-	JET2	10.0	25 11	—	_	
		Y, see Ag	-	2671	1E-0	52-11	-	-	
47	Silver-110m	D. sec ¹⁰² Ag	5E+2	1E+2	5E-8	2E-10	6E-6	6E-5	
	bind from	W see ¹⁰² A g	-	25+2	8F-8	3E-10	_	_	
		W, SCC Ag	_	05+1	AE 0	1E 10	1		
		Y, see Ag	-	9671	4E-0	16-10	-	-	
47	Silver-111	D, see ¹⁰² Ag	9E+2	2E+3	6E-7	-	-	-	
			LLI wall	Liver					
			(15+3)	(2E+3)	_	2E-9	2F-5	2F-4	
		102 4	(12,5)	(2013)	45.7	1E 0	a		
		w, see Ag	-	9672	4E-/	10-9	-	-	
		Y, see ¹⁴² Ag	-	9E+2	4E-7	1E-9	-	-	
47	Silver-112		3E+3	8E+3	3E-6	1E-8	4E-5	4E-4	
	Bilveritz	W con ¹⁰² A c	-	1E+4	4E-6	1E-8	_		
		W, See Ag	-	1217	40-0	10 0	_		
		Y, see 'Ag	-	9673	4 E- 0	11:-0	-	-	
47	Silver-115 ^{b'}	D, see ¹⁰² Ag	3E+4 St wall	9E+4	4E-5	1E-7	-	-	
			(3E+4)	-	-	-	4E-4	4E-3	
		W, see 102 Ag	-	9E+4	4E-5	1E-7	-	-	
		Y, see ¹⁰² Ag	-	8E+4	3E-5	1E-7	-	-	
48	Cadmium-104b	D all compounds excent							
40	Cadimum-104	those given for W and V	25+4	7F+4	3E_5	9E-8	3E-4	3E-3	
		W. sulfides, halides.	2614	1214	52-5	,20			
		and nitrates	_	16+5	5E-5	2E-7	-	_	
		Manuales Manuales	-	1545	55 5	25.7	_	_	
		Y, OXIGES and hydroxides	-	IETJ	52-5	21-1	_		
48	Cadmium-107	D see ¹⁰⁴ Cd	2E+4	5E+4	2E-5	8E-8	3E-4	3E-3	
40	Cucimum-107	W see ¹⁰⁴ Cd		6E+4	2E-5	8E-8	-	-	
		Y, see ¹⁰⁴ Cd	-	5E+4	2E-5	7E-8	-	-	
		104				•			
48	Cadmium-109	D, see ""Cd	3E+2	4E+1	1E-8	-	-	-	
			Kidneys	Kidneys					
			(4E+2)	(5E+1)	-	7E-11	6E-6	6E-5	
		W. see ¹⁰⁴ Cd	-	1E+2	5E-8	-	-	-	
		.,		Kidneys					
			•	-(1E+2)		25-10	_ '	_	
		104 cm	-	(1572)	- 617 0	20-10	_		
		Y, see "Cd	-	16+2	5E-8	22-10	-	-	
48	Cadmium-113m	D. see ¹⁰⁴ Cd	2E+1	2E+0	1E-9	-	-	-	
70		_,	Kidneys	Kidnevs					
			(45-1)	(45+0)	_	5F-12	5E-7	5E-6	
		1960 1	(4641)	000	AEO			-	
		w, see "Ud	-	OLTU	45-7	-	-	=	
				Kidneys					
			-	(1E+1)	-	2E-11	-	-	
		Y, see ¹⁰⁴ Cd	-	1E+1	5E-9	2E-11	-	-	

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

				Table I Occupational Values		Tab Effl Concen	le II uent trations	Table III Releases to ' Sewers	
			Col. I Oral	Col. 2	Col. 3	Col. 1	Col. 2	Monthly	
Atomic No.	Radionuclide	Class	Ingestion ALI (μCi)	<u>Inhal</u> ALI (μCι)	ation DAC (μCı/ml)	Air (µCı/ml)	Water (µCı/ml)	Average Concentration (µCi/ml)	
48	Cadmium-113	D, see ¹⁰⁴ Cd	2E+1 Kidneys	2E+0 Kidneys	9E-10	_	-	_	-
		W, see ¹⁰⁴ Cd	(3E+1) _	(3E+0) 8E+0 Kidneys	3E-9	5E-12 -	4E-7 -	4E-6 -	
		Y, see ¹⁰⁴ Cd	-	(1E+1) 1E+1	_ 6E-9	2E-11 2E-11	-	-	
48	Cadmium-115m	D, see ¹⁰⁴ Cd	3E+2	5E+1 Kidneys	2E-8	-	4E-6	4E-5	
			-	(8E+1)	-	1E-10	-	-	
		W, see "Cd	-	1E+2	SE-8	2E-10	-	-	
		Y, see ^w Cd	-	1E+2	6E-8	2E-10	-	-	
48	Cadmium-115	D, see ¹⁰⁴ Cd	9E+2 LLI wall	1E+3	6E-7	2E-9	-	-	
		101 - 1	(1E+3)	_	-	-	1E-5	1E-4	
		W, see 'Cd	-	1E+3	5E-7	2E-9	-		
		Y, see "Cd	-	1E+3	6E-7	2E-9	-	-	
48	Cadmium-117m	D, see ¹⁰⁴ Cd	5E+3	1E+4	5E-6	2E-8	6E-5	6E-4	
		W, see ¹⁰⁴ Cd	-	2E+4	7E-6	2E-8	-	-	
		Y, see ""Cd	-	1E+4	6E-6	2E-8	-	-	-
48	Cadmium-117	D, see ¹⁰⁴ Cd	5E+3	1E+4	5E-6	2E-8	6E-5	6E-4	
		W, see ¹⁰⁴ Cd	-	2E+4	7E-6	2E-8	-	-	
		Y, see ¹⁰⁴ Cd	-	1E+4	6E-6	2E-8	-	-	
49	Indium-109	D, all compounds except							
		those given for W W oxides hydroxides	2E+4	4E+4	2E-5	6E-8	3E-4	3E-3	
		halides, and nitrates	-	6E+4	3E-5	9E-8	-	-	
49	Indium-110 ^{b/}	D, see ¹⁰⁹ In	2E+4	4E+4	2E-5	6E-8	2E-4	2E-3	
	(69.1 min)	W, see ¹⁰⁹ In	-	6E+4	2E-5	8E-8	_	-	
49	Indium-110	D, see ¹⁰⁹ In	5E+3	2E+4	7E-6	2E-8	7E-5	7E-4	
	(4.9 h)	W, see ¹⁰⁹ In	-	2E+4	8E-6	3E-8	-	_	
49	Indium-111	D, see ¹⁰⁹ In	4E+3	6E+3	3E-6	9E-9	6E-5	6E-4	
		W, see 109 In	-	6E+3	3E-6	9E-9		-	
49	Indium-112 ^{b/}	D, see ¹⁰⁹ In	2E+5	6E+5	3E-4	9E-7	2E-3	2E-2	
		W, see ¹⁰⁹ In	-	7E+5	3E-4	1E-6		-	
49	Indium-113m ^b	D, see 109 In	5E+4	1E+5	6E-5	2E-7	7E-4	7E-3	
-		W see ¹⁰⁹ In		28+5	8E-5	35-7			

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure

Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

		,	•	Table I Occupational Values		Tabl Effin Concent	le II lient trations	Table III Releases to Sewers
		•	Col. 1 Oral	Col 2	Col. 3	CoL 1	Col 2	Monthly
			Ingestion	Inhalat	ion			Average
Atomic No.	Radionuclide	Class	ALI (μCi)	ALI (μCi)	DAC (µCı/ml)	Air (µCı∕ml)	Water (µCi/ml)	Concentratio (µCı/ml)
		······································	•					
49	Indium-114m	D, see ¹⁰⁹ In	3E+2 LLI wall	6E+1	3E-8	9E-11	-	-
			(4E+2)	-	-	-	5E-6	5E-5
		W, see ¹⁰⁹ In	-	1E+2	4E-8	1E-10	-	-
49	Indium-115m	D. see 109 In	1E+4	4E+4	2E-5	6E-8	2E-4	2E-3
		W, see ¹⁰⁹ In	-	5E+4	2E-5	7E-8	-	-
40	Indium-115	D see ¹⁰⁹ In	4E+1	1E+0	6E-10	2E-12	5E-7	5E-6
15	1101011-115	W, see ¹⁰⁹ In	-	5E+0	2E-9	8E-12	_	-
40	Indium 116mb		25+4	8F+4	3F-5	1E-7	3E-4	3E-3
47	manum-110m	W, see 10^{9} In	-	1E+5	5E-5	2E-7	-	-
40	1 diam 117-0	D and 1091	1644	3614	18-5	5F-8	2F_4	2F-3
49	Indium-11/m-	W, see ¹⁰⁹ In	-	4E+4	2E-5	6E-8	-	-
40	T	D and 1091-	6E14	25+5	75 5	2E-7	8F_4	8E-3
19	Indium-117-	W, see ¹⁰⁹ In	-	2E+5	9E-5	3E-7	-	-
49	Indum-119m ^b	D, see ¹⁰⁹ In	4E+4	1E+5	5E-5	2E-7	-	-
			St wall					
		109-	(5E+4)	-	-	-	7E-4	7E-3
		W, see ¹⁰⁹ In	-	1E+5	6E-5	2E-7	-	-
50	Tin-110	D, all compounds except those given for W W, sulfides, oxides, hydroxides, halides,	4E+3	1E+4	5E-6	2E-8	5E-5	5E-4
		phosphate	-	1E+4	5E-6	2E-8	-	-
50	T: 1111/	D see 110Sn	76+4	2E+5	9F-5	3E-7	1E-3	1E-2
50	1m-111-	W, see 10° Sn	-	3E+5	1E-4	4E-7	_	-
50	Tin-113	D, see ¹¹⁰ Sn	2E+3 LLI wali	1E+3	5E-7	2E-9	-	-
			(2E+3)	-	-	-	3E-5	3E-4
		W, see ¹¹⁰ Sn	-	5E+2	2E-7	8E-10	-	-
50	Tin-117m	D, see ¹¹⁰ Sn	2E+3 LLI wall	1E+3 Bone surf	5E-7	-	-	-
		W. sec. 110Sn	(2E+3)	(2E+3) 1E+3	- 6E-7	3E-9 2E-9	3E-5	3E-4
		11,000 DIL			•			
50	Tin-119m	D, see ¹¹⁰ Sn	3E+3 LLI wall	2E+3	1E-6	3E-9	-	-
			(4E+3)	-	-		6E-5	6E-4
		W see 110Sn	· - <i>'</i>	1E+3	4E-7	1E-9	-	-

.

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

,

				Table I Occupational Values	I	Tab Effi Concen	le II uent trations	Table III Releases to ' Sewers	
			Col. 1 Oral	Col. 2	Col. 3	Col. 1 .	Col. 2	Monthly	
Atomic No.	Radionuclide	Class	Ingestion ALI (µCı)	<u>Inh</u> ALI (μCi)	alation DAC (μCι/ml)	Air (μCı/ml)	Water (µCi/ml)	Average Concentration (µCi/ml)	
50	Tin-121m	D, see ¹¹⁰ Sn	3E+3 LLI wall	9E+2	4E-7	1E-9	_		
		W, see ¹¹⁰ Sn	(4E+3) -	_ 5E+2	_ 2E-7	8E-10	5E-5	5E-4	
50	Tin-121	D, see ¹¹⁰ Sn	6E+3 LLI wall	2E+4	6E-6	2E-8	-	-	
		W, see ¹¹⁰ Sn	(6E+3) _		_ 5E-6		8E-5	8E-4	
50	Tın-123m ^{b'}	D, see ¹¹⁰ Sn W, see ¹¹⁰ Sn	5E+4 -	1E+5 1E+5	5E-5 6E-5	2E-7 2E-7	7E-4	7E-3	
50	Tin-123	D, see ¹¹⁰ Sn	5E+2 LLI wall	6E +2	3E-7	9E-10	-	-	
		W, see ¹¹⁰ Sn	(6E+2) -	 2E+2	- 7E-8	2E-10	9E-6 -	9E-5 -	
50	Tin-125	D, see ¹¹⁰ Sn	4E+2 LLI wall	9E+2	4E-7	1E-9	-	-	
		W, see ¹¹⁰ Sn	(5E+2) -	- 4E+2	- 1E-7	5E-10	6E-6 -	6E-5	\smile
50	Tin-126	D, see ¹¹⁰ Sn W, see ¹¹⁰ Sn	3E+2 -	6E+1 7E+1	2E-8 3E-8	8E-11 9E-11	4E-6	4E-5 -	
50	Tin-127	D, see ¹¹⁰ Sn W, see ¹¹⁰ Sn	7E+3 -	2E+4 2E+4	8E-6 8E-6	3E-8 3E-8	9E-5	9E-4	
50	Tin-128 ^{b∕}	D, see ¹¹⁰ Sn W, see ¹¹⁰ Sn	9E+3 -	3E+4 4E+4	1E-5 1E-5	4E-8 5E-8	1E-4 -	1E-3	
51	Antimony-115 ^{b'}	D, all compounds except those given for W W, oxides, hydroxides, halides, sulfides,	8E+4	2E+5	1E-4	3E-7	1E-3	1E-2	
		sulfates, and nitrates	-	3E+5	1E-4	4E-7	-	-	
51	Antimony-116m ^b	D, see ¹¹⁵ Sb W, see ¹¹⁵ Sb	2E+4 _	7E+4 1E+5	3E-5 6E-5	1E-7 2E-7	3E-4 _	3E-3	
51	Antimony-116 ^b	D, s ce ¹¹⁵ Sb	7E+4 St wall	3E+5	1E-4	4E-7	-	-	
		W, see ¹¹⁵ Sb	(9E+4) -	_ 3E+5	1E-4	5E-7	1E-3 -	1E-2 -	
51	Antimony-117	D, see ¹¹⁵ Sb W, see ¹¹⁵ Sb	7E+4 _	2E+5 3E+5	9E-5 1E-4	3E-7 4E-7	9E-4 -	9E-3	
51	Antimony-118m	D, see ¹¹⁵ Sb W, see ¹¹⁵ Sb	6E+3 5E+3	2E+4 2E+4	8E-6 9E-6	3E-8 3E-8	7E-5	7E-4	

Footnotes appear at the end of these three tables.

.

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

.

,				Table I Occupational Values		Tabl Efflu Concent	e II lent trations	Table III Releases to Sewers
			Col. 1 Oral	Col. 2	Col 3	Col. 1	Col 2	Monthly
Atomic No.	Radionuclide	Class	Ingestion ALI (μCι)	<u>Inha</u> ALI (μCi)	DAC (μCi/ml)	Air (μCi/ml)	Water (µCı/ml)	Average Concentration (μCi/ml)
51	Antimony-119	D, see ¹¹³ Sb W, see ¹¹⁵ Sb	2E+4 2E+4	5E+4 3E+4	2E-5 1E-5	6E-8 4E-8	2E-4 -	2E-3
51	Antimony-120 ^{b'} (16 min)	D, see ¹¹⁵ Sb	1E+5 St wall	4E+5	2E-4	6E-7	-	-
		W can 115 Sh	(2E+5)	 5E+5	- 2E-4	- 7E-7	2E-3	2E-2
		w, see 50				0 T 0	15.6	15.4
51	Antimony-120 (5.76 d)	D, see ¹¹⁵ Sb W, see ¹¹⁵ Sb	1E+3 9E+2	2E+3 1E+3	9E-7 5E-7	3E-9 2E-9	- -	1E-4 -
51	Antimony-122	D, see ¹¹⁵ Sb	8E+2 LLI wall	2E+3	1E-6	3E-9	-	-
		W see 115Sh	(8E+2) 7E+2	- 1E+3	- 4E-7	2E-9	1E-5	1E-4 -
	L.	W, SCC 50		00.0		16.6	25.2	35.2
51	Antimony-124m ^p	D, see ¹¹³ Sb W, see ¹¹⁵ Sb	3E+5 2E+5	8E+5 6E+5	4E-4 2E-4	8E-7	5E-3 -	-
51	Antimony-124	D, see ¹¹³ Sb W, see ¹¹⁵ Sb	6E+2 5E+2	9E+2 2E+2	4E-7 1E-7	1E-9 3E-10	7E-6 -	7E-5 -
51	Antimony-125	D, see ¹¹⁵ Sb W, see ¹¹³ Sb	2E+3 -	2E+3 5E+2	1E-6 2E-7	3E-9 7E-10	3E-5 -	3E-4 _
51	Antimony-126m ^{b/}	D, see ¹¹⁵ Sb	5E+4 St wall	2E+5	8E-5	3E-7	-	-
		W see ¹¹⁵ Sb	(7E+4)	_ 2E+5	- 8E-5	- 3E-7	9E-4	9E-3
				1771.9	SE 7	25-0	7E-6	7E-5
51	Antimony-126	D, see 115 Sb	5E+2	5E+2	2E-7	7E-10	-	-
51	Antimony-127	D, see ¹¹⁵ Sb	8E+2 LLI wall	2E+3	9E-7	3E-9	-	-
	·	W, see ¹¹⁵ Sb	(8E+2) 7E+2	- 9E+2	4E-7	1E-9	1E-5 -	1E-4
51	Antimony-128 ^b	D, see ¹¹⁵ Sb	8E+4 St wall	4E+5	2E-4	5E-7	-	-
	(W, see ¹¹⁵ Sb	(1E+5) _	_ 4E+5	2E-4	- 6E-7	1E-3 -	1E-2
51	Antimony-128	D, see ¹¹⁵ Sb	1E+3	4E+3	2E-6	6E-9	2E-5	2E-4
	(9.01 h)	W, see "Sb	-	32+3	16-0	JE*7	-	
51	Antimony-129	D, see ¹¹³ Sb W, see ¹¹⁵ Sb	3E+3 -	9E+3 9E+3	4E-6 4E-6	1E-8 1E-8	4E-5 -	4E-4 -
51	Antimony-130b/	D, see ¹¹⁵ Sb W see ¹¹⁵ Sb	2E+4	6E+4 8E+4	3E-5 3E-5	9E-8 1E-7	3E-4	3E-3

Footnotes appear at the end of these three tables.

^

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

				Table I Occupational Values		Tabi Effle Concen	ie II uent trations	Table III Releases to Sewers	
			Col. 1	Col. 2	CoL 3	Col. 1	Col. 2		
			Oral	Inhala	•!			Monthly	
Atomic No.	Radionuclide	Class	ALI (µCi)	ALI (µCı)	DAC (uCı/ml)	Air (uCı/ml)	Water (uCu/ml)	Average Concentration	
		•					(101111)	(µerm)	
51	Antimony-131 ^b	D, see ¹¹³ Sb	1E+4 Thyroid	2E+4 Thyroid	1E-5	-	_	_	-
		W, see ¹¹⁵ Sb	(2E+4) -	(4E+4) 2E+4 Thuroid	1E-5	6E-8 -	2E-4 -	2E-3 -	
			-	(4E+4)	-	6E-8	-	-	
52	Tellurium-116	D. all compounds except							
		those given for W W, oxides, hydroxides,	8E+3	2E+4	9E-6	3E-8	1E-4	1E-3	
		and nitrates	-	3E+4	1E-5	4E-8	-	-	
52	Tellurium-121m	D, see ¹¹⁶ Te	5E+2 Bone surf	2E+2 Bone surf	8E-8	-	-	-	
		W Iler.	(7E+2)	(4E+2)	-	5E-10	1E-5	1E-4	
		w, see ie	-	46+2	2E-7	6E-10	-	-	
52	Tellurium-121	D, see ¹¹⁶ Te	3E+3	4E+3	2E-6	6E-9	4E-5	4E-4	
		W, see ¹¹⁶ Te	-	3E+3	1E-6	4E-9	-	-	
52	Tellurium-123m	D, see ¹¹⁶ Te	6E+2 Bone surf	2E+2 Bone surf	9E-8	-	-	-	\bigcirc
		W see 116Te	(12+3)	(3E+2) SE+2		8E-10 8E-10	IE-5	IE-4	
				52.2	22-1	01-10	-	-	
52	Tellurium-123	D, sæ ¹¹⁶ Te	5E+2 Bone surf	2E+2 Bone surf	8E-8	-	-	-	
		11/ and 116Ta	(1E+3)	(5E+2)	-	7E-10	2E-5	2E-4	
		w, see 1e	-	4E+2 Bone surf	2E-7	-	-	-	
			-	(IE+3)	-	2E-9	-	-	
52	Tellurium-125m	D, see ¹¹⁶ Te	1E+3 Bone surf	4E+2 Bone surf	2E-7	-	-	-	
		116-	(1E+3)	(1E+3)	-	1E-9	2E-5	2E-4	
		W, see ^{no} Te	-	7E+2	3E-7	1E-9	-	-	
52	Tellurium-127m	D, see ¹¹⁶ Te	6E+2	3E+2 Bone surf	1E-7	-	9E-6	9E-5	
		NY	-	(4E+2)	-	6E-10	-	-	
		w, see Te	-	32+2	1E-7	4E-10	-	-	
52	Tellurium-127	D, see ¹¹⁶ Te	7E+3	2E+4	9E-6	3E-8	1E-4	1E-3	
		W, see ""Te	-	2E+4	7E-6	2E-8	-	-	
52	Tellurium-129m	D, see ¹¹⁶ Te	5E+2	6E+2	3E-7	9E-10	7E-6	7E-5	
		W, see ¹¹⁶ Te	-	2E+2	1E-7	3E-10	-	-	
52	Tellurium-129b	D, see ¹¹⁶ Te	3E+4	6E+4	3E-5	9E-8	4E-4	4E-3	
		W, see ¹¹⁶ Te	-	7E+4	3E-5	1E-7	-	-	

Footnotes appear at the end of these three tables.

٨.

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations

Concentrations for Release to Sanitar	y Sewerage (Continued)
---------------------------------------	------------------------

				Table I Occupational Values		Tabl Efflu Concent	e II ient trations	Table III Releases to Sewers
			Col. 1 Oral	Col. 2	Col 3	CoL 1	Col 2	Monthly
			Ingestion	<u>Inhalı</u>	ation			Average
Atomic No	Radionuclude	Class	ALI (μCi)	ALI (j)	DAC (µCı/ml)	Aır (μCı∕ml)	Water (µCı/ml)	Concentration (µCı/ml)
52	Tellurium-131m	D, see ¹¹⁶ Te	3E+2	4E+2	2E-7	-		
			Thyroid (6E+2)	Thyroid (1E+3)	_	2E-9	8E-6	8E-5
		W, see ¹¹⁶ Te	-	4E+2	2E-7	-	-	-
			-	(9E+2)	-	1E-9	-	-
52	Tellurium-131 ^b	D, see ¹¹⁶ Te	3E+3 Thuroid	5E+3 Thuroid	2E-6	-	- ~	-
			(6F+3)	(1F+4)	-	2E-8	8E-5	8E-4
		W, see ¹¹⁶ Te	-	5E+3	2E-6	_	-	-
			-	(1E+4)	-	2E-8	-	-
52	Tellurium-132	D, see ¹¹⁶ Te	2E+2 Thyroid	2E+2 Thyroid	9E-8	-	-	-
			(7E+2)	(8E+2)	-	1E-9	9E-6	9E-5
		W, see ¹¹⁶ Te	_	2E+2 Thyroid	9E-8	-	-	
			-	(6Ē+2)	-	9E-10	-	-
52	Tellurium-133m ^{b/}	D, see ¹¹⁶ Te	3E+3 Thyroid	5E+3 Thyroid	2E-6	-	-	-
			(6E+3)	(1É+4)	-	2E-8	9E-5	9E-4
		W, see ¹¹⁶ Te	-	5E+3 Thyroid	2E-6	-	-	-
			-	(1E+4)	-	2E-8	-	-
52	Tellurium-133 ^{b'}	D, see ¹¹⁶ Te	1E+4 Thyroid	2E+4 Thyroid	9E-6	-	-	-
			(3E+4)	(6É+4)	-	8E-8	4E-4	4E-3
		W, see ¹¹⁶ Te	-	2E+4 Thyroid	9E-6	-	-	-
			-	(6E+4)	-	8E-8	-	-
52	Tellurium-134 ^{b'}	D, see ¹¹⁶ Te	2E+4 Thyroid	2E+4 Thyroid	1E-5	-	-	-
			(2E+4)	(5É+4)		7E-8	3E-4	3E-3
		W, see ¹¹⁶ Te	-	2E+4 Thyroid	1E-5	-	-	-
			-	(5E+4)	-	7E-8	-	-
53	Iodine-120mb'	D, all compounds	1E+4 Thyroid	2E+4	9E-6	3E-8	-	-
			(1E+4)	<u> </u>	-	-	2E-4	2E-3
53	Iodine-120 ^{b'}	D, all compounds	4E+3 Thyroid	9E+3 Thyroid	4E-6	-	-	-
			(8E+3)	(1E+4)	-	2E-8	1E-4	1E-3

Footnotes appear at the end of these three tables.

5

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

				Table I Occupational Values		Tabi Effic Concen	le II Jent trations	Table III Releases to ' Sewers	
			Col. 1 Oral Ingestion	Col. 2	CoL 3	Col. 1	Col. 2	Monthly	
Atomic No.	Radionuclide	Class	ΑĽΙ (μCı)	ΑLI (μCı)	DAC (µCı/ml)	Air (µCı/ml)	Water (µCı∕ml)	Concentration (µCi/ml)	
53	Iodine-121	D, all compounds	1E+4 Thyroid	2E+4 Thyroid	8E-6	-	-	_	-
			(3E+4)	(5E+4)	-	7E-8	4E-4	4E-3	
53	Iodine-123	D, all compounds	3E+3 Thyroid	6E+3 Thyroid	3E-6	-	-	-	
			(1E+4)	(2E+4)	-	2E-8	1E-4	1E-3	
53	Iodine-124	D, all compounds	5E+1 Thyroid	8E+1 Thyroid	3E-8	-	-	<u> </u>	
			(2E+2)	(3E+2)	- -	4E-10	2E-6	2E-5	
53	Iodine-125	D, all compounds	4E+1 Thyroid	6E+1 Thyroid	3E-8	-	-	-	
			(1E+2)	(2E+2)	-	3E-10	2E-6	2E-5	
53	Iodine-126	D, all compounds	2E+1 Thyroid	4E+1 Thyroid	1E-8	-	-	-	
			(7E+1)	(1E+2)	-	2E-10	1E-6	1E-5	
53	Iodine-128 ^b	D, all compounds	4E+4 St wall	1E+5	5E-5	2E-7	-	-	
			(6E+4)	-	-	-	8E-4	8E-3	_
53	Iodine-129	D, all compounds	5E+0 Thyroid	9E+0 Thyroid	4E-9	_	-	-	
			(2E+1)	(3E+1)	-	4E-11	2E-7	2E-6	
53	Iodine-130	D, all compounds	4E+2 Thyroid	7E+2 Thyroid	3E-7	-	-	-	
			(1E+3)	(2E+3)	-	3E-9	2E-5	2E-4	
53	Iodine-131	D, all compounds	3E+1 Thyroid	5E+1 Thyroid	2E-8	-	-	-	
			(9E+1)	(2E+2)	-	2E-10	1E-6	1E-5	
53	Iodine-132m ^b	D, all compounds	4E+3 Thyroid	8E+3 Thyroid	4E-6	-	-	-	
			(1E+4)	(2E+4)	-	3E-8	1E-4	1E-3	
53	Iodine-132	D, all compounds	4E+3 Thyroid	8E+3 Thyroid	3E-6	-	-	-	
			(9E+3)	(1E+4)	-	2E-8	1E-4	1E-3	
53	Iodine-133	D, all compounds	1E+2 Thyroid	3E+2 Thyroid	1E-7	-	-	-	
			(5E+2)	(9E+2)	-	1E-9	7E-6	7E-5	
53	Iodine-134 ^b	D, all compounds	2E+4 Thyroid	5E+4	2E-5	6E-8	-	-	
			(3E+4)	-	-	-	4E-4	4E-3	

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

				Table I Occupational Values		Tabl Effle Concen	e II lent trations	Table III Releases to Sewers	
			Col. 1	Col. 2	Col. 3	Col. 1	Col. 2		
Atomi No	c Radionuclide	Class	Oral Ingestion ALI (μCi)	<u>Inhal</u> ALI (µCi)	lation DAC (μCι/ml)	Air (μCı/ml)	Water (µCi/ml)	Monthly Average Concentration (µCt/ml)	
53	Iodine-135	D, all compounds	8E+2 Thyroid (3E+3)	2E+3 Thyroid (4E+3)	7E-7	- 6E-9	- 3E-5	- 3E-4	
54	Xenon-120 ^{b/}	Submersion [*]	-	-	1E-5	4E-8	-	-	
54	Xenon-121 ^{b'}	Submersion [#]	-	-	2E-6	1E-8	_	-	
54	Xenon-122	Submersion ^{*/}	-	-	7E-5	3E-7	-	-	
54	Xenon-123	Submersion ^{*/}	_	-	6E-6	3E-8	-	_	
54	Xenon-125	Submersion [*]	-	_ /	2E-5	7E-8	_		
54	Xenon-127	Submersion ^{*/}	-	_	1E-5	6E-8	-	-	
54	Xenon-129m	Submersion ^{*'}	-	-	2E-4	9E-7	-	-	
54	Xenon-131m	Submersion ¹	-	-	4E-4	2E-6	-	_	
54	Xenon-133m	Submersion ^{*/}	-	-	1E-4	6E-7	-	-	
54	Xenon-133	Submersion ¹	-	-	1E-4	5E-7	-	-	
54	Xenon-135m ^{b'}	Submersion ¹	_	-	9E-6	4E-8	-	-	
54	Xenon-135	Submersion [®]	-	-	1E-5	7E-8	-	-	
54	Xenon-138 ^b	Submersion [*]	-	-	4E-6	2E-8	-	-	
55	Cesium-125 ^{b'}	, D, all compounds	5E+4	1E+5	6E-5	2E-7	-	_	
			St wall (9E+4)	-	-	-	1E-3	1E-2	
55	Cesium-127	D, all compounds	6E+4	9E+4	4E-5	1E-7	9E-4	9E-3	
55	Cesium-129	D, all compounds	2E+4	3E+4	1E-5	5E-8	3E-4	3E-3	
55	Cesium-130 ^{b/}	D, all compounds	6E+4	2E+5	8E-5	3E-7	_	-	
		· · ·	St wall (1E+5)	-	-	-	1E-3	1E-2	
55	Cesium-131	D, all compounds	2E+4	3E+4	1E-5	4E-8	3E-4	3E-3	
55	Cesium-132	D, all compounds	3E+3	4E+3	2E-6	6E-9	4E-5	4E-4	
55	Cesium-134m	D, all compounds	1E+5	1E+5	6E-5	2E-7	-	-	
		- 4	St wall (1E+5)	_	-	-	2E-3	2E-2	
55	Cesium-134	D, all compounds	7E+1	1E+2	4E-8	2E-10	9E-7	9E-6	
		-							

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

				Table I Occupational Values		Tabl Effin Concent	le II lent trations	Table III Releases to ' Sewers	
			Col. 1 Oral	Col. 2	Col. 3	CoL 1	Col. 2	Monthly	
Atomic No.	Radionuclide	Class	ALI (µCı)	ALI (μCi)	DAC (µCı/ml)	Aır (μCı∕ml)	Water (µCı/ml)	Concentration (µCı/ml)	
55	Cesium-135m ^b	D, all compounds	1E+5	2E+5	8E-5	3E-7	1E-3	1E-2	
55	Cesium-135	D, all compounds	7E+2	1E+3	5E-7	2E-9	1E-5	1E-4	
55	Cesium-136	D, all compounds	4E+2	7E+2	3E-7	9E-10	6E-6	6E-5	
55	Cesium-137	D, all compounds	1E+2	- 2E+2	6E-8	2E-10	1E-6	1E-5	
55	Cesium-138 ^{b/}	D, all compounds	2E+4 St wall	6E+4 -	2E-5	8E-8	-	-	
			(3E+4)	-	-	-	4E-4	4E-3	
56	Barium-126 ^b	D, all compounds	6E+3	2E+4	6E-6	2E-8	8E-5	8E-4	
56	Barium-128	D, all compounds	5E+2	2E+3	7E-7	2E-9	7E-6	7E-5	
56	Barium-131m ^{b/}	D, all compounds	4E+5 St wall	1E+6	6E-4	2E-6	-	-	
			(5E+5)	-	-	-	7E-3	7E-2	
56	Barium-131	D, all compounds	3E+3	8E+3	3E-6	1E-8	4E-5	4E-4	~
56	Barium-133m	D, all compounds	2E+3 LLI wall (3E+3)	9E+3 -	4E-6	1E-8 -	- 4E-5	- 4E-4	
56	Barium-133	D. all compounds	2E+3	7E+2	3E-7	9E-10	2E-5	2E-4	
56	Barium-135m	D. all compounds	3E+3	1E+4	5E-6	2E-8	4E-5	4E-4	
56	Barium-139 ^{b/}	D, all compounds	1E+4	3E+4	1E-5	4E-8	2E-4	2E-3	
56	Barium-140	D all compounds	5E+2	1E+3	6E-7	2E-9	_	_	
50			LLI wall (6E+2)	-	-	-	8E-6	8E-5	
56	Barium-141 ^b	D, all compounds	2E+4	7E+4	3E-5	1E-7	3E-4	3E-3	
56	Barium-142 [⊎]	D, all compounds	5E+4	1E+5	6E-5	2E-7	7E-4	7E-3	
57	Lanthanum-131 ^b	D, all compounds except those given for W W, oxides and hydroxides	5E+4 -	1E+5 2E+5	5E-5 7E-5	2E-7 2E-7	6E-4 -	6E-3	
57	Lanthanum-132	D, see ¹³¹ La W, see ¹³¹ La	3E+3 -	1E+4 1E+4	4E-6 5E-6	1E-8 2E-8	4E-5 -	4E-4 -	
57	Lanthanum-135	D, see ¹³¹ La W. see ¹³¹ La	4E+4 _	1E+5 9E+4	4E-5 4E-5	1E-7 1E-7	5E-4	5E-3	

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations

Concentrations for Re	elease to Sanitar	y Sewerage	(Continued)
-----------------------	-------------------	------------	-------------

			c	Table I Occupational Values		Tabl Efflu Concen	le II uent trations	Table III Releases to Sewers
			Col. 1	Col. 2	Col 3	Col. 1	Col 2	Monthly
			Ingestion	Inha	lation			Average
Atomic No	Radionuclide	Class	ALI (μCi)	ALI (μCi)	DAC (μCι/ml)	Air (μCı/ml)	Water (µCı/ml)	Concentration (µCı/ml)
			-					
57	Lanthanum-137	D, see ¹³¹ La	1E+4	6E+1 Liver	3E-8	-	2E-4	2E-3
			-	(7E+1)		1E-10	-	-
		W, see ¹³¹ La	-	3E+2 Liver	1E-7	-	- ,	-
			-	(3E+2)	-	4E-10	-	-
57	I anthanum-138	D see ¹³¹ La	9E+2	4E+0	1E-9	5E-12	1E-5	1E-4
•	€ C	W, see ¹³¹ La	-	1E+1	6E-9	2E-11	-	-
7	Lonthonum-140		6F+7	16+3	6E-7	2E-9	9E-6	9E-5
,,	Landiandin-140	W, see ¹³¹ La	-	1E+3	5E-7	2E-9	-	-
57	Tanthanum 141	D can ¹³¹ L a	45+3	0F+3	4F-6	1E-8	5E-5	5E-4
,,	Lanuanum-141	W, see 131 La	-	1E+4	5E-6	2E-8	-	-
7	Lanthanum-142b	D, see ¹³¹ La	8E+3	2E+4	9E-6	3E-8	1E-4	1E-3
		W, see ¹³¹ La	-	3E+4	1E-5	5E-8	-	-
57	Lanthanum-143 ^b	D, see ¹³¹ La	4E+4 St wall	1E+5	4E-5	1E-7	-	-
		W, see ¹³¹ La	(4E+4) 	- 9E+4	- 4E-5	1E-7	5E-4 -	JE-3
e 0	Caria 124	W. all compounds groent						
20	Certuin-154	those given for Y	5E+2	7E+2	3E-7	1E-9	-	-
			(6E+2)	-	-	-	8E-6	8E-5
		Y, oxides, hydroxides, and fluorides	-	7E+2	3E-7	9E-10	-	-
	a ·	1340-	0512	45+2	2E 6	5E-0	2E-5	2F-4
58	Cerium-135	Y, see ¹³⁴ Ce	-	4E+3 4E+3	1E-6	5E-9	-	-
58	Cerium-137m	W, see ¹³⁴ Ce	2E+3 LLI wall	4E+3	2E-6	6E-9	-	-
			(2E+3)	-	-		3E-5	3E-4
		Y, see ¹³⁴ Ce	-	4E+3	2E-6	5E-9		
58	Cerium-137	W, see ¹³⁴ Ce	5E+4	1E+5	6E-5	2E-7	7E-4	7E-3
		Y, see ""Ce	-	1642	3E-3	40-1	-	-
58	Cerium-139	W, see ¹³⁴ Ce	5E+3	8E+2	3E-7	1E-9	7E-5	7E-4
		Y, see ¹³⁴ Ce	-	7E+2	3E-7	9E-10	-	-
58	Cerium-141	W, see ¹³⁴ Ce	2E+3 LLI wall	7E+2	3E-7	1E-9	-	-
		,	(2E+3)	*	-	_	3E-5	3E-4
		V see 134Ce		6E+2	2E-7	8E-10	-	_

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

				Table I Occupational Values	I	Tab Effi Concen	le II uent trations	Table III Releases to Sewers	
			Col. 1 Oral	Col. 2	Col. 3	Col. 1	Col 2	Monthly	
Atomic No.	Radionuclide	Class	Ing e stion ALI (µCi)	<u>Inh</u> ALI (µCı)	alation DAC (μCι/ml)	Air (μCt/ml)	Water (µCı/ml)	Average Concentration (µCı/ml)	
58	Cerium-143	W, see ¹³⁴ Ce	1E+3 LLI wall (1E+3)	2E+3	8E-7	3E-9	- 25-5	-	
		Y, see ¹³⁴ Ce	-	2E+3	7E-7	2E-9	_	-	
58	Cerium-144	W, see ¹³⁴ Ce	2E+2 LLI wall	3E+1	1E-8	4E-11	-	-	
		Y, see ¹³⁴ Ce	(3E+2) -	1E+1	- 6E-9	2E-11	3E-6 -	3E-5	
59	Praseodymium-136 ^{b/}	W, all compounds except those given for Y	5E+4 St wall (7E+4)	2E+5	1E-4	3E-7	-	-	
		Y, oxides, hydroxides, carbides, and fluorides	-	- 2E+5	- 9E-5	- 3E-7	-	-	
59	Praseodymium-137 ^b	W, see ¹³⁶ Pr Y, see ¹³⁶ Pr	4E+4 -	2E+5 1E+5	6E-5 6E-5	2E-7 2E-7	5E-4 -	5E-3	
59	Praseodymium-138m	W, see ¹³⁶ Pr Y, see ¹³⁶ Pr	1E+4 	5E+4 4E+4	2E-5 2E-5	8E-8 6E-8	1E-4 -	1E-3 -	\smile
59	Praseodymium-139	W, see ¹³⁶ Pr Y, see ¹³⁶ Pr	4E+4 -	1E+5 1E+5	5E-5 5E-5	2E-7 2E-7	6E-4 -	6E-3 -	
59	Praseodymium-142m ¹	² W, see ¹³⁶ Pr Y, see ¹³⁶ Pr	8E+4 -	2E+5 1E+5	7E-5 6E-5	2E-7 2E-7	1E-3	1E-2	
59	Praseodymium-142	W, see ¹³⁶ Pr Y, see ¹³⁶ Pr	1E+3 -	2E+3 2E+3	9E-7 8E-7	3E-9 3E-9	1E-5 -	1E-4 -	
59	Praseodymium-143	W, see ¹³⁶ Pr	9E+2 LLI wall	8E+2	3E-7	1E-9	-	-	
		Y, see ¹³⁶ Pr	(IE+3) -	7E+2	3E-7	9E-10	2E-5 -	2E-4 -	
59	Praseodymium-144 ^{b/}	W, see ¹³⁶ Pr	3E+4 St wall	1E+5	5E-5	2E-7	-	-	
		Y, see ¹³⁶ Pr	(4E+4) -	1E+5	5E-5	2E-7	6E-4 -	6E-3 -	
59	Praseodymium-145	W, see ¹³⁶ Pr Y, see ¹³⁶ Pr	3E+3 _	9E+3 8E+3	4E-6 3E-6	1E-8 1E-8	4E-5 -	4E-4 -	
59	Praseodymium-147 ^{b/}	W, see ¹³⁶ Pr	5E+4 St wall	2E+5	8E-5	3E-7	-	-	
		Y, see ¹³⁶ Pr	(8E+4) -	 2E+5	8E-5	3E-7	1E-3 -	1E-2 -	

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations

Concentrations for	Release to Sanita	ry Sewerage (Continued)
--------------------	-------------------	-------------------------

				Table I Occupational Values		Tabl Efflu Concen	e II uent trations	Table III Releases t Sewers
	•	-	Col. 1 Oral	Col. 2	Col 3	Col. 1	Col. 2	Monthly
Atomic No.	Radionuclide	Class	ALI (μCi)	ΑLI (μCī)	DAC (μCι/m!)	Air (μCı/ml)	Water (µCı/ml)	Concentrat (μCı/m)
60	Neodymium-136 ^b	W, all compounds except					٣	
	·····,	those given for Y Y, oxides, hydroxides,	1E+4	6E+4	2E-5	8E-8	2E-4	2E-3
		carbides, and fluorides	-	5E+4	2E-5	8E-8	-	-
60	Neodymium-138	W, see ¹³⁶ Nd	2E+3	6E+3	3E-6	9E-9	3E-5	3E-4
		Y, see ¹³⁶ Nd	-	5E+3	2E-6	7E-9	-	-
60	Neodumium_120m	W see ¹³⁶ Nd	5E+3	2E+4	7E-6	2E-8	7E-5	7E-4
	110703 A 19 200	Y, see ¹³⁶ Nd	-	1E+4	6E-6	2E-8	-	-
60	Nexturium-130b	W. see ¹³⁶ Nd	9E+4	3E+5	1E-4	5E-7	1E-3	1E-2
00	Neodymium-137	Y, see ¹³⁶ Nd	-	3E+5	1E-4	4E-7	-	-
60	Neodymium-141	W. see ¹³⁶ Nd	2E+5	7E+5	3E-4	1E-6	2E-3	2E-2
00	110009111011-141	Y, see ¹³⁶ Nd	-	6E+5	3E-4	9E-7	-	-
60	Neodymium-147	W, see ¹³⁶ Nd	1E+3 LLI wall	9E+2	4E-7	1E-9	-	-
		NZ	(1E+3)	-	- 4E 7	 1E-0	2E-5	2E-4
		Y, see "Nd	-	0E72	46-1	11-9	-	
60	Neodymium-149 ^{b/}	W, see ¹³⁶ Nd	1E+4	3E+4	1E-5	4E-8	1E-4	1E-3
		Y, see ¹³ Nd	-	2E+4	1E-5	3E-8	-	-
60	Neodymium-151b	W, see ¹³⁶ Nd	7E+4	2E+5	8E-5	3E-7	9E-4	9E-3
		Y, see ¹¹⁰ Nd	-	2E+5	8E-5	3E-7	-	-
61	Promethium-141 ^{b/}	W, all compounds except		07.0	077	9T: 4		
		those given for Y	SE+4 St wall	26+5	8E-3	3E-1	-	-
			(6E+4)	-	• _	-	8E-4	8E-3
		Y, oxides, hydroxides, carbides, and fluorides	-	2E+5	7E-5	2E-7	-	-
~	D 411 440	317 and 141Dm	<e13< td=""><td>6E+3</td><td>25-7</td><td>8F-10</td><td>7E-5</td><td>7E-4</td></e13<>	6E+3	25-7	8F-10	7E-5	7E-4
61	Prometnium-145	Y, see ¹⁴¹ Pm	-	7E+2	3E-7	1E-9	-	-
61	Promethium-144	W, see ¹⁴¹ Pm	1E+3	1E+2	5E-8	2E-10	2E-5	2E-4
		Y, see ¹⁴¹ Pm	-	1E+2	5E-8	2E-10	-	-
61	Promethium-145	W, see ¹⁴¹ Pm	1E+4	2E+2 Bone surf	7E-8	-	1E-4	1E-3
		V cas 141 Day	-	(2E+2) 2E+2	 8E-8	3E-10 3E-10	-	-
		1,500 rm	-	2672	010	2L-IV		
61	Promethium-146	W, see ¹⁴¹ Pm Y, see ¹⁴¹ Pm	2E+3 -	5E+1 4E+1	2E-8 2E-8	7E-11 6E-11	2E-5	2E
				-				

Footnotes appear at the end of these three tables

ı

• ;

,

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations

Concentrations for Release to Sanitary Sewerage (Continued)

				Table I Occupational Values		Tab Effi Concen	le II uent trations	Table III Releases to ' Sewers	
			CoL 1 Oral Ingestion	Col. 2	Col. 3	Col. 1	Col. 2	Monthly	
Atomic No.	Radionuclide	Class	ALI (μCi)	АЦ (μСі)	DAC (µCi/ml)	Air (μCı/ml)	Water (µCı∕ml)	Average Concentration (μCi/ml)	
						<u> </u>			-
61	Promethium-147	W, see ¹⁴¹ Pm	4E+3 LLI wall	1E+2 Bone surf	5E-8	-	-	-	
		Y, see ¹⁴¹ Pm	(32+3)	(2E+2) 1E+2	6E-8	3E-10 2E-10	7E-5	7E-4	
61	Drow othings 148m	W	25.0						
01	riomeunum-148m	\mathbf{Y} , see ¹⁴¹ Pm	/E+2 -	3E+2 3E+2	1E-7 1E-7	4E-10 5E-10	1E-5	1E-4	
						52-10	_	-	
61	Promethium-148	W, see ¹⁴¹ Pm	4E+2 LLI wall	5E+2	2E-7	8E-10	-	-	
		Y. see ¹⁴¹ Pm	(5E+2)	5E+2	- 2F-7	- 7E-10	7E-6	7E-5	
						72-10	_	-	
61	Promethium-149	W, see ""Pm	IE+3 LLI wall (IE+3)	2E+3	8E-7	3E-9	-	-	
		Y, see ¹⁴¹ Pm	(12+5)	2E+3	8E-7	_ 2E-9	2E-5	2E-4 _	•
<i></i>									
61	Promethium-150	W, see ¹⁴¹ Pm Y, see ¹⁴¹ Pm	5E+3 -	2E+4 2E+4	8E-6 7E-6	3E-8 2E-8	7E-5 -	7E-4 -	
61	Promethium-151	W, see ¹⁴¹ Pm Y, see ¹⁴¹ Pm	2E+3	4E+3 3E+3	1E-6 1E-6	5E-9 4E-9	2E-5	2E-4	\subseteq
62	Samarium-141m ^{b/}	W, all compounds	3E+4	1E+5	4E-5	1E-7	4E-4	4E-3	
62	Samarium-141 ^b	W, all compounds	5E+4 St wall	2E+5	8E-5	2E-7	-	-	
			(6E+4)	-	-	-	8E-4	8E-3	
62	Samarium-142 ^b	W, all compounds	8E+3	3E+4	1E-5	4E-8	1E-4	1E-3	
62	Samarium-145	W, all compounds	6E+3	5E+2	2E-7	7E-10	8E-5	8E-4	
62	Samarium-146	W, all compounds	1E+1 Bone surf	4E-2 Bone surf	1E-11	-	-	-	
			(3E+1)	(6E-2)	-	9E-14	3E-7	3E-6	
62	Samarium-147	W, all compounds	2E+1 Bone surf	4E-2 Bone surf	2E-11	-	-	-	
			(3E+1)	(7E-2)	-	1E-13	4E-7	4E-6	
62	Samarium-151	W, all compounds	1E+4 LLI wall	1E+2 Bone surf	4E-8	-	-	-	
			(1E+4)	(2E+2)	-	2E-10	2E-4	2E-3	
62	Samarium-153	W, all compounds	2E+3 LLI wall	3E+3	1E-6	4E-9	-	-	
			(2E+3)	-	-	-	3E-5	3E-4	

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

1				Table I Occupational Values		Tabl Efflu Concent	e II lent trations	Table III Releases to Sewers
			Col. 1 Oral	Col 2	Col. 3	Col. 1	Col. 2	Monthly
Atomic No.	Radionuclide	Class	ALI (μCi)	ALI (μCī)	DAC (μCi/ml)	Air (μCı/ml)	Water (µCı/ml)	Concentration (μCi/ml)
62	Samarium-155 ^{b/}	W, all compounds	6E+4 St wall (8E+4)	2E+5	9E-5	3E-7	- 1E-3	- 1E-2
62	Samarium-156	W, all compounds	5E+3	9E+3	4E-6	1E-8	7E-5	7E-4
63	Europium-145	W, all compounds	2E+3	2E+3	8E-7	3E-9	2E-5	2E-4
63	Europium-146	W, all compounds	1E+3	1E+3	5E-7	2E-9	1E-5	1E-4
63	Europium-147	W, all compounds	3E+3	2E+3	7E-7	2E-9	4E-5	4E-4
63	Europium-148	W, all compounds	1E+3	4E+2	1E-7	5E-10	1E-5	1E-4
63	Europium-149	W, all compounds	1E+4	3E+3	1E-6	4E-9	2E-4	2E-3
63	Europium-150 (12.62 h)	W, all compounds	3E+3	8E+3	4E-6	1E-8	4E-5	4E-4
63	Europium-150 (34.2 y)	W, all compounds	8E+2	2E+1	8E-9	3E-11	1E-5	1E-4
63	Europium-152m	W, all compounds	3E+3	6E+3	3E-6	9E-9	4E-5	4E-4
63	Europium-152	W, all compounds	8E+2	2E+1	1E-8	3E-11	1E-5	1E-4
63	Europium-154	W, all compounds	5E+2	2E+1	8E-9	3E-11	7E-6	7E-5
63	Europium-155	W, all compounds	4E+3	9E+1 Bone surf (1E+2)	4E-8 -	- 2E-10	5E-5	5E-4
63	Europium-156	W, all compounds	6E+2	5E+2	2E-7	6E-10	8E-6	8E-5
63	Europium-157	W, all compounds	2E+3	5E+3	2E-6	7E-9	3E-5	3E-4
63	Europium-158 ^{b/}	W, all compounds	2E+4	6E+4	2E-5	8E-8	3E-4	3E-3
64	Gadolinium-145 ^{b/}	D, all compounds except those given for W	5E+4 St wall	2E+5	6E-5	2E-7	-	-
		W, oxides, hydroxides, and fluorides	(5E+4) -	- 2E+5	- 7E-5	- 2E-7	6E-4 -	0E-3 -
64	Gadolinium-146	D, see ¹⁴⁵ Gd W, see ¹⁴⁵ Gd	1E+3 -	1E+2 3E+2	5E-8 1E-7	2E-10 4E-10	2E-5 -	2E-4 -
64	Gadolinium-147	D, see ¹⁴⁵ Gd W, see ¹⁴⁵ Gd	2E+3	4E+3 4E+3	2E-6 1E-6	6E-9 5E-9	3E-5 —	3E-4

ĩ

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

									
				Table I Occupational Values		Tab Effi Concen	le II uent trations	Table III Releases to Sewers	-
			Col. 1	Col. 2	Col. 3	Col. 1	Col. 2	<u> </u>	
			Oral Ing e stion	Inhala	tion			Monthly	
Atomic No.	Radionuclide	Class	ΑŬ (μCı)	ΑЦ (μCı)	DAC (µCi/ml)	Air (μCı/ml)	Water (µCi/ml)	Concentration (µCi/ml)	
64	Gadolinium-148	D, see ¹⁴⁵ Gd	1E+1 Bone surf	8E+3 Bone surf	3E-12	_	_	_	-
		W and 145Cd	(2E+1)	(2E-2)	-	2E-14	3E-7	3E-6	
		w, see Gu	-	Bone surf	1E-11	-	-	-	
			-	(6E-2)	-	8E-14	-	-	
64	Gadolinium-149	D, see ¹⁴³ Gd W. see ¹⁴⁵ Gd	3E+3	2E+3 2E+3	9E-7 1E-6	3E-9 3E-9	4E-5	4E-4	
					12-0	52-5	_	-	
64	Gadolinium-151	D, see ¹⁴³ Gd	6E+3	4E+2 Bone surf	2E-7	-	9 E-5	9E-4	
		NY 1450 1	-	(6E+2)		9E-10	-	-	
		w, see "Ga	-	IE+3	5E-7	2E-9	-	-	
64	Gadolinium-152	D, s ce ¹⁴⁵ Gd	2E+1 Bone surf	1E-2 Bone surf	4E-12	-	-	-	
			(3E+1)	(2E-2)	-	3E-14	4E-7	4E-6	
		W, see ¹⁴³ Gd	-	4E-2	2E-11	-	-	-	
			-	(8E-2)	-	1E-13	-	-	
64	Gadolinium-153	D, s ce ¹⁴⁵ Gd	5E+3	1E+2 Bone surf	6E-8	-	6E-5	6E-4	\bigcirc
-			-	(2E+2)	-	3E-10	-	-	
		W, see ¹⁴⁵ Gd	-	6E+2	2E-7	8E-10	-	-	
64	Gadolinium-159	D, see ¹⁴⁵ Gd	3E+3	8E+3	3E-6	1E-8	4E-5	4E-4	
		W, see "Gd	-	6E+3	2E-6	8E-9	-	-	
65	Terbium-147 ^b	W, all compounds	9E+3	3E+4	1E-5	5E-8	1E-4	1E-3	
65	Terbium-149	W, all compounds	5E+3	7E+2	3E-7	1E-9	7E-5	7E-4	
65	Terbium-150	W, all compounds	5E+3	2E+4	9E-6	3E-8	7E-5	7E-4	
65	Terbium-151	W, all compounds	4E+3	9E+3	4E-6	1E-8	5E-5	5E-4	
65	Terbium-153	W, all compounds	5E+3	7E+3	3E-6	1E-8	7E-5	7E-4	
65	Terbium-154	W, all compounds	2E+3	4E+3	2E-6	6E-9	2E-5	2E-4	
65	Terbium-155	W, all compounds	6E+3	8E+3	3E-6	1E-8	8E-5	8E-4	
65	Terbium-156m (5.0 h)	W, all compounds	2E+4	3E+4	1E-5	4E-8	2E-4	2E-3	
65	Terbium-156m (24.4 h)	W, all compounds	7E+3	8E+3	3E-6	1E-8	1E-4	1E-3	
65	Terbium-156	W, all compounds	1E+3	1E+3	6E-7	2E-9	1E-5	1E-4	

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

				Table I Occupational Values		Tabl Efflu Concent	e II lent trations	Table III Releases to Sewers
			Col. I Oral	Col. 2	Col. 3	Col. I	Col 2	Monthly
Atomic No	Radionuclide	Class	ALI (μCı)	<u>Innala</u> ALI (μCi)	DAC (µCı/ml)	Air (μCı∕ml)	Water (µCi/ml)	Average Concentration (µCı/ml)
65	Terbium-157	W, all compounds	SE+4 LLI wall	3E+2 Bone surf	1E-7	-	-	-
			(5E+4)	(6E+2)	-	8E-10	7E-4	7E-3
5	Terbium-158	W, all compounds	1E+3	2E+1	8E-9	3E-11	2E-5	2E-4
5	Terbium-160	W, all compounds	8E+2	2E+2	9E-8	3E-10	1E-5	1E-4
5	Terbium-161	W, all compounds	2E+3	2E+3	7E-7	2E-9	-	-
			(2E+3)	-	-	-	3E-5	3E-4
i6 ·	Dysprosium-155	W, all compounds	9E+3	3E+4	1E-5	4E-8	1E-4	1E-3
56	Dysprosium-157	W, all compounds	2E+4	6E+4	3E-5	9E-8	3E-4	3E-3
66	Dysprosium-159	W, all compounds	1E+4	2E+3	1E-6	3E-9	2E-4	2E-3
56	Dysprosium-165	W, all compounds	1E+4	5E+4	2E-5	6E-8	2E-4	2E-3
66	Dysprosium-166	W, all compounds	6E+2	7E+2	3E-7	1E-9	-	-
			LLI wall (8E+2)	-	-	-	1E-5	1E-4
57	Holmium-155 ^{b'}	W, all compounds	4E+4	2E+5	6E-5	2E-7	6E-4	6E-3
57	Holmium-157 ^{b'}	W, all compounds	3E+5	1E+6	6E-4	2E-6	4E-3	4E-2
67	Holmium-159 ^{b'}	W, all compounds	2E+5	1E+6	4E-4	1E-6	3E-3	3E-2
57	Holmium-161	W, all compounds	1E+5	4E+5	2E-4	6E-7	1E-3	1E-2
67	Holmium-162m ^{b/}	W, all compounds	5E+4	3E+5	1E-4	4E-7	7E-4	7E-3
67	Holmium-162 ^{b/}	W, all compounds	5E+5	2E+6	1E-3	3E-6	-	-
			St wall (8E+5)	-	-	-	1E-2	1 E-1
67	Holmium-164m ^{b/}	W, all compounds	1E+5	3E+5	1E-4	4E-7	1E-3	1E-2
67	Holmium-164 ^{b'}	W, all compounds	2E+5	6E+5	3E-4	9E-7	. –	-
		-	St wall (2E+5)	-	-	-	3E-3	3E-2
67	Holmium-166m	W, all compounds	6E+2	7E+0	3E-9	9E-12	9E-6	9E-5
67	Holmium-166	W. all compounds	9E+2	2E+3	7E-7	2E-9	-	-
			LLI wall (9E+2)	_	_	· _	1E-5	1E-4
		W. ell compounds	2ET4	6E+4	2E-5	8F-8	2F_4	2E-3

Footnotes appear at the end of these three tables.

-

Appendix B

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

				Table I Occupational Values		Tab Effi Concen	le II uent trations	Table III Releases to Sewers	
			Col. 1	Col. 2	Col, 3	CoL 1	Col. 2		
			Oral Ingestion	Inhala	ition			Monthly	
Atomic No.	Radionuclide	Class	AĽI (μCi)	ALI (μCi)	DAC (µCi/ml)	Air (µCı/ml)	Water (µCı∕ml)	Concentration (µCı/ml)	
68	Erbium-161	W, all compounds	2E+4	6E+4	3E-5	9E-8	2E-4	2E-3	
68	Erbium-165	W, all compounds	6E+4	2E+5	8E-5	3E-7	9E-4	9E-3	
68	Erbium-169	W, all compounds	3E+3 LLI wall	3E+3	1E-6	4E-9	-	-	
			(4E+3)	-	-	-	5E-5	5E-4	
68	Erbium-171	W, all compounds	4E+3	1E+4	4E-6	1E-8	5E-5	5E-4	
68	Erbium-172	W, all compounds	1E+3 LLI wall	1E+3	6E-7	2E-9	-	-	
			(1E+3)	-	-	-	2E-5	2E-4	
69	Thulium-162 ^b	W, all compounds	7E+4 St wall	3E+5	1E-4	4E-7	-	-	
			(7E+4)	-	-	-	1E-3	1E-2	
69	Thulium-166	W, all compounds	4E+3	1E+4	6E-6	2E-8	6E-5	6E-4	
69	Thulium-167	W, all compounds	2E+3 LLI wall	2E+3	8E-7	3E-9	-	-	
			(2E+3)	-	-	-	3E-5	3E-4	\smile
69	Thulium-170	W, all compounds	8E+2 LLI wall	2E+2	9E-8	3E-10	-	-	
			(1E+3)	-	-	-	1E-5	1E-4	
69	Thulium-171	W, all compounds	1E+4 LLI wall	3E+2 Bone surf	1E-7	-	-	-	
			(1E+4)	(6E+2)	-	8E-10	2E-4	2E-3	
69	Thulium-172	W, all compounds	7E+2 LLI wall	1E+3	5E-7	2E-9	-	-	
		_	(8E+2)	-	-	-	1E-5	1E-4	
69	Thulium-173	W, all compounds	4E+3	1E+4	5E-6	2E-8	6E-5	6E-4	
69	Thulium-175 [⊮]	W, all compounds	7E+4 St wall	3E+5	1E-4	4E-7	-	-	
			(9E+4)	-	-	-	1E-3	1E-2	
70	Ytterbium-162 [⊮]	W, all compounds except those given for Y	7E+4	3E+5	1E-4	4E-7	1E-3	1E-2	
		and fluorides	-	3E+5	1E-4	4E-7	-	-	
70	Ytterbium-166	W, see 162 Yb	1E+3	2E+3	8E-7	3E-9	2E-5	2E-4	
		1.306 10	-	ل ا سامک	01-1	7-110		-	

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations

Concentrations for Release to Sanitary Sewerage (Continued)

) -				£	Table I Occupational Values		Tab Effi Concen	le II uent trations	Table III Releases to Sewers
			1	Col 1 Oral	Col 2	Col. 3	Col. 1	Col 2	Monthly
				Ingestion	Inhala	tion			Average
	Atomic	Radionuclide	Class	ALI	ALI	DAC	Air	Water	Concentration
	No.			(μCi)	(μCι)	(μCı/ml)	(µCı∕ml)	(µCı/ml)	(µCı/ml)
_	70	Vtterbium-167 ^{b/}	W see 162Yb	3E+5	8E+5	3E-4	1E-6	4E-3	4E-2
	70	1 100010111 107	Y, see ¹⁶² Yb	_	7E+5	3E-4	1E-6	-	_
	70	Ytterbium-169	W, see ¹⁶² Yb	2E+3	8E+2	4E-7	1E-9	2E-5	2E-4
			Y, see ¹⁶² Yb	-	7E+2	3E-7	1E-9	-	-
	70	Ytterbium-175	W, see ¹⁶² Yb	3E+3 LLI wall	4E+3	1E-6	5E-9	-	-
				(3E+3)	-	-	-	4E-5	4E-4
			Y, see ¹⁶² Yb	-	3E+3	1E-6	5E-9	-	-
	70	Ytterbium-177 ^{b/}	W. see ¹⁶² Yb	2E+4	SE+4	2E-5	7E-8	2E-4	2E-3
	10	1 40101411 177	Y, see 162 Yb	-	5E+4	2E-5	6E-8	-	-
	-	V	W can 162 Vh	15+4	45+4	2E-5	6F-8	2F_4	2E-3
	70	i ueroium-178	Y, see 10^{162} Yb	-	4E+4	2E-5	5E-8	-	-
	71	Lutetium-169	W, all compounds except						
	• •		those given for Y	3E+3	4E+3	2E-6	6E-9	3E-5	3E-4
			and fluorides	-	4E+3	2E-6	6E-9	-	-
	71	Lutetium-170	W, see ¹⁶⁹ Lu	1E+3	2E+3	9E-7	3E-9	2E-5	2E-4
			Y, see ¹⁶⁹ Lu	-	2E+3	8E-7	3E-9	-	-
	71	Lutetium-171	W, see ¹⁶⁹ Lu	2E+3	2E+3	8E-7	3E-9	3E-5	3E-4
			Y, see ¹⁶⁹ Lu	-	2E+3	8E-7	3E-9	-	-
	71	Lutetium-172	W, see ¹⁶⁹ Lu	1E+3	1E+3	5E-7	2E-9	1E-5	1E-4
			Y, see ¹⁶⁹ Lu	-	1E+3	5E-7	2E-9	-	-
	71	Lutetium-173	W, see ¹⁶⁹ Lu	5E+3 ·	3E+2 Bone surf	1E-7	-	7E-5	7E-4
			•	-	(5E+2)	-	6E-10	-	-
			Y, see ¹⁶⁹ Lu	· -	3E+2	1E-7	4E-10	-	-
	71	Lutetium-174m	W, see ¹⁶⁹ Lu	2E+3 LLI wall	2E+2 Bone surf	1E-7	-	-	-
				(3E+3)	(3E+2)	-	5E-10	4E-5	4E-4
			Y, see ¹⁶⁹ Lu		2E+2	9E-8	3E-10	-	-
	71	Lutetium-174	W, see ¹⁶⁹ Lu	5E+3	1E+2 Bone surf	5E-8	-	7E-5	7E-4
				-	(2E+2)	-	3E-10	-	-
			Y, see ¹⁶⁹ Lu	-	2E+2	6E-8	2E-10	-	-
	71	Lutetium-176m	W, see ¹⁶⁹ Lu	8E+3	3E+4	1E-5	3E-8	1E-4	1E-3
			Y. see ¹⁶⁹ Lu	-	2E+4	9E-6	3E-8	-	

Footnotes appear at the end of these three tables

•

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations

Concentrations for Release to Sanitary Sewerage (Continued)

Atomic No.	Radionuclide	Class	Table I Occupational Values			Table II Effluent Concentrations		Table III Releases to Sewers	
			Col. 1 Oral Ingestion ALI	Col. 2 Col. 3		Col. 1 Air	Col. 2 Water	Monthly Average Concentration	
			(μCi)	(µCi)	(μCi/ml)	(µCi/ml)	(μCı/ml)	(μCı/ml)	
71	Lutetium-176	W, see ¹⁶⁹ Lu	7E+2	5E+0 Bone surf	2E-9	-	1E-5	1E-4	-
		Y, see ¹⁶⁹ Lu	-	(IE+1) 8E+0	 3E-9	2E-11 1E-11	-	-	
71	Lutetium-177m	W, see ¹⁶⁹ Lu	7E+2	1E+2 Bone surf	5E-8	-	1E-5	1 E-4	
		Y, see ¹⁶⁹ Lu	_	(1E+2) 8E+1	- 3E-8	2E-10 1E-10	-	-	
71	Lutetium-177	W, see ¹⁶⁹ Lu	2E+3 LLI wall	2E+3	9E-7	3E-9	-	-	
		Y, see ¹⁶⁹ Lu	(3E+3) -	2E+3	9E-7	- 3E-9	4E-5 	4E-4 -	
71	Lutetium-178m ^{b/}	W, see ¹⁶⁹ Lu	5E+4 St wall	2E+5	8E-5	3E-7	-	-	
		Y, see ¹⁶⁹ Lu	(6E+4) -	 2E+5	- 7E-5	 2E-7	8E-4	8E-3	
71	Lutetium-178 ^b	W, see ¹⁶⁹ Lu	4E+4 St wall	1E+5	5E-5	2E-7	-	-	
		Y, see ¹⁶⁹ Lu	(4E+4) -	- 1E+5	- 5E-5	2E-7	6E-4 -	6E-3	\bigcirc
71	Lutetium-179	W, see ¹⁶⁹ Lu Y, see ¹⁶⁹ Lu	6E+3 -	2E+4 2E+4	8E-6 6E-6	3E-8 3E-8	9E-5 -	, 9E-4 -	
72	Hafnium-170	D, all compounds except those given for W	3E+3	6E+3	2E-6	8E-9	4E-5	4E-4	
		carbides, and nitrates	-	5E+3	2E-6	6E-9	-	-	
72	Hafnium-172	D, see ¹⁷⁰ Hf	1E+3	9E+0 Bone surf	. 4E-9	-	2E-5	2E-4	
		W, see ¹⁷⁰ Hf	-	(2E+1) 4E+1 Bone surf	2E-8	3E-11	-	-	
			-	(6E+1)	-	8E-11	-	-	
72	Hafnium-173	D, see 170 Hf W, see 170 Hf	5E+3 -	1E+4 1E+4	5E-6 5E-6	2E-8 2E-8	7E-5	7E-4	
72	Hafnium-175	D, sœ ¹⁷⁰ Hf	3E+3	9E+2 Bone surf	4E-7	-	4E-5	4E-4	
		₩, sæ ¹⁷⁰ Hf	-	(1E+3) 1E+3	_ 5E-7	1E-9 2E-9	-	-	
72	Hafnium-177m ^b	D, see 170 Hf W, see 170 Hf	2E+4	6E+4 9E+4	2E-5 4E-5	8E-8 1E-7	3E-4	3E-3	

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations

Concentrations for Release to Sanitary Sewerage (Continued)

	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Table I Occupational Values			Table II Effluent Concentrations		Table III Releases to Sewers
			Col 1 Oral	Col. 2	Col. 3	Col 1	Col. 2	Monthly
Atomia	Padromalida	Class	ATI			Air	Water	Average
No.	Radionaciale	Class	(μCi)	(μCı)	(μCı/ml)	(μCı/ml)	(µCı/ml)	(μCi/ml)
72	Hafnium-178m	D, see ¹⁷⁰ Hf	3E+2	1E+0	5E-10	_	3E-6	3E-5
				Bone surf				
		170 -	-	(2E+0)	-	3E-12	-	-
		W, see ¹⁷⁹ Hf	-	5E+0 Bone surf	2E-9	-	-	-
			-	(9E+0)	-	1E-11	-	-
72	Hafnium-179m	D, see ¹⁷⁰ Hf	1E+3	3E+2	1E-7	-	1E-5	1E-4
				Bone surf				
		170	-	(6E+2)		8E-10	-	-
	-	W, see ""Hf	-	6E+2	3E-7	8E-10	-	-
77	Hafnium-180m	D see ¹⁷⁰ Hf	7E+3	2E+4	9E-6	3E-8	1E-4	1E-3
12	mannan-100m	W, see 170 Hf	-	3E+4	1E-5	4E-8	_	-
77	Hafnium-181	D see ¹⁷⁰ Hf	1E+3	2E+2	7E-8	-	2E-5	2E-4
12	Multinum-101	D,000 III		Bone surf				
			-	(4E+2)	-	6E-10	-	
		W, see ¹⁷⁰ Hf	-	4E+2	2E-7	6E-10	-	-
72	Hafnium-182m ^b	D. see ¹⁷⁰ Hf	4E+4	9E+4	4E-5	1E-7	5E-4	5E-3
		W, see ¹⁷⁰ Hf	-	1E+5	6E-5	2E-7	-	-
72	Hafnium-182	D. see ¹⁷⁰ Hf	2E+2	8E-1	3E-10	-	-	-
		_,	Bone surf	Bone surf				
		150 -	(4E+2)	(2E+0)	-	2E-12	5E-6	5E-5
		W, sœ ™Hf	-	3E+0	1E-9	-	-	-
				Bone surf		16.11		
		<i>i</i>	-	(72+0)	-	16-11	. –	_
72	Hafnium-183 ^b	D, see ¹⁷⁰ Hf	2E+4	5E+4	2E-5	6E-8	3E-4	3E-3
		W, see ¹⁷⁰ Hf	-	6E+4	2E-5	8E-8	-	-
72	Hafnium-184	D, see ¹⁷⁰ Hf	2E+3	8E+3	3E-6	1E-8	3E-5	3E-4
		W, see ¹⁷⁰ Hf	-	6E+3	3E-6	9E-9		-
73	Tantalum-172 ^b	W, all compounds except						
		those given for Y	4E+4	1E+5	5E-5	2E-7	5E-4	5E-3
		Y, elemental Ta, oxides, hydroxides, halides,						
		carbides, nitrates,	_	15+5	4F-5	1E-7	_	-
			-	12.5	76-7	••-1		
73	Tantalum-173	W, see 172 Ta	7E+3	2E+4	8E-6	3E-8	9E-5	9E-4
		Y, see ¹⁷² Ta	-	2E+4	7E-6	2E-8	-	
73	Tantalum-174 ^{b'}	W, see ¹⁷² Ta	3E+4	1E+5	4E-5	1E-7	4E-4	4E-3
		Y, see ¹⁷² Ta	-	9E+4	4E-5	1E-7	-	_

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

		<u>_</u>	Table I Occupational Values			Tab Effl	le II uent	Table III Releases to	
						Concentrations		Sewers ,	
			Col. 1 Oral	Col. 2	Col. 3	Col. 1	Col. 2	Monthly	
			Ingestion	Inh	alation			Average	
Atomic	Radionuclide	Class	ALI	ALI	DAC	Air	Water	Concentration	
No.			(µCi)	(µCi)	(µCı/ml)	(µCı/ml)	(µCı/ml)	(µCı/ml)	
73	Tantalum_175	W see 172Ta	6E+3	26+4	76.6	25.6	9E 5	95.4	-
/3	Tallandin-175	Y, see ¹⁷² Ta	-	1E+4	6E-6	2E-8	-	0E-4	
73	Tantalum-176	W. see 172 Ta	4E+3	1E+4	5E-6	2E-8	5E-5	5E-4	
		Y, see ¹⁷² Ta	, —	1E+4	5E-6	2E-8	_	-	
73	Tantalum-177	W, see ¹⁷² Ta	1 E+4	2E+4	8E-6	3E-8	2E-4	2E-3	
		Y, see ¹⁷² Ta	-	2E+4	7E-6	2E-8	-	-	
73	Tantalum-178	W, see ¹⁷² Ta	2E+4	9E+4	4E-5	1E-7	2E-4	2E-3	
		Y, see ¹⁷² Ta	-	7E+4	3E-5	1E-7	-	-	
73	Tantalum-179	W, see 172 Ta	2E+4	5E+3	2E-6	8E-9	3E-4	3E-3	
		Y, see ""Ta	-	9E+2	4E-7	1E-9	-	-	
73	Tantalum-180m	W, see 172 Ta	2E+4	7E+4	3E-5	9E-8	3E-4	3E-3	
		Y, see ""la	-	6E+4	2E-5	8E-8	-	-	
73	Tantalum-180	W, see 172 Ta	1E+3	4E+2	2E-7	6E-10	2E-5	2E-4	
		Y, see ""la	-	26+1	1E-8	3E-11	-	-	
73	Tantalum-182m ^b	W, see ¹⁷² Ta	2E+5 St wall	5E+5	2E-4	8E-7	-	-	
			(2E+5)	-	-	-	3E-3	3E-2	\bigcirc
		Y, see ¹⁷² Ta	-	4E+5	2E-4	6E-7	-	-	
73	Tantalum-182	W, see ¹⁷² Ta	8E+2	3E+2	1E-7	5E-10	1E-5	1E-4	
		Y, see "Ta	-	1E+2	6E-8	2E-10	-	-	
73	Tantalum-183	W, see ¹⁷² Ta	9E+2 LLI wall	1E+3	5E-7	2E-9	-	-	
			(1E+3)	-	-		2E-5	2E-4	
		Y, see '"Ta	-	1E+3	4E-7	1E-9		-	
73	Tantalum-184	W, see 172 Ta	2E+3	5E+3	2E-6	8E-9	3E-5	3E-4	
		Y, see ""Ta	-	5E+3	2E-6	7E-9		-	
73	Tantalum-185 ⁹	W, see ¹⁷² Ta	3E+4	7E+4	3E-5	1E-7	4E-4	4E-3	
		Y, see "Ia	-	6E+4	3E-5	9E-8		-	
73	Tantalum-186 ^b	W, see ¹⁷² Ta	5E+4 St wall	2E+5	1E-4	3E-7	-	-	
		Y see ¹⁷² Ta	(7E+4)	- 2E+5	9E-5	- 3F-7	1E-3	1E-2	
			_		, , , , ,	JL#1		-	
74	Tungsten-176	D, all compounds	1E+4	5E+4	2E-5	7E-8	1E-4	1E-3	
74	Tungsten-177	D, all compounds	2E+4	9E+4	4E-5	1E-7	3E-4	3E-3	
74	Tungsten-178	D, all compounds	5E+3	2E+4	8E-6	3E-8	7E-5	7E-4	

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations

Concentrations for Release to Sanitary Sewerage (Continued)

X		×	Table 1 Occupational Values			Table II Effluent Concentrations		Table III Releases to Sewers
Atomic No			Col. 1 Oral Ingestion ALI (µCi)	Col. 2	Col. 3	CoL 1 Air (μCı/ml)	Col 2 Water (µCı/ml)	Monthly Average Concentration (µCi/ml)
	Radionuclide	Class		<u>∴ Inhal</u> ALI (µCi)	lation DAC (μCi/ml)			
74	Tungsten-179 ^{b/}	D, all compounds	5E+5	2E+6	7E-4	2E-6	7E-3	7E-2
74	Tungsten-181	D, all compounds	2E+4	3E+4	1E-5	5E-8	2E-4	2E-3
74	Tungsten-185	D, all compounds	2E+3 LLI wall	7E+3	3E-6	9E-9	-	-
			(3E+3)	-	-	-	4E-5	4E-4
4	Tungsten-187	D, all compounds	2E+3	9E+3	4E-6	1E-8	3E-5	3E-4
4	Tungsten-188	D, all compounds	4E+2 LLI wall	1E+3	5E-7	2E-9	-	-
			(5E+2)	-	-	-	7E-6	7E-5
75	Rh e nium-177 [⊮]	D, all compounds except those given for W	9E+4 St wall	3E+5	1E-4	4E-7	-	-
			(1E+5)	-	-	-	2E-3	2E-2
		W, oxides, hydroxides, and nitrates	-	4E+5	1E-4	5E-7	-	-
15	Rhenium-178 ^b	D, see ¹⁷⁷ Re	7E+4 St wall	3E+5	1E-4	4E-7	-	-
		W see 177Re	(1E+5)	- 3E+5	- 1E-4	- 4E-7	1E-3	1E-2
75	Dhanium 191	D con ¹⁷⁷ Pa	SE+3	0E+3	4E-6	1F-8	7E-5	7E-4
15	Knemun-161	W, see ¹⁷⁷ Re	-	9E+3	4E-6	1E-8	-	-
75	Rhenium-182	D, see ¹⁷⁷ Re	7E+3	1E+4	5E-6	2E-8	9E-5	9E-4
	(12.7 h)	W, see '''Re	-	2E+4	0E-0	2E-8		-
75	Rhenium-182 (64.0 h)	D, see ¹⁷⁷ Re W, see ¹⁷⁷ Re	1E+3 -	2E+3 2E+3	1E-6 9E-7	3E-9 3E-9	2E-5 —	2E-4 _
75	Rhenium-184m	D, see 177 Re	2E+3	3E+3	1E-6 2E-7	4E-9 6F-10	3E-5	3E-4
		W, Ster RC	_	-2-2				
75	Rhenium-184	D, see ¹⁷⁷ Re W, see ¹⁷⁷ Re	2E+3 -	4E+3 1E+3	1E-6 6E-7	SE-9 2E-9	3E-5 —	3E-4
75	Rhenium-186m	D, see ¹⁷⁷ Re	1E+3 St wall	2E+3 St wall	7E-7	-	-	-
		W, see ¹⁷⁷ Re	(2E+3) _	(2E+3) 2E+2	- 6E-8	3E-9 2E-10	2E-5 _	2E-4 -
75	Rhenium-186	D, see ¹⁷⁷ Re W, see ¹⁷⁷ Re	2E+3 -	3E+3 2E+3	1E-6 7E-7	4E-9 2E-9	3E-5	3E-4

Footnotes appear at the end of these three tables.

•
Appendix B

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations

Concentrations for Release to Sanitary Sewerage (Continued)

				Table I Occupational Values		Tab Effi Concen	le II uent trations	Table III Releases to Sewers	•
			Col. 1	Col. 2	Col. 3	Col, 1	Col. 2		
444-14	Dedament to	~	Oral Ingestion	Inba	lation			Monthly Average	
No.	Radionuciide	Ciass	ALI (μCi)	ALI (μCi)	DAC (µCı/ml)	Air (μCı/ml)	Water (µCi/ml)	Concentration (µCı/ml)	
75	Rhenium-187	D, see ¹⁷⁷ Re	6E+5	8E+5 St wall	4E-4		8E-3	8E-2	
		177-	-	(9E+5)	-	1E-6	-	-	
		W, see '''Re	-	1E+5	4E-5	1E-7	-	-	
75	Rhenium-188m ^b	D see ¹⁷⁷ Re	8F+4	15+5	65.5	25.7	15.2	15.0	
15	Michaele 100m	$W_{\rm see}$ ¹⁷⁷ Re	-	15+5	6E-5	2E-7 2E-7	12-3	1E-2	
		,		12.0	02-5	22-7	-	-	
75	Rhenium-188	D, see ¹⁷⁷ Re	2E+3	3E+3	1E-6	4E-9	2E-5	2E-4	
		W, see ¹⁷⁷ Re	-	3E+3	1E-6	4E-9	-	-	
76	Dh	D	25.12	65.0	AD <i>i</i>	57 0			
15	Knenium-189	D, see ¹⁷⁷ Re	36+3	5E+3 AE+3	2E-0 2E-6	7E-9	4E-5	4E-4	
		W, See Re	_	4613	26-0	02-9	-	-	•
76	Osmium-180 ^b ∕	D, all compounds except							
		those given for W and Y	1E+5	4E+5	2E-4	5E-7	1E-3	1E-2	
		W, halides and nitrates	-	5E+5	2E-4	7E-7	-	-	
		Y, oxides and hydroxides	-	5E+5	2E-4	6E-7	-	-	
76	Osmium-181 [™]		16+4	45-4	25.5	4F 9	217.4	25.2	
70	Oshium-101	$W = 180 \Omega$	1574	4CT4 5E+4	2E-3 2E-5	0E-8	26-4	2E-3	
		Y, see ¹⁸⁰ Os	_	4E+4	2E-5	6E-8	-	-	
						02.0		_	\bigcirc
76	Osmium-182	D, see ¹⁸⁰ Os	2E+3	6E+3	2E-6	8E-9	3E-5	3E-4	
		W, see 180Os	-	4E+3	2E-6	6E-9	-	-	
		Y, see ¹⁶⁰ Os	-	4E+3	2E-6	6E-9	-	-	
76	Ocmium 185		2613	61210	25.7	75 10	277.6	477.4	
70	Osmun-165	$D_{s} \sec Os$ W $\sec^{180}Or$	2673	3ET2 9ET3	20-7	/E-10	3E-3	3E-4	
		V see ¹⁸⁰ Oe	_	8E+2	257	16-9	-	-	
		1,500 05	-	01,12	52-1	112-9	-	-	
76	Osmium-189m	D, see ¹⁸⁰ Os	8E+4	2E+5	1E-4	3E-7	1E-3	1E-2	
		W, see ¹⁸⁰ Os	-	2E+5	9E-5	3E-7	_	_	
		Y, see ¹⁸⁰ Os	-	2E+5	7E-5	2E-7	-	-	
-	o ·	D 1800							
/0	Osmium-191m	D, see ¹⁸⁰ Os	1E+4	3E+4	1E-5	4E-8	2E-4	2E-3	
		W, see Os	-	212+4	8E-0	35-8	-	-	
		1, see Us	-	2074	76-0	2E-8	-	-	
76	Osmium-191	D, see ¹⁸⁰ Os	2E+3 LLI wall	2E+3	9E-7	3E-9	-	-	
		. 1890	(3E+3)	-			3E-5	3E-4	
		W, see ¹⁸⁰ Os	-	2E+3	7E-7	2E-9	-	-	
		I, SCC	-	1E+3	0E-7	2E-9	-	-	
76	Osmium-193	D, see ¹⁸⁰ Os	2E+3 LLI wall	5E+3	2E-6	6E-9	-	-	
		100 -	(2E+3)	-	-	_	2E-5	2E-4	
		W, see ¹⁸⁰ Os	-	3E+3	1E-6	4E-9	-	-	
		Y, see '"Os	-	3E+3	1E-6	4E-9	-	-	

Footnotes appear at the end of these three tables.

D92

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations

Concentrations	for Release to	Sanitary Sewera	ge (Continued)
----------------	----------------	-----------------	----------------

				Table I Occupational Values	I	Tab Effi Concen	le II uent trations	Table III Releases to Sewers	
			Col 1 Oral	Col. 2	Col. 3	Col. 1	Col. 2	Monthly	
	.	-	Ingestion	Inha	alation			Average	
Atomic No	Radionuclide	Class	ALI (μCι)	ALI (μCι)	DAC (μCι/ml)	Air (μCı/ml)	Water (µCı/ml)	Concentratio (µCi/ml)	
76	Osmium-194	D, see ¹⁸⁰ Os	4E+2 LLI wall	4E+1	2E-8	6E-11	-	-	
		100 -	(6E+2)	-	-	-	8E-6	8E-5	
		W, see ¹⁸⁰ Os	-	6E+1	2E-8	8E-11	-	-	
		Y, see ¹⁸⁰ Os	-	8E+0	3E-9	1E-11	-	-	
77	Iridium-182 ^{b/}	D, all compounds except	41714	1518		1E 7			
	-	those given for w and Y	4E+4 St wall	16+5	0E-J	26-1	-	-	
		W. halides, nitrates,	(4E+4)	-	-	-	6E-4	6E-3	
		and metallic iridium	-	2E+5	6E-5	2E-7	-	-	
		Y, oxides and hydroxides	-	1E+5	5E-5	2E-7	-	-	
77	Iridium-184	D, see 182 lr	8E+3	2E+4	1E-5	3E-8	1E-4	1E-3	
		W, see ¹⁸² Ir	-	3E+4	1E-5	5E-8	-	-	
		Y, see ¹⁸² Ir	-	3E+4	1E-5	4E-8	-	-	
77	Iridium-185	D, see 112 Ir	5E+3	1E+4	5E-6	2E-8	7E-5	7E-4	
		W, see ¹¹ Ir		1E+4	5E-6	2E-8	-	-	
		Y, see ""Ir	-	1644	4E-0	16-8		-	
77	Iridium-186	D, see ¹⁸² lr	2E+3	8E+3	3E-6	1E-8	3E-5	3E-4	
		W, see ¹⁸² Ir	-	6E+3	3E-6	9E-9	-	-	
		Y, see 182 lr	-	6E+3	2E-6	8E-9	-	-	
77	Iridium-187	D, see 182 Ir	1E+4	3E+4	1E-5	5E-8	1E-4	1E-3	
		W, see ¹⁸² Ir	-	3E+4	1E-5	4E-8	-	-	
		Y, see ¹⁸² lr	-	3E+4	1E-5	4E-8	-	-	
77	Iridium-188	D, see 182 Ir	2E+3	5E+3	2E-6	6E-9	3E-5	3E-4	
		W, see ¹⁸² Ir	-	4E+3	1E-6	5E-9	-	-	
		Y, see 162 lr	-	3E+3	1E-6	5E-9	-	-	
77	Iridium-189	D, see ¹⁸² Ir	5E+3	5E+3	2E-6	7E-9	-	-	
			LLI wall				75-5	7F.4	
		117	(35+3)	- 4E+2	- 2E 6	5E-0	76-5	/L	
		Y, see ¹⁸² Ir	-	4E+3	1E-6	5E-9	-	-	
77	Iridium-190m ^{b/}	D. see ¹⁸² Ir	2E+5	2E+5	8E-5	3E-7	2E-3	2E-2	
		W, see 182 Ir		2E+5	9E-5	3E-7	-	-	
		Y, see ¹⁸² Ir	-	2E+5	8E-5	3E-7	-	-	
77	Iridium-190	D, see ¹⁸² Ir	1E+3	9E+2	4E-7	1E-9	1E-5	1E-4	
	r	W, see ¹⁸² Ir	-	1E+3	4E-7	1E-9	-	_	
		Y, see ¹¹² Ir	-	9E+2	4E-7	1E-9	-	-	
77	Iridium-192m	D, see $\frac{182}{12}$	3E+3	9E+1	4E-8	1E-10	4E-5	4E-4	
		W, see ""Ir	-	2E+2	9E-8	3E-10	-	-	
		Y cee """ it	-	26+1	06-9	2E-11	-	_	

Footnotes appear at the end of these three tables.

....

r

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

. <u> </u>					;				
				Table I Occupational Values	I	Tab Effi Concen	le II uent trations	Table III Releases to Sewers	
-			Col. 1 Oral	Col. 2	CoL 3	Col. 1	Col. 2	Monthly	
Atomic No.	Radionuclide	Class	ALI (μCi)	ΑLI (μCi)	DAC (µCı/ml)	Air (μCı∕ml)	Water (µCı/ml)	Average Concentration (μCı/ml)	
77	Iridium-192	D, see 182 Ir	9E+2	3E+2	1E-7	4E-10	1E-5	1E-4	—
		$\mathbf{Y}, \mathbf{see}^{182}\mathbf{Ir}$	-	2E+2	9E-8	3E-10	-	-	
77	Iridium-194m	D, see 182 Ir W, see 182 Ir	6E+2 -	9E+1 2E+2	4E-8 7E-8	1E-10 2E-10	9E-6	9E-5	
		Y, see 182 Ir		1E+2	4E-8	1E-10	-	-	
77	Iridium-194	D, see 182 Ir W, see 182 Ir	1E+3 -	3E+3 2E+3	1E-6 9E-7	4E-9 3E-9	1E-5 -	1E-4	
		I, See Ir	-	26+3	8E-7	35-9	-	-	
77	Iridium-195m	D, see ¹⁸² Ir W, see ¹⁸² Ir Y, see ¹⁸² Ir	8E+3 	2E+4 3E+4 2E+4	1E-5 1E-5 9E-6	3E-8 4E-8 3E-8	1E-4 _ _	1E-3 	
77	Iridium-195	D, see 182 Ir W, see 182 Ir	1E+4	4E+4 5E+4	2E-5 2E-5	6E-8 7E-8	2E-4	2E-3	
		Y, see 182 Ir	-	4E+4	2E-5	6E-8	-	_	
78	Platinum-186	D, all compounds	1E+4	4E+4	2E-5	5E-8	2E-4	2E-3	
78	Platinum-188	D, all compounds	2E+3	2E+3	7E-7	2E-9	2E-5	2E-4	\smile
78	Platinum-189	D, all compounds	1E+4	3E+4	1E-5	4E-8	1E-4	1E-3	
78	Platinum-191	D, all compounds	4E+3	8E+3	4E-6	1E-8	5E-5	5E-4	
78	Platinum-193m	D, all compounds	3E+3 LLI wall	6E+3	3E-6	8E-9	-	-	
			(3E+4)	-	-	-	4E-5	4E-4	
78	Platinum-193	D, all compounds	4E+4 LLI wall (SE+4)	2E+4	1E-5	3E-8	-	-	
		.	(5514)	-	-	-	02-4	02-5	
78	Platinum-195m	D, all compounds	2E+3 LLI wall (2E+3)	4E+3	2E-6	6E-9	- 3E-5	- 3E-4	
78	Platinum-197m ^{by}	D, all compounds	2E+4	4E+4	2E-5	6E-8	2E-4	2E-3	
78	Platinum-197	D, all compounds	3E+3	1E+4	4E-6	1E-8	4E-5	4E-4	
78	Platinum-199 ⁶⁷	D, all compounds	5E+4	1E+5	6E-5	2E-7	7E-4	7E-3	
78	Platinum-200	D, all compounds	1E+3	3E+3	1E-6	5E-9	2E-5	2E-4	

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

				Table I Occupational Values		Tab Effi Concen	le II uent trations	Table III Releases to Sewers
			Col. 1 Oral	Col. 2	Col. 3	Col. 1	Col 2	Monthly
Atomic No	Radionuclid e	Class	ALI (µCi)	ΑЦ (μCi)	DAC (µCi/ml)	Air (μCi/ml)	Water (µCi/ml)	Concentration (µCı/ml)
70	C-14 102	D all compounds arount						
19	0010-193	those given for W and Y	0F+3	36+4	1E-5	4F-8	1F-4	1F-3
		W halides and nitrates	-	26+4	9F-6	35-8	-	-
		Y, oxides and hydroxides	-	2E+4	8E-6	3E-8	-	-
70	Gald 194	D. con 193 Au	2E+3	85+3	35-6	1E-8	4E-5	46.4
19	0010-174	$W \cos^{193} A v$	52.5	5E+3	25.6	85-0	46-5	76-7
		V, See Au V see ¹⁹³ Au	-	5E+3	2E-0 2E-6	7F-9	-	_
		1,800 Au	-	52.5	22-0	(2-)		_
79	Gold-195	D, see ¹⁹³ Au	5E+3	1E+4	5E-6	2E-8	7E-5	7E-4
		W, see ¹⁹³ Au	-	1E+3	6E-7	2E-9	-	-
		Y, see ¹⁹³ Au	-	4E+2	2E-7	6E-10	-	-
70	Gold 108m	D see 193 Au	1E+3	35+3	1E-6	4F-9	1F-5	1F-4
19	0010-19011	$W \sec^{193} Au$	1215	15+3	11-0 5E-7	26-9		
		Y, see ¹⁹³ Au	_	1E+3	5E-7	2E-9	-	-
	a	D 193 A	17.4	45.13	DE (6E 0	25.6	25.4
79	Gold-198	D, see Au	1E+3	46+3	2E-0	3E-9 3E 0	2E-3	2E-4
		Y, see ¹⁹³ Au	_	2E+3 2E+3	8E-7 7E-7	2E-9	-	-
-	G-11 100	TD	2512	07.12	45.6	15.9		
19	Gold-199	D, see "Au	LLI wall	9573	4 E- 0	12-0	-	-
			(3E+3)	-	-	-	4E-5	4E-4
		W, see ¹⁹³ Au	-	4E+3	2E-6	6E-9	-	-
		Y, see ¹⁹³ Au	-	4E+3	2E-6	5E-9	-	-
79	Gold-200m	D see ¹⁹³ Au	1E+3	4E+3	1E-6	5E-9	2E-5	2E-4
13	Gold Zoom	W. sec ¹⁹³ Au	-	3E+3	1E-6	4E-9	_	
		Y, see ¹⁹³ Au	-	2E+4	1E-6	3E-9	-	-
70	Gald 2008	D see 193 Au	35+4	6E+4	35-5	9F_8	4F-4	4F-3
13	0010-200	W can 193 Au	55.4	85+4	35-5	1E-7	-	-
		Y, see ¹⁹³ Au	-	7E+4	3E-5	1E-7	-	-
70	C-14 2018	D and ¹⁹³ Au	75+4	2E+4	05-5	35.7	_	_
79	Gold-201-	D, see Au	St wall	ZETJ	96-3	31-1	_	_
			(9E+4)	-	_	-	1E-3	1E-2
		W, see ¹⁹³ Au	-	2E+5	1E-4	3E-7	-	-
		Y, see ¹⁹³ Au	-	2E+5	9E-5	3E-7	-	-
80	Mercum-103m	Vanor	_	8E+3	4E-6	1E-8	-	_
00	14101001 y=175111	Organic D	4E+3	1E+4	5E-6	2E-8	6E-5	6E-4
		D sulfates	3E+3	9E+3	4E-6	1E-8	4E-5	4E-4
		W, oxides, hydroxides, halides, nitrates, and		,	•			/
				0710	25 /	10.0		

Footnotes appear at the end of these three tables.

.

,

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

				Table I Occupationa Values	1	Tab Effi Concen	le II uent trations	Table III Releases to Sewers	
			Col. 1	Col. 2	Col. 3	CoL 1	Col. 2	<u> </u>	
			Oral	Inh	alation			Monthly	
Atomic	Radionuclide	Class	ALI	ALI	DAC	Air	Water	Concentration	
No.			(μCi)	(μCι)	(µCi/ml)	(µCi/ml)	(µCı/ml)	(µCı/ml)	
80	Mercury-193	Vapor	_	3E+4	1E-5	4E-8	_	_	-
	•	Organic D	2E+4	6E+4	3E-5	9E-8	3E-4	3E-3	
		D, see ^{193m} Hg	2E+4	4E+4	2E-5	6E-8	2E-4	2E-3	
		W, see ^{193m} Hg	-	4E+4	2E-5	6E-8	-	_	
80	Mercury-194	Vapor	-	3E+1	1E-8	4E-11	-	-	
		Organic D	2E+1	3E+1	1E-8	4E-11	2E-7	2E-6	
		D, see ¹⁹³ Hg	8E+2	4E+1	2E-8	6E-11	1E-5	1E-4	
		W, see """Hg	-	1E+2	5E-8	2E-10	-	-	
80	Mercury-195m	Vapor	-	4E+3	2E-6	6E-9	-	-	
		Organic D	3E+3	6E+3	3E-6	8E-9	4E-5	4E-4	
		D, see ^{193m} Hg	2E+3	5E+3	2E-6	7E-9	3E-5	3E-4	
		W, see ^{193m} Hg	-	4E+3	2E-6	5E-9	-	-	
80	Mercury-195	Vapor	-	3E+4	1E-5	4E-8	_	<u> </u>	
	-	Organic D	2E+4	5E+4	2E-5	6E-8	2E-4	2E-3	
		D, see ^{193m} Hg	1E+4	4E+4	1E-5	5E-8	2E-4	2E-3	
		W, see ^{193m} Hg	-	3E+4	1E-5	5E-8	-	-	
80	Mercury-197m	Vapor	-	5E+3	2E-6	7E-9	-	_	
		Organic D	4E+3	9E+3	4E-6	1E-8	5E-5	5E-4	
		D, see ¹⁹³ Hg W, see ¹⁹³ Hg	3E+3	7E+3 5E+3	3E-6 2E-6	1E-8 7E-9	4E-5 -	4E-4 -	\bigcirc
00	107				(T) (
80	Mercury-197	Vapor	-	8E+3	4E-6	IE-8			
		Organic D	/E+3	1E+4	0E-0	2E-8	9E-5	9E-4	
		W, see ^{193m} Hg	-	9E+3	5E-6 4E-6	2E-8 1E-8	8E-5 -	8E-4	
80	Mercury-199m ^b	Vapor	-	8E+4	3E-5	1E-7	-	_	
		Organic D	6E+4	2E+5	7E-5	2E-7	_	_	
			St wall						
			(1E+5)	-	-	-	1E-3	1E-2	
		D, see ^{193m} Hg	6E+4	1E+5	6E-5	2E-7	8E-4	8E-3	
		W, see ^{193m} Hg	-	2E+5	7E-5	2E-7	-	-	
80	Mercury-203	Vapor	-	8E+2	4E-7	1E-9	-	-	
		Organic D	5E+2	8E+2	3E-7	1E-9	7E-6	7E-5	
		D, see ¹⁹³ Hg	2E+3	1E+3	5E-7	2E-9	3E-5	3E-4	
		W, see ·····Hg	-	1E+3	5E-7	2E-9	-	-	
81	Thallium-194m ^b	D, all compounds	5E+4	2E+5	6E-5	2E-7	-	-	
,			(7E+4)	-	-	-	1E-3	1E-2	
81	Thallium-194 ^b	D, all compounds	3E+5	6E+5	2E-4	8E-7	-	-	
		· •	St wall						
			(3E+5)	-	-	-	4E-3	4E-2	
81	Thallium-195 ^b	D, all compounds	6E+4	1E+5	5E-5	2E-7	9E-4	9E-3	

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

		,		Table I Occupational Values		Tabl Efflu Concent	e II Jent trations	Table III Releases to Sewers
			Col. 1 Oral	Col 2	CoL 3	Col 1	Col. 2	Monthly
Atomic No	Radionuclide	Class	ALI (μCi)	ΑLI (μCi)	DAC (µCı/ml)	Air (µCi/ml)	Water (µCi/ml)	Concentration (µCi/ml)
81	Thallium-197	D, all compounds	7E+4	1E+5	5E-5	2E-7	1E-3	1E-2
81	Thallium-198m ^{b/}	D, all compounds	3E+4	5E+4	2E-5	8E-8	4E-4	4E-3
81	Thallium-198	D, all compounds	2E+4	3E+4	1E-5	5E-8	3E-4	3E-3
81	Thallium-199	D, all compounds	6E+4	8E+4	4E-5	1E-7	9E-4	9E-3
81	Thallium-200	D, all compounds	8E+3	1E+4	5E-6	2E-8	1E-4	1E-3
81	Thallium-201	D, all compounds	2E+4	2E+4	9E-6	3E-8	2E-4	2E-3
81	Thallium-202	D, all compounds	4E+3	5E+3	2E-6	7E-9	5E-5	5E-4
81	Thallium-204	D, all compounds	2E+3	2E+3	9E-7	3E-9	2E-5	2E-4
82	Lead-195m ^{b/}	D, all compounds	6E+4	2E+5	8E-5	3E-7	8E-4	8E-3
82	Lead-198	D, all compounds	3E+4	6E+4	3E-5	9E-8	4E-4	4E-3
82	Lead-199 ^{b/}	D, all compounds	2E+4	7E+4	3E-5	1E-7	3E-4	3E-3
82	Lead-200	D, all compounds	3E+3	6E+3	3E-6	9E-9	4E-5	4E-4
82	Lead-201	D, all compounds	7E+3	2E+4	8E-6	3E-8	1E-4	1E-3
82	Lead-202m	D, all compounds	9E+3	3E+4	1E-5	4E-8	1E-4	1E-3
82	Lead-202	D, all compounds	1E+2	5E+1	2E-8	7E-11	2E-6	2E-5
82	Lead-203	D, all compounds	5E+3	9E+3	4E-6	1E-8	7E-5	7E-4
82	Lead-205	D, all compounds	4E+3	1E+3	6E-7	2E-9	5E-5	5E-4
82	Lead-209	D, all compounds	2E+4	6E+4	2E-5	8E-8	3E-4	3E-3
82	Lead-210	D, all compounds	6E-1 Bone surf	2E-1 Bone surf	1E-10	- 6E 13	- 1E-8	- 1E-7
			(16+0)	(4E-1)	-	00-13	25.4	2E-3
82	Lead-211 ^p	D, all compounds	16+4	02+2	3E-7	9E-10	204	<u></u>
82	Lead-212	D, all compounds	8E+1 Bone surf (1E+2)	3E+1 -	-	-	- 2E-6	2E-5
82	Lead-214 ^{b/}	D, all compounds	9E+3	8E+2	3E-7	1E-9	1E-4	1E-3
83	Bismuth-200 ^{b'}	D, nitrates W all other compounds	3E+4	8E+4 1E+5	4E-5 4E-5	1E-7 1E-7	4E-4	4E-3

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

				Table I Occupational Values		Tab Effi Concen	le II uent trations	Table III Releases to , Sewers	
			Col. 1	CoL 2	Col. 3	Col 1	Col. 2		
			Oral Ingestion	ไกโล	ation			Monthly	
Atomic No.	Radionuclide	Class	ΑЦ (μCī)	ΑLI (μCī)	DAC (µCi/ml)	Aır (µCı/ml)	Water (μCı/ml)	Concentration (µCı/ml)	
83	Bismuth-201 [⊌]	D, see ²⁰⁰ Bi W, see ²⁰⁰ Bi	1E+4 -	3E+4 4E+4	1E-5 2E-5	4E-8 5E-8	2E-4	2E-3	
83	Bismuth-202 ^b	D, see ²⁰⁰ Bi W, see ²⁰⁰ Bi	1E+4 _	4E+4 8E+4	2E-5 3E-5	6E-8 1E-7	2E-4	2E-3	
83	Bismuth-203	D, see ²⁰⁰ Bi W, see ²⁰⁰ Bi	2E+3 -	7E+3 6E+3	3E-6 3E-6	9E-9 9E-9	3E-5 -	3E-4	
83	Bismuth-205	D, see ²⁰⁰ Bi W, see ²⁰⁰ Bi	1E+3 _	3E+3 1E+3	1E-6 5E-7	3E-9 2E-9	2E-5 -	2E-4	
83	Bismuth-206	D, see ²⁰⁰ Bi W, see ²⁰⁰ Bi	6E+2 -	1E+3 9E+2	6E-7 4E-7	2E-9 1E-9	9E-6 -	9E-5 -	
83	Bismuth-207	D, see ²⁰⁰ Bi W, see ²⁰⁰ Bi	1E+3 _	2E+3 4E+2	7E-7 1E-7	2E-9 5E-10	1E-5 —	1E-4 -	
83	Bismuth-210m	D, see ²⁰⁰ Bi	4E+1 Kidneys	5E+0 Kidneys	2E-9	-	-	-	
		W, see ²⁰⁰ Bi	(62+1)	(8E+0) 7E-1	3E-10	9E-12 9E-13	8E-7 -	8E-6 —	< /
83	Bismuth-210	D, sœ ²⁰⁰ Bi	8E+2 -	2E+2 Kidneys	1E-7	-	1E-5	1E-4	\bigcirc
		W, see ²⁰⁰ Bi	-	(4E+2) 3E+1	- 1E-8	5E-10 4E-11	-	-	
83 ~	Bismuth-212 ^b	D, see ²⁰⁰ Bi W, see ²⁰⁰ Bi	5E+3 -	2E+2 3E+2	1E-7 1E-7	3E-10 4E-10	7E-5 _	7E-4	
83	Bismuth-213 ^{b'}	D, see ²⁰⁰ Bi W, see ²⁰⁰ Bi	7E+3 _	3E+2 4E+2	1E-7 1E-7	4E-10 5E-10	1E-4 -	1E-3 -	
83	Bismuth-214 ^{b/}	D, see ²⁰⁰ Bi	2E+4 St wall	8E+2	3E-7	1E-9	-	-	
		W, see ²⁰⁰ Bi	(2E+4) _	- 9E-2	- 4E-7	- 1E-9	3E-4 -	3E-3	
84	Polonium-203 ^b	D, all compounds except those given for W W oxides hydroxides	3E+4	6E+4	3E-5	9E-8	3E-4	3E-3	
		and nitrates	-	9E+4	4E-5	1E-7	-	-	
84	Polonium-205 ^b	D, see 203 Po W, see 203 Po	2E+4 _	4E+4 7E+4	2E-5 3E-5	5E-8 1E-7	3E-4	3E-3 _	
84	Polonium-207	D, see ²⁰³ Po W, see ²⁰³ Po	8E+3 -	3E+4 3E+4	1E-5 1E-5	3E-8 4E-8	1E-4 -	1E-3 -	

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

					Table I Occupational Values		Tabl Effle Concen	le II uent trations	Table III Releases to Sewers
				Col. 1 Oral	Col. 2	Col 3	Col. 1	Col 2	Monthly
	Atomic No.	¹ Radionuclide	Class	ALI (μCι)	ALI (μCi)	DAC (µCı/ml)	Air (μCı/ml)	Water (μCı∕ml)	Concentration (µCı/ml)
-	84	Polonium-210	D, see ²⁰³ Po W, see ²⁰³ Po	3E+0 _	6E-1 6E-1	3E-10 3E-10	9E-13 9E-13	4E-8 -	4E-7
	85	Astatine-207 ^{b/}	D, halides W	6E+3 -	3E+3 2E+3	1E-6 9E-7	4E-9 3E-9	8E-5 -	8E-4 -
	85	Astatine-211	D, halides W	1E+2 -	8E+1 5E+1	3E-8 2E-8	1E-10 8E-11	2E-6	2E-5 -
	86	Radon-220	With daughters removed With daughters present	- -	2E+4 2E+1 (or 12 WLM)	7E-6 9E-9 (or 1.0 WL)	2E-8 3E-11	-	-
	86	Radon-222	With daughters removed With daughters present	-	1E+4 1E+2 (or 4 WLM)	4E-6 3E-8 (or 0.33 WL)	1E-8 1E-10	-	-
	87	Francium-222 ^b	D, all compounds	2E+3	5E+2	2E-7	6E-10	3E-5	3E-4
	87	Francium-223 ^{b'}	D, all compounds	6E+2	8E+2	3E-7	1E-9	8E-6	8E-5
\smile	88	Radium-223	W, all compounds	5E+0 Bone surf	7E-1	3E-10	9E-13	-	-
				(9E+0)	-	-	-	IE-7	1E-0
	88	Radium-224	W, all compounds	8E+0 Bone surf (2E+1)	2E+0 _	7E-10 -	2E-12 -	- 2E-7	 2E-6
	88	Radium-225	W, all compounds	8E+0 Bone surf	7E-1	3E-10	9E-13	-	-
				(2E+1)	-	-	-	2E-7	2E-6
	88	Radium-226	W, all compounds	2E+0 Bone surf	6E-1	3E-10	9E-13	-	-
				(5E+0)	-	-	-	6E-8	6E-7
	88	Radium-227 ^{b/}	W, all compounds	2E+4 Bone surf	1E+4 Bone surf	6E-6	-	-	-
				(2E+4)	(2E+4)	-	3E-8	JC-4	36-3
	88	Radium-228	W, all compounds	2E+0 Bone surf	1E+0	5E-10	2E-12	- 6F %	- 45.7
				(4E+0)	-	-	-	06-9	02-/

Footnotes appear at the end of these three tables

٢

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

				Table I Occupational Values		Tab Effi Concen	le II uent trations	Table III Releases to Sewers '	
			Col. 1 Oral	CoL 2	Col. 3	Col. 1	CoL 2	Monthly	
Atomic No.	Radionuclide	Class	Ingestion ALI (µCi)	Inhala ALI (μCi)	tion DAC (μCi/ml)	Air (μCi/ml)	Water (µCı/ml)	Average Concentration (µCı/ml)	
89	Actinium-224	D, all compounds except							
		those given for W and Y	2E+3 LLI wall	3E+1 Bone surf	1E-8	-	-	-	
		W Latitude and alterated	(2E+3)	(42+1)	-	5E-11	3E-5	3E-4	
		w, halides and nitrates	-	5E+1	2E-8	7E-11	-	-	
		Y, oxides and hydroxides	-	5E+1	2E-8	6E-11	-	-	
89	Actinium-225	D, see ²²⁴ Ac	5E+1 LLI wall	3E-1 Bone surf	1E-10	-	-	-	
			(5E+1)	(5E-1)	-	7E-13	7E-7	7E-6	
		W, see ²²⁴ Ac	-	6E-1	3E-10	9E-13	_	-	
		Y, see ²²⁴ Ac	-	6E-1	3E-10	9E-13		-	
89	Actinium-226	D, see ²²⁴ Ac	1E+2 LLI wall	3E+0 Bone surf	1E-9	-	-	-	
			(1E+2)	(4E+0)	_	5E-12	2E-6	2E-5	
		W, see ²²⁴ Ac	` ´	5E+0	2E-9	7E-12			
		Y, see ²²⁴ Ac	-	5E+0	2E-9	6E-12	-	-	
89	Actinium-227	D, see ²²⁴ Ac	2E-1 Bone surf	4E-4 Bone surf	2E-13	-	-	-	
			(4E-1)	(8E-4)		1E-15	5E-9	5E-8	
		W, s ce ^{2*} Ac	-	2E-3 Bone surf	7E-13	-	-	-	\bigcirc
		224 .	-	(32-3)	-	4E-15	-	-	
		Y, see Ac	-	4E-3	2E-12	6E-15	-	-	
89	Actinium-228	D, see ²²⁴ Ac	2E+3	9E+0 Bone surf	4E-9	-	3E-5	3E-4	
			-	(2E+1)	-	2E-11	-	-	
		W, see ²² Ac	-	4E+1 Bone surf	2E-8	-	-	-	
			-	(6E+1)	-	8E-11	-	-	
		Y, see "Ac	-	4E+1	2E-8	6E-11	-	-	
90	Thorium-226 ^b	W, all compounds except							
		those given for Y	5E+3 St wall	2E+2	6E-8	2E-10	-	-	
			(5E+3)	-	-	-	7E-5	7E-4	
		Y, oxides and hydroxides	-	1E+2	6E-8	2E-10	-	-	
90	Thorium-227	W, see ²²⁶ Th	1E+2	3E-1	1E-10	5E-13	2E-6	2E-5	
		Y, see ²²⁶ Th	_	3E-1	1E-10	5E-13	-	_	
	-	226-2							
90	Thorium-228	W, see ²²⁰ Th	6E+0 Bone surf	1E-2 Bone surf	4E-12	-	-	-	
		3 F 226-79	(1E+1)	(2E-2)	-	3E-14	2E-7	2E-6	
		Y, see ""Ih	-	2E-2	7E-12	2E-14	-	-	

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations

Concentrations for Release to Sanitary Sewerage (Continued	d)
--	----

				Table I Occupational Values		Tabl Effu Concent	le II Jent trations	Table III Releases to Sewers
			Col. 1 Oral	Col. 2	Col. 3	Col. 1	Col. 2	Monthly
Atomic No	Radionuclide	Class	ALI (μCi)	<u>IIIIIIIII</u> ALI (μCι)	DAC (μCı/ml)	Air (μCı/ml)	Water (µCı/ml)	Concentration (µCı/ml)
90	Thorium-229	W, see ²²⁶ Th	6E-1 Bone surf	9E-4 Bone surf	4E-13	-	-	-
		Y, see ²²⁶ Th	(1E+0) -	(2E-3) 2E-3 Bone surf	1E-12	3E-15 -	2E-8 -	2E-7 _
90	Thorium-230	W, see ²²⁶ Th	- 4E+0 Bone surf	(3E-3) 6E-3 Bone surf	3E-12	4E-15 -		-
		Y, see ²²⁶ Th	(9E+0) -	(2E-2) 2E-2 Bone surf	- 6E-12	2E-14	1E-7 -	1E-6 -
			-	(2E-2)	-	3E-14	-	-
90	Thorium-231	W, see ²²⁶ Th Y, see ²²⁶ Th	4E+3 -	6E+3 6E+3	3E-6 3E-6	9E-9 9E-9	5E-5 -	5E-4 -
90	Thorium-232	W, see ²²⁶ Th	7E-1 Bone surf	1E-3 Bone surf	5E-13	-	-	-
		Y, see ²²⁶ Th	(2E+0) _	(3E-3) 3E-3 Bone sur	- 1E-12	4E-15 -	3E-8 -	3E-7 _
00	77	117 ²²⁶ 77	-	(4E-3) 2E+2	-	6E-15	-	-
90	Thonum-234	w, see - 11	5E+2 LLI wall (4E+2)	-	-	· -	5E-6	5E-5
	n di east	Y, see ²²⁶ Th	-	2E+2	6E-8	2E-10	-	
91	Protactinium-22 /*	those given for Y Y, oxides and hydroxides	4E+3 _	1E+2 1E+2	5E-8 4E-8	2E-10 1E-10	5E-5 -	5E-4
91	Protactinium-228	W, see ²²⁷ Pa	1E+3	1E+1 Bone surf	5E-9	-	2E-5	2E-4
		Y, see ²²⁷ Pa	-	(2E+1) 1E+1	5E-9	2E-11	-	-
91	Protactinium-230	W, s cc ²²⁷ Pa	6E+2 Bone surf (9E+2)	5E+0	2E-9	7E-12	- 1E-5	- 1E-4
		Y, see ²²⁷ Pa	-	4E+0	1E-9	5E-12	-	-
91	Protactinium-231	W, see ²²⁷ Pa	2E-1 Bone surf	2E-3 Bone surf	6E-13	- 6E-15	 6F-9	- 6F-8
			(35-1)	(40-3)	-	01-15	012	0-40

Footnotes appear at the end of these three tables

-

Appendix B

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations

Concentrations for Release to Sanitary Sewerage (Continued)

			Table I Occupational Values			Tab Effl Concen	ie II uent itrations	Table III Releases to Sewers	Ŭ
			Col. 1 Oral	Col. 2	Col. 3	Col. 1	Col. 2	Monthly	
Atomic No.	Radionuclide	Class	Ingestion ALI (μCi)	<u>Inhala</u> ALI (μCi)	tion DAC (μCι/ml)	Air (μCı/ml)	Water (µCı∕ml)	Average Concentration (µCi/ml)	
91	Protactinium-232	W, see ²²⁷ Pa	1E+3	2E+1 Bone surf	9E-9	-	2E-5	2E-4	-
		Y, see 227Pa	-	(6E+1) 6E+1 Bone surf	2E-8	8E-11 -	-	-	
			-	(7E+1)	-	1E-10	-	-	
91	Protactinium-233	W, see ²²⁷ Pa	1E+3 LLI wall	7E+2	3E-7	1E-9	-	-	
		Y, see ²²⁷ Pa	(2E+3)	- 6E+2	2E-7	- 8E-10	2E-5	2E-4	
91	Protactinium-234	W, see ²²⁷ Pa Y, see ²²⁷ Pa	2E+3 -	8E+3 7E+3	3E-6 3E-6	1E-8 9E-9	3E-5	3E-4 -	
92	Uranium-230	D, UF6, UO2F2, UO2,(NO3)2	4E+0 Bone surf	4E-1 Bone surf	2E-10	-	-	-	
		W. UO3, UE4, UC4	(02+0)	(6E-1) 4E-1	- 1E-10	8E-13 5E-13	8E-8	8E-7	
		Y, UO_2 , U_3O_8	-	3E-1	1E-10	4E-13	-	_	
92	Uranium-231	D, s ce ²³⁰ U	5E+3 LLI wall	8E+3	3E-6	1E-8	- 45 5	-	\smile
		W. see ²³⁰ U	(42+3)	- 6E+3	2E-6	8E-9	- -	06-4	
		Y, see ²³⁰ U	-	5E+3	2E-6	6E-9	-		
92	Uranium-232	D, see ²³⁰ U	2E+0 Bone surf	2E-1 Bone surf	9E-11	-	-	-	
		14F 230FT	(4E+0)	(4E-1)	_	6E-13	6E-8	6E-7	
		W, see ²³⁰ U V see ²³⁰ U	-	4E-1 8E-3	2E-10 3E-12	5E-13	-	-	
97	Uranium-233	D_{sec}^{230}	1E+1	1E+0	5E-12	12-14	-	-	
	010000-200	2,300 0	Bone surf	Bone surf	51-10	35-12	3E-7	35.6	
		W. see ²³⁰ U	(22.1)	7E-1	3E-10	1E-12	-	-	
		Y, see ²³⁰ U	-	4E-2	2E-11	5E-14	-	-	
92	Uranium-234¢	D, see ²³⁰ U	1E+1 Bone surf	1E+0 Bone surf	5E-10	-	-	-	
		337	(2E+1)	(2E+0)	-	3E-12	3E-7	3E-6	
		Y, see ²³⁰ U	-	4E-2	2E-10	5E-12	_	-	

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations

\smile -									
					Table I Occupational Values		Table II Effluent Concentrations		Table III Releases to Sewers
				Col. 1 Oral	Col. 2	Col. 3	Col. 1	Col 2	Monthly
				Ingestion	Inhalat	10n			Average
	Atomic	Radionuclide	Class	ALI	ALI	DAC	Air	Water	Concentration
	No.			(μCī)	(μCi)	(µCi/ml)	(µCı/ml)	(µCı/mI)	(µCı/ml)
-	92	Uranium-235 ^e	D, see ²³⁰ U	1E+1	1E+0	6E-10	-	-	-
			-	Bone surf	Bone surf				
				(2E+1)	(2E+0)	-	3E-12	3E-7	3E-6
			W. see ²³⁰ U	· _ ·	8E-1	3E-10	1E-12	-	_
			Y, see ²³⁰ U	_	4E-2	2E-11	6E-14	-	-
	92	Uranium-236	D, see ²³⁰ U	1E+1	1E+0	5E-10	-	-	-
			-	Bone surf	Bone surf				
				(2E+1)	(2E+0)	-	3E-12	3E-7	3E-6
			W. sec ²³⁰ U	` - ´	8E-1	3E-10	1E-12	-	-
			Y, see ²³⁰ U	-	4E-2	2E-11	6E-14	-	-
	92	Uranium-237	D, sec ²³⁰ U	2E+3	3E+3	1E-6	4E-9	-	-
				LLI wall			_	36.5	3F_4
			TT	(26+3)	-	75.7	25.0	32-3	55-4
			W, see 230 U Y. see 230 U	-	2E+3 2E+3	7E-7 6E-7	2E-9 2E-9	-	-
				15.1	15.0	(T 10			
	92	Uranium-238 ⁹	D, see 100	IE+I	IE+0	6E-10	-	-	-
				Bone surf	Bone suri		017 10	15.0	25 6
			320- 5	(2E+1)	(2E+0)	-	3E-12	36-1	3E-0
1 /			W, see 200	-	8E-1	3E-10	IE-12	-	-
\bigcirc			Y, see ²⁵⁰ U	-	4E-2	2E-11	6E-14	-	-
	92	Uranium-239b	D see ²³⁰ U	7E+4	2E+5	8E-5	3E-7	9E-4	9E-3
	72	Oramoni 207	W. see ²³⁰ U	-	2E+5	7E-5	2E-7	-	-
			Y, see ²³⁰ U	-	2E+5	6E-5	2E-7	-	-
	92	Uranium-240	D. see ²³⁰ U	1E+3	4E+3	2E-6	5E-9	2E-5	2E-4
			W. see ²³⁰ U	-	3E+3	1E-6	4E-9	-	-
			Y, see ²³⁰ U	-	2E+3	1E-6	3E-9	-	-
	92	Uranium-natural ^s	D, see ²³⁰ U	1E+1	1E+0	5E-10	-	-	-
				Bone surf	Bone surf				AT (
				(2E+1)	(2E+0)	-	3E-12	3E-7	3E-0
			W, see ²³⁰ U	-	8E-1	3E-10	9E-13	-	-
			Y, see ²³⁰ U	-	5E-2	2E-11	9E-14	-	-
	93	Neptunium-232 ^{b'}	W, all compounds	1E+5	2E+3	7E-7		2E-3	2E-2
				_	Bone surf	_	6E-9	-	_
				-	(32,2)	_			
	93	Neptunium-233 ^{₺⁄}	W, all compounds	8E+5	3E+6	1E-3	4E-6	1E-2	1E-1
	93	Neptunium-234	W, all compounds	2E+3	3E+3	1E-6	4E-9	3E-5	3E-4
	93	Neptunium-235	W, all compounds	2E+4	8E+2	3E-7	-	-	-
				LLI wall	Bone surf			25 4	
				(2E+4)	(1E+3)	-	2E-9	3E-4	3E-3

Appendix B

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

			Table I Occupational Values			Tab Effi Concen	le II uent trations	Table III Releases to Sewers	
			Col. 1	Col. 2	Col. 3	Col. 1	Col. 2		
	Radionuclide		Oral Ingestion	Inhala	tion			Monthly	
Atomic		Class	ALI ALI DAC			Air	Water	Concentration	
No.			(µCi)	(μCi)	(µCi/ml)	(µCı/ml)	(µCı/ml)	(µCı/ml)	
93	Neptunium-236 (1.15E+5 y)	W, all compounds	3E+0 Bone surf	2E-2 Bone surf	9E-12	-	-	-	
			(6E+0)	(5E-2)	-	8E-14	9E-8	9E-7	
93	Neptunium-236 (22 5 h)	W, all compounds	3E+3 Bone surf	3E+1 Bone surf	1E-8	-	-	-	
			(4E+3)	(7E+1)	-	1E-10	5E-5	5E-4	
93	Neptunium-237	W, all compounds	5E-1 Bone surf	4E-3 Bone surf	2E-12	-	-	-	
			(1E+0)	(1E-2)	-	1E-14	2E-8	2E-7	
93	Neptunium-238	W, all compounds	1E+3	6E+1 Bone surf	3E-8	-	2E-5	2E-4	
			-	(2E+2)	-	2E-10	-	-	
93	Neptunium-239	W, all compounds	2E+3 LLI wall	2E+3	9E-7	3E-9	-	-	
			(2E+3)	-	-	-	2E-5	2E-4	
93	Neptunium-240 ^{b/}	W, all compounds	2E+4	8E+4	3E-5	1E-7	3E-4	3E-3	
94	Plutonium-234	W, all compounds							\bigcirc
		except PuO ₂	8E+3	2E+2	9E-8	3E-10	1E-4	1E-3	
		Y, PuO ₂	-	2E+2	8E-8	3E-10	-	-	
94	Plutonium-235 ^{b∕}	W, see ²³⁴ Pu	9E+5	3E+6	1E-3	4E-6	1E-2	1E-1	
		Y, see ²³⁴ Pu	-	3E+6	1E-3	3E-6	-	-	
94	Plutonium-236	W, see ²³⁴ Pu	2E+0 Bone surf	2E-2 Bone surf	8E-12	-	-	-	
			(4E+0)	(4E-2)	_	5E-14	6E-8	6E-7	
		Y, see ²³⁴ Pu	-	4E-2	2E-11	6E-14	_	-	
94	Plutonium-237	W. see ²³⁴ Pu	1E+4	3F+3	1F-6	5F-9	2F-4	2F-3	
		Y, see ²³⁴ Pu	-	3E+3	1E-6	4E-9	-	-	
94	Plutonium-238	W, s ce ²³⁴ Pu	9E-1	7E-3	3E-12	_	_	-	
			Bone surf	Bone surf		25 14	25.9	25.7	
		Y, see ²³⁴ Pu	-	2E-2	8E-12	2E-14 2E-14	2E-0 -	2E-7	
04	Phytoniu- 220	W	9E 1	4E 2	10 10				
77	r iuwmum-239	17, SCC /U	Bone surf	Bone surf	30-12	-		-	
			(1E+0)	(1E-2)	-	2E-14	2E-8	2E-7	
		Y, see ²³⁴ Pu	-	2E-2	7E-12	-	-	-	
			-	(2E-2)	-	2E-14	-	_	
				()				—	

Footnotes appear at the end of these three tables.

•

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations

Concentrations for Release to Sanitary Sewera

				,	Table I Occupational Values		Table II Effluent Concentrations		Table III Releases to Sewers
				Col 1 Oral Ing e stion	Col. 2	Col. 3	Col. 1	Col. 2	Monthly Average
	Atomic No	Radionuclide	Class	ALI (μCι)	ALI (μCı)	DAC (µCı/ml)	Air (μCı/ml)	Water (µCı/ml)	Concentration (µCi/ml)
-	94	Plutonium-240	W, see ²³⁴ Pu	8E-1 Bone surf	6E-3 Bone surf	3E-12	-	-	
			Y, see ²³⁴ Pu	(1E+0) _	(1E-2) 2E-2 Bone surf	- 7E-12	2E-14 -	2E-8 -	2E-7 _
				-	(2E-2)	-	2E-14	-	-
	94	Plutonium-241	W, see ²³⁴ Pu	4E+1 Bone surf	3E-1 Bone surf	1E-10		-	-
			Y. see ²³⁴ Pu	(7E+1) _	(6E-1) 8E-1	- 3E-10	8E-13	↓E-6 	1E-5
			-,	-	Bone surf (1E+0)	-	1E-12	-	_
	94	Plutonium-242	W, see ²³⁴ Pu	8E-1 Bone surf	7E-3 Bone surf	3E-12	-	-	-
			Y, see ²³⁴ Pu	(1E+0) -	(1E-2) 2E-2 Bone surf	- 7E-12	2E-14 _	2E-8 _	2E-7 -
				-	(2E-2)	-	2E-14	-	-
\bigcirc	94	Plutonium-243	W, see ²³⁴ Pu Y, see ²³⁴ Pu	2E+4 -	4E+4 4E+4	2E-5 2E-5	5E-8 5E-8	2E-4	2E-3
	94	Plutonium-244	W, see ²³⁴ Pu	8E-1 Bone surf	7E-3 Bone surf	3E-12	-	-	-
			Y, see ²¹⁴ Pu	(2E+0) -	(1E-2) 2E-2 Bone surf	7E-12	2E-14 -	2E-8 -	2E-7
				-	(2E-2)	-	2E-14	-	-
	94	Plutonium-245	W, see ²³⁴ Pu Y, see ²³⁴ Pu	2E+3 _	5E+3 4E+3	2E-6 2E-6	6E-9 6E-9	3E-5 -	3E-4
	94	Plutonium-246	W, see ²³⁴ Pu	4E+2 LLI wall	3E+2	1E-7	4E-10	-	-
			Y, see ²¹⁴ Pu	(4E+2) -		1E-7	4E-10	6E-6 -	6E-5 -
	95	Americium-237 ^b	W, all compounds	8E+4	3E+5	1E-4	4E-7	1E-3	1E-2
	95	Americium-238 ^{b/}	、W, all compounds	4E+4	3E+3 Bone surf	1E-6	-	5E-4	5E-3
				-	(6E+3)	-	9E-9	-	-
	95	Americium-239	W, all compounds	5E+3	1E+4	5E-6	2E-8	7E-5	7E-4
	95	Americium-240	W, all compounds	2E+3	3E+3	1E-6	4E-9	3E-5	3E-4

1

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

		Class		Table I Occupational Values		Table II Effluent Concentrations		Table III Releases to Sewers	
			Col. 1 Oral	Col. 2	Col. 3	Col. 1	Col. 2	Monthly	
Atomic No.	Radionuclide		ALI (μCı)	ΑЦ (μCi)	DAC (µCı/ml)	Air (μCı/ml)	Water (µCı/ml)	Concentration (µCi/ml)	
95	Americium-241	W, all compounds	8E-1 Bone surf	6E-3 Bone surf	3E-12	-	-	_	-
95	Americium-242m	W, all compounds	(1E+0) 8E-1 Bone surf	(IE-2) 6E-3 Bone surf	- 3E-12	2E-14 -	2E-8 -	2E-7 -	
			(1E+0)	(IE-2)	-	2E-14	2E-8	2E-7	
95	Americium-242	W, all compounds	4E+3	8E+1 Bone surf	4E-8	-	5E-5	5E-4	
95	Americium-243	W, all compounds	8E-1 Bone surf (1E+0)	6E-3 Bone surf (1F-2)	3E-12	7E-14	- - 2E_8	- - 2E-7	
95	Americium-244m ^b	W, all compounds	6E+4 St wall	4E+3 Bone surf	2E-6	-	-	_	
			(8E+4)	(7E+3)	-	1E-8	1E-3	1E-2	
95	Americium-244	W, all compounds	3E+3	2E+2 Bone surf (3E+2)	8E-8 _	- 4E-10	4E-5	4E-4	
95	Americium-245	W, all compounds	3E+4	8E+4	3E-5	1E-7	4E-4	4E-3	\smile
9 5	Americium-246m ^{b/}	W, all compounds	5E+4 St wall	2E+5	8E-5	3E-7	-	-	
			(6E+4)	-	-	-	8E-4	8E-3	
95	Americium-246 ^b	W, all compounds	3E+4	1E+5	4E-5	1E-7	4E-4	4E-3	
96	Curium-238	W, all compounds	2E+4	1E+3	5E-7	2E-9	2E-4	2E-3	
96	Curium-240	W, all compounds	6E+1 Bone surf	6E-1 Bone surf	2E-10	-	-	-	
			(8E+1)	(6E-1)	-	9E-13	1E-6	1E-5	
96	Curium-241	W, all compounds	1E+3	3E+1 Bone surf (4E+1)	1E-8	- 5E-11	2E-5	2E-4	
96	Curium-242	W, all compounds	3E+1	3E-1	1E-10	-	_	-	
			Bone surf (5E+1)	Bone surf (3E-1)	-	4E-13	7E-7	7E-6	
96	Curium-243	W, all compounds	1E+0 Bone surf	9E-3 Bone surf	4E-12	-	-	-	
			(2E+0)	(2E-2)	_	2E-14	3E-8	3E-7	

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations

Concentrati	ions for Re	lease to San	itary Sewera	ge (Continued)
-------------	-------------	--------------	--------------	----------------

				Table I Occupational Values		Tabl Effla Concent	Table III Releases to Sewers	
-			Col. 1 Oral	Col. 2	Col 3	Col. 1	Col. 2	Monthly
Atomic No.	Radionuclide	Class	Ingestion ALI (μCi)	Inhala(ALI (μCι)	tion DAC (μCı/ml)	Aır (μCı/ml)	Water (µCı/ml)	Average Concentratio (μCi/ml)
96	Curium-244	W, all compounds	1E+0 Bone surf	1E-2 Bone surf	5E-12	-	-	-
			(3E+0)	(2E-2)	-	3E-14	3E-8	3E-7
96	Curium-245	W, all compounds	7E-1 Bone surf	6E-3 Bone surf	3E-12	-	-	-
			(1E+0)	(1E-2)	-	2E-14	2E-8	2E-7
96	Curium-246	W, all compounds	7E-1 Bone surf	6E-3 Bone surf	3E-12	-	-	-
			(1E+0)	(IE-2)	-	2E-14	2E-8	2E-7
96	Curium-247	W, all compounds	8E-1 Bone surf	6E-3 Bone surf	3E-12	-	-	-
			(1E+0)	(1E-2)	-	2E-14	2E-8	2E-7
96	Curium-248	W, all compounds	2E-1 Bone surf	2E-3 Bone surf	7E-13	-	-	-
			(4E-1)	(3E-3)	-	4E-15	5E-9	5E-8
96	Curium-249 ^{b'}	W, all compounds	5E+4	2E+4 Bone surf	7E-6	-	7E-4	7E-3
			-	(3E+4)	-	4E-8	-	-
96	Curium-250	W, all compounds	4E-2 Bone surf	3E-4 Bone surf	1E-13	. –	-	-
			(6E-2)	(5E-4)	-	8E-16	9E-10	9E-9
97	Berkelium-245	W, all compounds	2E+3	1E+3	5E-7	2E-9	3E-5	3E-4
97	Berkelium-246	W, all compounds	3E+3	3E+3	1E-6	4E-9	4E-5	4E-4
97	Berkelium-247	W, all compounds	5E-1 Dama surf	4E-3 Bana surf	2E-12		-	-
			(1E+0)	(9E-3)	-	1E-14	2E-8	2E-7
97	Berkelium-249	W, all compounds	2E+2 Bone surf	2E+0 Bone surf	7E-10		-	-
			(5E+2)	(4E+0)	-	5E-12	6E-6	6E-5
97	Berkelium-250	W, all compounds	9E+3	3E+2 Bone surf	1E-7	-	1E-4	1E-3
			-	(7E+2)	-	1E-9	-	-
98	Californium-244 ^b	W, all compounds except those given for Y	3E+4	6E+2	2E-7	8E-10	-	-
			St wall (3E+4)	_	-	-	4E-4	4E-3
		Y, oxides and hydroxides	-	6E+2	2E-7	8E-10	-	-

Appendix B

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations

Concentrations for Release to Sanitary Sewerage (Continued)

				Table I Occupational Values			Table II Effluent Concentrations	
			CoL 1	Col. 2	Col. 3	Col. 1	Col. 2	
			Oral	Inholo	*ia=		Water	Monthly
Atomic	Radionuclude	Class	ALI	ALI	DAC	Air		Concentration
No.			(μCi)	(μCi)	(µCı/ml)	(µCi/ml)	(μCı/ml)	(μCı/ml)
98	Californium-246	W, see ²⁴⁴ Cf	4E+2	9E+0	4E-9	1E-11	5E-6	5E-5
		Y, see ²⁴⁴ Cf	-	9E+0	4E-9	1E-11	-	-
98	Californium-248	W, see ²⁴⁴ Cf	8E+0 Bone surf	6E-2 Bone surf	3E-11	-	-	-
		244.00	(2E+1)	(1E-1)		2E-13	2E-7	2E-6
00	0.110 1 0.10	Y, see Uf	-	1E-1	4E-11	1E-13	-	-
98	Californium-249	w, see •••Cf	5E-1 Bone surf	4E-3 Bone surf	2E-12	-	-	-
		2400	(1E+0)	(9E-3)	-	1E-14	2E-8	2E-7
		Y, see ***Cf	-	1E-2 Bone surf	4E-12	-	-	-
			-	(1E-2)	-	2E-14	-	-
98	Californium-250	W, sœ ²⁴⁴ Cf	1E+0 Bone surf	9E-3 Bone surf	4E-12	-	-	-
		• • •	(2E+0)	(2E-2)	-	3E-14	3E-8	3E-7
		Y, see ²⁴⁴ Cf	-	3E-2	1E-11	4E-14	-	-
98	Californium-251	W, see ²⁴⁴ Cf	5E-1 Bone surf	4E-3 Bone surf	2E-12	-	-	-
Ì		244	(1E+0)	(9E-3)	-	1E-14	2E-8	2E-7
		Y, see "Cf	-	1E-2 Bone surf	4E-12	-	-	-
			-	(1E-2)	-	2E-14	-	-
98	Californium-252	W, sœ ²⁴⁴ Cf	2E+0 Bone surf	2E-2 Bone surf	8E-12		-	-
		24600	(5E+0)	(4E-2)	-	5E-14	7E-8	7E-7
		Y, see - Cf	-	3E-2	1E-11	5E-14	-	-
98	Californium-253	W, see ²⁴⁴ Cf	2E+2 Bone surf	2E+0	8E-10	3E-12	-	-
		24400	(4E+2)	-	-	-	5E-6	5E-5
		Y, see - Cf	-	2E+0	7E-10	2E-12	-	-
98	Californium-254	W, see ²⁴⁴ Cf	2E+0	2E-2	9E-12	3E-14	3E-8	3E-7
		Y, see ²⁴⁴ Cf	-	2E-2	7E-12	2E-14	-	-
99	Einsteinium-250	W, all compounds	4E+4	5E+2 Bone surf	2E-7	-	6E-4	6E-3
			-	(1E+3)	-	2E-9	-	-
99	Einsteinium-251	W, all compounds	7E+3	9E+2 Bone surf	4E-7	-	1E-4	1E-3
			-	(1E+3)	-	2E-9	-	-
99	Einsteinium-253	W, all compounds	2E+2	1E+0	6E-10	2E-12	2E-6	2E-5

•

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

.

		-		Table I Occupational Values		Tabl Efflu Concent	Table III Releases to Sewers	
			Col. 1 Oral Ingestion	Col 2 Inhalat	Col. 3	Col. 1	Col 2	Monthly Average
Atomic No.	Radionuclude	Class	ALI (μCi)	ALI (μCi)	DAC (μCı/ml)	Air (μCı/ml)	Water (µCı/ml)	Concentratio (µCı/ml)
99	Einsteinium-254m	W, all compounds	3E+2 LLI wall	1E+1	4E-9	1E-11	-	_
			(3E+2)	-	-	-	4E-6	4E-5
19	Einsteinium-254	W, all compounds	8E+0 Bana surf	7E-2 Bana surf	3E-11	-	-	-
			(2E+1)	(1E-1)	-	2E-13	2E-7	2E-6
100	Fermium-252	W, all compounds	5E+2	1E+1	5E-9	2E-11	6E-6	6E-5
100	Fermium-253	W, all compounds	1E+3	1E+1	4E-9	1E-11	1E-5	1E-4
100	Fermium-254	W, all compounds	3E+3	9E+1	4E-8	1E-10	4E-5	4E-4
100	Fermium-255	W, all compounds	5E+2	2E+1	9E-9	3E-11	7E-6	7E-5
100	Fermium-257	W, all compounds	2E+1	2E-1	7E-11	-	-	_
		•	Bone surf (4E+1)	Bone surf (2E-1)	_	3E-13	5E-7	5E-6
101	Mendelevium-257	W all compounds	7E+3	8E+1	4E-8	-	1E-4	1E-3
101	Mondolovidin Dov		_	Bone surf (9E+1)	-	1E-10	-	-
101	Mendelevium-258	W all compounds	3E+1	2E-1	1E-10	_	_	-
101	Welldere Wall-250	, un componie	Bone surf	Bone surf	_	5E-13	6E-7	6E-6
- Any a above alpha sion a	single radionuclide no e with decay mode oth emission or spontane and with radioactive h mes than 2 hours	t listed ler than ous fis- alf- Submersion [#]	_	2E+2	1E-7	1E-9	_	-
men		Departement						-
- Any: abov alpha	single radionuclide no e with decay mode oth e emission or spontane	t listed her than hous fis-					a.	
life g	greater than 2 hours		-	2E-1	1E-10	1E-12	1E-8	1E-7
- Any abov or sp ture : or th	single radionuclide no e that decays by alpha ontaneous fission, or a for which either the id e concentration of any	nt listed emission any mix- entity radio-			,		•	
nucli	ide in the mixture is no	ot	_	4F-4	2E-13	1E-15	2E-9	2E-8

Footnotes:

* "Submersion" means that values given are for submersion in a hemispherical semi-infinite cloud of airborne material.

^b These radionuclides have radiological half-lives of less than 2 hours. The total effective dose equivalent received during operations with these radionuclides might include a significant contribution from external exposure. The DAC values for all radionuclides, other than those designated Class "Submersion," are based upon the committed effective dose equivalent due to the intake of the radionuclide into the body and do <u>NOT</u> include potentially significant contributions to dose equivalent from external exposures. The listed DAC to account for the submersion dose prospectively, but should use individual monitoring devices or other radiation measuring instruments that measure external exposure to demonstrate compliance with the limits. (See D 203)

^{ef} For soluble mixtures of U-238, U-234, and U-235 in air, chemical toxicity may be the limiting factor (see D.201e) If the percent by weight (enrichment) of U-235 is not greater than S, the concentration value for a 40-hour workweek is 0.2 milligrams uranium per cubic meter of air average. For any enrichment, the product of the average concentration and time of exposure during a 40-hour workweek shall not exceed 8E-3 (SA) µCi-hr/ml, where SA is the specific activity of the uranium inhaled. The specific activity for natural uranium is 6.77E-7 curies per gram U. The specific activity for other mixtures of U-238, U-234, if not known, shall be:

SA = 3 6E-7 curies/gram U U-depleted

 $SA = [0 4 + 0 38 (enrichment) + 0.0034 (enrichment)^{2}] E-6, enrichment \ge 0.72$

where enrichment is the percentage by weight of U-235, expressed as percent.

Note:

- 1. If the identity of each radionuclide in a mixture is known but the concentration of one or more of the radionuclides in the mixture is not known, the DAC for the mixture shall be the most restrictive DAC of any radionuclide in the mixture.
- 2. If the identity of each radionuclide in the mixture is not known, but it is known that certain radionuclides specified in this appendix are not present in the mixture, the inhalation ALI, DAC, and effluent and sewage concentrations for the mixture are the lowest values specified in this appendix for any radionuclide that is not known to be absent from the mixture; or

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations

Concentrations for Release to Sanitary Sewerage (Continued)

	Table I Occupational Values			Table II Effluent Concentrations		Table III Releases to Sewers	-
	Col. 1	Col. 2	Col. 3	Col. 1	Col 2		
	Ingestion	Inh	lation			Average	\bigcirc
Atomic Radionuclide Class No.	AU (μCi)	ALI (μCι)	DAC (µCı/ml)	Air (µCı∕ml)	Water (µCı/ml)	Concentration (µCı/ml)	
If it is known that Ac-227-D and Cm-250-W are							-
not present	-	7E-4	3E-13	-	-	-	
If, in addition, it is known that Ac-227-W,Y, Th-229-W,Y, Th-230-W, Th-232-W,Y, Pa-231-W,Y, Np-237-W, Pu-239-W, Pu-240-W, Pu-242-W, Am-241-W, Am-242m-W, Am-243-W, Cm-245-W, Cm-246-W, Cm-247-W Cm-248-W, Bk-247-W, Cf-249-W, and Cf-251-W are not present	,	7E-3	3E-12	_	_	_	
If, in addition, it is known that Sm-146-W, Sm-147-W, Gd-148-D,W, Gd-152-D,W, Th-228-W,Y, Th-230-Y, U-232-Y, U-233-Y, U-234-Y, U-235-Y, U-236-Y, U-238-Y, Np-236-W, Pu-236-W,Y, Pu-238-W,Y, Pu-239-Y, Pu-240-Y, Pu-242-Y, Pu-244-W,Y, Cm-243-W, Cm-244-W, Cf-248-W, Cf-249-Y, Cf-250-W,Y, Cf-251-Y, Cf-252-W,Y,							
and Cf-254-W,Y are not presen	-	7E-2	3E-11	-	-	-	

ノ

1

Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) of Radionuclides for Occupational Exposure Effluent Concentrations Concentrations for Release to Sanitary Sewerage (Continued)

		Table I Occupational Values		Table I Occupational Values		Table II Effluent Concentrations		Table III Releases to Sewers
	Col 1 Oral	Col. 2	Col. 3	Col 1	Col 2	Monthly		
Atomic Radionuclide Class No.	ALI (μCi)	ALI (μCı)	DAC (µCı/ml)	Air (µCı/ml)	Water (µCi/ml)	Concentration (µCı/ml)		
If, in addition, it is known that Pb-210-D, Bi-210m-W, Po-210-D,W, Ra-223-W, Ra-225-W, Ra-226-W, Ac-225-D,W,Y, Th-227-W,Y, U-230-D,W,Y, U-232-D,W, Pu-241-W, Cm-240-W, Cm-242-W, Cf-248-Y, Es-254-W, Fm-257-W, and Md-258-W are not present	_	7E-1	3E-10	_	_	_		
If, in addution, it is known that Si-32-Y, Ti-44-Y, Fe-60-D, Sr-90-Y, Zr-93-D, Cd-113m-D, Cd-113-D, In-115-D,W, La-138-D, Lu-176-W, Hf-178m-D,W, Hf-182-D,W, Bi-210m-D, Ra-224-W, Ra-228-W, Ac-226-D,W,Y, Pa-230-W,Y, U-233-D,W, U-234-D,W, U-235-D,W, U-236-D,W, U-238-D,W, Pu-241-Y, Bk-249-W, Cf-253-W,Y, and Fs-253-W are not present	_	7E+0	3E-9	_	-	_		
If it is known that Ac-227-D,W,Y, Th-229-W,Y, Th-232-W,Y, Pa-231-W,Y, Cm-248-W, and Cm-250-W are not present	_	-	-	1E-14	_	_		
If, in addition, it is known that Sm-146-W, Gd-148-D,W, Gd-152-D, Th-228-W,Y, Th-230-W,Y, U-232-Y, U-233-Y, U-234-Y, U-235-Y, U-236-Y, U-238-Y, U-Nat-Y, Np-236-W, Np-237-W, Pu-236-W,Y, Pu-238-W,Y, Pu-239-W,Y, Pu-240-W,Y, Pu-242-W,Y, Pu-244-W,Y, Am-241-W, Am-242m-W, Am-243-W, Cm-243-W, Cm-244-W, Cm-245-W, Cm-246-W, Cm-247-W, Bk-247-W, Cf-249-W,Y, Cf-250-W,Y, Cf-251-W,Y, Cf-252-W,Y, and Cf-254-W,Y are not present	_	_	-	IE-13		_		
If, in addition, it is known that Sm-147-W, Gd-152-W, Pb-210-D, Bi-210m-W, Po-210-D,W, Ra-223-W, Ra-225-W, Ra-226-W, Ac-225-D,W,Y, Th-227-W,Y, U-230-D,W,Y, U-232-D,W, U-Nat-W, Pu-241-W, Cm-240-W, Cm-242-W, Cf-248-W,Y, Es-254-W, Fm-257-W, and Md-258-W are not present	_	_	_	1E-12	_	_		
If, in addition it is known that Fe-60, Sr-90, Cd-113m, Cd-113, In-115, I-129, Cs-134, Sm-145, Sm-147, Gd-148, Gd-152, Hg-194 (organic), Bi-210m, Ra-223, Ra-224, Ra-225, Ac-225, Th-228, Th-230, U-233, U-234, U-235, U-236, U-238, U-Nat, Cm-242, Cf-248, Es-254, Fm-257, and Md-258 are not present	_	_	_	_	1E-6	1E-5		

ž r · ...

- 3. If a mixture of radionuclides consists of uranium and its daughters in ore dust (10 µm AMAD particle distribution assumed) prior to chemical separation of the uranium from the ore, the following values may be used for the DAC of the mixture: 6E-11 µCi of gross alpha activity from uranium-238, uranium-234, thorium-230, and radium-226 per milliliter of air; 3E-11 µCi of natural uranium per milliliter of air; or 45 micrograms of natural uranium per cubic meter of air.
- 4. If the identity and concentration of each radionuclide in a mixture are known, the limiting values should be derived as follows: determine, for each radionuclide in the mixture, the ratio between the concentration present in the mixture and the concentration otherwise established in Appendix B for the specific radionuclide when not in a mixture. The sum of such ratios for all of the radionuclides in the mixture may not exceed "1" (i.e., "unity").

Example: If radionuclides "A," "B," and "C" are present in concentrations C_{A_5} C_B , and C_C , and if the applicable DACs are DAC_{A5} DAC_{B5}, and DAC_{C5}, respectively, ' then the concentrations shall be limited so that the following relationship exists:

$$\frac{C_A}{DAC_A} + \frac{C_B}{DAC}SUBB + \frac{C_C}{DAC_c} \le 1$$

PART D

APPENDIX C

<u>QUANTITIES^{a'} OF LICENSED OR REGISTERED MATERIAL REQUIRING LABELING</u> (In Atomic Number Order)

Radionuclide	Quantity (µCi) ^{b'}	Radionuclide	Quantity (μCi) ^{b/}
Hydrogen-3	1.000	Scandium-47	100
Bervllium-7	1,000	Scandium-48	100
Bervllium-10	1	Scandium-49	1,000
Carbon-11	1.000	Titanium-44	1
Carbon-14	100	Titanium-45	1,000
Fluorine-18	1,000	Vanadium-47	1,000
Sodium-22	10	Vanadium-48	100
Sodium-24	100	Vanadium-49	1,000
Magnesium-28	100	Chromium-48	1,000
Aluminum-26	10	Chromium-49	1,000
Silicon-31	1,000	Chromium-51	1,000
Silicon-32	1	Manganese-51	1,000
Phosphorus-32	10	Manganese-52m	1,000
Phosphorus-33	100	Manganese-52	100
Sulfur-35	100	Manganese-53	-1,000
Chlorine-36	10	Manganese-54	100
Chlorine-38	1,000	Manganese-56	1,000
Chlorine-39	1,000	Iron-52	. 100
Argon-39	1,000	Iron-55	100
Argon-41	1,000	Iron-59	10
Potassium-40	100	Iron-60	-1
Potassium-42	1,000	Cobalt-55	100
Potassium-43	1,000	Cobalt-56	10
Potassium-44	1,000	Cobalt-57	100
Potassium-45	1,000	Cobalt-58m	1,000
Calcium-41	100	Cobalt-58	100
Calcium-45	100	Cobalt-60m	1,000
Calcium-47	100	Cobalt-60	1
Scandium-43	1,000	Cobalt-61	1,000
Scandium-44m	100	Cobalt-62m	1,000
Scandium-44	100	Nickel-56	100
Scandium-46	10	Nickel-57	100
Nickel-59	100	Copper-60	1,000
Nickel-63	100	Copper-61	1,000
Nickel-65	1,000	Copper-64	1,000
Nickel-66	10	Copper-67	1,000

(In Atomic Number Order) (Continued)				
Radionuclide	Quantity (μCi) ^{b⁄}	Radionuclide	Quantity (μCi) [⊮]	,
Zinc-62	100	Selenium-70	1.000	
Zinc-63	1,000	Selenium-73m	1,000	
Zinc-65	10	Selenium-73	100	
Zinc-69m	100	Selenium-75	100	
Zinc-69	1,000	Selenium-79	100	
Zinc-71m	1,000	Selenium-81m	1,000	
Zinc-72	100	Selenium-81	1,000	
Gallium-65	1,000	Selenium-83	1,000	
Gallium-66	100	Bromine-74m	1,000	
Gallium-67	1,000	Bromine-74	1,000	
Gallium-68	1,000	Bromine-75	1,000	
Gallium-70	1,000	Bromine-76	100	
Gallium-72	100	Bromine-77	1,000	
Gallium-73	1,000	Bromine-80m	1,000	*
Germanium-66	1,000	Bromine-80	1,000	
Germanium-67	1,000	Bromine-82	100	
Germanium-68	10	Bromine-83	1,000	
Germanium-69	1,000	Bromine-84	1,000	\bigcirc
Germanium-71	1,000	Krypton-74	1,000	
Germanium-75	1,000	Krypton-76	1,000	
Germanium-77	1,000	Krypton-77	1,000	
Germanium-78	1,000	Krypton-79	1,000	
Arsenic-69	1,000	Krypton-81	1,000	
Arsenic-70	1,000	Krypton-83m	1,000	
Arsenic-71	100	Krypton-85m	1,000	
Arsenic-72	100	Krypton-85	1,000	
Arsenic-73	100	Krypton-87	1,000	
Arsenic-74	100	Krypton-88	1,000	
Arsenic-76	100	Rubidium-79	1,000	
Arsenic-77	100	Rubidium-81m	1,000	
Arsenic-78	1,000	Rubidium-81	1,000	
Rubidium-82m	1,000	Strontium-81	1,000	
Rubidium-83	100	Strontium-83	100	
Rubidium-84	100	Strontium-85m	1,000	
Rubidium-86	100	Strontium-85	100	
Rubidium-87	100	Strontium-87m	1,000	
Rubidium-88	1,000	Strontium-89	10	
Rubidium-89	1,000	Strontium-90	0.1	
Strontium-80	100	Strontium-91	100	

QUANTITIES^{a/} OF LICENSED OR REGISTERED MATERIAL REQUIRING LABELING

Appendix C

Appendix C

	(In Atomic Number Order) (Continued)		
Radionuclide	Quantity (μCi) ^{b/}	Radionuclide	Quantity (μCi) ^{b/}
Strontium-92	100	Niobium-96	100
Yttrium-86m	1,000	Niobium-97	1,000
Yttrium-86	100	Niobium-98	1,000
Yttrium-87	100	Molybdenum-90	100
Yttrium-88	10	Molybdenum-93m	100
Yttrium-90m	1,000	Molybdenum-93	10
Yttrium-90	10	Molybdenum-99	100
Yttrium-91m	1,000	Molybdenum-101	1,000
Yttrium-91	10	Technetium-93m	1,000
Yttrium-92	100	Technetium-93	1,000
Yttrium-93	100	Technetium-94m	1,000
Yttrium-94	1,000	Technetium-94	1,000
Yttrium-95	1,000	Technetium-96m	1,000
Zirconium-86	100	Technetium-96	100
Zirconium-88	10	Technetium-97m	100
Zirconium-89	100	Technetium-97	1,000
Zirconium-93	1	Technetium-98	10
Zirconium-95	10	Technetium-99m	1,000
Zirconium-97	100	Technetium-99	100
Niobium-88	1,000	Technetium-101	1,000
Niobium-89m (66 min)	1,000	Technetium-104	1,000
Niobium-89 (122 min)	1,000	Ruthenium-94	1,000
Niobium-90	100	Ruthenium-97	1,000
Niobium-93m	10	Ruthenium-103	100
Niobium-94	1	Ruthenium-105	1,000
Niobium-95m	100	Ruthenium-106	1
Niobium-95	100	Rhodium-99m	1,000
Rhodium-99	100	Palladium-103	100
Rhodium-100	100	Palladium-107	10
Rhodium-101m	1,000	Palladium-109	100
Rhodium-101	10	Silver-102	1,000
Rhodium-102m	~ 10 ′	Silver-103	1,000
Rhodium-102	10	Silver-104m	1,000
Rhodium-103m	1,000	Silver-104	1,000
Rhodium-105	100	Silver-105	100
Rhodium-106m	1,000	Silver-106m	100
Rhodium-107	1,000	Silver-106	1,000
Palladium-100	100	Silver-108m	1
Palladium-101	1.000	Silver-11Om	10

D115

.

Appendix C

(In Atomic Number Order)						
(Continuea)						
Radionuclide	Quantity (μCi) ^{½′}	Radionuclide	Quantity (μCi) ^½	,		
Silver-111	100	Antimony-116m	1,000			
Silver-112	100	Antimony-116	1,000			
Silver-115	1,000	Antimony-117	1,000			
Cadmium-104	1,000	Antimony-118m	1,000			
Cadmium-107	1,000	Antimony-119	1,000			
Cadmium-109	1	Antimony-120 (16 min)	1,000			
Cadmium-113m	0.1	Antimony-120 (5.76 d)	100			
Cadmium-113	100	Antimony-122	100			
Cadmium-115m	10	Antimony-124m	1.000			
Cadmium-115	100	Antimony-124	10			
Cadmium-117m	1.000	Antimony-125	100			
Cadmium-117	1.000	Antimony-126m	1.000			
Indium-109	1.000	Antimony-126	100			
Indium-110 (69.1 min)	1.000	Antimony-127	100			
Indium-110 (4.9 h)	1.000	Antimony-128 (10.4 min)	1.000			
Indium-111	100	Antimony-128 (9.01 h)	100			
Indium-112	1.000	Antimony-129	100	,		
Indium-113m	1.000	Antimony-130	1.000	\smile		
Indium-114m	10	Antimony-131	1.000			
Indium-115m	1,000	Tellurium-116	1.000			
Indium-115	100	Tellurium-121m	10			
Indium-116m	1,000	Tellurium-121	100			
Indium-117m	1.000	Tellurium-123m	10			
Indium-117	1.000	Tellurium-123	100			
Indium-119m	1.000	Tellurium-125m	10			
Tin-110	100	Tellurium-127m	10			
Tin-111	1.000	Tellurium-127	1.000			
Tin-113	100	Tellurium-129m	10			
Tin-117m	100	Tellurium-129	1.000			
Tin-119m	100	Tellurium-131m	10			
Tin-121m	100	Tellurium-131	100			
Tin-121	1.000	Tellurium-132	10			
Tin-123m	1,000	Tellurium-133m	100			
Tin-123	10	Tellurium-133	1 000			
Tin-125	10	Tellurium-134	1,000			
Tin-125	10	Iodine-120m	1,000			
Tin-127	1 000	Iodine-120	100			
Tin-128	1 000	Iodine-120	1 000			
Antimony-115	1 000	Iodine-123	100			
1 mmmony-1 1 J	1,000	1041110-123	100			

QUANTITIES^{a/} OF LICENSED OR REGISTERED MATERIAL REQUIRING LABELING

Appendix C

	(In Atom (
Radionuclide	Quantity (μCi) ^{b⁄}	Radionuclide	Quantity (μCi) ^{b/}
Iodine-124	10	Xenon-131m	1,000
Iodine-125	1	Xenon-133m	1,000
Iodine-126	1	Xenon-133	1,000
Iodine-128	1,000	Xenon-135m	1,000
Iodine-129	1	Xenon-135	1,000
Iodine-130	10	Xenon-138	1,000
Iodine-131	1	Cesium-125	1,000
Iodine-132m	100	Cesium-127	1,000
Iodine-132	100	Cesium-129	1,000
Iodine-133	10 -	Cesium-130	1,000
Iodine-134	1,000	Cesium-131	1,000
Iodine-135	100	Cesium-132	100
Xenon-120	1,000	Cesium-134m	1,000
Xenon-121	1,000	Cesium-134	10 .
Xenon-122	1,000	Cesium-135m	1,000
Xenon-123	1,000	Cesium-135	100
Xenon-125	1,000	Cesium-136	10
Xenon-127	1,000	Cesium-137	10
Xenon-129m	1,000	Cesium-138	1,000
Barium-126	1,000	Cerium-134	. 100
Barium-128	100	Cerium-135	100
Barium-131m	1,000	Cerium-137m	100
Barium-131	100	Cerium-137	1,000
Barium-133m	100	Cerium-139	100
Barium-133	100	Cerium-141	-100
Barium-135m	100	Cerium-143	100
Barium-139	1,000	Cerium-144	1
Barium-140	- 100	Praseodymium-136	1,000
Barium-141	1,000	Praseodymium-137	1,000
Barium-142	1,000	Praseodymium-138m	1,000
Lanthanum-131	1,000	Praseodymium-139	1,000
Lanthanum-132	100	Praseodymium-142m	1,000
Lanthanum-135	1,000	Praseodymium-142	100
Lanthanum-137	10	Praseodymium-143	100
Lanthanum-138	100	Praseodymium-144	1,000
Lanthanum-140	100	Praseodymium-145	100
Lanthanum-141	100	Praseodymium-147	1,000
Lanthanum-142	1,000	Neodymium-136	1,000
Lanthanum-143	1,000	Neodymium-138	100

D117

Appendix C

(In Atomic Number Order) (Continued)					
	(µCI)		(μCI)		
Neodymium-139m	1,000	Promethium-150	1,000		
Neodymium-139	1,000	Promethium-151	100		
Neodymium-141	1,000	Samarium-141m	1,000		
Neodymium-147	100	Samarium-141	1,000		
Neodymium-149	1,000	Samarium-142	1,000		
Neodymium-151	1,000	Samarium-145	100		
Promethium-141	1,000	Samarium-146	1		
Promethium-143	100	Samarium-147	100		
Promethium-144	10	Samarium-151	10		
Promethium-145	10	Samarium-153	100		
Promethium-146	1	Samarium-155	1,000		
Promethium-147	10	Samarium-156	1,000		
Promethium-148m	10	Europium-145	100		
Promethium-148	10	Europium-146	100		
Promethium-149	100	Europium-147	100		
Europium-148	10	Terbium-153	1,000		
Europium-149	100	Terbium-154	100	. /	
Europium-150 (12.62 h)	100	Terbium-155	1,000	\bigcirc	
Europium-150 (34.2 y)	1	Terbium-156m (5.0 h)	1,000		
Europium-152m	100	Terbium-156m (24.4 h)	1,000		
Europium-152	1	Terbium-156	100		
Europium-154	1	Terbium-157	10		
Europium-155	10	Terbium-158	1		
Europium-156	100	Terbium-160	10		
Europium-157	100	Terbium-161	100		
Europium-158	1,000	Dysprosium-155	1,000		
Gadolinium-145	1,000	Dysprosium-157	1,000		
Gadolinium-146	10	Dysprosium-159	100		
Gadolinium-147	100	Dysprosium-165	1,000		
Gadolinium-148	0.001	Dysprosium-166	100		
Gadolinium-149	100	Holmium-155	1,000		
Gadolinium-151	10	Holmium-157	1,000		
Gadolinium-152	100	Holmium-159	1.000		
Gadolinium-153	10	Holmium-161	1,000		
Gadolinium-159	100	Holmium-162m	1.000		
Terbium-147	1,000	Holmium-162	1,000		
Terbium-149	100	Holmium-164m	1,000		
Terbium-150	1,000	Holmium-164	1,000		
Terbium-151	100	Holmium-166m	1		

QUANTITIES^a OF LICENSED OR REGISTERED MATERIAL REQUIRING LABELING

Appendix C

.

\bigcirc	(In Atomic Number Order) (Continued)							
-	Radionuclide	Quantity (μCi) ^{b/}	Radionuclide	Quantity (μCi) ^½				
	Holmium-166	100	Thulium-171	10				
	Holmium-167	1,000	Thulium-172	100				
	Erbium-161	1,000	Thulium-173	100				
	Erbium-165	1,000	Thulium-175	1,000				
	Erbium-169	100	Ytterbium-162	1,000				
	Erbium-171	100	Ytterbium-166	100				
	Erbium-172	100	Ytterbium-167	1,000				
	Thulium-162	1,000	Ytterbium-169	100				
	Thulium-166	100	Ytterbium-175	100				
	Thulium-167	100 -	Ytterbium-177	1,000				
	Thulium-170	10	Ytterbium-178	1,000				
	Lutetium-169	100	Tantalum-173	1,000				
	Lutetium-170	100	Tantalum-174	1,000				
	Lutetium-171	100	Tantalum-175	1,000				
	Lutetium-172	100	Tantalum-176	100				
	Lutetium-173	10 -	Tantalum-177	1,000				
	Lutetium-174m	10	Tantalum-178	1,000				
\bigcirc	Lutetium-174	10	Tantalum-179	100				
	Lutetium-176m	1,000	Tantalum-180m	1,000				
	Lutetium-176	100	Tantalum-180	100				
	Lutetium-177m	10	Tantalum-182m	1,000				
	Lutetium-177	100	Tantalum-182	10				
	Lutetium-178m	1,000	Tantalum-183	100				
	Lutetium-178	1,000	Tantalum-184	100				
	Lutetium-179	1,000	Tantalum-185	1,000				
	Hafnium-170	100	Tantalum-186	1,000				
	Hafnium-172	· 1	Tungsten-176	1,000				
	Hafnium-173	1,000	Tungsten-177	1,000				
	Hafnium-175	100	Tungsten-178	1,000				
	Hafnium-177m	1,000	Tungsten-179	1,000				
	Hafnium-178m	0.1	Tungsten-181	1,000				
	Hafnium-179m	10	Tungsten-185	100				
	Hafnium-180m	1,000	Tungsten-187	100				
	Hafnium-181	10	Tungsten-188	10				
	Hafnium-182m	1,000	Rhenium-177	1,000				
	Hafnium-182	0.1	Rhenium-178	1,000				
	Hafnium-183	1,000	Rhenium-181	1,000				
	Hafnium-184	100 -	Rhenium-182 (12.7 h)	1,000				
	Tantalum-172	1,000	Rhenium-182 (64.0 h)	100				

(Continued)				
Radionuclide	Quantity (μCi) ^{b/}	Radionuclide	Quantity (μCi) ^{b/}	,
Rhenium-184m	10	Rhenium-189	100	
Rhenium-184	100	Osmium-180	1,000	
Rhenium-186m	10	Osmium-181	1,000	
Rhenium-186	100	Osmium-182	100	
Rhenium-187	1,000	Osmium-185	100	
Rhenium-188m	1,000	Osmium-189m	1,000	
Rhenium-188	100	Osmium-191m	1,000	
Osmium-191	100	Gold-198m	100	
Osmium-193	100	Gold-198	100	
Osmium-194	1	Gold-199	100	
Iridium-182	1,000	Gold-200m	100	
Iridium-184	1,000	Gold-200	1,000	
Iridium-185	1,000	Gold-201	1,000	
Iridium-186	100	Mercury-193m	100	
Iridium-187	1,000	Mercury-193	1,000	
Iridium-188	100	Mercury-194	1	
Iridium-189	100	Mercury-195m	100	
Iridium-190m	1,000	Mercury-195	1,000	\bigcirc
Iridium-190	100	Mercury-197m	100	
Iridium-192m (1.4 min)	10	Mercury-197	1,000	
Iridium-192 (73.8 d)	1	Mercury-199m	1,000	
Iridium-194m	10	Mercury-203	100	
Iridium-194	100	Thallium-194m	1,000	
Iridium-195m	1,000	Thallium-194	1,000	
Iridium-195	1,000	Thallium-195	1,000	
Platinum-186	1,000	Thallium-197	1,000	
Platinum-188	100	Thallium-198m	1,000	
Platinum-189	1,000	Thallium-198	1,000	
Platinum-191	100	Thallium-199	1,000	
Platinum-193m	100	Thallium-201	1,000	
Platinum-193	1,000	Thallium-200	1,000	
Platinum-195m	100	Thallium-202	100	
Platinum-197m	1,000	Thallium-204	100	
Platinum-197	100	Lead-195m	1,000	
Platinum-199	1,000	Lead-198	1,000	
Platinum-200	100	Lead-199	1,000	
Gold-193	1,000	Lead-200	100	
Gold-194	100	Lead-201	1,000	
Gold-195	10	Lead-202m	1,000	

QUANTITIES^{a'} OF LICENSED OR REGISTERED MATERIAL REQUIRING LABELING

(In Atomic Number Order)

Appendix C

	(In Atom) (C	ic Number Order) Continued)	
Radionuclide	Quantity (μCi) ^b	Radionuclide	Quantity (μCi) ^½
Lead-202	10	Lead-209	1,000
Lead-203	1,000	Lead-210	0.01
Lead-205	100	Lead-211	100
Lead-212	1	Thorium-226	10
Lead-214	100	Thorium-227	0.01
Bismuth-200	1,000	Thorium-228	0.001
Bismuth-201	1,000	Thorium-229	0.001
Bismuth-202	1,000	Thorium-230	0.001
Bismuth-203	100	Thorium-231	100
Bismuth-205	100	Thorium-232	. 100
Bismuth-206	100	Thorium-234	10
Bismuth-207	- 10	Thorium-natural	100
Bismuth-210m	0.1	Protactinium-227	10
Bismuth-210	1	Protactinium-228	· 1
Bismuth-212	10	Protactinium-230	0.1
Bismuth-213	10	Protactinium-231	0.00
Bismuth-214	100	Protactinium-232	1
Polonium-203	1,000	Protactinium-233	100
Polonium-205	1,000	Protactinium-234	100
Polonium-207	1,000	Uranium-230	0.01
Polonium-210	0.1	Uranium-231	100
Astatine-207	100	Uranium-232	0.00
Astatine-211	10	Uranium-233	0.00
Radon-220	1 -	Uranium-234	0.00
Radon-222	1	Uranium-235	0.00
Francium-222	100	Uranium-236	0.00
Francium-223	100	Uranium-237	100
Radium-223	0.1	Uranium-238	100
Radium-224	0.1	Uranium-239	1,000
Radium-225	0.1	Uranium-240	100
Radium-226	0.1	Uranium-natural	100
Radium-227	1,000	Neptunium-232	100
Radium-228	0.1	Neptunium-233	1,000 -
Actinium-224	1	Neptunium-234	100
Actinium-225	0.01	Neptunium-235	100
Actinium-226	0.1	Neptunium-236 (1.15E+5 y)	0.00
Actinium-227	0.001	Neptunium-236 (22.5 h)	1
Actinium-228	1	Neptunium-237	- 0.00
Nentunium_238	10	Neptunium-239	100

	•	,	Appendix C	
RINGLA	RF	1	ING	

(In Atomic Number Order) (Continued)				
Radionuclide	Quantity (μCi) ^{₺⁄}	Radionuclide	Quantity (μCi) ^{b/}	,
Neptunium-240	1,000	Berkelium-247	0.001	
Plutonium-234	10	Berkelium-249	0.1	
Plutonium-235	1,000	Berkelium-250	10	
Plutonium-236	0.001	Californium-244	100	
Plutonium-237	100	Californium-246	1	
Plutonium-238	0.001	Californium-248	0.01	
Plutonium-239	0.001	Californium-249	0.001	
Plutonium-240	0.001	Californium-250	0.001	
Plutonium-241	0.01	Californium-251	0.001	
Plutonium-242	0.001	Californium-252	0.001	
Plutonium-243	1,000	Californium-253	0.1	
Plutonium-244	0.001	Californium-254	0.001	
Plutonium-245	100	Einsteinium-250	100	
Americium-237	1,000	Einsteinium-251	100	
Americium-238	100	Einsteinium-253	0.1	
Americium-239	1,000	Einsteinium-254m	1	
Americium-240	, 100	Einsteinium-254	0.01	× /
Americium-241	0.001	Fermium-252	1	\bigcirc
Americium-242m	0.001	Fermium-253	1	
Americium-242	10	Fermium-254	10	
Americium-243	0.001	Fermium-255	1	
Americium-244m	100	Fermium-257	0.01	
Americium-244	10	Mendelevium-257	10	
Americium-245	1,000	Mendelevium-258	0.01	
Americium-246m	1,000			
Americium-246	1,000			
Curium-238	100			
Curium-240	0.1			
Curium-241	1			
Curium-242	0.01			
Curium-243	0.001			
Curium-244	0.001			
Curium-245	0.001			
Curium-246	0.001			
Curium-247	0.001			
Curium-248	0.001			
Curium-249	1,000			
Berkelium-245	100			
Berkelium-246	100			<u> </u>

QUANTITIES^{a'} OF LICENSED OR REGISTERED MATERIAL REQUIRING LABELING

0.01

Appendix C

OUANTITIES^{a/} OF LICENSED OR REGISTERED MATERIAL REQUIRING LABELING (In Atomic Number Order) (Continued) Radionuclide Quantity Radionuclide Quantity (µCi)^{₺/} $(\mu Ci)^{b}$ Any radionuclide Any alpha-emitting other than alpharadionuclide not emitting radionuclides listed above or not listed above, or mixtures of alpha emitters of unknown mixtures of beta emitters of unknown 0.001 composition

NOTE: For purposes of D.902e., D.905a., and D.1201a. where there is involved a combination of radionuclides in known amounts, the limit for the combination shall be derived as follows: determine, for each radionuclide in the combination, the ratio between the quantity present in the combination and the limit otherwise established for the specific radionuclide when not in combination. The sum of such ratios for all radionuclides in the combination may not exceed "1" — that is, unity.

composition

¹ The quantities listed above were derived by taking 1/10th of the most restrictive ALI listed in Table I, Columns 1 and 2, of Appendix B to Part D, rounding to the nearest factor of 10, and constraining the values listed between 37 Bq and 37 MBq (0.001 and 1,000 μ Ci). Values of 3.7 MBq (100 μ Ci) have been assigned for radionuclides having a radioactive half-life in excess of E+9 years, except rhenium, 37 MBq (1,000 μ Ci), to take into account their low specific activity.

^{b/} To convert μ Ci to kBq, multiply the μ Ci value by 37.

D123

PART D

Appendix D (reserved)

Appendix E (reserved)

Appendix F

[PART D

APPENDIX F

QUANTITIES FOR USE WITH DECOMMISSIONING^{a/}

Material	Microcurie ^{b/}
Americium-241	0.01
Antimony-122	100
Antimony-124	10
Antimony-125	10
Arsenic-73	100
Arsenic-74	10
Arsenic-76	10
Arsenic-77	100
Barium-131	10
Barium-133	10
Barium-140	10
Bismuth-210	1
Bromine-82	10
Cadmium-109	10
Cadmium-115m	10
Cadmium-115	100
Calcium-45	10
Calcium-47	10
Carbon-14	100
Cerium-141	100
Cerium-143	100
Cerium-144	1
Cesium-131	1,000
Cesium-134m	100 ·
Cesium-134	1
Cesium-135	10
Cesium-136	10
Cesium-137	10
Chlorine-36	10
Chlorine-38	10
Chromium-51	1,000
Cobalt-58m	10
Cobalt-58	10 ·

¹ This Appendix is retained for use by those Agreement States that need to adopt decommissioning regulations compatible with the Nuclear Regulatory Commission.

 $\stackrel{b}{=}$ To convert μ Ci to kBq, multiply the μ Ci value by 37.

QUANTITIES FOR USE WITH DECOMMISSIONING^{a/} (Continued)

Material	Microcurie ^{b/}	\bigcirc
Cobalt-60	1	
Copper-64	100	,
Dysprosium-165	10	
Dysprosium-166	100	
Erbium-169	100	
Erbium-171	100	
Europium-152 (9.2 h)	100	
Europium-152 (13 yr)	1	
Europium-154	1	
Europium-155	10	
Florine-18	1,000	
Gadolinium-153	10	
Gadolinium-159	100	
Gallium-72	10	
Germanium-71	0	
Hafnium-181	10	
Holmium-166	100	
Hydrogen-3	1,000	
Indium-113m	100	
Indium-114m	10	
Indium-115m	100	
Indium-115	10	\bigcirc
Iodine-125	1	
Iodine-126	1	
Iodine-129	0.1	
Iodine-131	1	
Iodine-132	10	
Iodine-133	1	
Iodine-134	10	
Iodine-135	10	
Iridium-192	10	
Iridium-194	100	
Iron-55	100	
Iron-59	10	
Krypton-85	100	
Krypton-87	10	
Lanthanum-140	10	

^{3/} This Appendix is retained for use by those Agreement States that need to adopt decommissioning regulations compatible with the Nuclear Regulatory Commission.

 \checkmark To convert μ Ci to kBq, multiply the μ Ci value by 37.

Appendix F

QUANTITIES FOR USE WITH DECOMMISSIONING^{al} (Continued)

1	Material	Microcurie ^{b/}
	Lutetium-177	100
	Manganese-52	10
	Manganese-54	10
	Manganese-56	10
	Mercury-197m	100
	Mercury-197	100
	Mercury-203	10
	Molvbdenum-99	100
	Neodymium-147	100
	Neodymium-149	100
	Nickel-59	100
	Nickel-63	10
	Nickel-65	100
	Niobium-93m	10
	Niobium-95	10
	Niobium-97	10
	Osmium-185	10
	Osmium-191m	100
	Osmium-191	100
	Osmium-193	100
7	Palladium-103	100
	Palladium-109	100
	Phosphorus-32	10
	Platinum-191	100
	Platinum-193m	100
	Platinum-193	100
	Platinum-197m	100
	Platinum-197	100
	Plutonium-239	0.01
	Polonium-210	0.1
	Potassium-42	10
	Praseodymium-142	100
	Praseodymium-143	100
	Promethium-147	10
	Promethium-149	10
	Radium-226	0.01
	Rhenium-186	100

² This Appendix is retained for use by those Agreement States that need to adopt decommissioning regulations compatible with the Nuclear Regulatory Commission.

 $\stackrel{b}{=}$ To convert μ Ci to kBq, multiply the μ Ci value by 37.
Appendix F

<u>QUANTITIES FOR USE WITH DECOMMISSIONING</u>^{a/} (Continued)

		્
Material	Microcurie ^{b/}	
Rhenium-188	100	,
Rhodium-103m	100	
Rhodium-105	100	
Rubidium-86	10	
Rubidium-87	10	
Ruthenium-97	100	
Ruthenium-103	10	
Ruthenium-105	10	
Ruthenium-106	1	
Samarium-151	10	
Samarium-153	100	
Scandium-46	10	
Scandium-47	100	
Scandium-48	10	
Selenium-75	10	
Silicon-31	100	
Silver-105	10	
Silver-11Om	1	
Silver-111	100	
Sodium-22	1	
Sodium-24	10	١
Strontium-85	10	`
Strontium-89	1	
Strontium-90	0.1	
Strontium-91	10	
Strontium-92	10	
Sulfur -35	100	
Tantalum-182	10	
Technetium-96	10	
Technetium-97m	100	
Technetium-97	100	
Technetium-99m	100	
Technetium-99	10	
Tellurium-125m	10	
Tellurium-127m	10	
Tellurium-127	100	
Tellurium-129m	10	

² This Appendix is retained for use by those Agreement States that need to adopt decommissioning regulations compatible with the Nuclear Regulatory Commission.

^b To convert μ Ci to kBq, multiply the μ Ci value by 37.

Material	Microcurie ^{b/}
Tellurium-129	100
Tellurium-131m	10
Tellurium-132	10
Terbium-160	10
Thallium-200	100
Thallium-201	100
Thallium-202	100
Thallium-204	10
Thorium (natural) ^{2'}	100
Thulium-170	10
Thulium-171	10
Tin-113	10
Tin-125	10
Tungsten-181	10
Tungsten-185	10
Tungsten-187	100
Uranium (natural) ^{<u>d'</u>}	100
Uranium-233	0.01
Uranium-234	0.01
Uranium-235	0.01
Vanadium-48	10
Xenon-131m	1,000
Xenon-133	100
Xenon-135	100
Ytterbium-175	100
Yttrium-90	10
Yttrium-91	10
Yttrium-92	100
Yttrium-93	100
Zinc-65	10
Zinc-69m	100
Zinc-69	1,000
Zirconium-93	10
Zirconium-95	10
Zirconium-97	10

QUANTITIES FOR USE WITH DECOMMISSIONING^a (Continued)

² This Appendix is retained for use by those Agreement States that need to adopt decommissioning regulations compatible with the Nuclear Regulatory Commission.

^{b'} To convert μ Ci to kBq, multiply the μ Ci value by 37.

^{el} Based on alpha disintegration rate of Th-232, Th-230 and their daughter products.

 dV Based on alpha disintegration rate of U-238, U-234, and U-235.

Appendix F

QUANTITIES FOR USE WITH DECOMMISSIONING^a (Continued)

Material	Microcurie ^{b/}
Any alpha emitting radionuclide not listed above or mixtures of alpha emitters of unknown composition	0.01
Any radionuclide other than alpha emitting radionuclides, not listed above or mixtures of beta emitters of unknown composition	0.1

NOTE: Where there is involved a combination of isotopes in known amounts, the limit for the combination should be derived as follows: Determine, for each isotope in the combination, the ratio between the quantity present in the combination and the limit otherwise established for the specific isotope when not in combination. The sum of such ratios for all the isotopes in the combination may not exceed "1" -- that is, unity.]

¹ This Appendix is retained for use by those Agreement States that need to adopt decommissioning regulations compatible with the Nuclear Regulatory Commission.

^b To convert μ Ci to kBq, multiply the μ Ci value by 37.

Requirements for Transfers of Low-Level Radioactive Waste Intended for Disposal at Licensed Land Disposal Facilities and Manifests

I. Manifest

A waste generator, collector, or processor who transports, or offers for transportation, low-level radioactive waste intended for ultimate disposal at a licensed low-level radioactive waste land disposal facility must prepare a Manifest reflecting information requested on applicable Agency Forms XX (Uniform Low-Level Radioactive Waste Manifest (Shipping Paper)) and XY (Uniform Low-Level Radioactive Waste Manifest (Container and Waste Description)) and, if necessary, on an applicable Agency Form XZ (Uniform Low-Level Radioactive Waste Manifest (Manifest Index and Regional Compact Tabulation)). Agency Forms XX and XXA must be completed and must physically accompany the pertinent low-level waste shipment. Upon agreement between shipper and consignee, Agency Forms XY and XYA and XZ and XZA may be completed, transmitted, and stored in electronic media with the capability for producing legible, accurate, and complete records on the respective forms. Licensees are not required by Agency to comply with the manifesting requirements of this part when they ship:

- (a) LLW for processing and expect its return (i.e., for storage under their license) prior to disposal at a licensed land disposal facility;
- (b) LLW that is being returned to the licensee who is the "waste generator" or "generator," as defined in this part; or
- (c) Radioactively contaminated material to a "waste processor" that becomes the processor's "residual waste."

For guidance in completing these forms, refer to the instructions that accompany the forms. Copies of manifests required by this appendix may be legible carbon copies, photocopies, or computer printouts that reproduce the data in the format of the uniform manifest.

Agency Forms XX, XXA, XY, XYA, XZ and XZA, and the accompanying instructions, in hard copy, may be obtained from the [cite appropriate Agency address]

This appendix includes information requirements of the Department of Transportation, as codified in 49 CFR part 172. Information on hazardous, medical, or other waste, required to meet Environmental Protection Agency regulations, as codified in 40 CFR parts 259, 261 or elsewhere, is not addressed in this section, and must be provided on the required EPA forms. However, the required EPA forms must accompany the Uniform Low-Level Radioactive Waste Manifest required by this appendix.

As used in this appendix, the following definitions apply:

SSRCR Volume I - March 2003

Agency Forms XX, XXA, XY, XYA, XZ, and XZA are official Agency Forms referenced in this appendix. Licensees need not use originals of these Agency Forms as long as any substitute forms are equivalent to the original documentation in respect to content, clarity, size, and location of information. Upon agreement between the shipper and consignee, Agency Forms XY (and XYA) and Agency Forms XZ (and XZA) may be completed, transmitted, and stored in electronic media. The electronic media must have the capability for producing legible, accurate, and complete records in the format of the uniform manifest.

Chemical description means a description of the principal chemical characteristics of a low-level radioactive waste.

Computer-readable medium means that the regulatory agency's computer can transfer the information from the medium into its memory.

Consignee means the designated receiver of the shipment of low-level radioactive waste.

Decontamination facility means a facility operating under a Commission or Agreement State license whose principal purpose is decontamination of equipment or materials to accomplish recycle, reuse, or other waste management objectives, and, for purposes of this part, is not considered to be a consignee for LLW shipments.

Disposal container means a container principally used to confine low-level radioactive waste during disposal operations at a land disposal facility (also see "high integrity container"). Note that for some shipments, the disposal container may be the transport package.

EPA identification number means the number received by a transporter following application to the Administrator of EPA as required by 40 CFR part 263.

Generator means a licensee operating under a Commission or Agreement State license who (1) is a waste generator as defined in this part, or (2) is the licensee to whom waste can be attributed within the context of the Low-Level Radioactive Waste Policy Amendments Act of 1985 (e.g., waste generated as a result of decontamination or recycle activities).

High integrity container (HIC) means a container commonly designed to meet the structural stability requirements of section V of this appendix, and to meet Department of Transportation requirements for a Type A package.

Land disposal facility means the land, buildings and structures, and equipment, which are intended to be used for the disposal of radioactive wastes. For purposes of this chapter, a "geologic repository" is not considered a "land disposal facility.

Package means the assembly of components necessary to ensure compliance with the packaging requirements of DOT regulations, together with its radioactive contents, as presented for transport. *Physical description* means the items called for on Agency Form XY to describe a low-level radioactive waste.

Residual waste means low-level radioactive waste resulting from processing or decontamination activities that cannot be easily separated into distinct batches attributable to specific waste

D132

generators. This waste is attributable to the processor or decontamination facility, as applicable.

Shipper means the licensed entity (i.e., the waste generator, waste collector, or waste processor) who offers low-level radioactive waste for transportation, typically consigning this type of waste to a licensed waste collector, waste processor, or land disposal facility operator.

Shipping paper means Agency Form XX and, if required, Agency Form XXA, which includes the information, required by DOT in 49 CFR part 172.

Uniform Low-Level Radioactive Waste Manifest or uniform manifest means the combination of Agency Forms XX, XY, and, if necessary, XZ, and their respective continuation sheets as needed, or equivalent.

Waste collector means an entity, operating under a Commission or Agreement State license, whose principal purpose is to collect and consolidate waste generated by others, and to transfer this waste, without processing or repackaging the collected waste, to another licensed waste collector, licensed waste processor, or licensed land disposal facility.

Waste description means the physical, chemical and radiological description of a low-level radioactive waste as called for on Agency Form XY.

Waste generator means an entity, operating under a Commission or Agreement State license, who (1) possesses any material or component that contains radioactivity or is radioactively contaminated for which the licensee foresees no further use, and (2) transfers this material or component to a licensed land disposal facility or to a licensed waste collector or processor for handling or treatment prior to disposal. A licensee performing processing or decontamination services may be a "waste generator" if the transfer of low-level radioactive waste from its facility is defined as "residual waste."

Waste processor means an entity, operating under a Commission or Agreement State license, whose principal purpose is to process, repackage, or otherwise treat low-level radioactive material or waste generated by others prior to eventual transfer of waste to a licensed low-level radioactive waste land disposal facility.

Waste type means a waste within a disposal container having a unique physical description (i.e., a specific waste descriptor code or description; or a waste sorbed on or solidified in a specifically defined media).

Information Requirements

A. General Information

1. The name, facility address, and telephone number of the licensee shipping the waste;

2. An explicit declaration indicating whether the shipper is acting as a waste generator, collector,

SSRCR Volume I -- March 2003

processor, or a combination of these identifiers for purposes of the manifested shipment; and

3. The name, address, and telephone number, or the name and EPA identification number for the carrier transporting the waste.

B. Shipment Information

The shipper of the radioactive waste shall provide the following information regarding the waste shipment on the uniform manifest:

1. The date of the waste shipment;

2. The total number of packages/disposal containers;

3. The total disposal volume and disposal weight in the shipment;

4. The total radionuclide activity in the shipment;

5. The activity of each of the radionuclides H - 3, C - 14, Tc-99, and I - 129 contained in the shipment; and

6. The total masses of U - 233, U - 235, and plutonium in special nuclear material, and the total mass of uranium and thorium in source material.

C. Disposal Container and Waste Information

The shipper of the radioactive waste shall provide the following information on the uniform manifest regarding the waste and each disposal container of waste in the shipment:

1. An alphabetic or numeric identification that uniquely identifies each disposal container in the shipment;

2. A physical description of the disposal container, including the manufacturer and model of any high integrity container;

3. The volume displaced by the disposal container;

4. The gross weight of the disposal container, including the waste;

5. For waste consigned to a disposal facility, the maximum radiation level at the surface of each disposal container;

6. A physical and chemical description of the waste;

7. The total weight percentage of chelating agent for any waste containing more than 0.1% chelating agent by weight, plus the identity of the principal chelating agent;

D134

8. The approximate volume of waste within a container;

9. The sorbing or solidification media, if any, and the identity of the solidification media vendor and brand name;

10. The identities and activities of individual radionuclides contained in each container, the masses of U - 233, U - 235, and plutonium in special nuclear material, and the masses of uranium and thorium in source material. For discrete waste types (i.e., activated materials, contaminated equipment, mechanical filters, sealed source/devices, and wastes in solidification/stabilization media), the identities and activities of individual radionuclides associated with or contained on these waste types within a disposal container shall be reported;

11. The total radioactivity within each container; and

12. For wastes consigned to a disposal facility, the classification of the waste pursuant to section IV of this appendix. Waste not meeting the structural stability requirements of section V(b) of this appendix must be identified.

D. Uncontainerized Waste Information

The shipper of the radioactive waste shall provide the following information on the uniform manifest regarding a waste shipment delivered without a disposal container:

1. The approximate volume and weight of the waste;

2. A physical and chemical description of the waste;

3. The total weight percentage of chelating agent if the chelating agent exceeds 0.1% by weight, plus the identity of the principal chelating agent;

4. For waste consigned to a disposal facility, the classification of the waste pursuant to section IV. of this appendix. Waste not meeting the structural stability requirements of section V(b) of this appendix must be identified;

5. The identities and activities of individual radionuclides contained in the waste, the masses of U - 233, U - 235, and plutonium in special nuclear material, and the masses of uranium and thorium in source material; and

6. For wastes consigned to a disposal facility, the maximum radiation levels at the surface of the waste.

E. Multi-Generator Disposal Container Information

This section applies to disposal containers enclosing mixtures of waste originating from different generators. (Note: The origin of the LLW resulting from a processor's activities may be attributable to one or more "generators" (including "waste generators") as defined in this part). It also applies to mixtures of wastes shipped in an uncontainerized form, for which portions of the mixture within the shipment originate from different generators.

1. For homogeneous mixtures of waste, such as incinerator ash, provide the waste description applicable to the mixture and the volume of the waste attributed to each generator.

2. For heterogeneous mixtures of waste, such as the combined products from a large compactor, identify each generator contributing waste to the disposal container, and, for discrete waste types (i.e., activated materials, contaminated equipment, mechanical filters, sealed source/devices, and wastes in solidification/stabilization media), the identities and activities of individual radionuclides contained on these waste types within the disposal container. For each generator, provide the following:

(a) The volume of waste within the disposal container;

(b) A physical and chemical description of the waste, including the solidification agent, if any;

(c) The total weight percentage of chelating agents for any disposal container containing more than 0.1% chelating agent by weight, plus the identity of the principal chelating agent;

(d) The sorbing or solidification media, if any, and the identity of the solidification media vendor and brand name if the media is claimed to meet stability requirements in section V(b) of this appendix; and

(e) Radionuclide identities and activities contained in the waste, the masses of U - 233, U - 235, and plutonium in special nuclear material, and the masses of uranium and thorium in source material if contained in the waste.

II. Certification

An authorized representative of the waste generator, processor, or collector shall certify by signing and dating the shipment manifest that the transported materials are properly classified, described, packaged, marked, and labeled and are in proper condition for transportation according to the applicable regulations of the Department of Transportation and the Agency. A collector in signing the certification is certifying that nothing has been done to the collected waste, which would invalidate the waste generator's certification.

III. Control and Tracking

A. Any licensee or registrant who transfers radioactive waste to a land disposal facility or a licensed waste collector shall comply with the requirements in paragraphs A.1 through 9 of this appendix. Any licensee or registrant who transfers waste to a licensed waste processor for waste treatment or repackaging shall comply with the requirements of paragraphs A.4 through 9 of this appendix. A licensee shall:

1. Prepare all wastes so that the waste is classified according to section IV. of this appendix and meets the waste characteristics requirements in section V. of this appendix;

2. Label each disposal container (or transport package if potential radiation hazards preclude labeling

of the individual disposal container) of waste to identify whether it is Class A waste, Class B waste, Class C waste, or greater then Class C waste, in accordance with section IV. of this appendix;

3. Conduct a quality assurance program to assure compliance with sections IV. and V. of this appendix (the program must include management evaluation of audits);

4. Prepare the Agency Uniform Low-Level Radioactive Waste Manifest as required by this appendix;

5. Forward a copy or electronically transfer the Uniform Low-Level Radioactive Waste Manifest to the intended consignee so that either (i) receipt of the manifest precedes the LLW shipment or (ii) the manifest is delivered to the consignee with the waste at the time the waste is transferred to the consignee. Using both (i) and (ii) is also acceptable;

6. Include Agency Form XX (and Agency Form XXA, if required) with the shipment regardless of the option chosen in paragraph A.5 of this section;

7. Receive acknowledgement of the receipt of the shipment in the form of a signed copy of Agency Form XX;

8. Retain a copy of or electronically store the Uniform Low-Level Radioactive Waste Manifest and documentation of acknowledgement of receipt as the record of transfer of licensed material as required by these regulations; and

9. For any shipments or any part of a shipment for which acknowledgement of receipt has not been received within the times set forth in this appendix, conduct an investigation in accordance with paragraph E of this appendix.

B. Any waste collector licensee who handles only prepackaged waste shall:

1. Acknowledge receipt of the waste from the shipper within one week of receipt by returning a signed copy of Agency Form XX;

2. Prepare a new manifest to reflect consolidated shipments that meet the requirements of this appendix. The waste collector shall ensure that, for each container of waste in the shipment, the manifest identifies the generator of that container of waste;

3. Forward a copy or electronically transfer the Uniform Low-Level Radioactive Waste Manifest to the intended consignee so that either: (i) Receipt of the manifest precedes the LLW shipment or (ii) the manifest is delivered to the consignee with the waste at the time the waste is transferred to the consignee. Using both (i) and (ii) is also acceptable;

4. Include Agency Form XX (and Agency Form XXA, if required) with the shipment regardless of the option chosen in paragraph B.3 of this appendix;

5. Receive acknowledgement of the receipt of the shipment in the form of a signed copy of Agency Form XX;

SSRCR Volume I - March 2003 -

Appendix G

6. Retain a copy of or electronically store the Uniform Low-Level Radioactive Waste Manifest and documentation of acknowledgement of receipt as the record of transfer of licensed material as required by these regulations;

7. For any shipments or any part of a shipment for which acknowledgement of receipt has not been , received within the times set forth in this appendix, conduct an investigation in accordance with paragraph E of this appendix; and

8. Notify the shipper and the Agency when any shipment, or part of a shipment, has not arrived within 60 days after receipt of an advance manifest, unless notified by the shipper that the shipment has been cancelled.

C. Any licensed waste processor who treats or repackages waste shall:

1. Acknowledge receipt of the waste from the shipper within one week of receipt by returning a signed copy of Agency Form XX;

2. Prepare a new manifest that meets the requirements of this appendix. Preparation of the new manifest reflects that the processor is responsible for meeting these requirements. For each container of waste in the shipment, the manifest shall identify the waste generators, the preprocessed waste volume, and the other information as required in paragraph I.E. of this appendix;

3. Prepare all wastes so that the waste is classified according to section IV. of this appendix and meets the waste characteristics requirements in section V. of this appendix;

4. Label each package of waste to identify whether it is Class A waste, Class B waste, or Class C waste, in accordance with sections IV. and VI. of this appendix;

5. Conduct a quality assurance program to assure compliance with sections IV. and V. of this appendix (the program shall include management evaluation of audits);

6. Forward a copy or electronically transfer the Uniform Low-Level Radioactive Waste Manifest to the intended consignee so that either: (i) Receipt of the manifest precedes the LLW shipment or (ii) the manifest is delivered to the consignee with the waste at the time the waste is transferred to the consignee. Using both (i) and (ii) is also acceptable;

7. Include Agency Form XX (and Agency Form XXA, if required) with the shipment regardless of the option chosen in paragraph C.6 of this section;

8. Receive acknowledgement of the receipt of the shipment in the form of a signed copy of Agency Form XX;

9. Retain a copy of or electronically store the Uniform Low-Level Radioactive Waste Manifest and documentation of acknowledgement of receipt as the record of transfer of licensed material as required by these regulations;

10. For any shipment or any part of a shipment for which acknowledgement of receipt has not been

received within the times set forth in this appendix, conduct an investigation in accordance with paragraph E of this appendix; and

11. Notify the shipper and the Agency when any shipment, or part of a shipment, has not arrived within 60 days after receipt of an advance manifest, unless notified by the shipper that the shipment has been cancelled.

D. The land disposal facility operator shall:

1. Acknowledge receipt of the waste within one week of receipt by returning, as a minimum, a signed copy of Agency Form XX to the shipper. The shipper to be notified is the licensee who last possessed the waste and transferred the waste to the operator. If any discrepancy exists between materials listed on the Uniform Low-Level Radioactive Waste Manifest and materials received, copies or electronic transfer of the affected forms must be returned indicating the discrepancy;

2. Maintain copies of all completed manifests and electronically store the information required by this Appendix until the Agency terminates the license; and

3. Notify the shipper and the Agency when any shipment, or part of a shipment, has not arrived within 60 days after receipt of an advance manifest, unless notified by the shipper that the shipment has been cancelled.

E. Any shipment or part of a shipment for which acknowledgement is not received within the times set forth in this section must:

1. Be investigated by the shipper if the shipper has not received notification or receipt within 20 days after transfer; and

2. Be traced and reported. The investigation shall include tracing the shipment and filing a report with the Agency. Each licensee who conducts a trace investigation shall file a written report with the Agency within 2 weeks of completion of the investigation.

IV. Classification of Waste

(a) Classification of waste for near surface disposal. (1) *Considerations*. Determination of the classification of radioactive waste involves two considerations. First, consideration must be given to the concentration of long-lived radionuclides (and their shorter-lived precursors) whose potential hazard will persist long after such precautions as institutional controls, improved waste form, and deeper disposal have ceased to be effective. These precautions delay the time when long-lived radionuclides could cause exposures. In addition, the magnitude of the potential dose is limited by the concentration and availability of the radionuclide at the time of exposure. Second, consideration must be given to the concentration of shorter-lived radionuclides for which requirements on institutional controls, waste form, and disposal methods are effective.

(2) *Classes of waste*. (i) Class A waste is waste that is usually segregated from other waste classes at the disposal site. The physical form and characteristics of Class A waste must meet the minimum requirements set forth in V.(a) of this appendix. If Class A waste also meets the stability requirements set forth in V.(b) of this appendix, it is not necessary to segregate the waste for

SSRCR Volume I -- March 2003

Appendix G

disposal.

(ii) Class B waste is waste that must meet more rigorous requirements on waste form to ensure stability after disposal. The physical form and characteristics of Class B waste must meet both the minimum and stability requirements set forth in section V of this appendix.

(iii) Class C waste is waste that not only must meet more rigorous requirements on waste form to ensure stability but also requires additional measures at the disposal facility to protect against inadvertent intrusion. The physical form and characteristics of Class C waste must meet both the minimum and stability requirements set forth in section V of this appendix.

(iv) Waste that is not generally acceptable for near-surface disposal is waste for which form and disposal methods must be different, and in general more stringent, than those specified for Class C waste. In the absence of specific requirements in this part, such waste must be disposed of in a geologic repository as defined in 10 CFR part 60 unless proposals for disposal of such waste in a disposal site licensed pursuant to 10 CFR Part 61 are approved by the Nuclear Regulatory Commission.

(3) Classification determined by long-lived radionuclides. If radioactive waste contains only radionuclides listed in Table 1, classification shall be determined as follows:

(i) If the concentration does not exceed 0.1 times the value in Table 1, the waste is Class A.

(ii) If the concentration exceeds 0.1 times the value in Table 1 but does not exceed the value in Table 1, the waste is Class C.

(iii) If the concentration exceeds the value in Table 1, the waste is not generally acceptable for nearsurface disposal.

(iv) For wastes containing mixtures of radionuclides listed in Table 1, the total concentration shall be determined by the sum of fractions

Table 1	
Radionuclide	Concentration curies per cubic meter
C-14	8
C-14 in activated metal	80
Ni-59 in activated metal	220
Nb-94 in activated metal	0.2
Tc-99	3
I-129	0.08
Alpha emitting transuranic nuclides with half-life greater	¹ 100
	12 500
ru-241	3,300
Cm-242	-20,000

¹Units are nanocuries per gram.

(4) Classification determined by short-lived radionuclides. If radioactive waste does not contain any of the radionuclides listed in Table 1, classification shall be determined based on the concentrations shown in Table 2. However, as specified in paragraph (a)(6) of this section, if radioactive waste does not contain any nuclides listed in either Table 1 or 2, it is Class A.

(i) If the concentration does not exceed the value in Column 1, the waste is Class A.

(ii) If the concentration exceeds the value in Column 1, but does not exceed the value in Column 2, the waste is Class B.

(iii) If the concentration exceeds the value in Column 2, but does not exceed the value in Column 3, the waste is Class C.

(iv) If the concentration exceeds the value in Column 3, the waste is not generally acceptable for near-surface disposal.

(v) For wastes containing mixtures of the nuclides listed in Table 2, the total concentration shall be determined by the sum of fractions rule

Table 2			
Radionuclide	Concentration, curies per cubic meter		
	Co 1. 1	Col. 2	Col. 3
Total of all nuclides with less than 5 year half-life	70 0	(¹)	(¹)
H-3	40	(¹)	$(^{1})$
Co-60	70 0	(1)	(¹)
Ni-63	3.5	70	700
Ni-63 in activated metal	35	700	7000
Sr-90	0.0 4	150	7000
Cs-137	1	44	4600

¹ There are no limits established for these radionuclides in Class B or C wastes. Practical considerations such as the effects of external radiation and internal heat generation on transportation, handling, and disposal will limit the concentrations for these wastes. These wastes shall be Class B unless the concentrations of other nuclides in Table 2 determine the waste to the Class C independent of these nuclides.

(5) Classification determined by both long- and short-lived radionuclides. If radioactive waste contains a mixture of radionuclides, some of which are listed in Table 1, and some of which are listed in Table 2, classification shall be determined as follows:

(i) If the concentration of a nuclide listed in Table 1 does not exceed 0.1 times the value listed in Table 1, the class shall be that determined by the concentration of nuclides listed in Table 2.

(ii) If the concentration of a nuclide listed in Table 1 exceeds 0.1 times the value listed in Table 1 but does not exceed the value in Table 1, the waste shall be Class C, provided the concentration of nuclides listed in Table 2 does not exceed the value shown in Column 3 of Table 2.

(6) Classification of wastes with radionuclides other than those listed in Tables 1 and 2. If radioactive waste does not contain any nuclides listed in either Table 1 or 2, it is Class A.

(7) The sum of the fractions rule for mixtures of radionuclides. For determining classification for waste that contains a mixture of radionuclides, it is necessary to determine the sum of fractions by dividing each nuclide's concentration by the appropriate limit and adding the resulting values. The appropriate limits must all be taken from the same column of the same table. The sum of the fractions for the column must be less than 1.0 if the waste class is to be determined by that column. Example: A waste contains Sr-90 in a concentration of 50 Ci/m³. and Cs-137 in a concentration of 22 Ci/m³. Since the concentrations both exceed the values in Column 1, Table 2, they must be compared to Column 2 values. For Sr-90 fraction 50/150=0.33; for Cs-137 fraction, 22/44=0.5; the sum of the fractions=0.83. Since the sum is less than 1.0, the waste is Class B.

(8) Determination of concentrations in wastes. The concentration of a radionuclide may be determined by indirect methods such as use of scaling factors which relate the inferred concentration of one radionuclide to another that is measured, or radionuclide material accountability, if there is reasonable assurance that the indirect methods can be correlated with actual measurements. The concentration of a radionuclide may be averaged over the volume of the waste, or weight of the waste if the units are expressed as nanocuries per gram.

V. Waste characteristics.

(a) The following requirements are minimum requirements for all classes of waste and are intended to facilitate handling at the disposal site and provide protection of health and safety of personnel at the disposal site.

(1) Waste must not be packaged for disposal in cardboard or fiberboard boxes.

(2) Liquid waste must be solidified or packaged in sufficient absorbent material to absorb twice the volume of the liquid.

(3) Solid waste containing liquid shall contain as little free standing and noncorrosive liquid as is reasonably achievable, but in no case shall the liquid exceed 1% of the volume.

(4) Waste must not be readily capable of detonation or of explosive decomposition or reaction at normal pressures and temperatures, or of explosive reaction with water.

(5) Waste must not contain, or be capable of generating, quantities of toxic gases, vapors, or fumes harmful to persons transporting, handling, or disposing of the waste. This does not apply to radioactive gaseous waste packaged in accordance with paragraph (a)(7) of this section.

(6) Waste must not be pyrophoric. Pyrophoric materials contained in waste shall be treated, prepared, and packaged to be nonflammable.

(7) Waste in a gaseous form must be packaged at a pressure that does not exceed 1.5 atmospheres at 20°C. Total activity must not exceed 100 curies per container.

(8) Waste containing hazardous, biological, pathogenic, or infectious material must be treated to reduce to the maximum extent practicable the potential hazard from the non-radiological materials.

(b) The requirements in this section are intended to provide stability of the waste. Stability is intended to ensure that the waste does not structurally degrade and affect overall stability of the site through slumping, collapse, or other failure of the disposal unit and thereby lead to water infiltration. Stability is also a factor in limiting exposure to an inadvertent intruder, since it provides a recognizable and nondispersible waste.

(1) Waste must have structural stability. A structurally stable waste form will generally maintain its physical dimensions and its form, under the expected disposal conditions such as weight of overburden and compaction equipment, the presence of moisture, and microbial activity, and internal factors such as radiation effects and chemical changes. Structural stability can be provided by the waste form itself, processing the waste to a stable form, or placing the waste in a disposal container or structure that provides stability after disposal.

(2) Notwithstanding the provisions in V(a)(2) and (3), liquid wastes, or wastes containing liquid, must be converted into a form that contains as little free standing and noncorrosive liquid as is reasonably achievable, but in no case shall the liquid exceed 1% of the volume of the waste when the waste is in a disposal container designed to ensure stability, or 0.5% of the volume of the waste for waste processed to a stable form.

(3) Void spaces within the waste and between the waste and its package must be reduced to the extent practicable.

VI. Labeling.

Each package of waste must be clearly labeled to identify whether it is Class A waste, Class B waste, or Class C waste, in accordance with section IV of this appendix.

PART D

Attachment to APPENDIX G

CLASSIFICATION AND CHARACTERISTICS OF LOW-LEVEL RADIOACTIVE WASTE

Section I. - Classification of Radioactive Waste for Land Disposal.

- (a) <u>Considerations.</u> Determination of the classification of radioactive waste involves two considerations. First, consideration must be given to the concentration of long-lived radionuclides (and their shorter-lived precursors) whose potential hazard will persist long after such precautions as institutional controls, improved waste form, and deeper disposal have ceased to be effective. These precautions delay the time when long-lived radionuclides could cause exposures. In addition, the magnitude of the potential dose is limited by the concentration and availability of the radionuclide at the time of exposure. Second, consideration must be given to the concentration of shorter-lived radionuclides for which requirements on institutional controls, waste form, and disposal methods are effective.
- (b) <u>Classes of waste.</u>
 - (1) Class A waste is waste that is usually segregated from other waste classes at the disposal site. The physical form and characteristics of Class A waste must meet the minimum requirements set forth in Section II.(a). If Class A waste also meets the stability requirements set forth in Section II.(b), it is not necessary to segregate the waste for disposal.
 - (2) Class B waste is waste that must meet more rigorous requirements on waste form to ensure stability after disposal. The physical form and characteristics of Class B waste must meet both the minimum and stability requirements set forth in Section II.
 - (3) Class C waste is waste that not only must meet more rigorous requirements on waste form to ensure stability but also requires additional measures at the disposal facility to protect against inadvertent intrusion. The physical form and characteristics of Class C waste must meet both the minimum and stability requirements set forth in Section II.
- (c) <u>Classification determined by long-lived radionuclides.</u> If the radioactive waste contains only radionuclides listed in Table IV, classification shall be determined as follows:
 - (1) If the concentration does not exceed 0.1 times the value in Table IV, the waste is Class A.
 - (2) If the concentration exceeds 0.1 times the value in Table IV, but does not exceed the value in Table IV, the waste is Class C.

- (3) If the concentration exceeds the value in Table IV, the waste is not generally acceptable for land disposal.
- (4) For wastes containing mixtures of radionuclides listed in Table IV, the total concentration shall be determined by the sum of fractions rule described in Section I.(g).

	TABLE IV	
	Conce	ntration
Radionuclide	Curie/Cubic Meter ^{a/}	Nanocurie/Gram ^{b/}
C-14	8	
C-14 in activated metal	80	
Ni-59 in activated metal	220	
Nb-94 in activated metal	0.2	
Тс-99	3	
I-129	0.08	
Alpha emitting transuranic radionuclides with half-		
life greater than five		
years		100
Pu-241		3,500
Cm-242		20,000
Ra-226		100

 $\frac{a}{2}$ To convert the Ci/m³ values to gigabecquerel (GBq) per cubic meter, multiply the Ci/m³ value by 37.

 $\frac{b}{d}$ To convert the nCi/g values to becquerel (Bq) per gram, multiply the nCi/g value by 37.

- (d) <u>Classification determined by short-lived radionuclides.</u> If the waste does not contain any of the radionuclides listed in Table IV, classification shall be determined based on the concentrations shown in Table V. However, as specified in Section I.(f), if radioactive waste does not contain any nuclides listed in either Table IV or V, it is Class A.
 - (1) If the concentration does not exceed the value in Column 1, the waste is Class A.
 - (2) If the concentration exceeds the value in Column 1 but does not exceed the value in Column 2, the waste is Class B.
 - (3) If the concentration exceeds the value in Column 2 but does not exceed the value in Column 3, the waste is Class C.
 - (4) If the concentration exceeds the value in Column 3, the waste is not generally acceptable for near-surface disposal.

(5) For wastes containing mixtures of the radionuclides listed in Table V, the total concentration shall be determined by the sum of fractions rule described in Section I.(g).

TABLE V			
Radionuclide	Concentration	Curie/C	ubic Meter ^{a/}
- ····	Column 1	Column 2	Column 3
Total of all radio-	•		
nuclides with less			
than 5-year half-life	700	*	*
Н-3	40	*	*
Co-60	700	*	*
Ni-63	3.5	70	700
Ni-63 in activated metal	35	700	7000
Sr-90	0.04	150	7000
Cs-137	1	44	4600

 \mathbb{I}^{I} AGENCY NOTE: To convert the Ci/m³ value to gigabecquerel (GBq) per cubic meter, multiply the Ci/m³ value by 37. There are no limits established for these radionuclides in Class B or C wastes. Practical considerations such as the effects of external radiation and internal heat generation on transportation, handling, and disposal will limit the concentrations for these wastes. These wastes shall be Class B unless the concentrations of other radionuclides in Table V determine the waste to be Class C independent of these radionuclides.

- (e) <u>Classification determined by both long- and short-lived radionuclides.</u> If the radioactive waste contains a mixture of radionuclides, some of which are listed in Table IV and some of which are listed in Table V, classification shall be determined as follows:
 - (1) If the concentration of a radionuclide listed in Table IV is less than 0.1 times the value listed in Table IV, the class shall be that determined by the concentration of radionuclides listed in Table V.
 - (2) If the concentration of a radionuclide listed in Table IV exceeds 0.1 times the value listed in Table IV, but does not exceed the value in Table IV, the waste shall be Class C, provided the concentration of radionuclides listed in Table V does not exceed the value shown in Column 3 of Table V.
- (f) <u>Classification of wastes with radionuclides other than those listed in Tables IV and V.</u> If the waste does not contain any radionuclides listed in either Table IV or V, it is Class A.
- (g) <u>The sum of the fractions rule for mixtures of radionuclides.</u> For determining classification for waste that contains a mixture of radionuclides, it is necessary to determine the sum of fractions by dividing each radionuclide's concentration by the appropriate limit and adding the resulting values. The appropriate limits must all be taken from the same column of the

same table. The sum of the fractions for the column must be less than 1.0 if the waste class is to be determined by that column. Example: A waste contains Sr-90 in a concentration of 1.85 TBq/m³ (50 Ci/m³) and Cs-137 in a concentration of 814 GBq/m³ (22 Ci/m³). Since the concentrations both exceed the values in Column 1, Table V, they must be compared to Column 2 values. For Sr-90 fraction, 50/150 = 0.33., for Cs-137 fraction, 22/44 = 0.5; the sum of the fractions = 0.83. Since the sum is less than 1.0, the waste is Class B.

(h) <u>Determination of concentrations in wastes.</u> The concentration of a radionuclide may be determined by indirect methods such as use of scaling factors which relate the inferred concentration of one radionuclide to another that is measured, or radionuclide material accountability, if there is reasonable assurance that the indirect methods can be correlated with actual measurements. The concentration of a radionuclide may be averaged over the volume of the waste, or weight of the waste if the units are expressed as becquerel (nanocurie) per gram.

Section II. - Radioactive Waste Characteristics.

- (a) The following are minimum requirements for all classes of waste and are intended to facilitate handling and provide protection of health and safety of personnel at the disposal site.
 - (1) Wastes shall be packaged in conformance with the conditions of the license issued to the site operator to which the waste will be shipped. Where the conditions of the site license are more restrictive than the provisions of Part D, the site license conditions shall govern.
 - (2) Wastes shall not be packaged for disposal in cardboard or fiberboard boxes.
 - (3) Liquid waste shall be packaged in sufficient absorbent material to absorb twice the volume of the liquid.
 - (4) Solid waste containing liquid shall contain as little free-standing and non-corrosive liquid as is reasonably achievable, but in no case shall the liquid exceed 1 percent of the volume.
 - (5) Waste shall not be readily capable of detonation or of explosive decomposition or reaction at normal pressures and temperatures, or of explosive reaction with water.
 - (6) Waste shall not contain, or be capable of generating, quantities of toxic gases, vapors, or fumes harmful to persons transporting, handling, or disposing of the waste. This does not apply to radioactive gaseous waste packaged in accordance with Section II.(a)(8).
 - (7) Waste must not be pyrophoric. Pyrophoric materials contained in wastes shall be treated, prepared, and packaged to be nonflammable.****/

See. A.4 of these regulations for definition of pyrophoric material.

- (8) Wastes in a gaseous form shall be packaged at an absolute pressure that does not exceed 1.5 atmospheres at 20°C. Total activity shall not exceed 3.7 TBq (100 Ci) per container.
- (9) Wastes containing hazardous, biological, pathogenic, or infectious material shall be treated to reduce to the maximum extent practicable the potential hazard from the non-radiological materials.
- (b) The following requirements are intended to provide stability of the waste. Stability is intended to ensure that the waste does not degrade and affect overall stability of the site through slumping, collapse, or other failure of the disposal unit and thereby lead to water infiltration. Stability is also a factor in limiting exposure to an inadvertent intruder, since it provides a recognizable and nondispersible waste.
 - (1) Waste shall have structural stability. A structurally stable waste form will generally maintain its physical dimensions and its form, under the expected disposal conditions such as weight of overburden and compaction equipment, the presence of moisture, and microbial activity, and internal factors such as radiation effects and chemical changes. Structural stability can be provided by the waste form itself, processing the waste to a stable form, or placing the waste in a disposal container or structure that provides stability after disposal.
 - (2) Notwithstanding the provisions in Section II.(a)(3) and (4), liquid wastes, or wastes containing liquid, shall be converted into a form that contains as little free-standing and non-corrosive liquid as is reasonably achievable, but in no case shall the liquid exceed 1 percent of the volume of the waste when the waste is in a disposal container designed to ensure stability, or 0.5 percent of the volume of the waste for waste processed to a stable form.
 - (3) Void spaces within the waste and between the waste and its package shall be reduced to the extent practicable.

Section III. - Labeling.

Each package of waste shall be clearly labeled to identify whether it is Class A, Class B, or Class C waste, in accordance with Section I.

2003 RATIONALE FOR REVISIONS

PART D STANDARDS FOR PROTECTION AGAINST RADIATION

Introduction

This revision to Part D incorporates changes of the revised Part 20 into the Suggested State Regulations for Control of Radiation. An accompanying revision to Part A incorporates many of the definitions to Part 20 into the Suggested State Regulations for Control of Radiation. Definitions have been added, deleted or amended in Part D to be consistent with the revised Part A where the new or revised terms were used throughout the regulations. Part J was amended to be consistent with the revised 10 CFR Part 19.

Compatibility Requirements

Most of the changes to Part D are compatibility requirements. Compatibility requirements are in an attachment following the draft Parts. The following changes are addressed in this particular update: 60 FR 15649 (Low-Level Waste Shipment Manifest Information & Reporting) eff. date 3/1/98 60 FR 36038 (Radiation Protection Requirements Amended Definitions & Criteria) eff. date 8/14/95 60 FR 48623 (Medical Administration of Radiation & Radioactive Materials) eff. 10/20/95 60 FR 7900 (Freq. of Medical Examination for Use of Respiratory Protection Equip.) eff. date 3/13/95

60 FR 20183 (Standards for Protection Against Radiation; Clarification) eff. date of 4/25/95

61 FR 24669 (Term./Transfer of Licensed Activities: Recordkeeping Requirements) eff. date 6/17/96 61 FR 65120 (Clean Air Act/Resolution of Dual Regulation) eff. date 1/9/97

62 FR 4120 (Criteria for Release of Individuals Administered Radioactive Material) eff. date 5/29/97

62 FR 39058 (Radiological Criteria for license Termination) eff. date 8/20/97

63 FR 39477 (Minor corrections/clarifying changes/minor policy change) eff. date 10/26/98

63 FR 45393 (Minor corrections/clarifying changes/minor policy change) eff. date 10/26/98

63 FR 50127 (Transfer Disposal & Manifests) eff. date 11/20/98

64 FR 54543 (Respiratory Protection & Controls to Restrict Internal Exposure) eff. date 2/2/03

64 FR 55525 (Respiratory Protection & Controls to Restrict Internal Exposure) eff. date 2/2/03

General Provisions

The working group discussed and agreed to renumber the entire Part D to be consistent with all applicable Parts in 10 CFR 20.

In addition to the re-numbering, the following proposed changes are being submitted for review:

D.1001.b. (formerly D.1.b), "in an emergency" was deleted in the last line in order to be consistent with revised 10 CFR 20.1001b.

D.1002 (formerly D.2): language was added to be consistent with 10 CFR 20 after the Release of Patients Administered Radioactive Material change.

D.1003 (formerly D.3):

"Constraint": New definition to be consistent with 10 CFR 20. "Declared Pregnant Woman": revised to be consistent with 10 CFR 20. "Dosimetry Processor": revised to be consistent with 10 CFR 20. "Planned Special Exposure": revised to be consistent with 10 CFR 20. "Respiratory Protective Device": revised to be consistent with 10 CFR 20. "Very High Radiation Area": revised to be consistent with 10 CFR 20.

D.1001.b & d (formerly D.101): revised to be consistent with 10 CFR 20.1001

D.1201 (formerly D.201): revised to be consistent with 10 CFR 20.1201

D.1203 (formerly D.203): revised to be consistent with 10 CFR 20.1203

D.1206 (formerly D.206): revised to be consistent with 10 CFR 20.1206

D.1208 (formerly D.208): revised to be consistent with 10 CFR 20.1208

D.1301 (formerly D.301): revised to be consistent with 10 CFR 20.1301

D.1501 (formerly D.501): revised to be consistent with 10 CFR 20.1501

D.1502 (formerly D.502): revised to be consistent with 10 CFR 20.1502

D.1503 (formerly D.503): revised to be consistent with 10 CFR 20.1503

D.1701 (formerly D.701): revised to be consistent with 10 CFR 20.1701

D.1702 (formerly D.702): revised to be consistent with 10 CFR 20.1702

D.1703 (formerly D.703): revised to be consistent with 10 CFR 20.1703

D.1704 (formerly D.704): revised to be consistent with 10 CFR 20.1704

D.1705 (formerly D.705): revised to be consistent with 10 CFR 20.1705

D.1902c (formerly D.902c): revised to allow the words "Grave Danger" to be omitted.

D.1903 (formerly D.903): revised to be consistent with 10 CFR 20.1903

D.2006 (formerly D.1006): revised to be consistent with 10 CFR 20.2006

D.2007 (formerly D.1007): revised to be consistent with 10 CFR 20.2007

D.2101 (formerly D.1101): revised to be consistent with 10 CFR 20.2101

D.2104 (formerly D.1104): removed potential requirement for transfer of records to the Agency.

D.2104 (formerly D.205): revised to be consistent with 10 CFR 20.2104

D.2106 (formerly D.1106): revised to be consistent with 10 CFR 20.2101

D.2202 (formerly D.1202): revised to be consistent with 10 CFR 20.2202

D.2203 (formerly D.1203): revised to be consistent with 10 CFR 20.2203

D.2205 (formerly D.1205): revised to be consistent with 10 CFR 20.2205

D.2208 (formerly D.1208): the working group wanted to make the distinction between working days and calendar days as implied.

APPENDIX A: revised to be consistent with 10 CFR Appendix A

APPENDIX C: revised quantity of C-14 requiring labeling to be consistent with 10 CFR Appendix C

APPENDIX D: deleted when Appendix G became final in 1998.

APPENDIX E: moved to become an attachment to Appendix G

APPENDIX F: deleted when decommissioning rule became final

APPENDIX G: new appendix to be consistent with 10 CFR Appendix G

Matters for Future Consideration

- 1. The Working Group is considering changing the definition of calendar quarter as follows: "Calendar quarter means not less than 12 consecutive weeks nor more than 14 consecutive weeks. The first calendar quarter of each year shall begin in January and subsequent calendar quarters shall be so arranged such that no day is included in more than one calendar quarter and no day in any one year is omitted from inclusion within a calendar quarter. No licensee or registrant shall change the method observed by him for determining calendar quarters except at the beginning of a year." The change needed is to allow licensees or registrants to begin their year at times other than January as is allowed by the Nuclear Regulatory Commission's definition of "quarter." Note: The term quarter is used with residential quarters in the SSRCR.
- 2. The Working Group (WG) is considering changing the 0.3 multiplicative factor in the version of D.1201c.ii.(2), which may be higher than necessary, to 0.2, which might be more appropriate, pending recommendations of the National Council on Radiation Protection (NCRP) and Measurements. The WG is also looking at revising the 25% criterion to a value more usable and meaningful by the licensee after reviewing any recommendations from NCRP.

2003 Rationale for Part D

- 3. The Working Group is considering the selection of an attenuation factor for use for pregnant fluoroscopists, for use in D.1208.
- 4. The Working Group is considering a method for monitoring personnel eye doses when protective eyewear is worn for use in D.1201.
- 5. In reference to D.1501c. on accreditation of dosimetry processors by the National Voluntary Laboratory Accreditation Program, the Working Group is considering the matters regarding accident-level accreditation, electronic dosimetry and revising the text to eliminate pocket dosimeters per the previous version of the SSR.
- 6. The Working Group is considering clarifying the expression "proper visual, communication, and other special capabilities" in D.1703a.vi.
- 7. The Working Group is considering revising D.2201a. as follows:
- a. Telephone Reports. Each licensee or registrant shall report to the Agency by telephone each stolen, lost, or missing source of radiation immediately after its absence becomes known to the licensee or registrant. This requirement does not apply to sources of radiation that are not required to be licensed or registered.
- 8. The Working Group recommended that specific information required in the report of lost waste shipments in Section III.(e)(2) of Appendix D should be developed.
- 9. The Working Group is considering removing the bracketed section in D.1202.b.iii to remain consistent with 10 CFR 20.1202. This is currently not in 10 CFR 20. This holds a compatibility designation of "A".
- 10. The Working Group is considering deleting the wording in D.1801c and adding radiation machines to the list of items a licensee or registrant shall secure from unauthorized removal or access.
- 11. The Working Group is considering moving sections D.1603 and D.2109 as they pertain only to irradiators and we now have a Part Q, which was written strictly for irradiators. The Group will work closely with the Part Q working group to make this transition.
- 12. The Working Group is considering amending the decay in storage section (D.2001) to allow decay in storage for any isotope with a half-life of less than 120 days. The WG will work with the SR-6 (Part G) group to combine the decay in storage provision in Part G to that in Part D.

Attachment

Rationale for Proposed Changes to Regulations for Individuals Working in Medical Fluoroscopy (10/30/92)

Medical fluoroscopic procedures involve exposures of operators and ancillary personnel to scattered x rays and occasionally to primary beam x-rays. Special fluoroscopic procedures are surgical in nature and frequently involve operator irradiation times an order of magnitude larger than routine fluoroscopic procedures. Personnel who perform or assist in fluoroscopic special procedures commonly have collar monitor deep dose equivalent values well in excess of those for routine fluoroscopy, and these annual dose equivalent values are likely to be in excess of 5 rem (0.05 Sv) for full-time angiographers and interventionalists who wear their monitors properly. These values, under the present regulations, cause frequent "overexposure incidents," when in fact the associated effective dose equivalent (H_E) is much lower. *ICRP Publication No. 35* (1982) states:

In particular, the following advice applies in medical radiology, where the use of lead aprons is common. If a single dosimeter is used it should be worn outside the apron, usually high on the trunk. The recorded result will provide information on the dose equivalent to the skin, eye, and unshielded parts of the body (though not necessarily to the hands) but will overestimate the effective dose equivalent. When the recorded values indicate annual totals approaching dose limits for effective dose equivalent or when realistic estimates of effective dose equivalent are needed as in the optimization of protection, this over-estimation may be unacceptable. Two dosimeters should then be used, one over and one under the protective apron. The interpretation of the combined results will have to depend on the local irradiation conditions and any regulatory requirements.

The proposed changes to the SSRCR presented in D.201c.ii define procedures by which H_E can be determined for special procedures fluoroscopists for whom the current method of overestimating H_E is unacceptable, while excluding personnel who may be working in routine fluoroscopic or radiographic procedures. They also allow the current monitoring system to be used to estimate the eye dose equivalent in D502a.iv(1) and the H_E for routine fluoroscopists in D.201c.ii(1).

Determination of Effective Dose Equivalent for Medical Fluoroscopists

Meinhold has presented the need for reporting personnel doses for external radiation in terms of H_E [Health Physics (1989) <u>56</u>:4, 570]. Although revisions to 10 CFR Part 20 use the weighting factors recommended by *ICRP Publication No. 26* (1977) and *NCRP Report No. 91* (1987) for the determination of H_E for personnel exposure to internal radiation sources, the Nuclear Regulatory Commission revisions do not yet include the use of the H_E concept for exposure to external radiation sources, because of a lack of "specific recommendations for the use of weighting factors for external dose" [Federal Register (May 21, 1991) <u>56</u>, 23369]. Nuclear Regulatory Commission regulations apply to exposures from most licensed radioactive sources; but exposures to machine-produced xrays are not under purview of the Nuclear Regulatory Commission, therefore, such exposures were not explicitly addressed in its rule making for amended Part 20. In the case of the medical fluoroscopy work environment, the situation has been well defined by Faulkner and Harrison in their paper "Estimation of Effective Dose Equivalent to Staff in Diagnostic Radiology." This paper

2003 Rationale for Part D

presents extensive data relating the H_E determined for a Rando phantom "operator" in fluoroscopy as a function of individual monitoring devices worn at unshielded collar and shielded waist locations, for various fluoroscopic peak tube potentials and apron thicknesses [Physics in Medicine and Biology (1988) 33:1, 83-91]. Although these extensive data are determined with the configuration of the x-ray tube over the x-ray table, a related paper by Wøhni and Stranden [Health Physics (36:1,71-' 73)] allows comparisons between the x-ray tube positioned over and underneath the x-ray table.

The data of Faulkner and Harrison have been further analyzed and reduced by Webster, who has proposed a method of combining data from two individual monitoring devices as a good estimate of H_E [Health Physics (1989) 56:4, 568-9]. This method is given in proposed regulation D.201c.ii(2) for fluoroscopists for whom the recorded deep dose equivalent values indicate annual totals approaching or exceeding the conservative regulation, as recommended by *ICRP Publication No. 35*, quoted above. Specifically, Webster's equation requires the use of deep dose equivalent values for a shielded waist monitor (W) and an unshielded collar monitor (C) to determine H_E with modifying factors which were derived from Faulkner and Harrison's paper:

 $H_E = 0.04C + 1.5W.$

The difference between H_E and the "whole body" deep dose equivalent values currently required for fluoroscopists is given as an example. *NCRP Report No. 57* states:

Exposure of the face and neck will exceed the exposure recorded under the apron by factors between 6 and 25.

Therefore, an unshielded collar badge deep dose equivalent of C equal to 1 rem (0.01 Sv) in one month (a large value for routine fluoroscopists, but not uncommon for special procedures fluoroscopists), would be associated with a shielded waist badge deep dose equivalent of W equal to 40--167 mrem (0.4--1.67 mSv). Using Webster's equation, the H_E for that month is calculated to be

 $H_E = 0.04 (1000) + 1.5 (40 \text{ to } 167) \text{ mrem}; = 40 + (60 \text{ to } 250) \text{ mrem}; = 100 \text{ to } 290 \text{ mrem}.$

This H_E annualizes to 1.2--3.48 rem (12--34.8 mSv), significantly below the limit of 5 rem (0.05 Sv). The annual dose equivalent to the eye is calculated to be 12 rem (0.12 Sv), also below the limit of 15 rem (0.15 Sv). A fluoroscopist with an annual collar monitor deep dose equivalent of 12 rem (0.12 Sv) would therefore be expected to have an annual H_E of less than 3.5 rem (35 mSv).

It should be noted that wearing two personal monitoring devices has at least two drawbacks, i.e., the individual may confuse wearing the monitors and inconsistently wear them in the same locations^{1/}; and the cost of monitors is doubled. Fluoroscopy personnel who perform or assist in routine fluoroscopic or radiographic procedures do not receive doses sufficiently high to warrant the expense and potential confusion of wearing two badges in order to require a more accurate determination of H_E.

 $^{1^{}l}$ Color-coding holders is helpful in minimizing this problem; "yellow belly" for the waist badge is reasonably straightforward! Also using two different types of monitors, such as film and TLD, may be helpful.

Consistent with *ICRP Publication No. 35*, quoted above, D.201c.ii.(1) allows an overestimate of H_E for some fluoroscopists to be determined from one individual monitoring device, because the overestimate is not burdensome. The criterion to allow calculation of H_E based on the unshielded neck monitor by use of a 0.3 multiplication factor in D.201c.ii(1) is set at 25 percent of the dose limit for the purpose of separating personnel who work in special procedures from personnel who work in routine fluoroscopic or radiographic procedures. The proposed methodology is derived from *NCRP Report No. 57* by using the most conservative value and setting W = C/6 in Webster's equation for H_E . H_E then becomes approximately equal to the unshielded collar badge deep dose equivalent multiplied by 0.3. Comparison of this factor with the data presented in the papers of Faulkner and Harrison, and Wøhni and Stranden indicate that this factor is conservatively low; however, the factor of 0.3 is not believed to be burdensome for the following two reasons:

- 1. When the collar monitor is used to monitor the dose to the lens of the eye, and the annual lens dose equivalent is limited to 15 rem (0.15 Sv), then the annual effective dose equivalent will not exceed 5 rem (0.05 Sv) annually. In this case, the lens dose equivalent becomes the limitation, rather than the effective dose equivalent.
- 2. The effective dose equivalent may be estimated by a single collar monitor, but a more accurate estimate is made with both the collar and waist monitors. If a more accurate estimate of H_E is desired, this second option should be used. Therefore, until the National Council on Radiation Protection and Measurements provides definitive guidance for determining H_E , this conservative multiplicative factor of 0.3 may be used when a single collar monitor is worn.

Unlike routine fluoroscopists, special procedures fluoroscopists are likely to have annual collar badge values in excess of 5 rem (0.05 Sv) when they wear their monitors according to current regulations. Since the number of individuals who perform or assist in these types of procedures is much smaller than those in routine fluoroscopy, permitting better training and supervision, both the likelihood of confusing two monitors and the excess costs are minimized. Wearing two monitors has the added benefit of concurrently monitoring gonad dose as well as the dose to a potential embryo/fetus. If these data are needed for personnel in this higher-dose work environment, they are readily available. However, it is proposed that wearing two monitors be required only for declared pregnant women in fluoroscopy so that actual measured values underneath the apron are documented, rather than coarse estimates [D502a.iv(3)].

It is recognized that the monitor worn underneath the apron almost certainly provides an overestimate of the dose received by the embryo/fetus. However, a specific dose reduction factor depends on the individual and the work environment, and a universal dose reduction factor is not recommended without the advice of a qualified expert. Because nearly all personnel have monthly shielded waist monitor values of less than 50 mrem (0.5 mSv), the embryo/fetus dose assessment for specific individuals will be required only in rare circumstances [Brateman L., <u>24th Annual National Conference on Radiation Control</u>, CRCPD Publication 92-5 (1992) 277-9].

Proposed regulation D.201c.ii(1) allows the cumulative H_E for special procedures fluoroscopists to be determined when data are available for only the collar monitor. With the use of a multiplicative factor of 0.3 applied to the unshielded collar badge deep dose equivalent value, an estimate of H_E can be obtained for that portion of the year when only the collar monitor was worn, and this value can

2003 Rationale for Part D

then be summed with values of H_E determined from two monitors when two monitors are worn. Because this provision is applicable only for the situation in which personnel receive large reported doses, it does not apply to personnel who work part-time in radiography and fluoroscopy, who routinely receive lower reported annual doses than 1250 mrem (12.5 mSv): for this group, the use of the 0.3 factor is inappropriate because of the mixed work environment in which a portion of the reported dose might have been received as a whole body dose. In addition, since the current regulations are not burdensome for this group, this practice is consistent with *ICRP Publication No.* 35.

Protective aprons are worn to shield the gonads and a major portion of the trunk and bone marrow of the individual. Therefore, an individual assisting in fluoroscopic procedures with his/her back to the x-ray beam needs to wear appropriate shielding to cover the back, as well as the front, of the chest, abdomen and pelvis, to limit the dose to these organs and tissues. This policy also ensures adequate protection in the case of a declared pregnant woman. Aprons of 0.25 to 0.6 millimeters of lead equivalence were used in the derivation of H_E by Webster in his equation, because these aprons are in common usage. Therefore, F.3a.i(5b) is expanded to provide the appropriate monitoring conditions for the assumptions underlying D.201c.ii.

Proposed modifications to Parts D and F address in particular the monitoring of occupational doses from medical fluoroscopy, and proposed modifications to Part F include the relocation of personnel monitoring issues to Part D. Therefore, F.3a.i.(10) is revised so as to include all of the appropriate sections of Part D, and F.3a.i.(10)(a) is replaced by D.502a.iv and D.201c. Because the requirements for wearing protective aprons in fluoroscopy are included in Part F, and the proposed regulation for locating monitors for determining occupational doses is included in Part D, the definition of protective apron is added to Part A, in accordance with the Conference of Radiation Control Program Directors "Policies and Procedures for the Preparation and Publication of the *Suggested State Regulations* Style Manual."

Conclusion and Summary

Physicians who perform special fluoroscopic procedures frequently receive doses to the head and eyes, which are greater than 5 rem (0.05 Sv) per year. Current regulations consider the largest of these values as the "whole body" dose equivalent, even though the gonads and most of the trunk are shielded by aprons, which provide large protective factors. The incorporation of the recently-revised 10 CFR Part 20 into the SSRCR will exclude the present fallback position of allowing a 5(N-18) rem lifetime whole body dose equivalent for these individuals, and an untenable regulatory situation is likely to occur rapidly. It is already the case that, because the enforcement of current regulations requires frequent censure of personnel performing special fluoroscopic procedures, many personnel do not comply with existing requirements (i.e., wearing unshielded collar badges which have values reported as "whole body" doses). Changing the regulations to these proposed will result in a much more accurate assessment of risk from occupational exposure to radiation and will allow personnel who perform special fluoroscopic procedures to utilize the more up-to-date International Council on Radiation Protection and National Council on Radiation Protection and Measurements effective dose equivalent concept, while continuing to allow adequate regulatory oversight over this specialized work environment.

These proposed regulations are seen as an improvement over existing x-ray regulations and provide a conservative estimate of x-ray exposures in medical fluoroscopy without being unduly restrictive,

burdensome and costly. It is extremely important that these changes be incorporated before unnecessary regulatory problems are created -- that is, incorporated concurrent with the revisions to the SSRCR, which include the Nuclear Regulatory Commission Part 20 modifications.