APPENDIX A

VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY MEASUREMENTS

A.1 Neutron Dosimetry

Comparisons of measured dosimetry results to both the calculated and least squares adjusted values for the surveillance capsules withdrawn from Millstone Unit 2 are described herein. The sensor sets from these capsules have been analyzed in accordance with the current dosimetry evaluation methodology described in Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence."^[A-1] One of the main purposes for presenting this material is to demonstrate that the overall measurements agree with the calculated and least squares adjusted values to within \pm 20% as specified by Regulatory Guide 1.190, thus serving to validate the calculated neutron exposures previously reported in Section 6.2 of this report. This information may also be useful in the future, in particular, as least squares adjustment techniques become accepted in the regulatory environment.

A.1.1 Sensor Reaction Rate Determinations

In this section, the results of the evaluations of three neutron sensor sets withdrawn as part of the Millstone Unit 2 Reactor Vessel Materials Surveillance Program are presented. The capsule designation, location within the reactor, and time of withdrawal of each of these dosimetry sets were as follows:

	Equivalent	Withdrawal	Irradiation
<u>Capsule ID</u>	Azimuthal	<u>Time</u>	Time [EFPY]
	Location		
W-97	7°	End of Cycle 3	3.0
W-97 supplemental ^[1]	7°	End of Cycle 10	5.0
W-104	14°	End of Cycle 10	10.0
W-83	7°	End of Cycle 14	15.3

[1] The W-97 supplemental capsule is a fourth dosimeter set that was first put into service at the beginning of the sixth fuel cycle. Since the W-97 supplemental capsule dosimetry differed substantially from the W-104 dosimetry measurements jointly described in Reference A-3, the W-97 supplemental capsule was not used to validate the Millstone Unit 2 transport calculations

The azimuthal locations included in the above tabulation represent the first octant equivalent azimuthal angle of the geometric center of the respective surveillance capsules.

The passive neutron sensors contained in the W-97, W-104, and W-83 surveillance capsules are summarized as follows:

	Reaction		Sensor Sets Evaluated	
Sensor Material	Of Interest	Capsule W-97	Capsule W-104	Capsule W-83
Copper [Cd]	$^{63}Cu(n,\alpha)^{60}Co$			
Iron	54 Fe(n,p) 54 Mn	х	X	X
Nickel [Cd]	⁵⁸ Ni(n,p) ⁵⁸ Co	Х	Х	Х
Titanium	⁴⁶ Ti(n,p) ⁴⁶ Sc	Х	Х	Х
Uranium-238	238 U(n.f) 137 Cs			
Uranium-238 [Cd]	²³⁸ U(n.f) ¹³⁷ Cs	Х	Х	
Cobalt-Aluminum	⁵⁹ Co(n.v) ⁶⁰ Co	Х		Х
Cobalt-Aluminum [Cd]	⁵⁹ Co(n.v) ⁶⁰ Co	х		Х
Sulfur	³² S(n,p) ³² P			

In regards to the neutron sensors listed above, the cadmium-covered ⁶³Cu sensor reaction was not measured for capsule W-83 since the copper wire amalgamated with the cadmium. Similarly, the capsule W-97 ⁶³Cu sensor was also rejected on the basis of sample integrity since melting of the cadmium shield had also occurred. The cadmium-covered ⁶³Cu sensor reaction for capsule W-104 was also rejected based on previous performance issues with cadmium melting in the aforementioned capsules.

The bare uranium sensor measurements for capsules W-97 and W-83 were also excluded from this assessment. The bare 238 U(n,f) measurement is dominated by contributions from thermal neutron reactions in 235 U impurities. These thermal contributions add significant uncertainty to the determination of the 238 U(n,f) reaction rate. The bare 238 U(n,f) sensor reactions for capsule W-104 were not reported in Reference A-3.

The cadmium-covered ²³⁸U sensor provides greater accuracy in the measurement of this fast neutron reaction and was therefore included in the reevaluation of capsules W-97 and W-104. However, the cadmium-covered ²³⁸U sensors for Capsule W-83 were statistically inconsistent (in excess of 3_{\circ}) with ²³⁸U(n,f)¹³⁷Cs[Cd] measurements from other similar plants; hence, this sensor reaction rate was excluded from this assessment.

The sulfur sensor reaction was not measured for capsule W-83 due to the short half-life of 32 P (14.28 days); similarly, these sensors were not reevaluated for capsule W-97. Furthermore, the sulfur sensor reactions for capsule W-104 were not reported in Reference A-3. Therefore, the sulfur reaction was not utilized in the assessment of these capsules.

Pertinent physical and nuclear characteristics of the passive neutron sensors are listed in Table A-1. The use of passive monitors such as those listed above does not yield a direct measure of the energy dependent neutron flux at the point of interest. Rather, the activation or fission process is a measure of the integrated effect that the time and energy dependent neutron flux has on the target material over the course of the irradiation period. An accurate assessment of the average neutron flux level incident on the various monitors may be derived from the activation measurements only if the irradiation parameters are well known. In particular, the following variables are of interest:

- the measured specific activity of each monitor,
- the physical characteristics of each monitor,
- the operating history of the reactor,
- the energy response of each monitor, and
- the neutron energy spectrum at the monitor location.

The radiometric counting of the neutron sensors from capsule W-97 was reported by Combustion Engineering (C-E)^[A-2]. The radiometric counting of the neutron sensors from capsule W-104 was reported by Babcock & Wilcox (B&W) ^[A-3]. The radiometric counting of the sensors from capsule W-83 was completed at the Pace Analytical Services Laboratory located at the Westinghouse Waltz Mill Site. The Pace radiometric counting followed established ASTM procedures. Following sample preparation and weighing, the specific activity of each sensor was determined by means of a high-resolution gamma spectrometer. For the iron, nickel, titanium, and cobalt-aluminum sensors, these analyses were

performed by direct counting of each of the individual samples. In the case of the uranium fission sensors, the analyses were carried out by direct counting preceded by dissolution and chemical separation of cesium from the sensor material.

The irradiation history of the reactor over the irradiation periods experienced by capsules W-97, W-104, and W-83 was based on the reported monthly power generation of Millstone Unit 2 from initial reactor criticality through the end of the dosimetry evaluation period. For the sensor sets utilized in the surveillance capsules, the half-lives of the product isotopes are long enough that a monthly histogram describing reactor operation has proven to be an adequate representation for use in radioactive decay corrections for the reactions of interest in the exposure evaluations. The irradiation history applicable to capsules W-97, W-104, and W-83 is given in Table A-2.

Having the measured specific activities, the physical characteristics of the sensors, and the operating history of the reactor, reaction rates referenced to full-power operation were determined from the following equation:

$$R = \frac{A}{N_0 F Y \sum \frac{P_j}{P_{ref}} C_j [1 - e^{-\lambda t_j}] [e^{-\lambda t_d}]}$$

where:

- R = Reaction rate averaged over the irradiation period and referenced to operation at a core power level of P_{ref} (rps/nucleus).
- A = Measured specific activity (dps/gm).

1

- $N_0 = N$ umber of target element atoms per gram of sensor.
- F = Weight fraction of the target isotope in the sensor material.
- Y = Number of product atoms produced per reaction.
- P_1 = Average core power level during irradiation period j (MW).
- P_{ref} = Maximum or reference power level of the reactor (MW).
- C_j = Calculated ratio of $\phi(E > 1.0 \text{ MeV})$ during irradiation period j to the time weighted average $\phi(E > 1.0 \text{ MeV})$ over the entire irradiation period.
- λ = Decay constant of the product isotope (1/sec).
- t_1 = Length of irradiation period j (sec).
- t_d = Decay time following irradiation period j (sec).

and the summation is carried out over the total number of monthly intervals comprising the irradiation period.

In the equation describing the reaction rate calculation, the ratio $[P_j]/[P_{ref}]$ accounts for month-by-month variation of reactor core power level within any given fuel cycle as well as over multiple fuel cycles. The

ratio C_J , which was calculated for each fuel cycle using the transport methodology discussed in Section 6.2, accounts for the change in sensor reaction rates caused by variations in flux level induced by changes in core spatial power distributions from fuel cycle to fuel cycle. For a single-cycle irradiation, C_J is normally taken to be 1.0. However, for multiple-cycle irradiations, particularly those employing low leakage fuel management, the additional C_J term should be employed. The impact of changing flux levels for constant power operation can be quite significant for sensor sets that have been irradiated for many cycles in a reactor that has transitioned from non-low leakage to low leakage fuel management. The fuel cycle specific neutron flux values along with the computed values for C_J are listed in Table A-3. These flux values represent the cycle dependent results at the radial and azimuthal center of the respective capsules at the axial elevation of the active fuel midplane.

Calculations for the reactions whose products have short half-lives indicated that C_j factors based on cycle average flux values were appropriate for capsule W-97 but not appropriate for capsules W-104 and W-83 due to the change in the spectra over the life of the surveillance capsules resulting from the removal of the thermal shield at the end of the fifth fuel cycle. The effect of this spectral change was accounted for by determining C_j factors based on individual reaction rates. As a result, the C_j factors that were utilized in the final analyses for capsules W-104 and W-83 are based on individual reaction rates determined from the synthesized transport calculations as reported in Table A-3.

Prior to using the measured reaction rates in the least-squares evaluations of the dosimetry sensor sets, corrections were made to the ²³⁸U measurements to account for the presence of ²³⁵U impurities in the sensors as well as to adjust for the build-in of plutonium isotopes over the course of the irradiation. Corrections were also made to the ²³⁸U sensor reaction rates to account for gamma ray induced fission reactions that occurred over the course of the capsule irradiation. The correction factors applied to the Millstone Unit 2 fission sensor reaction rates are summarized as follows:

Correction	Capsule W-97	Capsule W-104	Capsule W-83 ^[1]
²³⁵ U Impurity/Pu Build-in	0.872	0.848	0.819
²³⁸ U(γ,f)	0.903	0.844	0.846
Net ²³⁸ U Correction	0.787	0.716	0.693

[1] The cadmium covered U foil from this dosimetry set was not used in the least squares evaluation for the W-83 capsule since it was statistically inconsistent with comparable measurement data obtained from similar plants.

These factors were applied in a multiplicative fashion to the decay corrected uranium fission sensor reaction rates.

Results of the sensor reaction rate determinations for capsules W-97, W-104 and W-83 are given in Table A-4. In Table A-4, the measured specific activities, decay corrected saturated specific activities, and computed reaction rates for each sensor indexed to the radial center of the capsule are listed. The fission sensor reaction rates are listed both with and without the applied corrections for ²³⁸U impurities, plutonium build-in, and gamma ray induced fission effects.

A.1.2 Least Squares Evaluation of Sensor Sets

Least squares adjustment methods provide the capability of combining the measurement data with the corresponding neutron transport calculations resulting in a Best Estimate neutron energy spectrum with

associated uncertainties. Best Estimates for key exposure parameters such as $\phi(E > 1.0 \text{ MeV})$ or dpa/s along with their uncertainties are then easily obtained from the adjusted spectrum. In general, the least squares methods, as applied to surveillance capsule dosimetry evaluations, act to reconcile the measured sensor reaction rate data, dosimetry reaction cross-sections, and the calculated neutron energy spectrum within their respective uncertainties. For example,

$$R_i \pm \delta_{R_i} = \sum_{g} (\sigma_{ig} \pm \delta_{\sigma_{ig}}) (\phi_g \pm \delta_{\phi_g})$$

relates a set of measured reaction rates, R₁, to a single neutron spectrum, ϕ_8 , through the multigroup dosimeter reaction cross-section, σ_{18} , each with an uncertainty δ . The primary objective of the least squares evaluation is to produce unbiased estimates of the neutron exposure parameters at the location of the measurement.

For the least squares evaluation of the Millstone Unit 2 surveillance capsule dosimetry, the FERRET $code^{[A-4]}$ was employed to combine the results of the plant specific neutron transport calculations and sensor set reaction rate measurements to determine best-estimate values of exposure parameters ($\phi(E > 1.0 \text{ MeV})$ and dpa) along with associated uncertainties for the three in-vessel capsules considered herein.

The application of the least squares methodology requires the following input:

- 1 The calculated neutron energy spectrum and associated uncertainties at the measurement location.
- 2 The measured reaction rates and associated uncertainty for each sensor contained in the multiple foil set.
- 3 The energy dependent dosimetry reaction cross-sections and associated uncertainties for each sensor contained in the multiple foil sensor set.

For the Millstone Unit 2 application, the calculated neutron spectrum was obtained from the results of plant specific neutron transport calculations described in Section 6.2 of this report. The sensor reaction rates were derived from the measured specific activities using the procedures described in Section A.1.1. The dosimetry reaction cross-sections and uncertainties were obtained from the Sandia National Laboratory Radiation Metrology Laboratory (SNLRML) dosimeter cross-section library ^[A-5]. The SNLRML library is an evaluated dosimetry reaction cross-section compilation recommended for use in LWR evaluations by ASTM Standard E1018, "Application of ASTM Evaluated Cross-Section Data File, Matrix E 706 (IIB)".

The uncertainties associated with the measured reaction rates, dosimetry cross-sections, and calculated neutron spectrum were input to the least squares procedure in the form of variances and covariances. The assignment of the input uncertainties followed the guidance provided in ASTM Standard E 944, "Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance."

The following provides a summary of the uncertainties associated with the least squares evaluation of the Millstone Unit 2 surveillance capsule sensor sets.

Reaction Rate Uncertainties

The overall uncertainty associated with the measured reaction rates includes components due to the basic measurement process, irradiation history corrections, and corrections for competing reactions. A high level of accuracy in the reaction rate determinations is assured by utilizing laboratory procedures that conform to the ASTM National Consensus Standards for reaction rate determinations for each sensor type.

After combining all of these uncertainty components, the sensor reaction rates derived from the counting and data evaluation procedures were assigned the following net uncertainties for input to the least squares evaluation:

Reaction	Uncertainty
$^{63}Cu(n,\alpha)^{60}Co$	5%
$\int {}^{54} Fe(n,p) {}^{54} Mn$	5%
⁵⁸ Ni(n,p) ⁵⁸ Co	5%
46 Ti(n,p) 46 Sc	5%
$^{238}U(n,f)^{137}Cs$	10%
⁵⁹ Co(n,γ) ⁶⁰ Co	5%

These uncertainties are given at the 1σ level.

Dosimetry Cross-Section Uncertainties

The reaction rate cross-sections used in the least squares evaluations were taken from the SNLRML library. This data library provides reaction cross-sections and associated uncertainties, including covariances, for 66 dosimetry sensors in common use. Both cross-sections and uncertainties are provided in a fine multigroup structure for use in least squares adjustment applications. These cross-sections were compiled from the most recent cross-section evaluations and they have been tested with respect to their accuracy and consistency for least squares evaluations. Further, the library has been empirically tested for use in fission spectra determination as well as in the fluence and energy characterization of 14 MeV neutron sources.

For sensors included in the Millstone Unit 2 surveillance program, the following uncertainties in the fission spectrum averaged cross-sections are provided in the SNLRML documentation package.

Reaction	Uncertainty
$^{63}Cu(n,\alpha)^{60}Co$	4.08-4.16%
54^{54} Fe(n,p) 54^{54} Mn	3.05-3.11%
⁵⁸ Ni(n,p) ⁵⁸ Co	4.49-4.56%
⁴⁶ Ti(n,p) ⁴⁶ Sc	4.51-4.87%
²³⁸ U(n,f) ¹³⁷ Cs	0.54-0.64%
⁵⁹ Co(n,y) ⁶⁰ Co	0.79-3.59%

These tabulated ranges provide an indication of the dosimetry cross-section uncertainties associated with the sensor sets used in LWR irradiations.

Calculated Neutron Spectrum

The neutron spectra input to the least squares adjustment procedure were obtained directly from the results of plant specific transport calculations for each surveillance capsule irradiation period and location. The spectrum for each capsule was input in an absolute sense (rather than as simply a relative spectral shape). Therefore, within the constraints of the assigned uncertainties, the calculated data were treated equally with the measurements.

While the uncertainties associated with the reaction rates were obtained from the measurement procedures and counting benchmarks and the dosimetry cross-section uncertainties were supplied directly with the SNLRML library, the uncertainty matrix for the calculated spectrum was constructed from the following relationship:

$$M_{gg'} = R_n^2 + R_g * R_{g'} * P_{gg'}$$

where R_n specifies an overall fractional normalization uncertainty and the fractional uncertainties R_g and $R_{g'}$ specify additional random groupwise uncertainties that are correlated with a correlation matrix given by: $P_{gg'} = [1 - \theta] \delta_{gg'} + \theta e^{-H}$

where

$$H = \frac{(g - g')^2}{2\gamma^2}$$

The first term in the correlation matrix equation specifies purely random uncertainties, while the second term describes the short-range correlation's over a group range γ (θ specifies the strength of the latter term). The value of δ is 1.0 when g = g', and is 0.0 otherwise.

The set of parameters defining the input covariance matrix for the Millstone Unit 2 calculated spectra was as follows:

Flux Normalization Uncertainty (R _n)	15%
Flux Group Uncertainties (R_g , R_g) (E > 0.0055 MeV)	15%
(0.68 eV < E < 0.0055 MeV)	29%
(E < 0.68 eV)	52%
Short Range Correlation (θ)	
(E > 0.0055 MeV)	0.9
(0.68 eV < E < 0.0055 MeV)	0.5
(E < 0.68 eV)	0.5

Flux Group Correlation Range (γ)	
(E > 0.0055 MeV)	6
(0.68 eV < E < 0.0055 MeV)	3
(E < 0.68 eV)	2

A.1.3 Comparisons of Measurements and Calculations

Results of the least squares evaluations of the dosimetry from the Millstone Unit 2 surveillance capsules considered herein are provided in Tables A-5 and A-6. In Table A-5, measured, calculated, and best-estimate values for sensor reaction rates are given for each capsule. Also provided in this tabulation are ratios of the measured reaction rates to both the calculated and least squares adjusted reaction rates. These ratios of M/C and M/BE illustrate the consistency of the fit of the calculated neutron energy spectra to the measured reaction rates both before and after adjustment. In Table A-6, comparison of the calculated and best estimate values of neutron flux (E > 1.0 MeV) and iron atom displacement rate are tabulated along with the BE/C ratios observed for each of the capsules.

The data comparisons provided in Tables A-5 and A-6 show that the adjustments to the calculated spectra are relatively small and well within the assigned uncertainties for the calculated spectra, measured sensor reaction rates, and dosimetry reaction cross-sections. Further, these results indicate that the use of the least squares evaluation results in a reduction in the uncertainties associated with the exposure of the surveillance capsules. From Section 6.4 of this report, it may be noted that the uncertainty associated with the unadjusted calculation of neutron fluence (E > 1.0 MeV) and iron atom displacements at the surveillance capsule locations is specified as 12% at the 1_{σ} level. From Table A-6, it is noted that the corresponding uncertainties associated with the least squares adjusted exposure parameters have been reduced to 6-7% for neutron flux (E > 1.0 MeV) and 6% for iron atom displacement rate. Again, the uncertainties from the least-squares evaluation are at the 1_{σ} level.

Further comparisons of the measurement results with calculations are given in Tables A-7 and A-8. These comparisons are given on two levels. In Table A-7, calculations of individual threshold sensor reaction rates are compared directly with the corresponding measurements. These threshold reaction rate comparisons provide a good evaluation of the accuracy of the fast neutron portion of the calculated energy spectra. In Table A-8, calculations of fast neutron exposure rates in terms of $\phi(E > 1.0 \text{ MeV})$ and dpa/s are compared with the best estimate results obtained from the least squares evaluation of the capsule dosimetry results. These two levels of comparison yield consistent and similar results with all measurement-to-calculation comparisons falling well within the 20% limits specified as the acceptance criteria in Regulatory Guide 1.190.

It should be noted that although comparisons between the measured and calculated values for the ⁴⁶Ti sensors are included in Table A-7, they were not used in determining the average measurement to calculation (M/C) ratios since a bias exists in the SNLRML cross section for the ⁴⁶Ti(n,p) reaction. This bias may be observed in the data contained in ASTM Standard Practice E261, "Determining Neutron Fluence, Fluence Rate, and Spectra by Radioactivation Techniques." Specifically, Table 3 of ASTM E261 indicates that the sum in quadrature of the experimental uncertainty and the calculated uncertainty for ⁴⁶Ti(n,p)⁴⁶Sc in the ²³⁵U thermal fission field is 6.86%. Also indicated in the same table is the ratio of the calculated cross-section to the experimentally measured cross section (C/E) that is given

as 0.899. Since the difference between the calculated and measured cross-section is greater than the uncertainties involved supports the hypothesis that the calculated cross-section is biased low.

In the case of the direct comparison of measured and calculated sensor reaction rates, the M/C comparisons for fast neutron reactions range from 0.87–1.15 for the 8 samples included in the data set. The overall average M/C ratio for the entire set of Millstone Unit 2 data is 1.00 with an associated standard deviation of 9.6%.

In the comparisons of best estimate and calculated fast neutron exposure parameters, the corresponding BE/C comparisons for the capsule data sets range from 0.94–1.12 for neutron flux (E > 1.0 MeV) and from 0.93 to 1.10 for iron atom displacement rate. The overall average BE/C ratios for neutron flux (E > 1.0 MeV) and iron atom displacement rate are 1.02 with a standard deviation of 9.1% and 1.01 with a standard deviation of 8.6%, respectively.

Based on these comparisons, it is concluded that the calculated fast neutron exposures provided in Section 6.2 of this report are validated for use in the assessment of the condition of the materials comprising the beltline region of the Millstone Unit 2 reactor pressure vessel.

Table A-1

Monitor <u>Material</u>	Reaction of <u>Interest</u>	Target Atom <u>Fraction^[1]</u>	90% Response Range ^[2] <u>(MeV)</u>	Product <u>Half-life</u>	Fission Yield <u>(%)</u>
Copper	⁶³ Cu(n,α)	0.6917	5.0 - 12.0	5.271y	
Iron	⁵⁴ Fe (n,p)	0.0585	2.3 - 8.8	312.3 d	
Nickel	⁵⁸ Ni (n,p)	0.6808	1.9 - 8.8	70.82 d	
Titanium	⁴⁶ Ti (n,p)	0.0800	4.0 - 10.5	83.81 d	
Uranium-238	²³⁸ U (n,f)	1.0000	1.4 - 8.0	30.07 y	6.02
Cobalt-Aluminum	⁵⁹ Co (n,γ)	0.0015	non-threshold	5.271 y	

Nuclear Parameters Used In The Evaluation Of Neutron Sensors

- [1] The counting results identified by B&W for the capsule W-104 reactions were reported in Reference A-3 based on the weight of the target material in the sample rather than the total weight of the dosimeter material. As a result, the target atom fraction used in the analysis of the capsule W-104 sensors was unity.
- [2] The 90% response range is defined such that, in the neutron spectrum characteristic of the Millstone Unit 2 surveillance capsules located at 7° and 14° from the core cardinal axes, approximately 90% of the sensor response is due to neutrons in the energy range specified with approximately 5% of the total response due to neutrons with energies below the lower limit and 5% of the total response due to neutrons with energies above the upper limit.

Table A-2

.

		Thermal			Thermal			Thermal
		Generation			Generation			Generation
Year	Month	(MWt-hr)	Year	<u>Month</u>	(MWt-hr)	<u>Year</u>	<u>Month</u>	(MWt-hr)
1975	10	0	1979	1	1662527	1982	1	0
1975	11	169382	1979	2	1692785	1982	2	0
1975	12	470151	1979	3	539470	1982	3	808939.7
1976	1	726120	1979	4	0	1982	4	1570359
1976	2	727079	1979	5	417578	1982	5	1982946
1976	3	993918	1979	6	1230123	1982	6	1935852
1976	4	1275861	1979	7	1989041	1982	7	1020076
1976	5	1161586	1979	8	745654	1982	8	1724588
1976	6	1534194	1979	9	1933841	1982	9	1703478
1976	7	1197834	1979	10	1991854	1982	10	1693915
1976	8	1373055	1979	11	0	1982	11	1644259
1976	9	1727678	1979	12	1613522	1982	12	1938553
1976	10	1787608	1980	1	2001005	1983	1	1801321
1976	11	1740007	1980	2	1683788	1983	2	1634909
1976	12	910583	1980	3	1740751	1983	3	806911
1977	1	1004692	1980	4	1831957	1983	4	1921628
1977	2	1697538	1980	5	499545	1983	5	1712695
1977	3	1849165	1980	6	404890	1983	6	0
1977	4	1348306	1980	7	1900317	1983	7	0
1977	5	368843	1980	8	958023	1983	8	0
1977	6	362122	1980	9	0	1983	9	0
1977	7	1329348	1980	10	659001	1983	10	0
1077	8	1885613	1980	11	1862268	1983	11	0
1977	9	1667984	1980	12	1995148	1983	12	0
1977	10	1516798	1981	1	782184	1984	1	809931
1977	11	1205392	1981	2	1752019	1984	2	1507373
1077	12	0	1981	3	2001106	1984	3	1971567
1078	1	Õ	1981	4	1934118	1984	4	1935357
1978	2	Õ	1981	5	987167	1984	5	1998215
1978	3	Õ	1981	6	1853185	1984	6	1877970
1978	4	107169	1981	7	1963023	1984	7	1903852
1978	5	1596598	1981	8	1904455	1984	8	1995846
1978	6	1752746	1981	9	1923108	1984	9	1910948
1078	7	1790474	1981	10	1869618	1984	10	2001607
1078	8	1806986	1981	11	1942822	1984	11	1524599
1978	Q	1704986	1981	12	267821	1984	12	1935523
1079	ء 10	1875411	1701	. ~				
1070	11	1830813						
17/0	11	1007010						
17/0	12	1200210						

Monthly Thermal Generation During The First Fourteen Fuel Cycles of The Millstone Unit 2 Reactor

Table A-2 cont'd

	Thermal			Thermal				Thermal
		Generation			Generation			Generation
<u>Year</u>	<u>Month</u>	(MWt-hr)	<u>Year</u>	<u>Month</u>	(MWt-hr)	Year	Month	(MWt-hr)
1985	1	1994395	1988	1	0	1991	1	1323684
1985	2	900708	1988	2	439630	1991	2	1687526
1985	3	0	1988	3	2006818	1991	3	2008452
1985	4	0	1988	4	1494187	1991	4	1368599
1985	5	0	1988	5	956578	1991	5	803890
1985	6	0	1988	6	1400732	1991	6	0
1985	7	1247903	1988	7	2008427	1991	7	1352310
1985	8	1963363	1988	8	2008495	1991	8	540061
1985	9	1710661	1988	9	1936390	1991	9	1170466
1985	10	0	1988	10	1885985	1991	10	1708110
1985	11	1411904	1988	11	1943414	1991	11	342421
1985	12	1990411	1988	. 12	2008362	1991	12	160881
1986	1	1984099	1989	1	2008467	1992	1	1709024
1986	2	1813645	1989	2	201767	1992	2	975691
1986	3	2000735	1989	3	0	1992	3	2008454
1986	4	1940693	1989	4	2469	1992	4	1940643
1986	5	1809751	1989	5	1833467	1992	5	1872406
1986	6	1799531	1989	6	1938383	1992	6	0
1986	7	2007906	1989	7	2004115	1992	7	0
1986	8	1670198	1989	8	2001979	1992	8	0
1986	9	1121241	1989	9	1842429	1992	9	0
1986	10	0	1989	10	1189086	1992	10	0
1986	11	0	1989	11	454022	1992	11	0
1986	12	496285	1989	12	2008374	1992	12	0
1987	1	1772860	1990	1	2008226	1993	1	968933
1987	2	757661	1990	2	1813945	1993	2	1573593
1987	3	1990243	1990	3	2008300	1993	3	2008013
1987	4	1863177	1990	4	1870658	1993	4	1870993
1987	5	2006240	1990	5	455773	1993	5	1883361
1987	6	1942702	1990	6	945947	1993	6	1859045
1987	7	1936769	1990	7	2008021	1993	7	2008410
1987	8	1977157	1990	8	1869028	1993	8	1347720
1987	9	1792000	1990	9	901501	1993	9	902578
1987	10	2008169	1990	10	0	1993	10	1355882
1987	11	1840647	1990	11	1216781	1993	11	1848160
1987	12	1879773	1990	12	1822046	1993	12	1991761

Monthly Thermal Generation During The First Fourteen Fuel Cycles of The Millstone Unit 2 Reactor

Table A-2 cont'd

.

		Thermal			Thermal			Thermal
		Generation			Generation			Generation
Year	Month	(MWt-hr)	Year	<u>Month</u>	(MWt-hr)	<u>Year</u>	<u>Month</u>	<u>(MWt-hr)</u>
1994	1	1987044	1997	1	0	2000	1	1793229
1994	2	1808654	1997	2	0	2000	2	803563.6
1994	3	2004989	1997	3	0	2000	3	1995614
1994	4	1420483	1997	4	0	2000	4	1353661
1994	5	0	1997	5	0	2000	5	0
1994	6	736521	1997	6	0	2000	6	1640187
1994	7	1715901	1997	7	0	2000	7	2002629
1994	8	0	1997	8	0	2000	8	2003897
1994	9	1743833	1997	9	0	2000	9	1923670
1994	10	8969	1997	10	0	2000	10	1984571
1994	11	0	1997	11	0	2000	11	1936391
1994	12	. 0	1997	12	0	2000	12	1996304
1995	1	0	1998	1	0	2001	1	2000397
1995	2	0	1998	2	0	2001	2	1809984
1995	3	0	1998	3	0	2001	3	1974906
1995	4	0	1998	4	0	2001	4	1809699
1995	5	0	1998	5	0	2001	5	1537819
1995	6	0	1998	6	0	2001	6	1934469
1995	7	0	1998	7	0	2001	7	1991596
1995	8	1127403	1998	8	0	2001	8	1802924
1995	9	1943543	1998	9	0	2001	9	1941279
1995	10	2008689	1998	10	0	2001	10	2002856
1995	11	1921802	1998	11	0	2001	11	1860739
1995	12	1594145	1998	12	0	2001	12	1976053
1996	1	2007749	1999	1	0	2002	1	1945747
1996	2	1232628	1999	2	0	2002	2	835263.3
1996	3	0	1999	3	0	2002	3	0
1996	4	0	1999	4	0			
1996	5	0	1999	5	712321.6			
1996	6	0	1999	6	1942647			
1996	7	0	1999	7	1989754			
1996	8	0	1999	8	1986803			
1996	9	0	1999	9	1432859			
1996	10	0	1999	10	2004610			
1996	11	, O	1999	11	1897621			
1996	12	0	1999	12	1918186			

Monthly Thermal Generation During The First Fourteen Fuel Cycles of The Millstone Unit 2 Reactor

Table A-3

	$\phi(E > 1.0 \text{ MeV}) [n/cm^2-s]$				C, ^[1]	
Fuel	Capsule	Capsule	Capsule	Capsule	Capsule	Capsule
Cycle	W-97	W-104	W-83	W-97	W-104	W-83
1	3.00E+10	2.10E+10	3.00E+10	0.89	0.70	0.83
2	3.35E+10	2.36E+10	3.35E+10	0.99	0.79	0.93
3	3.97E+10	2.80E+10	3.97E+10	1.18	0.93	1.10
4		2.68E+10	3.84E+10		0.90	1.07
5		2.66E+10	3.79E+10		0.89	1.05
6		3.90E+10	5.45E+10		1.30	1.51
7		4.00E+10	5.58E+10		1.34	1.55
8		4.02E+10	5.59E+10		1.34	1.55
9		3.94E+10	5.48E+10		1.31	1.52
10		1.96E+10	2.46E+10		0.65	0.68
11			2.81E+10			0.78
12			2.33E+10			0.65
13			2.47E+10			0.69
14			2.46E+10			0.68
Average	3.37E+10	2.99E+10	3.60E+10	1.00	1.00	1.00

Calculated C_j Factors at the Surveillance Capsule Center Core Midplane Elevation

[1] The C_j factors based on the ratio of the cycle specific fast (E > 1.0 MeV) neutron flux divided by the average flux over the total irradiation period were deemed unsuitable for capsules W-104 and W-83 since individual reaction rates did not vary proportionally with the fast flux due to the removal of the thermal shield at the end of the fifth fuel cycle. As a result of this observation, the C_j terms that were utilized in the final analyses for capsules W-104 and W-83 were based on the individual reaction rates determined from the synthesized transport calculations. The final C_j which are based on individual reaction rates, are reported on the following pages of this table.

Table A-3 cont'd

.

Calculated C_j Factors at the Surveillance Capsule Center Core Midplane Elevation (Capsule W-104)

Fuel Cycle	Capsule W-104 Reaction Rates [rps/atom]						
	$^{63}Cu(n,\alpha)$	⁵⁴ Fe (n,p)	⁵⁸ Ni (n,p)	⁴⁶ T1 (n,p)	²³⁸ U (n,f)		
1	2.36E-17	2.20E-15	2.92E-15	3.93E-16	8.60E-15		
2	2.62E-17	2.46E-15	3.27E-15	4.38E-16	9.65E-15		
3	3.07E-17	2.90E-15	3.85E-15	5.14E-16	1.14E-14		
4	2.96E-17	2.79E-15	3.70E-15	4.95E-16	1.10E-14		
5	2.94E-17	2.77E-15	3.68E-15	4.92E-16	1.09E-14		
6	6.01E-17	5.27E-15	6.85E-15	9.99E-16	1.76E-14		
7	6.15E-17	5.40E-15	7.03E-15	1.02E-15	1.80E-14		
8	6.17E-17	5.43E-15	7.06E-15	1.03E-15	1.81E-14		
9	6.06E-17	5.32E-15	6.92E-15	1.01E-15	1.77E-14		
10	3.34E-17	2.77E-15	3.59E-15	5.43E-16	8.95E-15		
Average	4.11E-17	3.68E-15	4.81E-15	6.83E-16	1.30E-14		

Fuel Cycle	Capsule W-104 C _j						
	$^{63}Cu(n,\alpha)$	⁵⁴ Fe (n,p)	⁵⁸ Ni (n,p)	⁴⁶ T1 (n,p)	$^{-23\delta}$ U (n,f)		
1	0.57	0.60	0.61	0.58	0.66		
2	0.64	0.67	0.68	0.64	0.74		
3	0.75	0.79	0.80	0.75	0.88		
4	0.72	0.76	0.77	0.72	0.84		
5	0.72	0.75	0.76	0.72	0.84		
6	1.46	1.43	1.42	1.46	1.35		
7	1.50	1.47	1.46	1.50	1.39		
8	1.50	1.48	1.47	1.50	1.39		
9	1.48	1.45	1.44	1.48	1.37		
10	0.81	0.75	0.75	0.79	0.69		
Average	1.00	1.00	1.00	1.00	1.00		

Table A-3 cont'd

Calculated C_J Factors at the Surveillance Capsule Center Core Midplane Elevation (Capsule W-83)

Fuel Cycle		Capsule W-83 Reaction Rates [rps/atom]				
	⁵⁴ Fe (n,p)	⁵⁸ Ni (n,p)	⁴⁶ Ti (n,p)	²³⁸ U (n,f)	⁵⁹ Co (n,γ)	⁵⁹ Co (n, y) Cd
1	3.07E-15	4.07E-15	5.34E-16	1.22E-14	2.90E-12	6.25E-13
2	3.41E-15	4.53E-15	5.92E-16	1.36E-14	3.26E-12	7.03E-13
3	4.01E-15	5.34E-15	6.94E-16	1.61E-14	3.89E-12	8.42E-13
4	3.90E-15	5.18E-15	6.75E-16	1.56E-14	3.77E-12	8.14E-13
5	3.84E-15	5.11E-15	6.65E-16	1.54E-14	3.71E-12	8.02E-13
6	7.17E-15	9.34E-15	1.33E-15	2.44E-14	2.50E-12	5.53E-13
7	7.33E-15	9.55E-15	1.36E-15	2.49E-14	2.56E-12	5.66E-13
8	7.35E-15	9.57E-15	1.36E-15	2.50E-14	2.56E-12	5.68E-13
9	7.21E-15	9.39E-15	1.33E-15	2.45E-14	2.51E-12	5.56E-13
10	3.37E-15	4.37E-15	6.44E-16	1.11E-14	1.07E-12	2.41E-13
11	3.82E-15	4.97E-15	7.28E-16	1.27E-14	1.24E-12	2.77E-13
12	3.19E-15	4.15E-15	6.12E-16	1.05E-14	1.02E-12	2.28E-13
13	3.38E-15	4.40E-15	6.47E-16	1.12E-14	1.08E-12	2.43E-13
14	3.38E-15	4.38E-15	6.46E-16	1.11E-14	1.08E-12	2.42E-13
Average	4.44E-15	5.82E-15	8.17E-16	1.57E-14	2.23E-12	4.89E-13

Fuel Cycle	Capsule W-83 C _j					
	⁵⁴ Fe (n,p)	⁵⁸ Ni (n,p)	⁴⁶ Ti (n,p)	²³⁸ U (n,f)	⁵⁹ Co (n,γ)	⁵⁹ Co (n,γ) Cd
1	0.69	0.70	0.65	0.78	1.30	1.28
2	0.77	0.78	0.72	0.87	1.46	1.44
3	0.90	0.92	0.85	1.03	1.75	1.72
4	0.88	0.89	0.83	0.99	1.69	1.66
5	0.86	0.88	0.81	0.98	1.66	1.64
6	1.61	1.61	1.62	1.55	1.12	1.13
7	1.65	1.64	1.66	1.59	1.15	1.16
8	1.65	1.65	1.66	1.59	1.15	1.16
9	1.62	1.62	1.63	1.56	1.13	1.14
10	0.76	0.75	0.79	0.71	0.48	0.49
11	0.86	0.85	0.89	0.81	0.55	0.57
12	0.72	0.71	0.75	0.67	0.45	0.47
13	0.76	0.76	0.79	0.71	0.49	0.50
14	0.76	0.75	0.79	0.71	0.48	0.49
Average	1.00	1.00	1.00	1.00	1.00	1.00

Reaction	Location	Measured Activity ^[1] (dps/g)	Saturated Activity <u>(dps/g)</u>	Reaction Rate <u>(rps/atom)</u>
⁶³ Cu (n,α) ⁶⁰ Co (Cd)	Top Middle Bottom Average	1.12E+05 1.10E+05 1.27E+05	3.78E+05 3.74E+05 4.28E+05	5.76E-17 5.71E-17 6.53E-17 6.00E-17
⁵⁴ Fe (n,p) ⁵⁴ Mn	Top Middle Bottom Average	1.87E+06 1.76E+06 1.86E+06	2.60E+06 2.45E+06 2.59E+06	4.13E-15 3.88E-15 4.10E-15 4.04E-15
⁵⁸ Ni (n,p) ⁵⁸ Co (Cd)	Top Middle Bottom Average	3.01E+07 2.78E+07 3.05E+07	3.70E+07 3.42E+07 3.75E+07	5.30E-15 4.90E-15 5.37E-15 5.19E-15
⁴⁶ Ti (n,p) ⁴⁶ Sc	Top Middle Bottom Average	6.15E+05 5.48E+05 5.70E+05	7.60E+05 6.77E+05 7.07E+05	7.55E-16 6.73E-16 7.03E-16 7.10E-16
²³⁸ U (n,f) ¹³⁷ Cs (Cd)	Top Middle Bottom	1.77E+05 1.92E+05 1.87E+05	2.75E+06 2.98E+06 2.90E+06	1.80E-14 1.96E-14 1.91E-14 1 89E-14
²³⁸ U (n,f) ¹³⁷ Cs (Cd)	Including ²³⁵ U	, ²³⁹ Pu, and γ, fissi	on corrections.	1.49E-14 ^[2]
⁵⁹ Co (n,γ) ⁶⁰ Co	Top Middle Bottom Average	2.22E+07 2.52E+07 1.70E+07	7.48E+07 8.49E+07 5.73E+07	4.88E-12 5.54E-12 3.74E-12 4.72E-12
⁵⁹ Co (n,γ) ⁶⁰ Co (Cd)	Top Middle Bottom Average	2.93E+06 3.02E+06 3.07E+06	9.88E+06 1.02E+07 1.04E+07	6.44E-13 6.64E-13 6.75E-13 6.61E-13

. Table A-4 Measured Sensor Activities and Reaction Rates

Surveillance Capsule W-97

Measured specific activities are decay corrected to time of reactor shutdown, i.e., August 17, 1980
The average ²³⁸U (n,f) reaction rate of 1.49E-14 includes a correction factor of 0.872 to account for plutonium build-in and an additional factor of 0.903 to account for photo-fission effects in the sensor.

Table A-4 cont'd Measured Sensor Activities and Reaction Rates

Surveillance Capsule W-104

Reaction	Location	Measured Activity ^[1] (dps/g)	Saturated Activity <u>(dps/g)</u>	Reaction Rate (rps/atom)
⁶³ Cu (n,α) ⁶⁰ Co (Cd)	Тор	3.28E+05	4.87E+05	5.09E-17
	Middle	3.34E+05	4.96E+05	5.18E-17
	Bottom	3.50E+05	5.20E+05	5.43E-17
	Average			5.24E-17
⁵⁴ Fe (n,p) ⁵⁴ Mn	Тор	3.02E+07	4.09E+07.	3.67E-15
	Middle	2.85E+07	3.86E+07	3.46E-15
	Bottom	2.90E+07	3.93E+07	3.52E-15
	Average			3.55E-15
⁵⁸ Ni (n,p) ⁵⁸ Co (Cd)	Тор	3.15E+07	5.07E+07	4.88E-15
	Middle	2.65E+07	4.27E+07	4.10E-15
	Bottom	3.03E+07	4.88E+07	4.69E-15
	Average			4.56E-15
⁴⁶ Ti (n,p) ⁴⁶ Sc	Тор	6.22E+06	9.55E+06	7.29E-16
	Middle	5.47E+06	8.40E+06	6.41E-16
	Bottom	5.75E+06	8.83E+06	6.74E-16
	Average			6.81E-16
²³⁸ U (n,f) ¹³⁷ Cs (Cd)	Тор	4.77E+05	2.39E+06	1.57E-14
	Middle	4.77E+05	2.39E+06	1.57E-14
	Bottom	5.09E+05	2.55E+06	1.68E-14
	Average			1.61E-14
²³⁸ U (n,f) ¹³⁷ Cs (Cd)	Including ²³⁵ U,	, ²³⁹ Pu, and γ , fissi	on corrections.	1.15E-14 ^[2]
	•			

Measured specific activities are assumed to be decay corrected to time of reactor shutdown, 1 e, September 14, 1990.
The average ²³⁸U (n,f) reaction rate of 1.15E-14 includes a correction factor of 0.848 to account for plutonium build-in and an additional factor of 0.844 to account for photo-fission effects in the sensor.

		Measured	Saturated	Reaction
		Activity ¹¹	Activity	Rate
Reaction	Location	<u>(dps/g)</u>	<u>(dps/g)</u>	(rps/atom)
⁵⁴ Fe (n,p) ⁵⁴ Mn	Тор	1.21E+06	3.02E+06	4.79E-15
	Middle	1.10E+06	2.75E+06	4.36E-15
	Bottom	1.10E+06	2.75E+06	4.36E-15
	Average			4.50E-15
⁵⁸ Ni (n,p) ⁵⁸ Co (Cd)	Тор	4.08E+06	4.28E+07	6.13E-15
	Middle	3.62E+06	3.80E+07	5.44E-15
	Bottom	3.80E+06	3.99E+07	5.71E-15
	Average			5.76E-15
⁴⁶ Ti (n.p) ⁴⁶ Sc	Тор	1.25E+05	9.14E+05	9.08E-16
	Middle	1.09E+05	7.97E+05	7.92E-16
	Bottom	1.10E+05	8.04E+05	7.99E-16
	Average			8.33E-16
²³⁸ U (n.f) ¹³⁷ Cs (Cd)	Тор	1.55E+05	6.21E+05	4.08E-15
- (-)-) ()	Mıddle	. 1.80E+05	7.22E+05	4.74E-15
	Bottom	1.51E+05	6.05E+05	3.98E-15
	Average			4.27E-15
²³⁸ U (n,f) ¹³⁷ Cs (Cd)	Including ²³⁵ U	239 Pu, and γ , fissi	ion corrections.	2.96E-15 ^[2]
⁵⁹ Co (n.v) ⁶⁰ Co	Тор	1.59E+07	5.05E+07	3.29E-12
	Middle	1.69E+07	5.36E+07	3.50E-12
	Bottom	1.12E+07	3.55E+07	2.32E-12
	Average			3.04E-12
⁵⁹ Co (n.v) ⁶⁰ Co (Cd)	Тор	1.83E+06	5.72E+06	3.73E-13
	Middle	1.84E+06	5.76E+06	3.76E-13
	Bottom	1.82E+06	5.69E+06	3.71E-13
	Average			3.73E-13

Table A-4 cont'd Measured Sensor Activities and Reaction Rates

Surveillance Capsule W-83

Measured specific activities are decay corrected to September 9, 2002.
The average ²³⁸U (n,f) reaction rate of 2.96E-15 includes a correction factor of 0.819 to account for plutonium build-in and an additional factor of 0.846 to account for photo-fission effects in the sensor

Table A-5

Comparison of Measured, Calculated, and Best Estimate Reaction Rates At The Surveillance Capsule Center

	Read	tion Rate [rps/a			
			Best		
Reaction	Measured	Calculated	Estimate	M/C	M/BE
⁵⁴ Fe(n,p) ⁵⁴ Mn	4.04E-15	3.50E-15	4.03E-15	1.15	1.00
⁵⁸ Ni(n,p) ⁵⁸ Co (Cd)	5.19E-15	4.66E-15	5.30E-15	1.11	0.98
⁴⁶ Ti(n,p) ⁴⁶ Sc	7.10E-16	5.70E-16	6.84E-16	1.25	1.04
238 U(n,f) 137 Cs (Cd)	1.49E-14	1.40E-14	1.56E-14	1.06	0.95
⁵⁹ Co(n,γ) ⁶⁰ Co	4.72E-12	3.28E-12	4.70E-12	1.44	1.01
⁵⁹ Co(n,γ) ⁶⁰ Co (Cd)	6.61E-13	6.78E-13	6.65E-13	0.98	0.99

Capsule W-97

Capsule W-104

	Reaction Rate [rps/atom]				
			Best		
Reaction	Measured	Calculated	Estimate	M/C	M/BE
⁵⁴ Fe(n,p) ⁵⁴ Mn	3.55E-15	3.76E-15	3.58E-15	0.94	0.99
⁵⁸ Ni(n,p) ⁵⁸ Co (Cd)	4.56E-15	4.92E-15	4.65E-15	0.93	0.98
⁴⁶ Tı(n,p) ⁴⁶ Sc	6.81E-16	6.57E-16	6.54E-16	1.04	1.04
238 U(n,f) 137 Cs (Cd)	1.15E-14	1.33E-14	1.23E-14	0.87	0.94

Capsule W-83

	Reaction Rate [rps/atom]				
			Best		
Reaction	Measured	Calculated	Estimate	M/C	M/BE
⁵⁴ Fe(n,p) ⁵⁴ Mn	4.50E-15	4.54E-15	4.53E-15	0.99	0.99
⁵⁸ Ni(n,p) ⁵⁸ Co (Cd)	5.75E-15	5.95E-15	5.89E-15	0.97	0.98
⁴⁶ Ti(n,p) ⁴⁶ Sc	8.33E-16	7.85E-16	8.07E-16	1.06	1.03
⁵⁹ Co(n,γ) ⁶⁰ Co	3.04E-12	2.23E-12	3.02E-12	1.36	1.01
${}^{59}Co(n,\gamma){}^{60}Co(Cd)$	3.73E-13	4.67E-13	3.77E-13	0.80	0.98

Table A-6

Comparison of Calculated and Best Estimate Exposure Rates At The Surveillance Capsule Center

		$\phi(E > 1.0 \text{ MeV}) [n/cm^2-s]$						
		Best	Uncertainty					
Capsule ID	Calculated ^[1]	Estimate	(lo)	BE/C				
W-97	3.37E+10	3.76E+10	6%	1.12				
W-104	3.00E+10	2.80E+10	6%	0.94				
W-83	3.60E+10	3.58E+10	7%	0.99				

[1] Calculated results are based on the synthesized transport calculations taken at the core midplane following the completion of each respective capsules irradiation period

		Iron Atom Displacement Rate [dpa/s]					
		Best	Uncertainty				
Capsule ID	Calculated ^[1]	Estimate	(10)	BE/C			
W-97	5.17E-11	5.70E-11	6%	1.10			
W-104	4.46E-11	4.15E-11	6%	0.93			
W-83	5.32E-11	5.26E-11	6%	0.99			

[1] Calculated results are based on the synthesized transport calculations taken at the core midplane following the completion of each respective capsules irradiation period.

Table A-7

Comparison of Measured/Calculated (M/C) Sensor Reaction Rate Ratios Including all Fast Neutron Threshold Reactions

	M/C Ratio			
Reaction	Capsule W-97	Capsule W-104	Capsule W-83	
54Fe(n.p) 54 Mn	1.15	0.94	0.99	
⁵⁸ Ni(n.p) ⁵⁸ Co (Cd)	1.11	0.93	0.97	
46 Ti(n.p) 46 Sc	1.25 [1]	1.04 [1]	1.06 [1]	
238 U(n,p) 137 Cs (Cd)	1.06	0.87	N/A ^[2]	
Average	1.11 [3]	0.91 [3]	0.98 [3]	
% Standard Deviation	4.1 ^[3]	4.1 ^[3]	1.4 [3]	

[1] The M/C values for the ⁴⁶Ti sensors are listed but not used in the average M/C ratio due to a bias present in the SNLRML cross-section data as discussed in Section A.1.3 For additional information, these calculations were repeated using the ⁴⁶Ti dosimetry cross-section from the BUGLE-96 data library set. The results of these calculations were M/C ratios of 1 19, 1.00, and 1.02 for Capsules W-97, W-104, and W-83, respectively

[2] The cadmium-covered uranium measurement from Capsule W-83 was rejected

[3] The overall average M/C ratio for the set of 8 sensor measurements is 1.00 with an associated standard deviation of 9.6%

Table A-8		

Comparison of Best Estimate/Calculated (BE/C) Exposure Rate Ratios

· · · · · · · · · · · · · · · · · · ·	BE/C Ratio		
Capsule ID	$\phi(E > 1.0 \text{ MeV})$	dpa/s	
W-97	1.12	1.10	
W-104	0.94	0.93	
W-83	0.99	0.99	
Average	1.02	1.01	
% Standard Deviation	9.1	8.6	

Appendix A References

- A-1. Regulatory Guide RG-1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence," U. S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, March 2001.
- A-2. TR-N-MCM-008, "Northeast Utilities Service Company Millstone Nuclear Unit No. 2 Post-Irradiation Evaluation of Reactor Vessel Surveillance Capsule W-97," S. T. Byrne, Combustion Engineering Inc., April 1982.
- A-3 BAW-2142, "Analysis of Capsule W-104 Northeast Nuclear Energy Company Millstone Nuclear Power Station, Unit No. 2 - Reactor Vessel Material Surveillance Program," A. L. Lowe, Jr., et al., B&W Nuclear Service Company, November 1991.
- A-4. A. Schmittroth, *FERRET Data Analysis Core*, HEDL-TME 79-40, Hanford Engineering Development Laboratory, Richland, WA, September 1979.
- A-5. RSIC Data Library Collection DLC-178, "SNLRML Recommended Dosimetry Cross-Section Compendium", July 1994.

APPENDIX B

INSTRUMENTED CHARPY IMPACT TEST CURVES

[Each of the following plots is titled as "Specimen Number, Test Temperature"]

146, 75°F

117, 130°F

13C, 175°F

136, 200°F

156, 215°F

165, 225°F

131, 250°F

12K, 300°F

16D, 350°F

224, 0°F

231, 75°F

253, 150°F

,

245, 175°F

212, 175°F

211, 200°F

.

23L, 225°F

214, 275°F

.

24K, 300°F

22A, 325°F

314*, -*50°F

33K, 0°F

34L, 30°F

311, 50°F

32A, 75°F

36D, 100°F

34C, 150°F

337, 200°F

323, 225°F

312, 250°F

B-19

42T, -75°F

46E, -25°F

41E, 25°F

B-21

42U, 75°F

43K, 150°F

41U, 200°F

46B, 250°F

.

44C, 325°F

APPENDIX C

.

CHARPY V-NOTCH PLOTS FOR EACH CAPSULE

USING HYPERBOLIC TANGENT CURVE-FITTING METHOG

LOWER SHELL PLATE C-506-1 UNIRR (LONG)

Page 2

Material: PLATE SA533BI

Heat Number: C-5667-1

Orientation: LT

Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature	Input CVN Energy	Computed CVN Energy	Differential
9 0	89	80.66	833
90	62.5	80.66	-18.16
120	119	109	9.99
120	116	109	6.99
160	124.5	125.42	92
160	134.5	125.42	9.07
210	130	130.12	12
210	136.5	130.12	6.37
		SUM of	RESIDUALS = 31.84

C-4

· · · · · · · · · · · · · · · · · · ·			
LOV	WER SHELL PLATE C-	506–1 CAPSULE 9 age 2	97 (LONG)
	Material: PLATE SA533B1 He Capsule: \#-97 Charpy V-Notch	at Number: C-5667-1 Orien Total Fluence: Data (Continued)	tation: LT
Temperature 240 280 280 350	Input CVN Energy 98 97 92 90	Computed CVN Energ 84.3 89.84 89.84 93.12	y Differential 13.69 7.15 2.15 -3.12 SUM of RESIDUALS = 17.81

LOWER SHELL PLATE C-506-1 CAPSULE 104 (LONG) Page 2					
	Material: PLATE SA533B1 He Capsule: W-104	at Number: C-5667-1 Total Fluence:	Orientation: LT		
	Charpy V-Notch	Data (Continued)		
Temperature 280 340 400 550	Input CVN Energy 93.5 95 92 100	Computed CVN 87.17 92.74 94.38 94.97	Energy Di SUM of RESIDUALS =	fferential 6.32 2.25 -2.38 5.02 : 10.46	

LOWER SHELL PLATE C-506-1 CAPSULE 83 (LONG)					
	Material: PLATE SA533B1 Capsule: W-83	Heat Number: C-5667-1 Orientation Total Fluence:	ion: LT		
	Charpy V-Note	h Data (Continued)			
Temperature 225 250 300 325 350	Input CVN Energy 74 60 80 95 102	Computed CVN Energy 60.07 70.58 83.77 87.13 89.17 SUM	Differential 13.92 -10.58 -3.77 7.86 12.82 A of RESIDUALS = 22.3		

C-10

	LOWER SHELL PLATE Pag	C-506-1 UNIRR (LON)	G)
	Material: PLATE SA533B1 Hea Capsule: UNIRR	t Number: C-5667-1 Orientation: LT Total Fluence:	Γ
	Charpy V-Notch	Data (Continued)	
Temperature 90 90 120 120 160 160 210 210	Input Lateral Expansion 67 54 86 87 89 91 90 89	Computed L.E. 64.44 64.44 79.01 79.01 88.99 88.99 93.11 93.11 SUM of R	Differential 255 -10.44 6.98 7.98 0 2 -3.11 -4.11 DESIDUALS = 6.03

**** Data continued on next page ****

LOWER SHELL PLATE C-506-1 CAPSULE 97 (LONG)

Page 2

Material: PLATE SA533B1

Heat Number: C-5667-1

Orientation: LT

Capsule: W-97 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature	Input Lateral Expansion	Computed LE	Differential
240	° 83 °	73.51	9.48
280	79	79.26	-26
280	78	79.26	-126
350	80	83 69	-369
		SUM of	RESIDUALS = 1.24

LOW	ER SHELL PLATE (C—506—1 CAPSU Page 2	LE 104 (LON	G)
	Material: PLATE SA533B1 Capsule: W-1 Charpy V-Not	Heat Number: C-5667-1 04 Total Fluence: ch Data (Continued	Orientation: LT	
Temperature 280 340 400 550	Input Lateral Expansion 79 84 82 88	Computed 7728 83.17 85.38 86.49	LE. SUM of RESIDUAI	Differential 1.71 .82 -3.38 1.5 S = 1.95

LOWER SHELL PLATE C-506-1 CAPSULE 83 (LONG) Page 2					
Material: PLATE SA533B1 Heat Number: C-5667-1 Orientation: LT Capsule: W-83 Total Fluence:					
Temperature 225	Input Lateral Expansion 58	Computed LE 4673	Differential		
250 300 325 350	48 68 72 80	5521 6903 73.9 7752	-721 -1.03 -19 2.47		
		S	UM of RESIDUALS = -2.24		

LOWER SHELL PLATE C-506-1 UNIRR (LONG)

Page 2

Material: PLATE SA533B1

Heat Number: C-5667-1

667–1 Orientation: LT

Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature	Input Percent Shear	Computed Percent Shear	Differential
⁻ 90	- 70	6728	271
90	65	6728	-228
120	90	83.32	667
120	85	83.32	167
160	100	94.22	577
160	100	94.22	577
210	100	98.62	137
210	100	98 62	137
		SUM of RE	SIDUALS = 23.14

C-20

LOW	ER SHELL PLATE C-5 Pa	506—1 CAPSULE 97 (LC ge 2)NG)
	Material: PLATE SA533B1 Hea Capsule: W-97 Charpy V-Notch	at Number: C-5667-1 Orientation: LT Total Fluence: Data (Continued)	
Temperature 240 280 280 350	Input Percent Shear 100 100 100 100	Computed Percent Shear 89.48 97.11 97.11 99.73 SUM of RE	Differential 1051 2.88 2.88 26 SIDUALS = 33.89

LOW	ER SHELL PLATE	C—506—1 Page 2	CAPSUL	E 104 (LON	IG)
	Material: PLATE SA533B1 Capsule: W-	Heat Number: -104 Total F	: C-5667-1 Juence:	Orientation: LT	
	Charpy V-No	tch Data ((Continued)		
Temperature 280 340 400 550	Input Percent Shear 100 100 100 100	Co	mputed Percen 88.57 96.05 98.7 99.92	t Shear SUM of RESIDU	Differential 11.42 3.94 1.29 .07 ALS = 13.8

LOWER SHELL PLATE C-506-1 CAPSULE 83 (LONG)

Page 2

Material: PLATE SA533B1

Heat Number: C-5667-1

67-1 Orientation: LT

Capsule: W-83 Total Fluence:

Temperature	Input Percent Shear	Computed Percent Shear	Differential
-225	85	6582	1017
250	60	77.22	-1722
300	100	913	860
325	100	94.86	5.19
350	100	97.01	298
		SUM of RE	SIDUALS = 15.68

	LOWER SHELL PLATE	C-506-1 UNIRR (TRANS Page 2)
	Material: PLATE SA533B1 Capsule: UNIR	Heat Number: C-5667-1 Orientation: TL R Total Fluence:	
	Charpy V-Note	h Data (Continued)	
Temperature 70 80 120 120 160 160 180 210 210	Input CVN Energy 53.5 66.5 94.5 91.5 113 106.5 112.5 112 96	Computed CVN Energy 61.62 67.95 88.51 99.82 99.82 102.86 105.49 105.49 SUM of RESI	Differential -8.12 -1.45 5.98 2.98 13.17 6.67 9.63 65 -9.49 DUALS = 35.53

					······	
	LOWER	SHELL PLATE	C —506—1 Page 2	CAPSUL	E 97 (TRA	NS)
	Mat	erial: PLATE SA533B1 Capsule:	Heat Numb # W-97 Tota	ver: C-5667-1 l Fluence:	Orientation: TL	
I		Charpy V-1	Notch Data	(Continued	.)	
	Temperature 240 280 280 320	Input CVN Energy 71 76 80 87		Computed CVN 73.04 76.53 76.53 78.01	Energy SUM of RESIE	Differential -2.04 -53 3.46 8.98 JUALS = 19.19

LOW	ER SHELL PLATE	C-506-1 Page 2	CAPSUL	E 83 (TRAN	IS)
	Material: PLATE SA533B1 Capsule:	Heat Numb W-83 Total	er: C-5667-1 Fluence:	Orientation: TL	
	Charpy V-N	otch Data	(Continued	.)	
Temperature 225 275 300 325	Input CVN Energy 65 77 83 92		Computed CVN 59.12 74.7 78.69 81.03	Energy SUM of RESIDU	Differential 5.87 2.29 4.3 10.96 ALS = 26.14

	LOWER SHELL PLATE (C-506-1 UNIRR (TRANS	S)
	Material: PLATE SA533B1 He Capsule: UNIRR	at Number: C-5667-1 Orientation: TL Total Fluence:	
	Charpy V-Notch	Data (Continued)	
Temperature 70 80 120 120 160 160 180 210 210	Input Lateral Expansion 49 59 73 76 85 80 82 82 76	Computed L.E. 53.76 57.66 70.63 70.63 78.8 78.8 81.38 83.93 83.93 SUM of RES	Differential -4.76 1.33 2.36 5.36 6.19 1.19 .61 -1.93 -7.93 SIDUALS = -1.48

ι

LOWER SHELL PLATE C-506-1 CAPSULE 97 (TRANS) Page 2 Material: PLATE SA533B1 Heat Number: C-5667-1 Orientation: TL Capsule: W-97 Total Fluence: Charpy V-Notch Data (Continued)

Temperature	Input Lateral Expansion	Computed LE	Differential
-240	64	68 01	-4 01
280	72	72.91	91
280	72	72.91	91
320	75	75.55	55
		SUM of	RESIDUALS = 1.3

C-36

LOW	ER SHELL PLATE C-	-506—1 CAPSULE 83 (TR Page 2	ANS)
	Material: PLATE SA533B1 Capsule: W-& Charpy V-Note	Heat Number: C-5667-1 Orientation: TL 3 Total Fluence: 2 The Data (Continued)	
Temperature 225 275 300 325	Input Lateral Expansion 52 60 65 73	Computed LE. 44.63 60.63 66.99 71.98 SUM of RE	Differential 7.36 63 -1.99 1.01 SIDUALS =96

.

C-38

LOWER SHELL PLATE C-506-1 UNIRR (TRANS)

Page 2

Material: PLATE SA533B1

Heat Number: C-5667-1

Orientation: TL

Capsule: UNIRR Total Fluence:

Temperature	Input Percent Shear	Computed Percent Shear	Differential
70	- 50	56.78	-6.78
80	65	63.04	1.95
120	80	82.89	-2.89
120	90	82.89	71
160	100	93.22	6.77
160	100	93.22	6.77
180	100	95.86	4.13
210	100	98.06	1.93
210	100	98.06	1.93
		SUM of R	ESIDUALS = 29.81

LOWER SHELL PLATE C-506-1 CAPSULE 97 (TRANS)

Page 2

Material: PLATE SA533BI

Heat Number: C-5667-1

Fluence

Orientation: TL

Capsule: W-97 Total Fluence:

Temperature	Input Percent Shear	Computed Percent Shear	Differential
240	100	90.54	9.45
280	100	96.98	3.01
280	100	96.98	3.01
320	100	99.08	.91
		SUM of RE	SIDUALS = 31.55

LOWER SHELL PLATE C-506-1 CAPSULE 97 (TRANS)

Page 2

Material: PLATE SA533B1

Heat Number: C-5667-1

C-5667-1 Orientation: TL

Capsule: W-83 Total Fluence:

Temperature	Input Percent Shear	Computed Percent Shear	Differential
225	- 70	69.41	.58
275	100	88.6	11.39
300	100	93.5	6.49
325	100	96.38	3.61
		SUM of RE	SIDUALS = 22.42

UNIRRADIATED (WELD)

Page 2

Material: WELD L 124/0091 Heat Number: 90136/10137 Orientation: Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature	Input CVN Energy	Computed CVN Energy	Differential
- 40	• 99 🐃	107.46	-846
60	115	11929	-429
80	134.5	125.75	874
80	131.5	125.75	574
120	132.5	130.59	19
120	129.5	130.59	-109
160	140.5	131.69	88
160	127	131.69	-4.69
		SUM of R	ESIDUALS = 15.54

C-45

i

	CAPS	ULE 97 (WELD) Page 2		
	Material: WELD L 124/0091 Capsule:	Heat Number: 90136/10137 W-97 Total Fluence:	Orientation:	
	Charpy V-N	Notch Data (Continued))	
Temperature 160 160 200 240	Input CVN Energy 95 105 93 106	Computed CVN 97.4 97.4 99.36 99.84	Energy SUM of RESI	Differential -2.4 759 -6.36 6.15 DUALS = 4.13

CAPSULE 104 (WELD) Page 2			
	Material: WELD L 124/0091 Capsule:	Heat Number: 90136/10137 W-104 Total Fluence:	Orientation:
	Charpy V-N	lotch Data (Continued)	
Temperature 200 300 400 550	Input CVN Energy 106 109.5 99 111	Computed CVN En 105.06 106.87 106.99 106.99	nergy Differential .93 2.62 -7.99 4 SUM of RESIDUALS = 2.34

•

CAPSULE 83 (WELD)

Page 2

Material: WELD L 124/0091	Heat Number: 90136/10137	Orientation:	
---------------------------	--------------------------	--------------	--

Capsule: W-83 Total Fluence:

Temperature	Input CVN Energy	Computed CVN Energy	Differential
150	76	90.05	-14.05
200	84	101.31	-17.31
225	109	104.25	4.74
250	101	106.1	-5.1
250	117	106.1	10.89
		SUM of RE	SIDUALS = -16.03

	CAPSULE Pag	97 (WELD) ge 2		
	Material: WELD L 124/0091 Hes Capsule: W-97 Channer V. Natak	at Number: 90136/10137 Total Fluence:	Orientation:	
Temperature 160 160 200 240	Input Lateral Expansion 78 83 79 85	Data (Continued) Computed LE 79.08 79 08 81.56 82.36	Differential -1.08 3.91 -2.56 2.63 SUM of RESIDUALS = .48	

CAPSULE 104 (WELD) Page 2				
	Material: WELD L 124/0091 He Capsule: W-104	at Number: 90136/10137 Total Fluence:	Orientation:	
	Charpy V-Notch	Data (Continued)		
Temperature 200 300 400 550	Input Lateral Expansion 88 90 87 92	Computed L.E. 88 90.31 90.52 90.54	I SUM of RESIDUALS	Differential 0 -31 -352 1.45 = -257

CAPSULE 83 (WELD) Page 2			
	Material: WELD L 124/0091 Capsule: W-	Heat Number: 90136/10137 83 Total Fluence:	Orientation:
Charpy V—Notch Data (Continued)			
Temperature 150 200 225 250 250	Input Lateral Expansion 60 66 80 73 84	Computed L.E. 69.05 73.26 74.01 74.4 74.4 74.4	Differential -9.05 -7.26 5.98 -1.4 9.59 SUM of RESIDUALS = -5.41

	UNIRRADIA' Pag	TED (WELD) e ²	
	Material: WELD L 124/0091 He Capsule: UNIRR	at Number: 90136/10137 Orient: Total Fluence:	ation:
Temperature 40 60 80 120 120 160 160	Charpy V-Notch Input Percent Shear 80 90 90 100 100 100 100 100	Data (Continued) Computed Percent Shear 84.68 91.41 95.34 95.34 98.7 98.7 99.64 99.64 SUM	Differential -4.68 -1.41 -5.34 4.65 129 129 .35 .35 of RESIDUALS =9

•

.

	. CAPSULI	E 97 (WELD) Page 2	
	Material: WELD L 124/0091 Capsule: W-9 Charpy V-Note	Heat Number: 90136/10137 Orientation: 7 Total Fluence: 2 Total (Continued)	
Temperature 160 160 200 240	Input Percent Shear 100 100 100 100	Computed Percent Shear 97.76 97.76 99.55 99.91 SUM of RES	Differential 223 223 .44 .08 DUALS = -5.35

CAPSULE 104 (WELD) Page 2					
	Material: WELD L 124/0091 Hea Capsule: W-104	it Number: 90136/10137 Orientation: Total Fluence:			
	Charpy V-Notch	Data (Continued)			
Temperature 200 300 400 550	Input Percent Shear 100 100 100 100	Computed Percent Shear 98.36 99.89 99.99 99.99 SUM of Ri	Differential 1.63 1 0 0 ESIDUALS = 4.67		

	CAPSULE	83 (WELD)	
	Pa	ige 2	
	Material: WELD L 124/0091 H Capsule: W-83	eat Number: 90136/10137 Orientat Total Fluence:	ion:
	Charpy V-Notch	Data (Continued)	
Temperature 150 200 225 250 250	Input Percent Shear 85 95 100 100 100	Computed Percent Shear 93.14 98.25 99.13 99.57 99.57 SUM of	Differential 8.14 3.25 .86 .42 .42 f RESIDUALS =89

UNIRRADIATED (HEAT AFFECTED ZONE) Page 2 Orientation: Material: HEAT AFFD ZONE SA533B1 Heat Number: C-506-1 Capsule: UNIRR Total Fluence: Charpy V-Notch Data (Continued) Temperature 40 40 80 80 120 Input CVN Energy 117.5 101 111.5 Computed CVN Energy 86:36 86:36 116:28 Differential 31.13 14.63 -4.78 150 123 113 116.28 33.71 125.96 128.31 -2.96 -15.31 160 128.31 168 160 130 SUM of RESIDUALS = 44.96

CAPSULE 97 (HEAT AFFECTED ZONE) Page 2					
	Material: HEAT AFFD ZONE SA533B1 Capsule: W-97	Heat Number: C-506-1 Total Fluence:	Orientation:		
	Charpy V-Notch	Data (Continued)			
Temperature 160 200 200 240	Input CVN Energy 92 89 92 92	Computed CVN Ener 84.04 89.06 89.06 90.48	gy Differential 7.95 06 2.93 1.51 SUM of RESIDUALS = 1803		

CAPSULE 83 (HEAT AFFECTED ZONE)

Page 2

Material HEAT AFF1	d ZONE SA533B1	Heat Number: C-506-1	Orientation:	
	Capsule: W-83	Total Fluence:		
Cha	arpy V-Notch	Data (Continued)		
Input CV	N Energy 122	Computed CVN I 101.04	Energy	Differential 20.95

.

,

Temperature	Input CVN Energy	Computed CVN Energy	Differenti
200	122	101.04	20.95
250	95	102.53	-7.53
300	88	102.89	-14.89
325	126	102.94	23.05
		SUM of H	RESIDUALS = 34.59

UNIRRADIATED (HEAT AFFECTED ZONE)

Page 2

Material: HEA	T AFFD	ZONE	SA533B1
---------------	--------	------	---------

Heat Number: C-506-1

Orientation:

Capsule: UNIRR Tot

Total Fluence:

Temperature	Input Lateral Expansion	Computed L.E.	Differential
40	68	58.21	9.78
40	67	58.21	8.78
80	77	76.09	9
80	88	76.09	11.9
120	86	84.97	1.02
160	81	88.48	-7.48
160	88	88.48	48
		SUM of	RESIDUALS = 1642

CAPSULE 97 (HEAT AFFECTED ZONE)

Page 2

Material:	HEAT	AFFD	ZONE	SA533B1	

Heat Number: C-506-1

Orientation:

Capsule: W-97 Total Fluence:

_

Temperature	Input Lateral Expansion	Computed LE	Differential
160	75	66.53	8.46
200	70	72.42	-2.42
200	73	72.42	57
240	72	74.85	-2.85
		SUM of	RESIDUALS = 2.26

CAPSULE 83 (HEAT AFFECTED ZONE) Page 2 Heat Number: C-506-1 Orientation: Material: HEAT AFFD ZONE SA533B1 Capsule: W-83 Jotal Fluence: Charpy V-Notch Data (Continued) Temperature 200 250 300 325 Computed L.E. 65.91 68 68.64 Input Lateral Expansion Differential 508 -2 71 66 60 76 -8.64 68.76 723 SUM of RESIDUALS = 26

	UNIRRADIATED (HEAP	AT AFFECTED	ZONE)	
	Material: HEAT AFFD ZONE SA533B1 Capsule: UNIRR	Heat Number: C-506-1 Total Fluence:	Orientation:	
	Charpy V-Notch	Data (Continued)		
Temperature 40 40 80 80 120 160 160	Input Percent Shear 70 70 85 100 100 100 100	Computed Percent 68.51 68.51 85.17 85.17 93.81 97.56 97.56	SUM of RESIDUALS	Differential 148 148 -17 14.82 6.18 243 243 S = 2165

CAPSULE 97 (HEAT AFFECTED ZONE) Page 2			
	Material: HEAT AFFD ZONE SA533B1 Capsule: W-97	Heat Number: C-506-1 Orientation: Total Fluence:	
	Charpy V-Notch	Data (Continued)	
Temperature 160 200 200 240	Input Percent Shear 90 100 100 100	Computed Percent Shear 86.72 95.53 95.53 98.59 SUM of RESID	Differential 327 446 4.46 1.4 UALS = 12.17

CAPSULE 83 (HEAT AFFECTED ZONE) Page 2			
	Material: HEAT AFFD ZONE SA533B1 Capsule: W-83	Heat Number: C-506-1 Orientation: Total Fluence:	
	Charpy V-Notch	Data (Continued)	
Temperature 200 250 300 325	Input Percent Shear 90 100 100 100	Computed Percent Shear 92.85 97.19 98.93 99.34 SUM of RESIL	Differential -2.85 2.8 106 .65 UALS = 6.76

.

UNIRRADIATED (STANDARD REFERENCE MATERIAL)

Page 2

Material SRM HSST01

Heat Number: A1008-1

Orientation: LT

Capsule: UNIRR Total Fluence:

Temperature	Input CVN Energy	Computed CVN Energy	Differential
120	114.5	113.84	.65
160	138	132.08	5.91
160	133.5	132.08	141
180	140.5	136.11	4.38
210	145	139.06	5.93
210	142	139.06	2.93
		SUM of R	ESIDUALS = 21.14

CAPSULE 104 (STANDARD REFERENCE MATERIAL)

Page 2

Material: SRM HSST01

Heat Number: A1008-1

Orientation: LT

Capsule: W-104 Total Fluence:

Temperature	Input CVN Energy	Computed CVN Energy	Differential
275	94.5	82.64	11.85
300	90.5	86.96	3.53
400	96	91.63	4.36
550	87	91.99	-4.99
		SUM of RESIDUALS = 5.73	

UNIRRADIATED (STANDARD REFERENCE MATERIAL)

Page 2

Material: SRM HSST01

Heat Number: A1008-1

-1 Orientation: LT

Capsule: UNIRR Total Fluence:

Temperature	Input Lateral Expansion	Computed LE	Differential
1 20	79	79.07	07
160	89	88.43	.56
160	92	88.43	356
180	89	90.67	-167
210	92	92.44	-44
210	89	92.44	-3.44
		SUM o	f RESIDUALS = .87

C-93

CAPSULE 104 (STANDARD REFERENCE MATERIAL) Page 2			
	Material: SRM HSST01 Heat Capsule: W—104	t Number: A10081 Orientation: LT Total Fluence:	
	Charpy V-Notch	Data (Continued)	
Temperatu 275 300 400 550	re Input Lateral Expansion 79 77 85 78	Computed I.E. 72.33 76.5 82 82.65 SUM of RESI	Differential 6.66 .49 2.99 -4.65 DUALS = 2.5

UNIRRADIATED (STANDARD REFERENCE MATERIAL)

Page 2

Material: SRM HSST01

Heat Number: A1008-1

Orientation: LT

Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature	Input Percent Shear	Computed Percent Shear	Differential
120	* 80	77.61	2.38
160	100	92.35	7.64
160	90	92.35	-2.35
180	100	95.75	424
210	100	98.29	1.7
210	100	98.29	1.7
N 10	100	SUM of R	SIDUALS = 20.41

CAPSULE 104 (STANDARD REFERENCE MATERIAL)

Page 2

Material: SRM HSST01

Heat Number: A1008-1

Orientation: LT

Capsule: W-104 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature	Input Percent Shear	Computed Percent Shear	Differential
275	100	87.65	12.34
300	100	93.13	6.86
400	100	99.44	.55
550	100	99.98	.01
		SUM of R	SIDUALS = 6.89

APPENDIX D

MILLSTONE UNIT 2 SURVEILLANCE PROGRAM

CREDIBILITY ANALYSIS

SURVEILLANCE DATA CREDIBLITY EVALUATION

INTRODUCTION:

Regulatory Guide 1.99, Revision 2, describes general procedures acceptable to the NRC staff for calculating the effects of neutron radiation embrittlement of the low-alloy steels currently used for light-water-cooled reactor vessels. Position C.2 of Regulatory Guide 1.99, Revision 2, describes the methodology for calculating the adjusted reference temperature and Charpy upper-shelf energy of reactor vessel beltline materials using surveillance capsule data. The methods of Position C.2 can only be applied when two or more credible surveillance data sets become available from the reactor in question.

To date there have been three surveillance capsules removed from Millstone Unit 2. To use these surveillance data sets, they must be shown to be credible. In accordance with Regulatory Guide 1.99, Revision 2, there are five requirements that must be met for the surveillance data to be judged credible. The purpose of this evaluation is to apply these credibility requirements to the reactor vessel surveillance data obtained from Millstone Unit 2 and determine if these surveillance data sets are credible.

EVALUATION

Criterion 1:Materials in the capsules should be those judged most likely to be controlling with regard to radiation embrittlement. The beltline region of the reactor vessel is defined in Appendix G to 10 CFR Part 50, "Fracture Toughness Requirements", December 19, 1995 to be:

"the reactor vessel (shell material including welds, heat affected zones, and plates or forgings) that directly surrounds the effective height of the active core and adjacent regions of the reactor vessel that are predicted to experience sufficient neutron radiation damage to be considered in the selection of the most limiting material with regard to radiation damage."

The Millstone Unit 2 reactor vessel consists of the following beltline region materials:

- Intermediate Shell Plate C-506-1, -2, -3 (Heats C-5843-1, -2, -3)
- Lower Shell Plate C-506-1, -2, -3 (Heats C-5667-1, -2, -3)
- Intermediate to Lower Girth Seam 9-203 (Heats 10137 and 90136)
- Intermediate and Lower Shell Longitudinal Seams 2-203 and 3-203 (Heat A-8746)

The Millstone Unit 2 surveillance programs was based on ASTM E-185-70 and utilizes test specimens from Lower Shell Plate C-506-1 and Intermediate to Lower Girth Seam 9-203 Heat # 10137/90136 Flux Type Linde 0091.

At the time when the surveillance program material was selected it was believed that copper and phosphorus were the elements most important to embrittlement of reactor vessel steels. Lower Shell Plate C-506-1 had the highest Copper content (0.15%) and one of the highest Initial RT_{NDT} values and was selected as the surveillance program base metal. It should be noted that the lower shell plate C-506-1 is currently the limiting beltline material on the Millstone Unit 2 Reactor Vessel.

The Intermediate to Lower Girth Seam 9-203 was fabricated from 2 heats of weld wire; Heat # 10137 (OD of weld) and 90136 (ID of weld). The surveillance weld was made from the same heat and the same manner as the Intermediate to Lower Shell Girth Weld, i.e. 2 heats. The average Cu/Ni between the two heats would be 0.25 Cu and 0.06 Ni, which is the highest Cu value of all beltline welds and was therefore selected as the surveillance program weld material.

Since the base metal and weld metal selected for the Millstone Unit 2 Surveillance Program represent the limiting plate and weld in the beltline region, this criterion is met.

Criterion 2: Scatter in the plots of Charpy energy versus temperature for the irradiated and unirradiated conditions should be small enough to permit the determination of the 30 ft-lb temperature and upper shelf energy unambiguously.

Plots of Charpy energy versus temperature for the unirradiated and irradiated condition are presented in Appendix C of this calcnote.

Based on engineering judgment, the scatter in the data presented in these plots is small enough to permit the determination of the 30 ft-lb temperature and the upper shelf energy of the Millstone Unit 2 surveillance materials unambiguously. Therefore, the Millstone Unit 2 surveillance program meets this criterion.

Criterion 3: When there are two or more sets of surveillance data from one reactor, the scatter of ΔRT_{NDT} values about a best-fit line drawn as described in Regulatory Position 2.1 normally should be less than 28°F for welds and 17°F for base metal. Even if the fluence range is large (two or more orders of magnitude), the scatter should not exceed twice those values. Even if the data fail this criterion for use in shift calculations, they may be credible for determining decrease in upper shelf energy if the upper shelf can be clearly determined, following the definition given in ASTM E185-82.

The functional form of the least squares method as described in Regulatory Position 2.1 will be utilized to determine a best-fit line for this data and to determine if the scatter of these ΔRT_{NDT} values about this line is less than 28°F for welds and less than 17°F for the plate.

Following is the calculation of the best fit line as described in Regulatory Position 2.1 of Regulatory Guide 1.99, Revision 2.

Material	Capsule	Capsule f ^(a)	FF ^(b)	$\Delta RT_{NDT}^{(c)}$	FF*∆RT _{NDT}	FF ²
Lower Shell Plate C- 506 Longitudinal (Heat # C-5667-1)	W-97	0.324	0.69	65.75	45.37	0.476
	W-104	0.949	0.99	87.67	86.79	0.98
	W-83	1.74	1.15	119.12	136.99	1.323
Lower Shell Plate C- 506 Transverse (Heat # C-5667-1)	W-97	0.324	0.69	90.83	62.67	0.476
	W-83	1.74	1.15	145.78	167.65	1.323
				Sum =	499.47	4.578
	$CF = \Sigma(FF * RT_{NDT}) - \Sigma(FF^2) = (499.47) + (4.578) = 109.1 \circ F$					
Intermediate to Lower Girth Seam 9-203 (Heat # 10137 & 90136)	W-97	0.324	0 69	65.93	45 49	0.476
	W-104	0.949	0.99	52.12	51.59	0.98
	W-83	1.74	1.15	56.09	64.50	1.323
				Sum =	161.58	2.779
	$CF = \Sigma(FF * RT_{NDT}) - \Sigma(FF^2) = (161.58) \div (2.779) = 58.14 \text{ °F}$					

Table D-1 Millstone Unit 2 Chemistry Factors Based on Surveillance Data (Reg. Guide1.99, Rev. 2, Position 2.1)

Notes:

(a) f = best estimate fluence values. (1x 10^{19} n/cm², E > 1.0 MeV).

(b) FF = fluence factor = $f^{(0 28 - 0 1^* \log f)}$.

(c) ΔRT_{NDT} values are the measured 30 ft-lb shift values taken from App. C

The scatter of ΔRT_{NDT} values about the functional form of a best-fit line drawn as described in Regulatory Position 2.1 is presented in Table B-2.

Material	Capsule	CF ^(a) (Slope _{best fit})	FF ^(b)	$\Delta RT_{NDT}^{(c)}$	ΔRT _{NDT} (°F)	Scatter ∆RT _{NDT} (°F)	<17°F (Base Metals) <28°F (Weld)
Lower Shell Plate C-506 Longitudinal (Heat # C-5667-1)	W-97	109.1	0.69	65.75	75.28	9.53	Yes
	W-104	109.1	0.99	87.67	108	. 20.33	No
	W-83	109.1	1.15	119.12	125.47	6 35	Yes
Lower Shell Plate C-506 Transverse (Heat # C-5667-1)	W-97	109.1	0.69	90.83	75.28	-15.55	Yes
	W-83	109.1	1.15	145.78	125.47	-20.31	No
Intermediate to Lower Girth Seam 9-203 (Heat # 10137 & 90136)	W-97	58.14	0.69	65.93	40.12	-25.81	Yes
	W-104	58.14	0.99	52.12	57.55	5.43	Yes
	W-83	58.14	1.15	56.09	66.86	10.77	Yes

Table D-2: Turkey Point Unit 3 Surveillance Capsule Data Scatter about the Best-Fit Line for Surveillance Forging Materials.

Notes:

(a) f = Calculated fluence from capsule W-83 dosimetry analysis results (x 10¹⁹ n/cm², E > 1.0 MeV) See Section 6.

(b) FF = fluence factor = $f^{(0.28 - 0.1*\log f)}$.

(c) ΔRT_{NDT} values are the measured 30 ft-lb. shift values (Appendix C) and do not include the adjustment ratio procedure of Reg. Guide 1.99 Revision 2, Position 2.1, since this calculation is based on the actual surveillance weld metal measured shift values

Best Fit ΔRT_{NDT} = (Slope_{best fit}) * (Fluence Factor)

CONCLUSION:

Table D-2 indicates that two of the five measured plate ΔRT_{NDT} values are outside the 1 σ scatter band. Therefore the plate data is not credible. Table D-2 also indicates that all of the measured weld ΔRT_{NDT} values are within the 1 σ scatter band. Therefore the weld data meets this criteria.

Criterion 4: The irradiation temperature of the Charpy specimens in the capsule should match the vessel wall temperature at the cladding/base metal interface within +/- 25°F.

The location of the specimens with respect to the reactor vessel beltline provides assurance that the reactor vessel wall and the specimens experience equivalent operating conditions such that the temperatures will not differ by more than 25°F.

Criterion 5: The surveillance data for the correlation monitor material in the capsule should fall within the scatter band of the database for that material.

The Millstone Unit 2 surveillance program does contain correlation monitor material. According to Table 14 of NUREG/CR-6413^[12], Millstone Unit 2 Correlation Monitor Material for Capsule 104 had a residual value of 10°F, which is less than the \pm 34 (2 Sigma) scatter band allowance for plate HSST02 (A533B-1) material (per figure 9 of the NUREG report). Note: The fluence & ΔRT_{NDT} has been updated since the issue of the NUREG Report, however, these changes would not cause the Correlation Monitor Material to exceed the scatter band.

CONCLUSION:

Based on the preceding responses to all five criteria of Regulatory Guide 1.99, Revision 2, Section B and 10CFR 50.61, the Millstone Unit 2 surveillance weld data is credible. However due not meeting criterion 3 the Millstone Unit 2 surveillance plate data is not credible.