h

3

Application Methodology for BWROG Stability Limit Analysis

Presentation to NRC

February 20, 2003

Licensing Application Framework BWROG Stability Limit Analysis

1 Introduction

Purpose

Scope

Objective

2 Requirements

Licensing requirements Other requirements

3 Documentation

TRACG Model Description

TRACG Qualification

PRIME Thermal/Mechanical Model Description and Qualification

Vendor Specific Single-Channel Thermal/Hydraulic and Fuel Rod Thermal/Mechanical Model Description and Qualification

Application Licensing Topical Report

1. Purpose, Scope and Objectives Application for BWROG Stability Limit Analysis

- Define generic stability limit to meet GDC 12
- Generic limit for all D&S plants and all currently used fuel types
- Events: Reactor Instability
 - Reactor instability during operation at low flow and high power/flow ratio
- Documentation
 - Licensing Application Framework for BWROG Stability Limit Analysis
 - TRACG Model Description LTR, NEDE-32176, Revision 3
 - TRACG Qualification LTR, NEDE-32177, Revision 3
 - Vendor Specific Model Description and Qualification LTRs for Single Channel Thermal/Hydraulic and Fuel Rod Thermal/Mechanical Codes.
 - Application LTR for BWROG Stability Limit Analysis

• Review Scope

- One SER for Application Methodology for BWROG Stability Limit Analysis
 - Applicability of TRACG for BWR Stability
 - Applicability of Vendor Proprietary Models for Single Channel Thermal/Hydraulic and Fuel Rod Thermal/Mechanical Analysis
 - Application Methodology for BWROG Stability Limit Analysis

BWRs, Operating Domains, and Fuel Types

Bound US BWR types

– BWR/2

•Non Jet Pump Plants with External Recirculation Loops

- BWR/3/4

•Jet Pump Plants with Motor/Generator Recirculation Flow Control

– BWR/5/6

•Jet Pump Plants with Valve Recirculation Flow Control or Adjustable Speed Drives

Bound current operating domains

Bound current fuel types

- GNF: GE11, GE12, GE13, GE14
- Framatome: ATRIUM-9, ATRIUM-10
- Westinghouse: SVEA-96, SVEA-96+, SVEA-96 Optima2

•Develop a process for evaluating new operating domains and fuel types

T/H Instability Events

Same Events as Currently Analyzed for Stability

- Instability during operation at low flow and high power/flow ratio
 - Natural circulation
 - Minimum pump speed
- Most limiting event
 - Oscillation at or just below the OPRM setpoint
 - No mitigating actions for 30 minutes
 - Fuel may experience repeated boiling transition and rewet

Other instabilities that exceed the OPRM set point

- Large growth rate
- OPRM based scram will terminate event
- Fuel may experience boiling transition
- Expected to be less severe due to short duration

NRC Review Scope (see Table 1-1)

Review Element	Comment	Review Status
Licensing Application Framework	Outlines process and defines regulatory requirements and guidelines	For Information Only
TRACG Model Description NEDE-32176P Rev 3	Proprietary model addition and modifications for application to LOCA and stability	Rev 2 reviewed and approved by NRC. Rev 3 needs NRC review and approval
TRACG Qualification NEDE-32177P Rev 3	Additional proprietary qualification for LOCA and stability	Rev 2 reviewed and approved by NRC. Rev 3 needs NRC review and approval
Vendor Specific Single- Channel T/H and Fuel Rod T/M Model Description and Qualification	Proprietary basis for single- channel T/H and fuel rod T/M models	Need NRC review and approval
Application Methodology	Application methodology consistent with CSAU methodology	Needs NRC review and approval

Licensing Application Framework BWROG Stability Limit Analysis

1 Introduction

Purpose

Scope

Objective

2 Requirements

Licensing requirements Other requirements

3 Documentation

TRACG Model Description

TRACG Qualification

PRIME Thermal/Mechanical Model Description and Qualification

Vendor Specific Single-Channel Thermal/Hydraulic and Fuel Rod Thermal/Mechanical Model Description and Qualification

Application Licensing Topical Report

2.0 Requirements

Licensing Requirement

- 10 CFR50 Appendix A

GDC 12 requires that the reactor core and associated coolant, control, and protection systems shall be designed to assure that power oscillations which can result in conditions exceeding specified acceptable fuel design limits (SAFDLs) are not possible or can be reliably and readily detected and suppressed.

- SAFDLs are not exceeded
 - No Fuel Failures
 - Negligible impact on fuel and cladding properties
 Basis for design and licensing analysis not affected

"You could not tell from an examination of the fuel, if an instability had occurred"

– 10 CFR50 Appendix B
 Q/A Requirements

2.0 Requirements

Regulatory Guides

Code Scaling, Applicability and Uncertainty (CSAU)

CSAU	Description
Step	
1	Scenario Specification
2	Nuclear Power Plant Selection
3	Phenomena Identification and Ranking
4	Frozen Code Version Selection
5	Code Documentation
6	Determination of Code Applicability
7	Establishment of Assessment Matrix
8	Nuclear Power Plant Nodalization Definition
9	Definition of Code and Experimental Accuracy
10	Determination of Effect of Scale
11	Determination of the Effect of Reactor Input Parameters
	and State
12	Performance of Nuclear Power Plant Sensitivity
	Calculations
13	Determination of Combined Bias and Uncertainty
14	Determination of Total Uncertainty

Specified Acceptable Fuel Design Limits (SAFDL)

Table 2-1

Phenomena where SAFDLs Required	Critical	Comments		
	rarameters			
Cladding and channel stress and strain,	1. Change in clad	Clad stress/strain curve depends		
including:	stress strain	mainly on clad temperature as		
-creep deformations	curve	does annealing.		
-annealing of irradiation hardening	7. Clad			
-pellet cladding mechanical interaction	temperature			
Cladding fatigue	3. Incremental	Fatigue depends primarily on the		
	clad fatigue	number of cycles.		
Cladding oxidation	4. Incremental	Oxidation is a strong function of		
	clad oxidation	clad temperature.		
Dimensional changes (fuel rod growth,	2. Incremental	Clad strain depends primarily on		
cladding collapse)	clad strain	the gap size and the fission gas		
		pressure both which change with		
		temperature.		
Increased fission gas release and fuel	5. Incremental	Fission gas release mechanisms		
rod internal pressure	fission gas	are strong functions of fuel pellet		
	pressure	temperature changes.		
	(release from			
	pellet)			
Fuel centerline melting	6. Fuel centerline	Fuel temperatures depend on		
	temperature	power and heat transfer.		

Licensing Application Framework BWROG Stability Limit Analysis

1 Introduction

Purpose

Scope

Objective

2 Requirements

Licensing requirements Other requirements

3 Documentation

TRACG Model Description

TRACG Qualification

PRIME Thermal/Mechanical Model Description and Qualification

Vendor Specific Single-Channel Thermal/Hydraulic and Fuel Rod Thermal/Mechanical Model Description and Qualification

Application Licensing Topical Report

Relationship Between Process Steps and PIRTs CSAU Step 3

12

13

)

Thermal / Mechanical PIRT (High ranked only) - CSAU Step 3

•,

•/

System Thermal / Hydraulic PIRT - CSAU Step 3 (partial listing of High ranked phenomena)

ID	TABLE 3-1: PIRT for System Thermal/Hydraulic Analyses of Stability Phenomena REGION or PHENOMENA DESCRIPTION	Core-wide Stability	Regional Stability	Highest Ranking	Critical Parameter	 Thermal Margin and/or PCT Controlled by heat flux, flow, pressure, and inlet subcooling. Power oscillations Flow oscillations Power Oscillation Amplitude/Frequency – Controls stability margin/ growth rate of perturbations which for this application is assumed to be a limit cycle oscillation (ie, DR=10) 	?	←Can Phenomenon be affected by core design, fuel type, or plant type? Comments on dependency of phenomena to core design, fuel type, plant design
В	BYPASS	-			í	Affects channel flow youds and		
B6	CHANNEL-BYPASS LEAKAGE FLOW	н	н	н	1,2	thermal margin	Yes	
С	CORE / BUNDLE							
C1AX	VOID COEFFICIENT	н	н	н	2	Determines reactivity and power due to void fraction change. Determines forward loop "gain" for void perturbations	Yes	
C1DX	3-D KINETICS (CORE POWER DISTRIBUTION DURING TRANSIENT - INCLUDES AXIAL AND RADIAL POWER DISTRIBUTION)	м	н	н	1,2	Power distribution from 3D reactivity distribution affects total power, hot region power, axial power shape and CPR 3 D effects primarily important for regional evaluations.	Yes	
C1FX	SUBCRITICALITY OF FIRST HARMONIC MODE	N/A	н	н	2	Neutronics "damping" offsets thermal hydraulic gain for regional mode	Yes	Dependent on core design.
C12	NATURAL CIRCULATION FLOWS	н	н	н	1,2	Affects channel flow and thermal margin	Yes	_
C13	DRYOUT / BOILING TRANSITION	н	н	н	1	Important for determining thermal margin	Yes	Uncertainty in predicting BT depends on fuel type
C15	FILM BOILING / HIGH VOID / FILM DRYOUT	н	н	н	1	Post-BT heat transfer impacts clad temperature.	No	
C19X	TMIN (MINIMUM STABLE FILM BOILING TEMPERATURE)	н	н	н	1	TMIN impacts the ability to rewet.	No	
C20	REWETTING BASED ON QUALITY	Н	н	н	1	Impacts heat transfer mode.	No	
1	SEPARATOR	· ·						
13	SEPARATOR PRESSURE DROP	н	н	н	1,2	Affects total core flow and level. Separator pressure drop affects core stability evaluation	Yes	Depends on plant type
-				_			_	

Model Capability - CSAU Step 6

Structure

- Capability to model plant geometry
- Basic Equations
 - Capability to address global processes
- Models and Correlations
 - Capability to model and scale individual processes
- Numerical Methods
 - Capability to perform efficient and reliable calculations

• Cross Correlation Against PIRT

 Demonstrate models are capable of simulating all high ranked phenomena for the identified event

Model Qualification - CSAU Steps 7-10

• Qualification Strategy

- Separate Effects Tests
- Component Performance Data
- Integral System Effects Tests
- Full Scale Plant Data

• Determination of Adequacy of Models

- Address Nodalization and Scaling Issues
- Determination of Model and Experimental Uncertainty

Cross Correlation Against PIRT

- Qualified for all high ranked phenomena for the identified event

Reactor Input Parameters and State - CSAU Step 11

ID	TABLE 3-3: Initial Conditions for System Thermal/Hydraulic Analyses of Stability Phenomena INITIAL CONDITION	Core-wide Stability	Regional Stability	Highest Ranking	Critical Parameter	 Thermal Margin and/or PCT Controlled by heat flux, flow, pressure, and inlet subcooling Power oscillations Flow oscillations Power Os cillation Amplitude/Frequency - controls stability margin/ growth rate of perturbations which for this application is assumed to be a limit cycle oscillation (i e, DR=1 0) 	?	←Can quantity be affected by core design, fuel type, or plant type? Comments on dependency of phenomena to core design, fuel type, plant design
IC1	TOTAL CORE POWER	н	н	Н	1,2	Power/Flow ratio is more mportant than individual quantities.	Yes	
IC2	TOTAL CORE FLOW	Н	Н	Н	1,2	Power/Flow ratio is more important than individual quantities	Yes	
IC3	FEEDWATER TEMPERATURE	H	Н	Н	1,2	Controls core mlet sub cooling	Yes	
IC4	STEAM DOME PRESSURE	L	L	L		Not significant in operating range	Yes	
IC5	INITIAL DOWNCOMER WATER LEVEL	М	М	М	1,2	Not expected to be sensitive to mitial water level in normal range	Yes	
IC6	CORE SIZE	м	Н	н	1,2	Affects subcriticality of harmonic mode		
IC7	CORE LOADING PATTERN AND CORE EXPOSURE	н	Н	Н	1,2	Affects core nuclear parameters	Yes	
IC8	CORE AXIAL POWER DISTRIBUTION	Н	H	Н	1,2	Affects oscillation characteristics	Yes	
IC9	HOT CHANNEL AXIAL POWER DISTRIBUTION	н	Н	н	1,2	Affects oscillation characteristics	Yes	
IC10	RADIAL POWER DISTRIBUTION	н	н	н	1,2	Affects bundle power, oscillation characteristics Includes control rod patterns	Yes	-
IC11	LOCAL PEAKING IN HOT BUNDLE	н	н	н	1,2	Affects thermal margin/rod heatup in hot bundle	Yes	
IC12	CONTROL ROD PATTERN	н	н	н	1,2	Effects are through power distribution Affects axial and radial power distribution	Yes	
IC13	HOT BUNDLE EXPOSURE	м	м	м	1,2	Affects core nuclear parameters in lmiting region	Yes	
IC14	PEAK PELLET EXPOSURE	L	L	L		Bundle exposure effects more important		
IC15	INITIAL MCPR	Н	Н	Н	1,2	Governs margin to BT during oscillations	Yes	
IC16	XENON CONDITION	М	M	М	1,2	Affects core nuclear parameters	Yes	
IC17	SURFACE SCALE (CRUD AND OXIDE)	М	М	М	1,2	Affects fuel tme constant.	Yes	

Combination of Uncertainties - CSAU Step 13

Statistical treatment of Overall Calculational Uncertainty

Method	Description	Comments				
Order Statistics Method - Single Bounding Value (GRS Method)	Monte Carlo Method using random perturbations of all important parameters. Statistical upper bound determined from n'th limiting perturbation (for	The number of random trials is independent of the number of input parameters considered. The method requires no assumption about the PDF of the output parameter.	Results can be very conservative for small number of trials, and consistent results may require a larger set of trials.			
Analysis of Variance (OSUSL)	first order statistics). Monte Carlo Method using random perturbations of all important parameters. Statistical upper bound determined from sample variance from all perturbations.	It is not necessary to perform separate calculations to determine the sensitivity of the response to individual input parameters. It is not necessary to make assumptions about the effect on the output of interactions of input parameters.	The normality of the PDF for the output variable must be demonstrated.			

Approach: Analysis of Variance if Normal Distribution, otherwise Order Statistics for the Limiting Value.

.

Key Output Parameter (i.e., PCT)

OSUSL Determination - CSAU Steps 13 and 14 Figure 3-3

Application Methodology Demonstration Calculations

• Objective

- Demonstrate application methodology
- Confirm that OSUSL bounds data

Plant Calculations

- Reactor instability at or just below the OPRM set point
 Oscillation continues for 30 minutes without mitigating actions
- Fast growing reactor instability with scram at OPRM set point

Application Methodology for BWROG Stability Limit Analysis

Summary

- Scope:
 - Reactor Instability
 - BWR/2-6
 - Current operating domains and fuel types
- Meets All Regulatory Requirements
- Demonstration of Model Capability and Applicability
- Rigorous and Sound Statistical Methodology
 - Model Uncertainty
 - Initial Conditions and Plant Parameter Uncertainties
 - One Sided Upper Statistical Limit for Critical Safety Parameters
- Application Methodology Demonstrated for all Instability Events

Obtain SER for Application to Stability Limit Analysis

SAFDL Selection

Improved Stability Evaluation Basis

• Approach

- Permit oscillations to take fuel into and out of boiling transition.
- Avoid condition of sustained boiling transition (rewetting necessary)
- Evaluate acceptance relative to applicable T-M SAFDLS including
- any accumulative margin loss.

• Evaluation considerations

- Cladding and channel stress and strain, including creep deformations
- Cladding oxidation
- Fuel center melting
- Increased fission gas release and fuel rod internal pressure
- Cladding fatigue

Event Scenario

- Oscillating neutron flux (e.g. $\pm 50\% \frac{P-P}{A}$ with 2 sec period for 30 minutes)
- Two cases considered
 Low temperature no boiling transition
 Elevated temperature boiling transition (with rewetting)
- Low Temperature Considerations Power increase -> Fuel temperature increase
- -> increased fission gas release
- -> increased fuel rod internal pressure
- -> increased pellet-clad interaction
- -> increased cladding stress/strain
- -> cladding fatigue

Multiple power cycles -> multiple strain cycles

- High Temperature Considerations
 Cladding oxidation
 Cladding creep collapse/ballooning
 Even higher fuel temperatures
- -> embrittlement
- -> fuel melting
- -> increased fission gas release
- -> increased fuel rod internal pressure
- -> increased pellet-clad interaction
- -> increased cladding stress/strain

Perspective

Normalized Power in Hot Channel

Power level during event remains below prior steady-state condition Significant fuel temperature decrease

Perspective

Peak Cladding Temperature, °F

LaSalle Instability Event (1988)

Two reactor pump trip

Initial conditions:
84% of rated power
76% of rated flow

Core wide instability

Terminated by APRM scram

OPRM system will result in a scram at a much lower oscillation magnitude.

Fuel Rod Radial Temperature Profiles

for LaSalle Instability Event (1988)

Average Temperatures Lower than Initial Operating Temperatures

Result

- No increase in fuel duty during event No increase in cladding stress due to PCMI relative to initial steadystate condition
- Following considerations will be negligibly affected Cladding stress and strain Fuel centerline melting Fission gas release and fuel rod internal pressure Cladding fatigue
- Remaining considerations determined by peak cladding temperature obtained during event
 - Cladding creep deformation (collapse or ballooning) Cladding oxidation
- For expected range of event peak cladding temperatures, cladding creep and oxidation expected to be negligible
- Remaining consideration is annealing of irradiation hardening

Annealing of Irradiation Hardening

•	Exposure of cladding to fast neutrons causes damage to Zr crystal lattice
	Increased cladding strength
	Decreased cladding ductility
	Occurs over a period of months then essentially saturates
•	Significant cladding temperature increase anneals (heals) irradiation damage
	Mechanical properties change from that assumed in standard analyses
	Lower strength

Increased ductility

Decreased creep resistance

- Desire to minimize annealing of irradiation hardening to maintain applicability of current analyses
- With no significant annealing of irradiation hardening, event reduces to essentially no difference from normal reduction in power and return

Primary consideration is peak cladding temperature to avoid significant annealing