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B.  BASICS OF STATISTICS

B.1 Random Samples

When sampling from a distribution (or population), it
is usually assumed that the n observations are taken at
random, in the following sense.  It is assumed that the
n random variables X1, X2, ..., Xn are independent.  That
is, the sample X1, X2, ..., Xn taken from a distribution
f(x) has the joint p.d.f. h satisfying

h(x1, x2, ..., xn) = f(x1) · f(x2) · . . . · f(xn).

This follows the definition of independent random
variables given in Section A.4.5.  A sample taken in
this way is called a random sample.  (As elsewhere in
this handbook, upper case letters denote random
variables and lower case letters denote particular
values, number.)

The random variables X1, X2, ..., Xn forming such a
random sample are referred to as being independent
and identically distributed.  If n is large enough, the
sampled values will represent the distribution well
enough to permit inference about the true distribution.

B.2 Sample Moments

Mathematical expectation and moments provide
characteristics of distributions of random variables.
These ideas can also be used with observations from a
random sample from a distribution to provide esti-
mates of the parameters that characterize that distribu-
tion.

A statistic is a function of one or more random vari-
ables that does not depend on any unknown parameters.
A function of random variables that can be computed
from the collected data sample is thus a statistic.  Note
that a function of random variables is also a random
variable that has its own probability distribution and
associated characteristics.

If X1, X2, ..., Xn denote a random sample of size n from
a distribution f(x), the statistic
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is the mean of the random sample, or the sample
mean and the statistic
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is the variance of the random sample.  Note that n �
1 is used as the denominator in the S2 statistic to make
the statistic an unbiased estimator of the population
variance, 2 (unbiased estimators are discussed in
Section B.4.1).  Although not used as much as the
sample mean and sample variance, the sample skew-
ness is occasionally of interest.  The definition can vary
in detail, but one, used by SAS (1988) is
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Similarly, the statistics defined by
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for r = 1, 2, ..., are called the sample moments.

One of the common uses of statistics is estimating the
unknown parameters of the distribution from which the
sample was generated.  The sample mean, or average,

 is used to estimate the distribution mean, orX ,
population mean, µ, the sample variance, S2, is used to
estimate the population variance, 2, and so forth.

B.3 Statistical Inference

Since values of the parameters of a distribution are
rarely known, the distribution of a random variable is
rarely completely known.  However, with some as-
sumptions and information based on a random sample
of observations from the distribution or population,
values of the unknown parameters can often be esti-
mated.  Probabilities can then be calculated from the
corresponding distribution using these parameter
estimates.

Statistical inference is the area of statistics concerned
with using sample data to answer questions and make
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statements about the distribution of a random variable
from which the sample data were obtained.  Parameter
estimators are functions of sample data that are used
to estimate the distribution parameters.  Statements
about parameter values are inferred from the specific
sample to the general distribution of the random
variable or population.  This inference cannot be
perfect; all inference techniques involve uncertainty.
Understanding the performance properties of various
estimators has received much attention in the statistics
field.

For the purposes of this handbook, statistical inference
procedures can be classified as follows:

• parameter estimation
-   estimation by a point value
-   estimation by an interval

• hypothesis testing
-   tests concerning parameter values
- goodness-of-fit tests and other model-validation

tests.

Parametric statistical inference assumes that the
sample data come from  a particular, specified family
of distributions, with only the parameter values un-
known.  However, not all statistical inference is based
on parametric families.  In many cases, in addition to
not knowing the distribution parameter values, the form
of the  parametric family of distributions is unknown.
Distribution-free, also called nonparametric, tech-
niques are applicable no matter what form the distribu-
tion may have.  Goodness-of-fit tests are an important
type of nonparametric tests that can be used to test
whether a data set follows a hypothesized distribution.

For statistical inference, two major approaches exist,
the frequentist approach and the Bayesian approach.
The two resulting sets of inference tools are summa-
rized in Sections B.4 and B.5.  In PRA work, Bayesian
estimators are normally used for parameter estimation.
See, for example, NUREG-1489 (NRC 1994).  How-
ever, frequentist hypothesis tests are often used for
model validation, especially when the hypothesis to be
tested does not involve a simple parameter.  This use of
Bayesian techniques for estimation and frequentist
techniques for model validation is also recommended
by Box (1980).

NUREG-1489 (NRC 1994) lists a number of “advan-

tages” and “disadvantages” for each of the Bayesian
and frequentist approaches.  “Advantage” is often in
the eye of the beholder.  For example, is it an advan-
tage or disadvantage that frequentist methods use only
the data at hand, not external or prior information?
Therefore, the lists from that report are presented in
modified and augmented form in Table B.1, where the
points are not called advantages or disadvantages, but
simply “features,” which the reader may attach values
to.

B.4   Frequentist Inference

Frequentist estimation of distribution parameters uses
only the information contained in the data sample and
assumptions about a model for the sample data.  In
contrast to Bayesian estimation (discussed in Section
B.5), degree of belief is not incorporated into the
estimation process of frequentist estimation.

In the frequentist approach to estimation, a distribu-
tion parameter is treated as an unknown constant and
the data to be used for estimation are assumed to have
resulted from a random sample.  Information outside
that contained in the sample data is used minimally.
The random variability in the sample data is assumed to
be due directly to the process under study.  Thus, the
frequentist approach addresses variation in parameter
estimates and how far estimates are from the true
parameter values.

Frequentist testing of a hypothesis follows the same
spirit.  The hypothesis is assumed, and the data are
compared to what would have been expected or predic-
ted by the hypothesis.  The frequentist analyst asks
whether the observed values come from the likely part
of the distribution or from the extreme tails, and
decides in this way whether the data are consistent with
the hypothesis.

B.4.1 Point Estimation

Many situations arise in statistics where a random
variable X has a p.d.f. that is of known functional form
but depends on an unknown parameter  that can take
on any value in a set.  The different values for 
produce a family of distributions.   One member of the
family corresponds to each possible value of .
Estimators of the distribution parameter are functions
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of sample data that are used to estimate the distribution
parameters.  Thus, estimators are themselves random
variables.  The specific value of the estimator com-
puted from a random sample provides an estimate of

the distribution parameter.

Table B.1   Features of Bayesian and Frequentist Approaches

Bayesian Approach Frequentist Approach

Bayesian methods allow the formal introduction of prior
information and knowledge into the analysis, which can
be especially useful when sample data are scarce, such as
for rare events.  For the nuclear industry, this knowledge
often exists in the form of industry-wide generic data.
Thus, Bayesian estimation allows the use of various
types of relevant generic data in PRA.

Results depend only on the data sample.  Including
relevant information about a parameter that is external to
the random sample is complicated.

If the prior distribution accurately reflects the uncertainty
about a parameter, Bayesian parameter estimates are
better than classical estimates.

Bayesian estimation can be sensitive to the choice of a
prior distribution.  Therefore:
Identifying suitable prior distributions and  justifying and
gaining acceptance for their use can be difficult.
The choice of a prior distribution is open to criticism that
the choice is self-serving and may reflect inappropriate,
biased, or incorrect views.

Because Bayesian probability intervals can be interpreted
as probability statements about a parameter, they are
easily combined with other sources of uncertainty in a
PRA using the laws of probability.

A confidence interval cannot be directly interpreted as a
probability that the parameter lies in the interval.

Bayesian distributions can be propagated through fault
trees, event trees, and other logic models.

It is difficult or impossible to propagate frequentist
confidence intervals through fault and event tree models
common in PRA to produce corresponding interval
estimates on output quantities of interest.

Using Bayes’ Theorem, Bayesian estimation provides a
method to update the state of knowledge about a parame-
ter as additional data become available.

Frequentist methods can update an earlier analysis if the
original data are still available or can be reconstructed.

In complicated settings, Bayesian methods require
software to produce samples from the distributions.

In complicated settings, frequentist methods must use
approximations.  In some cases they may be unable to
analyze the data at all.

Bayesian hypothesis tests are commonly used only with
hypotheses about a parameter value.

A well-developed body of hypothesis tests exists, useful
for model validation.  These are appropriate for investi-
gating goodness of fit, poolability of data sources, and
similar questions that do not involve a simple parameter.
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Both Approaches

When the quantity of data is large, both approaches produce good estimates.

Both types of computation are straightforward when estimating a parameter in a simple setting.

An estimate of a distribution parameter in the form of
a single number is called a point estimate of that
parameter.  The sample mean is a point estimate of the
mean of the distribution and the sample variance is a
point estimate of the variance of the distribution.  For
another sample drawn from the same population, a
different sample mean and variance would be calcu-
lated.  In fact, these sample statistics are specific values
of random variables and, thus, have their own sam-
pling distributions.  For example, it can be shown that

 has mean µ and variance 2/n, regardless of theX
distribution from which the samples are drawn.

Different techniques exist for obtaining point estimates
for unknown distribution characteristics or parameters.
Two of the most common methods are presented here
[see Hogg and Craig (1995) for more information]:
maximum likelihood estimation and the method of
moments.

A distribution of a random variable X that depends on
an unknown parameter  will be denoted f(x; ).  If X1,
X2, ..., Xn is a random sample from f(x; ), the joint
p.d.f. of  X1, X2, ..., Xn is f(x1; )·f(x2; )· ... ·f(xn; ).
This joint p.d.f. may be viewed as a function of the
unknown parameter  and, when so viewed, is called
the likelihood function, L, of the random sample.
Thus, the likelihood function is the joint p.d.f. of X1,
X2, ..., Xn, denoted

,L x x x f xn i
i
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viewed as a function of .  The maximum likelihood

estimate of  is defined as the value  such that L( ;�θ �θ
x1, x2, ..., xn) � L( ; x1, x2, ..., xn) for every value of .
That is, the maximum likelihood estimate of  is the

value  that maximizes the likelihood function.  In�θ
many cases, this maximum will be unique and can often
be obtained through differentiation.  Note that solving
the derivative set to zero for  may be easier using
ln(L), which is equivalent since a function and its

natural logarithm are maximized at the same value of
.

The maximum likelihood estimate is a function of the

observed random sample x1, x2, ..., xn.  When  is�θ
considered to be a function of the random sample X1,

X2, ..., Xn, then  is a random variable and is called the�θ
maximum likelihood estimator of .

Another method of point estimation is the method of
moments, which involves setting the distribution
moments equal to the sample moments:

Mr = E(Xr) = mr = �ixi
r/n,

for r = 1, 2, ..., k, if the p.d.f. f(x; 1, 2, ..., k) has k
parameters.  The k equations in k unknowns can be
solved for the k unknowns 1, 2, ..., k and the solu-

tions  are the method-of-moments estima-� , � , ..., �θ θ θ1 2 k

tors.

How “well” a point estimator estimates a parameter has
received a large amount of attention.  Numerous
desirable properties of point estimators exist.  One
desirable property of estimators, alluded to previously
in Section B.2,  is unbiasedness.  An unbiased estima-
tor is one whose mean value is equal to the parameter

being estimated.  That is, an estimator is unbiased�θ
for a parameter  if E( ) = .  For a random sample�θ
from a normal distribution, the sample mean, X�, and the
sample variance, S2, are unbiased estimators of µ and

2, respectively.  However, the method of moments
estimator of the variance is biased.  The bias of an

estimator  is defined as .�θ E( �)θ θ−

Minimum variance is another desirable property of an
estimator.  An unbiased estimator is said to have
minimum variance if its variance is less than or equal
to the variance of every other unbiased statistic for .
Such an estimator is referred to as an unbiased, mini-
mum variance estimator.
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Another desirable property of estimators is sufficiency.
For a random sample X1, X2, ..., Xn from f(x; 1, 2, ...,

m), and  functions (statistics) of the Xis,� , � , ..., �θ θ θ1 2 m

the statistics  are jointly sufficient statis-� , � , ..., �θ θ θ1 2 m

tics if the conditional p.d.f. of the Xis given the statis-

tics , g(x1, x2, ..., xn� ), is independent of�θj s � , � , ..., �θ θ θ1 2 m

the parameters (Martz and Waller, 1991).

Sufficiency can be thought of as exhausting all the
possible information about a parameter that is con-
tained in the random sample.  When a sufficient
statistic exists, it may serve as the basis for a minimum
variance or “best” estimator of the parameter.  Suffi-
ciency is also important because it simplifies Bayesian
estimation methods.

Under certain commonly occurring conditions, as the
sample size gets large, the maximum likelihood
estimator is approximately normally distributed,
approximately unbiased, and has approximately the
minimum variance.  It, therefore, is a very good
estimator for large data sets.  The maximum likelihood
estimator is not necessarily good for small data sets.

Several other methods of estimation and desirable
properties for estimators exist.  Further information can
be found in Hogg and Craig (1995) or Kendall and
Stuart (1973).

B.4.2 Interval Estimation

Another way of estimating a parameter is to identify
that it falls in some interval (lcl, ucl) with a specified
degree of certainty, or confidence, where lcl denotes
the lower confidence limit and ucl denotes the upper
confidence limit.  The interval (lcl, ucl) is referred to as
an interval estimate of the parameter.  The lcl and ucl
values are calculated from the random sample from the
given distribution. Associating a level of desired
confidence with an interval estimate produces a confi-
dence interval.  The level of desired confidence is also
referred to as the confidence coefficient.

Confidence intervals are based on estimators associated
with a random sample (functions of the data), LCL for
the lower confidence limit and UCL for the upper
confidence limit, such that, prior to observing the
random sample, the probability that the unknown

parameter, , is contained in the interval [LCL, UCL] is
known.  That is,

Pr[LCL �  � UCL] = 1 � 

for 0 <  < 1.

Once the random sample has been generated, the
functions LCL and UCL produce two values, lcl and
ucl.  The interval (lcl, ucl) is called a two-sided confi-
dence interval with confidence level 1 � , or equiva-
lently, a 100(1 � )% two-sided confidence interval.
Similarly, upper one-sided confidence intervals or
lower one-sided confidence intervals can be defined
that produce only an upper or lower limit, respectively.

Since the true parameter value, although unknown, is
some constant, the interval estimate either contains the
true parameter value or it does not.  A 95% confidence
interval is interpreted to mean that, for a large number
of random samples from the same distribution, 95% of
the resulting intervals (one interval estimate of the
same population parameter constructed the same way
for each sample) would contain the true population
parameter value, and 5% of the intervals would not.
The  = .05 risk of obtaining an interval that does not
contain the parameter can be increased or decreased.
Values for 1 �  should be decided upon prior to
obtaining the random sample, with .99, .95, and .90
being typical.  Note that higher confidence levels result
in wider interval estimates.

Confidence intervals cannot be interpreted as probabil-
ity statements about the parameter being estimated,
because the parameter is assumed to be an unknown
constant and not a random variable. The level of
confidence pertains to the percentage of intervals, each
calculated from a different random sample from the
same distribution, that are expected to contain the true
parameter value.  The confidence does not pertain to
the specific calculated interval (it could be from the
unlucky 5% of intervals that do not contain the true
parameter value).

As an example, a confidence interval for the parameter
µ can be produced from a random sample drawn from
a normal(µ, 2) population by calculating the appropri-
ate functions of the data.  Recall that, if each sample
value is drawn from a normal distribution, the sample

mean  has a normal(µ, 2/n) distribution, where n isX
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the sample size.  Even if the sample values are drawn
from a distribution that is not normal, by the central

limit theorem,  will be approximately normal(µ,X
2/n) for sufficiently large n.  Assuming that 2 is

known (from previous data and experience), the
standardized normal random variable

Z
X

n
=

− µ
σ /

is normal(0, 1), and tabulated in Appendix C.  From
these tables, values of w can be found for which

Pr[�w � Z � w] = 1 � . (B.1)

For example, for  = .05, w = 1.96.  In this case, w is
the 97.5th percentile of the standard normal distribu-
tion, commonly denoted z0.975, or z1! /2 for  = .05.

Substituting for Z in Equation B.1 above, along with
some algebraic manipulation, produces

,Pr[ ]X w
n

X w
n

− ≤ ≤ + = −
σ

µ
σ

α1

which defines a 100(1 � )% confidence interval for
the population mean µ, where

(B.2)LCL X w
n

= −
σ

and

, (B.3)UCL X w
n

= +
σ

with w = z1! /2.

A random sample will yield a specific sample mean.
The numbers w and n are known, and  was assumed to
be known.  Therefore, for a preassigned confidence
level, values for LCL and UCL can be calculated to
produce a specific 100(1 � )% confidence interval for
µ.  Each of the random variables LCL and UCL is a
statistic, and the interval (LCL, UCL) is a random
interval formed from these statistics.

Usually the value of  is not known.  In this case, the

unbiased estimator of the population variance, S2, can
be used to produce S, which can be used in the above
equations in place of .  Thus, the following  standard-
ized random variable, T, can be formed:

T
X

S n
=

− µ
/

For sufficiently large n (say 25 or 30), T follows a
normal(0, 1) distribution.  If n is not sufficiently large,
T follows a Student’s t distribution, for which tabu-
lated probabilities exist in many statistics books, and in
Appendix C.  The Student’s t distribution depends on
a parameter called the degrees of freedom.  In the
present example this parameter equals n � 1. Confi-
dence intervals for the population mean can then be
calculated similarly to the case where  is known, using
either the Student’s t distribution or, when n is large,
the normal distribution.

Confidence intervals can also be constructed for
differences of means and many other population
parameters, such as variances, probabilities, quantiles,
and distribution characteristics (see, for example, Hogg
and Craig 1978).
  
B.4.3 Hypothesis Testing

Testing a statistical hypothesis is another major area of
statistics.  A hypothesis is a statement about the
distribution of the observable random variable.  Often
this statement is expressed as a statement about one or
more parameters of the distribution.  As discussed
previously, estimation uses information in the data
from a random sample to infer something about the
magnitude of a parameter value.   Similar to estimation,
hypothesis testing also uses information from the
random sample.  However, the objective of hypothesis
testing is to determine whether the specific statement
about the distribution is true.

The hypothesis to be tested is referred to as the null
hypothesis, denoted by H0.  The alternative to the null
hypothesis is referred to as the alternative hypothesis,
denoted H1 or Ha.  A test of a hypothesis is a rule or
procedure for deciding whether to reject or accept the
null hypothesis.  This rule or procedure is based upon
information contained in the random sample and
produces a single number, called a test statistic, which
leads to a decision of whether the sample values do not
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support H0.  The entire set of values that the test
statistic may assume is divided into two regions, one
corresponding to the rejection region and the other to
the acceptance region.

If the test statistic computed from a particular sample
has a value in the rejection region, H0 is rejected.  If the
test statistic falls in the acceptance region, H0 is said to

be accepted, due to lack of evidence to reject.  For each
of the two possible cases for H0, true or false, the test
either rejects or does not reject H0, producing four
distinct possibilities.  These possibilities (using condi-
tional probability notation), along with some concepts
and terms associated with hypothesis testing, are
summarized in Table B.2  (Martz and Waller, 1991).

Table B.2   Possible Hypothesis Test Outcomes.

H0 True H0 False

Accept H0 Pr(accept H0 | H0 is true) = 1�
= Level of confidence

Pr(accept H0 | H0 is false) = 
= Pr(Type II Error)

Reject H0 Pr(reject H0 | H0 is true) = 
= Level of significance
= Pr(Type I Error)

Pr(reject H0 | H0 is false) = 1�
= Power

A stated null hypothesis is either true or false.  One of
two errors can occur in hypothesis testing:

1. rejection of the null hypothesis when it is true,
referred to as the Type I error, and

2. acceptance of the null hypothesis when it is
false, referred to as the Type II error.

The probability of making a Type I error, denoted by
, is referred to as the significance level of the test.

Thus, 1 �  is the probability of making a correct
decision when H0 is true.  The probability of making a
correct decision when H0 is false, denoted 1 � , is
referred to as the power of the test.  The probability of
making a Type II error is equal to one minus the power
of the test, or .

The goodness of a statistical hypothesis test is mea-
sured by the probabilities of making a Type I or a Type
II error.  Since  is the probability that the test statistic
will fall in the rejection region, assuming H0 to be true,
increasing the size of the rejection region will increase

 and simultaneously decrease  for a fixed sample
size.  Reducing the size of the rejection region will
decrease  and increase .  If the sample size, n, is
increased, more information will be available for use in
making the decision and both  and  will decrease.

The probability of making a Type II error, , varies

depending on the true value of the population parame-
ter.  If the true population parameter is very close to the
hypothesized value, a very large sample would be
needed to detect such a difference.  That is, the proba-
bility of accepting H0 when H0 is false, , varies
depending on the difference between the true value and
the hypothesized value.  For hypothesis tests,  is
specified prior to conducting the random sample.  This
fixed  specifies the rejection region.  For a deviation
from the hypothesized value that is considered practical
and that is wished to be detectable by the hypothesis
test, a sample size can be selected that will produce an
acceptable value of .

Different alternative hypotheses will result in different
rejection regions for the same H0.  This is seen most
easily for a hypothesis that is expressed in terms of a
parameter, for example, H0: µ = µ0 for some given
value µ0.  In this case, there is an exact correspondence
between one-sided and two-sided confidence intervals
and rejection regions for one-sided and two-sided
alternative hypotheses.  If the hypothesized value falls
outside a 100(1 � )% confidence interval for the
corresponding population parameter, the null hypothe-
sis would be rejected with level of confidence equal to
1 � .

For the example presented in the previous section,
Section B.3.4.2, the 100(1 � )% two-sided confidence
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Figure B.1  Probability of rejecting H0: µ = 3.388, if in
fact H0 is true (upper distribution), and if H0 is false
with µ = 4.09 (lower distribution).

interval for a population mean is defined by the LCL
and UCL in Equations B.2 and B.3.  For the hypothe-
sized value of the mean, say µ0, if µ0 < lcl or µ0 > ucl,
H0 would be rejected.  Equivalently, the test statistic in
Equation B.1 can be computed using  µ = µ0 and, for 
= .05, if it is greater than 1.96 or less than -1.96, H0

would be rejected with 95% level of confidence.

To further illustrate these concepts, a more detailed
example is presented.  Atwood et al. (1998) assert that
for non-momentary losses of offsite power with plant-
centered causes, the recovery times are lognormally
distributed with median 29.6 minutes and error factor
10.6.  This is equivalent to X being normally distributed
with µ = ln(29.6) = 3.388 and  = ln(10.6)/1.645 =
1.435, where X = ln(recovery time in minutes).  Sup-
pose that a plant of interest has experienced five such
losses of offsite power in recent history.  It is desired to
test whether the plant’s recovery times follow the
claimed distribution.

To simplify the situation, the question is formulated in
terms of µ only, assuming that  = 1.435.  The null
hypothesis is

H0:  µ = 3.388 .

Because only long recovery times are of concern from
a risk standpoint, the alternative hypothesis is defined
as

H1:  µ > 3.388 .

That is, values <3.388 are possible, but are not of
concern.  The test statistic, based on n = 5 recovery
times, is to reject H0 if

  .Z
X

w=
−

>
3388

1435 5

.

. /

To make , the probability of Type I error, equal to
0.05, w is chosen to be the 95th percentile of the
standard normal distribution, 1.645.  Then the test can
be re-expressed as rejecting H0 if 

 .X > 4 44.

The upper part of Figure B.1 shows the density of X
when µ = 3.388.  The area to the right of 4.44 is 

,Pr( . |X H> 4 44 0   is true)

which equals 0.05.

What if H0 is false?  For example, a median 60-minute
recovery time corresponds to µ = ln(60) = 4.09.  The
lower part of Figure B.1 shows the density of  whenX
µ = 4.09.  The area to the right of 4.44 is

,Pr( . | . )X > =4 44 4 09  µ

which is equal to 0.29.  This value represents the power
of the hypothesis test when µ = 4.09 and is the proba-
bility of (correctly) rejecting H0.  The probability of a
Type II error when  µ = 4.09 is 1 � 0.29 = 0.71.

It can be useful to plot the power as a function of µ.
The plot is called a power curve.  Figure B.2 shows
two power curves, corresponding to n = 5 and n = 10.
The probability of Type I error, that is, the probability
of rejecting H0 when H0 is true, is shown as .  The
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Figure B.2  Power curves when n = 5 and n = 10.  The
graph shows the probability of rejecting H0, as a
function of the true µ.

probability of Type II error, that is, the probability of
accepting H0 when H0 is false, is shown as  for one
value of µ, and equals 1 minus the power.  The two
tests, with n = 5 and n = 10, have both been calibrated
so that  = 0.05.  The power, for any value of µ in H1,
is larger when n = 10 than when n = 5; equivalently, the
probability of Type II error is smaller.

The interpretation of confidence in hypothesis testing
is also the same as with confidence intervals.  That is,
the confidence is not in one specific test statistic.  The
confidence arises from the viewpoint that if the random
sample was collected a number of times in the same
way and if H0 was true, 100(1 � )% of the tests would
result in not rejecting H0.

As can be seen, interval estimation and hypothesis
testing are closely related.  Some experimenters prefer
expressing inference as estimators.  Others prefer to
test a particular hypothesized value for the parameter of
interest.  

B.4.4 Goodness-of-Fit Tests

The methods presented above are concerned with
estimating the parameters of a distribution, with the
actual form of the distribution assumed to be known (or
the central limit theorem applies with large n).  Other
hypothesis tests do not assume that only a parameter is
unknown.  In particular, goodness-of-fit tests are
special hypothesis tests that can be used to check on the
assumed distribution itself.  Based on a random sample
from some distribution, goodness-of-fit tests test the
hypothesis that the data are distributed according to a

specific distribution.  In general, these tests are based
on a comparison of how well the sample data agree
with an expected set of data from the assumed distribu-
tion.

Perhaps the most familiar goodness-of-fit test is the
chi-square test.  The test statistic used for this statisti-
cal test has an approximate 2 distribution, leading to
the name of the test.  A random sample of n observa-
tions, X1, X2, ..., Xn, can be divided or binned into k
groups or intervals, referred to as bins, producing an
empirical distribution.  The assumed distribution under
the null hypothesis, f0(x), is used to calculate the
probability that an observation would fall in each bin,
with the probabilities denoted by p1, p2, ..., pk.

These probabilities are frequently referred to as cell
probabilities.  The k bins are also called cells.  The k
bin intervals do not overlap and they completely cover
the range of values of f0(x).  It follows that �i

k
=1pi = 1.

The expected frequency of the ith bin, denoted ei, is ei

= npi, for i = 1, 2, ..., k.  The ei are commonly referred
to as the expected cell counts.  The observed frequen-
cies for each of the k bins, denoted Oi, are referred to as
observed cell counts.

The chi-square goodness-of-fit test compares the
observed frequencies to the corresponding expected
frequencies for each of the k groups by calculating the
test statistic:

. (B.5)X
O e

e
i i

ii

k
2

2

1

=
−

=
∑ ( )

If the observations come from some distribution other
than that specified in the null hypothesis, the observed
frequencies tend to agree poorly with the expected
frequencies and the computed test statistic, X2, becomes
large.

The distribution of the quantity X2 can be approximated
by a chi-square distribution.  The parameter that
specifies the chi-square distribution is called the
degrees of freedom.  Its value depends on the number
of unknown parameters and how they are estimated.
When the null hypothesis distribution is normal with
both µ and  known, the degrees of freedom are k � 1.

If and S2 from the sample are used to estimate µ andX
2 when testing the distribution, the degrees of freedom
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are between k � 1 and k � 1 � m, where m is the
number of estimated parameters, 2.  If the quantity X2

is greater that the 1 �  quantile of the 2(k � 1) distri-
bution, the hypothesized probability  distribution is
rejected.  If X2 is less than the 1 �  quantile of the 2(k
� 1 � m) distribution, the data are concluded to be
adequately modeled by f0(x).

When the sample size is small, the 2 distribution still
applies as long as the expected frequencies are not too
small.  Larger expected cell counts make the chi-square
distribution approximation better.  The problem with
small expected frequencies is that a single random
observation falling in a group with a small expected
frequency would result in that single value having a
major contribution to the value of the test statistic, and
thus, the test itself.  In addition, small expected fre-
quencies are likely to occur only in extreme cases.  One
rule of thumb is that no expected frequency should be
less than 1 (see Snedecor and Cochran, 1989).  Two
expected frequencies can be near 1 if most of the other
expected frequencies are greater than 5.  Groups with
expected frequencies below 1 should be combined or
the groups should be redefined to comply with this
rule.  Note that k is the number of groups after such
combination or redefinition.

Comparing how well sample data agree with an ex-
pected set of data leads to another common use of the
chi-square test:  testing whether two or more classifica-
tion criteria, used to group subjects or objects, are
independent of one another. Although not a goodness-
of-fit test, the chi-square test for independence is
similar to the chi-square goodness-of-fit test.

For two grouping criteria, the rows of a two-way
contingency table can represent the classes of one of
the criteria and the columns can represent the classes of
the other criteria.  To test the hypothesis that the rows
and columns represent independent classifications, the
expected number, eij, that would fall into each cell of
the two-way table is calculated and used to compute the
following chi-square test statistic:

,X
O e

e
ij ij

iji j

2
2

=
−∑ ( )

,

where i = 1, 2, ..., r (the number of rows); j = 1, 2, ...,
c (the number of columns); and Oij is the number

observed to belong to the ith row and jth column.  The
eij are calculated by

,e
R C

nij
i j=

where Ri and Cj are the total observed in the ith row
and jth column, respectively, and n is the total sample
size (n = �Ri = �Cj).

For this test, the 2 test statistic follows a chi-square
distribution with (r � 1)(c � 1) degrees of freedom.  If
the calculated X2 exceeds the 1 �  quantile of the 2

distribution with (r � 1)(c � 1) degrees of freedom, the
null hypothesis of independence is rejected and the
rows and columns are concluded to not represent
independent classifications.

The Kolmogorov goodness-of-fit test tests the hypoth-
esis that the observed random variable has c.d.f. F0(x)
versus that the observed random variable does not have
c.d.f. F0(x).  It does this by comparing the sample c.d.f.
(the empirical distribution function) to the hypothesized
c.d.f.  For a random sample of n observations, X1, X2,
..., Xn, the test statistic is defined as the maximum

vertical distance between the empirical c.d.f., � ( )F x
and F0(x).  The actual procedure for calculating the test
statistic can be found in many statistics texts, including
Martz and Waller (1991) and Conover (1999).  The test
statistic is then compared to the 1 �  quantile of tabled
values for the Kolmogorov test, e.g. in Table C.  If the
calculated test statistic exceeds the 1 �  quantile, the
hypothesized c.d.f. is rejected.  Otherwise, F0(x) is
concluded to describe the data.  The Kolmogorov
goodness-of-fit test is based on each individual data
point and therefore is equally effective for small or
large samples.

As an example, consider the previous example of loss-
of-offsite-power recovery times.  Suppose that five
recovery times have been observed at the plant: 7, 22,
94, 185, and 220 minutes.  The corresponding values of
x = ln(recovery time in minutes) are 1.95, 3.09, 4.54,
5.22, and 5.39.  The null hypothesis and alternative
hypothesis are

H0: X is normal with µ = 3.388,  = 1.435
H1: X has some other distribution .
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Figure B.3  The hypothesized distribution, the empir-
ical distribution, and the Kolmogorov test statistic, D.

Note, all possible alternative distributions are consid-
ered, not just normal distributions, or distributions with
 = 1.435.

Figure B.3 shows the distribution function specified by
H0 (the smooth curve) and the empirical distribution
function specified by the data (the step function).  The
maximum distance between the two distributions is D,
the Kolmogorov test statistic.  If D is large, the test
rejects H0 in favor of H1.

If the sample size is small, the Kolmogorov test may be
preferred over the chi-square test.  The Kolmogorov
test is exact, even for small samples, while the chi-
square test is an approximation that is better for larger
sample sizes.  The Kolmogorov statistic can also be
used to construct a confidence region for the unknown
distribution function.

The Kolmogorov goodness-of-fit test is sometimes
called the Kolmogorov-Smirnov one-sample test.
Statistics that are functions of the maximum vertical
distance between  and F0(x) are considered to be� ( )F x

Kolmogorov-type statistics.  Statistics that are functions
of the maximum vertical distance between two empiri-
cal distribution functions are considered to be Smirnov-
type statistics.  A test of whether two samples have the
same distribution function is the Smirnov test, which is
a two-sample version of the Kolmogorov test presented
above.  This two-sample test is also called the
Kolmogorov-Smirnov two-sample test.  Conover
(1999) presents additional information and tests.

Another useful goodness-of-fit test is the Anderson-
Darling goodness-of-fit test and test for normality.
The Anderson-Darling test measures the squared
difference between the empirical distribution function
(EDF) of a sample and the theoretical distribution to be
tested.  It averages this squared difference over the
entire range of the random variable, weighting the tails
more heavily than the center.  This statistic is recom-
mended to guard against wayward observations in the
tail and has generally good power.  

Because many statistical methods require the assump-
tion of normality, some assessment of whether data
come from a normal population is helpful when consid-
ering appropriate analysis techniques.  The Anderson-
Darling statistic provides a measure of how much
normal probability scores for the data (normal probabil-
ity plot values) deviate from a straight line that would
arise under normality.  A computer package is often
used to calculate this statistic and compare it to tabled
values for the statistic.  If the calculated statistic is too
high, the deviations from the straight line are too large
to be attributed to the variation due to sampling obser-
vations from a normal distribution.  Thus, the hypothe-
sis of normality is rejected.  See the Encyclopedia of
Statistical Sciences, 1982, for more information on the
Anderson-darling goodness-of-fit test and Snedecor
and Cochran (1989) for more information on the
Anderson-Darling test used to test for normality.

Certain patterns of deviations from linearity in normal
probability plots indicate common types of nonnormal
characteristics, such as skewness or kurtosis (presence
of long or short tails of the p.d.f.).  Test for skewness
or kurtosis are also available.  See Snedecor and
Cochran (1989) for more information on these tests.

B.5 Bayesian Estimation

B.5.1 Purpose and Use

Bayesian estimation is the other major class of statisti-
cal inference methods.  Similar to frequentist estima-
tion, both point and interval estimates can be obtained.
However, Bayesian estimation is different from classi-
cal estimation in both practical and philosophical
perspectives (NRC, 1994).  Bayesian estimation
incorporates degree of belief and information beyond
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that contained in the data sample, forming the practical
difference from classical estimation.  The subjective
interpretation of probability forms the philosophical
difference from frequentist methods.

The prior belief about a parameter’s value is contained
in what is referred to as the prior distribution, which
describes the state of knowledge (or subjective proba-
bility) about the parameter prior to obtaining the data
sample.  Therefore, in the Bayesian approach, the
parameters of the sampling distribution have probabil-
ity distributions.  These probabilities do not model
random variability of the parameters, but the analyst’s
uncertainty.  Therefore, these distributions are some-
times called  “uncertainty distributions,” distributions
that satisfies all the rules of probability.

Bayesian estimation consists of two main areas, both of
which use the notion of subjective probability.  The
first area involves using available data to fit a subjec-
tive, prior distribution to a parameter, such as a failure
rate.  The degree of belief about the uncertainty in a
parameter value is expressed in the prior distribution.
This fitting of a prior distribution does not involve the
use of Bayes’ Theorem.  The second area of Bayesian
estimation involves using additional or new data to
update an existing prior distribution.  This is called
Bayesian updating, and directly uses Bayes’ Theorem.

Bayes’ Theorem, presented in Section A.5, can be seen
to transform the prior distribution by the effect of the
sample data distribution to produce a posterior distri-
bution.  The sample data distribution, f(x� ), can be
viewed as a function of the unknown parameter instead
of the observed data, xi, producing a likelihood func-
tion, as discussed in Section B.4.1.  Using the likeli-
hood function, the fundamental relationship expressed
by Bayes’ Theorem is

.Posterior Distribution
Prior Distribution  Likelihood

Marginal Distribution
=

×

The marginal distribution serves as a normalizing
constant.

In Bayesian updating, the sampling distribution of the
data provides new information about the parameter
value.  Bayes’ Theorem provides a mathematical

framework for processing new sample data as they
become sequentially available over time.  With the new
information, the uncertainty of the parameter value has
been reduced, but not eliminated.  Bayes’ Theorem is
used to combine the prior and sampling distributions to
form the posterior distribution, which then describes
the updated state of knowledge (still in terms of subjec-
tive probability) about the parameter.  Point and
interval estimates of the parameter can then be ob-
tained directly from the posterior distribution, which is
viewed as containing the current knowledge about the
parameter.  This posterior distribution can then be used
as the prior distribution when the next set of data
becomes available.  Thus, Bayesian updating is succes-
sively implemented using additional data in conjunction
with Bayes’ Theorem to obtain successively better
posterior distributions that model plant-specific param-
eters.

Bayesian point and interval estimates are obtained from
both the prior and posterior distributions.  The interval
estimates are subjective probability intervals, or
credible intervals.  The terminology is not yet univer-
sally standard.  Berger (1985) and Bernardo and Smith
(2000) both use the term credible interval, but Box
and Tiao (1973) use Bayes probability interval,
Lindley (1965) uses Bayesian confidence interval,
and other authors have used other terms.  A credible
interval can be interpreted as a subjective probability
statement about the parameter value, unlike classical
interval estimates.  That is, the interpretation of a 95%
Bayesian posterior probability interval (a, b) is that,
with 95% subjective probability, the parameter is
contained in the interval (a, b), given the prior and
sampling distributions.

B.5.2 Point and Interval Estimates

Bayesian parameter estimation involves four steps.
The first step is identification of the parameter(s) to be
estimated, which involves consideration of the assumed
distribution of the data that will be collected.  The
second step is development of a prior distribution that
appropriately quantifies the state of knowledge con-
cerning the unknown parameter(s).  The third step is
collection of the data sample.  The fourth and final step
is combining the prior distribution with the data sample
using Bayes’ Theorem to produce the desired posterior
distribution.
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For PRA applications, determining the prior distribu-
tion is usually based on generic data and the data
sample usually involves site-specific or plant-specific
operating data.  The resulting posterior distribution
would then be the site-specific or plant-specific distri-
bution of the parameter.

The plant-specific data collected are assumed to be a
random sample from an assumed sampling distribution.
The data are used to update the prior, producing the
posterior distribution.  Point estimates, such as the most
likely value (the mode), the median, or (most com-
monly) the mean value, and probability interval esti-
mates of the parameter can then be obtained.  Other
bounds and other point values can also be obtained
with the Bayesian approach because the posterior
parameter distribution is entirely known and represents
the available knowledge about the parameter.

Bayesian interval estimation is more direct than classi-
cal interval estimation and is based solely on the
posterior p.d.f..  A symmetric 100(1 � )% two-sided
Bayes probability interval estimate of the parameter
is easily obtained from the /2 and 1 � /2 quantiles of
the posterior distribution.  Lower and upper one-
sided Bayes probability interval estimates can
similarly be calculated.  Again, note that the Bayes
interval estimates are explicit probability statements of
the true parameter being contained in the interval.

In some applications, such as a planned facility, plant-
specific data do not exist.  In these cases, Bayes’
Theorem is not used.  Only the generic data are used
and parameter estimates are based solely on the as-
sumed prior distribution.  Investigation of the sensitiv-
ity of the results to the choice of the prior distribution
is important for these cases.

B.5.3 Prior Distributions

The prior distribution is fundamental to any Bayesian
analysis and represents all that is known or assumed
about the parameter  prior to collecting any data.  The
information summarized by the prior distribution can
be objective, subjective, or both.  Operational data and
data from a previous but comparable experiment could
be used as objective data.  Subjective information could
involve personal experience and opinions, expert
judgement, assessments of degree of belief, and design
information.

The selection of prior distributions can be seen to be
somewhat subjective.  A particular prior must be
evaluated to determine the sensitivity of the choice of
that prior on the parameter estimates.  Consistency of
the prior information and data with the prior distribu-
tion must be tested.

Choices for the initial prior distribution and techniques
for handling various kinds of data are described in
detail in several references, such as Martz and Waller
(1991), Raiffa and Schlaifer (1961), and Siu and Kelly
(1998) . 

B.5.3.1 Noninformative Prior Distributions

One class of prior distributions that is widely used is
termed noninformative priors, also referred to as
priors of ignorance, or reference priors (Bernardo and
Smith 1994).  These names refer to the situation where
very little a priori information about a parameter is
available in comparison to the information expected to
be provided by the data sample, or there is indifference
about the range of values the parameter could assume.

One might think that this indifference could be ex-
pressed by a prior distribution that is uniformly distrib-
uted over the interval of interest.  Every value in the
interval is equally likely and no knowledge about any
specific value over another value is imposed.

However, uniform distributions do not necessarily best
reflect true noninformativeness (Box and Tiao 1973),
because models can be parameterized in various ways.
For example, if the time to failure, T, is exponentially
distributed, it is common to write the density of T as

f t e t( ) = −λ λ

or alternatively as

.f t e t( ) /= −1

µ
µ

The two parameters are related by  = 1/µ.

A uniform distribution cannot be said to automatically
reflect ignorance and be used as a standard
noninformative prior distribution.  For the exponential
example here, ignorance of  implies ignorance of µ,
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but  and µ cannot both have a uniform distribution.  In
fact, suppose that  has the uniform distribution in
some finite range, say from a to b.   Then µ has a
density proportional to 1/µ2 in the range from 1/b to
1/a, as stated in Appendix A.4.7.  The distribution of µ
is not uniform.

Jeffreys’ rule (Jeffreys 1961) is a rule that guides the
choice of noninformative prior distributions and
provides the Jeffreys prior distribution (Box and Tiao,
1973). The Jeffreys prior distribution is commonly
used in PRA and involves using a specific parameteri-
zation of the model (distribution).  Jeffreys’ method is
to transform the model into a parameterization that is in
terms of a location parameter, a parameter that slides
the distribution sideways without changing its shape.
(See Box and Tiao 1978, Secs. 1.2.3 and 1.3.4).  This
method then uses the uniform distribution as the
noninformative prior for the location parameter.  It is
reasonable to regard a uniform distribution as
noninformative for a location parameter.  The distribu-
tion for any other parameterization is then determined,
and is called noninformative.

In the exponential example, working with log(time), let
 = log(µ), S = log(T), and s = log(t).  Using algebraic

formulas given in Section A.4.7 of Appendix A, it can
be shown that the density in this parameterization is

.f s s e s( ) exp( ) exp( )= − − −θ θ

Because  only appears in the expression s � , a
change in  simply slides the distribution sideways
along the s axis.  Therefore,  is a location parameter.
The Jeffreys noninformative prior is a uniform distribu-
tion for .  This distribution translates to a density for
 which is proportional to 1/ , and a density for µ

which is proportional to 1/µ.  These are the Jeffreys
noninformative prior distributions for  and µ.

A further argument for Jeffreys prior distributions is
that the resulting Bayes intervals are numerically equal
to confidence intervals (Lindley 1958), and the confi-
dence intervals are based on the data alone, not on prior
belief.  Unfortunately, the above approach cannot be
followed exactly when the data come from a discrete
distribution, such as binomial or Poisson.  The original
parameter can only approximately be converted to a
location parameter.  The resulting distribution is still

called the Jeffreys prior, however, even though it only
approximates the Jeffreys method.

To avoid the appearance of pulling prior distributions
out of the air, the general formula for the Jeffreys prior
is stated here, as explained by Box and Tiao (1973) and
many others.  All the particular cases given in this
handbook can be found by working out the formula in
those cases.  Let  denote the unknown parameter to be
estimated.  Let L( ; x) denote the likelihood corre-
sponding to a single observation.  It is a function of ,
but it also depends on the data, x.  For example, x is the
number of Poisson events in a single unit of time, or
the number of failures on a single demand, or the
length of a single duration.  Calculate

 .−
d

d
L x

2

2θ
θln[ ( ; )]

Now replace the number x by the random variable X,
and evaluate the expectation of the calculated deriva-
tive:

 .E
d

d
L X−









2

2θ
θln[ ( ; )]

The Jeffreys noninformative prior is a function of 
proportional to the square root of this expectation.

B.5.3.2 Conjugate Prior Distributions

It is computationally convenient if the prior is a conju-
gate prior distribution.  A conjugate prior distribution
is a distribution that results in a posterior distribution
that is a member of the same family of distributions as
the prior.  The methodology for obtaining conjugate
priors is based on sufficient statistics and likelihood
functions (see Martz and Waller, 1991).

The beta family of distributions is the conjugate family
of prior distributions for the probability of failure of a
component in a binomial sampling situation.  The
resulting posterior beta distribution can then be used to
provide point and interval estimates of the failure
probability.

A time-to-failure random variable is often assumed to
follow an exponential distribution, with the failure
events arising from a Poisson process.  For this model,
with either exponential or Poisson data, the gamma
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All priors

Conjugate
priors

Jeffreys prior

Figure B.4  Schematic diagram of types of priors.

family of distributions is the conjugate family of prior
distributions for use in Bayesian reliability and failure
rate analyses.

Figure B.4 is a schematic diagram showing the relation
of the kinds of priors that have been mentioned so far.
There are very many nonconjugate priors.  A relatively
small family of priors is conjugate, typically a single
type such as the gamma distributions or beta distribu-
tions.  Finally, the Jeffreys noninformative prior is a
single distribution, shown in the diagram by a dot.  In
many cases, the Jeffreys prior is also conjugate, as
indicated in the figure.

A popular nonconjugate prior is the lognormal distribu-
tion.  It can be used as a prior distribution for both the
binomial sampling and Poisson process models above,
although it is not conjugate.

Conjugate prior distributions provide convenience, but
accurate modeling of prior degree of belief should not
be sacrificed for mathematical convenience.  However,
when one expression of prior belief is viewed to be as
correct as another, the more convenient expression is
usually selected for use.

B.5.3.3 Other Prior Distribution Approaches

The prior distribution in Bayesian methods contains a
subjective notion of probability since the frequencies of
the values of the unknown parameter are seldom
known.  The prior distribution is thus the distribution
of degree of belief before data that provide new infor-
mation are obtained.  Usually, the prior probabilities do

not have a direct frequency interpretation and cannot be
experimentally confirmed.

When the prior distribution does have a frequency
interpretation, the observed data can be used to esti-
mate the prior distribution.  This situation represents
another class of methods of statistical inference called
empirical Bayes methods.  The empirical Bayes prior
distribution is empirically determined, for example,
using observed plant-specific data for a given set of
plants.  Bayes’ Theorem can then be applied to com-
bine this prior with observed data from a specific plant
to produce a posterior distribution.  Thus, empirical
Bayes methods are useful when data from similar, but
not identical, sources exist.  This situation also gives
rise to the use of so-called hierarchical Bayes methods
(see Gelman, et al., 1995, and Carlin and Louis, 1996).

Attempts have been made to remove some of the
subjectivity present in selecting prior distributions, with
the goal being to obtain one distribution for the same
given information.  That is, different analysts using the
same information would decide upon the same prior
distribution.  The result has been development of the
method of maximum entropy.  If  is a parameter
with uncertainty distribution g, the entropy is defined
as 

 .− ∫ g g d( ) ln[ ( ]θ θ θ0

The distribution g that maximizes this expression is
called the maximum entropy distribution.  For finite
ranges, the p.d.f. with the largest entropy is the uni-
form, or flat, distribution.  Thus, entropy can be viewed
as a measure of the variability in the height of a p.d.f.,
and a maximum entropy prior would be the one with
the required mean that is as flat as possible.  Siu and
Kelly (1998, Table 2) give the maximum entropy
distributions for a number of possible constraints.

Maximum entropy methods may see more use in the
future, but still do not produce a systematic approach to
selecting only one prior from a set of possible priors.
In fact, the same problem that the Jeffreys’ method
attempts to address (Section B.5.3.1) is present with the
maximum entropy approach: the same maximum
entropy prior distribution cannot be used for different
parameterizations and parameters of the same model,
even though ignorance of each of the different parame-
ters is viewed as equal.
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To address this lack of invariance, constrained
noninformative priors are obtained.  They are based
on the maximum entropy approach in conjunction with
Jeffreys’ method.  That parameterization is used for
which the parameter is a location parameter.  Giving
maximum entropy to this parameter produces a distri-
bution called the constrained noninformative prior
distribution.  Atwood (1996) presents constrained
noninformative priors and their application to PRA.

Constrained noninformative prior distributions are
seeing use in PRA, although not as much as Jeffreys’
priors.

Other ways of defining noninformative prior distribu-
tions exist.  See Martz and Waller (1991) and Berger
(1985) for more information. 
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