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B.1 Random Samples

When sampling from a distribution (or population), it
is usually assumed that the n observations are taken at
random, in the following sense. It is assumed that the
nrandomvariables X;, X,, ..., X, areindependent. That
is, the sample X;, X, ..., X, taken from a distribution
f(x) hasthejoint p.d.f. h satisfying

h(Xy, Xoy oy X)) = F(X) - (%) - . . . - F(X).

This follows the definition of independent random
variables given in Section A.4.5. A sample taken in
thisway iscaled arandom sample. (Aselsewherein
this handbook, upper case letters denote random
variables and lower case letters denote particular
values, number.)

The random variables X, X,, ..., X, forming such a
random sample are referred to as being independent
and identically distributed. If n is large enough, the
sampled values will represent the distribution well
enough to permit inference about the true distribution.

B.2 Sample Moments

Mathematical expectation and moments provide
characteristics of distributions of random variables.
Theseideas can also be used with observationsfrom a
random sample from a distribution to provide esti-
mates of the parametersthat characterizethat distribu-
tion.

A statistic is afunction of one or more random vari-
ablesthat doesnot depend onany unknown parameters.
A function of random variables that can be computed
from the collected data sampleisthus a statistic. Note
that a function of random variables is a'so a random
variable that has its own probability distribution and
associated characteristics.

If X;, X, ..., X, denote a random sample of size n from
adistribution f(x), the statistic
= X

1=1 n

X =
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is the mean of the random sample, or the sample
mean and the statistic

2 (%= X)*

_ =1
S'= n-1

isthevariance of therandom sample. Notethat n -
1isused asthe denominator in the & statistic to make
the statistic an unbiased estimator of the population
variance, ¢* (unbiased estimators are discussed in
Section B.4.1). Although not used as much as the
sample mean and sample variance, the sample skew-
nessisoccasionally of interest. Thedefinitioncanvary

in detail, but one, used by SAS (1988) is
n d _

— X - X)%/s®.

(n-D-2) & % X/S

Similarly, the statistics defined by

r
1

forr=1, 2, ..., are called the sample moments.

One of the common uses of statistics is estimating the
unknown parametersof the distribution fromwhichthe
sample was generated. The sample mean, or average,

X, is used to estimate the distribution mean, or

population mean, Y, the sample variance, &, is used to
estimate the population variance, ¢, and so forth.

B.3 Statistical Inference

Since values of the parameters of a distribution are
rarely known, the distribution of arandom variable is
rarely completely known. However, with some as-
sumptions and information based on arandom sample
of observations from the distribution or population,
values of the unknown parameters can often be esti-
mated. Probabilities can then be calculated from the
corresponding distribution using these parameter
estimates.

Statistical inferenceistheareaof statistics concerned
with using sample data to answer questions and make
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statements about the distribution of arandom variable
from which the sample datawere obtained. Parameter
estimator s are functions of sample data that are used
to estimate the distribution parameters. Statements
about parameter values are inferred from the specific
sample to the general distribution of the random
variable or population. This inference cannot be
perfect; all inference techniques involve uncertainty.
Understanding the performance properties of various
estimators has received much attention in the statistics
field.

For the purposes of thishandbook, statistical inference
procedures can be classified as follows:

e parameter estimation
- estimation by a point value
- estimation by an interval
« hypothesis testing
- tests concerning parameter values
- goodness-of-fit testsand other model -validation
tests.

Parametric statistical inference assumes that the
sample data come from a particular, specified family
of distributions, with only the parameter values un-
known. However, not all statistical inferenceis based
on parametric families. In many cases, in addition to
not knowing thedistribution parameter values, theform
of the parametric family of distributions is unknown.
Distribution-free, also called nonparametric, tech-
niques are applicable no matter what form the distribu-
tion may have. Goodness-of-fit testsare animportant
type of nonparametric tests that can be used to test
whether a data set follows a hypothesized distribution.

For statistical inference, two major approaches exist,
the frequentist approach and the Bayesian approach.
The two resulting sets of inference tools are summa-
rizedin SectionsB.4 and B.5. In PRA work, Bayesian
estimators are normally used for parameter estimation.
See, for example, NUREG-1489 (NRC 1994). How-
ever, frequentist hypothesis tests are often used for
model validation, especially when the hypothesisto be
tested does not involve asimple parameter. Thisuse of
Bayesian techniques for estimation and frequentist
techniques for model validation is also recommended
by Box (1980).

NUREG-1489 (NRC 1994) lists a number of “advan-
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tages’ and “disadvantages’ for each of the Bayesian
and frequentist approaches. “Advantage’ is often in
the eye of the beholder. For example, isit an advan-
tage or disadvantage that frequentist methods use only
the data at hand, not external or prior information?
Therefore, the lists from that report are presented in
modified and augmented formin Table B.1, where the
points are not called advantages or disadvantages, but
simply “features,” which the reader may attach values
to.

B.4 Freguentist Inference

Frequentist estimation of distribution parameters uses
only the information contained in the data sample and
assumptions about a model for the sample data. In
contrast to Bayesian estimation (discussed in Section
B.5), degree of belief is not incorporated into the
estimation process of frequentist estimation.

In the frequentist approach to estimation, a distribu-
tion parameter is treated as an unknown constant and
the data to be used for estimation are assumed to have
resulted from a random sample. Information outside
that contained in the sample data is used minimally.
Therandomvariability in thesampledataisassumedto
be due directly to the process under study. Thus, the
frequentist approach addresses variation in parameter
estimates and how far estimates are from the true
parameter values.

Frequentist testing of a hypothesis follows the same
spirit. The hypothesis is assumed, and the data are
compared to what would have been expected or predic-
ted by the hypothesis. The frequentist analyst asks
whether the observed values come from the likely part
of the distribution or from the extreme tails, and
decidesin thisway whether the dataare consistent with
the hypothesis.

B.4.1 Point Estimation

Many situations arise in statistics where a random
variable X hasap.d.f. that is of known functional form
but depends on an unknown parameter @ that can take
on any value in a set. The different values for
produce afamily of distributions. One member of the
family corresponds to each possible value of 6.
Estimator s of the distribution parameter are functions
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of sample datathat are used to estimate the distribution
parameters. Thus, estimators are themselves random
variables. The specific value of the estimator com-
puted from a random sample provides an estimate of
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the distribution parameter.

TableB.1 Featuresof Bayesian and Frequentist Approaches

Bayesian Approach

Frequentist Approach

Bayesian methods allow the formal introduction of prior
information and knowledge into the analysis, which can
beespecially useful when sampledataarescarce, suchas
for rareevents. For the nuclear industry, thisknowledge
often existsin theform of industry-wide generic data.
Thus, Bayesian estimation allows the use of various
types of relevant generic datain PRA.

Results depend only on the data sample. Including
relevant information about aparameter that isexternal to
the random sample is complicated.

If theprior distribution accurately reflectstheuncertainty
about a parameter, Bayesian parameter estimates are
better than classical estimates.

Bayesian estimation can be sensitive to the choice of a
prior distribution. Therefore:

I dentifying suitableprior distributionsand justifyingand
gaining acceptance for their use can be difficult.
Thechoiceof aprior distributionisopento criticismthat
the choiceis self-serving and may reflect inappropriate,
biased, or incorrect views.

Because Bayesian probability intervalscan beinterpreted
as probability statements about a parameter, they are
easily combined with other sources of uncertainty in a
PRA using the laws of probability.

A confidenceinterval cannot be directly interpreted asa
probability that the parameter liesin the interval.

Bayesian distributions can be propagated through fault
trees, event trees, and other logic models.

It is difficult or impossible to propagate frequentist
confidenceintervalsthrough fault and event tree models
common in PRA to produce corresponding interval
estimates on output quantities of interest.

Using Bayes' Theorem, Bayesian estimation provides a
method to update the state of knowledge about a parame-
ter as additional data become available.

Frequentist methods can update an earlier analysisif the
original data are still available or can be reconstructed.

In complicated settings, Bayesian methods require
software to produce samples from the distributions.

In complicated settings, frequentist methods must use
approximations. In some cases they may be unableto
anayzethedataat all.

Bayesian hypothesis tests are commonly used only with
hypotheses about a parameter value.

A well-developed body of hypothesistests exists, useful
for model validation. These are appropriate for investi-
gating goodness of fit, poolability of data sources, and
similar questionsthat do not involve asimple parameter.
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Both Approaches

When the quantity of dataislarge, both approaches produce good estimates.

Both types of computation are straightforward when estimating a parameter in a simple setting.

An estimate of a distribution parameter in the form of
a single number is called a point estimate of that
parameter. The sample mean isapoint estimate of the
mean of the distribution and the sample variance is a
point estimate of the variance of the distribution. For
another sample drawn from the same population, a
different sample mean and variance would be calcu-
lated. Infact, these sample statistics are specific values
of random variables and, thus, have their own sam-
plingdistributions. For example, it can be shown that
X has mean p and variance ¢%/n, regardless of the
distribution from which the samples are drawn.

Different techniquesexist for obtaining point estimates
for unknown distribution characteristics or parameters.
Two of the most common methods are presented here
[see Hogg and Craig (1995) for more information]:
maximum likelihood estimation and the method of
moments.

A distribution of arandom variable X that depends on
an unknown parameter ¢ will be denoted f(x; 6). If X,,
X5, ...y X, is @ random sample from f(x; 6), the joint
p.d.f. of X, X,, ..., X, isf(x;; 6)f(x; 6)- ... f(x,; 6).
This joint p.d.f. may be viewed as a function of the
unknown parameter & and, when so viewed, is called
the likelihood function, L, of the random sample.
Thus, the likelihood function is the joint p.d.f. of X,
X, ..., X,, denoted

L6 Xy, Xp0-05 %) = ﬂ f(x:0),

viewed as a function of 8. The maximum likelihood

estimateof ¢isdefined asthevalue & such that L( é ;
X1y Xoy ooy X) > L(G; Xq, X, ..., X,) fOr every value of 6.
That is, the maximum likelihood estimate of & is the
value @ that maximizes the likelihood function. In
many cases, thismaximumwill be unique and can often
be obtained through differentiation. Note that solving
the derivative set to zero for § may be easier using
In(L), which is equivalent since a function and its
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natural logarithm are maximized at the same value of
0.

The maximum likelihood estimate is afunction of the

observed random sample X,, X,, ..., X,, When 8 is
considered to be a function of the random sample X,,

X, .... X, then & isarandom variableandiscalled the
maximum likelihood estimator of 6.

Another method of point estimation is the method of
moments, which involves setting the distribution
moments equal to the sample moments:

Mr = E(Xr) = rTlr = ZiXir/ni

forr =1, 2, ..., k, if thep.df. f(x; 8,, 6,, ..., 6) hask
parameters. The k equations in k unknowns can be
solved for the k unknowns 8,, 4,, ..., 6, and the solu-

tions 8, 8, ..., § arethe method-of -moments estima-
tors.

How “well” apoint estimator estimatesaparameter has
received a large amount of attention. Numerous
desirable properties of point estimators exist. One
desirable property of estimators, alluded to previously
inSection B.2, isunbiasedness. Anunbiased estima
tor is one whose mean value is equal to the parameter

being estimated. That is, an estimator & is unbiased

for a parameter ¢ if E( 9) = ¢. For arandom sample
fromanormal distribution, thesample mean, X, and the
sample variance, §, are unbiased estimators of p and
¢?, respectively. However, the method of moments
estimator of the variance is biased. The bias of an

estimator @ isdefined as E(8) - 6.

Minimum variance is another desirable property of an
estimator. An unbiased estimator is said to have
minimum variance if its variance is less than or equal
to the variance of every other unbiased statistic for 6.
Such an estimator is referred to as an unbiased, mini-
mum variance estimator.
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Another desirableproperty of estimatorsissufficiency.
For arandom sample X,, X,, ..., X, fromf(x; 4,, 8,, ...,

6.), and é?l é?z 9m functions (statistics) of the Xs,

the statistics 8, 6, ..., §, arejointly sufficient statis-
ticsif the conditional p.d.f. of the X;s given the statis-
tics 85, g(Xy X1 ooy Xo| 6., B, ..., 8.), isindependent of
the parameters (Martz and Waller, 1991).

Sufficiency can be thought of as exhausting all the
possible information about a parameter that is con-
tained in the random sample. When a sufficient
statistic exists, it may serve asthe basisfor aminimum
variance or “best” estimator of the parameter. Suffi-
ciency isalso important because it simplifies Bayesian
estimation methods.

Under certain commonly occurring conditions, as the
sample size gets large, the maximum likelihood
estimator is approximately normally distributed,
approximately unbiased, and has approximately the
minimum variance. It, therefore, is a very good
estimator for large data sets. The maximum likelihood
estimator is not necessarily good for small data sets.

Several other methods of estimation and desirable
propertiesfor estimatorsexist. Further information can
be found in Hogg and Craig (1995) or Kendall and
Stuart (1973).

B.4.2 Interval Estimation

Another way of estimating a parameter is to identify
that it fallsin some interval (Icl, ucl) with a specified
degree of certainty, or confidence, where Icl denotes
the lower confidence limit and ucl denotes the upper
confidencelimit. Theinterval (Icl, ucl) isreferredto as
aninterval estimate of the parameter. Thelcl and ucl
valuesare calculated from the random sample fromthe
given distribution. Associating a level of desired
confidence with an interval estimate produces a confi-
denceinterval. Thelevel of desired confidenceisalso
referred to as the confidence coefficient.

Confidenceinterval sare based on estimatorsassociated
with arandom sample (functions of the data), LCL for
the lower confidence limit and UCL for the upper
confidence limit, such that, prior to observing the
random sample, the probability that the unknown

REVISION 0 Date: 11/27/02

DRAFT

B-5

B. Basicsof Statistics

parameter, 8, iscontainedintheinterval [LCL, UCL] is
known. That is,

PrLCL<8<UCL]=1-«
forO<a< 1l

Once the random sample has been generated, the
functions LCL and UCL produce two values, Icl and
ucl. Theinterval (Icl, ucl) is caled atwo-sided confi-
dence interval with confidence level 1 - «, or equivar
lently, a 100(1 - «)% two-sided confidence interval.
Similarly, upper one-sided confidence intervals or
lower one-sided confidence intervals can be defined
that produce only an upper or lower limit, respectively.

Since the true parameter value, although unknown, is
some constant, the interval estimate either containsthe
true parameter valueor it doesnot. A 95% confidence
interval isinterpreted to mean that, for alarge number
of random sampl es from the same di stribution, 95% of
the resulting intervals (one interval estimate of the
same population parameter constructed the same way
for each sample) would contain the true population
parameter value, and 5% of the intervals would not.
The o = .05 risk of obtaining an interval that does not
contain the parameter can be increased or decreased.
Vaues for 1 - « should be decided upon prior to
obtaining the random sample, with .99, .95, and .90
beingtypical. Notethat higher confidencelevelsresult
inwider interval estimates.

Confidenceintervals cannot beinterpreted as probabil -
ity statements about the parameter being estimated,
because the parameter is assumed to be an unknown
constant and not a random variable. The level of
confidence pertainsto the percentage of intervals, each
calculated from a different random sample from the
same distribution, that are expected to contain the true
parameter value. The confidence does not pertain to
the specific calculated interval (it could be from the
unlucky 5% of intervals that do not contain the true
parameter value).

Asan example, aconfidenceinterval for the parameter
M can be produced from a random sample drawn from
anormal (U, ¢ population by calculating the appropri-
ate functions of the data. Recall that, if each sample
valueis drawn from anormal distribution, the sample

mean X has anormal (i, 6°/n) distribution, wherenis
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the sample size. Even if the sample values are drawn
from a distribution that is not normal, by the central

limit theorem, X will be approximately normal(u,
a’In) for sufficiently large n. Assuming that ¢° is
known (from previous data and experience), the
standardized normal random variable

X-u

"~ oln

is normal (0, 1), and tabulated in Appendix C. From
these tables, values of w can be found for which

Prl-w<Z<w]=1-aq. (B.2)
For example, for o = .05, w = 1.96. Inthiscase, wis
the 97.5th percentile of the standard normal distribu-
tion, commonly denoted z, ., Or Z,_,, for o = .05.

Substituting for Z in Equation B.1 above, along with
some algebrai ¢ manipulation, produces

Pr[)?—w£< <)7+W£]-1—a
Jn THERT R

which defines a 100(1 - «)% confidence interval for
the population mean 1, where

— g
LCL= X -w— (B.2)
Y n
and
— ag
UCL= X +wW—, B.3
W\/ﬁ (B.3)

withw=2z_,.

A random sample will yield a specific sample mean.
The numbersw and n are known, and ¢ was assumed to
be known. Therefore, for a preassigned confidence
level, values for LCL and UCL can be calculated to
produce aspecific 100(1 - «)% confidenceinterval for
W. Each of the random variables LCL and UCL isa
statistic, and the interval (LCL, UCL) is a random
interval formed from these statistics.

Usually the value of ¢ is not known. In this case, the
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unbiased estimator of the population variance, S, can
be used to produce S, which can be used in the above
equationsin place of 6. Thus, thefollowing standard-
ized random variable, T, can be formed:

X-u
T=

S/+/n

For sufficiently large n (say 25 or 30), T follows a
normal (0, 1) distribution. If nisnot sufficiently large,
T follows a Student’ s t distribution, for which tabu-
lated probabilities exist in many statisticsbooks, andin
Appendix C. The Student’st distribution depends on
a parameter called the degrees of freedom. In the
present example this parameter equals n - 1. Confi-
dence intervals for the population mean can then be
calculated similarly tothe casewheres isknown, using
either the Student’s t distribution or, when n is large,
the normal distribution.

Confidence intervals can aso be constructed for
differences of means and many other population
parameters, such as variances, probabilities, quantiles,
and distribution characteristics(see, for example, Hogg
and Craig 1978).

B.4.3 Hypothesis Testing

Testing astatistical hypothesisis another major areaof
statistics. A hypothesis is a statement about the
distribution of the observable random variable. Often
this statement is expressed as a statement about one or
more parameters of the distribution. As discussed
previously, estimation uses information in the data
from a random sample to infer something about the
magnitude of aparameter value. Similar to estimation,
hypothesis testing also uses information from the
random sample. However, the objective of hypothesis
testing is to determine whether the specific statement
about the distribution is true.

The hypothesis to be tested is referred to as the null
hypothesis, denoted by H,. The alternativeto the null
hypothesisisreferred to asthealter nativehypothesis,
denoted H, or H,. A test of a hypothesisisarule or
procedure for deciding whether to reject or accept the
null hypothesis. This rule or procedure is based upon
information contained in the random sample and
produces asingle number, called atest statistic, which
|eads to a decision of whether the sample values do not
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support H,. The entire set of values that the test
statistic may assume is divided into two regions, one
corresponding to the r g ection region and the other to
the acceptanceregion.

If the test statistic computed from a particular sample
hasavaueintherejectionregion, Hyisrejected. If the
test statistic fallsin the acceptance region, H, issaid to
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be accepted, duetolack of evidencetoreject. For each
of the two possible cases for H,, true or false, the test
either rejects or does not reject H,, producing four
distinct possibilities. These possihilities (using condi-
tional probability notation), along with some concepts
and terms associated with hypothesis testing, are
summarized in Table B.2 (Martz and Waller, 1991).

TableB.2 Possible Hypothesis Test Outcomes.

H, True H, False
Accept H, | Pr(accept Hy |Hyistrue) = 1-a Pr(accept H, | Hyisfase) =5
= Level of confidence = Pr(Type I Error)
Reect H, | Pr(rgect Hy|Hyistrue) =« Pr(rgject H, |Hyisfalse) = 1-5

= Levd of significance
= Pr(Type| Error)

= Power

A stated null hypothesisis either true or false. One of
two errors can occur in hypothesis testing:

1 rejection of thenull hypothesiswhenitistrue,
referred to asthe Typel error, and
2. acceptance of the null hypothesis when it is

false, referred to asthe Typell error.

The probability of making a Type | error, denoted by
a, isreferred to as the significance level of the test.
Thus, 1 - « is the probability of making a correct
decision when H, istrue. The probability of making a
correct decision when H, is false, denoted 1 - 3, is
referredto asthe power of thetest. The probability of
makingaTypell error isequal to one minusthe power
of the test, or S.

The goodness of a statistical hypothesis test is mea
sured by the probabilities of makingaTypel or aType
Il error. Since « isthe probability that the test statistic
will fall intherejection region, assuming H, to betrue,
increasing the size of the rejection region will increase
o, and simultaneously decrease $ for a fixed sample
size. Reducing the size of the reection region will
decrease o and increase 5. If the sample size, n, is
increased, moreinformation will beavailablefor usein
making the decision and both ¢ and 5 will decrease.

The probability of making a Type Il error, j, varies
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depending on the true value of the population parame-
ter. If thetrue population parameter isvery closetothe
hypothesized value, a very large sample would be
needed to detect such adifference. That is, the proba-
bility of accepting H, when H, is fase, g, varies
depending on the difference between thetruevalueand
the hypothesized value. For hypothesis tests, «a is
specified prior to conducting the random sample. This
fixed o specifies the rejection region. For adeviation
fromthehypothesized valuethat isconsidered practical
and that is wished to be detectable by the hypothesis
test, asample size can be selected that will produce an
acceptable value of £.

Different alternative hypotheseswill result in different
rejection regions for the same H,. Thisis seen most
easily for a hypothesis that is expressed in terms of a
parameter, for example, H,: 1 = |, for some given
value,. Inthiscase, thereisan exact correspondence
between one-sided and two-sided confidence intervals
and rejection regions for one-sided and two-sided
aternative hypotheses. If the hypothesized valuefalls
outside a 100(1 - a)% confidence interval for the
corresponding population parameter, the null hypothe-
siswould berejected with level of confidence equal to
1-o.

For the example presented in the previous section,
Section B.3.4.2, the 100(1 - «)% two-sided confidence
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interval for a population mean is defined by the LCL
and UCL in Equations B.2 and B.3. For the hypothe-
sized value of the mean, say ,, if Y, < lcl or p, > ucl,
H, would berejected. Equivalently, thetest statisticin
Equation B.1 can be computed using [ = |, and, for a
= .05, if it is greater than 1.96 or less than -1.96, H,
would be rejected with 95% level of confidence.

To further illustrate these concepts, a more detailed
exampleis presented. Atwood et al. (1998) assert that
for non-momentary losses of offsite power with plant-
centered causes, the recovery times are lognormally
distributed with median 29.6 minutes and error factor
10.6. Thisisequivaentto X being normally distributed
with 1 = In(29.6) = 3.388 and ¢ = In(10.6)/1.645 =
1.435, where X = In(recovery time in minutes). Sup-
pose that a plant of interest has experienced five such
losses of offsite power inrecent history. Itisdesiredto
test whether the plant’s recovery times follow the
claimed distribution.

To simplify the situation, the question is formulated in
terms of W only, assuming that ¢ = 1.435. The null
hypothesisis

H, u=3.388.
Because only long recovery times are of concern from

arisk standpoint, the alternative hypothesisis defined
as

H;: u>3.388.

That is, values <3.388 are possible, but are not of
concern. The test statistic, based on n = 5 recovery
times, isto rgject H, if

S >?—3388>W
" 1435/4/5 '

To make «, the probability of Type | error, equa to
0.05, w is chosen to be the 95th percentile of the
standard normal distribution, 1.645. Then thetest can
be re-expressed as rejecting H, if

X > 444 .

The upper part of Figure B.1 shows the density of X
when 1 =3.388. Theareatotheright of 4.44 is
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Pr(X > 444 | H, istrue) ,
which equals 0.05.

What if H, isfalse? For example, amedian 60-minute
recovery time corresponds to L = In(60) = 4.09. The
lower part of Figure B.1 showsthe density of X when
1 =4.09. Theareato theright of 4.44is

Pr(X > 444 | u =409) ,

whichisegual t00.29. Thisvaluerepresentsthe power
of the hypothesistest when 1 = 4.09 and is the proba-
bility of (correctly) rejecting H,. The probability of a
Typell error when p=4.09is1- 0.29=0.71.

/ .
/ N\
/
/ \
/ \
/ N Area=0.05
// \\
/ \\
““““““““““““““““ ‘ X\ NS
2 3 4 5
VRN
/ \

/ N\

\\Area =0.29

Reject H,

GC00 0433 7
FigureB.1 Probability of rejectingH,: 1 =3.388, if in
fact H, is true (upper distribution), and if H, is false
with 1 = 4.09 (lower distribution).

It can be useful to plot the power as a function of p.
The plot is called a power curve. Figure B.2 shows
two power curves, correspondington=5and n = 10.
The probability of Typel error, that is, the probability
of rgjecting H, when H, is true, is shown as a. The
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probability of Type Il error, that is, the probability of
accepting H, when H, is false, is shown as £ for one
value of y, and equals 1 minus the power. The two
tests, with n =5 and n = 10, have both been calibrated
so that & = 0.05. The power, for any value of pinH,,
islarger when n =10 than when n=5; equivaently, the
probability of Typell error is smaller.

The interpretation of confidence in hypothesis testing
is also the same as with confidence intervals. That is,
the confidenceis not in one specific test statistic. The
confidencearisesfromtheviewpoint that if therandom
sample was collected a number of times in the same
way and if H, wastrue, 100(1 - «)% of thetestswould
result in not rejecting H,.

As can be seen, interval estimation and hypothesis
testing are closely related. Some experimenters prefer
expressing inference as estimators. Others prefer to
test aparticular hypothesi zed valuefor the parameter of

interest.
T _

0.8F
0.6+
04+
0.2+ /
e
0 | L L J
3 Ho 4 5 6

/" GCO00 0433 9

FigureB.2 Power curveswhenn=5andn=10. The
graph shows the probability of rejecting H,, as a
function of the true p.

B.4.4 Goodness-of-Fit Tests

The methods presented above are concerned with
estimating the parameters of a distribution, with the
actual form of thedistribution assumed to be known (or
the central limit theorem applies with large n). Other
hypothesistests do not assumethat only aparameter is
unknown. In particular, goodness-of-fit tests are
specia hypothesisteststhat can be used to check onthe
assumed distributionitself. Based on arandom sample
from some distribution, goodness-of-fit tests test the
hypothesis that the data are distributed according to a
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specific distribution. In general, these tests are based
on a comparison of how well the sample data agree
with an expected set of datafrom the assumed distribu-
tion.

Perhaps the most familiar goodness-of-fit test is the
chi-squaretest. Thetest statistic used for this statisti-
cal test has an approximate y? distribution, leading to
the name of thetest. A random sample of n observa-
tions, X;, X, ..., X,, can be divided or binned into k
groups or intervals, referred to as bins, producing an
empirical distribution. The assumed distribution under
the null hypothesis, f,(x), is used to calculate the
probability that an observation would fall in each bin,
with the probabilities denoted by p,, p., -.., P«

These probabilities are frequently referred to as cell
probabilities. The k bins are also caled cells. Thek
bin intervals do not overlap and they completely cover
the range of values of fy(x). It followsthat > p, = 1.
The expected frequency of theith bin, denoted e, ise
=np,fori=1,2, ..,k Thee arecommonly referred
to as the expected cell counts. The observed frequen-
ciesfor each of thek bins, denoted O, arereferred to as
observed cell counts.

The chi-square goodness-of-fit test compares the
observed freguencies to the corresponding expected
frequencies for each of the k groups by calculating the
test statistic:

_v(Q-¢)
1=1 Q '

X? (B.5)

If the observations come from some distribution other
than that specified in the null hypothesis, the observed
frequencies tend to agree poorly with the expected
frequenciesand the computed test statistic, X?, becomes
large.

Thedistribution of the quantity X? can be approximated
by a chi-square distribution. The parameter that
specifies the chi-square distribution is caled the
degreesof freedom. Itsvalue depends on the number
of unknown parameters and how they are estimated.
When the null hypothesis distribution is normal with
both p and ¢ known, the degrees of freedomarek - 1.

If X and § fromthe sample are used to estimate 1 and
o® whentesting thedistribution, the degrees of freedom
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are between k - 1 and k - 1 - m, where m is the
number of estimated parameters, 2. If the quantity X2
is greater that the 1 - o quantile of the y*(k - 1) distri-
bution, the hypothesized probability distribution is
rejected. If X?islessthanthe 1 - o quantile of the y*(k
- 1 - m) distribution, the data are concluded to be
adequately modeled by fy(x).

When the sample size is small, the 2 distribution still
applies aslong as the expected frequencies are not too
small. Larger expected cell counts makethe chi-square
distribution approximation better. The problem with
small expected frequencies is that a single random
observation faling in a group with a small expected
frequency would result in that single value having a
major contribution to the value of the test statistic, and
thus, the test itself. In addition, small expected fre-
guenciesarelikely to occur only in extreme cases. One
rule of thumb isthat no expected frequency should be
less than 1 (see Snedecor and Cochran, 1989). Two
expected frequencies can be near 1 if most of the other
expected frequencies are greater than 5. Groups with
expected frequencies below 1 should be combined or
the groups should be redefined to comply with this
rule. Note that k is the number of groups after such
combination or redefinition.

Comparing how well sample data agree with an ex-
pected set of data leads to another common use of the
chi-sguaretest: testing whether two or moreclassifica-
tion criteria, used to group subjects or objects, are
independent of one another. Although not a goodness-
of-fit test, the chi-square test for independence is
similar to the chi-square goodness-of -fit test.

For two grouping criteria, the rows of a two-way
contingency table can represent the classes of one of
the criteriaand the columns can represent the classes of
the other criteria. To test the hypothesis that the rows
and columns represent independent classifications, the
expected number, g;, that would fall into each cell of
thetwo-way tableis cal culated and used to computethe
following chi-sgquare test statistic:
_ < G- &)
xz= § S
[ ej

wherei =1, 2, ..., r (the number of rows); j =1, 2, ...,
c (the number of columns); and O; is the number
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observed to belong to theith row and jth column. The
g, are calculated by

where R and C; are the total observed in the ith row
and jth column, respectively, and n is the total sample
sze(n=XR =XC).

For this test, the * test statistic follows a chi-square
distribution with (r - 1)(c - 1) degrees of freedom. If
the calculated X* exceeds the 1 - « quantile of the y?
distribution with (r - 1)(c - 1) degrees of freedom, the
null hypothesis of independence is rejected and the
rows and columns are concluded to not represent
independent classifications.

TheK olmogor ov goodness-of -fit test teststhe hypoth-
esis that the observed random variable has c.d.f. Fy(X)
versusthat the observed random variable does hot have
c.d.f. Fy(x). It doesthisby comparing the samplec.d.f.
(theempirical distributionfunction) to the hypothesized
c.d.f. For arandom sample of n observations, X;, X,,
.y X, the test statistic is defined as the maximum

vertical distance between the empirical c.df., If(x)

and F,(x). Theactual procedurefor calculating thetest
statistic can befound in many statisticstexts, including
Martz and Waller (1991) and Conover (1999). Thetest
statisticisthen comparedtothe 1 - « quantile of tabled
valuesfor the Kolmogorov test, e.g. in Table C. If the
calculated test statistic exceeds the 1 - o quantile, the
hypothesized c.d.f. is rejected. Otherwise, Fy(X) is
concluded to describe the data The Kolmogorov
goodness-of-fit test is based on each individual data
point and therefore is equally effective for small or
large samples.

Asan example, consider the previous example of loss-
of-offsite-power recovery times. Suppose that five
recovery times have been observed at the plant: 7, 22,
94, 185, and 220 minutes. The corresponding values of
X = In(recovery time in minutes) are 1.95, 3.09, 4.54,
5.22, and 5.39. The null hypothesis and alternative
hypothesis are

Ho: Xisnorma with p =3.388, o = 1.435
H,: X has some other distribution .
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Note, all possible aternative distributions are consid-
ered, not just normal distributions, or distributionswith
o =1.435.

Figure B.3 showsthe distribution function specified by
H, (the smooth curve) and the empirical distribution
function specified by the data (the step function). The
maximum distance between the two distributionsis D,
the Kolmogorov test statistic. If D is large, the test
rejects H, in favor of H,.

If the samplesizeissmall, the Kolmogorov test may be
preferred over the chi-square test. The Kolmogorov
test is exact, even for small samples, while the chi-
square test is an approximation that is better for larger
sample sizes. The Kolmogorov statistic can also be
used to construct a confidence region for the unknown
distribution function.

The Kolmogorov goodness-of-fit test is sometimes
caled the Kolmogorov-Smirnov one-sample test.
Statistics that are functions of the maximum vertical
distance between F(x) and F,(x) are considered to be
Kolmogorov-typestatistics. Statisticsthat arefunctions
of the maximum vertical distance between two empiri-
cal distributionfunctionsare considered to be Smirnov-
type statistics. A test of whether two samples have the
samedistribution functionisthe Smirnov test, whichis
atwo-sampleversion of the Kolmogorov test presented
above. This two-sample test is aso caled the
Kolmogorov-Smirnov two-sample test. Conover
(1999) presents additional information and tests.
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Figure B.3 The hypothesized distribution, the empir-
ical distribution, and the Kolmogorov test statistic, D.
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Another useful goodness-of-fit test is the Ander son-
Darling goodness-of-fit test and test for normality.
The Anderson-Darling test measures the sguared
difference between the empirical distribution function
(EDF) of asampleand thetheoretical distribution to be
tested. It averages this squared difference over the
entirerange of the random variable, weighting thetails
more heavily than the center. This statistic is recom-
mended to guard against wayward observationsin the
tail and has generally good power.

Because many statistical methods require the assump-
tion of normality, some assessment of whether data
comefromanormal populationishelpful when consid-
ering appropriate analysis techniques. The Anderson-
Darling statistic provides a measure of how much
normal probability scoresfor thedata(normal probabil-
ity plot values) deviate from a straight line that would
arise under normality. A computer package is often
used to calculate this statistic and compare it to tabled
valuesfor the statistic. If the calculated statistic istoo
high, the deviationsfrom the straight line are too large
to be attributed to the variation due to sampling obser-
vationsfromanormal distribution. Thus, the hypothe-
sis of normality is rejected. See the Encyclopedia of
Satistical Sciences, 1982, for moreinformation on the
Anderson-darling goodness-of-fit test and Snedecor
and Cochran (1989) for more information on the
Anderson-Darling test used to test for normality.

Certain patterns of deviationsfrom linearity in normal
probability plotsindicate common types of nhonnormal
characteristics, such as skewness or kurtosis (presence
of long or short tails of the p.d.f.). Test for skewness
or kurtosis are also available. See Snedecor and
Cochran (1989) for more information on these tests.

B.5 Bayesian Estimation

B.5.1 Purposeand Use

Bayesian estimation is the other major class of statisti-
cal inference methods. Similar to frequentist estima-
tion, both point and interval estimates can be obtained.
However, Bayesian estimation isdifferent from classi-
cal estimation in both practicadl and philosophical
perspectives (NRC, 1994). Bayesian estimation
incorporates degree of belief and information beyond
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that contained in the data sample, forming the practical
difference from classical estimation. The subjective
interpretation of probability forms the philosophical
difference from frequentist methods.

Theprior belief about aparameter’ svalueis contained
inwhat isreferred to asthe prior distribution, which
describes the state of knowledge (or subjective proba
bility) about the parameter prior to obtaining the data
sample. Therefore, in the Bayesian approach, the
parameters of the sampling distribution have probabil -
ity distributions. These probabilities do not model
random variability of the parameters, but the analyst's
uncertainty. Therefore, these distributions are some-
times called “uncertainty distributions,” distributions
that satisfies all the rules of probability.

Bayesian estimation consists of two main areas, both of
which use the notion of subjective probability. The
first areainvolves using available data to fit a subjec-
tive, prior distribution to a parameter, such asafailure
rate. The degree of belief about the uncertainty in a
parameter value is expressed in the prior distribution.
Thisfitting of a prior distribution does not involve the
use of Bayes' Theorem. The second area of Bayesian
estimation involves using additional or new data to
update an existing prior distribution. This is called
Bayesian updating, anddirectly usesBayes Theorem.

Bayes Theorem, presentedin Section A.5, can be seen
to transform the prior distribution by the effect of the
sample data distribution to produce aposterior distri-
bution. The sample data distribution, f(x|8), can be
viewed asafunction of the unknown parameter instead
of the observed data, x;, producing a likelihood func-
tion, as discussed in Section B.4.1. Using the likeli-
hood function, the fundamental relationship expressed
by Bayes Theoremis

Prior Distribution x Likelihood

ior Distribution =
Posterior Distribution Marginal Distribution

The marginal distribution serves as a normalizing
constant.

In Bayesian updating, the sampling distribution of the

data provides new information about the parameter
value. Bayes Theorem provides a mathematical
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framework for processing new sample data as they
become sequentially availableover time. With the new
information, the uncertainty of the parameter value has
been reduced, but not eliminated. Bayes Theoremis
used to combinethe prior and sampling distributionsto
form the posterior distribution, which then describes
the updated state of knowledge (still intermsof subjec-
tive probability) about the parameter. Point and
interval estimates of the parameter can then be ob-
tained directly fromthe posterior distribution, whichis
viewed as containing the current knowledge about the
parameter. Thisposterior distribution can then be used
as the prior distribution when the next set of data
becomesavailable. Thus, Bayesian updatingissucces-
sively implemented using additional datain conjunction
with Bayes' Theorem to obtain successively better
posterior distributionsthat model plant-specific param-
eters.

Bayesian point andinterval estimatesare obtained from
both the prior and posterior distributions. Theinterval
estimates are subjective probability intervals, or
credibleintervals. Theterminology isnot yet univer-
sally standard. Berger (1985) and Bernardo and Smith
(2000) both use the term credible interval, but Box
and Tiao (1973) use Bayes probability interval,
Lindley (1965) uses Bayesian confidence interval,
and other authors have used other terms. A credible
interval can be interpreted as a subjective probability
statement about the parameter value, unlike classical
interval estimates. That is, the interpretation of a 95%
Bayesian posterior probability interval (a, b) is that,
with 95% subjective probability, the parameter is
contained in the interval (a, b), given the prior and
sampling distributions.

B.5.2 Point and Interval Estimates

Bayesian parameter estimation involves four steps.
Thefirst step isidentification of the parameter(s) to be
estimated, whichinvolvesconsideration of theassumed
distribution of the data that will be collected. The
second step is development of a prior distribution that
appropriately quantifies the state of knowledge con-
cerning the unknown parameter(s). The third step is
collection of thedatasample. Thefourthandfinal step
iscombining the prior distribution with the datasample
using Bayes' Theoremto produce the desired posterior
distribution.
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For PRA applications, determining the prior distribu-
tion is usually based on generic data and the data
sample usually involves site-specific or plant-specific
operating data. The resulting posterior distribution
would then be the site-specific or plant-specific distri-
bution of the parameter.

The plant-specific data collected are assumed to be a
random samplefroman assumed sampling distribution.
The data are used to update the prior, producing the
posterior distribution. Point estimates, such asthe most
likely value (the mode), the median, or (most com-
monly) the mean value, and probability interval esti-
mates of the parameter can then be obtained. Other
bounds and other point values can also be obtained
with the Bayesian approach because the posterior
parameter distribution isentirely known and represents
the available knowledge about the parameter.

Bayesian interval estimation is more direct than classi-
cal interval estimation and is based solely on the
posterior p.d.f.. A symmetric 100(1 - «)% two-sided
Bayes probability interval estimate of the parameter
iseasily obtained fromthe /2 and 1 - a/2 quantiles of
the posterior distribution. Lower and upper one-
sided Bayes probability interval estimates can
similarly be calculated. Again, note that the Bayes
interval estimatesare explicit probability statements of
the true parameter being contained in the interval.

In some applications, such as a planned facility, plant-
specific data do not exist. In these cases, Bayes
Theorem is not used. Only the generic data are used
and parameter estimates are based solely on the as-
sumed prior distribution. Investigation of the sensitiv-
ity of the results to the choice of the prior distribution
isimportant for these cases.

B.5.3 Prior Distributions

The prior distribution is fundamental to any Bayesian
analysis and represents all that is known or assumed
about the parameter & prior to collecting any data. The
information summarized by the prior distribution can
be objective, subjective, or both. Operational dataand
datafrom aprevious but comparabl e experiment could
beused asobjectivedata. Subjectiveinformationcould
involve personal experience and opinions, expert
judgement, assessments of degree of belief, and design
information.
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The selection of prior distributions can be seen to be
somewhat subjective. A particular prior must be
evaluated to determine the sensitivity of the choice of
that prior on the parameter estimates. Consistency of
the prior information and data with the prior distribu-
tion must be tested.

Choicesfor theinitia prior distribution and techniques
for handling various kinds of data are described in
detail in several references, such as Martz and Waller
(1991), Raiffaand Schlaifer (1961), and Siu and Kelly
(1998) .

B.5.3.1 Noninformative Prior Distributions

One class of prior distributions that is widely used is
termed noninformative priors, aso referred to as
priorsof ignorance, or r efer enceprior s(Bernardo and
Smith 1994). These namesrefer to the situation where
very little a priori information about a parameter is
available in comparison to the information expected to
be provided by the data sample, or thereisindifference
about the range of values the parameter could assume.

One might think that this indifference could be ex-
pressed by aprior distribution that isuniformly distrib-
uted over the interval of interest. Every valuein the
interval is equally likely and no knowledge about any
specific value over another value isimposed.

However, uniform distributions do not necessarily best
reflect true noninformativeness (Box and Tiao 1973),
because models can be parameterized in various ways.

For example, if thetimeto failure, T, is exponentialy
distributed, it is common to write the density of T as

f(t)= e ™

or aternatively as
1 _

fy=—e """
y7i

The two parameters are related by 4 = 1/p.

A uniform distribution cannot be said to automatically
reflect ignorance and be used as a standard
noninformative prior distribution. For the exponential
example here, ignorance of A implies ignorance of |,
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but A and p cannot both have auniformdistribution. In
fact, suppose that 4 has the uniform distribution in
some finite range, say fromato b. Then y has a
density proportional to 1/p? in the range from 1/b to
1/a, asstated in Appendix A.4.7. Thedistribution of u
is not uniform.

Jeffreys’ rule (Jeffreys 1961) is arule that guides the
choice of noninformative prior distributions and
provides the Jeffreys prior distribution (Box and Tiao,
1973). The Jeffreys prior distribution is commonly
used in PRA and involves using a specific parameteri-
zation of themodel (distribution). Jeffreys’ method is
totransformthe model into aparameterizationthatisin
terms of alocation parameter, a parameter that slides
the distribution sideways without changing its shape.
(See Box and Tiap 1978, Secs. 1.2.3 and 1.3.4). This
method then uses the uniform distribution as the
noninformative prior for the location parameter. Itis
reasonable to regard a uniform distribution as
noninformative for alocation parameter. The distribu-
tion for any other parameterization isthen determined,
and is called noninformative.

Intheexponential example, workingwithlog(time), let
6 =log(p), S=1log(T), and s=log(t). Using algebraic
formulas given in Section A.4.7 of Appendix A, it can
be shown that the density in this parameterization is

f(S) = exp(s- B)e =E-9

Because 6 only appears in the expression s - 6, a
change in @ simply dlides the distribution sideways
aongthe saxis. Therefore, 6 isalocation parameter.
The Jeffreysnoninformativeprior isauniformdistribu-
tion for . Thisdistribution translates to a density for
A which is proportional to 1/4, and a density for p
which is proportional to 1/u. These are the Jeffreys
noninformative prior distributionsfor A and .

A further argument for Jeffreys prior distributions is
that theresulting Bayesintervals are numerically equal
to confidence intervals (Lindley 1958), and the confi-
denceinterval sare based onthe dataalone, not on prior
belief. Unfortunately, the above approach cannot be
followed exactly when the data come from a discrete
distribution, such asbinomial or Poisson. Theoriginal
parameter can only approximately be converted to a
location parameter. The resulting distribution is still
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called the Jeffreys prior, however, even though it only
approximates the Jeffreys method.

To avoid the appearance of pulling prior distributions
out of theair, the general formulafor the Jeffreys prior
isstated here, asexplained by Box and Tiao (1973) and
many others. All the particular cases given in this
handbook can be found by working out the formulain
those cases. Let & denotethe unknown parameter to be
estimated. Let L(#; X) denote the likelihood corre-
sponding to asingle observation. Itisafunction of 4,
but it al so depends on the data, x. For example, xisthe
number of Poisson events in a single unit of time, or
the number of failures on a single demand, or the

length of asingle duration. Calculate
2

-—In[L(& X)] .

Now replace the number x by the random variable X,
and evaluate the expectation of the calculated deriva
tive:

2

0 0
EC- g7 L@ XL

0 de?

The Jeffreys noninformative prior is a function of &
proportional to the square root of this expectation.

B.5.3.2 Conjugate Prior Distributions

Itiscomputationally convenient if the prior isaconj u-
gateprior distribution. A conjugateprior distribution
isadistribution that results in a posterior distribution
that isamember of the same family of distributions as
the prior. The methodology for obtaining conjugate
priors is based on sufficient statistics and likelihood
functions (see Martz and Waller, 1991).

Thebetafamily of distributionsisthe conjugate family
of prior distributions for the probability of failure of a
component in a binomial sampling situation. The
resulting posterior betadistribution can then beused to
provide point and interval estimates of the failure
probability.

A time-to-failure random variable is often assumed to
follow an exponentia distribution, with the failure
events arising from a Poisson process. For this model,
with either exponential or Poisson data, the gamma
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family of distributionsis the conjugate family of prior
distributions for use in Bayesian reliability and failure
rate analyses.

Figure B.4 isaschematic diagram showing therelation
of the kinds of priorsthat have been mentioned so far.
There are very many nonconjugate priors. A relatively
small family of priors is conjugate, typically a single
type such as the gamma distributions or beta distribu-
tions. Finaly, the Jeffreys noninformative prior is a
single distribution, shown in the diagram by adot. In
many cases, the Jeffreys prior is also conjugate, as
indicated in the figure.

All priors

Conjugate
priors

Jeffreys prior

Figure B.4 Schematic diagram of types of priors.

A popular nonconjugate prior isthelognormal distribu-
tion. It can be used asaprior distribution for both the
binomial sampling and Poisson process models above,
athough it is not conjugate.

Conjugate prior distributions provide convenience, but
accurate modeling of prior degree of belief should not
be sacrificed for mathematical convenience. However,
when one expression of prior belief is viewed to be as
correct as another, the more convenient expression is
usually selected for use.

B.5.3.3 Other Prior Distribution Approaches

The prior distribution in Bayesian methods contains a
subj ectivenotion of probability sincethefrequenciesof
the values of the unknown parameter are seldom
known. The prior distribution is thus the distribution
of degree of belief before data that provide new infor-
mation areobtained. Usually, the prior probabilitiesdo
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not haveadirect frequency interpretation and cannot be
experimentally confirmed.

When the prior distribution does have a frequency
interpretation, the observed data can be used to esti-
mate the prior distribution. This situation represents
another class of methods of statistical inference called
empirical Bayes methods. The empirical Bayes prior
distribution is empirically determined, for example,
using observed plant-specific data for a given set of
plants. Bayes Theorem can then be applied to com-
binethis prior with observed data from a specific plant
to produce a posterior distribution. Thus, empirical
Bayes methods are useful when data from similar, but
not identical, sources exist. This situation also gives
risetotheuseof so-called hierar chical Bayesmethods
(see Gelman, et al., 1995, and Carlin and Louis, 1996).

Attempts have been made to remove some of the
subjectivity presentinsel ecting prior distributions, with
the goal being to obtain one distribution for the same
giveninformation. Thatis, different analystsusing the
same information would decide upon the same prior
distribution. The result has been development of the
method of maximum entropy. If ¢ is a parameter
with uncertainty distribution g, the entropy is defined
as

- [ 9(8)In[g(60]d6 .

The distribution g that maximizes this expression is
called the maximum entropy distribution. For finite
ranges, the p.d.f. with the largest entropy is the uni-
form, or flat, distribution. Thus, entropy can beviewed
as ameasure of the variability in the height of ap.d.f.,
and a maximum entropy prior would be the one with
the required mean that is as flat as possible. Siu and
Kelly (1998, Table 2) give the maximum entropy
distributions for a number of possible constraints.

Maximum entropy methods may see more use in the
future, but still do not produce asystematic approachto
selecting only one prior from a set of possible priors.
In fact, the same problem that the Jeffreys method
attemptsto address(Section B.5.3.1) ispresent with the
maximum entropy approach: the same maximum
entropy prior distribution cannot be used for different
parameterizations and parameters of the same model,
even though ignorance of each of the different parame-
tersisviewed as equal.
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To address this lack of invariance, constrained
noninfor mative priors are obtained. They are based
on the maximum entropy approach in conjunction with
Jeffreys’ method. That parameterization is used for
which the parameter is a location parameter. Giving
maximum entropy to this parameter produces a distri-
bution called the constrained noninformative prior
distribution. Atwood (1996) presents constrained
noninformative priors and their application to PRA.
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Constrained noninformative prior distributions are
seeing use in PRA, athough not as much as Jeffreys
priors.

Other ways of defining noninformative prior distribu-

tions exist. See Martz and Waller (1991) and Berger
(1985) for more information.

REVISION 0 Date: 11/27/02



DRAFT B. Basicsof Statistics

REFERENCES FOR APPENDIX B
Atwood, C. L., 1996, Constrained Noninformative Priorsin Risk Assessment, in Reliability Engineering and System
Safety, vol. 53, pp. 37-46.
Berger, J. O., 1985, Satistical Decision Theory and Bayesian Analysis, Second Edition, Springer-Verlag, New Y ork.
Bernardo, J. M., and A. F. M. Smith, 1994, Bayesian Theory, John Wiley & Sons, New Y ork.
Box, G. E. P., and G. C. Tiao, 1973, Bayesian Inference in Satistical Analysis. Addison-Wesley, Reading, MA.
Carlin,B.P.and T. A. Louis, 1996, Bayesand Empirical Bayes Methodsfor Data Analysis. Chapman & Hall, London.
Conover, W. J., 1999, Practical Nonparametric Satistics, 3rd ed. John Wiley & Sons, NY.
Encyclopedia of Satistical Sciences, 1982, vol. 1. John Wiley & Sons, NY.
Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin, 1995, Bayesian Data Analysis. Chapman & Hall, London.
Hogg, R. V. and A. T. Craig, 1995, Introduction to Mathematical Satistics. Macmillan, NY.
Jeffreys, H., 1961, Theory of Probability, Third Ed., Clarendon Press, Oxford, England.
Kendall, M. G. and A. Stuart, 1973, The Advanced Theory of Satistics, Vol. 2. Hafner, NY.

Lindley, D. V., 1958, Fiducia Distributions and Bayes' Theorem, in Journal of the Royal Satistical Society, SeriesB,
Voal. 20, pp. 102-107.

Lindley, D. V., 1965, Introductionto Probability and Statisticsfroma Bayesi an Viewpoint, Cambridge University Press,
Cambridge, UK.

Martz, H. F. and R. A. Waller, 1991, Bayesian Reliability Analysis. R. E. Krieger Publishing Co., Maabar, FL.

NRC, 1994, A Review of NRC Saff uses of Probabilistic Risk Assessment, NUREG-1489. U. S. Nuclear Regulatory
Commission, Washington, D.C.

Raiffa, H., and R Schlaifer, 1961, Applied Statistical Decision Theory, The M.1.T. Press, Cambridge, MA.
SAS, 1988, SAS Procedures Guide, Release 6.03 Edition, SAS Institute, Inc., Cary, NC.

Siu,N.,andD. Kelly, 1998, Bayesian Parameter Estimationin Probabilistic Risk Assessment, in Reliability Engineering
and System Safety, Vol. 62, pp. 89-116.

Snedecor, G. W., and W. G. Cochran, 1989, Statistical Methods, lowa State University Press, Ames, |A.

REVISION 0 Date: 11/27/02 B-17 DRAFT NUREG/CR-XXX



