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Figure A.1  Venn diagram, showing ten outcomes
and three events.

A.  BASICS OF PROBABILITY

A.1 Events

Any repeatable process for which the result is uncertain
can be considered an experiment, such as counting
failures over time or measuring time to failure of a
specific item of interest.  The result of one execution of
the experiment is referred to as an outcome.  Repeti-
tions or trials of a defined experiment would not be
expected to produce the same outcomes due to
uncertainty associated with the process.  The set of all
possible outcomes of an experiment is defined as the
sample space.

Sample spaces can contain discrete points (such as
pass, fail) or points in a continuum (such as measure-
ment of time to failure).  An event E is a specified set
of possible outcomes in a sample space S (denoted E �
S, where � denotes subset).

Most events of interest in practical situations are
compound events, formed by some composition of two
or more events.  Composition of events can occur
through the union, intersection, or complement of
events, or through some combination of these.

For two events, E1 and E2, in a sample space S, the
union of E1 and E2 is defined to be the event containing
all sample points in E1 or E2 or both, and is denoted by
the symbol (E1 � E2).  Thus, a union is simply the event
that either E1 or E2 or both E1 and E2 occur.

For two events, E1 and E2, in a sample space S, the
intersection of E1 and E2 is defined to be the event
containing all sample points that are in both E1 and E2,
denoted by the symbol (E1 � E2).  The intersection is
the event that both E1 and E2 occur.

Figure A.1 shows a symbolic picture, called a Venn
diagram, of some outcomes and events.  In this
example, the event E1 contains three outcomes, event
E2 contains five outcomes, the union contains seven
outcomes, and the intersection contains one outcome.

The complement of an event E is the collection of all
sample points in S and not in E.  The complement of E

is denoted by the symbol �E  and is the event that all the
outcomes in S that are not in E occur.

It is sometimes useful to speak of the empty or null
set, a set containing no outcomes.  In Figure A.1, the
event E3 is empty.  It cannot occur.

Two events, E1 and E2, are said to be mutually exclu-
sive if the event (E1 � E2) contains no outcomes in the
sample space S.  That is, the intersection of the two
events is the null set.  Mutually exclusive events are
also referred to as disjoint events.  Three or more
events are called mutually exclusive, or disjoint, if each
pair of events is mutually exclusive.  In other words, no
two events can happen together.

A.2 Basic Probability Concepts

Each of the outcomes in a sample space has a probabil-
ity associated with it.  Probabilities of outcomes are
seldom known; they are usually estimated from relative
frequencies with which the outcomes occur when the
experiment is repeated many times.  Once determined,
the probabilities must satisfy two requirements:

1. The probability of each outcome must be a
number � 0 and � 1.
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2. The probabilities of all outcomes in a given
sample space must sum to 1.

Associated with any event E of a sample space S is the
probability of the event, Pr(E).  Since an event
represents a particular set of outcomes of an experi-
ment, the values of Pr(E) are estimated from the
outcomes of the experiment.

Probabilities are associated with each outcome in the
sample space through a probability model.  Probabil-
ity models are often developed on the basis of informa-
tion derived from outcomes obtained from an experi-
ment.  Probability models are also formulated in the
context of mathematical functions. 
  
The values of Pr(E) estimated from the experimental
outcomes are often defined as being representative of
the long-run relative frequency for event E.  That is,
the relative frequency of an outcome will tend toward
some number between 0 and 1(inclusive) as the number
of repetitions of the experiment increases.  Thus, the
probability of the outcome is the number about which
the long-term relative frequency tends to stabilize.

This interpretation forms the basis of the relative
frequency definition of probability, also referred to
as the frequentist view of probability.  In the frequent-
ist view, a mathematical theory of probability is devel-
oped by deriving theorems based on the axioms of
probability given in the next subsection.  The probabil-
ity of an event is considered to be a fixed quantity,
either known or unknown, that is a property of the
physical object involved and that can be estimated from
data.  A theorem derived from the three axioms de-
scribes the frequentist view:

If an experiment is repeated a large number of times, n,
the observed relative frequency of occurrence, nE /n, of
the event E (where nE  = the number of repetitions when
event E occurred) will tend to stabilize at a constant,
Pr(E), referred to as the probability of E.

Another interpretation of probability leads to the so-
called classical definition of probability, which can
be stated as follows:

If an experiment can result in n equally likely and
mutually exclusive outcomes and if nE of these out-
comes contain attribute E, then the probability of E is
the ratio nE / n.

For example, if each of the outcomes in Figure A.1 had
equal probability, 0.1, then Pr(E1) = 0.3, Pr(E2) = 0.5,
Pr(E1�E2) = 0.1, Pr(E1�E2) = 0.7, and Pr(E3) = 0.

The classical definition also uses a set of axioms to
precisely define probability and is more rigorous and
logically consistent than the relative frequency defini-
tion.  However, this axiomatic definition is less intu-
itive than the relative frequency definition.  Since the
true probabilities associated with the sample space are
never known, the relative frequency definition is more
useful than the classical definition.  Both definitions,
though, provide a mathematical framework for  proba-
bility, an overview of which is addressed in Section
A.3.  Some texts, including parts of this handbook, use
the terms classical and frequentist interchangeably.

Another interpretation of probability is as a subjective
probability.  Probabilities obtained from the opinions
of people are examples of subjective probabilities.  In
this concept, probability can be thought of as a rational
measure of belief.  Any past information about the
problem being considered can be used to help associate
the various probabilities.  In particular, information
about the relative frequency of occurrence of an event
could influence the assignment of probabilities.

The notion of subjective probability is the basis for
Bayesian inference.  In contrast to the relative fre-
quency definition of probability that is based on
properties of events, subjective probability can be
extended to situations that cannot be repeated under
identical conditions.  However, the assignment of
subjective probabilities can be done according to
certain principles so that the frequency definition
requirements of probability are satisfied.  All the
mathematical axioms and theorems developed for
frequentist probability apply to subjective probability,
but their interpretation is different.

Martz and Waller, 1991, present subjective probability
as dealing  not only with events but with propositions.
A proposition is considered to be a collection of events
that cannot be conceived as a series of repetitions, for
example, a nuclear power plant meltdown.  The degree
of belief in proposition A, Pr(A), represents how
strongly A is believed to be true.  Thus, subjective
probability refers to the degree of belief in a proposi-
tion.  At the extremes, if A is believed to be true, Pr(A)
= 1; if A is believed to be false, Pr(A) = 0.  Points
between 0 and 1 represent intermediate beliefs between
false and true.
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A.3 Basic Rules and Principles of
Probability

The relative frequency, classical, and subjective
probability definitions of probability satisfy the follow-
ing axiomatic requirements of probability:

If Pr(E) is defined for a type of subset of the sample
space S, and if

1. Pr(E) � 0, for every event E,
2. Pr(E1 � E2 � � � �) = Pr(E1) + Pr(E2) + � � � ,

where the events E1, E2, . . . , are such that no
two have a point in common, and

3. Pr(S) = 1,

then Pr(E) is called a probability function.

A probability function specifies how the probability is
distributed over various subsets E of a sample space S.
From this definition, several rules of probability follow
that provide additional properties of a probability
function.

The probability of an impossible event (the empty or
null set) is zero, written as:

Pr(�) = 0,

where � is the null set.  The probability of the comple-
ment of E is given by:

Pr(�E) = 1 � Pr(E).

In general, the probability of the union of any two
events is given by:

Pr(E1 � E2) = Pr(E1) + Pr(E2) � Pr(E1 � E2).

If E1 and E2 are mutually exclusive, then Pr(E1 � E2) =
Pr(�) = 0, and

Pr(E1 � E2) = Pr(E1) + Pr(E2),

which is a special case of the second axiom of proba-
bility stated above and is sometimes referred to as the
addition rule for probabilities.

For three events,

Pr(E1 � E2 � E3) = Pr(E1) + Pr(E2) + Pr(E3)
� Pr(E1 � E2) � Pr(E1 � E3)
� Pr(E2 � E3) + Pr(E1 � E2 � E3 ).

This rule is also referred to as the inclusion-exclusion
principle and can be generalized to n events.  It is
widely used in PRA to calculate the probability of an
“or” gate (a union of events) in a fault tree (NRC
1994).

The inclusion-exclusion principle also provides useful
upper and lower bounds on the probability of the union
of n events that are not mutually exclusive.  One such
upper bound, referred to as the rare event approxima-
tion, is:

Pr(E1 � E2 � ... � En) � Pr(E1) + Pr(E2) + ... + Pr(En).

The rare event approximation should only be used
when the probabilities of the n events are all very small
(NRC 1994).  If the n events are mutually exclusive,
the error is zero.  An approximation of the percent error
is n2 max [Pr(Ei)], which is valid regardless of the
independence of events (NRC 1994).  The error in the
approximation arises from the remaining terms in the
full expansion of the left-hand side of the inequality.
This approximation is frequently used in accident
sequence quantification.

Many experimental situations arise in which outcomes
are classified by two or more events occurring simulta-
neously.  The simultaneous occurrence of two or more
events (the intersection of events) is called a joint
event, and its probability is called a joint probability.
Thus, the joint probability of both events E1 and E2

occurring simultaneously is denoted by Pr(E1 � E2).

The probability associated with one event, irrespective
of the outcomes for the other events, can be obtained
by summing all the joint probabilities associated with
all the outcomes for the other events, and is referred to
as a marginal probability.  A marginal probability is
therefore the unconditional probability of an event,
unconditioned on the occurrence of any other event.

Two events E1 and E2 are often related in such a way
that the probability of occurrence of one depends on
whether the other has or has not occurred.  The condi-
tional probability of one event, given that the other
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has occurred, is equal to the joint probability of the two
events divided by the marginal probability of the given
event.  Thus, the conditional probability of event E2,
given event E1 has occurred, denoted Pr(E2	E1), is
defined as:

Pr(E2	E1) = Pr(E1 � E2) / Pr(E1), (A.1)

for Pr(E1) > 0.  If Pr(E1) = 0, Pr(E2	E1) is undefined.

Rearranging this equation yields:

Pr(E1 � E2) = Pr(E1) Pr(E2	E1)
(A.2)

= Pr(E2) Pr(E1	E2).

Calculation of joint probability requires the concept of
statistical independence.  Two events E1 and E2 are
statistically independent if the probability of one event
does not change whenever the other event occurs or
does not occur.  Thus, E2 is independent of E1 if

Pr(E2	E1) = Pr(E2).

If E2 is independent of E1, then E1 is independent of E2.
It follows that events E1 and E2 are independent if their
joint probability is equal to the product of the uncondi-
tional, or marginal, probabilities of the events: 

Pr(E1 � E2) = Pr(E1) Pr(E2),

which is sometimes referred to as the multiplication
rule for probabilities.  If Pr(E1) varies depending on
whether or not event E2 has occurred, then events E1

and E2 are said to be statistically dependent.

If E1, E2, ... are mutually exclusive, and if the union of
E1, E2, ... equals the entire sample space, then the
events  E1, E2, ... are said to form a partition of the
sample space.  Exactly one of the events must occur,
not more than one but exactly one.  In this case, the law
of total probability says

Pr(A) = 
Pr(A |Ei) Pr(Ei) .

A special case can be written when there are only two
sets.  In this case, write E1 simply as E and E2 as �E .  

Then the law of total probability simplifies to

Pr(A) = Pr(A	E)Pr(E) + Pr(A	�E  )Pr(�E  )  

for any event A.  This formula is the basis for event
trees, which are frequently used to diagram the possi-
bilities in an accident sequence. 

The concepts of mutually exclusive events and statisti-
cally independent events are often confused.  If E1 and
E2 are mutually exclusive events and Pr(E1) and Pr(E2)
are nonzero, Pr(E1 � E2) = Pr(�) = 0.  From Equation
A.1, Pr(E2	E1) = 0, which does not equal Pr(E2).  Thus,
the two events are not independent.  Mutually exclusive
events cannot be independent and vice versa.

Equation A.2 can be used to calculate the probability of
the intersection of a set of events (the probability that
all the events occur simultaneously).  For two events E1

and E2, the probability of simultaneous occurrence of
the events is equal to the probability of E1 times the
probability of E2 given that E1 has already occurred.  In
general, the probability of the simultaneous occurrence
of n events can be written as:

Pr(E1 � E2 � ... � En) =

Pr(E1) Pr(E2	E1) Pr(E3	E2 � E1) ... Pr(En	En-1 � ... � E1),

which is referred to as the chain rule.  This rule can be
used to calculate the probability that a given accident
sequence occurs, with E1 denoting the initiating event
and the remaining events corresponding to the failure
or success of the systems that must function in order to
mitigate such an accident.

The probability of occurrence of at least one of a set of
statistically independent events yields a result that is
important to PRA and fault tree applications.  If E1, E2,
..., En are statistically independent events, the probabil-
ity that at least one of the n events occurs is:

Pr(E1 � E2 � ... � En) = (A.3)

1 � [1 � (Pr(E1)][1 � (Pr(E2)] ... [1 � (Pr(En)],

which is equivalent (with expansion) to using the
inclusion-exclusion rule.  For the simple case where
Pr(E1) = Pr(E2) = ... = Pr(En) = p, the right-hand side of
this expression reduces to 1 � (1 � p)n.

The general result in Equation A.3 has application in
PRA and fault tree analysis.  For example, for a system
in which system failure occurs if any one of n inde-
pendent events occurs, the probability of system failure
is given by Equation A.3.  These events could be
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failures of critical system components.  In general, the
events represent the modes by which system failure
(the top event of the fault tree) can occur.  These modes
are referred to as the minimal cut sets of the fault tree
and, if independent of each other (no minimal cut sets
have common component failures), Equation A.3
applies. [See Vesely et al. (1981) for further discussion
of fault trees and minimal cut sets.]

If the n events are not independent, the right-hand side
of Equation A.3 may be greater than or less than the
left-hand side.  However, for an important situation that
frequently arises in PRA, the right-hand side of Equa-
tion A.3 forms an upper bound for the left-hand side.

If the n events are cut sets that are positively associated
(see Esary and Proschan 1970, 1963), then the right-
hand side is an upper bound for Pr(E1 � E2 � ... � En)
and is known as the min cut upper bound (NRC
1994).  This name arises from common PRA applica-
tions where Ei is the ith minimal cut set of a system or
accident sequence of interest.  In this case, the min cut
upper bound is superior to the rare event approximation
and can never exceed unity (as can happen with the rare
event approximation).  If the n events satisfy conditions
similar to those of the rare event approximation, the
min cut set upper bound is a useful approximation to
the left hand side of Equation A.3.  Note that the min
cut upper bound is not applicable for mutually exclu-
sive events.

A.4 Random Variables and 
Probability Distributions

A.4.1 Random Variables

A random variable is any rule that associates real
numbers with the outcomes of an experiment.  If the
numbers associated with the outcomes of an experi-
ment are all distinct and countable, the corresponding
random variable is called a discrete random variable.

If the sample space contains an infinite number of
outcomes (like those contained in any interval), the
random variable is continuous.  Time T is a common
continuous random variable, for example, time to
failure or time between failures, where the random
variable T can assume any value over the range 0 to �.

A.4.2 Probability Distributions

A probability function (introduced at the beginning of
section A.3) associates a probability with each possible
value of a random variable and, thus, describes the
distribution of probability for the random variable.  For
a discrete random variable, this function is referred to
as a discrete probability distribution function
(p.d.f.).  A discrete p.d.f., commonly denoted by f, is
also referred to as a discrete distribution, or discrete
probability mass function.

If x denotes a value that the discrete random variable X
can assume, the probability distribution function is
often denoted Pr(x).  The notation used here is that a
random variable is denoted by an upper case letter and
an observed value (a number or outcome) of the
random variable is denoted by a lower case letter.  The
sum of the probabilities over all the possible values of
x must be 1.  Certain discrete random variables have
wide application and have therefore been defined and
given specific names.  The two most commonly used
discrete random variables in PRA applications are the
binomial and Poisson random variables, which are
presented in section A.6.

A continuously distributed random variable has a
density function, a nonnegative integrable function,
with the area between the graph of the function and the
horizontal axis equal to 1.  This density function is also
referred to as the continuous probability distribution
function (p.d.f.).  If x denotes a value that the continu-
ous random variable X can assume, the p.d.f. is often
denoted as f(x).  The probability that X takes a value in
a region A is the integral of f(x) over A.  In particular,

Pr( ) ( )a X b f x dx
a

b

≤ ≤ = ∫
and

Pr(x � X � x + x) � f(x) x (A.4)

for small x.

The most commonly used continuous distributions in
PRA are the lognormal, exponential, gamma, and
beta distributions.  Section A.7 summarizes the essen-
tial facts about these distributions, and also about less
common but occasionally required distributions:
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uniform, normal, Weibull, chi-squared, inverted
gamma, logistic-normal, and Student’s t.

A.4.3 Cumulative Distribution Functions

Discrete probability distributions provide point proba-
bilities for discrete random variables and continuous
p.d.f.s provide point densities for continuous random
variables.  A related function useful in probability and
PRA is the cumulative distribution function (c.d.f.).
This function is defined as the probability that the
random variable assumes values less than or equal to
the specific value x, and is denoted F(x).

For a discrete random variable X, with outcomes xi, and
the corresponding probabilities Pr(xi), F(x) is the sum
of the probabilities of all xi � x.  That is,

.F x X x xi

x xi

( ) =  Pr(  ≤ ) =
≤

∑ Pr( )

For a continuous random variable X, F(x) is the area
beneath the p.d.f. f(x) up to x.  That is, F(x) is the
integral of f(x):

F(x) = Pr(X � x) = .f y dy
x

( )
−∞
∫

Thus, f(x) is the derivative of F(x).  If X takes on only
positive values, the limits of integration are 0 to x.
Note that, because F(x) is a probability, 0 � F(x) � 1.
If X ranges from -� to +�, then

F(-�) = 0 and F(+�) = 1.

If X has a restricted range, with a and b being the lower
and upper limits of X respectively, a < X < b, then

F(a) = 0 and F(b) = 1.

Also, F(x) is a nondecreasing function of x, that is,

if x2 > x1, F(x2) � F(x1).

Another important property of F(x) is that

Pr(x1 < X � x2) = F(x2) � F(x1)

for discrete random variables and

Pr(x1 � X � x2) = F(x2) � F(x1)

for continuous random variables.

An example of a p.d.f. and the associated c.d.f. for a
continuous distribution is shown in Figure A.2.

Figure A.2  Probability density function (p.d.f.) and
cumulative distribution function (c.d.f.).

A.4.4 Reliability and Hazard Functions

A.4.4.1. Definitions

There are also characterizations that have special
interpretations for time-to-failure distributions.  Let T
denote the random time to failure of a system.  The
reliability function of a system is defined as

R(t) = Pr(T > t) .

Hence, R(t), called the reliability at time t, is the
probability that the system does not fail in the time
interval (0, t] or equivalently, the probability that the
system is still operating at time t.  (This discussion uses
the notation (a, b] to mean the set of times > a and � b,
but the distinction between < and � is a mathematical
fine point, not important in practice.)  The reliability
function is also sometimes called the survival func-
tion.  It is equal to 1 � F(t).

When used as a reliability criterion, it is common to
state a time, say t0, called the mission time, and require
for a system that the reliability at mission time t0 be at
least some prescribed level, say R0.  For example, a
pump might be required to operate successfully for at
least 12 hours with probability at least 0.95.  The
requirement in this case is R0 = 0.95 and t0 = 12.  In
terms of the reliability function, this would mean R(12)
� 0.95.  One interpretation would be that such a pump
would perform for the required mission time for 95%
of the situations when it is called on to do so.  Another
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interpretation is that 95% of all such pumps would
perform as required.

Consider a system that operates for a particular mission
time, unless it fails.  If it fails, no immediate repairs are
attempted, so some authors call the system
nonrepairable.  A common way to characterize this
system’s reliability is in terms of the hazard function.
Suppose that the system is still operating at time t, and
consider the probability that it will fail in a small
interval of time (t, t + t].  This is the conditional
probability Pr(t < T � t + t 	 T > t).   The hazard
function, h, is defined so that when t is small,

h(t) t � Pr(t < T � t + t 	 T > t)  . (A.5)

This function is also encountered, under the name of ,
in some treatments of Poisson processes.  Equation A.5
gives, approximately,

h t t
t T t t

T t

f t t

R t

( )
Pr( )

Pr( )

( )

( )

∆
∆

∆

≈
< ≤ +

>

≈

This is the basis for the formal definition of h:

h t
f t

R t
( )

( )

( )
=

For details, see Bain and Engelhardt (1992, p. 541).
Equation A.5 is analogous to Equation A.4, except that
the probability in Equation A.5 is conditional on the
system having survived until t, whereas Equation A.4
refers to all systems in the original population, either
still surviving or not.  Suppose a large number, say N,
of identical systems are put into operation at time t = 0,
and n is the number which fail in the interval (t, t + t].
It follows that f(t) t � n/N, the observed relative
frequency of systems failed in the interval (t, t + t].
On the other hand, if Nt denotes the number of the
original N systems which are still in operation at time
t, then h(t) t � n/Nt, the observed relative frequency of
surviving systems which fail in this same interval.
Thus, f(t) is a measure of the risk of failing at time t for
any system in the original set, whereas h(t) is a measure
of the risk of failing at time t, but only for systems that
have survived this long.

The hazard function is used as a measure of “aging” for
systems in the population.  If h(t) is an increasing
function, then systems are aging or wearing out with
time.  Of course, in general the hazard function can
exhibit many types of behavior other than increasing
with time, and other possible behaviors are discussed
later in this handbook.  In actuarial science the hazard
function is called the force of mortality, and it is used
as a measure of aging for individuals in a population.
More generally, the hazard function gives an indication
of “proneness to failure” of a system after time t has
elapsed.  Other terms which are also used instead of
hazard function are hazard rate and failure rate.  The
term failure rate is often used in other ways in the
literature of reliability (see Ascher and Feingold 1984,
p. 19). 

A.4.4.2 Relations among p.d.f., Reliability, and
Hazard

Any one of the functions F, f, R, and h completely
characterizes the distribution, and uniquely determines
the other three functions.  The definition

h t
f t

R t
( )

( )

( )
=

was given above.  The right hand side can be written as
the derivative of �ln[R(t)], leading to

( ) ( )R t h u du H t
t

( ) exp ( ) exp ( )= = −− ∫0

where the function H(t) is called the cumulative
hazard function.  The reliability function, R(t), and the
c.d.f., F(t) = 1 � R(t), are therefore uniquely deter-
mined by the hazard function, h(t), and the p.d.f. can be
expressed as

.( )f t h t h u du
t

( ) ( ) exp ( )= − ∫0

Figure A.3 shows the reliability, hazard and the cumu-
lative hazard function for the example of Figure A.2.
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Figure A.3  The reliability function, hazard function
and cumulative hazard function.

The hazard function in Figure A.3 is an increasing
function of time.  Therefore, it would be consistent
with systems with a dominant wear-out effect for the
entire life of the system.  The lifetime of a system may
be divided into three typical intervals: the burn-in or
infant period, the random or chance failure period
and the wear-out period.  During the useful period, the
dominant cause of failures is “random” failures.  For
example, systems might fail due to external causes such
as power surges or other environmental factors rather
than problems attributable to the defects or wear-out in
the systems.  This example is somewhat idealized
because for many types of systems the hazard function
will tend to increase slowly during the later stages of
the chance failure period.  This is particularly true of
mechanical systems.  On the other hand, for many
electrical components such as transistors and other
solid-state devices, the hazard function remains fairly
flat once the burn-in failure period is over.

A.4.5 Joint, Marginal, and Conditional
Distributions

Many statistical methods are based on selecting a
sample of size n from a probability distribution f(x).
Such a sample is denoted by

(X1 = x1, X2 = x2, ..., Xn = xn) = (x1, x2, ..., xn),

where x1, x2, ..., xn are the actual values of the random
variable X which has the distribution f(x).

The concepts of simultaneous events and joint, mar-
ginal, and conditional  probability, discussed in Section
A.3, also pertain to random variables and probability
distributions.  Two random variables X1 and X2 (both
continuous, both discrete, or one of each) can have a
joint distribution, or joint p.d.f., denoted f(x1, x2).  The
point (x1, x2) can be thought of as a point in two-dimen-
sional Euclidean space.  Similarly, n random variables
have joint distribution f(x1, x2, ..., xn).  Also, the n
random variables have joint cumulative distribution
F(x1, x2, ..., xn).

The marginal distribution of Xi is defined as the joint
p.d.f. integrated (for continuous random variables) or
summed (for discrete random variables) over the n�1
other corresponding dimensions, resulting in a function
of xi alone.  Thus, the marginal distribution of Xi is the
unconditional p.d.f. of Xi, fi(xi).

The conditional distribution of X1 given X2, denoted
g(x1 | x2), is defined by

,g(x x )
f(x , x )

f (x )
 1 2

1 2

2 2

 =  

where f2(x2) 
 0, and can be shown to satisfy the
requirements of a probability function.  Sampling from
a conditional p.d.f. would produce only those values of
X1 that could occur for a given value of X2 = x2.  The
concept of a conditional distribution also extends to n
random variables.

Two random variables X1 and X2 are independent if
their joint p.d.f. is equal to the product of the two
individual p.d.f.s.  That is,

f(x1, x2) = f(x1) f(x2).

In general, X1, X2, ..., Xn are independent random
variables if

f(x1, x2, ..., xn) = f(x1) � f(x2) � . . . � f(xn).

A.4.6 Characterizing Random Variables
and their Distributions

A.4.6.1 Distribution Characteristics

Probability distributions have many characteristics of
interest, some of which are described by distribution
parameters.  The term parameter is used to refer to a
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Figure A.5  Cumulative distribution function (c.d.f.)
showing quartiles, median, and mean.
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Figure A.4  Density, showing quartiles, median, and
mean.

fixed characteristic.  In contrast to a statistic, which
changes from sample to sample, a parameter for a
particular distribution is a constant and does not
change.  However, when a parameter’s value is not
known, sample statistics can be used to estimate the
parameter value.  Parameter estimation is discussed in
Appendix B.

A very useful distribution characteristic is the
parameter that serves as a measure of central tendency,
which can be viewed as a measure of the middle of a
distribution.  When a change in the parameter slides the
distribution sideways, as with the mean of a normal
distribution, the parameter is referred to as the location
parameter.  It serves to locate the distribution along
the horizontal axis.  Sometimes, however, a change in
the parameter squeezes or stretches the distribution
toward or away from zero, as with the mean of the
exponential distribution.  In that case, the parameter is
a scale parameter.

In any case, the most common measure of central
tendency is the mean, �, of the distribution, which is a
weighted average of the outcomes, with the weights
being probabilities of outcomes.  For a discrete random
variable X,

.µ X i i

i

x x= ∑ Pr( )

For a continuous random variable X,

.µ X x f x dx=
−∞

∞

∫ ( )

Another distribution characteristic commonly used as
a measure of central tendency, or location, is the
median, which is the point along the horizontal axis for
which 50% of the area under the p.d.f. lies to its left
and the other 50% to its right.  The median of a random
variable, X, is commonly designated med(X) or x.50 and,
for a continuous distribution, is the value for which
Pr(X � x.50) = .50 and Pr(X � x.50) = .50.  In terms of the
cumulative distribution, F(x.50) = .50.  The median is a
specific case of the general 100 th percentile, x , for
which F(x ) = .  When the factor of 100 is dropped, x
is called the  quantile.  Along with the median as the
50th percentile (or equivalently, the 0.5 quantile), the

25th and 75th percentiles are referred to as quartiles of
a distribution.

Figure A.4 shows the quartiles, x0.25 and x0.75, the
median, x0.50, and the mean.  The quartiles and the
median divide the area under the density curve into
four pieces, each with the same area.  Note that the
mean is greater than the median in this example, which
is the usual relation when the density has a long right
tail, as this one does.

Figure A.5 shows the same quantities plotted with the
c.d.f.  By definition, the q quantile, xq, satisfies F(xq)
= q.

The mean and the median are used to measure the
center or location of a distribution.  Since the median is
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less affected by tail-area probabilities, it can be viewed
as a better measure of location than the mean for
highly-skewed distributions.  For symmetric distribu-
tions, the mean and median are equivalent.

 A different measure of center or location of a distribu-
tion is the mode, which indicates the most probable
outcome of a distribution.  The mode is the point along
the horizontal axis where the “peak” or maximum of
the p.d.f. is located.  Note that the mode does not
necessarily have to be near the middle of the distribu-
tion.  It simply indicates the most likely value of a
distribution.  Note also that a peak does not have to
exist and, in some cases, more than one peak can exist.

Another important characteristic of a distribution is its
variance, denoted by 2.  The variance is the average
of the squared deviations from the mean.  The stan-
dard deviation, , of a distribution is the square root
of its variance.  Both the variance and standard devia-
tion are measures of a distribution’s spread or disper-
sion.  For a discrete random variable X,

.σ µX i i

i

x x2 2= −∑ ( Pr( ))

For a continuous random variable X,

.σ µX x f x dx2 2= −
−∞

∞

∫ ( ) ( )

Though less used than the mean and variance, the
skewness is defined as

E(X � µ)3/ 3 .

It measures asymmetry.  It is usually positive if the
density has a longer right tail than left tail, and negative
if the density has a longer left tail than right tail.  For
example, the density in Figure A.4 has positive skew-
ness.

A.4.6.2 Mathematical Expectation

The definitions of distribution means and variances
arise from mathematical expectation and moments of
a distribution, which form an important method for
calculating the parameters of a known p.d.f.  In general,
the expectation (expected value or mathematical
expectation) of a function g(X), denoted E[g(X)], is

,E g X g x xi i

i

[ ( )] ( ) Pr( )= ∑

when X is discrete, and

,E g X g x f x dx[ ( )] ( ) ( )=
−∞

∞

∫

when X is continuous.

Because of their wide use, several expectations have
special names.  For g(X) = X, the expectation E(X)
becomes the mean of X.  Thus, the mean is also com-
monly referred to as the expected value (or expectation)
of the random variable X.  In addition, for g(X) = X, the
expectation E(X) is known as the first moment about
the origin.

The variance, X
2, also denoted by Var(X), of a distribu-

tion is defined by  mathematical expectation with g(X)
= (X � µX)2.  Thus,

Var(X) = X
2 = E[(X � µX)2] = E(X 2) � [E(X)]2,

which is known as the second moment about the
mean.

Ordinary moments (moments about the origin) of a
random variable X are defined as

Mr = E(Xr),

for r = 1, 2, ... .  Thus,

Var(X) = X
2 = E(X 2) � [E(X)]2 = M2 � M1

2.

Central moments (moments about the mean) of a
random variable X are defined as being equal to E[(X �
µ)r] for r = 2, 3, ... .  The ordinary and central moments
can be seen to define characteristics of distributions of
random variables.

An important rule of expectation commonly used in
PRA is that the expected value of a product of inde-
pendent random variables is the product of their
respective expected values.  That is, E(X1·X2· ... ·Xn) =
E(X1)·E(X2)· ... ·E(Xn) when all Xi are independent.
This rule also applies to conditionally independent
random variables.  If the random variables X2, X3, ..., Xn

are all conditionally independent given X1 = x1, then
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f(x2, x3, ..., xn	x1) = f(x2	x1)·f(x3	x1)· ... ·f(xn	x1).

It follows that 

E(X2·X3· ... ·Xn	x1) =E(X2	x1)·E(X3	x1)· ... ·E(Xn	x1).

Thus,

E(X1·X2· ... ·Xn) = E[X1·E(X2	x1)·E(X3	x1)· ... ·E(Xn	x1)].

A.4.6.3 Moment-Generating Functions

Another special mathematical expectation is the
moment-generating function of a random variable.
For a random variable X with p.d.f. f(x), the moment-
generating function of X (or of the distribution) is
defined by M(t) = E(etX), if M exists for some interval
-h < t < h.  Therefore, if X is a continuous random
variable,

.M t e f x dxtx( ) ( )=
−∞

∞

∫

If X is a discrete random variable,

.M t e f xtx
i

i

i( ) ( )= ∑

Note that not every distribution has a moment-generat-
ing function.

The importance of the moment-generating function is
that, when it does exist, it is unique and completely
specifies the distribution of the random variable.  If two
random variables have the same moment-generating
function, they have the same distribution.

It can be shown that the moments of a distribution can
be found from the series expansion of M(t).  The
moments of the distribution can also be determined
from the moment-generating function by differentiating
the moment-generating function with respect to t and
setting t = 0.  See Martz and Waller (1991) and any of
several mathematical statistics texts, such as Hogg and
Craig (1995), for further details on moment-generating
functions.

A.4.6.4 Covariance and Correlation

For two random variables, X and Y, with means µx and
µy, the expected value E[(X � µx)(Y � µy)] is called the
covariance of X and Y, denoted Cov(X, Y).  The
covariance of X and Y divided by the product of the
standard deviations of X and Y is called the correlation
coefficient (or correlation) between X and Y, denoted
Cor(X, Y).  That is,

Cor
Cov

Var Var
( , )

( , )

( ) ( )
X Y

X Y

X Y
=

=
− −

− −
E X E Y

E X E Y
X Y

X Y

( ) ( )

[( ) ] [( ) ]

µ µ
µ µ2 2

 .

The correlation coefficient measures the degree of
association between X and Y, that is, the strength of a
linear relationship between X and Y.

A.4.7 Distribution of a Transformed 
Random Variable

This section considers the distribution of Y = h(X),
when X has a known distribution and h is a known
function.  The problem is straightforward when X has
a discrete distribution.  When X is continuous and h is
monotone, either increasing or decreasing, the c.d.f.s
are also related in the natural way, as follows.  Let F be
the c.d.f. of X and let G be the c.d.f. of Y.  Then we
have
G(y) = Pr(Y � y) = Pr[h(X) � y] .
If h is monotone increasing, this equals
Pr[X � h-1(y)] = F(x),
where x and y are related by y = h(x), x = h-1(y).  In
summary, G(y) = F(x).

If, instead, h is monotone decreasing, then a similar
argument gives
G(y) = 1 � F(x) .

The surprise comes with the densities.  Differentiate
both sides of either of the above equations with respect
to y, to obtain the density of y.  This involves using the
chain rule for differentiation.  The result is
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 .g y f x
dx

dy
( ) ( )=

That is, the density of Y is not simply equal to the
density of X with a different argument.  There is also a
multiplier, the absolute value of the derivative.  If Y =
exp(X), then

g(y) = f[ln(y)](1/y)  .

If Y = 1/X, then

g(y) = f(1/y)(1/y2) .

The formulas here are the basis for the densities of the
lognormal distribution and the inverted gamma distri-
bution.

A.5 Bayes’ Theorem

It is frequently desired to calculate the probability of an
event A given that another event B has occurred at
some prior point in time.  It can also be of interest to
calculate the probability that a state of nature exists
given that a certain sample is observed, for example,
belonging to a certain population based on a sample
measurement or observation.  Conditional probability
leads directly to Bayes’ Theorem, which, along with
subjective probability, forms the basis for Bayesian
inference commonly used in PRA.

Bayes’ Theorem states that: if A1, A2, ..., An are a
sequence of disjoint events and if B is any other event
such that Pr(B) > 0, then

, (A.6)Pr(
Pr( Pr(

Pr(
A B

B A A

B
i

i i) = ) )

)

where

.Pr( Pr( (B B A Aj j

j

n

) =
=

∑ ) Pr )
1

Equation A.6 follows from the definition of conditional
probability in Equation A.2:

.Pr(
Pr(

Pr(

Pr( Pr(

Pr(
A B

B A

B

B A A

Bi
i i i) =  

∩ )
=

)
)

)

)

The Pr(Ai	B) is the posterior (or a posteriori) probabil-
ity for the event Ai, meaning the probability of Ai once
B is known.  The Pr(Ai) is the prior (or a priori)
probability of the event Ai before experimentation or
observation.  The event B is the observation.  The
Pr(B	Ai) is the probability of the observation given that
Ai is true.  The denominator serves as a normalizing
constant.

Calculating the posterior probabilities Pr(Ai	B) requires
knowledge of the probabilities Pr(Ai) and Pr(B	Ai), i =
1, 2, ..., n.  The probability of an event can often be
determined if the population is known, thus, the
Pr(B	Ai) can be determined.  However, the Pr(Ai), i = 1,
2, ..., n, are the probabilities that certain states of nature
exist and are either unknown or difficult to ascertain.
These probabilities, Pr(Ai), are called prior probabilities
for the events Ai because they specify the distribution
of the states of nature prior to conducting the experi-
ment.

Application of Bayes’ Theorem utilizes the fact that
Pr(B	Ai) is easier to calculate than Pr(Ai	B).  If proba-
bility is viewed as degree of belief, then the prior belief
is changed, by the test evidence, to a posterior degree
of belief.  In many situations, some knowledge of the
prior probabilities for the events A1, A2, ..., An exists.
Using this prior information, inferring which of the set
A1, A2, ..., An, is the true population can be achieved by
calculating the Pr(Ai	B) and selecting the population
that produces the highest probability.

Equation A.6 pertains to disjoint discrete events and
discrete probability distributions.  Bayes’ Theorem has
analogous results for continuous p.d.f.’s.  Suppose X is
a continuous random variable, with p.d.f. depending on
parameter , and with conditional p.d.f. of X, given ,
specified by f(x	 ).  Consider  to be a possible value
of the random variable  (using the convention of
denoting random variables with uppercase letters).  If
the prior p.d.f. of  is denoted g( ), then for every x
such that f(x) > 0 exists, the posterior p.d.f. of , given
X = x, is

,g x
f x g

f x
( )

( ) ( )

( )
θ

θ θ
=

where

f x f x g d( ) ( ) ( )= ∫ θ θ θ
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is the marginal p.d.f. of X.  Again, the prior and poste-
rior p.d.f.’s can be used to represent the knowledge and
beliefs about the likelihood of various values of a
random variable  prior to and posterior to observing
a value of another random variable X.

A.6 Discrete Random Variables

A.6.1 The Binomial Distribution

The binomial distribution describes the number of
failures X in n independent trials.  The  random variable
X has a binomial distribution if:

1. The number of random trials is one or more
and is known in advance.

2. Each trial results in one of two outcomes,
usually called success and failure (or could be
pass-fail, hit-miss, defective-nondefective,
etc.).

3. The outcomes for each trial are statistically
independent.

4. The probability of failure, p, is constant
across trials.

Equal to the number of failures in the n trials, a bino-
mial random variable X can take on any integer value
from 0 to n.  The probability associated with each of
these possible outcomes, x, is defined by the bino-
mial(n, p) p.d.f. as

Pr( ) ( )

... , .

,X x
n

x
p p

x n

x n x= = −

=







−1

0,

Here

 
n

x
n

x n x







 =

−
!

!( )!

is the binomial coefficient and

n! = n(n �1)(n �2) ... (2)(1)

denotes n factorial, with 0! defined to be equal to 1.
This binomial coefficient provides the number of ways
that exactly x failures can occur in n trials (number of
combinations of n trials selected x at a time).

The binomial distribution has two parameters, n and p,
of which n is known.  (Although n may not always be
known exactly, it is treated as known in this handbook.)

The mean and variance of a binomial(n, p) random
variable X are

E(X) = np

and

Var(X) = np(1 � p).

Figure A.6 shows three binomial probability distribu-
tion functions, with parameter p = 0.25, and n = 4, 12,
and 40.  In each case, the mean is np.  The means have
been aligned in the three plots.

A.6.2 The Poisson Distribution

The Poisson distribution provides a discrete probability
model that is appropriate for many random phenomena
that involve counts.  Examples are counts per fixed
time interval of the number of items that fail, the
number of customers arriving for service, and the
number of telephone calls occurring.  A common use of
the Poisson distribution is to describe the behavior of
many rare event occurrences.  The Poisson distribution
is also frequently used in applications to describe the
occurrence of system or component failures under
steady-state conditions.

The count  phenomena that occur as Poisson random
variables are not necessarily restricted to occurring
over a time interval.  They could also be counts of
things occurring in some region, such as defects on a
surface or within a certain material.  A process that
leads to a Poisson random variable is said to be a
Poisson process.
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Figure A.6  Three binomial probability distribution
functions.

The Poisson distribution describes the total number of
events occurring in some interval of time t (or space).
The p.d.f. of a Poisson random variable X, with param-
eter µ = t, is

(A.7)

for x = 0, 1, 2, ..., and x! = x(x � 1)(x � 2) ... (2)(1), as
defined previously.

The Poisson distribution has a single parameter µ,
denoted Poisson(µ).  If X denotes the number of events
that occur during some time period of length t, then X
is often assumed to have a Poisson distribution with
parameter µ = t.  In this case, X is considered to be a
Poisson process with intensity  > 0 (Martz and Waller
1991).  The variable  is also referred to as the event
rate (or failure rate when the events are failures).
Note that  has units 1/time; thus, t = µ  is
dimensionless.

If only the total number of occurrences for a single time
period t is of interest, the form of the p.d.f. in Equation
A.7 using µ is simpler.  If the event rate, , or various
time periods, t, are of interest, the form of the p.d.f. in
Equation A.7 using t is more useful.

The expected number of events occurring in the inter-
val 0 to t is µ = t.  Thus, the mean of the Poisson
distribution is equal to the parameter of the distribution,
which is why µ is often used to represent the parameter.
The variance of the Poisson distribution is also equal to
the parameter of the distribution.  Therefore, for a
Poisson(µ) random variable X,

E(X) = Var(X) = µ = t.

Figure A.7 shows three Poisson probability distribution
functions, with means µ = 1.0, 3.0, and 10.0, respec-
tively.  The three means have been aligned in the
graphs.  Note the similarity between the Poisson
distribution and the binomial distribution when µ = np
and n is not too small.

Several conditions are assumed to hold for a Poisson
process that produces a Poisson random variable:

1. For small intervals, the probability of exactly
one occurrence is approximately proportional
to the length of the interval (where , the
event rate or intensity, is the constant of
proportionality).

2. For small intervals, the probability of more
than one occurrence is essentially equal to
zero (see below).

3. The numbers of occurrences in two non-
overlapping intervals are statistically inde-
pendent.
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Figure A.7  Three Poisson probability distribution
functions.

More precise versions of condition 2 are:  (1) the
probability of more than one event occurring in a very
short time interval is negligible in comparison to the
probability that only one event occurs (Meyer 1970),
(2) the probability of more than one event occurring in
a very short time interval goes to zero faster than the
length of the interval (Pfeiffer and Schum 1973), and
(3) simultaneous events occur only with probability
zero (Çinlar 1975).  All of these versions have the
practical interpretation that common cause events do

not occur.  The phrase “do not occur” is used in this
handbook, as it is in Thompson (1981).

The Poisson distribution also can serve as an approxi-
mation to the binomial distribution.  Poisson random
variables can be viewed as resulting from an experi-
ment involving a large number of trials, n, that each
have a small probability of occurrence, p, of an event.
However, the rare occurrence is offset by the large
number of trials.  As stated above, the binomial distri-
bution gives the probability that an occurrence will take
place exactly x times in n trials.  If p = µ/n (so that p is
small for large n), and n is large, the binomial probabil-
ity that the rare occurrence will take place exactly x
times is closely approximated by the Poisson distribu-
tion with µ = np.  In general, the approximation is good
for large n, small p, and moderate µ (say µ � 20) (see
Derman et al. 1973).

The Poisson distribution is important because it de-
scribes the behavior of many rare event occurrences,
regardless of their underlying physical process.  It also
has many applications to describing the occurrences of
system and component failures under steady-state
conditions.  These applications utilize the relationship
between the Poisson and exponential (continuous
random variable, see Section A.7.4) distributions:  the
times between successive events follow an exponential
distribution.

A.7 Continuous Random Variables

A.7.1 The Uniform Distribution

A uniform distribution, also referred to as a rectangu-
lar distribution, represents the situation where any
value in a specified interval, say [a, b], is equally likely.
For a uniform random variable, X, because the out-
comes are equally likely, f(x) is equal to a constant.
The p.d.f. of a uniform distribution with parameters a
and b, denoted uniform(a, b) is

f x
b a

( ) =
−
1

for a � x � b.
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Figure A.8  Density of uniform(a, b) distribution.

Figure A.9  Two normal densities.

Figure A.8 shows the density of the uniform(a, b)
distribution.

The mean and variance of a uniform(a, b) distribution
are

E X
b a

( ) = +
2

and

Var( )
( )

.X
b a= − 2

12

A.7.2 The Normal Distribution

One of the most widely encountered continuous proba-
bility distributions is the normal distribution, which
has the familiar bell shape and is symmetrical about its
mean value.  The importance of the normal distribution
is due to:  (1) its applicability in describing a very large
number of random variables that occur in nature and
(2) the fact that certain useful functions of nonnormal
random variables are approximately normal.  Details on
the derivation of the normal distribution can be found
in many basic mathematical statistics textbooks (e.g.,
Hogg and Craig 1995).

The normal distribution is characterized by two param-
eters, µ and .  For a random variable, X, that is nor-
mally distributed with parameters µ and , the p.d.f. of
X is

(A.8)f x
x

( ) exp= − −















1

2

1

2

2

σ π
µ

σ

for �� < x < �, �� < µ < �, and  > 0.  Increasing µ
moves the density curve to the right and increasing 
spreads the density curve out to the right and left while

lowering the peak of the curve.  The units of µ and 
are the same as for X.

The mean and variance of a normal distribution with
parameters µ and  are

E(X) = µ

and

Var(X) = 2.

The normal distribution is denoted normal(µ, 2).

Figure A.9 shows two normal(µ, 2) densities.  The
distribution is largest at µ and is more concentrated
around µ when  is small than when  is large.

Note the similarity of the normal density to a binomial
p.d.f. with large np or a Poisson p.d.f. with large µ.
This illustrates the fact that a normal distribution can
sometimes be used to approximate those distributions.

The normal(0, 1) distribution is called the standard
normal distribution, which, from Equation A.8, has
p.d.f.

(A.9)φ
π

( ) expx
x= −





1

2 2

2

for �� < x < �.  The cumulative distribution of the
standard normal distribution is denoted by .  Tables
for the standard normal distribution are presented in
Appendix C and in almost all books on statistics.

It can be shown that the transformed random variable
Z = (X � µ)/  is normal(0, 1).  Thus, to calculate
probabilities for a normal(µ, 2) random variable, X,
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when µ 
 0 and/or 2 
 1, the tables for the standard
normal can be used.  Specifically, for any number a,

Pr[ X � a ] =  Pr[ (X � µ)/  � (a �µ)/  ]

=  Pr[ Z � (a � µ)/  ]

=  [ (a � µ)/  ] .

Part of the importance of the normal distribution is that
it is the distribution that sample sums and sample
means tend to possess as n becomes sufficiently large.
This result is known as the central limit theorem,
which states that, if X1, X2, ..., Xn, are independent
random variables, each with mean µ and variance 2,
the sum of these n random variables, �iXi, tends toward
a normal(nµ, n 2) distribution for large enough n.
Since the sample mean is a linear combination of this

sum, the central limit theorem also applies.  Thus, X
= �iXi/n tends to a normal(µ, 2/n) distribution.  The
importance of the central limit theorem is it can be used
to provide approximate probability information for the
sample sums and sample means of random variables
whose distributions are unknown.  Further, because
many natural phenomena consist of a sum of several
random contributors, the normal distribution is used in
many broad applications.

Because a binomial random variable is a sum, it tends
to the normal distribution as n gets large.  Thus, the
normal distribution can be used as an approximation
to the binomial distribution.  One rule of thumb is
that the approximation is adequate for np � 5.

A Poisson random variable also represents a sum and,
as presented previously, can also be used as an approxi-
mation to the binomial distribution.  It follows that the
normal distribution can serve as an approximation to
the Poisson distribution when µ  = t is large.  One
rule of thumb is that the approximation is adequate for
µ � 5.

A.7.3 The Lognormal Distribution

Use of the lognormal distribution has become in-
creasingly widespread.  It is commonly used as a
distribution for failure time and in maintainability
analysis (Martz and Waller 1991).  It has also been

widely used as a prior distribution for unknown posi-
tive parameters.

The lognormal distribution arises from the product of
many independent random variables.  If Y = Y1�Y2� ... �Yn

=�iYi is the product of n independent positive random
variables that are (nearly) identically distributed, then
ln(Y) = ln(�iYi) = �iln(Yi) is a sum that tends toward a
normal distribution.

The distribution of Y is defined to be lognormal when
the distribution of ln(Y) is normal.  That is, when Y is
lognormal, ln(Y) is normal(µ, 2).  The parameters of
the lognormal distribution are µ and , the parameters
from the underlying normal distribution.  For a random
variable, Y, that is lognormally distributed with parame-
ters µ and , denoted lognormal(µ, 2), the p.d.f. of Y is

( )f y
y

y( ) exp ln= − −





1

2

1

2 2

2

σ π σ
µ

for 0 < y < �, �� < µ < �, and  > 0.  Note the y in the
denominator, for reasons explained in Section A.4.7.
The mean and variance of a lognormal(µ, 2) distribu-
tion are

E(Y) = exp(µ + 2/2)

and

Var(Y) = exp(2µ + 2)[exp( 2) � 1].

In addition, the median of a lognormal distribution is
exp(µ) and the mode is exp(µ� 2).  See Martz and
Waller (1991) for more information on the lognormal
distribution.

Sometimes the median of Y = exp(µ) is used as a
parameter.  In addition, a parameter commonly used in
PRA is the error factor (EF), where EF = exp(1.645 ),
and is defined as

Pr[med(Y)/EF � Y � med(Y)*EF] = 0.90.

Figure A.10 shows three lognormal densities.  The
value µ = �7 corresponds to a median of about 1.E�3.
[More exactly, it corresponds to exp(�7) = 9.E�4.]
The value µ = �6.5 corresponds to a median of about
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Figure A.10  Three lognormal densities.
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Figure A.11  Two exponential densities.

1.5E�3.  The value  = 0.67 corresponds to an error
factor EF = 3, and  = 1.4 corresponds to an error
factor EF = 10.

The two distributions with  = 0.67 and different values
of µ have essentially the same shape, but with different
scales.  The larger µ corresponds to spreading the
distribution out more from zero.  The distribution with
 = 1.4, and therefore EF = 10, has a very skewed

distribution.

To calculate probabilities for a lognormal(µ, 2) ran-
dom variable, Y,  the tables for the standard normal can
be used.  Specifically, for any number b,

Pr[ Y � b ] =  Pr[ ln(Y) � ln(b) ]

=  Pr[ X � ln(b) ]

=  [ (ln(b) � µ)/  ] ,

where X = ln(Y) is normal(µ, 2).

A.7.4 The Exponential Distribution

The exponential distribution is widely used for
modeling time to failure and is inherently associated
with the Poisson process (see Martz and Waller 1991).
For a Poisson random variable X defining the number
of failures in a time interval t and for a random variable
T defining the time to failure, it can be shown that T
has the exponential p.d.f.

f(t) = e! t,

for t > 0.  Thus, the time to first failure and the times
between successive failures follow an exponential
distribution and the number of failures in a fixed time
interval follows a Poisson distribution.

Figure A.11 shows two exponential densities, for two
values of  .  The intercept (height of the curve when t
= 0) equals  .  Thus, the figure shows that the distribu-
tion is more concentrated near zero if  is large.  This
agrees with the interpretation of  as a frequency of
failures and t as time to first failure.

The exponential distribution parameter, , corresponds
to the t parameterization of the Poisson p.d.f. in
Equation A.7. and is referred to as the failure rate if
the component or system is repaired and restarted
immediately after each failure.  It is called the hazard
rate if the component or system can only fail once and
cannot be repaired.  Section 4.6.2 discusses modeling
duration times with different distributions and defines
the hazard rate as h(t) = f(t)/[1 � F(t)].  For the expo-
nential distribution, the hazard rate is constant, .

The c.d.f. of the exponential distribution is

F(t) = 1 � e! t.

The exponential distribution with parameter  is
denoted exponential( ). The mean and variance of an
exponential( ) distribution are

E(T) = 1/

and

Var(T) = 1/ 2.
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The relationship of the exponential distribution to the
Poisson process can be seen by observing that the
probability of no failures before time t can be viewed
in two ways.  First, the number of failures, X, can be
counted.  The probability that the count is equal to 0 is
given by Equation A.7 as 

 .Pr( )
( )

!
X e

t
et t= = =− −0

0

0
λ λλ

Alternatively, the probability that first failure time, T,
is greater than t is

Pr(T > t)  = 1 � Pr(T � t)
 = 1 � F(t)
 = 1 � [1 � e! t]
 =  e! t.

Thus, the two approaches give the same expression for
the probability of no failures before time t.

The assumptions of a Poisson process require a con-
stant failure rate,  , which can be interpreted to mean
that the failure process has no memory (Martz and
Waller 1991).  Thus, if a device is still functioning at
time t, it remains as good as new and its remaining life
has the same exponential( ) distribution.  This constant
failure rate corresponds to the flat part of the common
“bathtub” failure curve (number of failures plotted
against time) and does not pertain to initial (burn-in)
failures and wear-out failures.

A different, sometimes useful, parameterization uses µ
= 1/  = E(T).  For example, if T represents a time to
failure, µ is called the mean time to failure.  If T is the
time to repair, or to fire suppression, or to some other
event, the name for µ  is the mean time to repair, or
other appropriate name.  The exponential(µ) distribu-
tion for T has density

f(t) = (1/µ)exp(�t/µ), for t � 0

and c.d.f.

F(t) = 1 � exp(�t/µ), for t  � 0 .

The units of µ are the same as the units of t, minutes or
hours or whatever the data have.  The mean and vari-
ance are

E(T) = µ
var(T) = µ2 .

A.7.5 The Weibull Distribution

The Weibull distribution is widely used in reliability
and PRA and generalizes the exponential distribution
to include nonconstant failure or hazard rates (Martz
and Waller 1991).  Different Weibull distributions have
been successfully used to describe initial failures and
wear-out failures.  The Weibull distribution is appropri-
ate when a system is composed of a number of compo-
nents, and system failure is due to any one of the
components failing.  It, therefore, is commonly referred
to as a distribution corresponding to failure of the
weakest link.

For a random variable, T, that has a Weibull distribu-
tion, the p.d.f. is

,f t
t t

( ) exp= −
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for t �  � 0 and parameters  > 0 and  > 0.  The
parameter  is a location parameter and corresponds to
a period of guaranteed life that is not present in many
applications (Martz and Waller 1991).  Thus,  is
usually set to zero.  The c.d.f. for T is

,F t
t

( ) exp= − − −
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

1
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for t �  and  > 0 and  > 0.

The  parameter is a scale parameter that expands or
contracts the density along the horizontal axis.  The 
parameter is a shape parameter that allows for a wide
variety of distribution shapes [see Martz and Waller
(1991) for further discussion and examples].  When 
= 1, the distribution reduces to the exponential distribu-
tion.  Therefore, the Weibull family of distributions
includes the exponential family of distributions as a
special case.

A Weibull distribution with parameters , , and  is
referred to as Weibull( , , ) and, when  = 0,
Weibull( , ).  The mean and variance of the Weibull
distribution are given by Martz and Waller (1991) as
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Figure A.12  Four Weibull densities, all having  = 0
and all having the same .

 + (1 + 1/ )

and

2[ (1 + 2/ ) � 2(1 + 1/ ) .

Here,  is the gamma function, defined in Sec. A.7.6.

Figure A.12 shows four Weibull densities, all with the
same scale parameter, , and all with location parame-
ter  = 0.  The shape parameter, , varies.  When  < 1,
the density becomes infinite at the origin.  When  = 1,
the distribution is identical to the exponential distribu-
tion.  Surprisingly, the distribution is not asymptotically
normal as  becomes large, although it is approximately
normal when  is near 3.

A.7.6 The Gamma and Chi-Squared
Distributions

The gamma distribution is an extension of the expo-
nential distribution and is sometimes used as a failure
time model (Martz and Waller, 1991).  It is also often
used as a prior distribution in Bayesian estimation (see
Appendix B) of the failure rate parameter  from
Poisson( t) or exponential( ) data.  The chi-squared
distribution is a re-expression of a special case of the
gamma distribution.

The gamma distribution arises in many ways.  The
distribution of the sum of independent exponential( )
random variables is gamma, which forms the basis for
a confidence interval for  from exponential( ) data.
Because the sum of n independent exponentially
distributed random variables has a gamma distribution,
the gamma distribution is often used as the distribution

of the time, or waiting time, to the nth event in a
Poisson process.  In addition, the chi-squared distribu-
tion is the distribution for a sum of squares of inde-
pendent, identically distributed normal random vari-
ables, which forms the basis for a confidence interval
for the variance of a normal distribution.  The gamma
distribution is also often used as a distribution for a
positive random variable, similar to the lognormal and
Weibull distributions.  In PRA work, it is often used as
a Bayesian distribution for an uncertain positive
parameter.

Two parameterizations of the gamma distribution are
common, with various letters used for the parameters.
The parameterization given here is most useful for
Bayesian updates, the primary use of the gamma
distribution in this handbook.  For a random variable,
T, that has a gamma distribution, the p.d.f. is

,f t t t
a

( )
( )

exp( )= −−β
α βα

Γ
1

for t, , and  > 0.  Here

Γ ( )α α= − −∞

∫ x e dxx1

0

is the gamma function evaluated at .  If  is a posi-
tive integer, ( ) = (  � 1)!.

A gamma distribution with parameters  and  is
referred to as gamma( , ).  The mean and variance of
the gamma( , ) random variable, T, are:

E(T) = /

and

Var(T) = /  2.

The parameters  and  are referred to as the shape and
scale parameters.  The shape parameter  allows the
density to have many forms.  If  is near zero, the
distribution is highly skewed.  For  = 1, the gamma
distribution reduces to an exponential( !1) distribution.
Also, the gamma(  = n/2,  = ½) distribution is known
as the chi-squared distribution with n degrees of
freedom, denoted 2(n).  The p.d.f. for the 2(n) distri-
bution is found by substituting these values into the
above formula for the gamma p.d.f.  It also can be
found in many statistics texts (e.g., Hogg and Craig
1995, Chapter 4).
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Figure A.13  Gamma densities with four shape param-
eters.

In addition, if T has a gamma( , ) distribution, then
2 T has a 2(2 ) distribution, which forms the defining
relationship between the two distributions.  The gamma
and chi-squared distributions can, therefore, be viewed
as two ways of expressing one distribution.  Since the
chi-squared distribution usually is only allowed to have
integer degrees of freedom, the gamma distribution can
be thought of as an interpolation of the chi-squared
distribution.

Percentiles of the chi-squared distribution are tabulated
in Appendix C.  These tables can be used as follows to
find the percentiles of any gamma distribution.  The
100×p percentile of a gamma( , ) distribution is

2
p(2 )/(2 ), where 2

p(2 ) denotes the 100×p percen-
tile of the chi-squared distribution with 2  degrees of
freedom.

Figure A.13 shows gamma densities with four shape
parameters, .  When  < 1, the density becomes
infinite at 0.  When  = 1, the density is identical to an
exponential density.  When  is large, the distribution
is approximately a normal distribution.

As stated previously, the sum of exponential lifetimes
or waiting times has a gamma distribution, with the
shape parameter  equal to the number of exponential
lifetimes.  Thus, when  is large, the gamma distribu-
tion is approximately normal.

An alternative parameterization of the gamma distribu-
tion uses the scale parameter, say  = !1.  If T has a
gamma( , ) distribution, its p.d.f. is

f t t t( )
( )

exp( / )= −−1
1

τ α
τα

α

Γ

for t, , and  > 0.  The mean and variance of the
gamma( , ) random variable, T, are:

E(T) =

and

Var(T) = 2.

This alternative parameterization is useful in a very
small portion of this handbook.

A.7.7 The Inverted Gamma and Inverted
Chi-Squared Distributions

The inverted gamma distribution is often used as a
prior distribution for Bayesian estimation of the time to
failure of an exponential( ) distribution (Martz and
Waller 1991).  It is also used as a prior and posterior
distribution for 2 when the data have a normal distri-
bution with variance 2 (Box and Tiao 1973, Lee
1997).

For a gamma( ,  ) random variable, T, W = 1/T has an
inverted gamma distribution with p.d.f.

 ,f w
w w

( )
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βα α
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1 1

for w, , and  > 0.  The parameters here are the same
as for the gamma distribution.  For example, if T has
units of time then w and  both have units 1/time.  A
comparison of this density with the gamma density
shows that this density has an extra w2 in the denomi-
nator, for reasons explained in Section A.4.7.

The parameters of the inverted gamma distribution are
 and  and this distribution is denoted inverted

gamma( , ).  Similar to the gamma( , ) distribution,
 is the shape parameter and  is the scale parameter.
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Figure A.14  Four inverted gamma densities, having
the same scale parameter, , and various shape
parameters, .

The distribution can also be parameterized in terms of
 = !1.

The mean and variance of an inverted gamma( , )
random variable, W, are

,  > 1,E W( ) =
−
β

α 1
and

,  > 2.Var( )
( ) ( )

W =
− −

β
α α

2

21 2

Note that, for  � 1, the mean and higher moments do
not exist and, for 1 <  � 2, the mean exists but the
variance does not exist (Martz and Waller, 1991).

Figure A.14 shows four inverted gamma distributions,
all having the same scale parameter, , and having
various shape parameters, .

In the special case with  = n/2 and  = ½, the distribu-
tion is called the inverted chi-squared distribution
with n degrees of freedom.  Values from this distribu-
tion are sometimes denoted !2(n).  This form of the
distribution is often used in connection with a prior for

2 when the data are normally distributed.

A.7.8 The Beta Distribution

Many continuous quantitative phenomena take on
values that are bounded by known numbers a and b.
Examples are percentages, proportions, ratios, and
distance to failure points on items under stress.  The
beta distribution is a versatile family of distributions

that is useful for modeling phenomena that can range
from 0 to 1 and, through a transformation, from a to b.

The beta distribution family includes the uniform
distribution and density shapes that range from decreas-
ing to uni-modal right-skewed to symmetric to U-
shaped to uni-modal left-skewed to increasing (Martz
and Waller 1991).  It can serve as a model for a reli-
ability variable that represents the probability that a
system or component lasts at least t units of time.  The
beta distribution is also widely used in Bayesian
estimation and reliability analysis as a prior distribution
for the binomial distribution parameter p that represents
a reliability or failure probability.

The p.d.f. of a beta random variable, Y, is

,f y y y( )
( )
( ) ( )

( )= + −− −Γ
Γ Γ

α β
α β

α β1 11

for 0 � y � 1, with the parameters ,  > 0, and is
denoted beta( , ).  The gamma functions at the front
of the p.d.f. form a normalizing constant so that the
density integrates to 1.

The mean and variance of the beta( , ) random
variable, Y, are

E Y( ) =
+
α

α β

and

.Var( )
( ) ( )

Y =
+ + +

αβ
α β α β2 1

Various beta distributions are shown in Figures A.15
and A.16.  Figure A.15 shows beta densities with  =

, and therefore with mean 0.5.  When  < 1, the
density becomes infinite at 0.0, and when  < 1, the
density becomes infinite at 1.0.  When  =  = 1, the
density is uniform.  When  and  are large, the density
is approximately normal.
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Figure A.16 Four beta distributions with mean 0.1.

Figure A.15  Beta distributions with mean = 0.5.

Figure A.16 shows densities with mean 0.1.  Again,
when  < 1, the density becomes infinite at 0.0, and
when  > 1, the density is zero at 0.0.  As the parame-
ters  and  become large, the density approaches a
normal distribution.

Another parameterization of the beta distribution uses
the parameters x0 =  and n0 =  + . This parameteri-
zation is used by Martz and Waller (1991) because it
simplifies Bayes formulas and Bayesian estimation.
The p.d.f. of a beta(x0, n0) is

,f y
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x n x
y yx n x( )
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for 0 � y � 1, with the parameters x0 and n0 satisfying

n0 > x0 > 0.

The mean and variance of the beta(x0, n0) random
variable, Y, are
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Percentiles of the beta distribution occur in the formula
for a confidence interval for p, and in the formula for a
Bayes credible interval for p when a conjugate prior is
used.  Some percentiles are tabulated in Appendix C.
In addition, many software packages, including some
commonly used spreadsheets, can calculate these
percentiles.  If none of these work, Martz and Waller
(1991) give a method for finding the beta percentiles
from the corresponding percentiles of an F distribution.
The F distribution is tabulated in most statistics books,
and can be interpolated if necessary with good accu-
racy.  The relation is

betaq(�, �) = � / [� + �F1 ! q(2�, 2�)]

for small q, and 

betaq(�, �) = �Fq(2�, 2�) / [� + � Fq(2�, 2�)]

for large q.  Here betaq(�, �) denotes the q quantile, or
the 100×q percentile, of the beta(�, �) distribution, and
Fq(d1, d2) denotes the q quantile of an F distribution
with d1 and d2 degrees of freedom.  So if all else fails,
and a statistics book with F tables is nearby, the first
formula can be used to find the lower percentile of the
beta distribution and the second formula can be used to
find the upper percentile.  This method is not discussed
further here, because it is not expected to be needed
often. 

A.7.9 The Logistic-Normal Distribution

While not widely used in PRA, this distribution is
commonly used for Bayesian inference in other fields
of application, especially as a prior for the binomial
parameter p when p could plausibly be fairly large. X
has a logistic-normal distribution if ln[X/(1 � X)] is
normally distributed with some mean µ and variance 2.
The function ln[X/(1 � X)] may appear strange, but it is
common enough in some areas of application to have a
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Figure A.17  Three logistic-normal densities with
median = 0.5.
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Figure A.18  Three logistic-normal densities with
median = 0.1.

name, the logit function.  Therefore, the above state-
ments could be rewritten to say that X has a logistic-
normal distribution if logit(X) is normally distributed.

Properties of the logistic-normal distribution are
summarized here.

• Let y = ln[x/(1 � x)].  Then x = ey / (1 + ey).
This implies that x must be between 0 and 1.

• As x increases from 0 to 1, y = ln[x/(1 � x)]
increases monotonically from �� to +�.
Thus, y can be generated from a normal distri-
bution with no problem of going outside the
possible range.

• The monotonic relation between x and y
means that the percentiles match.  For exam-
ple, the 95th percentile of Y is  µ + 1.645 .
Denote this by y0.95.  Therefore, the 95th
percentile of X is 
x0.95 = exp( x0.95) / [1 + exp( x0.95)].
Alternatively, this can be written as
y0.95 = ln[x0.95 / (1 � x0.95 )] .

• If X is close to 0 with high probability, so that
X/(1 � X) is close to X with high probability,
then the logistic-normal and lognormal distri-
butions are nearly the same.

The third bullet shows how to find the percentiles of a
logistic-normal distribution.  Unfortunately there is no
equally easy way to find the moments, such as the mean
or variance.  Moments must be found using numerical
integration.

Figure A.17 shows several logistic normal distributions
that all have median 0.5.  These correspond to a nor-
mally distributed y with mean µ = 0 and with various
values of .  Figure A.18 shows several logistic normal
distributions that all have median 0.1.  These corre-
spond to a normally distributed y with mean µ = �2.2
= ln[0.1/(1 � 0.1)].

Note the general similarities to the beta distributions in
Figures A.15 and A.16.  Note also the differences:
Logistic-normal distributions are characterized most
easily by percentiles, whereas beta distributions are
characterized most easily by moments.  Also, the beta
densities can be J-shaped or U-shaped, but the logistic-
normal densities always drop to zero at the ends of the
range.

A.7.10  Student’s t Distribution

The Student’s t distribution is not used in a central
way in PRA.  However, it appears in a peripheral way
in places in this handbook, when dealing with the
parameters of a normal or lognormal distribution, or in
large-sample situations when a distribution is approx-
imated as normal or lognormal.  Therefore, the basic
facts are summarized here.

If Z has a standard normal distribution, X has a chi-
squared distribution with d degrees of freedom, and Z

and X are statistically independent, then

T
Z

X d
=

/
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has a Student’s t distribution with d degrees of free-
dom.  Therefore, T has a distribution that is symmetri-
cal about 0, and it can take values in the entire real line.
If d is large, the denominator is close to 1 with high
probability, and T has approximately a standard normal
distribution.  If d is smaller, the denominator adds extra
variability, and the extreme percentiles of T are farther
out than are the corresponding normal percentiles.
Tables of the distribution are given in Appendix C.

Although not needed for ordinary work, the p.d.f. and

first two moments of T are given here.  (See many
standard texts, such DeGroot 1975.)  The p.d.f. is

 .[ ]f t
d

d d
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1 2

2
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If d > 1 the mean is 0.  If d > 2 the variance is d/(d�2).
If d � 2 the variance does not exist.  If d = 1, even the
mean does not exist; in this case the distribution is
called a Cauchy distribution.
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