A. BASICSOF PROBABILITY

A.1 Events

Any repeatable processfor whichtheresultisuncertain
can be considered an experiment, such as counting
failures over time or measuring time to failure of a
specificitemof interest. Theresult of oneexecution of
the experiment is referred to as an outcome. Repeti-
tions or trials of a defined experiment would not be
expected to produce the same outcomes due to
uncertainty associated with the process. The set of all
possible outcomes of an experiment is defined as the
sample space.

Sample spaces can contain discrete points (such as
pass, fail) or pointsin a continuum (such as measure-
ment of timeto failure). Anevent E isaspecified set
of possible outcomesin asample space S(denoted E <
S where c denotes subset).

Most events of interest in practical situations are
compound events, formed by some composition of two
or more events. Composition of events can occur
through the union, intersection, or complement of
events, or through some combination of these.

For two events, E, and E,, in a sample space S the
union of E; and E, isdefined to bethe event containing
all sample pointsin E, or E, or both, and is denoted by
thesymbol (E, u E,). Thus, aunionissimply the event
that either E, or E, or both E; and E, occur.

For two events, E; and E,, in a sample space S the
intersection of E, and E, is defined to be the event
containing all sample pointsthat are in both E, and E,,
denoted by the symbol (E; n E,). The intersection is
the event that both E; and E, occur.

Figure A.1 shows a symbolic picture, called a Venn
diagram, of some outcomes and events. In this
example, the event E, contains three outcomes, event
E, contains five outcomes, the union contains seven
outcomes, and the intersection contains one outcome.

The complement of an event E is the collection of all
sample pointsin Sand not in E. The complement of E
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Figure A.1 Venn diagram, showing ten outcomes
and three events.

is denoted by the symbol E and is the event that al the
outcomesin Sthat are not in E occur.

It is sometimes useful to speak of the empty or null
Set, a set containing no outcomes. In Figure A.1, the
event E; isempty. It cannot occur.

Two events, E, and E,, are said to be mutually exclu-
siveif the event (E, n E,) contains ho outcomesin the
sample space S. That is, the intersection of the two
events is the null set. Mutually exclusive events are
aso referred to as digoint events. Three or more
eventsarecalled mutually exclusive, or disjoint, if each
pair of eventsismutually exclusive. In other words, no
two events can happen together.

A.2 Basic Probability Concepts

Each of the outcomesin asample space has aprobabil -
ity associated with it. Probabilities of outcomes are
seldomknown; they areusually estimated fromrelative
frequencies with which the outcomes occur when the
experiment is repeated many times. Once determined,
the probabilities must satisfy two requirements:

1 The probability of each outcome must be a
number > 0and < 1.
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2. The probabilities of al outcomesin a given
sample space must sumto 1.

Associated with any event E of asample space Sisthe
probability of the event, Pr(E). Since an event
represents a particular set of outcomes of an experi-
ment, the values of Pr(E) are estimated from the
outcomes of the experiment.

Probabilities are associated with each outcome in the
sampl e space through a probability model. Probabil-
ity models are of ten devel oped on the basisof informa-
tion derived from outcomes obtained from an experi-
ment. Probability models are also formulated in the
context of mathematical functions.

The values of Pr(E) estimated from the experimental
outcomes are often defined as being representative of
the long-run relative frequency for event E. That is,
the relative frequency of an outcome will tend toward
some number between 0 and 1(inclusive) asthe number
of repetitions of the experiment increases. Thus, the
probability of the outcome is the number about which
the long-term relative frequency tends to stabilize.

This interpretation forms the basis of the relative
frequency definition of probability, also referred to
asthefrequentist view of probability. Inthefrequent-
ist view, amathematical theory of probability is devel-
oped by deriving theorems based on the axioms of
probability givenin the next subsection. The probabil-
ity of an event is considered to be a fixed quantity,
either known or unknown, that is a property of the
physical objectinvolved and that can be estimated from
data. A theorem derived from the three axioms de-
scribes the frequentist view:

If an experiment isrepeated alarge number of times, n,
the observed rel ative frequency of occurrence, ne /n, of
theevent E (wheren = the number of repetitionswhen
event E occurred) will tend to stabilize at a constant,
Pr(E), referred to as the probability of E.

Another interpretation of probability leads to the so-
called classical definition of probability, which can
be stated as follows:

If an experiment can result in n equally likely and
mutually exclusive outcomes and if ng of these out-
comes contain attribute E, then the probability of E is
theratio ng / n.
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For example, if each of the outcomesin Figure A.1 had
equal probability, 0.1, then Pr(E,) = 0.3, Pr(E,) = 0.5,
Pr(E,nE,) = 0.1, Pr(E,uE,) = 0.7, and Pr(E;) = 0.

The classical definition also uses a set of axioms to
precisely define probability and is more rigorous and
logically consistent than the relative frequency defini-
tion. However, this axiomatic definition is less intu-
itive than the relative frequency definition. Since the
true probabilities associated with the sample space are
never known, the relative frequency definition ismore
useful than the classical definition. Both definitions,
though, provide a mathematical framework for proba-
bility, an overview of which is addressed in Section
A.3. Sometexts, including parts of this handbook, use
theterms classical and frequentist interchangeably.

Another interpretation of probability isasasubjective
probability. Probabilities obtained from the opinions
of people are examples of subjective probabilities. In
this concept, probability can be thought of asarational
measure of belief. Any past information about the
problem being considered can be used to hel p associate
the various probabilities. In particular, information
about the relative frequency of occurrence of an event
could influence the assignment of probabilities.

The notion of subjective probability is the basis for
Bayesian inference. In contrast to the relative fre-
quency definition of probability that is based on
properties of events, subjective probability can be
extended to situations that cannot be repeated under
identical conditions. However, the assignment of
subjective probabilities can be done according to
certain principles so that the frequency definition
requirements of probability are satisfied. All the
mathematical axioms and theorems developed for
frequentist probability apply to subjective probability,
but their interpretation is different.

Martz and Waller, 1991, present subj ective probability
as dealing not only with events but with propositions.
A propositionisconsidered to be acollection of events
that cannot be conceived as a series of repetitions, for
example, anuclear power plant meltdown. The degree
of belief in proposition A, Pr(A), represents how
strongly A is believed to be true. Thus, subjective
probability refers to the degree of belief in a proposi-
tion. Atthe extremes, if Aisbelieved to betrue, Pr(A)
=1; if Ais believed to be false, Pr(A) = 0. Points
between 0 and 1 represent intermediate belief sbetween
false and true.
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A.3 Basic Rulesand Principles of
Probability

The relative frequency, classical, and subjective
probability definitions of probability satisfy thefollow-
ing axiomatic requirements of probability:

If Pr(E) is defined for atype of subset of the sample
space S and if

1 Pr(E) > O, for every event E,
2. Pr(E,uE,u---)=Pr(E) +Pr(E) +-- -,
wheretheeventsE,, E,, . . ., are such that no

two have a point in common, and
3. Pr(§=1,

then Pr(E) is called aprobability function.

A probability function specifies how the probability is
distributed over various subsets E of asample space S.
Fromthisdefinition, several rulesof probability follow
that provide additional properties of a probability
function.

The probability of an impossible event (the empty or
null set) is zero, written as:

Pr(z) =0,

where @ isthe null set. The probability of the comple-
ment of E is given by:

Pr(E) = 1 - Pr(E).

In general, the probability of the union of any two
eventsisgiven by:

Pr(E, u E,) = Pr(E,) + Pr(E,) - Pr(E, n E)).

If E, and E, are mutually exclusive, then Pr(E;, N E,) =
Pr(z) =0, and

Pr(E, v Ey) = Pr(E) + Pr(Ey),
which is a special case of the second axiom of proba-
bility stated above and is sometimes referred to as the
addition rule for probabilities.

For three events,
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Pr(E, v E, U E;) = Pr(E)) + Pr(E,) + Pr(Ey)
-Pr(E;nEy) - Pr(E; N Ey)
- Pr(E,nE;) + Pr(E; n E, nEy).

Thisruleisalso referred to as the inclusion-exclusion
principle and can be generalized to n events. It is
widely used in PRA to calculate the probability of an
“or" gate (a union of events) in a fault tree (NRC
1994).

Theinclusion-exclusion principle also provides useful
upper and lower bounds on the probability of the union
of n events that are not mutually exclusive. One such
upper bound, referred to asther ar eevent appr oxima-
tion, is:

Pr(E, UE,u ... uE,) < PI(E,) + PI(E,) + ... + Pr(E,).

The rare event approximation should only be used
when the probabilities of then eventsareall very small
(NRC 1994). If the n events are mutually exclusive,
theerroriszero. Anapproximation of the percent error
is n? max [Pr(E;)], which is valid regardiess of the
independence of events (NRC 1994). Theerror inthe
approximation arises from the remaining terms in the
full expansion of the left-hand side of the inequality.
This approximation is frequently used in accident
sequence quantification.

Many experimental situations arise in which outcomes
areclassified by two or more events occurring simulta-
neously. The simultaneous occurrence of two or more
events (the intersection of events) is caled a joint
event, and its probability is called ajoint probability.
Thus, the joint probability of both events E; and E,
occurring simultaneously is denoted by Pr(E; n E,).

The probability associated with one event, irrespective
of the outcomes for the other events, can be obtained
by summing all the joint probabilities associated with
all the outcomesfor the other events, and isreferred to
asamarginal probability. A marginal probability is
therefore the unconditional probability of an event,
unconditioned on the occurrence of any other event.

Two events E, and E, are often related in such away
that the probability of occurrence of one depends on
whether the other has or has not occurred. The condi-
tional probability of one event, given that the other
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hasoccurred, isequal to thejoint probability of thetwo
eventsdivided by the marginal probability of thegiven
event. Thus, the conditional probability of event E,,
given event E, has occurred, denoted Pr(E,|E), is
defined as:

Pr(E,|E,) = Pr(E, nE,) / Pr(E), (A1)

for Pr(E,) > 0. If Pr(E,)) =0, Pr(E;| E,) is undefined.
Rearranging this equation yields:

Pr(E, n E) =Pr(E) Pr(g,|E)
(A2
=Pr(E,) Pr(E,|Ey).

Cadlculation of joint probability requires the concept of
statistical independence. Two events E; and E, are
statistically independent if the probability of one event
does not change whenever the other event occurs or
does not occur. Thus, E,isindependent of E, if

Pr(E,|E,) = Pr(E).

If E, isindependent of E,, then E, isindependent of E,.
It follows that events E; and E, are independent if their
joint probability isequal to the product of the uncondi-
tional, or marginal, probabilities of the events:

Pr(E,nE,) = Pr(E) Pr(E),

which is sometimes referred to as the multiplication
rule for probabilities. If Pr(E,) varies depending on
whether or not event E, has occurred, then events E;
and E, are said to be statistically dependent.

If E;, E,, ... are mutualy exclusive, and if the union of
E,, E,, ... equals the entire sample space, then the
events E,;, E,, ... are said to form a partition of the
sample space. Exactly one of the events must occur,

not morethan one but exactly one. Inthiscase, thelaw
of total probability says

Pr(A) = LPr(A |E) Pr(E) .

A special case can be written when there are only two
sets. Inthiscase, write E; simply asE and E, as E.

Then the law of total probability simplifiesto

Pr(A) = Pr(A|E)Pr(E) + Pr(A|E )Pr(E)
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for any event A. This formula is the basis for event
trees, which are frequently used to diagram the possi-
bilities in an accident sequence.

The concepts of mutually exclusive events and statisti-
cally independent events are often confused. If E, and
E, are mutually exclusive events and Pr(E,) and Pr(E,)
are nonzero, Pr(E; n E,) = Pr(@) = 0. From Equation
A1, Pr(E,| E,) =0, which does not equal Pr(E,). Thus,
thetwo eventsarenot independent. Mutually exclusive
events cannot be independent and vice versa.

Equation A.2 can be used to cal cul ate the probability of
the intersection of a set of events (the probability that
al theeventsoccur simultaneously). For two eventskE,;
and E,, the probability of simultaneous occurrence of
the events is equal to the probability of E, times the
probability of E, given that E, hasalready occurred. In
general, the probability of the simultaneous occurrence
of n events can be written as:

Pr(E,NnE,n..nE)=
Pr(Ey) Pr(E,|E) Pr(Es|E,NE) ... Pr(E,|E.1n ... NEY),

whichisreferredto asthechain rule. Thisrulecan be
used to calculate the probability that a given accident
sequence occurs, with E; denoting the initiating event
and the remaining events corresponding to the failure
or success of the systemsthat must functionin order to
mitigate such an accident.

The probability of occurrence of at |east one of aset of
statistically independent events yields a result that is
important to PRA and fault tree applications. If E;, E,,
..., E, are statistically independent events, the probabil -
ity that at least one of the n events occursis:

PrE,uE,u...uE)= (A.3)

1-[1- (Pr(EDI[L - (Pr(ED] ... [1 - (Pr(E],

which is equivalent (with expansion) to using the
inclusion-exclusion rule. For the simple case where
Pr(E) = Pr(E,) = ... = Pr(E,) = p, theright-hand side of
this expression reducesto 1 - (1 - p)".

The general result in Equation A.3 has application in
PRA andfault treeanalysis. For example, for asystem
in which system failure occurs if any one of n inde-
pendent events occurs, the probability of systemfailure
is given by Equation A.3. These events could be
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failures of critical system components. In general, the
events represent the modes by which system failure
(thetop event of thefault tree) can occur. These modes
arereferred to asthe minimal cut sets of the fault tree
and, if independent of each other (no minimal cut sets
have common component failures), Equation A.3
applies. [SeeVesely et al. (1981) for further discussion
of fault trees and minimal cut sets.]

If the n events are not independent, the right-hand side
of Equation A.3 may be greater than or less than the
|eft-hand side. However, for animportant situationthat
frequently arisesin PRA, the right-hand side of Equa-
tion A.3 forms an upper bound for the left-hand side.

If the n eventsare cut setsthat are positively associated
(see Esary and Proschan 1970, 1963), then the right-
hand side is an upper bound for Pr(E, u E, u ... UE,)
and is known as the min cut upper bound (NRC
1994). This name arises from common PRA applica-
tions where E; is the i minimal cut set of a system or
accident sequence of interest. Inthis case, the min cut
upper boundissuperior totherare event approximation
and can never exceed unity (ascan happenwiththerare
event approximation). If then eventssatisfy conditions
similar to those of the rare event approximation, the
min cut set upper bound is a useful approximation to
the left hand side of Equation A.3. Note that the min
cut upper bound is not applicable for mutualy exclu-
sive events.

A.4 Random Variablesand
Probability Distributions

A.41 Random Variables

A random variable is any rule that associates real
numbers with the outcomes of an experiment. If the
numbers associated with the outcomes of an experi-
ment are all distinct and countable, the corresponding
random variableis called adiscrete random variable.

If the sample space contains an infinite number of
outcomes (like those contained in any interval), the
random variable is continuous. Time T is a common
continuous random variable, for example, time to
failure or time between failures, where the random
variable T can assume any vaue over the range 0 to .
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A.4.2 Probability Distributions

A probability function (introduced at the beginning of
section A.3) associatesaprobability with each possible
value of a random variable and, thus, describes the
distribution of probability for therandom variable. For
adiscrete random variable, this function is referred to
as a discrete probability distribution function
(p.d.f.). A discrete p.d.f., commonly denoted by f, is
also referred to asadiscrete distribution, or discrete
probability mass function.

If x denotes avalue that the discrete random variable X
can assume, the probability distribution function is
often denoted Pr(x). The notation used here is that a
random variableis denoted by an upper caseletter and
an observed value (a number or outcome) of the
random variableisdenoted by alower caseletter. The
sum of the probabilities over all the possible values of
x must be 1. Certain discrete random variables have
wide application and have therefore been defined and
given specific names. The two most commonly used
discrete random variablesin PRA applications are the
binomial and Poisson random variables, which are
presented in section A.6.

A continuously distributed random variable has a
density function, a nonnegative integrable function,
with the areabetween the graph of the function and the
horizontal axisequal to 1. Thisdensity functionisalso
referredto asthecontinuousprobability distribution
function (p.d.f.). If x denotesavalue that the continu-
ous random variable X can assume, the p.d.f. is often
denoted asf(x). The probability that X takesavaluein
aregion Aistheintegral of f(x) over A. In particular,

M@sXsmzﬁumm
and

Pr(x < X < x+ AX) = f(X)Ax (A.4)

for small Ax.

The most commonly used continuous distributions in
PRA are the lognormal, exponential, gamma, and
beta distributions. Section A.7 summarizes the essen-
tial facts about these distributions, and also about less
common but occasionally required distributions:
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uniform, normal, Weibull, chi-squared, inverted
gamma, logistic-normal, and Student’st.

A.4.3 Cumulative Distribution Functions

Discrete probability distributions provide point proba-
bilities for discrete random variables and continuous
p.d.f.s provide point densities for continuous random
variables. A related function useful in probability and
PRA isthe cumulativedistribution function (c.d.f.).
This function is defined as the probability that the
random variable assumes values less than or equal to
the specific value x, and is denoted F(X).

For adiscreterandom variable X, with outcomesx, and

the corresponding probabilities Pr(x), F(X) is the sum
of the probabilities of al x < x. Thatis,

F(x) = Pr(X sx):z Pr(x) -

X=X

For a continuous random variable X, F(X) is the area
beneath the p.d.f. f(X) up to x. That is, F(X) is the
integral of f(x):

F(x) =Pr(X < X)=If(y)dy.

Thus, f(x) isthe derivative of F(x). If X takeson only
positive vaues, the limits of integration are 0 to x.
Note that, because F(x) is a probability, 0 < F(x) < 1.
If X ranges from -c to +, then

F(-0) =0 and F(+) = 1.

If X hasarestricted range, with a and b being the lower
and upper limits of X respectively, a < X < b, then

F(@) =0and F(b) = 1.

Also, F(x) isanondecreasing function of x, that is,
if X, > X, F(%) > F(x).

Another important property of F(X) is that

Pr(x, < X < %) = F(%,) - F(x)

for discrete random variables and
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Pr(x, < X < X)) = F(x,) - F(X))
for continuous random variables.

An example of ap.d.f. and the associated c.d.f. for a
continuous distribution is shown in Figure A.2.

1 ——

Time ¢

Figure A.2 Probability density function (p.d.f.) and
cumulative distribution function (c.d.f.).

A.4.4 Rédiability and Hazard Functions
A.4.4.1. Definitions

There are also characterizations that have special
interpretations for time-to-failure distributions. Let T
denote the random time to failure of a system. The
reliability function of asystemisdefined as

R(t) = Pr(T>1).

Hence, R(t), caled the reliability at time t, is the
probability that the system does not fail in the time
interval (O, t] or equivaently, the probability that the
systemisstill operating at timet. (Thisdiscussion uses
the notation (a, b] to mean the set of times>aand < b,
but the distinction between < and < is a mathematical
fine point, not important in practice.) The reliability
function is also sometimes called the survival func-
tion. Itisequa to1 - F(t).

When used as a reliability criterion, it is common to
stateatime, say t,, called themission time, and require
for a system that the reliability at mission timet, be at
least some prescribed level, say R,. For example, a
pump might be required to operate successfully for at
least 12 hours with probability at least 0.95. The
requirement in thiscaseis R, = 0.95and t, = 12. In
termsof thereliability function, thiswould mean R(12)
> 0.95. Oneinterpretation would be that such a pump
would perform for the required mission time for 95%
of the situationswhenitiscaled onto do so. Another
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interpretation is that 95% of all such pumps would
perform as required.

Consider asystemthat operatesfor aparticular mission
time, unlessit fails. If it fails, noimmediaterepairsare
attempted, so some authors cal the system
nonrepairable. A common way to characterize this
system’ sreliability isinterms of the hazard function.
Suppose that the system is till operating at timet, and
consider the probability that it will fail in a small
interval of time (t, t + At]. This is the conditional
probability Pr(t < T < t+ At | T>1). The hazard
function, h, is defined so that when At is small,
hf)at= Prit<T<t+At| T>1) . (A.5)
Thisfunction isalso encountered, under the nameof 4,
in sometreatments of Poisson processes. Equation A.5
gives, approximately,

Prt<T <t +At)
Pr(T >t)
_ F)at
R

h(t)At =

Thisisthe basis for the formal definition of h:

For details, see Bain and Engelhardt (1992, p. 541).
Equation A.5isanalogousto Equation A.4, except that
the probability in Equation A.5 is conditional on the
system having survived until t, whereas Equation A.4
refers to all systemsin the original population, either
still surviving or not. Suppose alarge number, say N,
of identical systemsare put into operation at timet =0,
and nisthe number whichfail intheinterval (t, t + At].
It follows that f(t)At = n/N, the observed relative
frequency of systems failed in the interval (t, t + At].
On the other hand, if N, denotes the number of the
origina N systems which are still in operation at time
t, then h(t)At = n/N,, the observed relative frequency of
surviving systems which fail in this same interval.
Thus, f(t) isameasure of therisk of failing at timet for
any systemintheoriginal set, whereash(t) isameasure
of therisk of failing at timet, but only for systems that
have survived thislong.
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Thehazard functionisused asameasure of “aging” for
systems in the population. If h(t) is an increasing
function, then systems are aging or wearing out with
time. Of course, in general the hazard function can
exhibit many types of behavior other than increasing
with time, and other possible behaviors are discussed
later in this handbook. In actuarial science the hazard
functioniscalled theforce of mortality, anditisused
as ameasure of aging for individuals in a population.
Moregenerally, the hazard function givesanindication
of “proneness to failure” of a system after timet has
elapsed. Other terms which are also used instead of
hazard function arehazard rateandfailurerate. The
term failure rate is often used in other ways in the
literature of reliability (see Ascher and Feingold 1984,
p. 19).

A.4.4.2 Relationsamong p.d.f., Reliability, and
Hazard

Any one of the functions F, f, R, and h completely
characterizesthedistribution, and uniquely determines
the other three functions. The definition

f(t)

h(t) = %

was given above. Theright hand side can bewritten as
the derivative of -In[R(t)], leading to

R(t) = exp(—jé h(u)du) = exp(-H(®))

where the function H(t) is called the cumulative
hazard function. Thereliability function, R(t), andthe
cdf., F(t) = 1 - R(t), are therefore uniquely deter-
mined by the hazard function, h(t), and the p.d.f. canbe
expressed as

f(t) = h(t) exp(—f(t) h(u)du) .

Figure A.3 showsthereliability, hazard and the cumu-
lative hazard function for the example of Figure A.2.
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Figure A.3 The reliability function, hazard function
and cumulative hazard function.

The hazard function in Figure A.3 is an increasing
function of time. Therefore, it would be consistent
with systems with a dominant wear-out effect for the
entirelife of the system. Thelifetime of asystem may
be divided into three typical intervals: the burn-in or
infant period, the random or chance failure period
and thewear -out period. Duringthe useful period, the
dominant cause of failuresis “random” failures. For
example, systemsmight fail dueto external causessuch
as power surges or other environmental factors rather
than problems attributabl e to the defects or wear-out in
the systems. This example is somewhat idedlized
because for many types of systems the hazard function
will tend to increase slowly during the later stages of
the chance failure period. Thisis particularly true of
mechanical systems. On the other hand, for many
electrical components such as transistors and other
solid-state devices, the hazard function remains fairly
flat once the burn-in failure period is over.

A.4.5 Joint, Marginal, and Conditional
Distributions

Many statistical methods are based on selecting a

sample of size n from a probability distribution f(x).
Such asample is denoted by

(K= X0 Xo = X0 vy Xy = %) = (Xg, X, o0 %),

where x,, X,, ..., X, are the actual values of the random
variable X which has the distribution f(x).
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The concepts of simultaneous events and joint, mar-
ginal, and conditional probability, discussedin Section
A.3, aso pertain to random variables and probability
distributions. Two random variables X; and X, (both
continuous, both discrete, or one of each) can have a
joint distribution, orjoint p.d.f., denoted f(x,, x,). The
point (X;, X,) can bethought of asapoint in two-dimen-
sional Euclidean space. Similarly, n random variables
have joint distribution f(x;, X,, ..., X,). Also, the n
random variables have joint cumulative distribution
F(Xp X ey X))

Themarginal distribution of X; isdefined asthejoint
p.d.f. integrated (for continuous random variables) or
summed (for discrete random variables) over then-1
other corresponding dimensions, resultinginafunction
of x; alone. Thus, the marginal distribution of X; isthe
unconditional p.d.f. of X, f,(x).

The conditional distribution of X, given X,, denoted
(X, | %), isdefined by

f(x,, X,)

X Xo)= ———=,
906 %)= )
where f)(x,) # 0, and can be shown to satisfy the
requirements of aprobability function. Sampling from
aconditional p.d.f. would produce only those val ues of
X, that could occur for a given value of X, = x,. The
concept of a conditional distribution also extendsto n
random variables.

Two random variables X, and X, are independent if

their joint p.d.f. is equa to the product of the two
individual p.d.f.s. Thatis,

(g, %) = (%)) f(x,).

In generd, X;, X,,
variablesif

F(Xy Xop veer X)) =F(X) * F(X) - - . . - F(X).

A.4.6 Characterizing Random Variables
and their Distributions

.., X, are independent random

A.4.6.1 Distribution Characteristics
Probability distributions have many characteristics of

interest, some of which are described by distribution
parameters. The term parameter is used to refer to a
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fixed characteristic. In contrast to a statistic, which
changes from sample to sample, a parameter for a
particular distribution is a constant and does not
change. However, when a parameter’s value is not
known, sample statistics can be used to estimate the
parameter value. Parameter estimation is discussed in
Appendix B.

A very useful distribution characteristic is the
parameter that serves asameasure of central tendency,
which can be viewed as a measure of the middle of a
distribution. When achangeinthe parameter didesthe
distribution sideways, as with the mean of a normal
distribution, the parameter isreferred to asthelocation
parameter. It serves to locate the distribution along
the horizontal axis. Sometimes, however, achangein
the parameter squeezes or stretches the distribution
toward or away from zero, as with the mean of the
exponential distribution. In that case, the parameter is
ascale parameter.

In any case, the most common measure of central
tendency isthe mean, «, of thedistribution, whichisa
weighted average of the outcomes, with the weights
being probabilities of outcomes. For adiscreterandom
variable X,

Hx =) % Pr(x)

For a continuous random variable X,

=Y

Uy :Ixf (X)dx .

—o0

Another distribution characteristic commonly used as
a measure of central tendency, or location, is the
median, whichisthe point alongthe horizontal axisfor
which 50% of the area under the p.d.f. lies to its left
and the other 50% toitsright. The median of arandom
variable, X, iscommonly designated med(X) or X ¢, and,
for a continuous distribution, is the value for which
Pr(X < Xg) =.50and Pr(X > Xg,) =.50. Intermsof the
cumulative distribution, F(xs,) = .50. Themedianisa
specific case of the general 100ath per centile, x,, for
which F(x,) = a. When thefactor of 100 isdropped, x,
iscalled the o quantile. Along with the median asthe
50th percentile (or equivalently, the 0.5 quantile), the
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25th and 75th percentilesarereferred to asquar tiles of
adistribution.

Figure A.4 shows the quartiles, X, and X, the
median, X,s, and the mean. The quartiles and the
median divide the area under the density curve into
four pieces, each with the same area. Note that the
mean is greater than the median in thisexample, which
isthe usual relation when the density has along right
tail, asthis one does.

Each area = 0.25

Xp25 X050 X075 GC00 04322
Figure A.4 Density, showing quartiles, median, and

mean.

Figure A.5 shows the same quantities plotted with the
c.d.f. By definition, the q quantile, x,, satisfies F(x,)
=q.

1.00
075 F———————————— ‘
|
|
|
0.50 F—————- / |
| |
| |
o
0.25 -~ i |
|
| |
} } Mean }
|
oy

X025 X050  X0.75 GC00 0432 3
Figure A.5 Cumulative distribution function (c.d.f.)

showing quartiles, median, and mean.

The mean and the median are used to measure the
center or location of adistribution. Sincethemedianis
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less affected by tail-area probabilities, it can be viewed
as a better measure of location than the mean for
highly-skewed distributions. For symmetric distribu-
tions, the mean and median are equivalent.

A different measure of center or location of adistribu-
tion is the mode, which indicates the most probable
outcome of adistribution. The modeisthe point along
the horizontal axis where the “peak” or maximum of
the p.df. is located. Note that the mode does not
necessarily have to be near the middle of the distribu-
tion. It simply indicates the most likely value of a
distribution. Note also that a peak does not have to
exist and, in some cases, more than one peak can exist.

Another important characteristic of adistributionisits
variance, denoted by ¢°>. The variance is the average
of the squared deviations from the mean. The stan-
dard deviation, ¢, of adistribution is the square root
of itsvariance. Both the variance and standard devia-
tion are measures of a distribution’s spread or disper-
sion. For adiscrete random variable X,

0,2= Y (x=m*Pr(x).

For a continuous random variable X,

o

0,2= J'(x—,u)zf (x)dx ..

—00

Though less used than the mean and variance, the
skewnessis defined as

E(X - W¥e® .

It measures asymmetry. It is usually positive if the
density hasalonger right tail than left tail, and negative
if the density has a longer |€eft tail than right tail. For
example, the density in Figure A.4 has positive skew-
ness.

A.4.6.2 Mathematical Expectation

The definitions of distribution means and variances
arisefrommathematical expectation and momentsof
a distribution, which form an important method for
calculating the parametersof aknownp.d.f. Ingeneral,
the expectation (expected value or mathematical
expectation) of afunction g(X), denoted E[g(X)], is
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E[g(X)]= Y 9(x)Pr(x)

when X is discrete, and
E[g(X)] = _[ g(x) f (x)dx ,

when X is continuous.

Because of their wide use, several expectations have
specia names. For g(X) = X, the expectation E(X)
becomes the mean of X. Thus, the mean is also com-
monly referredto asthe expected val ue (or expectation)
of therandomvariable X. Inaddition, for g(X) = X, the
expectation E(X) isknown asthe fir st moment about
theorigin.

Thevariance, 5,2, also denoted by Var(X), of adistribu-
tionisdefined by mathematical expectation with g(X)
= (X - U? Thus,

Var(X) = o’ = E[(X - 10?7 = E(X?) - [E(X)]%

which is known as the second moment about the
mean.

Ordinary moments (moments about the origin) of a
random variable X are defined as

M, = E(X),
forr=1,2,... Thus,
Var(X) = 0, = E(X?) - [E(X)]? =M, - M/~

Central moments (moments about the mean) of a
random variable X are defined asbeing equal to E[(X -
w1 forr=2,3, .... Theordinary and central moments
can be seen to define characteristics of distributions of
random variables.

An important rule of expectation commonly used in
PRA is that the expected value of a product of inde-
pendent random variables is the product of their
respective expected values. That is, E(X;- X, ... -X,) =
E(X)-E(X)- ... ‘E(X,) when all X are independent.
This rule also applies to conditionally independent
randomvariables. If therandomvariablesX,, X, ..., X,
are all conditionally independent given X; = x;, then
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F(Xay Xar +eey Xo| X0) = F(Xo | X)) F(Xs | X)) - . F(X, | XD)-

It follows that

EQGXg e X[ X) =BG %) - ECOKG X)) . -ECKL | X)-
Thus,

E(XXyr ... Xo) = E[X B | %) E(Xs| %) ... .EQX,|X)]-
A.4.6.3 Moment-Generating Functions

Another special mathematical expectation is the
moment-gener ating function of a random variable.
For arandom variable X with p.d.f. f(x), the moment-
generating function of X (or of the distribution) is
defined by M(t) = E(€%), if M exists for some interval
-h <t < h. Therefore, if X is a continuous random
variable,

M(t):J'e‘Xf(x)dx.

If X isadiscrete random variable,
M(t)= € (x),

Note that not every distribution has amoment-generat-
ing function.

The importance of the moment-generating function is
that, when it does exist, it is unique and completely
specifiesthedistribution of therandomvariable. If two
random variables have the same moment-generating
function, they have the same distribution.

It can be shown that the moments of a distribution can
be found from the series expansion of M(t). The
moments of the distribution can also be determined
fromthe moment-generating function by differentiating
the moment-generating function with respect to t and
settingt = 0. See Martz and Waller (1991) and any of
several mathematical statisticstexts, such asHogg and
Craig (1995), for further details on moment-generating
functions.
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A.4.6.4 Covariance and Corréation

For two random variables, X and Y, with means 1, and
K, the expected value E[(X - p,)(Y - W )] iscalled the
covariance of X and Y, denoted Cov(X, Y). The
covariance of X and Y divided by the product of the
standard deviationsof X and Yiscalled thecorrelation
coefficient (or correlation) between X and Y, denoted
Cor(X,Y). Thatis,

Cor(X.Y) = Cov(X,Y)
X = N oovam)

- E(X—,LIX)E(Y—,LIY)
VEI(X = t)TEL(Y - 14)7]

The correlation coefficient measures the degree of
association between X and Y, that is, the strength of a
linear relationship between X and Y.

A.4.7 Distribution of a Transformed
Random Variable

This section considers the distribution of Y = h(X),
when X has a known distribution and h is a known
function. The problem is straightforward when X has
adiscrete distribution. When Xis continuousand h is
monotone, either increasing or decreasing, the c.d.f.s
areasorelated inthe natural way, asfollows. Let F be
the c.d.f. of X and let G be the c.d.f. of Y. Then we
have

G(y) = Pr(Y < y) = Pr{h(X) < y] .

If his monotone increasing, this equals

PriX < hi(y)] = F(x),

where x and y are related by y = h(x), x = h’(y). In
summary, G(y) = F(x).

If, instead, h is monotone decreasing, then a similar
argument gives
Gy)=1-F(X).

The surprise comes with the densities. Differentiate
both sides of either of the above equationswith respect
toy, to obtain the density of y. Thisinvolvesusing the
chain rulefor differentiation. The resultis
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a(y) = f(x)

dx
dy|

That is, the density of Y is not simply equal to the
density of X with adifferent argument. Thereisasoa
multiplier, the absolute value of the derivative. If Y=
exp(X), then

g(y) =flin(nI(Ly) -

If Y=1X, then

a(y) = f(Uy)(1y?) -

Theformulas here are the basis for the densities of the
lognormal distribution and the inverted gamma distri-
bution.

A.5 Bayes Theorem

Itisfrequently desired to cal cul ate the probability of an
event A given that another event B has occurred at
some prior point in time. It can also be of interest to
calculate the probability that a state of nature exists
given that a certain sample is observed, for example,
belonging to a certain population based on a sample
measurement or observation. Conditional probability
leads directly to Bayes Theorem, which, along with
subjective probability, forms the basis for Bayesian
inference commonly used in PRA.

Bayes' Theorem states that: if A, A, ..., A, ae a
sequence of digoint events and if B is any other event
such that Pr(B) > 0, then

Pr(B|A) Pr(A)

Pr(AB) = s

, (A.6)
where
Pi(B) =Y Pr(BIA)PI(A).

; i

Equation A.6followsfromthedefinition of conditional
probability in Equation A.2:

_Pr(Bn A) _ Pr(BIA) Pr(A)
- P(B) Pr(B)

Pr(A B)
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ThePr(A|B) istheposterior (or aposteriori) probabil-
ity for the event A,, meaning the probability of A once
B is known. The Pr(A) is the prior (or a priori)
probability of the event A; before experimentation or
observation. The event B is the observation. The
Pr(B|Ay) isthe probability of the observation given that
A istrue. The denominator serves as a normalizing
constant.

Calculatingthe posterior probabilities Pr(A; | B) requires
knowledge of the probabilities Pr(A) and Pr(B|A), i =
1, 2, ..., n. The probability of an event can often be
determined if the population is known, thus, the
Pr(B|A) can bedetermined. However, the Pr(A),i =1,
2, ..., n, arethe probabilitiesthat certain states of nature
exist and are either unknown or difficult to ascertain.
Theseprobabilities, Pr(A), arecalled prior probabilities
for the events A, because they specify the distribution
of the states of nature prior to conducting the experi-
ment.

Application of Bayes Theorem utilizes the fact that
Pr(B|A) iseasier to caculate than Pr(A|B). If proba-
bility isviewed asdegree of belief, then the prior belief
is changed, by the test evidence, to a posterior degree
of belief. In many situations, some knowledge of the
prior probabilities for the events A;, A,, ..., A, exists.
Using thisprior information, inferring which of the set
A, A, ..., A, isthetrue population can be achieved by
calculating the Pr(A|B) and selecting the population
that produces the highest probability.

Equation A.6 pertains to digoint discrete events and
discrete probability distributions. Bayes' Theoremhas
analogousresultsfor continuous p.d.f.’s. Suppose Xis
acontinuousrandomvariable, with p.d.f. depending on
parameter 4, and with conditional p.d.f. of X, given 8,
specified by f(x| ). Consider ¢ to be a possible value
of the random variable ® (using the convention of
denoting random variables with uppercase |etters). If
the prior p.d.f. of ® is denoted g(6), then for every x
such that f(x) > 0 exists, the posterior p.d.f. of ®, given
X=x,is

f(x[8)g(6
9(6}x) =—(Xl (33( )

where
f (X) =J’ f (x6)g(6)d6
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isthemarginal p.d.f. of X. Again, the prior and poste-
rior p.d.f.”scan be used to represent the knowledge and
beliefs about the likelihood of various values of a
random variable ® prior to and posterior to observing
avalue of another random variable X.

A.6 Discrete Random Variables

A.6.1 TheBinomial Distribution

The binomial distribution describes the number of
failuresXinnindependent trials. The randomvariable
X has abinomia distribution if:

1. The number of random trials is one or more
and is known in advance.
2. Each trial results in one of two outcomes,

usually called successand failure (or could be
pass-fail, hit-miss, defective-nondefective,

etc.).

3. The outcomes for each tria are statistically
independent.

4, The probability of failure, p, is constant
acrosstrials.

Equal to the number of failuresin the n trials, a bino-
mial random variable X can take on any integer value
from 0 to n. The probability associated with each of
these possible outcomes, X, is defined by the bino-
mial(n, p) p.df. as

[ngl X n-x
Pr(X = x) = HXHD a-p -,

Xx=0,...,n
Here

n!

thgd
B(H_ xl(n=x)!

is the binomial coefficient and

n=nn-1)n-2).. 20

denotes n factorial, with 0! defined to be equal to 1.
Thisbinomial coefficient providesthe number of ways

that exactly x failures can occur in n trials (number of
combinations of n trials selected x at atime).
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Thebinomial distribution hastwo parameters, nand p,
of which nisknown. (Although n may not always be
known exactly, itistreated asknowninthishandbook.)

The mean and variance of a binomial(n, p) random
variable X are

E(X)=np
and
Var(X) =np(1 - p).

Figure A.6 shows three binomial probability distribu-
tion functions, with parameter p = 0.25, and n =4, 12,
and 40. In each case, themeanisnp. The means have
been aligned in the three plots.

A.6.2 The Poisson Distribution

ThePoisson distribution providesadiscreteprobability
model that is appropriate for many random phenomena
that involve counts. Examples are counts per fixed
time interval of the number of items that fail, the
number of customers arriving for service, and the
number of telephone callsoccurring. A common use of
the Poisson distribution is to describe the behavior of
many rare event occurrences. The Poisson distribution
is also frequently used in applications to describe the
occurrence of system or component failures under
steady-state conditions.

The count phenomena that occur as Poisson random
variables are not necessarily restricted to occurring
over atime interval. They could also be counts of
things occurring in some region, such as defects on a
surface or within a certain material. A process that
leads to a Poisson random variable is said to be a
Poisson process.
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Figure A.6 Three binomia probability distribution
functions.

The Poisson distribution describes the total number of
events occurring in some interval of timet (or space).
Thep.d.f. of aPoisson random variable X, with param-
eer u=A4t, is

Pr(X = x) = e:f‘
B e—/\t(A t)x (A7)
oox

forx=0,1,2,..,andx! =x(x - D(x - 2) ... (2)(1), as
defined previously.
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The Poisson distribution has a single parameter \,
denoted Poisson(l). If X denotesthe number of events
that occur during some time period of length t, then X
is often assumed to have a Poisson distribution with
parameter 4 = At. Inthiscase, X isconsidered to be a
Poisson processwithintensity 4 >0 (Martz and Waller
1991). Thevariable A is also referred to as the event
rate (or failure rate when the events are failures).
Note that 1 has units l/time; thus, it = U is
dimensionless.

If only thetotal number of occurrencesfor asingletime
periodtisof interest, theform of the p.d.f. in Equation
A.7using nissimpler. If the event rate, 4, or various
time periods, t, are of interest, the form of the p.d.f. in
Equation A.7 using At is more useful.

The expected number of events occurring in the inter-
va 0totisp = At. Thus, the mean of the Poisson
distributionisequal totheparameter of thedistribution,
whichiswhy pisoften used to represent the parameter.
Thevarianceof the Poisson distributionisalso equal to
the parameter of the distribution. Therefore, for a
Poisson(p) random variable X,

E(X) = Var(X) = g = it.

FigureA.7 showsthree Poisson probability distribution
functions, with means y = 1.0, 3.0, and 10.0, respec-
tively. The three means have been aligned in the
graphs. Note the similarity between the Poisson
distribution and the binomial distribution when p =np
and n is not too small.

Severa conditions are assumed to hold for a Poisson
process that produces a Poisson random variable:

1 For small intervals, the probability of exactly
one occurrenceis approximately proportional
to the length of the interval (where 4, the
event rate or intensity, is the constant of
proportionality).

2. For small intervals, the probability of more
than one occurrence is essentially equal to
zero (see below).

3. The numbers of occurrences in two non-
overlapping intervals are statistically inde-
pendent.

VERSION 0 Date: 11/27/02



05
04 |
0.3 | w1
0.2 |
0.1 |
0.0 |
0 1 2 3 4 5
03
02 |
u=Aa=3
01 |
00 —F I
0 12 3 4586 7 8 9 10112 1314 15
0.15 ¢
0.10 +
u=A=10
0.05 +
0.00 IHN NM”'- ““““““““““““““““
0 10 20 30 40 50

GCO00 0432 5

Figure A.7 Three Poisson probability distribution
functions.

More precise versions of condition 2 are: (1) the
probability of more than one event occurring in avery
short time interval is negligible in comparison to the
probability that only one event occurs (Meyer 1970),
(2) the probability of morethan one event occurring in
avery short time interval goes to zero faster than the
length of the interval (Pfeiffer and Schum 1973), and
(3) simultaneous events occur only with probability
zero (Ginlar 1975). All of these versions have the
practical interpretation that common cause events do
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not occur. The phrase “do not occur” is used in this
handbook, asit isin Thompson (1981).

The Poisson distribution also can serve as an appr oxi-
mation tothebinomial distribution. Poissonrandom
variables can be viewed as resulting from an experi-
ment involving a large number of trials, n, that each
have a small probability of occurrence, p, of an event.
However, the rare occurrence is offset by the large
number of trials. As stated above, the binomial distri-
bution givesthe probability that an occurrencewill take
place exactly x timesin ntrias. If p=p/n(sothatpis
small for largen), and nislarge, the binomial probabil-
ity that the rare occurrence will take place exactly x
timesis closely approximated by the Poisson distribu-
tionwith u=np. Ingeneral, the approximationisgood
for large n, small p, and moderate 1 (say p < 20) (see
Derman et al. 1973).

The Poisson distribution is important because it de-
scribes the behavior of many rare event occurrences,
regardless of their underlying physical process. It aso
has many applications to describing the occurrences of
system and component failures under steady-state
conditions. These applications utilize the relationship
between the Poisson and exponential (continuous
random variable, see Section A.7.4) distributions: the
times between successive eventsfollow an exponential
distribution.

A.7 ContinuousRandomVariables

A. 7.1 TheUniform Distribution

A uniform distribution, also referred to as a rectangu-
lar distribution, represents the situation where any
valueinaspecifiedinterval, say [a, b], isequally likely.
For a uniform random variable, X, because the out-
comes are equaly likely, f(x) is equal to a constant.
The p.d.f. of auniform distribution with parameters a
and b, denoted uniform(a, b) is

f(x):lea

fora<x<h.
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Figure A.8 shows the density of the uniform(a, b)
distribution.

Area=1

1/(b-a)

0
a b
Figure A.8 Density of uniform(a, b) distribution.
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The mean and variance of auniform(a, b) distribution
are

E(X)=b;a
and
Var(X):%.

A.7.2 TheNormal Distribution

Oneof the most widely encountered continuous proba-
bility distributions is the normal distribution, which
hasthe familiar bell shape and is symmetrical about its
mean value. Theimportance of the normal distribution
isdueto: (1) itsapplicability in describing avery large
number of random variables that occur in nature and
(2) the fact that certain useful functions of nonnormal
randomvariablesare approximately normal. Detailson
the derivation of the normal distribution can be found
in many basic mathematical statistics textbooks (e.g.,
Hogg and Craig 1995).

Thenormal distribution is characterized by two param-
eters, 4 and . For arandom variable, X, that is nor-
mally distributed with parameters 4 and o, the p.d.f. of
Xis

1 O 1x—ufd
f(X)_U\/EexpB_E o gH

for —o < X< o0, —0 < <o, and ¢ > 0. Increasing
moves the density curve to the right and increasing ¢
spreadsthe density curve out to the right and left while

(A.8)
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lowering the peak of the curve. The units of p and ¢
arethe same asfor X.

The mean and variance of a normal distribution with
parameters 4 and ¢ are

E(X) =u

and

Var(X) = ¢

The normal distribution is denoted normal (i, ¢°).
Figure A.9 shows two normal(l, ¢®) densities. The

distribution is largest at p and is more concentrated
around L when ¢ is small than when g is large.

/N

1
2

TE T

— |

uz
Figure A.9 Two normal densities.
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Note the similarity of the normal density to abinomial
p.d.f. with large np or a Poisson p.d.f. with large p.
This illustrates the fact that a normal distribution can
sometimes be used to approximate those distributions.

The normal (0, 1) distribution is called the standard
normal distribution, which, from Equation A.8, has
p.d.f.

(A.9)

o(x) = %exp@%@

for -« < x < «. The cumulative distribution of the
standard normal distribution is denoted by ®. Tables
for the standard normal distribution are presented in
Appendix C and in amost al books on statistics.

It can be shown that the transformed random variable

Z = (X - Wl is normal(0, 1). Thus, to caculate
probabilities for a normal (i, ¢°) random variable, X,
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when p = 0 and/or ¢* # 1, the tables for the standard
normal can be used. Specifically, for any number a,

Pr[ X<al] Pr (X- Wle < (@a-Wlo]

Pr[Z<(a- W]

o[ (a- W] .

Part of theimportance of the normal distributionisthat
it is the distribution that sample sums and sample
means tend to possess as n becomes sufficiently large.
This result is known as the central limit theorem,
which states that, if X;, X,, ..., X, are independent
random variables, each with mean p and variance &2,
the sumof these nrandomvariables, X, X;, tendstoward
a normal(ny, ng®) distribution for large enough n.
Since the sample mean is alinear combination of this

sum, the central limit theorem also applies. Thus, X
= X X/n tends to a normal(u, ¢*/n) distribution. The
importance of the central limit theoremisit can be used
to provide approximate probability information for the
sample sums and sample means of random variables
whose distributions are unknown. Further, because
many natural phenomena consist of a sum of several
random contributors, the normal distributionisusedin
many broad applications.

Because abinomial random variableis asum, it tends
to the normal distribution as n gets large. Thus, the
normal distribution can be used as an approximation
to the binomial distribution. One rule of thumb is
that the approximation is adequate for np > 5.

A Poisson random variable also represents a sum and,
aspresented previously, can a so be used asan approxi-
mation to the binomial distribution. It followsthat the
normal distribution can serve as an approximation to
the Poisson distribution when p = At islarge. One
rule of thumb is that the approximation is adequate for
M > 5.

A.7.3 TheLognormal Distribution
Use of the lognormal distribution has become in-
creasingly widespread. It is commonly used as a

distribution for failure time and in maintainability
analysis (Martz and Waller 1991). It has aso been
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widely used as a prior distribution for unknown posi-
tive parameters.

The lognormal distribution arises from the product of
many independent randomvariables. If Y=Y,-Y, ...-Y,
=ILY; isthe product of nindependent positive random
variablesthat are (nearly) identically distributed, then
In(Y) =In(ILY;) = XIn(Y;) is a sum that tends toward a
normal distribution.

The distribution of Y is defined to be lognormal when
the distribution of In(Y) isnormal. That is, when Y is
lognormal, In(Y) is normal (U4, ¢?. The parameters of
the lognormal distribution are y and o, the parameters
from the underlying normal distribution. For arandom
variable, Y, thatislognormally distributed with parame-
ters and ¢, denoted lognormal (U, ¢?), the p.d.f. of Yis

f(y) = ——exp——(Iny-p)'E
oy21m H 202 H

for0<y<ew, -0 <<, ande>0. Notetheyinthe
denominator, for reasons explained in Section A.4.7.
The mean and variance of alognormal(u, ¢®) distribu-
tion are

E(Y) = exp(u + 67/2)
and
Var(Y) = exp(2u + o°)[exp(c?) - 1].

In addition, the median of alognormal distribution is
exp(l) and the mode is exp(u-¢°). See Martz and
Waller (1991) for more information on the lognormal
distribution.

Sometimes the median of Y = exp(l) is used as a
parameter. Inaddition, aparameter commonly used in
PRA istheerror factor (EF), where EF = exp(1.6450),
and is defined as

Primed(Y)/EF < Y < med(Y)*EF] = 0.90.
Figure A.10 shows three lognorma densities. The
value | = -7 corresponds to amedian of about 1.E-3.

[More exactly, it corresponds to exp(-7) = 9.E-4.]
The value 1 = -6.5 corresponds to a median of about
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1.5E-3. The value ¢ = 0.67 corresponds to an error
factor EF = 3, and ¢ = 1.4 corresponds to an error
factor EF = 10.

OEO 1E-3 2E-3
Figure A.10 Threelognormal densities.

Thetwo distributionswith ¢ =0.67 and different values
of 1 have essentially the same shape, but with different
scales. The larger p corresponds to spreading the
distribution out more from zero. The distribution with
o = 1.4, and therefore EF = 10, has a very skewed
distribution.

To calculate probabilities for a lognormal (1, ¢°) ran-
domvariable, Y, thetablesfor the standard normal can
beused. Specificaly, for any number b,

PrlY <b]

Pl In(Y) < In(b) ]

Pr[ X < In(b) ]

= ©[ (In(b) - Wie],

where X = In(Y) is normal (i, ¢?).

A.7.4 The Exponential Distribution

The exponential distribution is widely used for
modeling time to failure and is inherently associated
with the Poisson process (see Martz and Waller 1991).
For a Poisson random variable X defining the number
of falluresinatimeinterval t and for arandomvariable
T defining the time to failure, it can be shown that T
has the exponentia p.d.f.

f(t) = 1e ™,
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fort > 0. Thus, the timeto first failure and the times
between successive failures follow an exponential
distribution and the number of failuresin afixed time
interval follows a Poisson distribution.

Figure A.11 shows two exponential densities, for two
valuesof A. Theintercept (height of the curve whent
=0) equalsA . Thus, thefigure showsthat the distribu-
tion is more concentrated near zero if A islarge. This
agrees with the interpretation of A as a frequency of
failuresand t astime to first failure.

'\"*\;K [

0 GC00 0433 1
Figure A.11 Two exponential densities.

Theexponential distribution parameter, 4, corresponds
to the At parameterization of the Poisson p.d.f. in
Equation A.7. and is referred to as the failurerate if
the component or system is repaired and restarted
immediately after each failure. It iscaled the hazard
rateif the component or system can only fail once and
cannot be repaired. Section 4.6.2 discusses modeling
duration times with different distributions and defines
the hazard rate as h(t) = f(t)/[1 - F(t)]. For the expo-
nential distribution, the hazard rate is constant, 4.

The c.d.f. of the exponentia distribution is
Fy=1-e*™
The exponential distribution with parameter 1 is

denoted exponential (1). The mean and variance of an
exponential (1) distribution are

E(T) =14
and
Var(T) = 142
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The relationship of the exponential distribution to the
Poisson process can be seen by observing that the
probability of no failures before time t can be viewed
in two ways. First, the number of failures, X, can be
counted. The probability that the count isequal to O is
given by Equation A.7 as

Pr(X =0) = e”‘(A(;[') =g

Alternatively, the probability that first failure time, T,
isgreater thantis

Pr(T>t) =1-Pr(T<1t)
=1- F(t)

1 _ [1 _ eﬁ"t]

ef}.t.

Thus, the two approaches give the same expression for
the probability of no failures beforetimet.

The assumptions of a Poisson process require a con-
stant failure rate, A , which can be interpreted to mean
that the failure process has no memory (Martz and
Waller 1991). Thus, if adeviceis still functioning at
timet, it remains as good as new and itsremaining life
hasthe same exponential (1) distribution. Thisconstant
failure rate correspondsto the flat part of the common
“bathtub” failure curve (number of failures plotted
against time) and does not pertain to initial (burn-in)
failures and wear-out failures.

A different, sometimesuseful, parameterization uses
= 1A =E(T). For example, if T represents atimeto
failure, pis called the mean timeto failure. If Tisthe
time to repair, or to fire suppression, or to some other
event, the name for P is the mean time to repair, or
other appropriate name. The exponential (1) distribu-
tion for T has density

f(t) = (Yp)exp(-t/y), fort > 0

and c.df.

F(t) =1 - exp(-t/p), fort > 0.

The units of p are the same asthe units of t, minutes or

hours or whatever the data have. The mean and vari-
ance are
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E(M=n
var(T) = 2.

A.7.5 TheWaeibull Distribution

The Weibull distribution iswidely used in reliability
and PRA and generalizes the exponential distribution
to include nonconstant failure or hazard rates (Martz
andWaller 1991). Different Weibull distributionshave
been successfully used to describe initial failures and
wear-out failures. TheWeibull distributionisappropri-
ate when asystemis composed of anumber of compo-
nents, and system failure is due to any one of the
componentsfailing. It, therefore, iscommonly referred
to as a distribution corresponding to failure of the
weakest link.

For arandom variable, T, that has a Weibull distribu-
tion, the p.d.f.is

-2 it

fort> 6> 0and parameters « > 0 and 5 > 0. The
parameter ¢ isalocation parameter and correspondsto
aperiod of guaranteed lifethat is not present in many
applications (Martz and Waller 1991). Thus, 8 is
usualy set to zero. Thec.d.f.for Tis

6
ia &

ad
ad
O,
H

Jp-64"

F(t) =1-ex ,
(t) = prﬁ_ﬁg
fort>6andoa>0and g > 0.

The o parameter is a scale parameter that expands or
contracts the density along the horizontal axis. The g
parameter is a shape parameter that allows for awide
variety of distribution shapes [see Martz and Waller
(1991) for further discussion and examples|. When g
=1, thedistribution reducesto the exponential distribu-
tion. Therefore, the Weibull family of distributions
includes the exponential family of distributions as a
special case.

A Weibull distribution with parameters a, 3, and @ is
referred to as Weibull(«, f, 6) and, when ¢ = 0,
Weibull(«, £). The mean and variance of the Weibull
distribution are given by Martz and Waller (1991) as
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0 +ol'(1+ 1p)

and

dAT(A+2p)-T1+1p).

Here, T isthe gamma function, defined in Sec. A.7.6.

Figure A.12 shows four Weibull densities, all with the
same scal e parameter, «, and all with location parame-
ter @ =0. The shape parameter, j, varies. When <1,
the density becomesinfinite at theorigin. When =1,
the distribution isidentical to the exponential distribu-
tion. Surprisingly, thedistributionisnot asymptotically
normal asfs becomeslarge, althoughitisapproximately
normal when S isnear 3.

A.7.6 The Gamma and Chi-Squared
Distributions

The gamma distribution is an extension of the expo-
nential distribution and is sometimes used as afailure
time model (Martz and Waller, 1991). It isalso often
used asaprior distribution in Bayesian estimation (see
Appendix B) of the falure rate parameter 4 from
Poisson(it) or exponential(4) data. The chi-squared
distribution isare-expression of aspecial case of the
gamma distribution.

[¢)]

D™
(TRNTINTIT]
WN 2O

0 ] GCO00 0433 2
Figure A.12 Four Weibull densities, al having 4 =0
and al having the same «..

The gamma distribution arises in many ways. The
distribution of the sum of independent exponential (1)
random variables is gamma, which forms the basis for
a confidence interval for A from exponential (1) data.
Because the sum of n independent exponentially
distributed random variables hasagammadistribution,
the gammadistribution is often used asthe distribution
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of the time, or waiting time, to the nth event in a
Poisson process. In addition, the chi-squared distribu-
tion is the distribution for a sum of sguares of inde-
pendent, identically distributed normal random vari-
ables, which forms the basis for a confidence interval
for the variance of a normal distribution. The gamma
distribution is also often used as a distribution for a
positive random variable, similar to the lognormal and
Weibull distributions. In PRA work, it isoften used as
a Bayesian distribution for an uncertain positive
parameter.

Two parameterizations of the gamma distribution are
common, with various letters used for the parameters.
The parameterization given here is most useful for
Bayesian updates, the primary use of the gamma
distribution in this handbook. For arandom variable,
T, that has agammad distribution, the p.d.f. is

f(t)= F'B(’a) t ~texp(-tp)

fort, a, and 5> 0. Here

M(a) = I: X te *dx

isthe gamma function evaluated at o. If o isaposi-
tiveinteger, I'(o) = (a - 1)!.

A gamma distribution with parameters « and f is
referred to as gamma(«, ). The mean and variance of
the gamma(a,, ) random variable, T, are:

E(T) = alp
and
Var(T) = ol

The parameters o and £ arereferred to as the shape and
scale parameters. The shape parameter « allows the
density to have many forms. If « is near zero, the
distribution is highly skewed. For o = 1, the gamma
distribution reducesto an exponential (5 *) distribution.
Also, the gamma(a = n/2, 5 =%) distribution isknown
as the chi-squared distribution with n degrees of
freedom, denoted x*(n). The p.d.f. for the y*(n) distri-
bution is found by substituting these values into the
above formula for the gamma p.d.f. It aso can be
found in many statistics texts (e.g., Hogg and Craig
1995, Chapter 4).
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In addition, if T has a gamma(«, ) distribution, then
26T hasay*(2¢) distribution, which formsthe defining
rel ationship between thetwo distributions. Thegamma
and chi-sguared distributions can, therefore, beviewed
astwo ways of expressing one distribution. Since the
chi-squared distribution usually isonly allowed to have
integer degreesof freedom, the gammadi stribution can
be thought of as an interpolation of the chi-squared
distribution.

Percentiles of the chi-squared distribution aretabul ated
in Appendix C. Thesetablescan be used asfollowsto
find the percentiles of any gamma distribution. The
100xp percentile of a gamma(a, f) distribution is
2o(20)/(26), where x°(2¢) denotes the 100xp percen-
tile of the chi-squared distribution with 2 degrees of
freedom.

Figure A.13 shows gamma densities with four shape
parameters, a. When o < 1, the density becomes
infiniteat 0. When o = 1, the density isidentical to an
exponentia density. When « islarge, the distribution
is approximately anormal distribution.

a=0.5
- a=
——a=2

—a=3

GC00 0433 3

FigureA.13 Gammadensitieswith four shape param-
eters.

As stated previoudly, the sum of exponential lifetimes
or waiting times has a gamma distribution, with the
shape parameter o equal to the number of exponential
lifetimes. Thus, when « islarge, thegammadistribu-
tion isapproximately normal.
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An alternative parameterization of the gammadi stribu-
tion uses the scale parameter, say t =% If Thasa
gamma(a, 7) distribution, its p.d.f. is

1

T (a)

f(t) = t* “texp(-t/ 7)

for t, a, and ¢ > 0. The mean and variance of the
gamma(«, 7) random variable, T, are:

E(T) =ar
and
Var(T) = ar’

This aternative parameterization is useful in a very
small portion of this handbook.

A. 7.7 Thelnverted Gamma and Inverted
Chi-Squared Distributions

The inverted gamma distribution is often used as a
prior distribution for Bayesian estimation of thetimeto
failure of an exponential(4) distribution (Martz and
Waller 1991). It isalso used as aprior and posterior
distribution for 6> when the data have a normal distri-
bution with variance ¢ (Box and Tiao 1973, Lee
1997).

For agamma(a, £ ) random variable, T, W= 1T hasan
inverted gamma distribution with p.d.f.

2B eoft £,

for w, a, and £ > 0. The parameters here are the same
as for the gamma distribution. For example, if T has
units of time then w and S both have units L/time. A
comparison of this density with the gamma density
shows that this density has an extraw? in the denomi-
nator, for reasons explained in Section A.4.7.

a+l

f(w) =

The parameters of theinverted gammadistribution are
a and p and this distribution is denoted inverted
gamma(«, ). Similar to the gamma(a, £) distribution,
a is the shape parameter and /3 is the scale parameter.
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The distribution can aso be parameterized in terms of

t=p"

The mean and variance of an inverted gamma(«, £)
random variable, W, are

B

EW =51 “d
and

Y 5.
VaW) = o im-a Y

Note that, for a < 1, the mean and higher moments do
not exist and, for 1 < a < 2, the mean exists but the
variance does not exist (Martz and Waller, 1991).

Figure A.14 showsfour inverted gammadistributions,

al having the same scale parameter, f, and having
various shape parameters, «.

n «=05

GCO00 0433 6
Figure A.14 Four inverted gamma densities, having
the same scale parameter, 5, and various shape
parameters, a.

In the special casewith a =n/2 and § = %, the distribu-
tion is called the inverted chi-squared distribution
with n degrees of freedom. Values from this distribu-
tion are sometimes denoted »2(n). This form of the
distribution is often used in connection with aprior for
&> when the data are normally distributed.

A. 7.8 TheBetaDistribution

Many continuous quantitative phenomena take on
values that are bounded by known numbers a and b.
Examples are percentages, proportions, ratios, and
distance to failure points on items under stress. The
beta distribution isaversatile family of distributions
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that is useful for modeling phenomena that can range
from 0 to 1 and, through atransformation, fromato b.

The beta distribution family includes the uniform
distribution and density shapesthat rangefromdecreas-
ing to uni-modal right-skewed to symmetric to U-
shaped to uni-modal left-skewed to increasing (Martz
and Waller 1991). It can serve as amodel for areli-
ability variable that represents the probability that a
system or component lasts at least t units of time. The
beta distribution is also widely used in Bayesian
estimation and reliability analysisasaprior distribution
for thebinomial distribution parameter pthat represents
areliability or failure probability.

The p.d.f. of abetarandomvariable, Y, is

_T@+B) ioag s
(=rarg? @

for 0 < y < 1, with the parameters «, £ > 0, and is
denoted beta(a, ). The gamma functions at the front
of the p.d.f. form a normalizing constant so that the
density integratesto 1.

The mean and variance of the beta(a, £) random
variable, Y, are

_a
EM =455
and
ar(Y) = ap .
(a+B)(a+B+]

Various beta distributions are shown in Figures A.15
and A.16. Figure A.15 shows beta densities with o =
S, and therefore with mean 0.5. When « < 1, the
density becomes infinite at 0.0, and when g < 1, the
density becomes infinite at 1.0. Whena = =1, the
density isuniform. When a and 5 arelarge, thedensity
is approximately normal.
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Figure A.15 Beta distributions with mean = 0.5.

Figure A.16 shows densities with mean 0.1. Again,
when a < 1, the density becomes infinite at 0.0, and
when a > 1, the density is zero at 0.0. Asthe parame-
ters a and S become large, the density approaches a
normal distribution.
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GC0004335

Figure A.16 Four beta distributions with mean 0.1.

Another parameterization of the beta distribution uses
the parameters x, = o and n, = « + . This parameteri-
zation is used by Martz and Waller (1991) because it
simplifies Bayes formulas and Bayesian estimation.
The p.d.f. of abeta(x,, ny) is

(no)

Toarnexy” ¢

f(y)=

for 0 < y < 1, with the parameters x, and n, satisfying

Ny > X, > 0.
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The mean and variance of the beta(x,, n,) random
variable, Y, are

E(Y) -%
0

and

Var(Y) =X0‘2n0—_x& )
Ny (Ny+1)

Percentilesof the betadistribution occur intheformula
for aconfidenceinterval for p, and in the formulafor a
Bayes credible interval for p when a conjugate prior is
used. Some percentiles are tabulated in Appendix C.
In addition, many software packages, including some
commonly used spreadsheets, can calculate these
percentiles. If none of these work, Martz and Waller
(1991) give a method for finding the beta percentiles
fromthe corresponding percentilesof an F distribution.
TheF distribution istabulated in most statistics books,
and can be interpolated if necessary with good accu-
racy. Therelationis

beta (e, ) = a! [+ fFF;_ (2, 24)]

for small g, and

beta,(e, ) = oF (22, 20) | [B+ & F (22, 2]

for large g. Here beta (e, f) denotesthe q quantile, or
the 100xq percentile, of the beta(«, £) distribution, and
F,(d, d,) denotes the q quantile of an F distribution
with d, and d, degrees of freedom. So if al elsefails,
and a statistics book with F tables is nearby, the first
formula can be used to find the lower percentile of the
betadistribution and the second formulacan be used to
find the upper percentile. Thismethod isnot discussed
further here, because it is not expected to be needed
often.

A.7.9 TheLogistic-Normal Distribution

While not widely used in PRA, this distribution is
commonly used for Bayesian inference in other fields
of application, especially as a prior for the binomial
parameter p when p could plausibly be fairly large. X
has a logistic-normal distribution if In[X/(1 - X)] is
normally distributed with some mean p and variance .
Thefunction In[X/(1 - X)] may appear strange, butitis
common enough in some areas of applicationto havea
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name, the logit function. Therefore, the above state-
ments could be rewritten to say that X has a logistic-
normal distribution if logit(X) is normally distributed.

Properties of the logistic-normal distribution are
summarized here.

. Lety=Inx(1-x)]. Thenx=¢€/(1+¢).
Thisimplies that x must be between 0 and 1.
. Asxincreases from0to 1, y = In[x/(1 - X)]

increases monotonically from -« to +e,
Thus, y can be generated from anormal distri-
bution with no problem of going outside the
possible range.

. The monotonic relation between x and y
means that the percentiles match. For exam-
ple, the 95th percentile of Yis pu + 1.645¢.
Denote this by y,e. Therefore, the 95th
percentile of Xis

X095 = EXP( Xo9) / [1 + €XP( Xo05)]-
Alternatively, this can be written as

Yoos = IN[Xo05/ (1 ~ Xoe5)] -

. If Xiscloseto 0 with high probability, so that
X/(1 - X) is close to X with high probability,
then the logistic-normal and lognormal distri-
butions are nearly the same.

Thethird bullet shows how to find the percentiles of a
logistic-normal distribution. Unfortunately thereisno
equally easy way to find the moments, such asthe mean
or variance. Moments must be found using numerical
integration.

FigureA.17 showsseveral logistic normal distributions
that al have median 0.5. These correspond to a nor-
mally distributed y with mean p = 0 and with various
valuesof ¢. Figure A.18 shows several logistic normal
distributions that all have median 0.1. These corre-
spond to anormally distributed y with mean p = -2.2
=In[0.2/(1 - 0.2)].

Notethe genera similaritiesto the betadistributionsin
Figures A.15 and A.16. Note also the differences:
Logistic-normal distributions are characterized most
easily by percentiles, whereas beta distributions are
characterized most easily by moments. Also, the beta
densities can be J-shaped or U-shaped, but thelogistic-
normal densities always drop to zero at the ends of the
range.

If Z has a standard normal distribution, X has a chi-
squared distribution with d degrees of freedom, and Z
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T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure A.17 Three logistic-normal densities with
median = 0.5.

A.7.10 Student’st Distribution

T T T T
0.0 0.1 0.2 0.3 0.4

Figure A.18 Three logistic-normal densities with
median = 0.1.

0.5

The Student’s t distribution is not used in a central
way in PRA. However, it appears in a peripheral way
in places in this handbook, when dealing with the
parameters of anormal or lognormal distribution, or in
large-sampl e situations when a distribution is approx-
imated as normal or lognormal. Therefore, the basic
facts are summarized here.

and X are statistically independent, then
4

JX/d

T:=
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has a Student’s t distribution with d degrees of free-
dom. Therefore, T has adistribution that is symmetri-
cal about O, and it can takevaluesintheentirered line.
If dislarge, the denominator is close to 1 with high
probability, and T has approximately astandard normal
distribution. If dissmaller, thedenominator adds extra
variability, and the extreme percentiles of T arefarther
out than are the corresponding normal percentiles.
Tables of the distribution are given in Appendix C.

Although not needed for ordinary work, the p.d.f. and
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first two moments of T are given here. (See many
standard texts, such DeGroot 1975.) The p.d.f.is

- r [(d + 1) / 2] 2 -(d+1)/2
f(t) = —(dn)ﬂzr(d/z)[u (t?/2)] .

If d>1themeanisO. If d> 2 thevarianceis d/(d-2).
If d < 2 the variance does not exist. If d =1, even the
mean does not exist; in this case the distribution is
called a Cauchy distribution.
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