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8.  PARAMETER ESTIMATION USING EXISTING DATA SOURCES

8.1 Selection of Parameter 
Estimates from Existing 
Data Bases

The need to select parameter estimates from existing
generic data bases may arise when performing a
probabilistic risk assessment (PRA).  This can occur
when a PRA is being performed on a new plant that has
no operating history or it may occur when no plant-
specific information exists for a specific component.
Whatever the reason, when it becomes necessary to
select parameter estimates from generic data bases,
certain cautions should be observed.  These are

(1) The generic data base should contain failure
probability estimates for components that are
identical or comparable to the ones in the
PRA model in terms of size, component
boundary definition, intended  operational
history (e.g., normally operating versus
standby), and expected or postulated operat-
ing environment.

(2) The generic data base should contain a recom-
mended point estimate and an uncertainty
distribution for each identified failure.

(3) If possible, the primary sources of informa-
tion used to develop the generic data base’s
failure probabilities and distributions should
be information from other nuclear power
plants.  Supplemental information from non-
nuclear sources should be used only when
necessary to provide failure probabilities and
distributions for components that cannot be
obtained from nuclear power plant generic
data sources.

(4) Where possible, the generic data base’s fail-
ure probabilities and distributions should be
derived from actual failure events.  If such
information is not available, then failure
probabilities and distributions generated by
other techniques (e.g., expert elicitation) are
acceptable.

(5) Generic data base failure probabilities and
distributions should reflect current trends.  If
significant trends exist within the failure data
indicating either an increase or decrease in the
failure probabilities or distributions, the
underlying event failure information used to
generate the failure probabilities and distribu-
tions should represent these recent events.
However, if no significant trends exist, then
data from all years can be used to estimate the
failure probabilities.

(6) The failure probability estimates contained
within the generic data base should not be
based on incestuous sources, i.e., the esti-
mates should not be derived from two differ-
ent sources that employed similar or different
analysis techniques to the same ultimate set of
failure information.

8.2 Combining Data From
Different Sources

In this section, data come from a number of similar, but
not identical, sources.  For simplicity, the discussion is
in terms of data from a number of nuclear power plants.
However, the ideas can be applied much more widely.

8.2.1 The Hierarchical Model

The situation is described by a hierarchical model,
with two levels.  The first level models the plants as a
family, with the members resembling each other.  The
second level models the data that are generated at each
plant.

To be more specific, suppose that initiating events are
to be modeled, so the parameter of interest is .
Level 1 of the model says that  varies among the m
plants, but only to a limited degree.  Thus, the plants
are not identical, but they resemble each other.  This is
modeled by a distribution g that describes the popula-
tion variability.  Before any data are generated, the
distribution g is invoked m times, producing values 1

through m.  These values of i are independently
generated, but they all come from the same distribution,
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Figure 8.1  Hierarchical model for Poisson data.

g.  For each i, i is assigned to plant i.  That is Level 1
of the hierarchical model.  It is shown on the left side
of Figure 8.1.
Level 2 of the model says that, conditional on the i

values, the plants independently produce data.  Thus,

for each i, plant i is observed for time ti, and it experi-
ences a random number of initiating events, Xi, with Xi

having a Poisson( iti) distribution.  This is shown on
the right side of Figure 8.1.

The population-variability distribution g could be a
gamma( , ) distribution, which has the computational
advantage of being conjugate to the Poisson distribu-
tion.  But that is not the only allowed distribution.  It
could also be a lognormal(µ, 2) distribution, or some
other distribution.

The data consist of the observation times, t1 through tm,
which are known and treated as fixed, and the event
counts, x1 through xm, which are treated as randomly
generated.  The unknown parameters consist of 1

through m, as well as any unknown parameters of g.
These parameters of g could be  and , or µ and 2, or
some other parameters, depending on the assumed form
of g.  To emphasize the contrast between the two
levels, the parameters of g, such as  and  or µ and 2,
are sometimes called hyperparameters.

When the data instead are failures on demand, the
situation is very similar.  The population-variability
distribution generates parameters p, one for each plant.
The distribution g might be a beta distribution, or it
might be some non-conjugate distribution, such as
(truncated) lognormal or logistic-normal.  The un-
known parameters consist of the parameters of g, and
the parameters p1 through pm.  The data consist of the
counts of failures and demands at each plant, (x1, n1)
through (xm, nm).  Examples 8.1 and 8.2 illustrate the
two types of data.

In Example 8.1, most of the plants experience at least

one initiating event, and the total number of events is
361.  Thus, the data set is large, and the methods given
below perform well.  Example 8.2, on the other hand,
is a small data set.  That is, most of the plants experi-
enced no failures, and the total number of failures is
only 6.  This example was deliberately chosen for this
handbook to illustrate problems that can occur with
sparse data.

Two methods are given below for analyzing data by
means of a hierarchical model.  The results of each
analysis include both an estimate of the population-
variability distribution, g, and estimates of all the plant-
specific parameters, �i or pi.

8.2.2 The Parametric Empirical Bayes
Method

8.2.2.1 General Approach

In spite of the name, this is not a truly Bayesian meth-
od.  Instead, it is a kind of hybrid, involving a non-
Bayesian step followed by a Bayesian step.

Step 1. Look at the variability in the data from the
plants, and estimate g.  That is, based on the
data from all the plants, estimate the parame-
ters of g by maximum likelihood, and obtain
the resulting estimate of the distribution.  Call
the estimate .�g
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Step 2. Now treat  as a prior distribution.  Perform�g
the usual Bayesian update, with the prior
distribution  and data from a single plant,�g

to get the posterior distribution for the plant-
specific parameter, �i or pi.

Example 8.1 Initiating events from many plants.

The number of unplanned scrams at power, x, and the number of 1000 critical hours, t, are listed below for one
calendar year (1984) at 66 plants.  The data are from Martz et al. (1999).

Plant x t Plant x t Plant x t Plant x t

Arkansas 1
Arkansas 2
Beaver Val. 1
Big Rock Point
Brunswick 2
Callaway
Calvert Cliffs 1
Cook 1
Cook 2
Cooper Sta-
tion
Crystal River
3
Davis-Besse
Diablo Cany. 1
Dresden 2
Dresden 3
Duane Arnold
Farley 1

3
12

4
2
3

12
5
3
7
3
2
4
5
3
8
6
2

6.2500
7.6433
6.4516
6.8966
2.6549
1.5038
7.5758
8.1081
5.3030
6.0000
8.3333
5.5556
1.0846
6.5217
3.8835
6.5934
6.8966

Farley 2
Fort Calhoun
Ginna
Grand Gulf
Haddam Neck
Hatch 1
Hatch 2
Indian Pt. 2
Indian Pt. 3
Kewaunee
LaSalle 1
LaSalle 2
Maine Yank.
McGuire 1
McGuire 2
Millstone 1
Millstone 2

6
1
1
7
3
7
7
4
7
4
9

11
7
4

16
0
3

8.3333
5.2632
6.6667
2.0896
6.5217
5.6452
3.1111
4.7059
6.9307
7.5472
6.2937
5.4726
6.6667
6.0606
6.9869
6.9902
8.5714

Monticello
North Anna 1
North Anna 2
Oconee 1
Oconee 2
Oconee 3
Oyster Creek
Palisades
Pt. Beach 1
Pt. Beach 2
Prairie Island 1
Prairie Island 2
Quad Cities 1
Quad Cities 2
Robinson 2
Salem 1
Salem 2

0
8
4
3
0
4
2
1
0
0
4
0
3
2
0

10
10

0.8106
4.7619
6.1538
7.5000
8.7840
6.5574
1.6949
1.5625
6.4201
7.5442
8.3333
7.8440
4.7619
6.8966
 0.6161
2.6738
3.3898

San Onofre 2
San Onofre 3
St. Lucie 1
St. Lucie 2
Summer
Surry 1
Surry 2
Susquehan. 1
Susquehan. 2
Turkey Point 3
Turkey Point 4
Vermont
Yank.
Wash. Nucl. 2
Zion 1
Zion 2

5
7
6
9

11
8

14
7
7
8
9
2

23
6
7

5.2632
5.0725
5.5556
7.3770
5.5556
5.2980
7.4468
6.5421
2.1472
7.3394
5.0847
7.1429
4.3643
6.3158
6.3063

Example 8.2 Failure to start of AFW motor-driven segments at many plants.

The number of failures to start on unplanned demands for motor-driven segments of the AFW system are
tabulated for 68 plants, for 1987-1995.  Here, x is the number of failures and n is the number of demands.
Common-cause failures are excluded.  The data are from Poloski et al. (1998, Table E-4).

Plant x n Plant x n Plant x n Plant x n
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Arkansas 1
Arkansas 2
Beaver Valley 1
Beaver Valley 2
Braidwood 1
Braidwood 2
Byron 1
Byron 2
Callaway
Calvert Cliffs 1
Calvert Cliffs 2
Catawba 1
Catawba 2
Comanche Pk 1
Comanche Pk 2
Cook 1
Cook 2

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 14
   9
 24
 43
 13
 24
 11
 26
 57
 12
 15
 41
 89
 66
 14
 18
 36

Crystal River 3
Diablo Canyon 1
Diablo Canyon 2
Farley 1
Farley 2
Fort Calhoun
Ginna
Harris
Indian Point 2
Indian Point 3
Kewaunee
Maine Yankee
McGuire 1
McGuire 2
Millstone 2
Millstone 3
North Anna 1

 1
 0
 0
 0
 0
 0
 0
 0
 1
 2
 0
 0
 0
 0
 1
 0
 0

 16
 46
 30
 34
 54
   5
 28
 98
 24
 32
 26
 23
 45
 44
 11
 54
 20

North Anna 2
Oconee 1
Oconee 2
Oconee 3
Palisades
Palo Verde 1
Palo Verde 2
Palo Verde 3
Point Beach 1
Point Beach 2
Prairie Island 1
Prairie Island 2
Robinson 2
Salem 1
Salem 2
San Onofre 2
San Onofre 3

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
 0
 0
 0
 0

 18
 18
 18
 12
 13
   7
 12
   9
   8
 16
   3
   7
 28
 24
 32
 13
 17

Seabrook
Sequoyah 1
Sequoyah 2
South Texas 1
South Texas 2
St. Lucie 1
St. Lucie 2
Summer
Surry 1
Surry 2
Three Mile Isl 1
Vogtle 1
Vogtle 2
Waterford 3
Wolf Creek
Zion 1
Zion 2

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

  17
  30
  41
  69
  87
  35
  21
  24
  26
  32
    6
103
  45
  38
  51
  13
    8

Thus, the method yields both an estimate of the popula-
tion variability and plant-specific estimates at each
plant.

The method as just explained underestimates the
uncertainty in the answers, because it treats  as if it�g
were equal to the true distribution g.  Therefore, the
best implementations of the empirical Bayes method
add a final adjustment to Step 2, which makes the
plant-specific posterior distributions somewhat more
diffuse.  This largely accounts for the inaccuracy in
equating  to g.�g

The name "empirical Bayes" follows from the two
steps.  The plant-specific estimates are found in a
Bayesian way, by updating a prior distribution with
plant-specific data.  But the prior is not based on prior
data or on prior belief, but instead is based on the
existing data � the prior is determined empirically.

Step 1 can be carried out in a simple way only if the
distributions have convenient forms.  Thus, parametric
empirical Bayes estimation assumes that g is conjugate
to the distribution of the data at any plant.  That is, g is
a gamma distribution when the data are initiating
events or other data from a Poisson process, and g is a
beta distribution when the data are failures on demand.
This is a limitation to the method.  One reason for
introducing the hierarchical Bayes method, in Section
8.2.3, is to overcome this limitation.

Some people might object that the method double
counts the data.  It uses the data to decide on the prior

distribution, and then it uses the same data again to
update the prior to obtain the plant-specific estimates.
There are two responses to this.  (1) The objection is
not important in practice, unless the number of plants
in the study is very small, or if a small number of
plants dominate the data.  If no single plant contributes
much to the estimate of g, then there is very little
double counting that influences the final estimate for
that plant.  (2) The hierarchical Bayes method, given in
Section 8.2.3, will avoid this difficulty entirely.

For failures on demand, Martz et al. (1996) give a
tutorial on the empirical Bayes method, illustrated with
NPP data.  Siu and Kelly (1998) also explain the
method as part of their tutorial article.  Carlin and
Louis (2000) give a full treatment, including worked-
out examples.

8.2.2.2 MLE Equations for the Gamma-Poisson
Model

The gamma-Poisson model is used for initiating events.
The data at plant i consist of a count of events, xi, in
time ti.  Conditional on the plant-specific parameter �i,
it is assumed that xi was generated from a Poisson(�iti)
distribution. However �i was generated from the distri-
bution g, which is assumed to be gamma(�, �).  The
equations for the MLEs of � and � are now given.

The conditional distribution of X, conditional on �, is
Poisson.  However, the unconditional distribution of X,
when � might be any value generated by the
population-variability distribution g, is more compli-
cated.  It can be shown that the unconditional distribu-
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tion equals the distribution conditional on �, averaged
over the possible values of �.  In equation form, this is

.Pr( | , ) Pr( | ) ( | , )X x X x g d= = =∫α β λ λ α β λ

Substituting the formulas for the Poisson and gamma
distributions, it can be shown that this equals

(8.1)

Pr( | , )

( )
! ( )

( / ) ( / ) ( )

X x

x

n
t tx x

=

= + + − +

α β
α

α
β β α       .

Γ
Γ

1

As mentioned in Section 6.2.3.5, this is the gamma-
Poisson distribution, also often called the negative
binomial distribution. This distribution is not condi-
tional on �.  Therefore, � does not appear in this
expression.  Instead, it is the probability of seeing x
events in time t at a plant with a randomly assigned �.

To find the MLEs of � and �, write the product of
terms of the form of Expression 8.1, using values (xi, ti)
for i from 1 to m.  That product is the joint uncondi-
tional likelihood of the data.  Take the logarithm of that
expression and maximize it.  There are several ways to
accomplish this.

One approach is to maximize it numerically as a
function of two variables, using some version of
Newton’s method.  This is the approach of Siu and
Kelly (1998).  The derivatives of the log-likelihood,
used in performing the maximization, are given below,
as stated by Engelhardt (1994).  Here lnL denotes the
logarithm of the likelihood.

∂
∂α

ψ α ψ α βln [ ( ) ( ) ln( / )]L x ti i
i

m

= + − − +
=
∑ 1

1

 .
∂
∂β β

α
β

ln L x
x

t
ti

i

i
i

i

m

= − − +
+











=
∑1

1

The function � is the digamma function, �(u) =
(d/du)ln�(u).  It is built into many computer packages.
Because xi is an integer, the expression involving � can
be rewritten as

 . (8.2)ψ α ψ α
α

( ) ( )+ − =
+ −=

∑x
ji

j

xi 1

11

A second approach reduces the problem to solving one
equation, as follows.  At the maximum of the log-
likelihood, the two derivatives are equal to zero.
Therefore, do the following.

Set the two derivatives equal to zero.  The solutions, to

be found, are  and .�α �β

Solve the second equation for , as a function of .�α �β
Substitute this expression into the first equation.

Solve the resulting equation numerically for .�β

Calculate  from the numerical value of .�α �β

The necessary equations to carry out these steps are the

following.  The equation for , as a function of , is�α �β

 . (8.3)�
�

� �
α β

β β
=

+











+










= =
∑ ∑x

t

t

t
i

ii

m
i

ii

m

1 1

Substitute Equation 8.3 into 

[ ( � ) ( � ) ln( / �)]ψ α ψ α β+ − − + =
=
∑ x ti i
i

m

1 0
1

and solve that equation numerically for .  Having�β

obtained the numerical value of , find  from�β �α
Equation 8.3.

Sometimes the equations do not have a solution.  If the
plants do not appear to differ much � for example, the
naive plant-specific estimates xi /ti are all similar � the
maximum likelihood estimate of g may be degenerate,
concentrated at a single point.  That says that the plants
appear to have a single common �.  Engelhardt (1994)
recommends aborting the estimation process, not trying
to fit a model, if the estimate of � becomes greater than
�ti during the iterations.  The population-variability
distribution g would be gamma(�, �), with the second
parameter greater than �ti.  But simply pooling the data
(and using a Jeffreys prior) would result in a gam-
ma(�xi + ½,  �ti) posterior distribution.  Thus the
empirical Bayes distribution would produce a between-
plant distribution that is more concentrated (larger
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second parameter) than the distribution when the plant
data are pooled.  This is not the intent of the hierarchi-
cal model.

8.2.2.3 MLE Equations for the Beta-Binomial
Model

The beta-binomial model is used for failures on de-
mand.  The data at plant i consist of a count of failures,
xi, and demands, ni.  Conditional on the plant-specific
parameter pi, it is assumed that xi was generated from
a binomial(ni, pi) distribution. However pi was gener-
ated from the distribution g, which is assumed to be
beta(�, �).  The equations for the MLEs of � and � are
now given.

The conditional distribution of X, conditional on p, is
binomial.  However, the unconditional distribution of
X, when p might be any value generated by the
population-variability distribution g, equals the distri-
bution conditional on p, averaged over the possible
values of p.  That is,

.Pr( | , ) Pr( | ) ( | , )X x X x p g p dp= = =∫α β α β

Substituting the formulas for the binomial and beta
distributions, and using some standard identities
relating the beta function and the gamma function, it
can be shown that this equals

Pr( )

!

!( )!

( )

( )

( )

( )

( )

( )

X x

n

x n x

x n x

n

=

=
−

+ + − +
+ +

Γ
Γ

Γ
Γ

Γ
Γ

α
α

β
β

α β
α β

  .

This is called the beta-binomial distribution.  If both x
and n are integers, this can be rewritten without the
gamma function, as follows.

Pr( )

!

!( )!
( ) ( ) ( )

X x

n

x n x
j j j

j

n x

j

x

j

n

=

=
−

+ + + +
=

− −

=

−

=

−

∏∏ ∏α β α β
0

1

0

1

0

1

  .

As just stated, this is valid if x and n are integers.  Are
they not always integers?  No, they are not, if the data
set only gives an estimate of the number of demands,
which is not necessarily an integer.  In that case, the

expression with the gamma function is the only one
that can be used.

The likelihood is the product of terms of one of these
forms, containing values (xi, ni) for i = 1 to m.  To find
the MLE, take the logarithm of the likelihood and
maximize it.

The maximization can be done in a variety of ways.
One approach, following Atwood (1994), does not deal
with � and � directly.  Instead, it reparameterizes,
working with

� = � + �   and
µ = �/�  .

The intuitive reason for this reparameterization is that
µ is the mean of the binomial distribution, and in most
models the mean is one of the easiest things to esti-
mate.  The letter � was chosen as a mnemonic for
"dispersion," because the variance of the binomial
distribution is µ(1 � µ)/(�+1).  Thus, � is related
directly to the variance.  Recall that in Section
6.3.2.2.2, the prior and posterior values of � + �, which
we are calling � here, were interpreted as the prior and
posterior number of demands.

After working with µ and �, and finding the MLEs of
these parameters, we will translate back to find the
MLEs of � and �, using the equations

� = µ�
� = (1 � µ)� . 

The MLE is found by setting the derivatives with
respect to µ and � to zero.  After some manipulation,
the equations can be expressed as

(8.4a)
{ }

{ }

ψ µδ ψ µδ

ψ µ δ ψ µ δ

( ) ( )

(( ) ) (( ) )

+ −

= − + − − −

=

=

∑

∑

x

n x

i
j

m

i i
i

m

1

1

1 1

(8.4b)

{ }

{ }

ψ µ δ ψ µ δ

ψ δ ψ δ

(( ) ) (( ) )

( ) ( )

1 1
1

1

− + − − −

= + −

=
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n x

n

i i
j

m

i
j

m

   .
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Here � is the digamma function, the derivative of ln�,
just as in Section 8.2.2.2.  If xi and ni are integers for all
i, Equation 8.2 can be used to rewrite Equation 8.4 as

(8.5a)

1
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1
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1

0

1

1
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(8.5b)
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   .

The Equations 8.4 or 8.5 must be solved for µ and �.
One method, suggested by Atwood (1994) is to begin
with a trial value of �.  Solve Equation 8.4a or 8.5a
numerically for µ.  This typically needs only a few
iterations.  Substitute this value into Equation 8.4b or
8.5b, and solve the resulting equation for �.  Continue
alternating between the two equations until the esti-
mates converge.

The estimates do not always converge.  If the plants
have very similar data, the maximum likelihood
estimate of g may be concentrated at a single point,
degenerate.  This would say that the plants all have the
same p.  Atwood (1994) recommends aborting the
iterations if the value of � becomes greater than �ni.
Allowing � to be greater than �ni would produce a
population-variability distribution that is more concen-
trated than the distribution corresponding to simply
pooling the data.

8.2.2.4 Adjustment for Uncertainty in the 
Estimate of g

As mentioned above, the method as presented so far
underestimates the uncertainty in the final answers,
because it does not account for the uncertainty in .�g
Kass and Steffey (1989) present a correction to the

final estimates, to approximately account for this
uncertainty.  The plant-specific posterior means are
unchanged, but the posterior variances are increased
somewhat.  Kass and Steffey state that the adjustment
is very important if there are few data subsets (plants,
in the present discussion) and many observations
(initiating events or demands).  Conversely, the adjust-
ment is unimportant when there are many data subsets
and few observations.  No harm is done by automati-
cally applying the adjustment in every case.  The
formulas are given here.

8.2.2.4.1  Equations for the Gamma-Poisson Case

It is computationally advantageous to reparameterize in
terms of µ = �/� and �.  Denote the maximum likeli-
hood estimators for the hyperparameters µ and � by �µ
and .  It turns out that these estimators are asymptot-�α
ically uncorrelated, causing certain terms in the formu-
las to be zero.

The method as given in Section 8.2.2.2, finds the

estimates  and , which can be reparameterized�α �β

as  and .  These are the estimated parame-� � / �µ α β= �α
ters of the gamma prior distribution g.  The method
then updates the estimated prior by plant-specific data.
The posterior distribution of �i is also a gamma distri-
bution, with posterior mean

(8.6)E
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The Kass-Steffey adjustment increases the variance to

(8.7)
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A covariance term would normally also be present, but
this term is zero when the parameterization is in terms
of µ and �.

We now develop the formulas that must be substituted
into Equation 8.7.  From Equation 8.6, the derivatives
of  are E ipost ( )λ

   and
∂ λ

∂µ
α α
α µ

E x

t
i i

i

post ( )

�

�( � )

( � � )
= − +

+ 2

 .
∂ λ

∂α
µ µ
α µ

E x t

x
i i i

i

post ( )

�

�( � )

( � � )
= − −

+ 2

From the asymptotic theory of maximum likelihood
estimation, the variances are found as follows.  The
information matrix, J, is the negative of the matrix of
second derivatives of the log-likelihood:

 (8.8)J
J J

J J
E

L L

L L
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evaluated at  and .  The inverse of this matrix is�µ �α
asymptotically equal to the variance-covariance matrix:

 .
var( � ) cov( � , � )
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When this is carried out, we have
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If all the xi values are integers, the difference of ψ
terms can be rewritten using Equation 8.2, and the

difference of derivatives  can be written algebra-′ψ
ically, avoiding use of a special function.

Because the off-diagonal elements are zero, the inverse
consists of the inverses of the diagonal terms, and it
follows that

    andvar( � ) /µ =1 11J

 .var( � ) /α =1 22J

The final step of the empirical Bayes method is to
substitute the expressions just found into the Kass-
Steffey adjustment for the posterior variance, Equa-
tion 8.7.  Then approximate the posterior distribution
by a gamma distribution having the original posterior
mean and the adjusted posterior variance.  An example
will be given below.

8.2.2.4.2  Equations for the Beta-Binomial Case

As in Section 8.2.2.3, we parameterize in terms of µ =
�/(� + �) and � = � + �.  Denote the maximum likeli-

hood estimators by  and .  Although these estima-�µ �δ
tors are asymptotically not exactly uncorrelated, as was
the case for the gamma-Poisson model, they are nearly
uncorrelated.  The equations are given by Atwood
(1995).

The method as given in Section 8.2.2.3 finds the esti-

mates  and , the estimated parameters of the beta�µ �δ
prior distribution g.  The method then updates the
estimated prior by plant-specific data.  The posterior
distribution of pi is also a beta distribution, with poste-
rior mean

(8.9)E p
x

n
i

i

i

post ( )
� �

�
= +

+
µδ
δ

and posterior variance

 .var ( ) ( )[ ( )] / ( � )post post postp E p E p ni i i i= − + +1 1δ

The Kass-Steffey adjustment increases the variance to
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(8.10)
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From Equation 8.9, the two derivatives of  areE pipost ( )
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The variances and covariance are found from inverting
the matrix in Equation 8.8, with � used now instead of
�.  The terms can be found as follows.  Define
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Then the information matrix is given by
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J S S S22

2
1

2
2 31= + − −� ( � )µ µ

 .J J S S12 21 1 21= = − −� � ( � ) �µ δ µ δ   

The variances and covariance follow from standard
formulas for inverting a 2×2 matrix.  Define the deter-
minant

D = J11J22 � (J12)
2 .

Then we have

var( � ) /µ = J D22

var( �) /δ = J D11

 .cov( � , �) /µ δ = −J D12

To complete the Kass-Steffey adjustment, substitute
the above expressions into the equation for the adjusted
variance, Equation (8.10).  Then find the beta distribu-
tion having the posterior mean and the adjusted poste-
rior variance.  Use this as the approximate posterior
distribution for pi.

8.2.2.5 Application to Examples

The parametric empirical Bayes method is now illus-
trated with Examples 8.1 and 8.2.  First, a chi-squared
test will be performed, to test whether the plants can be
pooled.  In each example, the difference between plants
will be found to be either statistically significant or
very close to statistically significant.  Then plant-
specific confidence intervals will be found, each based
only on the data for a single plant.  Then the empirical
Bayes method will be used, and the resulting 90%
credible intervals will be shown, based on the plant-
specific posterior distributions, using the Kass-Steffey
adjustment.  The plant-specific intervals resulting from
the empirical Bayes analysis will be compared to the
(less sophisticated) plant-specific confidence intervals.

8.2.2.5.1  Example 8.1, Initiating Events

To test poolability of the plants in Example 8.1, the
Pearson chi-squared test was performed, as pre-
sented in Section 6.2.3.1.2.  The test statistic X2 was
equal to 378.5.  Because there were 66 plants, the
value of X2 should be compared to a chi-squared
distribution with 65 degrees of freedom.  The value
of 378.5 is very far out in the tail of the chi-squared
distribution, off the table.  Thus, the evidence is
extremely strong, beyond question, that the plants do
not all have the same .

To show this graphically, 90% confidence intervals
for  were plotted, with each confidence interval
based on the data from a single plant.  These are
shown in Figure 8.2.    Because t has been written in
terms of 1000 critical hours, the units of  are events
per thousand critical hours.   The order of the plants
is not alphabetical, but instead is by decreasing
estimate of .  Because the example has so many
plants, only the plants with the 10 highest and 10
lowest estimates are individually identified in the
figure.
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1.E-03 1.E-02 1.E-01 1.E-00 1.E+01 1.E+02

Industry

Callaway

Wash. Nuclear 2

Diablo Canyon 1

Salem 1

Grand Gulf

Susquehanna 2

Salem 2

McGuire 2

Hatch 2

Dresden 3

46 other plants

Crystal River 3

Fort Calhoun

Ginna

Robinson 2

Monticello

Point Beach 1

Millstone 1

Point Beach 2

Prairie Island 2

Oconee 2

Events/1000-Critical-Hours GC00 0419 1

Figure 8.2  Plant-specific MLEs and 90% confidence
intervals for .

Industry

Callaway

Wash. Nuclear 2

Salem 1

Diablo Canyon 1

Grand Gulf

Susquehanna 2

Salem 2

McGuire 2

Hatch 2

LaSalle 2

46 other plants

Quad Cities 2

Vermont Yankee

Fort Calhoun

Crystal River 3

Ginna

Point Beach 1

Millstone 1

Point Beach 2

Prairie Island 2

Oconee 2

Events/1000-Critical-Hours GC00 0419 2

1.E-03 1.E-02 1.E-01 1.E-00 1.E+01 1.E+02

Figure 8.3  Plant-specific posterior means and 90%
credible intervals for .

A 90% confidence interval is plotted at the top of the
plot for the pooled industry data.  Of course the
interval is too short to be realistic, because pooling of
the data is completely unjustified in this example.  In
fact, the interval is too short even to be visible.
Nevertheless, the overall pooled mean is a useful
reference value for comparison with the individual
plant results.  For this reason, a vertical dashed line
is drawn through the pooled mean.

Because the plant-specific estimates differ so great-
ly, the figure uses a logarithmic scale.  This means
that some of the point estimates, those with zero
values, cannot be plotted.

Figure 8.3 is based on the empirical Bayes method.
For each plant, the mean and 90% credible interval
are shown, based on the posterior distribution and
the Kass-Steffey adjustment.  An interval for the
industry is also plotted, a 90% interval based on the
mean of this distribution is also shown, and a
vertical dashed line is drawn through the mean.

Those who wish to make some detailed comparisons
can find a few numerical values listed in Tables 8.1
through 8.3.

Table 8.1 Portion of frequentist analysis 
results for Example 8.1.

Plant    x,  t MLE and 90% conf.
int. a

Industry

Callaway
Wash. Nuc. 2
Diablo Can. 1
Salem 1
Grand Gulf

Pt. Beach 2
Prairie Isl. 2
Oconee 2

361, 374.229

  12, 1.5038
  23, 4.3643
    5, 1.0846
  10, 2.6738
    7, 2.0896

    0, 7.5442
    0, 7.8440
    0, 8.7840

(0.883, 0.965, 1.05)

(4.60,   7.98,  12.9)
(3.60,   5.27,  7.47)
(1.82,   4.61,  9.69)
(2.03,   3.74,  6.34)
(1.57,   3.35,  6.293)

(0.0,     0.0,    0.397)
(0.0,     0.0,    0.382)
(0.0,     0.0,    0.341)

a.  Format is (lower bound, MLE, upper bound).

The most striking feature seen by comparing the two
figures is that the empirical Bayes estimates vary
less from each other than do the MLEs.  Of course,
if a plant has no events, the lower confidence limit is
zero, and any Bayesian method will give a non-zero
lower limit.  Such a difference appears enormous
when plotted on a logarithmic scale.  However, the
effect is seen not only at the bottom of Figures 8.2
and 8.3 but also at the top: the largest plant-specific
posterior means are closer to the industry average
than are the corresponding MLEs.  Indeed, just as
was seen for Bayes methods in general, the empiri-
cal Bayes method gives posterior means that are
between the MLEs and the industry (i.e., the prior)
mean.
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Table 8.2 Portion of empirical Bayes analysis,
without Kass-Steffey adjustment.

Plant Gamma pa-
rameters, ,

Posterior mean and
90% credible interval a

Industry

Callaway
Wash. Nuc. 2
Salem 1
Diablo Can. 1
Grand Gulf

Pt. Beach 2
Prairie Isl. 2
Oconee 2

  1.39, 1.211

13.39, 2.715
24.39, 5.575
11.39, 3.885
  6.39, 2.296
  8.39, 3.301

  1.39, 8.755
  1.39, 9.055
  1.39, 9.995

(0.118, 1.15, 3.07)

(  2.94, 4.93, 7.34)
(  3.03, 4.37, 5.93)
(  1.66, 2.93, 4.49)
(  1.25, 2.78, 4.81)
(  1.29, 2.54, 4.14)

(0.0164, 0.159, 0.424)
(0.0158, 0.154, 0.410)
(0.0143, 0.139, 0.372)

a.  Format is (lower bound, mean, upper bound).

Table 8.3 Portion of empirical Bayes analysis,
with Kass-Steffey adjustment.

Plant Gamma pa-
rameters, ,

Posterior mean and
90% credible interval a

Industry

Callaway
Wash. Nuc. 2
Salem 1
Diablo Can. 1
Grand Gulf

Pt. Beach 2
Prairie Isl. 2
Oconee 2

  1.39, 1.211

12.13, 2.460
23.40, 5.348
11.03, 3.762
  6.08, 2.185
  8.15, 3.204

  1.33, 8.382
  1.33, 8.665
  1.33, 9.554

(0.118, 1.15, 3.07)

(  2.86, 4.93, 7.47)
(  3.00, 4.37, 5.96)
(  1.65, 2.93, 4.52)
(  1.22, 2.78, 4.86)
(  1.27, 2.54, 4.16)

(0.0151, 0.159, 0.431)
(0.0146, 0.154, 0.417)
(0.0132, 0.139, 0.378)

a.  Format is (lower bound, mean, upper bound).

The order of the plants is not exactly the same in
Figures 8.2 and 8.3.  The reason is that estimates for
different plants are pulled toward the industry mean
by different amounts.  This can cause some rear-
rangement of the ranking of the plants.  For example
Salem 1 and Diablo Canyon 1 appear in reverse
order in the two figures (and in Tables 8.1 and 8.3).
The reason is that Diablo Canyon 1 has about half as
much data (5 events in 1085 hours) as Salem 1 (10
events in 2674 hours).  Therefore Diablo Canyon 1 is
pulled more toward the industry mean.

We notice also, by comparing Tables 8.2 and 8.3,
that the Kass-Steffey adjustment is very small in this
example.  The data set is so large that g can be
estimated quite well.  Any error in equating the

estimate to the true distribution is minor, as reflected
in the small effect of the Kass-Steffey adjustment.

An empirical Bayes estimator is sometimes called a
shrinkage estimator, or a shrinker, because the
method pulls all the MLEs in towards the industry
mean.  The intuitive justification for such shrinkage is
the recognition that extreme data are produced by a
combination of extreme parameters and luck.  Thus, the
plant with the highest observed frequency appears so
extreme because of a combination of large � and some
bad luck.  Likewise, the plant with the best perfor-
mance, Oconee 2, which ran for 366 days straight
without a single scram, can attribute its perfect perfor-
mance to a combination of low � and good luck.  The
empirical Bayes method tries to remove the effect of
luck when estimating the � values.

As always when performing a statistical analysis, one
should try to combine statistical calculations with
engineering understanding.  It is known that newly
licensed plants sometimes experience more initiating
events than they do after acquiring more experience.
This was mentioned in the discussion of Example 2.1,
and it is seen again here.

Of the 66 plants, 9 did not have their commercial
starts until 1984 or later.  These 9 young plants
are all among the 19 with the highest event
frequencies.  For example, consider the two
plants with the highest estimated frequencies,
based on the 1984 data.  Both of these plants had
their commercial starts in December 1984.

The hierarchical model is intended for plants that are
nominally identical.  The variability among the plants
is unexplained, and modeled as random.  An important
assumption is that each plant is assigned a � from the
same distribution, g.  As a result, each plant is as likely
as any other to have a large � or a small �.  The
parameters �i are called exchangeable if any �i is as
likely as any other to correspond to a particular plant.
As discussed by Gelman et al. (1995, Section 5.2),
when we know nothing about the plants,
exchangeability is a reasonable assumption.  When we
know the ages of the plants, however, exchangeability
is no longer reasonable.  The most immature plants are
expected to have larger values of �.
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1.E-03 1.E-02 1.E-01 1.E+00

Industry

Millstone 2

Crystal River 3

Indian Point 3

Indian Point 2

Robinson 2

(63 plants with
no failures)

p GC00 0419 3
1.E-04

Figure 8.4  Plant-specific MLEs and 90% confidence
intervals for p.

Thus, the analysis of Example 8.1 really should be
modified.  One way would be to separate the plants
into two groups, mature and immature, and perform an
empirical Bayes analysis on each group.  A more
sophisticated way would be to try to model the age of
the plant as a continuous explanatory variable.  Then
the otherwise random  �i would be multiplied by some
function of the age of plant i, a large factor for imma-
ture plants and a smaller factor for mature plants.  Such
models are beyond the scope of this handbook, how-
ever.

8.2.2.5.2 Example 8.2, AFW Segment Failures to
Start

This example has 68 plants, with 6 failures in 1993
demands.

Poloski et al. (1998) perform a chi-squared test to
see if p is the same at all plants.  This test is ex-
plained in Section 6.3.3.1.2.  The test statistic X2

equals 113.1.  Because there are 68 plants, the
degrees of freedom is 67.  The reported p-value is
0.0004, meaning that 113.1 is the 99.96th percentile
of the chi-squared distribution with 67 degrees of
freedom.  However, the data set has so few failures
that the chi-squared distribution is not a good
approximation for the distribution of X2.  The ex-
pected number of failures at a plant with 30 demands
(a typical number of demands) is 6×30/1993 = 0.09.
This is much less than the recommended minimum
of 0.5.  Therefore, the calculated p-value is quite
suspect.

Poloski et al. choose to model between-plant differ-
ences with a hierarchical model, partly because of
the above calculated p-value, and partly on the
grounds that modeling possible differences between
plants is more conservative (reflecting more variabil-
ity) than simply pooling the data.

The empirical Bayes estimate of the population-
variability distribution, g, is a beta(0.137, 36.34)
distribution.  The mean of this distribution is 3.77E�3.
The 5th and 95th percentiles are 5.99E�12 and
2.12E�2.  Note, the first parameter of the distribution
is very small, well below 0.5.  As a result, the 5th
percentile is unrealistically small, implying less than
one failure in one hundred billion demands.  This
unrealistic lower bound carries over to the posterior
distribution of all plants that have zero failures.
Figures 8.4 and 8.5 are the analogues of Figures 8.2
and 8.3.

The first figure shows plant-specific MLEs and 90%
confidence intervals, while the second shows the
results of the empirical Bayes analysis, posterior
means and 90% credible intervals.  Only the five
plants that had failures are individually identified in
the figures.

Some numerical details are given in Table 8.4
through 8.6.

Just as with Example 8.1, the empirical Bayes
method pulls the plant-specific MLEs toward the
industry mean.  This is seen in both the figures and
the tables.  Also, the Kass-Steffey adjustment in-
creases the width of the plant-specific intervals by a
noticeable amount, for example, by about 30% for
Indian Point 3.  This is best seen by comparing
Tables 8.5 and 8.6.  This comparison shows that the
estimates of the parameters have noticeable uncer-
tainty, even if the assumption of a beta distribution is
accepted.
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1.E-03 1.E-02 1.E-01 1.E+00
p GC00 0419 4

 Industry

 Indian Point 3
   

Millstone 2

Crystal River 3
  

 Indian Point 2
   

Robinson 2

(63 plants with
no failures)

1.E-04

Figure 8.5  Plant-specific posterior means and 90%
credible intervals for p.

Table 8.4 Portion of frequentist analysis 
results for Example 8.2.

Plant x, d MLE and 90% conf. int. a

Industry

Millstone 2
Crystal River 3
Indian Point 3
Indian Point 2
Robinson 2

Prairie Island 1

Vogtle 1

6, 1993

1,   11
1,   16
2,   32
1,   24
1,   28

0,     3

0, 103

(1.31E!3, 3.01E!3, 5.93E!3)

(4.65E!3, 9.09E!2, 3.64E!1)
(3.20E!3, 6.25E!2, 2.64E!1)
(1.12E!2. 6.25E!2, 1.84E!1)
(2.13E!3, 4.17E!2, 1.83E!1)
(1.83E!3, 3.57E!2, 1.59E!1)

(0.0,          0.0,          3.32E!1)

(0.0,          0.0,          2.87E!2)

a.  Format is (lower bound, MLE, upper bound).

Poloski et al. (1998) carry out the above empirical
Bayes analysis, but they do not report the calculated
lower bounds for plants that experience no failures.
They recognize that those lower bounds are unrealis-
tically small, and that such calculated values are an
artifact of using a beta distribution.  Therefore, they
simply report that the lower bound is <1E-8.  The
next section gives a way to avoid entirely the
assumption of a beta distribution.

Table 8.5 Portion of empirical Bayes analysis,
without Kass-Steffey adjustment.

Plant Beta pa-
rameters,

, 

Posterior mean and 90%
credible interval a

Industry

Indian Point 3
Millstone 2
Crystal River
3
Indian Point 2
Robinson 2

Prairie Isl. 1

Vogtle 1

0.137, 36.34

2.137, 68.34
1.137, 47.34
1.137, 52.34
1.137, 60.34
1.137, 64.34

0.137, 39.34

0.137, 139.3

(6.0E!11, 3.77E!3,
2.12E!2)

(6.14E!3, 3.12E!2,
7.15E!2)
(1.70E!3, 2.40E!2,
6.78E!2)
(1.53E!3, 2.17E!2,
6.14E!2)
(1.33E!3, 1.88E!2,
5.33E!2)
(1.24E!3, 1.76E!2,
5.01E!2)

(5.5E!12, 3.48E!3,
1.96E!2)

(1.6E!12, 9.86E!4,
5.52E!3)

a.  Format is (lower bound, mean, upper bound).

Table 8.6 Portion of empirical Bayes analysis,
with Kass-Steffey adjustment.

Plant Beta pa-
rameters,

, 

Posterior mean and 90%
credible interval a

Industry

Indian Point 3
Millstone 2
Crystal R. 3
Indian Point 2
Robinson 2

Prairie Isl. 1

Vogtle 1

0.137, 36.34

1.149, 35.65
0.596, 24.29
0.663, 29.94
0.754, 39.34
0.793, 44.14

0.133, 37.98

0.127, 128.9

(6.0E!11, 3.77E!3,
2.12E!2)

(2.27E!3, 3.12E!2,
8.77E!2)
(2.26E!4, 2.40E!2,
8.54E!2)
(3.16E!4, 2.17E!2,
7.44E!2)
(4.34E!4, 1.88E!2,
6.17E!2)
(4.78E!4, 1.76E!2,
5.69E!2)

(2.6E!12, 3.48E!3,
1.97E!2)

(2.8E!13, 9.86E!4,
5.59E!3)

a.  Format is (lower bound, mean, upper bound).

8.2.3 The Hierarchical Bayes Method
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8.2.3.1 General Approach

In the preceding discussion of parametric empirical
Bayes, the unknown hyperparameters of the popula-
tion-variability (or prior) distribution were estimated by
maximum likelihood.  The empirical Bayes estimate of
the population-variability distribution is the corre-
sponding distribution in which these maximum likeli-
hood estimates have been inserted.

The hierarchical Bayes method is entirely different. It
embodies a complete (or full) Bayesian approach to the
problem of estimating the unknown population-vari-
ability distribution based on the available data.  The
hierarchical Bayes approach expresses the initial
uncertainty (that is, uncertainty before the data are
considered) about the unknown hyperparameters using
yet another prior, a so-called second-order or hyper-
prior distribution.  For example, in Example 8.1, the
population-variability distribution can be a gamma
distribution, with parameters (called hyperparameters
in this context)  � and � .  The distribution g could also
be lognormal with parameters µ and �2.  Any desired
distribution can be used, with any parameterization.
Figure 8.6 denotes the parameters of g generically as �
and �.  The uncertainty in the state-of-knowledge about
the values of � and � is expressed by a suitably speci-
fied joint hyperprior distribution on � and �.  This
expands Figure 8.1 to be Figure 8.6.  We almost always
desire such hyperprior distributions to be diffuse
because we almost never have very precise (or infor-
mative) information at the hyperprior level of such a
model.

Figure 8.6 is drawn showing � and � with separate
distributions.  In general, the hyperparameters together
have a joint distribution, which does not have to be the
product of independent distributions.

In the full Bayesian model all the unknown parameters,
including prior-distribution hyperparameters, are
assigned prior distributions that express the analyst’s
initial uncertainty about these parameters.  This is
known as a hierarchical Bayes model.  Berger (1985)
and Gelman et al. (1995) discuss the basic notions of
hierarchical Bayes modeling.  In Example 8.1, the
parameters of interest to be estimated at the overall
population-variability level of the analysis are � and �,
while the plant-specific parameters to be estimated are

the 66 �i values.  Each of these 68 parameters is
assigned an appropriate prior distribution in a hierar-
chical Bayes analysis.

The solution to the hierarchical Bayes method requires
conditioning on the data and obtaining the required
posterior distributions of all the parameters of interest.
This is done using Markov chain Monte Carlo
(MCMC) simulation (see Section 8.2.3.3).  The desired
point and interval estimates of the parameters are then
directly 
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Figure 8.6  Hierarchical Bayes model for Poisson data.

(and easily) obtained from these posterior distributions.
This process will be illustrated for Examples 8.1 and
8.2 in Sections 8.2.3.4 and 8.2.3.5, respectively.

It is well known (Berger 1985 and Gelman et al. 1995)
that parametric empirical Bayes can be viewed as an
approximation to a full hierarchical Bayes analysis.
However, there are several important advantages of
hierarchical Bayes over parametric empirical Bayes.

First, parametric empirical Bayes essentially requires
the use of a conjugate population-variability distribu-
tion in order to obtain the required unconditional
distribution of X in closed form.  Because hierarchical
Bayes analysis is implemented in practice using Monte
Carlo simulation, non-conjugate population-variability
distributions can be used as easily as conjugate distri-
butions.  For the Poisson example, a lognormal(µ, �2)
distribution on � is as easy as a gamma(�, �) distribu-
tion.

Second, when using hierarchical Bayes, there is no
need to worry about double counting of the data.  The
hierarchical model and associated Bayesian analysis
ensures that this cannot occur.

Finally, as mentioned above, the hierarchical Bayes
method is conveniently and easily implemented in
practice by means of Markov chain Monte Carlo
simulation using existing software, which is presently
available for free download from the Web (see Section
8.2.3.3.3).

8.2.3.2 Directed Graphs

The first conceptual step in a hierarchical Bayes
analysis should be to construct a directed graph
representing the hierarchical Bayes model.  Briefly,
such a graph represents all quantities as nodes in a
directed graph, in which arrows between nodes repre-
sent directed influences.  A directed graph for Example
8.1 is shown in Figure 8.7, where we have defined µi =
�iti.

Note that a solid arrow indicates a stochastic depend-
ency, while a dashed arrow indicates a logical function.
The hierarchical Bayes approach for the gamma-
Poisson case proceeds as follows.  First specify hyper-
prior distributions for the two hyperparameters outside
the "plant i" box in Figure 8.7.  Inference on the
hyperparameters �, � and the scram rate vector � = (�1,
�2, �, �66) requires that we obtain Monte Carlo samples
from the joint posterior g(�, �, � | x), where the data
vector x is defined as x = (x1, x2, �, x66).  The letter g is
used here to denote both prior and posterior densities.
Generate these samples, and then use summary statis-
tics from these samples to obtain the desired estimates,
such as point and interval estimates of these parame-
ters.

In order to calculate samples from this joint posterior
we must successively sample from the full conditional
distributions.  That is, we must successively sample
from the conditional distribution of each stochastic
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Figure 8.7  Directed graph for the hierarchical Bayes
analysis of Example 8.1.

node given all the other stochastic nodes in the graph.
However, conditional independence is expeditiously
exploited in directed graphs in order to simplify these
full conditional distributions.  For example, given �
and �i, � in Figure 8.7 is conditionally independent
of xi.

8.2.3.3 Markov Chain Monte Carlo (MCMC)
Simulation

Markov chain Monte Carlo (MCMC) sampling
techniques give the required samples from the joint
posterior distribution of all the unknown parameters.
The desired hierarchical Bayes point and interval
estimates can thus be directly computed from the
corresponding simulated sample observations without
the need for tedious analytical or numerical calcula-
tions.  MCMC is a Monte Carlo integration technique
that is implemented using Markov chains. MCMC
draws these samples by running a cleverly constructed
Markov chain for a long period of time.  Good intro-
ductions to MCMC are provided by Gilks et al. (1996)
and Gelman et al. (1995).

In the Poisson example, the required hierarchical Bayes
estimates can be obtained by means of Gibbs sampling,
a basic MCMC technique that is described next.  The

equations are sketched here first.  Then a publicly
available software package, BUGS, is described.  The
package implements the equations without requiring
the users to understand the details.

8.2.3.3.1 Gibbs Sampling

Gibbs sampling is a technique that can be used to
generate a random sample from the joint posterior
distribution indirectly, provided that we can directly
sample each of the full conditional distributions (which
are described below).

The Gibbs sampling method, sometimes also called
simply the Gibbs sampler, is briefly described here.
Suppose that we have a set of p parameters �1, �2, �, �p

whose joint posterior distribution g(�1, �2, �, �p | x) is
unknown but is of interest to be estimated.  This is the
usual case when using the hierarchical Bayes method.
In Example 8.1, the �is consist of the two hyperparam-
eters plus the 66 �is, and the number of parameters, p,
is 68.

However, suppose that the full conditional distributions
g( �i | �j, x, j � i) i = 1, 2, �, p, are known in the sense
that sample values of �i, conditional on values of �j, j
� i, may be generated from these by some appropriate
method.  Under mild conditions, these conditional
distributions uniquely determine the required joint
posterior distribution g(�1, �2, �, �p | x); hence, they
determine all the unconditional marginal distributions
g( �i | x), i = 1, 2, �, p, as well.

The Gibbs sampler generates samples from the re-
quired joint distribution as follows:

(1) Select an arbitrary starting set of values
.  Set j = 0.θ θ1

0 0,..., p

(2) Draw  from g( �1 | , �, , x),θ1
1j+ θ2

j θp
j

then  from g(�2 | , , �,  , x),θ2
1j+ θ1

j θ3
j θp

j

and so on up to  from g(�p | , �,θp
j+1 θ1

j

, x) to complete one iteration of theθp
j
−1

sampler.
(3) Increment j and repeat Step (2) until j+1 =

n. After n such iterations of Step (2), we

have obtained the sample ( , �, ).θ1
n θp

n
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Under mild conditions, as n � � this p-
tuple converges in distribution to the
unknown joint posterior distribution g(�1,
�2, �, �p | x).

Typical implementation of the Gibbs sampling algo-
rithm generates an initial "large" number of iterations
(called the burn-in) until the samples have converged.
The burn-in samples are discarded, and the samples
generated thereafter are used as sample observations
from the joint posterior distribution g(�1, �2, �, �p | x).
Nonparametric density estimators, such as those given
in Section 6.7.3, can then be used to approximate the
posterior distribution using the post burn-in samples.
Examples 8.1 and 8.2 are analyzed in this way in
Sections 8.2.3.4 and 8.2.3.5.

In Example 8.1, sixty-eight full conditional distribu-
tions are required in order to use the Gibbs sampler:

(1)
g x g

ei
i

( | , , ) ( | , )

( )

α β λ α β λ

β
α

λ
α α

α

≡

∝














=

−∏Γ

66

1

66

(2)
g(  | , , x) � g(  | ,  )

= gamma 66 0 0625 0 0625
1

66

α λ+ +




=

∑. , .i
i

(3)
g( i | , , x) = gamma( +xi, +ti),   i = 1, ..., 66 .

It is easy to sample directly from the gamma distribu-
tions.  The first distribution, however, the distribution
for , is not of a familiar form, and in fact is not
known fully.  It is only known to be proportional to the
stated expression, with the normalizing constant
unknown.  The Metropolis-Hastings method is
described next, as a way to sample from a distribu-
tion such as the distribution for .

8.2.3.3.2 Metropolis-Hastings Step

It is sometimes the case that one or more of the full
conditional distributions g( �i | �j, x, j � i) i = 1, 2, �,
p, required in Step (2) of the Gibbs sampler may not be
available in closed form.  This may happen as follows.
These full conditional distributions are usually obtained
using Bayes’ Theorem and, while the two terms (the

likelihood and the prior distribution) in the numerator
of Bayes’ Theorem are usually known, the integration
required to obtain the normalizing factor (the denomi-
nator) in Bayes’ Theorem cannot be performed in
closed form.  That is, the required full conditional
distribution is known only up to a multiplicative
constant, the normalizing factor.  The corresponding
full conditional distribution is thus unavailable in
closed form, and sample values from this distribution
cannot be directly obtained as required in Step (2) of
the Gibbs sampler. 

Denote the full conditional distribution, which is
known only up to a normalizing constant, as g(�i | �j,
x, j � i).  For convenience, we suppress the condition-
ing terms in the notation below.  In this situation,
sample observations may be obtained in Step (2) of the
Gibbs sampler by using a so-called Metropolis-Has-
tings step (Hastings 1970) as follows:

(4) Initialize �i
0 and set j = 0.

(5) Generate an observation i
* from a candi-

date distribution q( i
*| i

j), where q(y|x) is a
probability density in y with parameter (for
example mean) x.

(6) Generate a uniform(0, 1) observation u .
(7) Let

θ
θ α θ θ
θi

j+ i i
j

i

i
j

u1 =
≤




* *, ( , )

,

  if 

  otherwise        

where

 .α ( , )
( ) ( | )

( ) ( | )
x y

g y q x y

g x q y x
=

(8) Increment j and go to (2)

Because � uses a ratio, g(y)/g(x), it can be calculated
even though the normalizing constant for g is un-
known.  The candidate distribution in Step (2) can be
almost any distribution (Gilks et al. 1996), although a
symmetric distribution such as a normal distribution
results in a simplification of the algorithm, and is called
simply a Metropolis step (as opposed to a Metropolis-
Hastings step).  A common choice for q(y|x) is a
normal distribution with mean x and a variance that
allows the random deviates to be a representative
sample from the entire complete conditional distribu-
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model
{
   for (i in 1:M) {
      lambda[i] ~ dgamma(alpha,beta)
      mu[i] <- lambda[i]*t[i]
      x[i] ~ dpois(mu[i])
   }
   alpha ~ dexp(1.0)
   beta ~ dgamma(0.0625, 0.0625)
}

Figure 8.8  WinBUGS model specification for
Example 8.1.

tion.  A preliminary rule of thumb suggested Gelman
et al. (1995, Sec. 11.5) is that the variance be such that
the new value, �i*, is picked in Step (4) about 30% of
the time, and the old value, �i

j, is picked about 70% of
the time.  The new value should be picked more often
in problems with few parameters and less often in
problems with many parameters.

Actually, BUGS favors a method called adaptive
rejection sampling (Gilks and Wild 1992) instead of
the Metropolis-Hastings algorithm.  This method uses
more storage space but fewer iterations.  It requires that
the conditional distributions in the Gibbs sampler be
log-concave (George et al. 1993).  This requirement is
satisfied for the commonly used prior distributions.  If
the user happens to select a prior that leads to a prob-
lem, BUGS will give a diagnostic message.

8.2.3.3.3 BUGS (Bayesian Inference Using Gibbs
Sampling)

Fortunately, for a wide range of common problems,
there is little need to actually program the Gibbs
sampler in practice. Gibbs sampling has been conve-
niently implemented through the BUGS software
project (BUGS 1995, Spiegelhalter et al. 1995, and
Gilks et al. 1994).  It is currently available for free
download at WWW URL 

http://www.mrc-bsu.cam.ac.uk/bugs/   .

The classic BUGS program uses text-based model
description and a command-line interface, and versions
are available for major computing platforms.

A Windows version, WinBUGS, has an optional
graphical user interface (called DoodleBUGS) as well
as on-line monitoring and convergence diagnostics.
BUGS is reasonably easy to use and, along with a user
manual, includes two volumes of examples.  Section
8.2.3.4 illustrates how WinBUGS was used in Example
8.1, to obtain the hierarchical Bayes estimates of the 66
plant-specific scram rates and of the corresponding
population-variability distribution.  Section 8.2.3.5 uses
WinBUGS in Example 8.2, to obtain the hierarchical
Bayes estimates of p at each of the 68 plants and of the
corresponding population-variability distribution.

8.2.3.4 Application to Example 8.1, Initiating
Events

Let us now illustrate the hierarchical Bayes method
in Example 8.1.  We use the Gibbs sampler in BUGS
to calculate all the required population and plant-
specific scram rate estimates.  To begin, we assume
that the population-variability distribution is gamma(-

, ) just as in Section 8.2.2.  The hyperparameter 
is given an exponential hyperprior distribution with
mean and variance of 1, while the hyperparameter 
is given an independent gamma(0.0625, 0.0625)
hyperprior distribution.  Thus,  is assumed to have
a hyperprior mean and standard deviation of 1 and 4,
respectively.  The hyperpriors are diffuse (large
variances), and have plausible means, so they will
probably not bias the final answers much.

Figure 8.8 contains the WinBUGS model used here
for this Poisson example. The initial values consid-
ered are: alpha = 1, beta = 1, and lambda[i] = 1, i =
1, …, 66.

After 1,000 burn-in iterations (to remove the effect of
the initial starting values and to achieve convergence
of the Markov chain), 10,000 additional simulated
posterior sample values of , , and  = ( 1, 2, …,

66) were recorded.  These 10,000 sample values
were then used to calculate the required posterior
point and credible interval estimates of , , and
each i.  For example, the hierarchical Bayes esti-
mated posterior mean of the Callaway scram rate is
calculated to be 4.97 per 1,000 critical hours.  The
corresponding 90% credible interval on 1 is [2.87,
7.51].
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Industry

Callaway

Wash. Nuclear 2

Salem 1

Diablo Canyon 1

Grand Gulf

Susquehanna 2

Salem 2

McGuire 2

Hatch 2

LaSalle 2

46 other plants

Quad Cities 2

Vermont Yankee

Fort Calhoun

Crystal River 3

Ginna

Point Beach 1

Millstone 1

Point Beach 2

Prairie Island 2

Oconee 2

Events/1000-Critical-Hours GC00 0419 5

1.E-03 1.E-02 1.E-01 1.E-00 1.E+01 1.E+02

Figure 8.9  Plant-specific posterior means and 90%
credible intervals for , from hierarchical Bayes
analysis.

In addition, the marginal posterior mean and stan-
dard deviation of  are calculated to be 1.38 and
0.30, respectively, whereas those for  are computed
to be 1.21 and 0.32.  A hierarchical Bayes 90%
credible interval for  is [0.94, 1.93], while the corre-
sponding interval for  is [0.76, 1.78]. The marginal
posterior correlation between  and  is also easily
calculated from the 10,000 pairs of corresponding
posterior ( , ) values to be 0.89.  From Table 8.3 we
see that the empirical Bayes point estimates of  and

 are 1.39 and 1.21, respectively, which are in near
perfect agreement with the hierarchical Bayes
estimates.

Figure 8.9 illustrates the hierarchical Bayes results.
For each plant, the posterior mean and 90% credible
interval are shown.  The mean and 90% credible
interval for the population-variability distribution are
also shown, and a vertical dashed line is drawn
through the mean.  Actually, this population-variabil-
ity distribution is the gamma distribution evaluated
when  and  are set equal to their posterior means.
It does not reflect the uncertainty in these two hyper-
parameters.  Figure 8.9 agrees very closely with
Figure 8.3.

Table 8.7 contains the same portion of the numerical
hierarchical Bayes analysis results for Example 8.1
as are displayed in Table 8.3.

The point and interval estimates in Table 8.7 are all
in good agreement with the empirical Bayes esti-
mates in Table 8.3.

Table 8.7 Portion of hierarchical Bayes anal-
ysis results for Example 8.1.

Plant Posterior mean and 90%
credible interval a

Industry

Callaway
Wash. Nuc. 2
Salem 1
Diablo Can. 1 
Grand Gulf

Pt. Beach 2
Prairie Isl. 2
Oconee 2

(0.116, 1.14, 3.06)

(2.87, 4.97, 7.51)
(3.01, 4.39, 5.99)
(1.65, 2.94, 4.57)
(1.24, 2.83, 4.99)
(1.27, 2.57, 4.21)

(0.013, 0.156, 0.429)
(0.012, 0.152, 0.410)
(0.011, 0.137, 0.374)

a.  Format is (lower bound, mean, upper bound).
The least significant digit may be inaccurate by 2
or more, because of Monte Carlo sampling error.

8.2.3.5 Application to Example 8.2, AFW 
Segment Failures to Start

Recall that this example has 68 plants with sparse
failure data consisting of only 6 failures in 1993
demands.  Because the data are so sparse, the form of
the prior, the population-variability distribution, can
strongly influence the answers.  Therefore, the example
is analyzed using two population-variability distribu-
tions, first a beta distribution, as in Section 8.2.2, and
then a logistic-normal distribution.  In each case,
diffuse hyperpriors with plausible means are used.
Therefore, the exact choices made for the hyperpriors
have little influence on the answer.

8.2.3.5.1 Analysis with Beta Prior

We assume that the population-variability distribution
is a beta( , ) distribution.  To begin, the hyper-
parameter  is assigned an exponential(1) hyperprior
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model 
{ 
  for (i in 1:M) { 
      x[i] ~ dbin(p[i],n[i]) 
      p[i] ~ dbeta(alpha, beta) 
  } 
  alpha ~ dexp(1.0) 
  beta  ~ dgamma(1.0,0.035) 
}

Figure 8.10  WinBUGS model specification for a
beta prior in Example 8.2.

1.E-03 1.E-02 1.E-01 1.E+00
p GC00 0419 4

1.E-04

 Industry

 Indian Point 3
   

Millstone 2

Crystal River 3
  

 Indian Point 2
   

Robinson 2

(63 plants with
no failures)

Figure 8.11  Plant-specific posterior means and 90%
credible intervals for p, from hierarchical Bayes
analysis with beta population-variability distribution.

distribution with a hyperprior mean and standard
deviation of 1, while the hyperparameter  is as-
signed an independent gamma(1.0, 0.035) hyperprior
distribution. Thus, we assume that  has a hyperprior
mean and standard deviation both equal to 28.6.
The forms of these hyperprior distributions ensure
that the joint posterior distribution will be log-con-
cave, and the diffuseness of the hyperpriors ensures
that they will not influence the final answers greatly.

Fig. 8.10 contains the WinBUGS model used here
for this binomial example. The initial values were:
alpha = 1, beta = 1, and p[i] = 0.01, i = 1, …, 68.

After 10,000 burn-in iterations (to remove the effect
of the initial starting values and to achieve conver-
gence of the Markov chain), 90,000 additional
simulated posterior sample values of , , and p =
(p1, p2, …, p68) were recorded.  These 90,000 sample
values were then used to calculate the required
posterior point and credible interval estimates of , ,
and each pi.

In addition, the marginal posterior mean and stan-
dard deviation of  are calculated to be 0.188 and
0.136, respectively, whereas those for  are com-
puted to be 46.4 and 32.4.  A hierarchical Bayes
90% credible interval for  is [0.046, 0.442], while the
corresponding interval for  is [9.95, 109.5].  Note the
large uncertainties associated with the hierarchical
Bayes estimates of  and  because of the sparse-
ness of the data.  Table 8.6 shows that the empirical
Bayes point estimates of  and  are 0.137 and
36.34, respectively, which are well within the 90%
credible intervals of the corresponding hierarchical
Bayes estimates.

Figure 8.11 illustrates the hierarchical Bayes results.
For each plant, the posterior mean and 90% credible
interval are shown. The mean and 90% credible

interval for the population-variability distribution are
also shown, and a vertical dashed line is drawn
through the mean.

Table 8.8 contains the same portion of the numerical
hierarchical Bayes analysis results for Example 8.2
as given in Table 8.6.  The results are presented to
only two significant digits, because the Monte Carlo
errors reported by BUGS show that the third signifi-
cant digit is not meaningful.

The point and interval estimates in Table 8.8 are all
in reasonably close agreement with the empirical
Bayes estimates in Table 8.6.

Table 8.8 Portion of hierarchical Bayes 
analysis results using beta
prior for Example 8.2.

Plant Posterior mean and 90% credi-
ble interval a
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model
{
    for (i in 1:M) {
        x[i] ~ dbin(p[i],n[i])
        y[i] ~ dnorm(mu,tau)
        p[i] <- exp(y[i])/(1 + exp(y[i]))
    }
    mu ~ dnorm(-5,0.0001)
    tau ~ dgamma(1,7)
}

Figure 8.12  WinBUGS model specification for a
logistic-normal prior in Example 8.2.

Industry

Indian Point 3
Millstone 2
Crystal R. 3
Indian Point 2
Robinson 2

Prairie Isl. 1

Vogtle 1

(1.6E�9, 4.0E�3, 2.1E�2)

(5.5E�2, 3.2E�2, 7.9E�2)
(1.6E�2, 2.6E�2, 8.3E�2)
(1.5E�2, 2.3E�2, 7.1E�2)
(1.3E�2, 1.9E�2, 5.9E�2)
(1.2E�2, 1.8E�2, 5.4E�2)

(1.5E�15, 4.1E�3, 2.1E�2)

(2.5E�16, 1.2E�3, 6.4E�3)

a.  Format is (lower bound, mean, upper bound).

8.2.3.5.2 Analysis with Logistic-Normal  Prior

One of the primary advantages in using the hierarchi-
cal Bayes method is the ability to consider non-
conjugate population-variability (or prior) distribu-
tions.  We now illustrate this for Example 8.2.

The previous analysis considered a conjugate beta
prior in this example.  Table 8.8 shows that, for x = 0,
the use of a beta prior produces lower 5% credibility
limits on the order of 10-15 or 10-16, which are unreal-
istically small.  This result is a consequence of the
HB-fitted L-shaped beta prior distribution with high
density close to p = 0.

We can avoid such unrealistic results by using a
non-conjugate logistic-normal prior distribution (see
Section 6.3.2.4.2) in the hierarchical Bayes ap-
proach.  Recall that, while such a prior is extremely
difficult to consider in an empirical Bayes approach,
it is extremely easy to do in hierarchical Bayes.

Figure 8.12 contains the WinBUGS model specifi-
cation for using a logistic-normal prior in Example
8.2.  Observe that this is no more difficult than
using the hierarchical Bayes model based on a
conjugate beta prior shown in Figure 8.10.  Note
that BUGS parameterizes the normal distribution
in terms of  = 1/ 2.  A commonly used prior
distribution for  is gamma, and that choice is
used here.  Thus, assigning µ a prior precision of
0.0001 is equivalent to assigning it a prior vari-
ance of 10000, or a prior standard deviation of
100.

Again using 10,000 burn-in iterations and 90,000
replications of the Gibbs sampler for the model in
Figure 8.12, WinBUGS likewise calculated poste-
rior means and 90% credibility intervals for µ, ,
and each pi.

The marginal posterior mean and standard devia-
tion of  µ are calculated to be –5.097 and 0.09517
, respectively, whereas those for  are computed
to be 0.640 and 0.238. A hierarchical Bayes 90%
credible interval for µ is [-5.253, -4.939], while the
corresponding interval for  is [0.322, 1.08].

Figure 8.13 shows the two estimated population-
variability distributions, when the form is assumed to
be beta (the conjugate distribution) or logistic-normal.
The mean of the beta prior is 0.004 and the mean of
the logistic-normal prior is 0.007, nearly twice as
large. Note that, unlike the beta prior, the logistic-
normal prior avoids the high probability density close
to p = 0.
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Figure 8.13  Fitted population-variability distributions
in Example 8.2.

Figure 8.14 illustrates the hierarchical Bayes results
using the logistic-normal prior. As in Figure 8.11, the
posterior mean and 90% credible interval are shown
for each plant. The mean and 90% credible interval
for the population-variability distribution are also
shown, and a vertical dashed line is drawn through
the mean. This plot may be directly compared with
Figure 8.11.

Table 8.9 contains the same portion of the numerical
hierarchical Bayes analysis results for the logistic-
normal as given in Table 8.8 for the beta prior.
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p GC00 0419 4
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 Indian Point 3
   

Millstone 2

Crystal River 3
  

 Indian Point 2
   

Robinson 2

(63 plants with
no failures)

Figure 8.14  Plant-specific posterior means and 90%
credible intervals for p, from hierarchical Bayes
analysis with logistic-normal population-variability
distribution.

Note that the posterior means and 90% credible
intervals in Table 8.9 are all larger than those in
Table 8.8.  As stated above, this is a direct conse-
quence of using the logistic-normal prior in Figure
8.13.  Observe also that the lower 90% credibility
limits for plants with no failures, such as Prairie
Island 1 and Vogtle 1, are now much more realistic
than the corresponding limits in Table 8.8.

8.2.4 Discussion

8.2.4.1 Hierarchical Bayes Is Still Bayes

The hierarchical Bayes model is a special case of the
familiar Bayesian model.  It is not some new kind of
construction.  To see this, consider Levels 0 and 1
together in Figure 8.6.  The prior parameter is a vector
�, consisting of the hyperparameters and the �is.  Thus,
the prior � is a vector with dimension 2+ m.  The prior
distribution on � is specified:  the joint distribution of
the hyperparameters � and � is given by the hyperprior
in Level 0, and the conditional distributions of the �is

 Table 8.9 Portion of hierarchical Bayes
analysis results using logistic-
normal prior for Example 8.2.

Plant Posterior mean and 90% credi-
ble interval a

Industry

Indian Point 3
Millstone 2
Crystal R. 3
Indian Point 2
Robinson 2

Prairie Isl. 1

Vogtle 1

(2.1E�3, 7.4E�3, 1.7E�2)

(6.2E�3, 3.4E�2, 8.7E�2)
(3.0E�3, 3.1E�2, 9.7E�2)
(2.8E�3, 2.6E�2, 8.0E�2)
(2.5E�3, 2.1E�2, 6.2E�2)
(2.4E�3, 1.9E�2, 5.7E�2)

(6.6E�4, 1.2E�2, 4.4E�2)

(4.3E�4, 4.E�3, 1.3E�2)

a.  Format is (lower bound, mean, upper bound).

are independent, and specified by g, conditional on �
and �.  Thus, Levels 0 and 1 together specify the prior
parameter vector and its prior distribution.  The poste-
rior distribution is therefore given by Bayes’ Theorem:

gpost(� | data) � Pr(data | �) × gprior(�) .

This differs from the applications of Bayes’ Theorem
elsewhere in this handbook in only two ways:  the
parameter is a high-dimensional vector, and the prior
distribution has a lot of structure, as shown in Fig-
ure 8.6.

A practical consequence of the high dimension of � is
that the tools of Chapter 6, numerical integration and
simple random sampling methods, do not work well.
More recently developed methods, versions of Markov
chain Monte Carlo sampling, must be used.  Conceptu-
ally, however, hierarchical Bayes modeling fits per-
fectly within the framework of Bayes’ Theorem.  In
particular, everything is legal, with no double counting
of data.

8.2.4.2 The "Two-Stage" Bayesian Method

Kaplan (1983) introduced a "two-stage" Bayesian
method, which has sometimes been used in PRA work.
It is described here in terms of Figure 8.6.  The method
singles out the plant of special interest, say Plant 1.  It
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then estimates the hyperparameters, � and �, in a
Bayesian way, using the data from all the plants except
Plant 1.  It then uses the estimated g(� | �, �) as a prior,
combining it with the data from Plant 1 to estimate �1

in the usual Bayesian way.

The originally intended reason for not using Plant 1 in
the first stage was to avoid double counting.  As
mentioned in Section 8.2.4.1, the hierarchical Bayes
method is based directly on Bayes’ Theorem, and
therefore does not involve double counting.  Therefore,
the two-stage Bayesian method should no longer be
used, but should be replaced by the conceptually
cleaner hierarchical Bayes method.  Now that numeri-
cal algorithms have been developed to sample from the
posterior distributions, this is completely feasible.

8.2.4.3 Lower Bounds on Parameters

Example 8.2 illustrated that different population-
variability distributions (prior distributions) can lead to
radically different lower percentiles of the parameters’
posterior distributions.  This occurred in that example
for those plants that had experienced no failures.  A
beta prior led to 5th percentiles for p on the order of
1E�15, whereas a logistic-normal prior led to 5th
percentiles on the order of 5E�4.  No one believes the
first answers, but many people could believe the
second answers.  Does that mean that the answers from
the logistic-normal prior are "right"?

In fact, the lower bounds are an artifact of the model,
in both cases.  The plants that experienced no failures
reveal only that p is "small" at those plants.  They do
not give information about how small p might be.  If
many plants have no failures, as in Example 8.2, then
we have very little information about the lower end of
the population-variability distribution.  In contrast to
this, the plants that experienced one or more failures
convey much more information, revealing both how
large and how small p could plausibly be at those
plants.  Therefore, the 95th percentile of p at any plant
is somewhat dependent on the assumed form of the
population-variability distribution (beta, logistic-
normal, or whatever).  But when many plants have no
observed failures, the 5th percentile of p at any of those

plants is extremely dependent on this assumed form.

And why was a particular form assumed for the
population-variability distribution?  For convenience
only!  Thus, even if the answers from a logistic-normal
prior look credible, we do not "know" that they are
correct.  We may choose to discard the results from
using a beta prior, because we do not want to publish
5th percentiles that could be ridiculed.  We might also
choose to publish the results from using a logistic-
normal prior, knowing that the 5th percentiles appear
credible.  But it is a delusion to think that we "know"
lower bounds on p at the plants with no observed
failures.  The calculated lower bounds remain an
artifact of the assumed model.

Fortunately, lower bounds are not a concern for risk.
Means and upper bounds are the important quantities,
and they can be estimated with much less dependence
on the model.

8.2.4.4 Empirical Bayes as an Approximation to
Hierarchical Bayes

As remarked elsewhere, Figures 8.3 and 8.9 are very
similar to each other, and Figures 8.5 and 8.11 are
similar to each other.  That is, in both Examples 8.1
and 8.2, the empirical Bayes results are numerically
close to the hierarchical Bayes results, when (a) the
empirical Bayes method includes the Kass-Steffey
adjustment, and (b) both methods use the conjugate
population-variability distribution, a gamma distribu-
tion for Poisson data and a beta distribution for bino-
mial data.  This agreement between the methods is
more than coincidence.  Kass and Steffey (1989)
developed their method specifically with this intent:  to
make the empirical Bayes approach give a first-order
approximation to the hierarchical Bayes approach with
a diffuse hyperprior.  The method does this well in the
two examples.  Of course, when the hierarchical Bayes
method does not use a conjugate population-variability
distribution, as in Section 8.2.3.5.2, there is no corre-
sponding empirical Bayes method.


