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6.  PARAMETER ESTIMATION AND MODEL VALIDATION

6.1 Overview

As throughout this handbook, general explanations are
given in Roman typeface, with boldface used for new
terms where they are introduced or defined.  Arial font
is used for examples, and for any extended discus-
sion that applies only to a particular example.

6.1.1 Introduction

Probabilistic risk assessment (PRA) analyzes accident
sequences in terms of initiating events, basic events,
and occasionally recovery events. 

This handbook is concerned with estimating the fre-
quencies of  initiating events, the probabilities of basic
events, and the distributions of recovery times and
other durations.  These estimates are propagated
through logical relations to produce an estimated
frequency of the undesirable end state, such as core
damage.  Moreover, the uncertainties in the parameter
estimates must be quantified, and this must be done in
a way that allows the uncertainty in the final estimate to
be quantified.

Two approaches to estimating parameters are the
Bayesian method and the frequentist, or classical,
method.  The two approaches are summarized here, and
also in Appendix B.

In the Bayesian setting, probability is a measure of
uncertainty, a quantification of degree of belief.  The
Bayesian methodology is used to modify uncertainty in
a logically coherent way, so that “degree of belief” is
rational, not merely personal opinion.  In this method-
ology,  each unknown parameter is assigned an initial
prior probability distribution.  This does not mean that
the parameter varies randomly, but only that it is
unknown, with the probability distribution modeling
belief concerning the true value.  Based on data, the
analyst’s prior belief about the parameter is updated,
using Bayes’ Theorem.  The final inference statement
uses the posterior distribution of the parameter to
quantify the final uncertainty about the parameter.  It is
conditional on the observed data.  Siu and Kelly (1998)
give a simple but thorough introduction to Bayesian
estimation in the PRA context.

The frequentist setting is quite different.  A parameter
is an unknown constant, and the data are modeled as
occurring randomly.  A frequency or rate, , represents
the long term average rate at which the event occurs,
the average number of events per unit time.  Similarly,
a probability of failure on demand, p, represents the
long term fraction of failures in a large number of
demands.  The only random variability is in the data
that happen to have been generated by the process.
When quantifying uncertainty in an estimate, a frequen-
tist asks questions such as, “Under similar conditions,
what other data sets might have been generated?  From
data set to data set, how much variation would be seen
in the parameter estimate?  For any one data set, how
far might the estimated parameter be from the true
parameter?”  Any prior or external information about
the parameter value is ignored.

Statisticians have argued vigorously over which ap-
proach is preferable.  When estimating parameters for
PRA, the Bayesian approach clearly works better, for
two reasons.  First, data from reliable equipment are
typically sparse, with few or no observed failures.  In
such cases, it is reasonable to draw on other sources of
information.  The Bayesian approach provides a
mechanism for incorporating such information as prior
belief.  Second, the Bayesian framework allows
straightforward propagation of basic event  uncertain-
ties through a logical model, to produce an uncertainty
on the frequency of the undesirable end state.  It
assigns a probability distribution to each of the un-
known parameters, draws a random sample from each,
and constructs the corresponding sample for the
frequency of the undesirable end state.  The frequentist
approach cannot handle such complicated propagation
of uncertainties except by rough approximations.

Frequentist methods have their uses, however, even in
PRA.  Box (1980) writes “sampling theory [the
frequentist approach] is needed for exploration and
ultimate criticism of an entertained model in the light
of current data, while Bayes’ theory is needed for
estimation of parameters conditional on the adequacy
of the entertained model.”  This viewpoint agrees with
current PRA practice.  The primary use of the frequen-
tist approach is in preliminary examination of the data,
to check the correctness of model assumptions and to
decide on what model to use.  For example, frequentist
methods can help the analyst decide whether data sets
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may be pooled or whether a trend is present.
Goodness-of-fit tests and calculation of statistical
significance are commonly used frequentist tools in this
context.  Then Bayesian methods are used for estimat-
ing the parameters.

Table 6.1 summarizes the above points.

6.1.2 Uncertainties Other Than 
Parametric Uncertainty

The above discussion might suggest that uncertainty in
the value of parameters is the only uncertainty there is.
That is not the case, of course.  Parameter uncertainty,
stemming from having only a relatively small set of
randomly generated data, is the simplest uncertainty to
address.  It is the primary uncertainty considered in this
handbook of parameter estimation.  However, the

following kinds of uncertainty can also be considered.

6.1.2.1 Uncertainty from Nonrepresentativeness 
of the Data Sources

One issue to consider is that the data come from
settings that do not perfectly match the problem of
interest.  In general, this is a difficult issue.

One special case is uncertainty of the value of a param-
eter for one data source (such as one nuclear power
plant) when data are available from many similar but
not identical data sources (other nuclear power plants).
This case can be formulated in terms of a hierarchical
model, and analyzed by empirical Bayes or hierarchical
Bayes methods, as discussed in Section 8.2 of this
handbook.

Table 6.1 Comparison of Bayesian and frequentist approaches in PRA.

Frequentist Bayesian

Interpretation of probability Long-term frequency after many 
hypothetical repetitions.

Measure of uncertainty, 
quantification of degree of belief.

Unknown parameter Constant, fixed. Assigned probability distribution,
measuring current state of belief.

Data Random (before being observed). Random for intermediate 
calculations.  Fixed (after being 
observed) for the final conclusions.

Typical estimators Maximum likelihood estimator (MLE),
confidence interval.

Bayes posterior mean, credible
interval.

Interpretation of 90%
interval for a parameter

If many data sets are generated, 90% of
the resulting confidence intervals will
contain the true parameter.  We do not
know if our interval is one of the
unlucky ones.

We believe, and would give 9 to 1
odds in a wager, that the parameter is
in the interval.

Primary uses in PRA 1. Check model assumptions.
2. Provide quick estimates, without
work of determining and justifying
prior distribution.

1. Incorporate evidence from various
sources, as prior distribution.
2. Propagate uncertainties through
fault-tree and event-tree models.



REVISION 0  Date: 11/27/02 DRAFT NUREG/CR-XXX6-3

6.1.2.2 Uncertainty in the Data Counts 
Themselves

There can be uncertainty in the data counts themselves.
For example, it may be unclear whether a certain event
should be counted as a failure.  Or the number of
demands may not be known exactly.  A Bayesian
method for dealing with uncertainty in PRA data was
apparently first proposed by Siu and Apostolakis
(1984, 1986), and it has been used by several authors,
including Mosleh (1986), Mosleh et al. (1988, Section
3.3.4.4), and Martz and Picard (1995).  As outlined by
Atwood and Gentillon (1996), uncertainty in
classifying the data yields a number of possible data
sets, each of which can be assigned a subjective
probability.  The general approach is to use an
“average” data set, a “best estimate” of the data, and
analyze it.  The uncertainty in the data is ignored, lost,
at that point.  A better approach is to analyze each data
set, and combine the results.  Each analysis produces a
Bayesian distribution for the unknown parameter(s),
and the final result is a mixture of these distributions.
This approach includes the data uncertainty in the
analysis, and results in wider uncertainty intervals than
the general approach.  The two approaches are
diagramed in Figure 6.1. 

Further treatment of this topic is beyond the scope of
this handbook, but the reader can find additional
guidance in the references cited above.  This topic is

closely related to a statistical technique called “multiple
imputation” (see Rubin 1996), in which a moderate
number of data sets are randomly generated and then
treated according to the left path in Figure 6.1.

6.1.2.3 Uncertainty in the Correct Model to Use

There can be uncertainty in which probability model to
use.  For example, there may be a slight trend, but it is
borderline.  Should a trend be modeled?  Chapters 6
and 7 of this handbook discuss model validation
extensively.  However, model validation, which
concludes that the model is either “adequate” or “not
adequate,” is only a first step toward addressing this
issue.

A more ambitious approach would quantify the degree
of belief in each of a number of models, and propagate
uncertainty in the models into the overall conclusions.
This can use the predictions of various models as
evidence in a formal Bayesian estimation procedure.
See Mosleh et al. (1994) for a number of thoughtful
papers on the definition and treatment of model
uncertainties in the context of PRA applications.  The
topic is also discussed and debated in a tutorial article
by Hoeting et al. (1999) with printed discussion.
Bernardo and Smith (1994) also work out this approach
in their Chapter 6 on “remodelling.”  Drougett (1999)
includes a discussion on the role of information
concerning the models themselves (for example, their
structure and past performance) in the estimation
process.

Further consideration of such issues is beyond the
scope of this handbook.  The parameter uncertainties
given here all assume that the model is a perfect
description of the real world.

6.1.3 Chapter Contents

The rest of Chapter 6 presents statistical techniques for
analyzing data for various parameters.  Sections 6.2
through 6.7 cover exactly the same types of data as
Sections 2.2 through 2.6, in the same order.  The two
kinds of failure to start in Section 2.3 are split into two
sections here, 6.3 and 6.4.  The three most extensive
and fundamental sections are 6.2 (initiating events), 6.3
(failures on demand), and 6.7 (recovery times and other
durations).  The remaining sections draw on material
from these three.

Many possible data sets,
with subjective probabilities

Many analysis results                      Mean data set

Mean of results                    Results from analysis
                                                       of one data set

Averaging the                               Analyzing the
analyses accounts for        average accounts for
more uncertainty.                     less uncertainty.

Figure 6.1  Two possible analysis paths for uncertain
data.
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Each section considers both parameter estimation and
model validation.  These two topics are considered
together because checking the assumptions of the
model (model validation) is a necessary part of any
analysis.  Separating the model validation from the
parameter estimation might give the erroneous impres-
sion that it is all right to estimate parameters without
checking the assumptions, or that the checks can be
performed as an afterthought.

Under parameter estimation, both frequentist and
Bayesian methods are presented.  Under model valida-
tion, both graphical methods and formal statistical tests
are given.

Much thought was given to the order of presentation:
do we present the Bayesian estimates first or the
frequentist estimates?  In Chapter 6, the frequentist
estimates are typically given first, not because they are
more important or more highly recommended, but only
because the frequentist point estimates are very simple,
the simplest most natural estimates that someone might
try.  We cover them quickly before moving on to the
more sophisticated Bayesian estimates.  In the cases
where the frequentist estimates are not simple (certain
distribution models for durations), Bayesian estimation
is discussed first.

6.2 Initiating Events

Initiating events here use the broad definition of the
examples in Section 2.2, events that occur randomly in
time and that initiate a quick response to restore the
system to normal.

The event frequency is denoted , with units events per
unit time.  The data consist of x observed events in time
t, where x is an integer � 0 and t is some time > 0.
Note, t is considered nonrandom, and x is randomly
generated.  This can be expressed using the notation
given in Appendix A, with upper case letters denoting
random variables and lower case letters denoting
numbers.  Before data had been generated, the number
of initiating events would have been denoted by X.  For
any particular number x, the probability of x initiating
events in time t is

Pr(X = x) = e! t( t)x/x! . (6.1)

This formula for the Poisson distribution is a
restatement of Equation 2.1, and will be used through-
out this section.

The methods of parameter estimation will be illustrated
by the following hypothetical data set.

Example 6.1 Initiating events with loss of
heat sink.

In the last six years (during which the reactor was
critical for 42800 hr.) a hypothetical PWR has had
one initiating event that involved a loss of heat
sink.  The parameter to estimate is , the fre-
quency of such events while the reactor is critical.

6.2.1 Frequentist or Classical Estimation

As explained in Section 6.1, Bayesian estimation
methods are more important in PRA, but the classical
estimator has a simpler form.  Also, the comparison
among estimators flows somewhat better if the short
presentation of frequentist estimators precedes the
lengthier presentation of Bayesian estimators.  For
these reasons, frequentist methods are given first in this
section.

6.2.1.1 Point Estimate

The most commonly used frequentist estimate is the
maximum likelihood estimate (MLE).  It is found by
taking the likelihood, given by Equation 6.1, and
treating it as a function of .  The value of  that
maximizes the likelihood is called the MLE.  It can be
shown (as a calculus exercise) that the maximum
likelihood estimate (MLE) of  is

 . (6.2)
� /λ = x t

This formula is simple and intuitively natural, the
observed number of events divided by the observed
time period.  This simplicity is part of the appeal of the
MLE.  The hat notation is used to indicate that the
MLE is an estimate calculated from the data, not the
true, unknown .

Example 6.1 has x = 1 and t = 42800 hrs.  The
likelihood is plotted on Figure 6.2 as a function of .
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Figure 6.2  Likelihood as a function of , for data of
Example 6.1.

The likelihood function is maximized when  =
1/42800 = 2.3E-5.  Therefore, the estimated event
rate for the plant is

= 1/42800 = 2.3E�5 events per critical-hour .�λ

Converting the hours to 42800/8760 = 4.89 critical-
years yields

= 1/4.89 = 0.20 events per critical-year.�λ

In the above example, and in general throughout this
handbook, the final answer is presented with few
significant digits.  This reflects the uncertainty inherent
in all estimates.  Indeed, sometimes not even the first
significant digit is known precisely.  During
intermediate calculations, however, more significant
digits will be shown, and used.  This prevents roundoff
errors from accumulating during the calculations.

It is also possible to combine, or pool, data from
several independent processes, each having the same
rate .  In particular, suppose that the ith Poisson
process is observed for time ti, yielding the observed
count xi.  The total number of event occurrences is x =
�ixi, where the sum is taken over all of the processes,
and the exposure time is t = �iti.  The rate  is estimated

by .  For example, if counts� / /λ = =x t x ti i i iΣ Σ
obtained for different years are used to estimate the
rate, the estimate is the ratio of the total count to the
total exposure time during these years.

6.2.1.2 Standard Deviation of the Estimator

The event count is random.  In other words, if an
identical plant could be observed during the same

years, a different number of events could be observed
due to randomness.  Similarly, the same plant might
yield a different count over a different six-year period.
Because the event count is random, the estimator is also
random, and the estimate is simply the observed value
for this plant during these years.  Note the distinction
in the terms: an estimator is a random variable, and an
estimate is the particular value of the estimator after
the data have been generated.

For a Poisson distributed random variable X, the mean
and variance are the same, E(X) = var(X) = t, as stated
in Appendix A.6.2.  Consequently, the standard
deviation of X is ( t)½, and the estimated standard

deviation of the estimator � X/t is�λ

.( � ) / ( � / ) // / /λ λt t t x t1 2 1 2 1 2= =

The estimated standard deviation of is also called the�λ
standard error for .

Thus, the standard error for  in Example 6.1 is
1/4.89 = 0.20 events per reactor-year.

A standard error is sometimes used for quick approxi-
mations when the data set is large.  In that case, the
MLE is approximately normal, and an approximate
95% confidence interval is given by MLE ±
2×(standard error).  This approximation holds for
maximum likelihood estimation of virtually any
parameter.  For event frequencies, however, the
following exact confidence interval can be found.

6.2.1.3 Confidence Interval for 

Frequentist estimation is presented before Bayesian
estimation because the MLE is so simple, simpler in
form than the Bayes estimates.  The same cannot be
said for confidence intervals; the confidence-interval
formulas are somewhat more complicated than the
formulas for Bayesian interval estimates, and the
interpretation of confidence intervals is more subtle.
Readers may wish to skip directly to Section 6.2.2 on
the first reading.

The confidence interval is given in many reference
books, such as Johnson, Kotz, and Kemp (1992, Sec.
7.3), Bain and Engelhardt (1992, Section 11.4), or
Martz and Waller (1991, Table 4.4).  It is based on the
chi-squared (or in symbols, 2) distribution, which is
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tabulated in Appendix C, and which can be found
easily by many software packages.  As used below,

2
p(d)  is the pth quantile, or (100p)th percentile, of the

chi-squared distribution with d degrees of freedom.  Do
not misread 2

p(d) as involving multiplication.

For a (1 � ) confidence interval, or equivalently a
100(1 � )% confidence interval, the lower limit is

λ
χ

α
α

conf, /2 = / ( )2
2 2

2

x

t

If x = 0, this formula is undefined, but then simply set
conf, /2 = 0.

Similarly, the upper limit is

λ
χ

α
α

conf, 1−
−=

+
/

/ ( )
2

1 2
2 2 2

2

x

t

Notice that an upper confidence limit is defined in the
case x = 0.  It is reasonable that observing no
occurrences of the event would provide some
information about how large  might be, but not about
how small it might be.

The above formulas are in terms of .  Setting  = 0.1,
for example, gives the formulas for a 90% confidence
interval.  These formulas involves the 5th percentile of
a chi-squared distribution with 2x degrees of freedom,
and the 95th percentile of a chi-squared distribution
with (2x+2) degrees of freedom.

The resulting confidence interval is conservative in the
sense that the actual confidence level is no smaller than
the nominal level of 100(1 � )%, but it could be
larger.  This conservatism is inherent in confidence
intervals based on discrete data.

In Example 6.1, 90% confidence limits are

λ
χ

conf, 0.05 =
×

= =0 05
2 2

2 4.89

01026

9.78
0 010

. ( ) .
.

λ
χ

conf, 0.95 =
×

= =0 95
2 4

2 4.89

9.488

9.78
0 97

. ( )
.

with units events per critical-year.

The interpretation of confidence intervals is given in

Appendix B, and deserves emphasis.  In the  frequentist
approach,  is fixed and the data are random.
Therefore the maximum likelihood estimator and the
confidence limits are all random.  For most data sets

the MLE, , will be close to the true value of , and�λ
the confidence interval will contain .  Sometimes,
however, the MLE will be rather far from , and
sometimes (less than 10% of the time) the 90% confi-
dence interval will not contain .  The procedure is
good in the sense that most of the time it gives good
answers, but the analyst never knows if the current data
set is one of the unlucky ones.

To illustrate this, consider the following example with
many hypothetical data sets from the same process.

Example 6.2 Confidence intervals from 
computer-generated data.

A computer was used to generate Poisson data,
assuming an event rate  = 1.2 events per year
and assuming that 6 years were observed.  Thus,
the event count followed a Poisson distribution
with mean t = 7.2.  This was repeated, and 40
event counts were generated in all.  These may
be interpreted as counts from 40 identical plants,
each observed for 6 years, or from 40 possible
six-year periods at the same plant.

The first randomly generated event count was 10, the
next was 5, the next was again 10, and so on.  Some
of the event counts were less than the long-term
mean of 7.2, and some were greater.  The maximum
likelihood estimates of  are plotted as dots in Figure
6.3.  The corresponding 90% confidence intervals for
 are also plotted.

In Figure 6.3, the vertical dashed line shows the true
value of , 1.2.  Two of the 40 intervals (5%) are to
the right of the true .  These resulted from observing
event counts of 14 and 16.  One of the 40 intervals
(2.5%) is to the left of the true .  This interval was
computed from an observed event count of 2.

Ideally, the error rates should both be 5%.  They are
not for two reasons.  First, 40 is not a very large
number, so the random data do not exactly follow the
long-run averages.  Second, confidence intervals
with discrete data are inherently conservative: a 90%

confidence interval is defined so that the probability
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Figure 6.3  Confidence intervals from random data,
all generated from the same process.

of containing the true  is at least 90%, and the error
probabilities at each end are each at most 5%.

The data analyst will normally have data from just
one plant for the six-year period.  The resulting confi-
dence interval will contain the true value of , unless
the data happen to deviate greatly from the mean.
Unfortunately, the analyst does not know when this
has happened, only that it does not happen often.

6.2.2 Bayesian Estimation

6.2.2.1 Overview

Bayesian estimation of � involves several steps.  The
prior belief about � is quantified by a probability
distribution, the prior distribution.  This distribution
will be restricted to the positive real line, because �
must be positive, and it will assign the most probability
to the values of � that are deemed most plausible.  The
data are then collected, and the likelihood function is
constructed.  This is given by Equation 6.1 for
initiating events.  It is the probability of the observed
data, written as a function of �.  Finally, the posterior
distribution is constructed, by combining the prior
distribution and the likelihood function through Bayes’
theorem.  This theorem says that

fpost(�) � likelihood(�) × fprior(�) .

The posterior distribution shows the updated belief
about the values of �.  It is a modification of the prior
belief that accounts for the observed data.

Figure 6.4, adapted from a tutorial article by Siu and
Kelly (1998), shows how the posterior distribution
changes as the data set changes.  The figure is based on
a diffuse prior, and on three hypothetical data sets, with
x = 1 event in t = 10,000 hours, x = 10 events in t =
100,000 hours, and x = 50 events in t = 500,000 hours,

respectively.  Note, each of these data sets has  = x/t�λ
= 1.E�4 events per hour.  The figure shows the prior
distribution, and the three posterior distributions
corresponding to the three data sets.

For a small data set, the posterior distribution
resembles the prior to some extent.  As the data set
becomes larger, several patterns are evident:

� The posterior distribution departs more and
more from the prior distribution, because the
data contribute the dominant information.

� The posterior distribution becomes more
concentrated, indicating better knowledge of
the parameter, less uncertainty.

� The posterior distribution becomes

approximately centered around the MLE, .�λ
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Figure 6.4  Prior distribution and posterior distribu-
tions corresponding to three hypothetical data sets.

To be consistent with the notation for random
variables, upper case letters would be used for uncer-
tain parameters that have probability distributions.
Such notation is not customary in the Bayesian litera-
ture, and will not be used here.  The reader must judge
from context whether the letter � denotes a particular
value or the uncertain parameter with an associated
distribution.

6.2.2.2 Choosing a Prior

The subsections below consider estimation of � using
various possible prior distributions.  The simplest prior
distribution is discrete.  The posterior can be calculated
easily, for example by a spreadsheet.  The next
simplest prior is called conjugate; this prior combines
neatly with the likelihood to give a posterior that can be
evaluated by simple formulas.  Finally, the most
general priors are considered; the posterior distribution
in such a case can only be found by numerical
integration or by random sampling.

The prior distribution should accurately reflect prior
knowledge or belief about the unknown parameter.
Quantifying belief is not easy, however.  Raiffa and
Schlaifer (1961, Sections 3.3.3-3.3.5) point out that
most people can think more easily in terms of
percentiles of a distribution than in terms of moments.
They also give advice on looking at the situation from
many directions, to make sure that the prior belief is
internally consistent and has been accurately quanti-
fied.  Siu and Kelly (1998, Sec. 5.1.4) present seven
warnings in connection with developing a prior
distribution, which are summarized here.

� Beware of zero values.  If the prior says that
a value of � is impossible, no amount of data
can overcome this.

� Beware of cognitive biases, caused by the
way people tend to think.

� Beware of generating overly narrow prior
distributions.

� Ensure that the evidence used to generate the
prior distribution is relevant to the estimation
problem.

� Be careful when assessing parameters that are
not directly observable.

� Beware of conservatism.  Realism is the ideal,
not conservatism.

� Be careful when using discrete probability
distributions.

For fuller discussion of these points, see Siu and Kelly.

Some priors are chosen to be "noninformative," that is,
diffuse enough that they correspond to very little prior
information.  The Jeffreys noninformative prior is
often used in this way.  If information is available, it is
more realistic to build that information into the prior,
but sometimes the information is difficult to find and
not worth the trouble.  In such a case, the Jeffreys
noninformative prior can be used.  It is one of the
priors discussed below.

6.2.2.3 Estimation with a Discrete Prior

To illustrate use of a discrete prior in Bayes estimation,
we return to Example 6.2.  In the first sample, 10
events were observed.  This case is evaluated three
times to illustrate several aspects of the effect of using
discrete approximations and to provide a clear example
for the readers to allow them to practice hand
calculations of the Bayesian update process.  Working
out a series of Bayesian calculations with increasing
quantities of evidence (such as in Figure 6.4 above) can
provide a good sense of how the process works and
how the posterior distribution changes with the
evidence.  For example, if 

f E
f L E

L E f
i

i i

i i
i

N( | )
( ) ( | )

( | ) ( )
λ

λ λ
λ λ

=
=∑ 1

where

= probability density function of given f Ei( | )λ
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�i evidence E (posterior distribution)

= the probability density prior to havingf i( )λ
evidence E ( prior distribution)

= the likelihood function (probability ofL E i( | )λ
the evidence given )λ i

Note that the denominator, the total probability of the
evidence E, is simply a normalizing constant.

Next, when the evidence is in the form of F failures
over an operational time T, the likelihood function is
the Poisson distribution:

L E e
T

F
i

iT i
F

( | )
( )

!
( )λ

λλ= −

For this example, let us use a simple flat prior
distribution over the range 0 to 6 events per year.
Because of  the nature of the example, we could
use a distribution peaked at 1.2 events per year
or, alternatively the Jeffreys noninformative prior.
Over the restricted range of 1 to 6, the flat prior is
essentially noninformative, but the real reason we
chose it is to make the impact of the Bayesian
updating process easy to see.

Given the ease of calculation with current
computers, a finely discretized prior (say at 0,
0.01, 0.02,...6.00) would give the most accurate
results and we will provide that calculation in a
moment.  First let us use a very coarse prior at 0,
0.5, 1.0, ...6.0.  With only 13 bins, the reader can
perform hand calculations quite easily.  The
results are given in Table 6.2 and in Figure 6.5.

Even with such a coarse prior, the evidence is
strong and peaks at about i = 1.5 per year.
There is essentially no chance the value is
greater than 4 or less than 0.5.  We suggest that
the reader make up a data set for examining the
way the posterior distribution responds to growing
evidence.  For example, try beginning with 0
failures in year 1; then adding 2 failures in year 2;
then 0 failures in year 3; etc.  Also try a case that
does not agree with the prior; for example 5
failures in year 1; then 7 more in year 2; then 6 in
year 3.

Table 6.2  Example 6.2, First Sample (10 events in
6 years).

Event 
Rate

Prior
Probability

Likelihood Posterior
Probability

Cumulative
Probability

8i pi Li pi x Li Pi(8|E) E Pi

0.0 0.077 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.5 0.077 8.10E-04 6.23E-05 2.43E-03 2.43E-03

1.0 0.077 4.13E-02 3.18E-03 1.24E-01 1.26E-01

1.5 0.077 1.19E-01 9.12E-03 3.56E-01 4.82E-01
2.0 0.077 1.05E-01 8.06E-03 3.14E-01 7.96E-01

2.5 0.077 4.86E-02 3.74E-03 1.46E-01 9.42E-01

3.0 0.077 1.50E-02 1.15E-03 4.49E-02 9.87E-01

3.5 0.077 3.49E-03 2.68E-04 1.05E-02 9.98E-01

4.0 0.077 6.60E-04 5.07E-05 1.98E-03 1.00E+00

4.5 0.077 1.07E-04 8.20E-06 3.20E-04 1.00E+00

5.0 0.077 1.52E-05 1.17E-06 4.57E-05 1.00E+00

5.5 0.077 1.97E-06 1.51E-07 5.90E-06 1.00E+00

6.0 0.077 2.34E-07 1.80E-08 7.01E-07 1.00E+00
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Figure 6.5  Discrete prior and posterior distributions
for data in Example 6.2, coarse discretized prior.

If we repeat the calculation with a discrete prior
twice as fine (i.e., 0, 0.25, 0.50, 0.75,...6.00), the
prior now has 25 bins and the results are much
more smooth as shown in Figure 6.6.  These
results are quite smooth and of course follow
the previous results.  
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Figure 6.6 Discrete prior and posterior distributions
for data in Example 6.2, finely discretized prior.
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Figure 6.7 Discrete prior and posterior distributions
for data in Example 6.2, very fine discretized prior.

Finally, let us repeat the calculation for a discrete
flat prior at 0, 0.05, 0.10, 0.15,...6.00, i.e., a 121
bin histogram.  This time the results, shown in
Figure 6.7, are detailed enough for us to
accurately pick points off the distribution.

The statistics from the spreadsheet calculation,
which is identical with Table 6.2, except having
121 bins rather than 13, are provided in Table 6.3.
These results are also compared with the
frequentist estimates obtained from the first
sample shown earlier in Figure 6.3.  The
Bayesian estimate, with a flat essentially
noninformative prior, yields slightly more narrow
90% probability bounds than the 90% confidence
interval of the frequentist estimate.

Table 6.3. Comparison of Bayesian and
Frequentist estimates for the data
in Example 6.2.  

Estimate 5th %tile MLE 95th

%tile

Bayes, flat prior 1.00 1.65 2.80

Frequentist,
Fig. 6.3

0.95 1.73 2.85

6.2.2.4 Estimation with a Conjugate Prior

6.2.2.4.1   Definitions

The conjugate family of prior distributions for Poisson
data is the family of gamma distributions.  Two param-
eterizations of gamma distributions are given in Ap-
pendix A.7.6.  For Bayesian estimation, the following
parameterization is the more convenient one:

 . (6.3)f e( )
( )

λ
β
α

λ
α

α λβ= − −

Γ
1

Here � has units 1/time and � has units of time, so the
product �� is unitless.  For example, if � is the
frequency of events per critical-year, � has units of
critical-years.  The parameter � is a scale parameter,
although purists would say that 1/� is the actual scale
parameter.  In any case, � corresponds to the scale of �
� if we convert � from events per hour to events per
year by multiplying it by 8760, we correspondingly
divide � by 8760, converting it from hours to years.
The other parameter, �, is unitless, and is called the
shape parameter.  The gamma function, �(�), is a
standard mathematical function, defined in Appendix
A.7.6; if � is a positive integer, �(�) equals (��1)!
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Let � have a gamma uncertainty distribution.  In the
present parameterization, the mean of the gamma
distribution, or the expected value E(�), is �/�, and the
variance, var(�), is �/�2.  Note that the units are
correct, units 1/time for the mean and 1/time2 for the
variance.

6.2.2.4.2    Update Formulas

As stated earlier and  in Appendix B.5.1, the posterior
distribution is related to the prior distribution by

(6.4)f X x fpost prior ( ) Pr( | ) ( )λ λ λ∝ =

The probability of the data is also called the likelihood,
in which case it is considered as a function of the
parameter � for a given x.  For Poisson data, it is given
by Equation 6.1.  The symbol � denotes "is propor-
tional to."  Probability density functions generally have
normalizing constants in front to make them integrate
to 1.0.  These constants can be complicated, but using
proportionality instead of equality allows us to neglect
the normalizing constants.  Stripped of all the norma-
lizing constants, the gamma p.d.f. is 

.f e( )λ λα λβ∝ − −1

The gamma distribution and the Poisson likelihood
combine in a beautifully convenient way

f e
t

x
e

e

t
x

x t

post ( )
( )

!
( ) ( )

λ
λ

λ

λ

λ α λβ

α λ β

∝

∝

− − −

+ − − +

1

1

In the final expression, everything that does not involve
� has been absorbed into the proportionality constant.
This result is "beautifully convenient," because the
posterior distribution of � is again a gamma distribu-
tion.  This is the meaning of conjugate: if the prior
distribution is a member of the family (in this case, the
gamma family), the posterior distribution is a member
of the same family.  The update formulas are

�post = x + �prior

�post = t + �prior

This leads to an intuitive interpretation of the prior
parameters:  a gamma(�prior, �prior) distribution is equiv-
alent, at least intuitively, to having seen �prior events in
�prior time units, prior to taking the current data.

Figure 6.4 was constructed in this way.  The prior
distribution was gamma(0.2, 10,000).  Therefore, the
posterior distributions were gamma(1.2, 20,000),
gamma(10.2, 110,000), and gamma(50.2, 510,000).

When using these update formulas, be sure that t and
�prior have the same units.  If one is expressed in hours
and one in years, one of the two numbers must be
converted before the two are added.

The moments of the gamma distribution were men-
tioned previously.  The posterior  mean is �post/�post and
the posterior variance is �post/(�post)

2.

The percentiles of the gamma distribution are given by
many software packages.  If you use such software, be
careful to check that it is using the same parameteriza-
tion that is used here!  Here are three ways to get the
correct answer.  (1) If the software uses the other
parameterization, fool it by inverting your value of �.
Then do a sanity check to make sure that the numbers
appear reasonable.  (2) A safe method is to have the
software find the percentiles of the gamma(�post, 1)
distribution.  Then manually divide these percentiles by
�post. This ensures that the scale parameter is treated
correctly.  (3) As a final alternative, the percentiles of
the gamma distribution can be found from a tabulation
of the chi-squared distribution, possibly interpolating
the table.  To do this, denote the (100p)th percentile of
the posterior distribution by �p.  For example, denote
the 95th percentile by �0.95. The (100p)th percentile is
given by

�p = �2
p(2�post)/(2�post)

where, as before, �2
p(d) is the pth quantile, or (100p)th

percentile, of a chi-squared distribution with d degrees
of freedom.  Note the presence of 2 in the numerator
and denominator when the chi-squared distribution is
used.
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Figure 6.8  Prior density for , gamma(1.53, 10.63).

The next section contains examples that use these
update formulas with several priors.

6.2.2.5 Possible Conjugate Priors

6.2.2.5.1   Informative Priors

The prior distribution must come from sources other
than the current data.  It might be tempting to use the
data when constructing the prior distribution, but that
temptation must be resisted.  Prior distributions are
named "prior" for a reason:  they reflect information
that does not come from the current data.

Ideally, generic data provide the basis for prior belief.
Consider again Example 6.1, involving initiating events
with loss of heat sink.  With no special knowledge
about the plant, prior belief about the plant is reason-
ably based on the overall industry performance, so we
use the generic industry distribution as the prior.

Poloski et al. (1999a) examined initiating-event data
from the nuclear power industry over nine years.  For
PWRs, and initiating events involving loss of heat
sink, they determined that the variability of  across
the industry can be described by a gamma distribu-
tion with shape parameter = 1.53 and scale parame-
ter = 10.63 reactor-critical-years.  Regrettably, Table
G-1 of the report gives only a mean and a 90%
interval, not the distribution and its parameters.  The
distribution given here is taken from the unpublished
work that formed the basis of the report.  The distri-
bution is a gamma distribution, so the update formu-
las given above can be used in the hypothetical
example of this section.  The prior distribution is
shown in Figure 6.8.

Now consider updating this prior with the data of
Example 6.1.  To make the units consistent, convert
the 42800 reactor-critical-hours in the example to
42800/8760 = 4.89 reactor-critical-years.  The update
formula yields

post = x + prior = 1 + 1.53 = 2.53

post = t + prior = 4.89 + 10.63 = 15.52 reactor-critical-
years

The mean, post/ post, is 0.163 events per reactor-
critical-year,  the variance is 0.0105 (per reactor-
critical-year squared), and the standard deviation is
the square root of the variance, 0.102 per reactor-
critical-year.

A 90% credible interval is the interval from the 5th to
the 95th percentiles of the posterior distribution.  A
software package finds the two percentiles of a
gamma(2.53, 1.0) to be 0.5867 and 5.5817.  Division
by post yields the two percentiles of the posterior
distribution: 0.038 and 0.36.  Alternatively, one may
interpolate Table C.2 of Appendix C to find the
percentiles of a chi-squared distribution with 5.06
degrees of freedom, and divide these percentiles by
2 post.  Linear interpolation gives answers that agree
to three significant digits with the exact answers, but
if the degrees of freedom had not been so close to
an integer the linear interpolation might have intro-
duced a small inaccuracy.

The interpretation of the above numbers is the
following.  The best belief is that  is around 0.16,
although it could easily be somewhat larger or smal-
ler.  Values as small as 0.038 or as large as 0.36 are
possible but are approaching the limits of credibility.
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Figure 6.10  Posterior cumulative distribution of  for
Example 6.1 with industry prior.  The 5th and 95th
percentiles are shown.
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Figure 6.9  Posterior density of , gamma(2.53,
15.52), for Example 6.1 with industry prior.  The 5th
and 95th percentiles are shown.

Two graphical ways of presenting this information
are given below.  Figure 6.9 shows the posterior
density.  The areas to the left of the 5th percentile
and to the right of the 95th percentile are shaded.
The 90% credible interval is the interval in the mid-
dle, with probability 90%.  Figure 6.10 shows the
same information using the cumulative distribution.
The 5th and 95th percentiles are the values of 
where the cumulative distribution is 0.05 and 0.95,
respectively.  These percentiles are the same values
as shown in the plot of the density.

Several points deserve mention.

� The above interval puts equal probability in
the two tails outside the credible interval.

Other credible intervals are possible, such as
a one-sided interval that puts all the error in
one tail, or an interval that includes the high-
est posterior density, with possibly unequal
probabilities in the two tails.

� For PRA applications, however, the right tail
is typically of concern for risk, corresponding
to high initiating event frequency (or, in other
sections of this chapter, high probability of
failure on demand, high unavailability, or
long time to recovery).  The interval given
above holds the error probability for the right
tail equal to 0.05.  This number is customary
in much statistical practice, and has therefore
been used in many studies for the NRC.  As
for the left tail, it is easy to put a positive
lower end on the credible interval, even
though values of � near zero are not a concern
for risk.  Therefore, the above 90% interval,
corresponding to 5% posterior probability in
each tail, is commonly presented in PRA
studies.

� Actually, however, the interval presents only
a portion of the information in the posterior
distribution.  The full distribution is used in a
PRA.

6.2.2.5.2   Noninformative Prior

The Jeffreys noninformative prior is intended to
convey little prior belief or information, thus allowing
the data to speak for themselves.  This is useful when
no informed consensus exists about the true value of
the unknown parameter.  It is also useful when the
prior distribution may be challenged by people with
various agendas.  Some authors use the term reference
prior instead of "noninformative prior," suggesting
that the prior is a standard default, a prior that allows
consistency and comparability from one study to
another.

With Poisson data, the Jeffreys noninformative prior
is obtained if the shape parameter of a gamma distribu-
tion is taken to be � = ½ and the parameter � is taken
to be zero.  (See, for example, Box and Tiao 1973.)
Ignoring the normalizing constant at the front of
Equation 6.1 yields a function that is proportional to
�!½, shown in Figure 6.11.  Although this function is
interpreted as a density function, it is an improper
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Figure 6.11  Jeffreys noninformative prior distribution
for an event frequency.

distribution because its integral from 0 to � is infinite.

Suppose that the data consist of x events in time t.
Formal application of the update formulas yields

�post = x + ½
�post = t + 0 .

That is, the Bayes posterior distribution for � is
gamma(x + ½, t).

It is interesting to compare the interval using the
Jeffreys prior with the corresponding confidence
interval.  The 90% posterior credible interval is

�0.05 = �2
0.05(2x + 1)/2t

�0.95 = �2
0.95(2x + 1)/2t

These may be compared with the 90% confidence
interval:

�conf, 0.05 = �2
0.05(2x)/2t

�conf, 0.95 = �2
0.95(2x + 2)/2t

The confidence intervals differ from the Bayes credible
intervals only in the degrees of freedom, and there only
slightly.  This is the primary sense in which the Jef-
freys prior is "noninformative."  The lower and upper
confidence limits have degrees of freedom 2x and 2x
+ 2, respectively.  The two Bayesian limits each use the
average, 2x + 1.  The confidence interval is wider than
the Jeffreys credible interval, a reflection of the conser-
vatism of confidence limits with discrete data.  How-

ever the similarity between the confidence limits and
the Jeffreys limits shows that the result using the
Jeffreys prior will resemble the result using frequentist
methods, that is, using no prior information at all.

Consider again Example 6.1, with 1 event in 4.89
critical-years, and use the Jeffreys noninformative
prior.  The resulting posterior distribution has

post = 1.5
post = 4.89 critical-years .

The mean of this distribution is 1.5/4.89 = 0.31
events per critical-year.  A 90% Bayes credible
interval can be obtained from a chi-squared table
without any need for interpolation, because the
degrees of freedom parameter is 2×1 + 1, an integer.
The 5th and 95th percentiles of the chi-squared
distribution are 0.3518 and 7.815.  Division by
2×4.89 yields the percentiles of the posterior distribu-
tion, 0.036 and 0.80.

This posterior distribution has a larger mean and
larger percentiles than the posterior distribution in
Section 6.2.2.5.1.  The data set is the same, but the
different prior distribution results in a different poste-
rior distribution.  The results will be compared in
Section 6.2.2.5.4.

6.2.2.5.3  Constrained Noninformative Prior

This prior is a compromise between an informative
prior and the Jeffreys noninformative prior.  The mean
of the constrained noninformative prior uses prior
belief, but the dispersion is defined to correspond to
little information.  These priors are described by At-
wood (1996) and by references given there.  Con-
strained noninformative priors have not been widely
used, but they are mentioned here for the sake of
completeness.

For Poisson data, the constrained noninformative prior
is a gamma distribution, with the mean given by prior
belief and the shape parameter = ½.  That is,

�prior = ½
�prior satisfies �prior/�prior = prior mean .

To illustrate the computations, consider again the
Example 6.1, with 1 event in 4.89 reactor-critical-
years.  Suppose we knew that in the industry overall
such events occur with an average frequency of
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Figure 6.12  Comparison of four point estimates and
interval estimates for .

0.144 events per reactor-critical-year.  (This is
consistent with the informative prior given above in
Section 6.2.2.5.1.)  Suppose further that we were
unable or unwilling to make any statement about the
dispersion around this mean —  the full information
used to construct the informative prior was not
available, or the plant under consideration was
atypical in some way, so that a more diffuse prior
was appropriate.

The constrained noninformative prior with mean
0.144 has prior = ½ and prior = 3.47 critical-years.
The resulting posterior distribution has

post = x + ½ = 1.5
post = t + 3.47 = 8.36

The mean is 0.18 events per critical-year, and the
90% credible interval is (0.021, 0.47).  This notation
means the interval from 0.021 to 0.47.

6.2.2.5.4  Example Comparisons Using Above 
  Priors

In general, the following statements can be made.

� The Jeffreys noninformative prior results in a
posterior credible interval that is numerically
similar to a confidence interval, but slightly
shorter.

� If the prior mean exists, the posterior mean is

between the prior mean and the MLE.
� If two prior distributions have the same mean,

the more concentrated (less diffuse) prior
distribution will yield the more concentrated
posterior distribution, and will pull the poste-
rior mean closer to the prior mean.

These statements are now illustrated by example.
The  estimates found in the above sections for
Example 6.2 and the various priors are compared in
Table 6.4 and in Figure 6.12.

Table 6.4 Comparison of estimates with 1 event in 4.89 reactor-critical-years.

Method Prior mean Posterior pa-
rameters

Point estimate
(MLE or posteri-
or mean)

90% interval (confidence
interval or posterior credi-
ble interval)

Frequentist NA NA 0.20 (0.010, 0.97)

Bayes with Jeffreys
noninformative prior,
gamma(0.5, 0)

undefined � = 1.5
� = 4.89

0.31 (0.036, 0.80)

Bayes with (informative)
industry prior,
gamma(1.53, 10.63)

0.144 � = 2.53
� = 15.52

0.16 (0.038, 0.36)

Bayes with constrained
noninformative prior,
gamma(0.5, 3.47)

0.144 � = 1.5
� = 8.36

0.18 (0.021, 0.47)
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In Table 6.4 and in Figure 6.12, the Jeffreys prior and
the frequentist approach are listed next to each other
because they give numerically similar results.  The
Jeffreys prior yields a posterior credible interval that
resembles the frequentist confidence interval.  It is a
little shorter, but it is neither to the right nor to the
left.  This agrees with the earlier discussion of the
Jeffreys prior.

In each Bayesian case, the posterior mean falls
between the prior mean (if defined) and the MLE,
0.20.  The prior distribution has more influence when
the prior distribution is more tightly concentrated
around the mean.  The concentration is measured by
the shape parameter prior, because 1/  equals the
relative variance (= variance/mean2).  Therefore the
larger  the smaller the relative variance.  The
industry prior and the constrained noninformative
prior have the same mean, but the industry prior has
the larger , that is, the smaller variance.  As a
consequence, in both cases the posterior mean is
between the MLE, 0.204, and the prior mean, 0.144,
but the posterior mean based on the industry prior is
closer to 0.144, because that prior has a smaller
variance.  Because the prior mean is smaller than the
MLE, the bottom two lines give smaller posterior
estimates than do the top two lines.  Also, the prior
distribution with the most information (largest )
yields the most concentrated posterior distribution,
and the shortest 90% interval.

In some situations, no conjugate prior is satisfactory.
For example, a gamma distribution is very unrealistic
if the shape parameter is very small.  As a rule of
thumb, the lower percentiles of the distribution are
unrealistic if � is much smaller than 0.5.  Such a
posterior distribution arises with Poisson data when the
prior distribution is very skewed (� very small) and the
data contain zero events.  Then the posterior distribu-
tion also is very skewed, and the posterior 5th percen-
tile may be many orders of magnitude below the
posterior mean.  The subject-matter experts must look
at the percentiles and decide if they are believable.  If
not, a more appropriate prior should be chosen.  It will
not be conjugate.  This is the subject of the next sub-
section.

6.2.2.6 Estimation with a Continuous 
Nonconjugate Prior

Discrete priors and conjugate priors were updated
above with simple formulas.  What remains are the

continuous nonconjugate priors.  Three approaches for
updating them are given here.

6.2.2.6.1  Direct Numerical Integration

If software is available for performing numerical
integration, the following approach can be used.  Find
the form of the posterior distribution, using Equation
6.4.  Suppose, for example, that the prior distribution
for � is lognormal, with µ and �2 denoting the mean
and variance of the normal distribution of ln�.  As
stated in Appendix A.7.3, the lognormal density is
proportional to

f eLN ( )

ln

λ
λ

λ µ
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Substitute this and Equation 6.1 into Equation 6.4, to
obtain the form of the posterior density:
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All terms that do not involve � have been absorbed into
the normalizing constant, C.  The normalizing constant
can be evaluated by numerically integrating Cfpost from
0 to �.  Unless x is unrealistically large, the function
does not need to be integrated in practice out beyond,
say, ln� = µ + 5�.  C equals the integral of Cfpost,
because the integral of fpost must equal 1.  Once C has
been evaluated, the mean and percentiles of fpost can be
found numerically.

Numerical integration, using a technique such as the
trapezoidal rule or Simpson’s rule, can be programmed
easily, even in a spreadsheet.  The ideas are found in
some calculus texts, and in books on numerical meth-
ods such as Press et al. (1992).

6.2.2.6.2  Simple Random Sampling

A second approach, which does not directly involve
numerical integration, is to generate a large random
sample from the posterior distribution, and use the
sample to approximate the properties of the distribu-
tion.  Some people think of this as numerical integra-
tion via random sampling.  Surprisingly, the random
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sample can be generated without explicitly finding the
form of the posterior distribution, as explained by
Smith and Gelfand (1992).

The algorithm, called the rejection method for sam-
pling from a distribution, is given here in its general
form, and applied immediately to sampling from the
posterior distribution.  In general, suppose that it is
possible to sample some parameter � from a continu-
ous distribution g, but that sampling from a different
distribution f is desired.  Suppose also that a positive
constant M can be found such that f(�)/g(�) � M for all
�.  The algorithm is:

(1) Generate � from g(�).
(2) Generate u from a uniform distribution, 0 � u

� 1.
(3) If u � f(�)/Mg(�) accept � in the sample.

Otherwise discard it.

Repeat Steps (1) through (3) until enough values of �
have been accepted to form a sample of the desired
size.

This algorithm is the basis for many random-number
generation routines in software packages.  It is applied
as follows to the generation of a sample from the
posterior distribution for �.  The equations are worked
out here, and the algorithm for the posterior distribu-
tion is restated at the end.

Let f be the posterior density and let g be the prior
density.  Then Equation 6.4 states that the ratio
f(�)/g(�) is proportional to the likelihood, which is
maximized, by definition, when � equals the maximum
likelihood estimate, x/t.  That is, the ratio of interest is

f(�)/g(�) = Ce!8t(�t)x 

for some constant C.  This is maximized when � equals
x/t.  Therefore, define M = max[f(�)/g(�)] = Ce!xxx.
The condition in Step (3) above is equivalent to

u � [Ce!8t(�t)x] / [Ce!xxx ] = [e!8t(�t)x] / [e!xxx ] .

The constant cancels in the numerator and denomina-
tor, so we do not need to evaluate it!  It would have
been possible to work with m = M/C, and the calcula-

tions would have been simpler.  This rewritten form of
the algorithm, for Poisson data, is given here.

If x > 0, define m = e!xxx.  If x = 0, define m = 1.

The steps of the algorithm are:
(1) Generate a random � from the prior distribu-

tion.
(2) Generate u from a uniform distribution, 0 � u

� 1.
(3) If u � e!8t(�t)x/m, accept � in the sample.

Otherwise discard �.
Repeat Steps (1) through (3) until a sample of the
desired size is found.

Intuitively, this algorithm generates possible values of
� from the prior distribution, and discards most of
those that are not very consistent with the data.  The
result is a sample from the posterior distribution.

6.2.2.6.3   More Complicated Random Sampling

All-purpose Bayesian update programs can be used for
the present simple problem.  For example, the program
BUGS1 (Bayesian inference Using Gibbs Sampling)
performs Markov chain Monte Carlo (MCMC)
sampling.  This package is intended for complicated
settings, such as those described in Chapters 7 and 8.
Using it here is like using the proverbial cannon to kill
a mosquito.  Nevertheless, the program is free, and
very flexible, and can be used here.  It is available for
download at

http://www.mrc-bsu.cam.ac.uk/bugs/  

and is described more fully in Sections 7.2.3 and
8.2.3.3.3 of this handbook.

6.2.2.7 Examples Involving Nonconjugate Priors

These techniques will be illustrated with the following
example, from Appendix J-4 of Poloski et al. (1999a).

1  Mention of specific products and/or manufacturers
in this document implies neither endorsement or
preference, nor disapproval by the U.S. Government or
any of its agencies of the use of a specific product for
any purpose.
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model
{
  mu <- lambda*rxyrs
  x ~ dpois(mu)
  lambda ~ dlnorm(-6.908, 0.5104)
}
list(rxyrs=2102, x=0)

Figure 6.13  Script for analyzing Example 6.3
using BUGS.

Example 6.3 Small-break LOCAs.

No small-break loss-of-coolant accidents
(SBLOCAs) have occurred in 2102 reactor-
calendar-years at U.S. nuclear power plants.  The
WASH-1400 (NRC 1975) distribution for the
frequency of this event was lognormal with
median 1E�3 and error factor 10.

6.2.2.7.1   Example with Lognormal Prior

Poloski et al. (1999a) use the WASH-1400 distribu-
tion as a prior, and update it with the 2102 years of
data.

The resulting posterior distribution was sampled
100,000 times using the method described in Section
6.2.2.6.2 above, and the mean was found.  Then the
values were arranged in increasing order, and the
percentiles of the sample were found.  All this took
less than 15 seconds in 1999 on a 166 MHz com-
puter.  Based on the mean and percentiles of the
sample, the mean of the posterior distribution is
3.5E�4, and the 90% posterior credible interval is
(4.5E�5, 9.8E�4).

To illustrate the method of Section 6.2.2.6.3, the
distribution was also sampled using BUGS.  Figure
6.13 shows the script used for running BUGS.  

The section in curly brackets defines the model.
Note that <-, intended to look like a left-pointing
arrow, is used to define quantities in terms of other
quantities, and ~ is used to generate a random
quantity from a distribution.  Thus, X is a Poisson
random variable with mean µ, with µ =  × rxyrs.  The
prior distribution of  is lognormal.  The parameters
given in the sqript arise as follows.  BUGS parame-
terizes the normal in terms of the mean and inverse
of the variance, for reasons explained in Section
6.7.1.2.1.  It parameterizes the lognormal distribution

using the parameters of the underlying normal.  It is
shown below that a lognormal with median 1E�3 and
error factor 10 corresponds to an underlying normal
with mean �6.980 and standard deviation 1.3997.
Therefore the inverse of the variance is 1/1.39972 =
0.5104.

The line beginning “list” defines the data, 0 events is
2102 reactor years.  BUGS also requires an initial
value for , but generated it randomly.

When BUGS generated 100,000 samples, the mean,
5th percentile, and 95th percentile of  were 3.5E�4,
4.5E�5, and 9.8E�4, just as found above.

6.2.2.7.2 Example with "Moment-Matching" 
Conjugate Prior

Conjugate priors have appeal: Some people find
algebraic formulas tidier and more convenient than
brute-force computer calculations.  Also, when a PRA
program requests a distribution for a parameter, it is
usually easier to enter a distributional form and a
couple of parameters than to enter a simulated distribu-
tion.

Therefore, a nonconjugate prior is sometimes replaced
by a conjugate prior having the same mean and vari-
ance.  This method is carried out here with the above
example.

Begin by finding the gamma prior with the same
moments as the above lognormal prior.  As explained
in Appendix A.7.3, the median, error factor, and
moments of the lognormal distribution are related to
µ and  of the underlying normal distribution of ln
as follows.

median( ) = exp(µ)
EF( ) = exp(1.645 )
mean( ) = exp(µ + 2/2)
var( ) = [median( )]2�exp( 2)�[exp( 2) � 1]

The lognormal prior has median 1.0E�3, and error
factor 10.  Solving the first two equations yields

µ = �6.907755
 = 1.399748 .

Substituting these values into the second two equa-
tions yields

mean( ) = 2.6635E�3
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var( ) = 4.3235E�5  .

Now the gamma distribution must be found with this
mean and this variance.  The formulas for the mo-
ments of a gamma distribution were given in Section
6.2.2.4.1 and in Appendix A.7.6:

mean = /
variance = / 2 .

Therefore,
 = mean2/variance = 0.164
 = mean/variance = 61.6 reactor-years.

Warning flags should go up, because  is consider-
ably smaller than 0.5.  Nevertheless, we carry out the
example using this gamma distribution as the prior.
The update formulas yield

post = 0 + 0.164 = 0.164
post = 2102 + 61.6 = 2164 reactor-years .

The posterior mean is 7.6E�5, and a 90% credible
interval is (3.4E�12, 4.1E�4), all with units events
per reactor-year.

6.2.2.7.3    Comparison of Example Analyses

The two posterior distributions do not agree closely, as
will be discussed below.  If the shape parameter � of
the gamma prior had been larger, the two prior distribu-
tions would have had more similar percentiles, and the
two posterior distributions likewise would have agreed
better.  As it is, however, the two analyses are summa-
rized in Table 6.5.

Table 6.5 Posterior distributions from two 
analyses.

Prior Mean 90% Interval

Lognormal 3.5E�4 (4.5E�5, 9.8E�4)

Gamma 7.6E�5 (3.4E�12, 4.1E�4)

The most notable difference between the two poste-
rior distributions is in the lower endpoints, the 5th
percentiles, which differ by many orders of magni-
tude.  This is explained, to some extent, by graphical
comparisons.  Figures 6.14 and 6.15 show the prior
cumulative distributions.  When plotted on an ordi-
nary scale in Figure 6.14, the two prior distributions
look fairly similar, although the gamma distribution

seems to put more probability near zero.  The differ-
ences become much more obvious when the two
prior distributions are plotted on a logarithmic scale
in Figure 6.15.  These differences between the two
prior distributions are present in spite of the fact that
the two priors have equal means and equal vari-
ances.

The two resulting posterior distributions are also
quite different in the lower tail, as shown in Figure
6.16, and this difference is especially clear when the
distributions are plotted on a log scale, as shown in
Figure 6.17.

Figure 6.14  Two prior distributions having same
means and variances.

Figure 6.15  Same prior distributions as in previous
figure, with  plotted on a logarithmic scale.
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Figure 6.16  Two posterior distributions, from priors
in previous figures.

Figure 6.17  Same posterior distributions as in
previous figure, with  plotted on logarithmic scale.

Incidentally, these illustrations use cumulative distribu-
tions instead of densities, for an important reason.
Cumulative distributions simply show probabilities,
and so can be plotted with the horizontal scale either
linear or logarithmic.  Alternatively, the density of
ln(�) could be plotted against ln(�), but the density of
ln(�) is not the same function as the density of �, as
explained in Appendix A.4.7.

6.2.3 Model Validation

Model validation should go hand in hand with parame-
ter estimation.  Philosophically, it would seem natural
first to confirm the form of the model and second to
estimate the parameters of that model.  However,
typically one can perform goodness-of-fit tests and
other validations of a model only after the model has
been fully specified, that is, only after the form of the
model has been assumed and the corresponding param-
eters have been estimated.  Because parameter-estima-

tion is built into most model-validation procedures, it
was presented first.

It is often wise not to stop the analysis with just esti-
mating the parameters.  Foolish results have been
presented by analysts who estimated the parameters but
did not thoroughly check that the assumptions of the
model were correct.  This section presents ways to
check the model assumptions.  Much of this material is
taken from an INEEL report by Engelhardt (1994).

The Poisson process was introduced in Section 2.2.2.
The three assumptions were listed there:  constant
event occurrence rate, no simultaneous events, and
independent time periods.  These assumptions are
considered here.

The assumption of constant rate is considered in the
next two sections, first where the alternative possibility
is that different data sources may have different values
of � but in no particular order, and then where the
alternative possibility is that a time trend exists.  Both
graphical methods and formal statistical hypothesis
tests are given for addressing the issues.  The assump-
tion of no exactly simultaneous events is then dis-
cussed from the viewpoint of examining the data for
common-cause events.  Finally the assumption of
independent time intervals is considered, and some
statistical tests of the assumption are given.

When Bayesian methods are used, one must also
examine whether the data and the prior distribution are
consistent.  It makes little sense to update a prior with
data, if the data make it clear that the prior belief was
just plain wrong.  That topic constitutes the final sub-
section of the present section.

6.2.3.1 Poolability of Data Subsets

Assumption 1 in Section 2.2.2 implies that there is one
rate � for the entire process.  The correctness of such
an assumption can be investigated by analyzing subsets
of the data and comparing the estimates of � for the
various subsets.

Example 2.2 described LOSP events during shutdown.
For this section, consider a portion of that example.
The entire data set could be used, but to keep the
example from being too cumbersome we arbitrarily
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SL1 (0/3.9)

GC99 0292 8λ (events/reactor-shutdown-yr.)

Figure 6.18  MLEs and 90% confidence intervals for
, based on each plant’s data and based on pooled

data from all the plants.

restrict it to five plants at three sites, all located in one
state.  

An obvious question concerns the possibility of differ-
ent rates for different plants.  A general term used in
this handbook will be data subsets.  In Example 6.4,
five subsets are shown, corresponding to plants.  In
other examples the subsets could correspond to years,
or systems, or any other way of splitting  the data.  For
initiating events, each subset corresponds to one cell in
the table, with an event count and an exposure time.

Sometimes, data subsets can be split or combined in
reasonable ways.  For example, if the subsets were time
periods, the data could be partitioned into decades or
years or months.  The finer the division of the cells, the
more sparse the data become within the cells.  Too fine
a partition allows random variation to dominate within
Example 6.4 Shutdown LOSP events at five

plants, 1980-96.

During 1980-1996, five plants experienced eight
LOSP events while in shutdown.  These were
events from plant-centered causes rather than
external causes.  The data are given here.

Plant
code

Events Plant shutdown
years

CR3 5   5.224

SL1 0   3.871

SL2 0   2.064

TP3 2   5.763

TP4 1   5.586

Totals 8 22.508

each cell, but too coarse a partition may hide variation
that is present within individual cells.  In the present
simple example, the most reasonable partition is into
plants.  Analysis of more complicated data sets may
require examination of many partitionings.

First, a graphical technique is given, to help the analyst
understand what the data set shows.  Then, a formal
statistical procedure is presented, to help quantify the

strength of the evidence for patterns seen in the graphi-
cal investigation.

6.2.3.1.1 Graphical Technique

To explore the relations between cells, identify the cells
on one axis.  Then, for each cell, plot a point estimate
of � and an interval estimate of � against the other axis.
Patterns such as trends, outliers, or large scatter are
then made visible.

In Example 6.4, the cells are plants.  The data set
from each plant was analyzed separately, using the
tools of Section 6.2.1.  The graph in Figure 6.18
shows the maximum likelihood estimate and a
confidence interval for each plant, plotted side by
side.  For this handbook, the plot was produced with
a graphics software package, although a hand-drawn
sketch would be adequate to show the results.

The confidence interval for the pooled data is also
shown.  Take care, however:  this interval is only
valid if all the plants have the same , which is what
must be decided!  Nevertheless, the interval and
point estimate for the pooled data give a useful
reference for comparisons with the individual plants.
For this reason a vertical dotted line is drawn through
the mean of the pooled data.

Note that the plants are displayed not in alphabetical
order, which is a meaningless order for the event

rate, but in order of decreasing .  (When two�λ
plants have the same MLE, as do SL1 and SL2, the
upper confidence limit is used to determine the
order.)  Experience has shown that such a descend-
ing order assists the eye in making comparisons.
Cleveland (1985, Chap. 3.3) discusses this and other
ways of ordering data.
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CR3 appears somewhat high compared to the others
— although there is considerable overlap of the
intervals, the lower confidence limit for CR3 is just
barely higher than the MLE for the utility as a whole.
Of course, the picture might give a different impres-
sion if slightly different intervals were used: 95%
confidence intervals instead of 90% confidence
intervals, or Bayes intervals with the Jeffreys
noninformative prior instead of confidence intervals.
From the graph alone, it is difficult to say whether the
data can be pooled.

A graph like this should not be used to draw naive
conclusions without also using a formal statistical test.
For example, if many confidence intervals are plotted,
based on data sets generated by the same �, a few will
be far from the others because of randomness alone.
This was seen in Figure 6.3, where all the variation was
due to randomness of the data, and some intervals did
not overlap some others at all.  Thus, an outlying
interval does not prove that the �s are unequal.  This
same statement is true if other intervals are used, such
as Bayes credible intervals based on the noninforma-
tive prior.  The issue is the random variability of data,
not the kind of interval constructed.

Conversely, if there are only a few intervals, intervals
that just barely overlap can give strong evidence for a
difference in the �s.

To quantify the strength of the evidence against poola-
bility, a formal statistical procedure is given in the next
subsection.  The graph gives an indication of what the
test might show, and helps in the interpretation of the
test results.  If the statistical test turns out to find a
statistically significant difference between plants, it is
natural then to ask what kind of difference is present.
Figure 6.17 shows that most of the plants appear
similar, with only one possible outlier.  An unusually
long interval, such as that seen in Figure 6.18 for SL2,
is generally associated with a smaller exposure time.
The picture provides insight even though it does not
give a quantitative statistical test.

6.2.3.1.2     Statistical Test

The Chi-Squared Test.  To study whether the rate is
the same for different cells, use a chi-squared test.
Many statistics texts, such as Bain and Engelhardt
(1992, Chapter 13), discuss this test, and many soft-

ware packages perform the chi-squared test.  It is
presented here in enough detail so that the reader could
perform the calculations by hand if necessary, because
it is instructive to see how the test works.

Let the null hypothesis be
H0:  � is the same in all the data subsets.

In the present application the data subsets are the five
plants.  The method is to see what kind of data would
be expected when � really is constant, and then to see
how much the observed counts differ from the ex-
pected counts.  If the difference is small, the counts are
consistent with the hypothesis H0 that the rate is
constant.  If, instead, the difference is large, the counts
show strong evidence against H0.

If H0 is true, that is, if � is really the same for all the

plants, then the estimate (MLE) of � is = x/t.  The�λ
estimate of the expected count is built from this quan-
tity.  Let xj be the number of observed events in the jth
cell, the jth plant in the present example.  Assuming the
hypothesis of a single rate �, an estimate of the ex-

pected count for the jth cell is simply .e tj j= �λ

In Example 6.4, the estimate of  is 8/22.508 = 0.355
events per shutdown-year.  Therefore, the expected
count for CR3 is the estimate of  times the exposure
time for CR3, 0.335 × 5.224 = 1.857 events.  Table
6.6 is an extension of the original table given in
Example 6.4, showing the quantities needed for the
calculation.

Table 6.6 Quantities for calculation of chi-
squared test.

Cell code xj tj ej

CR3 5 5.224 1.857

SL1 0 3.871 1.376

SL2 0 2.064 0.734

TP3 2 5.763 2.048

TP4 1 5.586 1.985

Totals 8 22.508 8.000
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The total of the expected counts agrees with the total
of the observed counts, except possibly for small
round-off error.

The test for equality of rates that is considered here is
based on the following calculated quantity,

X2 = �j(xj � ej)
2/ej ,

sometimes called the Pearson chi-squared statistic,
after its inventor, Karl Pearson, or simply the chi-
squared statistic. The notation became standard long
before the custom developed of using upper-case letters
for random variables and lower-case letters for num-
bers.  In the discussion below, the context must reveal
whether X2 refers to the random variable or the ob-
served value.

Observe that X2 is large if the xjs (observed counts)
differ greatly from the ejs (expected values when H0 is
true).  Conversely, X2 is small if the observed values
are close to the expected values.  This statement is
made more precise as follows.  When H0 is true and the
total count is large, the distribution of X2 has a distribu-
tion that is approximately chi-squared with c � 1
degrees of freedom, where c is the number of cells.  If
the calculated value of X2 is large, compared to the chi-
squared distribution, there is strong evidence that H0 is
false; the larger the X2 value, the stronger the evidence.

For the data of Table 6.4, X2 = 7.92, which is the
0.906th quantile of the chi-squared distribution
with 4 degrees of freedom.  The next subsection
discusses the interpretation of this.

Interpretation of Test Results. Suppose, for any
example with 5 cells, that X2 were 9.8.  A table of the
chi-squared distribution shows that 9.488 is the 0.95th
quantile of the chi-squared distribution with 4 degrees
of freedom, and 11.14 is the 0.975th quantile.  After
comparing X2 to these values, we would conclude that
the evidence is strong against H0, but not overwhelm-
ing.  The full statement is 

� If H0 is true, that is, if all the cells have the same �,
the chance of seeing such a large X2 is less than
0.05 but more than 0.025.

Common abbreviated ways of saying this are

� We reject H0 at the 5% significance level, but not
at the 2.5% significance level.

� The difference between cells is statistically signif-
icant at the 0.05 level, but not at the 0.025 level.

� The p-value is between 0.05 and 0.025.

There will be some false alarms.  Even if � is exactly
the same for all the cells, sometimes X2 will be large,
just from randomness.  It will be greater than the 95th
percentile for 5% of the data sets, and it will be greater
than the 99th percentile for 1% of the data sets.  If we
observed such a value for X2, we would probably
decide that the data could not be pooled.  In that case,
we would have believed a false alarm and made the
incorrect decision.  Just as with confidence intervals,
we cannot be sure that this data set is not one of the
rare unlucky ones.  But following the averages leads us
to the correct decision most of the time.

If, instead, X2 were 4.1, it would be near the 60th
percentile of the chi-squared distribution, and therefore
be in the range of values that would be expected under
H0.  We would say the observed counts are consistent
with the hypothesis H0, or H0 cannot be rejected, or the
evidence against H0 is weak.  We would not conclude
that H0 is true, because it probably is not exactly true to
the tenth decimal place, but the conclusion would be
that H0 cannot be rejected by the data.

In fact, for the data of Table 6.6, X2 equals 7.92,
which is the 0.906th quantile of the chi-squared
distribution with 4 degrees of freedom.  That means:
if all five plants have the same event rate, there is a
9.4% probability of seeing such a large value of X2.
The evidence against H0 is not convincingly strong.
CR3 might be suspected of having a higher event
rate, but the evidence is not strong enough to prove
this.

The traditional cut-off is 5%.  The difference between
cells is called statistically significant, with no qualify-
ing phrase, if it is significant at the 0.05 level.  This is
tradition only, but it is very widely followed.

In actual data analysis, do not stop with the decision
that a difference is or is not statistically significant.  Do
not even stop by reporting the p-value.  That may be
acceptable if the p-value is very small (much less than
0.05) or very large (much larger than 0.05).  In many
cases, however, statistical significance is far from the
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whole story.  Engineering significance is just as impor-
tant.

To illustrate this, consider a possible follow-up to the
above statistical analysis of Example 6.4.  As men-
tioned, the statistical evidence against poolability is
not strong, but some might consider it borderline.
Therefore, a thorough analysis would ask questions
such as:

• Are there engineering reasons for expecting
CR3 to have a different event rate than the other
plants do, either because of the hardware or
because of procedures during shutdown?  (Be
warned that it is easy to find justifications in
hindsight, after seeing the data.  It might be wise
to hide the data and ask these questions of a
different knowledgeable person.)

• What are the consequences for the PRA analy-
sis if the data are pooled or if, instead, CR3 is
treated separately from the other plants?  Does
the decision to pool or not make any practical
difference?

Required Sample Size.  The above considerations are
valid if the total count is "large," or more precisely, if
the ejs are "large."  If the ejs are small, the chi-squared
distribution is not a good approximation to the distribu-
tion of X2.  Thus, the user must ask how large a count
is necessary for the chi-squared approximation to be
adequate.  An overly conservative rule is that each
expected cell-count, ej, should be 5.0 or larger.  Despite
its conservatism, this rule is still widely used, and cited
in the statistical literature and by some software pack-
ages.

A readable discussion of chi-squared tests by Moore
(1986, p.71) is applicable here.  Citing the work of
Roscoe and Byars (1971), the following recommenda-
tions are made:

(1) With equiprobable cells, the average expected
frequency should be at least 1 when testing at the
0.05 level.  In other words, use the chi-squared
approximation at the 5% level when x/c � 1, where
x is the number of events and c is the number of
cells.  At the 1% level, the chi-squared  approxi-
mation is recommended if x/c � 2.

(2) When the cells are not approximately equiproba-
ble, the average expected frequencies in (1) should

be doubled.  Thus, the recommendation is that at
the 5% level x/c � 2, and at the 1% level x/c � 4.

Note that in rules (1) and (2) above, the recommen-
dation is based on the average rather than the minimum
expected cell-count.  As noted in another study by
Koehler and Larntz (1980), any rule such as (2) may be
defeated by a sufficiently skewed assignment of cell
probabilities.

Roscoe and Byars also recommend when c = 2 that the
chi-squared test should be replaced by the test based on
the exact binomial distribution of X1 conditional on the
total event count.  For example, if the two cells had the
same exposure times, we would expect that half of the
events would be generated in each cell.  More gener-
ally, if

� the two cells have exposure times t1 and t2

� a total of x events are observed
� � is the same for both cells
then, conditional on x, X1 has a binomial(n, p) distribu-
tion, with p = t1/(t1 + t2). Exact binomial tests are
discussed by Bain and Engelhardt (1992, p.405).

Example 6.4 has x = 8 and c = 5.  The cells are not
equiprobable, that is, ej is not the same for all cells,
because the plants did not all have the same expo-
sure time.  Nevertheless, the expected cell counts
differ from each other by at most a factor of two.
This is not a large departure from equiprobability, as
differences of an order of magnitude would be.
Because x/c = 1.6, and the calculated significance
level is about 10%, the sample size is large enough
for the chi-squared approximation to be adequate.
The conclusions reached earlier still stand.  If, on the
other hand, the sample size had been considerably
smaller, one would have to say that the p-value is
approximately given by the chi-squared distribution,
but that the exact p-value has not been found.

If the expected cell-counts are so small that the chi-
squared approximation is not recommended, the
analyst can pool data in some "adjacent cells," thereby
increasing the expected cell-counts.

In the Example 6.4, suppose that there were engi-
neering reasons for thinking that the event rate is
similar at units at a single site.  Then the sister units
might be pooled, transforming the original table of
Example 6.4 into Table 6.7 here.
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We repeat, this pooling of cells is not required with
the actual data, but it could be useful if (a) the cell
counts were smaller and (b) there were engineering
reasons for believing that the pooled cells are rela-
tively homogeneous, that is, the event rates are
similar for both units at a site, more similar than the
event rates at different sites.

Table 6.7 Shutdown LOSP events at three
sites, 1980-96.

Site code Events Plant shutdown years

CR 5 5.224

SL 0 5.935

TP 3 11.349

Generally speaking, a chi-squared test based on a larger
number of cells will have better power for detecting
when rates are not equal, but this also makes it more
difficult to satisfy guidelines on expected cell-counts
for the chi-squared approximation.  Thus, it is some-
times necessary to make a compromise between
expected cell counts and the number of cells.

Options involving the exact distribution of X2 are also
possible.  The most widely known commercial soft-
ware for calculating the exact p-value is StatExact
(1999).

6.2.3.2 No Time Trend

The chi-squared method given above does not use any
ordering of the cells.  Even if the test were for differ-
ences in years, say, the test would not use the natural
ordering by calendar year or by plant age. When there
is a meaningful order to the data subsets, it may be
useful to perform additional analyses.  The analysis
given above is valid, but an additional possible analy-
sis, making use of time order, is considered now.

The methods will be illustrated with Example 6.5. 

6.2.3.2.1  Graphical Techniques

Confidence-Interval Plot.  First, the same kind of plot
that was used in the previous subsection can be used
here.  The time axis is divided into cells, or bins in the
terminology of some authors.  For example, if the time

span is divided into calendar years, the counts and
reactor-critical-years for Example 6.5 are given in
Table 6.8.

Example 6.5 Unplanned HPCI demands.
Grant et al. (1995, Table B-5) list 63 unplanned
demands for the HPCI system to start at 23 BWRs
during 1987-1993.  The demand dates are  given
in columns below, in format MM/DD/YY.

01/05/87
01/07/87
01/26/87
02/18/87
02/24/87
03/11/87
04/03/87
04/16/87
04/22/87
07/23/87
07/26/87
07/30/87
08/03/87

08/03/87
08/16/87
08/29/87
01/10/88
04/30/88
05/27/88
08/05/88
08/25/88
08/26/88
09/04/88
11/01/88
11/16/88
12/17/88

03/05/89
03/25/89
08/26/89
09/03/89
11/05/89
11/25/89
12/20/89
01/12/90
01/28/90
03/19/90
03/19/90
06/20/90
07/27/90

08/16/90
08/19/90
09/02/90
09/27/90
10/12/90
10/17/90
11/26/90
01/18/91
01/25/91
02/27/91
04/23/91
07/18/91
07/31/91

08/25/91
09/11/91
12/17/91
02/02/92
06/25/92
08/27/92
09/30/92
10/15/92
11/18/92
04/20/93
07/30/93

Table 6.8 HPCI demands and reactor-critical-
years.

Calendar
year

HPCI 
demands

Reactor-critical-
years

1987 16 14.63

1988 10 14.15

1989   7 15.75

1990 13 17.77

1991   9 17.11

1992   6 17.19

1993   2 17.34

This table has the same form as in Example 6.4,
showing cells with events and exposure times.  The
relevant exposure time is reactor-critical-years,
because the HPCI system uses a turbine-driven
pump, which can only be demanded when the
reactor is producing steam.  The counts come from
the tabulated events of Example 6.5, and the critical-
years can be constructed from information in Poloski
et al. (1999a).  The variation in critical-years results
from the facts that several reactors were shut down
for extended periods, and one reactor did not receive
its low power license until 1989.

This leads to a plot similar to Figure 6.18, showing
the estimated value of the demand frequency, , and
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Figure 6.19  MLEs and 90% confidence intervals
for , each based on data from one calendar year.

Figure 6.20  Cumulative number of HPCI demands,
by date.

a confidence interval for each year.  This is shown in
Figure 6.19.

Figure 6.19 seems to indicate a decreasing trend in the
frequency of HPCI demands.  However, the picture
does not reveal whether the apparent trend is perhaps
merely the result of random scatter.  To answer that
question, a  formal statistical test is necessary, quanti-
fying the strength of the evidence.  Such tests will be
given in Section 6.2.3.2.2.

Cumulative Plot.  Figure 6.19 required a choice of
how to divide the time axis into cells.  A different plot,
given next, does not require any such choice, if the
dates of the events are recorded.  Plot the cumulative
event count at the n event dates.

Figure 6.20 shows this for Example 6.5.  The events
are arranged in chronological order, and the cumula-
tive count of events is plotted against the event
times.

The slope of a string of plotted points is defined as the
vertical change in the string divided by the horizontal
change, �y/�x.  This is the familiar definition of slope
from mathematics courses.  In the plot given here, the
horizontal distance between two points is elapsed time,
and the vertical distance is the total number of events
that occurred during that time period.  Therefore,

slope = (number of events)/(elapsed time) ,

so the slope is a graphical estimator of the event
frequency, �.  A constant slope, or a straight line,
indicates a constant �.  Changes in slope indicate
changes in �:  if the slope becomes steeper, � is
increasing, and if the slope becomes less steep, � is
decreasing.

In Example 6.4 the time axis represents calendar
years.  Because the relevant frequency is events per
reactor-critical-year, it would be better to plot the time
axis in terms of total reactor-critical-years from the
start of 1987.  However, it is somewhat difficult to
calculate the reactor-critical-years preceding any
particular event, or equivalently, the reactor-critical-
years between successive events.  Therefore, simple
calendar years are used.  This is adequate if the
number of reactors operating at any time is fairly
constant, because then the rate per reactor-critical-
year remains roughly proportional to the rate per
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industry-calendar year.  In the present case, as
shown by Table 6.8, later calendar-years correspond
to a few more critical-years than do early calendar-
years.

The slope in Figure 6.20 is steepest on the left, and
gradually lessens, so that the plot is rising fastest on
the left and more gently on the right.  More HPCI
demands are packed into a time interval on the left
than into a time interval of the same length on the
right.  This indicates that the frequency of unplanned
HPCI demands was decreasing during the time
period of the study.  Thus, this figure leads to the
same general conclusion as does Figure 6.19.
Figure 6.20 shows more detail, with the individual
events plotted, but it is less accurate in this example
because we have not gone to the work of plotting
events versus reactor-critical time.

It is important that the horizontal axis cover the entire
data-collection period and not stop at the final event.
In Figure 6.20, the lack of events during the last half
of 1993 contributes to the overall curvature of the
plot.

If the frequency is constant, the plot should follow a
roughly straight line.  For comparison, it is useful to
show a straight diagonal line, going from height 0 at
the start of the data collection period to height n + 1 at
the end of the data collection period, where n is the
number of data points.

In Figure 6.20, the diagonal line is shown as a dotted
line, rising from height 0 on the left to height n + 1 =
64 on the right.

As mentioned above, the early calendar years
contain fewer reactor-critical-years than do the later
calendar years.  Therefore, the time axis in Figure
6.20 would reflect reactor-critical-years more accu-
rately if the left end of the axis were compressed
slightly or the right end were stretched slightly.  The
effect would be to increase the curvature of the plot,
making it rise more quickly on the left and more
slowly on the right.

A cumulative plot contains random bounces and
clusters, so it is not clear whether the observed pattern
is more than the result of randomness.  As always, a
formal statistical test will be needed to measure the
strength of the evidence against the hypothesis of
constant event frequency.

6.2.3.2.2   Statistical Tests for a Trend in �

The Chi-Squared Test.  This is the same test as given
in Section 6.2.3.1.2, only now the cells are years or
similar divisions of time.

In Example 6.5, the p-value is 0.009, meaning that a
random data set with constant  would show this
much variability with probability only 0.9%.  Two
points are worth noting.

• The chi-squared test makes no use of the order
of the cells.  It would give exactly the same
conclusion if the intervals in Figure 6.19 were
scrambled in a random order instead of gener-
ally decreasing from left to right.

• The calculated p-value is accurate enough to
use, by the guidelines of Section 6.2.3.1.2,
because the number of events is 63, and the
number of cells is 7, so x/c = 63/7 = 9.  Even
splitting the cells into 6-month periods or smaller
periods would be justified.

Chapter 7 will take Figure 6.19, fit a trend, and perform
an additional test based on the fit; see Sections 7.2.3
and 7.2.4.  Therefore, the chi-squared test is not dis-
cussed further here.  

The Laplace Test.  This test does not use the binning
of times into cells, but instead uses the exact dates.  In
the example, there are 63 occurrences of events during
a seven-year period.  In general, consider a time
interval [0, L], and suppose that during this period n
events occur at successive random times T1, T2, ... , Tn.
Although the number of occurrences, n, is random
when the plants are observed for a fixed length of time
L, we condition on the value of n, and so treat it as
fixed.  Consider the null hypothesis

H0: � is constant over time .

Consider the alternative hypothesis

H1: � is either an increasing or a decreasing function
of time.

This hypothesis says that the events tend to occur more
at one end of the interval.  A test that is often used is

based on the mean of the failure times, .T T ni i= Σ /

The intuitive basis for the test is the following.  If � is
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constant, about half of the events should occur before
time L/2 and half afterwards, and the average event
time should be close to L/2.  On the other hand, if � is
decreasing, more events are expected early and fewer
later, so the average event time should be smaller than
L/2.  Similarly, if � is increasing, the average event
time is expected to be larger than L/2.  Therefore, the

test rejects H0 if  is far from L/2.  Positive values ofT

the difference � L/2 indicate an increasing trend,T
and negative values indicate a decreasing trend.  

When H0 is true, has expected value L/2 and vari-T
ance L2/(12n).  The resulting test statistic is

 .U
T L

L n
=

− /

/

2

12

The statistic U is approximately standard normal for n
� 3.  A test of H0 at significance level 0.05 versus an
increasing alternative,

H1: � is increasing in time ,

would reject H0 if U � 1.645.  A 0.05 level test versus
a decreasing alternative,

H1: � is decreasing in time ,

would reject H0 if U � �1.645.  Of course, ±1.645 are
the 0.95th and 0.05th quantiles, respectively, of the
standard normal distribution.  A two-sided test, that is,
a test against the original two-sided alternative hypoth-
esis, at the 0.10 level would reject H0 if |U| � 1.645.

This test, generally known as the "Laplace" test, is
discussed by Cox and Lewis (1978, p. 47).  The La-
place test is known to be good for detecting a wide
variety of monotonic trends, and consequently it is
recommended as a general tool for testing against such
alternatives.

Let us apply the Laplace test to the HPCI-demand
data of Example 6.4.  First, the dates must be con-
verted to times.  The first event time is 0.011 years
after January 1, 1987, the final event is 6.581 years
after the starting date, and the other times are
calculated similarly.  Here, a “year” is interpreted as
a 365-day year.  The total number of 365-day years
is L = 7.00.  The mean of the event times can be

calculated to be 2.73.  Therefore, the calculated
value of U is

 
2 73 35

7 00 12 63
3 02

. .

. /
.

−

×
= −   .

This is statistically very significant.  The value 3.02 is
the 0.001th quantile of the standard normal distribu-
tion. Thus, the evidence is very strong against a
constant demand rate, in favor instead of a decreas-
ing demand rate.  Even against the two-sided hy-
pothesis

H1:   is increasing or decreasing in time ,

the p-value is Pr( |U| > 3.02) = 0.002.

In the example, the Laplace test statistic was calcu-
lated in terms of calendar time instead of reactor-
critical-time.  As remarked earlier, using reactor-
critical-time would increase the curvature of the plot
in Figure 6.20.  A similar argument shows that using
reactor-critical-time in computing U would increase
the strength of the evidence against the hypothesis
of a constant demand rate.  However, the computa-
tions would be very tedious.  That is an advantage of
the chi-squared test, because it is typically easier to
find the exact relevant exposure time for blocks of
time, such as years, than for each individual event.

In the example, the result of the Laplace test agrees
with the result from the chi-squared test, but is more
conclusive.  The chi-squared test gave a p-value of
0.009, meaning that if H0 is true, the cells would
appear so different from each other with probability
only 0.009.  The Laplace test gives a p-value of
0.002.

The chi-squared and Laplace tests differ because they
are concerned with different alternatives to H0.  The
chi-squared test is concerned with any variation from
cell to cell (from year to year in the example).  If the
event rate goes up and down erratically, that is just as
much evidence against H0 as if the event rate decreases
monotonically.  The Laplace test, on the other hand, is
focused on the alternative of a trend.  It has more
power for detecting trends, but no power at all for
detecting erratic changes upward and downward.

Other tests exist in this setting.  See Ascher and Fein-
gold (1984, page 80) and Engelhardt (1994, p. 19) for
details.
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6.2.3.3 No Multiple Failures

The second assumption of the Poisson process is that
there are no exactly simultaneous failures.  In practice
this means that common-cause failures do not occur.
In most situations, common-cause failures will occur
from time to time.  This was seen in some of the
examples discussed in Section 2.2.  However, if
common-cause events are relatively infrequent, their
effect on the validity of the Poisson model can normal-
ly be ignored.

No statistical methods are given here to examine
whether common-cause events can occur.  Instead, the
analyst should think of the engineering reasons why
common-cause events might be rare or frequent, and
the data should be examined to discover how frequent
common-cause events are in practice.

In Example 6.5, HPCI demands, it is reasonable that
common-cause events could occur only at multiple
units at a single site.  There was one such pair of
events in the data, with HPCI demands at Hatch 1
and Hatch 2, both on 08/03/87.  Examination of the
LERs reveals that the demands occurred from
different causes.  They happened at different times,
and so were not exactly simultaneous.  The conclu-
sion is that common causes may induce exactly
simultaneous events, but they are infrequent.

If common-cause events are relatively frequent, so that
they cannot be ignored, it might be necessary to per-
form two analyses, one of the "independent", or not-
common-cause, events, and one of the common-cause
occurrences.  For each type of event, the event fre-
quency, �, could be estimated.  Then an additional
analysis would be necessary to characterize the number
of separate events for each common-cause occurrence.

6.2.3.4 Independence of Disjoint Time Periods

This section is probably less important than the others,
and of interest only to truly dedicated readers.  Others
should skip directly to Section 6.2.3.5.

The final assumption of the Poisson model is that event
occurrences in disjoint time periods are statistically
independent.  This should first be addressed by careful
thinking, similar to that in the examples of Section 2.2.

However, the following statistical approach may also
be useful.

One possible type of dependence would be if events
tended to cluster in time:  large between-event times
tended to occur in succession, or similarly small ones
tended to occur in succession.  For example, suppose
that a repair is done incorrectly several times in succes-
sion, leading to small times between failures.  The
occurrence of a failure on one day would increase the
probability of a failure in the next short time period,
violating the Poisson assumption.  After the problem is
diagnosed, the personnel receive training in proper
repair procedures, thereafter resulting in larger times
between failures.

To illustrate the ideas, an example with no trend is
needed.  The shutdown LOSP events introduced in
Section 2.2 can be used as such an example.  The
data are restricted here to the years 1991-1996,
primarily to reduce any effect of the overall down-
ward trend in total shutdown tome. Atwood et al.
(1998) report 24 plant-centered LOSP events during
shutdown in 1991-1996.  They are given as Exam-
ple 6.6.

The null hypothesis is that the successive times be-
tween events are independent and exponentially
distributed.  We consider the alternative hypotheses
that

� the times are not exponentially distributed, possi-
bly with more short times between events than
expected from an exponential distribution, or

� successive times are correlated, that is that short
times tend to be followed by short times and long
times by long times.

Example 6.6 Dates of shutdown LOSP events
and days between them.

The consecutive dates of shutdown LOSP events
are shown in columns below.  After each date is
the time since the preceding event, in days.  For
the first event, the time since the start of the study
period is shown.  Also, the time is shown from the
last event to the end of the study period, a 25th
“between-event time.”
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Figure 6.21  Scatter plot of rank(x) versus rank(y).

03/07/91    66
03/13/91      6
03/20/91      7
04/02/91    13
06/22/91    81
07/24/91    32
10/20/91    88
01/29/92  101
03/23/92    54

04/02/92   10
04/06/92     4
04/28/92    22
04/08/93  345
05/19/93    41
06/22/93    34
06/26/93      4
10/12/93  108
05/21/94  221

09/27/94  129
11/18/94    52
02/27/95  101
10/21/95  236
01/20/96    91
05/23/96  124
—        223

Section 6.7.2.3 discusses ways to investigate whether
data come from a particular distribution.  Therefore, the
issue of the exponential distribution is deferred to that
section.  The issue of serial correlation motivates the
following procedure.  Let yi be the ith time between
events, and let xi be the (i�1) time between events, xi =
yi!1.  We look to see if xi and yi are correlated.

In the above example, the first few (x, y) pairs are
(66, 6), (6, 7), and (7, 13), and the final pair is (124,
223).

6.2.3.4.1Graphical Method

As just mentioned, the issue of whether the distribution
is exponential is deferred to Section 6.7.2.3.  Consider
here the question of serial correlation.  A scatter plot of
x versus y will indicate whether the values are corre-
lated.  However, with skewed data the large values tend
to be visually dominant, distorting the overall message
of the plot.  One could try an ad hoc transformation,
such as the logarithmic transformation, but a more
universally applicable approach is to use the ranks of
the variables.  That is, sort the n times in increasing
order, and assign rank 1 to the smallest time and rank
n to the largest time.

In the example, the two shortest times are each
equal to 4 days.  Each is assigned the average of
ranks 1 and 2, namely 1.5.  The next largest time is
6 days, which is assigned rank 3, and so forth.  The
17th and 18th times are each 101 days, so those two
are each assigned rank 17.5.  Selected values of x,
y and their ranks are shown in Table 6.9.  For com-
pactness, not all of the values are printed.

Table 6.9 Calculations for analyzing LOSP
dates.

x rank(x) y rank(y)

  —
  66
    6
    7
  13
  81
  32
  88
101
  54
  ...
  52
101
236
  91
124
223

  —
  13
    3
    4
    6
  14
    8
  15
  17.5
  12
  ...
  11
  17.5
  24
  16
  20
  23

  66
    6
    7
  13
  81
  32
  88
101
  54
  10
  ...
101
236
  91
124
223
  —

  13
    3
    4
    6
  14
    8
  15
  17.5
  12
    5
  ...
  17.5
  24
  16
  20
  23

  �

Figure 6.21 shows a scatter plot of rank(x) versus
rank(y).  The plot seems to show very little pattern,
indicating little or no correlation from one time to the
next.  The barely perceptible trend from lower left to
upper right (“southwest to northeast”) is probably not
meaningful, but a hypothesis test will need to be
performed to confirm or refute that judgment.

6.2.3.4.2    Statistical Tests
 
This section considers whether the between-event times
are serially correlated.  The question of whether they
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are exponentially distributed is discussed in Section
6.7.2.3, under the topic of goodness-of-fit tests.

To test for correlation, it is not appropriate to assume
normality of the data.  Instead, a nonparametric test
should be used, that is, a test that does not assume any
particular distributional form.  A test statistic that is
commonly produced by statistical software is Kendall’s
tau (�).  Tau is defined in Conover (1999), Hollander
and Wolfe (1999), and other books on nonparametric
statistics. 

Based on the data of Table 6.9, the hypothesis of no
correlation between X and Y was tested.  Kendall’s
tau gave a p-value of 0.08.  This calculation indicates
that the very slight trend seen in Figure 6.21 is not
quite statistically significant.

Recall, from the discussion of Section 6.2.3.1.2, that
a small p-value is not the end of an analysis.  The p-
value for this example is small, indicating that the
trend in Figure 6.21 is rather unlikely under the
assumption of no correlation.  If we are concerned
about this fact, we must seek possible engineering
mechanisms for the trend.  The data are times
between LOSP events in the industry as a whole.
Therefore, the most plausible explanation is the
overall industry trend of fewer shutdown LOSP
events.  This trend would produce a tendency for the
short times to occur together (primarily near the start
of the data collection period) and the long times to
occur together (primarily near the end of the data
period).

6.2.3.5 Consistency of Data and Prior

As an example, if the prior distribution has mean
Eprior(�), but the observed data show x/t very different
from the prior mean, the analyst might wonder if the
data and the prior are consistent, or if, instead, the prior
distribution was misinformed.  To investigate this, one
could ask what the prior probability is of getting the
observed data.  Actually, any individual x may have
small probability, so a slightly more complicated
question is appropriate.

Suppose first that x/t is in the left tail of the prior
distribution.  The relevant quantity is the prior proba-
bility of observing x or fewer events.  This is

(6.5)Pr( ) Pr( | ) ( )X x X x f d≤ = ≤∫ λ λ λprior

where

 . (6.6)Pr( | ) ( ) / !X x e t kt k

k

x

≤ = −

=
∑λ λλ

0

If the prior distribution is gamma(�prior, �prior), it can be
shown that the probability in question equals

(6.7)
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where �(s) is the gamma function, a generalization of
the factorial function as described in Appendix A.7.6.
The distribution defined by Equation 6.7 is named the
gamma-Poisson or negative binomial distribution.
The above probability can be evaluated with the aid of
software.  If the prior distribution is not a gamma
distribution, Equation 6.5 does not have a direct
analytical expression.

One method of approximating the integral in
Equation 6.5 is by Monte Carlo sampling.  Generate a
large number of values of � from the prior distribution.
For each value of �, let y be the value of Equation 6.6,
which can be calculated directly.  The average of the y
values is an approximation of the integral in
Equation 6.5.  Another method of approximating the
Equation 6.5 is by numerical integration.

If the probability given by Equation 6.5 is small, the
observed data is not consistent with the prior belief �
the prior belief mistakenly expected � to be larger than
it apparently is.

Similarly, if x/t is in the right tail of the prior distribu-
tion, the relevant quantity is the prior probability that X
� x.  When the prior is a gamma distribution, the
desired probability is the analogue of Equation 6.7,
with  the limits of the summation going from x to �.  In
any case, the desired probability can be approximated
by Monte Carlo sampling.  If that probability is small,
the prior distribution mistakenly expected � to be
smaller than it apparently is.

In Example 6.3, we ask whether the observed zero
failures in 2102 reactor-calendar-years is consistent
with the WASH-1400 prior, lognormal with median
1E-3 per year and error factor 10.  To investigate
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this, 100,000 random values of  were generated
from the lognormal prior.  (The details are given
below.)  For each , Pr(X � 0) = exp(�2102 ) was
found.  The mean of these probabilities was 0.245.
This is a sample mean, and it estimates the true
probability.  It is not small, and therefore gives no
reason to question the applicability of the prior.

One must ask whether the sample was large enough.
The software that calculated the sample mean also
calculated the standard error to be 0.0009.  Recall
from Section 6.2.1.2 that in general a 95% confi-
dence interval can be written as the estimate plus or
minus 2×(standard error).  In this case, this interval
becomes 0.245 ± 0.002.  We conclude that the true
mean equals 0.245 except perhaps for random error
in the third digit.  This shows that the sample size
was more than large enough to give an answer to the
accuracy required.

The recipe for generating  from a lognormal distribu-
tion is as follows:
Generate z from a standard normal distribution, using
commercial software.
Define loglam = µ + z, where µ and  were found in
Section 6.2.2.7.2.
Define lambda = exp(loglam).

6.3 Failures to Change State: 
Failure on Demand

This section has a similar flavor to Section 6.2, but the
details are different.  It applies to data satisfying the
assumptions of Section 2.3.2.1.  The probability of a
failure on demand is denoted p, a unitless quantity.
The data consist of x failures in n demands, with 0 � x
� n.  Before the data are generated, the number of
failures is random, denoted X.  For any particular
number x, the probability of x failures in n demands is

 , (6.8)Pr( ) ( )X x
n

x
p px n x= = −






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where the binomial coefficient is defined as
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The methods will be illustrated by the following
hypothetical data set.

Example 6.7 AFW turbine-train failure to start.

In the last 8 demands of the turbine train of the
auxiliary feedwater (AFW) system at a PWR, the
train failed to start 1 time.  Let p denote the
probability of failure to start for this train.

 
As in Section 6.2, frequentist methods are presented
first, followed by Bayesian methods.  This choice is
made because the frequentist point estimate is so very
simple, not because frequentist estimation is preferable
to Bayesian estimation.  Indeed, in PRA p is normally
estimated in a Bayesian way.

6.3.1 Frequentist, or Classical, 
Estimation

6.3.1.1 Point Estimate

The most commonly used frequentist estimate is the
maximum likelihood estimate (MLE).  It is found by
taking the likelihood, given by Equation 6.8, and
treating it as a function of p.  The value of p that
maximizes the likelihood is called the MLE.  It can be
shown, by setting a derivative to zero, that the maxi-

mum likelihood estimate (MLE) of p is . This$ /p x n=

is intuitively appealing, the observed number of fail-
ures divided by the observed number of demands.

Figure 6.22 shows the likelihood as a function of p,
for the data of Example 6.7.  The figure shows that
the likelihood is maximized at p = 1/8, just as stated
by the formula.

If several subsets of data, such as data corresponding to
several plants, several types of demand, or several
years, are assumed to have the same p, data from the
various sources may be combined, or pooled, for an
overall estimate.  Denoting the number of failures and
demands in data subset j by xj and nj, respectively, let
x = �jxj and n =  �jnj.  The MLE is x/n.
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Figure 6.22  Likelihood as a function of p, for the
data of Example 6.7.

As mentioned in Sec. 6.2.1.1, final answers will be
shown in this handbook with few significant digits, to
avoid giving the impression that the final answer
reflects precise knowledge of the parameter.  Inter-
mediate values will show more significant digits, to
prevent roundoff errors from accumulating.

6.3.1.2 Standard Deviation of Estimator

The number of failures is random.  One number was
observed, but if the demands were repeated a different
number of failures might be observed.  Therefore, the
estimator is random, and the calculated estimate is the
value it happened to take this time.  Considering the

data as random, one could write .  This� /P X n=
notation is consistent with the use of upper case letters
for random variables, although it is customary in the
literature to write  for both the random variable and�p

the calculated value.  The standard deviation of the
estimator is [p(1 - p)/n]1/2.  Substitution of the estimate �p

for p yields an estimate of the standard deviation,

 . [ �( � ) / ] /p p n1 1 2−

The estimated standard deviation of an estimator is also
called the standard error of the estimate.  The handy
rule given in Section 6.2.1.2 applies here as well:

MLE ± 2×(standard error)

is an approximate 95% confidence interval for p, when
the number of demands, n, is large.  However, an exact
confidence interval is given below.

In Example 6.7, the standard error for p is

[0.125 × (1 - 0.125) / 8]1/2 = 0.12.

6.3.1.3 Confidence Interval for p

Readers who are only interested in Bayesian estimation
may wish to skip this section on the first reading.

The interpretation of confidence intervals is given in
Appendix B and in Section 6.2.1.3.  It is so important
that it is repeated once more here.  In the frequentist
approach, p is fixed and the data are random.  There-
fore the maximum likelihood estimator and the confi-
dence limits are all random.  For most data sets the
MLE, , will be close to the true value of p, and the�p

confidence interval will contain p.  Sometimes, how-
ever, the MLE will be rather far from p, and sometimes
(less than 10% of the time) the 90% confidence interval
will not contain p.  The procedure is good in the sense
that most of the time it gives good answers, but the
analyst never knows if the current data set is one of the
unlucky ones.  A figure like Figure 6.3 could be
constructed for p, to illustrate that many data sets could
be generated from the same p, yielding many confi-
dence intervals, most of which contain the true value of
p.

The following material is drawn from Johnson et al.
(1992, Section 3.8.3).  A confidence interval for p is
most naturally expressed in terms of quantiles of a beta
distribution.  Appendix A.7.8 presents the basic facts
about the beta distribution.  As mentioned there, the
beta family of distributions includes many distributions
that are defined on the range from 0 to 1, including the
uniform distribution, bell-shaped distributions, and U-
shaped distributions.  The beta distribution is also
discussed more fully in the section below on Bayesian
estimation.

Denote the lower and upper ends of a 100(1 � �)%
confidence interval by pconf, "/2 and pconf, 1!"/2, respec-
tively.  It can be shown that the lower limit is

pconf, "/2 = beta
"/2(x, n � x + 1) 
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and the upper limit is

pconf, 1!"/2 = beta1 ! "/2(x + 1, n � x)

where betaq(�, �) denotes the q quantile, or 100×q
percentile, of the beta(�, �) distribution.  For example,
a 90% confidence interval for p is given by beta0.05(x,
n � x + 1) and beta0.95(x + 1, n � x).  If x = 0, the beta
distribution for the lower limit is not defined; in that
case, set pconf, "/2 = 0.  Similarly, if  x = n, the beta distri-
bution for the upper limit is not defined; in that case,
set pconf, 1 ! "/2 = 1.  In any case, note carefully that the
parameters of the beta distribution are not quite the
same for the lower and upper endpoints. 

Appendix C tabulates selected percentiles of the beta
distribution.  However, interpolation may be required.
Some software packages, including commonly used
spreadsheets such as Microsoft Excel (2001) and
Quattro Pro (2001), calculate the percentiles of the beta
distribution.  Finally, Appendix A.7.8 gives a last-
resort method, which allows beta percentiles to be
calculated by rather complicated formulas involving
tabulated percentiles of the F distribution.

In the Example 6.7, with 1 AFW train failure in 8
demands, suppose that a 90% interval is to be found.
Then  = 0.10, and 1� /2 = 0.95.  For the lower limit,
beta0.05(1, 8�1+1) = 6.39E�3, from Table C.5.  Thus
pconf, 0.05 = 0.0064.

For the upper limit, beta0.95(1+1, 8�1) = 4.71E�1, also
from Table C.5.  Thus 
pconf, 0.95 = 0.47 .

6.3.2 Bayesian Estimation

Just as for � in Sec. 6.2.2, Bayesian estimation of p
involves several steps.  The prior belief about p is
quantified by a probability distribution, the prior
distribution.  This distribution will be restricted to the
range [0,1], because p must lie between 0 and 1, and it
will assign the most probability to the values of p that
are deemed most plausible.  The data are then col-
lected, and the likelihood function is constructed.
This is given by Equation 6.8 for failures on demand.
It is the probability of the observed data, written as a
function of p.  Finally, the posterior distribution is
constructed, by combining the prior distribution and the
likelihood function through Bayes’ theorem.  The

posterior distribution shows the updated belief about
the values of p.  It is a modification of the prior belief
that accounts for the observed data.

Figure 6.4, showing the effect of various data sets on
the posterior distribution, is worth studying.  Although
that figure refers to �, an analogous figure applies to p.

As mentioned for �, lower case p will be used to
denote the uncertain parameter with its associated
probability distribution and also individual values.

The subsections below consider estimation of p using
various possible prior distributions.  The simplest prior
distribution is discrete.  The posterior can be calculated
easily, for example by a spreadsheet.  The next sim-
plest prior is called conjugate; this prior combines
neatly with the likelihood to give a posterior that can be
evaluated by simple formulas.  Finally, the most
general priors are considered; the posterior distribution
in such a case can only be found by numerical integra-
tion or by random sampling.

Section 6.2.2.2 discusses how to choose a prior, and
gives references for further reading.  It applies to
estimation of p as much as to estimating of � and
should be read in connection with the material given
below.

6.3.2.1 Estimation with a Discrete Prior

This illustration uses a discrete prior in Bayes estima-
tion for Example 6.7.  Two things are different from
the example presented in 6.2.2.3.  First Example 6.7
deals with evidence in the form of F failures in D
demands (rather than in time T).  Second, this time we
apply an informed prior.  Of course Bayes theorem
remains:

  f E
f L E

L E f
i

i i

i i
i

N( | )
( ) ( | )

( | ) ( )
λ

λ λ
λ λ

=
=∑ 1

where

= probability density function of givenf Ei( | )λ λ i

evidence E (posterior distribution)

= the probability density prior to havingf i( )λ
evidence E ( prior distribution)
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Figure 6.23  Discrete prior and posterior
distributions for the data in Example 6.73.
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Figure 6.24  Discrete prior and posterior
distributions for data in Example 6.7, 10 times the
data as in Figure 23.

= the likelihood function (probability ofL E i( | )λ
the evidence given )λ i

Again the denominator, the total probability of the
evidence E, is simply a normalizing constant.

Now, when the evidence is in the form of F failures in
D demands, the likelihood function is the Poisson
distribution:

L E e
T

F
i

iT i
F

( | )
( )

!
( )λ

λλ= −

For this example, assume that a prior distribution was
developed by plant equipment experts based on popula-
tion variability data from similar systems, but adapted
to account for untested new design aspects of this
system.  The prior has a most likely value of 0.1, falls
linearly to 0.3, then tails off 0 at 0.8.  On the low end
it tails off toward 0.001.  The results are shown in
Figure 6.23.

Note that the posterior follows the shape of the prior
very closely.  This is because the data are consistent
with the peak area of the prior, but are not yet strong
enough to appreciably reduce the uncertainty in the
prior.  What happens to this posterior as additional data
accumulate?  Figure 6.24 shows that the results with 10
times as much data confirms the initial results.

Table 6.10 compares the results of the Bayesian
analyses with the original data and with ten times as
much data.

Table 6.10 Comparison of results for Example 6.7.

Estimate 5th

%tile
MLE 95th

%tile

Bayes, original data 0.05 0.10 0.28

Bayes, ten times
more confirmatory
data

0.07 0.10 0.16

6.3.2.2 Estimation with a Conjugate Prior

6.3.2.2.1   Definitions

By far the most convenient form for the prior distribu-
tion of p is a beta(�prior, �prior) distribution.  The beta

distributions are the conjugate family for binomial data.
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The properties of the beta distribution are therefore
summarized here, as well as in Appendix A.7.8.

If p has a beta(�, �) distribution, the density is

 .f p p p( ) ( )
( )

( ) ( )
= −

+ − −Γ

Γ Γ

α β

α β
α β1 11

For most applications the gamma functions in the front
can be ignored � they only form a normalizing con-
stant, to ensure that the density integrates to 1.  The
important feature of the density is that 

f(p) � p" ! 1(1 � p)$ ! 1 (6.9)

where, as always, the symbol � denotes "is propor-
tional to."  The parameters of the distribution, � and �,
must both be positive.  The mean and variance of the
distribution are

µ = �/(�+�) (6.10)

variance = 
αβ

α β α β( ) ( )+ + +2 1

= µ(1�µ)/(�+�+1). (6.11)

The shape of the beta density depends on the size of the
two parameters.  If � < 1, the exponent of p is negative
in Equation 6.9, and therefore the density is unbounded
as p � 0.  Likewise, if � < 1, the density is unbounded
as p � 1.  If both � > 1 and � > 1, the density is roughly
bell shaped, with a single mode.  Appendix A.7.8
shows graphs of some beta densities.  Equation 6.11
shows that as the sum � + � becomes large, the vari-
ance becomes small, and the distribution becomes more
tightly concentrated around the mean.

As will be seen below, if the prior distribution is a beta
distribution, so is the posterior distribution.  Therefore,
the above statements apply to both the prior and the
posterior distributions.

Appendix C tabulates selected percentiles of beta
distributions.  Also, the percentiles of a beta distribu-
tion can be found by many software packages, includ-
ing some spreadsheets.  Also, the percentiles can be
obtained from algebraic formulas involving percentiles
of the F distribution, as explained in Appendix A.7.8.

6.3.2.2.2    Update Formulas

The beta family is conjugate to binomial data.  That is,
updating a beta prior distribution with the data pro-
duces a posterior distribution that is also a beta distri-
bution.  This follows immediately from the derivation
of the posterior distribution.  As stated in Appendix B,
the posterior distribution is related to the prior distribu-
tion by

 . (6.12)f p X x p f ppost prior( ) Pr( | ) ( )∝ =

This is the analogue of Equation 6.4, replacing � by p.
As mentioned in Sec. 6.3.1.1, the probability of the
data is also called the "likelihood."  It is given by
Equation 6.8.  Stripped of all the normalizing con-
stants, the beta p.d.f. is given by Equation 6.9.

Therefore, the beta distribution and the binomial
likelihood combine as:

f p p p p p

p p

x n x

x n x

post

  .

( ) ( ) ( )

( )

∝ − −

∝ −

− − −

+ − − + −

1 1

1

1 1

1 1

α β

α β

In the final expression, everything that does not involve
p has been absorbed into the proportionality constant.
This shows that the posterior distribution is of the form
beta(�post, �post), with

�post = �prior + x 
�post = �prior + (n � x)  .

The mean and variance of the prior and posterior
distributions are given by Equations 6.10 and 6.11,
using either the prior or posterior � and �.

These update formulas give intuitive meaning to the
beta parameters: �prior corresponds to a prior number of
failures and �prior to a prior number of successes.
Assuming a beta(�prior , �prior ) distribution is equivalent
to having observed �prior failures and �prior successes
before the current data were observed.

6.3.2.3 Possible Conjugate Priors

A concentrated distribution (small variance, large value
of �prior + �prior) represents much presumed prior know-
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Figure 6.25  Prior density for p, beta(4.2, 153.1).
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Figure 6.26  Posterior density for p, beta(5.2,
160.1).  The 5th and 95th percentiles are shown.

ledge.  A diffuse prior (large variance, small value of
�prior + �prior) represents very little prior knowledge of p.

6.3.2.3.1    Informative Prior

The warning given in Section 6.2.2.5.1 applies here as
well: the prior distribution must be based on informa-
tion other than the data.  If possible, relevant informa-
tion from the industry should be used.

The calculations are now illustrated with Example
6.7, 1 failure to start in 8 demands of the AFW
turbine train.  Poloski et al. (1998) examined 9 years
of data from many plants, and found a beta(4.2,
153.1) distribution for the probability of the AFW train
failure to start.

Application of the update formulas yields

post = prior + x = 4.2 + 1 = 5.2
post = prior + (n � x) = 153.1 + (8 �1) = 160.1  .

The mean of this distribution is

5.2/(5.2 + 160.1) = 0.031,

the variance is

0.031×(1 � 0.031)/(5.2 + 160.1 + 1) = 1.89E�4 ,

and the standard deviation is the square root of the
variance, 0.014.  The 5th and 95th percentiles of the
posterior beta( , ) distribution are found from Table
C.5, except the tabulated  values do not go above
100.  A footnote to that table gives an approximation
that is valid for  >> .  That formula applies, be-
cause 160.1 >> 5.2.  According to the formula the q
quantile is approximated by 

2
q(2×5.2)/[2×160.1 + 2

q(2×5.2)].

Therefore the 5th percentile of the beta distribution is
approximately

�2
0.05(10.4)/[320.2 + 2

0.05(10.4)] = 4.19/[320.2 + 4.19]
= 0.013

and the 95th percentile is approximately

�2
0.95(10.4)/[320.2 + 2

0.95(10.4)] = 18.86/[320.2 +
18.86] = 0.056 .

All these quantities are unitless.

The prior density, posterior density, and posterior
c.d.f. of p are shown in Figures 6.25 through 6.27.

The posterior density is slightly to the right of the
prior density.  It is to the right because the data, 1
failure in 8 demands, show worse performance than
the industry history.  The posterior density is only
slightly different from the prior density because the
data set is small compared to the industry experi-
ence (8 demands in the data and an effective 157.3
demands for the industry).
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Figure 6.27  Posterior cumulative distribution of p.
The 5th and 95th percentiles are shown.
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Figure 6.28  Jeffreys noninformative prior distribution
for p.

The 5th and 95th percentiles are shown for the
posterior distribution, both in the plot of the density
and in the plot of the cumulative distribution.

6.3.2.3.2    Noninformative Prior

The Jeffreys noninformative prior is beta(½ , ½); see
Box and Tiao (1973), Sections 1.3.4-1.3.5.  This
density is shown in Figure 6.28.  It is not the uniform
distribution, which is a beta(1, 1) distribution, but
instead rises sharply at the two ends of the interval (0,
1).  Although the uniform distribution is sometimes
used to model no prior information, there are theoreti-
cal reasons for preferring the Jeffreys noninformative
prior.  These reasons are given by Box and Tiao, and
are suggested by the comparison with confidence
intervals presented below.  The uniform distribution
would correspond intuitively to having seen 1 failure in
2 demands, which turns out to be too informative.  The
Jeffreys noninformative prior corresponds to having
seen ½ a failure in 1 demand.

The Bayes posterior distribution for p, based on the
Jeffreys noninformative prior, is beta(x + ½, n � x +

½).  The mean of the distribution is (x + ½)/(n + 1).
Selected percentiles are tabulated in Appendix C.

The posterior distribution given here is very similar to
the distributions used in the formulas for confidence
intervals in Section 6.3.1.3.  The only difference is in
the parameters.  The parameters here are averages of
the parameters used in the confidence intervals.  For
example, the first parameter for the lower confidence
limit is x, and the first parameter for the upper confi-
dence limit is x+1.  The Bayesian limits, on the other
hand, use the same parameters for the entire posterior
distribution, and the first parameter is x + ½, the
average of the corresponding values for the confidence
limits.

In Example 6.7, failure to start of the turbine-driven
AFW train, the posterior distribution is beta(1.5, 7.5).
The posterior mean is 1.5/(1.5 + 7.5) = 0.17.  The
posterior 90% interval is (0.023, 0.40).  As is always
the case with discrete data, the confidence interval is
conservative, and so is wider than the Jeffreys
credible interval.  However, the two intervals are
similar to each other, being neither to the right nor
the left of the other.  Tabular and graphical compari-
sons are given later.

6.3.2.3.3    Constrained Noninformative Prior

This prior distribution is a compromise between an
informative prior and the Jeffreys noninformative prior.
As was the case in Section 6.2.2.5.3, the prior mean,
denoted here as p0, is based on prior belief, but the
dispersion is defined to correspond to little information.
The priors are described by Atwood (1996) and by
references given there.

For binomial data, the constrained noninformative prior
distribution is not as neat as for Poisson data.  The
exact constrained noninformative prior has the form

fprior(p) � ebpp!1/2(1 � p)!1/2 , (6.13)

where b is a number whose value depends on the
assumed value of the mean, p0. The parameter b is
positive when p0 > 0.5 and is negative when p0 < 0.5.
Thus, in typical PRA analysis b is negative.  Atwood
(1996) gives a table of values, a portion of which is
reproduced in Appendix C as Table C.8.  The table
gives the parameter b of the distribution for selected
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values of p0.  In addition, it gives a beta distribution
that has the same mean and variance as the constrained
noninformative prior.

The beta approximation is illustrated here, and the
exact  constrained noninformative distribution is
treated more fully in the section below on nonconjugate
priors.

Return again to Example 6.7, the AFW turbine train
failure to start.  Let us use the mean of the industry
prior found above,  4.2/157.3 = 0.0267.  However,
suppose that the full information for the industry prior
is not available, or that the system under consider-
ation is considered atypical so that the industry prior
is not fully relevant.  Therefore, the beta-approxima-
tion of the constrained noninformative prior will be
used.

Interpolation of Table C.8 at p0 = 0.0267 yields  =
0.4585.  Solving  = (1 � p0)/p0 gives  = 16.7138.
The resulting posterior distribution has parameters
1.4585 and 23.7138.  Interpolation of Table C.5 gives
a 90% interval of (0.0068, 0.15).

6.3.2.3.4 Example Comparison of Above Methods

Just as in Section 6.2, the following general statements
can be made.

� The Jeffreys noninformative prior results in a
posterior credible interval that is numerically
similar to a confidence interval.

� If the prior mean exists, the posterior mean is
between the prior mean and the MLE.

� If two prior distributions have about the same
mean, the more concentrated (less diffuse)
prior distribution will yield the more concen-
trated posterior distribution, and will pull the
posterior mean closer to the prior mean.

Table 6.11 and Figure 6.29 summarize the results of
analyzing the AFW-failure-to-start data in the four
ways given above.
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Figure 6.29  Comparison of four point estimates and
interval estimates for p.

Table 6.11   Comparison of estimates with 1 failure in 8 demands.

Method Prior mean Posterior
parameters

Point estimate
(MLE or 
posterior mean)

90% interval (confidence
interval or posterior credi-
ble interval)

Frequentist NA NA 0.125 (0.0064, 0.47)

Bayes with Jeffreys
noninformative prior,
beta(0.5, 0.5)

0.5  = 1.5
 = 7.5

0.17 (0.022, 0.40)

Bayes with industry prior,
beta(4.2, 153.1)

0.027  = 5.2
 = 160.1

0.031 (0.013, 0.056)

Bayes with approx. con-
strained noninform. prior,
beta(0.4585, 16.7138)

0.027  = 1.4585
 = 23.7138

0.058 (0.0068, 0.15)

As in Section 6.2.2.5.4, the Jeffreys prior and the
frequentist approach are listed next to each other
because they give numerically similar results.  The
Jeffreys prior yields a posterior credible interval that
is strictly contained in the confidence interval, neither
to the right nor to the left.

In each Bayesian case, the posterior mean falls
between the prior mean and the MLE, 0.125.  The
prior distribution has more influence when the prior
distribution is more tightly concentrated around the
mean.  One measure of the concentration (at least
when the means are similar) is the sum prior + prior,
because it corresponds to the total number of prior
demands, and it is in the denominator of the variance
in Equation 6.11.  In the present example, when the
prior distributions in Table 6.11 are ordered by
increasing values of prior + prior, the order is the
noninformative prior, then the approximate con-
strained noninformative prior, and finally the industry

prior.  The three 90% intervals for the corresponding
posterior distributions have decreasing length in the
same order.

6.3.2.4 Estimation with a Continuous 
Nonconjugate Prior

Just as for �, continuous nonconjugate priors for p
cannot be updated with simple algebra.  Instead, the
posterior distribution must be characterized by numeri-
cal integration or by random sampling.  Three methods
are mentioned here, and the analyst may choose
whatever seems easiest.

6.3.2.4.1    Direct Numerical Integration

To use numerical integration, use Equation 6.12 and
write the posterior distribution as the product of the
likelihood and the prior distribution:

Cfpost(p) = px(1 � p)n ! xfprior(p)   . (6.14)

Here C is a constant of proportionality.  All the normal-
izing constants in fprior and in the likelihood may be
absorbed into C, leaving only the parts that depend on
p on the right-hand side of the equation.  Integrate
Cfpost(p) from 0 to 1.  This integral equals C, because
the integral of fpost must equal 1.  Divide both sides of
Equation 6.14 by the just-found constant C, to obtain
the function fpost.  Use numerical integration to find the
moments and percentiles of this distribution.  Some
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suggested methods of numerical integration are men-
tioned in Section 6.2.2.6.

6.3.2.4.2    Simple Random Sampling

To use random sampling, follow the rejection algo-
rithm given in Section 6.2.2.6.  The general algorithm,
given in Section 6.2.2.6, can be restated for binomial
data as follows.  Define 

m = (x/n)x(1 � x/n)n!x

if 0 < x < n.  If x = 0 or x = n, define m = 1.  The steps
of the algorithm are:

(1) Generate a random p from the prior distribu-
tion.

(2) Generate u from a uniform distribution, 0 � u
� 1.

(3) If u � px(1 � p)n!x/m, accept p in the sample.
Otherwise discard p.

Repeat Steps (1) through (3) until a sample of the
desired size is found.

6.3.2.4.3    More Complicated Random Sampling

All-purpose Bayesian update programs can be used for
the present simple problem, just as in Section 6.2.  The
powerful program BUGS is mentioned in Section
6.2.2.6.3, and described more fully in Sections 7.2.3
and 8.2.3.3.3.  It can be used here, although it is
intended for much more complicated problems.

6.3.2.5 Examples with Nonconjugate Priors

Several possible nonconjugate prior distributions are
discussed here.

6.3.2.5.1    Lognormal Distribution  

The lognormal distribution is by far the most common-
ly used nonconjugate distribution.  The parameter p has
a lognormal distribution if ln(p) is normally distributed
with some mean µ and variance �2.

Facts about the lognormal distribution are given in
Appendix A.7.3.  One important fact is that the range
of the lognormal distribution is from 0 to �.  Thus, the

distribution of p cannot be exactly lognormal, because
p cannot be greater than 1.  When using a lognormal
prior, one must immediately calculate the prior Pr(p >
1).  If this probability is very small, the error can be
neglected.  (When generating values p from the log-
normal distribution, either throw away any values
greater than 1 or set them equal to 1.  In either case,
such values hardly ever occur and do not affect the
analysis greatly.)  On the other hand, if the prior Pr(p
> 1) is too large to be negligible, then the lognormal
distribution cannot possibly be used.  Even if the
software accepts the lognormal distribution, and hides
the problem by somehow handling the values that are
greater than 1, the actual distribution used is not
lognormal.  It is truncated lognormal, or lognormal
with a spike at 1, with a different mean and different
percentiles from the initially input lognormal distribu-
tion.  The analyst’s two options are to recognize and
account for this, or to use a different prior distribution.

To use the above sampling algorithm with a lognormal
prior, p must be generated from a lognormal distribu-
tion.  The easiest way to do this is first to generate z
from a standard normal distribution, that is, a normal
distribution with mean = 0 and variance = 1.  Many
software packages offer this option.  Then let y = µ +
�z, so that y has been generated from a normal(µ, �2)
distribution.  Finally, let p = ey.  It follows that p has
been randomly generated from the specified lognormal
distribution.

6.3.2.5.2    Logistic-Normal Distribution

This distribution is explained in Appendix A.7.9.  The
parameter p has a logistic-normal distribution if
ln[p/(1 � p)] is normally distributed with some mean µ
and variance �2.  The function ln [p/(1 � p)] is called
the logit function of p.  It is an analogue of the
logarithm function for quantities that must lie between
0 and 1.  Using this terminology, p has a logistic-
normal distribution if logit(p) is normally distributed.

Properties of the logistic-normal distribution are given
in Appendix A.7.9, and summarized here.  Let y =
ln[p/(1 � p)].  Then p = ey / (1 + ey).  This is the inverse
of the logit function.  As p increases from 0 to 1, y
increases from �� to +�.
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Note, unlike a lognormally distributed p, a logistic-
normally distributed p must be between 0 and 1.
Therefore the logistic-normal distribution could be
used routinely by those who like the lognormal distri-
bution, but do not know what to do when the lognormal
distribution assigns p a value that is greater than 1.

The relation between p and y = logit(p)  gives a way to
quantify prior belief about p in terms of a logistic-
normal distribution.  Decide on two values, such as
lower and upper plausible bounds on p or a median and
plausible upper bound, equate them to percentiles of p,
translate those percentiles to the corresponding two
percentiles of the normal random variable Y, and solve
those two equations for µ and �.

To generate a random value from a logistic-normal
distribution, first generate y from a normal(µ, �2)
distribution, exactly as in the section above on the
lognormal distribution.  Then let p =  ey / (1 +  ey).  This
p has been randomly generated from the specified
logistic-normal distribution.

6.3.2.5.3   Exact Constrained Noninformative 
   Distribution

The prior distribution has the form of Equation 6.13,
and the posterior distribution is

fpost(p) = C1e
bppx ! 1/2(1 � p)n ! x !1/2 ,

where C1 is a normalizing constant to make the density
integrate to 1.0.  Except for the normalizing constant,
this is ebp times a beta(x+½, n�x+½) distribution.
Numerical integration is straightforward, and will not
be explained here.  To generate a sample from the
posterior distribution, the rejection method algorithm
originally given in Sec. 6.2.2.6 takes the following
form.

Write the beta(x+½, n�x+½) density as

fbeta(p) = C2p
x ! 1/2(1 � p)n ! x !1/2 .

Typically, the desired mean of p is less than 0.5; if it is
not, reverse the roles of p and 1 � p.  The algorithm
first defines M to be the maximum possible value of the
ratio fpost(p) / fbeta(p).  Because b < 0 in Table C.8, we

have ebp � 1, making M equal to C1/C2.  Therefore, the
condition in Step (3) of the algorithm reduces to 

u � ebp .

Therefore, the algorithm simplifies to the following.

(1) Generate a random p from the beta(x+½,
n�x+½) distribution.  Ways to do this are
discussed below.

(2) Generate u from a uniform distribution, 0 � u
� 1.

(3) If u � ebp, accept p in the sample.  Otherwise
discard p.

Repeat Steps (1) through (3) until a sample of the
desired size is found.

Not all standard software packages give the option of
generating random numbers from a beta distribution,
although many more allow random number generation
from a gamma distribution or from a chi squared
distribution.  When working with such software, let y1

be randomly generated from a gamma(x+½, 1) distribu-
tion and let y2 be randomly generated from a
gamma(n�x+½, 1) distribution.  Alternatively, let y1 be
randomly generated from a chi-squared(2x+1) distribu-
tion and let y2 be randomly generated from a chi-
squared(2n�2x+1) distribution.  In either case, define
p = y1/(y1+y2).  Then p has been generated from the
specified beta(x+½, n�x+½) distribution.  (See Chapter
25 of Johnson et al. 1995.)

6.3.2.5.4   Maximum Entropy Prior

The maximum entropy prior and the constrained nonin-
formative prior were developed with the same goal, to
produce a diffuse distribution with a specified plausible
mean.  The diffuseness of the maximum entropy
distribution is obtained by maximizing the entropy,
defined as 

 .− = −∫E f p f p f p dp[ln ( )] [ln ( )] ( )

When p is restricted to the range from 0 to 1, it can be
shown that the density f maximizing the entropy is
uniform,
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f(p) = 1     for 0 � p � 1

and f(p) = 0 elsewhere.  More interesting is the case
when the mean of the distribution is required to equal
some prespecified value p0.  In this case the maximum
entropy distribution has the form of a truncated expo-
nential distribution,

f(p) = Cebp     for 0 � p � 1

and f(p) = 0 elsewhere.  In this form, b is negative
when p0 < 0.5 and b is positive when p0 > 0.5.  The
value of b corresponding to a particular mean must be
found by numerical iteration.  Some authors write e!bp

instead of ebp; this simply reverses the sign of the
parameter b.

The maximum entropy distribution and the uniform
distribution are related � if the constraint on the mean
is removed, the maximum entropy distribution equals
the uniform distribution.  In this sense, the maximum
entropy distribution is a generalization of the uniform
distribution.  The constrained noninformative distribu-
tion is the same sort of generalization of the Jeffreys
noninformative distribution � if the constraint is
removed, the constrained noninformative prior be-
comes the Jeffreys noninformative prior.  Atwood
(1996) reviews the reasons why the Jeffreys prior is
superior to the uniform prior, and uses the same
reasoning to argue that the constrained noninformative
prior is superior to the maximum entropy prior.

In practice, however, it may make little difference
which distribution is used.  Both distributions are
intended to be used when little prior knowledge is
available, and quantifying "little prior knowledge" is
not something that can be done precisely.

Sampling from the posterior distribution is similar to
the other sampling procedures given above, so most of
the details are not given.  The only point deserving
discussion is how to generate a random sample from
the maximum entropy prior.  The most convenient
method is the inverse c.d.f. algorithm.  This algorithm
is simple in cases when the c.d.f. and its inverse can be
calculated easily.

The idea is this.  Let the random variable P have c.d.f.
F.  Let F!1 be the inverse function, defined by u = F(p)

if and only if p = F!1(u).  Let U be defined as F(P).
What is the distribution of U?  The c.d.f. of U is found
by a little mathematical trickery,

Pr(U � u) = Pr[ F(P) � u ]
= Pr[ P � F!1(u) ]
= F[ F!1(u) ]    because F is the c.d.f. of P
= u .

Therefore, U has a uniform distribution.  The letter U
was not chosen by accident, but in anticipation of the
uniform distribution.

To generate a random value p from the distribution F,
generate a random u from the uniform(0, 1) distribu-
tion, something that many software packages allow.
Then define p = F!1(u).  This is the inverse c.d.f.
method of random number generation.

To apply this to the maximum entropy distribution,
first integrate the maximum entropy density to yield the
c.d.f.

F(p) = (1 � ebp)/(1 � eb) .

Generate u from a uniform(0, 1) distribution, and set

u = (1 � ebp)/(1 � eb) .

Solve this equation for p,

p = �ln[ 1 � (1 � eb)u ]/b .

Then p has been randomly generated from the maxi-
mum entropy distribution.  Repeat this with new values
of u until enough values of p have been obtained.

6.3.2.5.5    Example Calculation

These techniques will be illustrated with the
Example 6.7, 1 failure to start in 8 demands of the
AFW turbine train.  Two prior distributions will be
assumed, the lognormal prior used by the Accident
Sequence Evaluation Program (ASEP), as presented
by Drouin et al. (1987), and a logistic-normal distribu-
tion having the same 50th and 95th percentiles.

The ASEP distribution for turbine-driven pump failure
to start is lognormal with mean 3E�2 per demand
and error factor 10.  The three relevant equations
from Appendix A.7.3 are
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model
{
   y ~ dnorm(-4.475, 0.4653)
   p <- exp(y)/( 1 + exp(y))
   x ~ dbin(p, 8)
}
list(x = 1)

Figure 6.31  Script for analyzing Example 6.7 with
BUGS.
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Figure 6.30  Lognormal prior density and posterior 
density for p.

EF(p) = exp(1.645 )
mean(p) = exp(µ + 2/2)
pq = exp(µ + zq)

where the subscript q denotes the qth quantile, and
zq is the qth quantile of the standard normal distribu-
tion.

Solving the first equation yields  = 1.3997.  Substi-
tution of this into the second equation yields µ =
�4.4862.

The percentiles are not needed yet, but the third
equation gives the median, p0.50 = exp(µ) = 0.01126,
and the 95th percentile, p0.95 = exp(µ + 1.645 ) =
0.1126.  (The relation of these two percentiles can
also be derived from the fact that the error factor
equals 10.)

The prior Pr(p > 1) is 6.75E�4, a very small number.
In the calculations of this section, the lognormal
distribution is truncated at 1.0.  That is, integrals are
renormalized to make the integral of the density from
0 to 1 equal to exactly 1.0.  If random sampling is
performed, any sampled values that are greater than
1 are discarded. 

The prior and posterior densities of p are shown in
Figure 6.30.  The densities were calculated using
software for numerical integration.

As a second example, consider the logistic-normal
prior distribution having the same 50th and 95th
percentiles as the above lognormal prior.  These
percentiles are 0.01126 and 0.1126.  To find the
parameters of the underlying normal distribution, set
Y = ln[p/(1 � p)].  By the properties of the logistic-

normal distribution given in Appendix A.7.9, the 50th
and 95th percentiles of Y are

y0.50 = ln[0.01126/(1 � 0.01126)] = �4.475
y0.95 = ln[0.1126/(1 � 0.1126)] = �2.064 .

Because Y has a normal(µ, 2) distribution, it follows
that

µ = �4.475
µ + 1.645  = �2.064

so  = 1.466 .

Monte Carlo simulation shows that the truncated-
lognormal and logistic-normal prior densities are
virtually the same, with means, medians, 5th and
95th percentiles agreeing to two significant digits.  As
a consequence, the posterior distributions from the
two priors are also nearly the same, although the
means and  percentiles may differ slightly in the
second significant digit.

Numerical integration was used, but BUGS could
have been used.  As an illustration, the script for
using BUGS is given in Figure 6.31.

This script assigns a logistic-normal prior distribution
to p.  If a lognormal prior is used instead, BUGS
returns an error message during the simulation,
presumably because it has generated a value of p
greater than 1.  The script assigns Y a normal distri-
bution with mean �4.475.  The second parameter is
1/ 2, because that is how BUGS parameterizes a
normal distribution.  The entered value, 0.4653,
equals 1/1.4662.  The script then gives X a bino-
mial(8, p) distribution.  Finally, the line beginning “list”
contains the data, the single observed value 1 in this
example.  BUGS also wants an initial value for p, but
it is willing to generate it randomly.
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For the present example, the difference between the
lognormal and logistic-normal priors is very small,
having no effect on the posterior. The difference
between the two priors can be important if the proba-
bility of failure is larger and/or the uncertainty is larger.
That can be the case with some human errors, with
hardware failures in unusually stressful situations, and
with recovery from failure if recovery is modeled as an
event separate from the original failure.  For example,
the NUREG 1150 PRA for Surry (Bertucio and Julius
1990) uses the lognormal distribution for most failure
probabilities.  However, some failure probabilities are
large, considerably larger than 3E�2.  In nearly all of
those cases, the PRA does not use a lognormal distribu-
tion.  Instead, the maximum entropy distribution is the
PRA’s distribution of choice.  Other possible distribu-
tions, which were not widely known in the PRA
community in 1990, would have been the constrained
noninformative distribution or a logistic-normal distri-
bution.

6.3.3 Model Validation

All the methods of this section are analogues of meth-
ods considered for failure rates, but the details are
somewhat different. Some repetition is inevitable, but
the examples in this section are chosen to complement
the examples of Section 6.2.3, not to duplicate them.
For a more complete appreciation of the model valida-
tion techniques, both this section and Section 6.2.3
should be read.

The comments at the start of Section 6.2.3 apply
equally to this section, and must not be ignored.  In
particular, an analyst who estimates parameters should
check the assumptions of the model.

The first assumption of the binomial model, given in
Section 2.3.2, is that the probability of failure is the
same on any demand.  This assumption will be exam-
ined against two possible alternative assumptions: (1)
different subsets of the data have different values of p,
but in no special order, and (2) a time trend exists.  The
second assumption of the binomial model is that the
outcome on one demand is statistically independent of
the outcome on a different demand.  This will be
examined against the alternatives of common-cause
failures and of clustering in time of the failures.

Finally, the consistency of the prior distribution and the
data will be considered.

One might also worry about whether n is really con-
stant.  If n is not constant, we may treat it as constant
by conditioning on n, as explained in Section 2.3.2.4.2.

6.3.3.1 Poolability of Data Sources

The method will be illustrated by data from diesel
generator failures to start shown in Example 6.8.

Table C.1 of Grant et al. (1996) gives the data for the
first two rows, at plants reporting under Regulatory
Guide RG-1.108 during 1987-1993.  The failures
were those reported in LERs.  The number of failures
on monthly tests at those plants comes from the
unpublished database used for that report, and the
number of monthly demands was estimated in a very
crude way for use in this example.

Example 6.8 EDG failures to start on demand.

Emergency diesel generator (EDG) failures to
start on demand were recorded for three kinds of
demands:  unplanned demands, the tests per-
formed once per operating cycle (approximately
every 18 months), and the monthly tests.  The
counts are given below.

Type of
demand

Failures to
start

Number of
demands

Unplanned   2     181

Cyclic test 17   1364

Monthly test 56 15000

6.3.3.1.1    Graphical Technique

To explore the relations between subsets of the data,
mark the subsets on one axis.  For each of these subsets
of the data, plot an estimate of p and a confidence
interval for p against the other axis.  Patterns such as
trends, outliers, or large scatter are then made visible.

In Example 6.8, the subsets are types of demand.
The data set from each demand type is analyzed
separately, and the graph shows an estimate and
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Figure 6.32  MLEs and 90% confidence intervals for
p, for three types of demand and for the pooled data.

a confidence interval for each year, plotted side
by side.  This is shown in Figure 6.32.  The plot
was produced with a graphics package, although
a hand-drawn plot would be adequate to show the
results.

The plot shows that the unplanned demands and the
cyclic tests appear to have similar values of p, but
the monthly tests appear to have a lower value.
Several reasons for the difference could be conjec-
tured: the monthly tests may be less stressful, or the
failures may not all be reported in LERs, or the
estimated number of demands may be badly incor-
rect.

Figure 6.18, which is the corresponding plot in Section
6.2.3.1.1, has the cells (plants, in that example) ar-

ranged in order of decreasing .  Figure 6.32 does not�λ
order the cells by decreasing , because the number�p

of cells is small, only three, and because the cells
already have a natural order.  The analyst must decide
what order makes the most sense and is easiest for the
user to interpret.  Cleveland (1985, Chap. 3.3) dis-
cusses ways of ordering data.

The interval for the pooled data is also shown, not
because the data justify pooling, but simply as a refer-
ence for comparison.  A dotted reference line is drawn
through the point estimate based on the pooled data.  If
only a few data subsets need to be compared, as in
Figure 6.32, these embellishments are unnecessary.
With many subsets, however, the eye tends to get lost
without the reference line.  The reference line has the
added advantage of focusing the eye on the confidence
intervals rather than the point estimates.

The graph is only a picture.  Pictures like these are
useful, but cannot be used in an easy way to draw naive
conclusions about differences between data subsets.
The warnings given in Section 6.2.3.1.1 deserve
repetition:

	 If many confidence intervals are plotted, all
based on data with the same p, a few will be
far from the others because of randomness
alone.  An outlying interval does not prove
that the ps are unequal.

	 This same statement is true if other intervals
are used, such as Bayes credible intervals
based on the noninformative prior.  The issue
is the random variability of data, not the kind
of interval constructed. 

	 If there are few intervals, on the other hand,
intervals that just barely overlap can give
strong evidence for a difference in the ps.

To quantify the strength of the evidence seen in the
picture, a formal statistical procedure is given in the
next subsection.  The picture gives a preview, and
helps in the interpretation of the formal statistical
quantification.  In the present example, if the statistical
test finds a statistically significant difference between
data subsets, it is natural to then ask what kind of
difference exists.  The picture shows that p seems to be
similar for the unplanned demands and for the cyclic
tests, but smaller for the monthly tests.  In this way, the
picture provides insight even though it does not pro-
vide a quantitative statistical test.

6.3.3.1.2   Statistical Tests

Simple Contingency Tables (2 × J).  The natural
format for the data is a "contingency table."  An
introductory reference to this subject is Everitt (1992),
and many general statistics texts also have a chapter on
the topic.  In a two-way table, two attributes of the
events are used to define rows and columns, and the
numbers in the table are counts.  In the present exam-
ple, two attributes of any event are the type of demand
and whether it is a failure or success.  One way to build
a contingency table is to let the first row show system
failures and the second row system successes.  Then let
the columns correspond to the demand types.  The table
entries are the counts of the events for each cell, shown
in Table 6.12 for Example 6.8.
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The essence of this table is a 2 × 3 table, because the
basic data counts occupy two rows and three columns.

The row totals, column totals, and grand total are
shown in the right and bottom margins.  A general two-
way contingency table has I rows and J columns.
(Although this discussion considers only 2 × J tables,
it does no harm to give the general formulas, keeping
in mind that the examples of this section have I = 2.)
The count in the ith row and jth column is denoted nij,
for i any number from 1 to I and j from 1 to J.  The
total count in row i is denoted ni+ and the total count in
column j is denoted n+j.  The grand total is denoted n++.

Table 6.12   Contingency table for Example 6.8.

Unplanned Cyclic Monthly Total

Failure 2 17 56 75

Success 179 1347 14944 16470

Total 181 1364 15000 16545

For example, Table 6.12 has n1,3 = 56 and n2,1 =
179.  It has n2+ = 16470 and n+2 = 1364.  The
grand total, n++, equals 16545 in the example.

Let the null hypothesis be
H0: p is the same for all the data subsets.

The alternative hypothesis is
H1: p is not the same for all the data subsets.

In the example, the data subsets are the three demand
types.  The analyst must investigate whether H0 is true.
The method used is to see what kind of data would be
expected when p really is the same, and then to see
how much the observed counts differ from the ex-
pected.  If the differences are small, the counts are
consistent with the hypothesis H0.  If, instead, the
differences are large, the counts show strong evidence
against H0.

If H0 is true, that is, if p is really the same for all the
demand types, the natural estimate of p is

 .� /p n n= + ++1

Then for column j, one would have expected n pj+ �

failures on average.  This reasoning leads to the for-
mula for the expected count in cell ij:

eij = ni+n+j / n++.

In Table 6.12, for unplanned demands one would
have expected 181×(75/16545) = 0.82 failures on
average, for cyclic tests 1364×(75/16545) = 6.19
failures, and so forth.

The difference between the observed count and the
expected count for any cell is nij � eij.  There are many
cells, and therefore many ways of combining the
differences to yield an overall number.  One useful way
is to construct

X2 = �i�j (nij � eij)
2/eij.

X2 is called the chi-squared statistic, or sometimes the
Pearson chi-squared statistic.  Note, X2 as defined here
is slightly different from the chi-squared statistic for
constant event rate in Section 6.2.3.1.2.  In that section,
the cells had one index, whereas in this section the cells
have two indices, and the expected counts are calcu-
lated differently.  Other than that, the statistics are the
same.  Table 6.13 expands Table 6.12 to show the
quantities needed to calculate X2.  The observed counts
and the expected counts have the same totals, except
for roundoff.

Table 6.13 Counts, expected counts, and 
contributions to X2, for Example 6.8.

Unplanned Cyclic Monthly Total

Failure 2
0.82
1.70

17
6.19

18.92

56
68.00

2.12

75

Suc-
cess

179
180.18

0.01

1347
1357.80

0.09

14944
14932

0.01

16470

Total 181 1364 15000 16545

For example, there were 2 failures on unplanned
demands.  The expected number of failures on un-
planned demands, if H0 is true, is 181×75/16545 =
0.82.  And the contribution of that cell to X2 is
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(2 � 0.82)2/0.82 = 1.70 .

When H0 is true and the total count is large, the distri-
bution of X2 has a distribution that is approximately
chi-squared with (I-1)×(J-1) degrees of freedom.  In
Table 6.12, the number of degrees of freedom is
(2�1)×(3�1) = 2.  If X2 is large, compared to the chi-
squared distribution, the evidence is strong that H0 is
false; the larger X2, the stronger the evidence.

Interpretation of Test Results.  Based on any 2×3
contingency table, such as Table 6.12, suppose that X2

were 6.4.  A table of the chi-squared distribution shows
that 5.991 is the 95th percentile of the chi-squared
distribution with 2 degrees of freedom, and 7.378 is the
97.5th percentile.  After comparing X2 to these values,
an analyst would conclude that the evidence is strong
against H0, but not overwhelming.  Quantitatively, the
analyst would "reject H0 at the 5% significance level,
but not at the 2.5% significance level."  This is some-
times phrased as "the p-value is between 0.05 and
0.025."  See the bulleted list in Section 6.2.3.1.2, in the
interpretation following Table 6.6, for other phrases
that are sometimes used.

If instead X2 were 1.5, it would lie between the 50th
and the 60th percentiles of the chi-squared distribution,
and therefore would be in the range of values that
would be expected under H0.  The analyst could say
"the observed counts are consistent with the hypothesis
H0," or "H0 cannot be rejected," or "the evidence
against H0 is very weak."  The analyst would not
conclude that H0 is true, because it probably is not
exactly true to the tenth decimal place, but would
conclude that it cannot be rejected by the data.

In fact, in Example 6.8 X2 equals 22.8, as found by
totaling the six contributions in Table 6.13.  This
number is far beyond the 99.5th percentile of the chi-
squared distribution, so the evidence is overwhelm-
ing against H0.  Such an analysis contributed to the
decision of Grant et al. not to consider monthly tests
in their report.

This example was chosen to illustrate that subsets of
the data can correspond not only to different locations
or different hardware (for example, different plants or
systems), but also to different conditions, in this case
different types of demands.  In reality, the data analyst
should consider various kinds of subsets; in this

example, with data coming from many plants, the
analyst should consider possible between-plant differ-
ences.  The plots and chi-squared tests are exactly the
same as given above.

This brings up a difficulty with the present example
that has been carefully hidden until now.  The hypothe-
sis H0 is that all the subsets of the data have the same p.
A hidden hypothesis, never even proposed for testing,
is that within each data subset every demand has the
same p.  In fact, this turns out not to be the case.  Based
on only the unplanned demands and cyclic tests, Grant
et al. report that the difference between plants is
statistically significant � the evidence is strong that p
differs from plant to plant.  This means that the above
analysis must be refined to account for possible differ-
ences between plants.  Such variation is discussed in
Section 8.2 of this handbook.

Thus, the data set has two sources of variation, differ-
ences between demand types and also differences
between plants.  In such a situation, consideration of
only one variable at a time can throw off the results if
the data set is "unbalanced," for example, if the worst
few plants also happen to have the most unplanned
demands and the fewest monthly demands.  If such
between-plant differences are contaminating the EDG
data in Example 6.8, the observed difference might not
reflect anything about the nature of the demands, but
only that the plants with EDG problems were
underrepresented on the monthly tests.  Example 6.9
shows hypothetical data under such a scenario. 
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Example 6.9 Hypothetical unbalanced data.

Suppose that the industry consists of “bad” plants
and “good” plants.  The bad plants have a
relatively high probability of failure to start, and
also have relatively many unplanned demands.
Suppose that the tests perfectly mimic unplanned
demands, so that at either kind of plant p is the
same on an unplanned demand and on a test.
Data from such an industry might be given in the
table below.  The tables entries show failures/
demands.

Unplanned Tests

Bad plants 4/20 = 0.2 4/20 = 0.2

Good plants 1/50 = 0.02 8/400 = 0.02

Totals 5/70 = 0.07 12/420 = 0.03

If only the good plants are considered, or if only the
bad plants are considered, the data of Example 6.9
show no difference between unplanned demands
and tests.  The estimated p is the same for un-
planned demands and for tests, 0.2 from the bad
plants’ data and 0.02 from the good plants’ data.
However, if the data from good plants and bad plants
are combined, the unplanned demands appear to
have a much higher failure probability than do the
tests, 0.07 versus 0.03.  This erroneous conclusion
is a result of ignoring differences in the data, the
existence of two kinds of plants, when the data are
unbalanced because the bad plants have a much
higher percentage of unplanned demands.  Such a
situation is known as Simpson’s paradox.

In fact, this scenario cannot be greatly influencing
the data in Example 6.8, because most of the de-
mands are periodic.  Therefore, every plant must
have approximately the same fraction of monthly
tests and of cyclic tests.  In conclusion, although
between-plant variation must be considered, it is
hard to imagine that it affects the outcome in Exam-
ple 6.8.

As mentioned in Section 6.2.3.1.2, a full data analysis
must not stop with the calculation of a p-value.  In the
present example, with a very large number of demands,
it may be that the statistically significant difference is
not very important from an engineering viewpoint.  In
other words, a large data set can detect differences in

the second decimal place, differences that are not worth
worrying about in practice.  

This concern is addressed in the example by Figure
6.32, which shows that the probability of FTS is
about 1/3 as large on monthly tests as on other
demands, at least according to the reported data.
Therefore, the difference is substantial in engineer-
ing terms, and the engineering portion of the data
analysis can investigate reasons for the difference.

Required Sample Size.  The above approach is valid
if the values of nij are "large."  If they are small, X2 has
a discrete distribution, and so cannot have a chi-
squared distribution.  As a rather extreme example, if
n++, the total number of demands, were equal to 4 in the
framework of Example 6.8, there would only be a few
ways that the four demands (and the number of fail-
ures, at least zero and at most four) could be arranged
among the three demand types.  Therefore X2 could
only take a few possible values.  Therefore, the user
must ask how large a count is necessary for the chi-
squared approximation to be adequate.  An overly
conservative rule is that all the expected cell counts, eij,
be 5.0 or larger.  Despite its conservatism, this rule is
still widely used, and cited in the outputs of some
current statistics packages.  For a 2×J table, Everitt
(1992, Sec. 3.3), citing work by Lewontin and Felsen-
stein (1965), states that the chi-squared approximation
is adequate if all the values of eij are 1.0 or greater, and
that in "the majority of cases" it is sufficient for the eij

values to be 0.5 or greater.  For a 2×2 table, however,
it is generally best not to use the chi-squared approxi-
mation at all, but to use the p-value from "Fisher’s
exact two-sided test," discussed below.

If the expected cell counts are so small that the chi-
squared approximation appears untrustworthy, the
analyst has two choices.  (a) Pool some columns,
thereby combining cells and increasing the expected
cell counts.  For example, in an investigation of differ-
ences between years, with few failures, it might be
necessary to combine adjacent years so that the ex-
pected number of failures in each time-bin is at least
0.5.  (b) Some statistical software packages can com-
pute the "exact distribution" of X2 in some cases
(typically for small tables).  Conditional on the ni+

values and n+j values, this exact distribution is the finite
set of values that X2 can possibly take, together with
their associated probabilities.  If the analyst is willing
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to base the decision on this conditional distribution, the
exact distribution can be used.  The commercial pack-
age StatXact performs such calculations using modern
fast algorithms, even for large tables, subject only to
the available memory in the machine.  In the special
case of a 2×2 contingency table, many software pack-
ages compute this p-value, calling it the p-value from
"Fisher’s exact two-sided test."  In general, the p-value
from Fisher’s exact test is preferable to the p-value
from the chi-squared approximation, and should be
used whenever the software produces it.  This, and
other considerations for a 2×2 table, are discussed by
Everitt (1992) and Atwood (1994).

In Table 6.13, the smallest expected count is e11 =
0.82.  All the other expected counts are larger than
1.0.  This indicates that the sample size is large
enough. 

6.3.3.2 No Time Trend

This section uses the unplanned HPCI demands from
Example 6.5, with the failures indicated.  To make a
data set with a moderate number of failures, all types of
failures are counted together, including failure to start,
failure to run, failure of the injection valve to reopen
after operating successfully earlier in the mission, and
unavailability because of maintenance.  For the exam-
ple, no credit is taken for failures that were recovered.
The data are given as Example 6.10.

Example 6.10 Dates of HPCI failures and 
unplanned demands, 1987-1993.

The HPCI demands of Example 6.5 are listed here
with an asterisk marking demands on which some
kind of failure occurred.  The demands dates are
given in columns, in format MM/DD/YY.

01/05/87*
01/07/87
01/26/87
02/18/87
02/24/87
03/11/87*
04/03/87
04/16/87
04/22/87
07/23/87
07/26/87
07/30/87
08/03/87*

08/03/87*
08/16/87
08/29/87
01/10/88
04/30/88
05/27/88
08/05/88
08/25/88
08/26/88
09/04/88*
11/01/88
11/16/88*
12/17/88

03/05/89
03/25/89
08/26/89
09/03/89
11/05/89*
11/25/89
12/20/89
01/12/90*
01/28/90
03/19/90*
03/19/90
06/20/90
07/27/90

08/16/90*
08/19/90
09/02/90
09/27/90
10/12/90
10/17/90
11/26/90
01/18/91*
01/25/91
02/27/91
04/23/91
07/18/91*
07/31/91

08/25/91
09/11/91
12/17/91
02/02/92
06/25/92
08/27/92
09/30/92
10/15/92
11/18/92
04/20/93
07/30/93

6.3.3.2.1    Graphical Techniques

Just as elsewhere in this chapter, the time axis can be
divided into bins, and the data can be analyzed sepa-
rately for each bin and compared graphically.

For Example 6.10, defining the bins to be years
leads to Table 6.14.

Table 6.14 HPCI failures on demand, by year.

Calendar year Failures Demands

1987 4 16

1988 2 10

1989 1   7

1990 3 13

1991 2   9

1992 0   6

1993 0   2

This leads to a plot similar to Figures 6.18 and  6.19,
shown in Figure 6.33.  The plot with the example
data shows no evidence of a trend.

A plot that does not require a choice of how to con-
struct bins is given in Figure 6.34, the analogue of
Figure 6.20.  It can be constructed when the demands
can be ordered sequentially, as is the case for Example
6.10.  In this plot, the cumulative number of failures is
plotted against the cumulative number of demands.  To
help the eye judge curvature, a straight line is drawn,
connecting the origin with the dot at the upper right.
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Figure 6.34  Cumulative number of failures versus
cumulative number of demands.

Figure 6.33  Point and interval estimates of p, each
based on one year’s data.

The slope of any part of the graph is the vertical
distance divided by the horizontal distance, �y/�x.  In
the present figure the horizontal distance is the number
of demands that have occurred, and the vertical dis-
tance is the corresponding number of failures.  There-
fore,

slope = (number of failures)/(number of demands) ,

so the slope is a visual estimator of p.  A roughly
constant slope, that is, a roughly straight line, indicates
a constant p.  A changing slope indicates changes in p.

In Figure 6.34, the slope is relatively constant,
indicating that p does not seem to change with time.

This agrees with Figure 6.33.  It is not clear whether
the slight departure from the diagonal line in the right
half of the figure is more than can be attributed to
random variation.  Such questions must be ad-
dressed by statistical tests, given below.

The details of the diagonal line probably do not matter.
The line shown is the maximum likelihood estimate of
the expected height of the plot at any horizontal point,
assuming constant p.  Other lines, slightly different,
could also be justified.

6.3.3.2.2    Statistical Tests for a Trend in p

In this section, the null hypothesis remains

H0: p is the same for all the data subsets.

but the alternative is now

H1: p is either increasing or decreasing over time .

The Chi-Squared Test.  This is the same test as given
in Section 6.3.3.1.2, only now the data subsets are
years or similar bins of time.

The data of Table 6.14 can be written as a 2×7
contingency table.  The smallest expected cell count
corresponds to failures in 1993, with the expected
count = 2×12/63 = 0.4.  This is too small to justify
calculating a p-value from the chi-squared distribu-
tion.  The problem can be remedied by pooling the
two adjacent years with the smallest numbers of
demands, 1992 and 1993.  (Note, the decision of
which subsets to pool is based on the numbers of
demands only, not on whether or not those demands
resulted in failures.  Pooling based on demand
counts is legitimate.  Pooling based on the failure
counts is not.)

When this 2 × 6 contingency is analyzed by the chi-
squared test, the p-value is 0.77, indicating no
evidence at all of differences between years.  This is
no surprise.

The Wilcoxon-Mann-Whitney Test.  This test is
similar in spirit to the Laplace test for a trend in �.  The
null hypothesis is that p is the same for all demands.
Suppose that the individual demands are in a known
sequence.  Against the alternative hypothesis that the
failures tend to occur more at one end of the sequence
� that is, p is either an increasing or a decreasing
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function of the sequence number �  use the Wilcoxon-
Mann-Whitney test, described in texts that cover
nonparametric statistics.  Two good sources of standard
nonparametric methods are Conover (1999) and
Hollander and Wolfe (1999).  Hollander and Wolfe call
this test the Wilcoxon rank sum test.

The test is based on the sum of the ranks of the failures.
For example, in the sequence of failures and successes

failure, success, failure, failure, success

the three failures have ranks 1, 3, and 4, and the sum of
their ranks is 8.  Let W denote the sum of the ranks of
x failures in n trials.  If x and n � x are both large and
if the probability of a failure is the same for the entire
sequence, W is approximately normal with mean µW =
x(n+1)/2 and variance �2

W = x(n�x)(n+1)/12.  If Z = (W
� µW)/�W is in either tail of the distribution, the null
hypothesis should be rejected.  If x or n � x is small,
statistics books give tables, or statistical computer
packages calculate the exact tail probability.

The data of Example 6.10 show 12 failures in 63
demands.  The first failure was on the first demand
(01/05/87), so that failure has rank 1.  The next was
on the sixth demand, so that failure has rank 6.  Two
demands occurred on 03/19/90, the 36th and 37th
demands.  One of the two demands resulted in
failure, so that failure was assigned rank 36.5, as is
usual in case of ties.  The sum of the ranks of the
failures is 321.5, and Z can be calculated to equal
�1.09.  This is the 13.8th percentile of the normal
distribution.  Because Z is not in either tail, H0 is not
rejected.

6.3.3.3 Independence of Outcomes

This section is less important than the others.  Some
readers may wish to skip directly to Section 6.3.3.4.

The second assumption for binomial data is that the
outcomes of different demands be independent � a
success or failure on one demand does not influence
the probability of failure on a subsequent demand.

Outcomes can be dependent in many ways, and some
of them must be addressed by careful thinking rather
than by statistical data analysis.  The analyst or the
study team should consider possible common-cause
mechanisms, and examine the data to see if many

common-cause failures occurred.  If common-cause
failures form a noticeable fraction of all the failures,
the analyst should probably divide the independent
failures and the common-cause failures into separate
data sets, and separately estimate the probabilities of
each kind of failure.

If demands occur in sequence, it is natural to consider
serial dependence, in which the occurrence of a failure
on one demand influences the probability of a failure
on the next demand.  Some people believe that hits in
baseball occur this way, that a slump or streak can
persist because of a batter’s attitude, which is influ-
enced by how successful he has been recently.  In the
context of hardware failures, suppose that failures are
sometimes diagnosed incorrectly, and therefore re-
paired incorrectly.  Immediately after any failure, the
probability of failure on the next demand is higher,
because the first failure cause may not have been truly
corrected.  In such a case, the failures would tend to
cluster rather than being uniformly scattered among the
successes.  A cumulative plot such as that in Fig-
ure 6.32 can be inspected for such clusters.

If the question of independence is restricted to succes-
sive outcomes � outcome i�1 versus outcome i � the
data can be analyzed by a 2×2 contingency table.  Let
yi be the outcome on demand i, either success or
failure.  Let xi be the outcome on demand i � 1.  The
possible values of successive outcomes (xi, yi) are (S,
S), (S, F), (F, S), and (F, F).

To put this in more familiar language, let p denote the
probability of a failure, and consider two kinds of
demands, those when the previous outcome (x) was a
failure and those when the previous outcome was a
success.  The null hypothesis is

H0: p is the same on both kinds of demands .

Perform the usual chi-squared test of H0 based on a
contingency table.

Example 6.10 results in the following contingency
table.
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Table 6.15 Contingency table for successive
outcomes in Example 6.10

x = F x = S Total

y = F   1 10 11

y = S 11 40 51

Total 12 50 62

Although the chi-squared approximation should be
acceptable, it is preferable to use Fisher’s exact test
for a 2×2 table.  The p-value reported by SAS for
Fisher’s exact test is 0.67.  This large p-value shows
that the data are very consistent with the hypothesis
of independence of successive outcomes.  Because
the data come from the entire industry, independ-
ence is entirely reasonable.

6.3.3.4 Consistency of Data and Prior

If the prior distribution has mean Eprior(p), but the
observed data show x/n very different from the prior
mean, the analyst must ask if the data and the prior are
inconsistent, if the prior distribution was misinformed.
The investigation is similar to that in Section 6.2.3.5.

Suppose first that x/n is in the left tail of the prior
distribution.  The relevant quantity is the prior proba-
bility of observing x or fewer events.  This is

(6.15)Pr( ) Pr( | ) ( )X x X x p f p dp≤ = ≤∫ prior
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where �(s) is the gamma function, a generalization of
the factorial function as described in Appendix A.7.6.
The name of this distribution is beta-binomial.  This
probability can be evaluated with the aid of software.
If the prior probability is any distribution other than a

beta distribution, Equation 6.15 does not have a direct
analytical expression.

Just as in Sec. 6.2.3.5, one method of approximating
the integral in Equation 6.15 is by Monte Carlo sam-
pling.  Generate a large number of values of p from the
prior distribution.  For each value of p, let y be the
value of Eqaution 6.16, which can be calculated
directly.  The average of the y values is an approxima-
tion of the integral in Equation 6.15.  Another method
of approximating the Equation 6.15 is by numerical
integration.

If the probability given by Equation 6.15 is small, the
observed data are not consistent with the prior belief �
the prior belief mistakenly expected p to be larger than
it apparently is.

Similarly, if x/n is in the right tail of the prior distribu-
tion of the prior distribution, the relevant quantity is the
prior Pr( X � x ).  It is the analogue of Equation 6.15
with the limits of the summation in Equation 6.16
going from x to n.  If that probability is small, the prior
distribution mistakenly expected p to be smaller than it
apparently is.

Again consider Example 6.7, one AFW failure to
start in eight demands, and consider the industry
prior, beta(4.2, 153.1).  One easy approach is
Monte Carlo simulation.  Therefore, values of p
were generated from the beta distribution, using
the technique mentioned at the end of Section
6.3.2.5.3.  That is, y1 was generated from a
gamma(4.2, 1) distribution, y2 was generated from
a gamma(153.1, 1) distribution, and p was set to
y1/(y1 + y2).

The industry-prior mean of p is 0.027,  Because
the observed number of failures, 1, is larger than
the prior expected number, 8×0.027 = 0.21, we
ask whether such a large failure count is consis-
tent with the prior.  The probability is question is
Pr(X � 1).  For each randomly generated p, Pr(X
� 1 | p) was found, equal to 1 � Pr(X = 0 | p) = 1 �
(1 � p)8.  The average of these probabilities,
calculated for 100,000 random values of p, was
0.192, with a standard error of 0.0003.  This
means that the true probability is 0.192, with
negligible random error.  Because this probability
is not small, the data appear consistent with the
prior distribution.
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6.4 Failure to Change State:
Standby Failure

As explained in Sec. 2.3.3, this type of failure is
modeled as a failure condition that occurs at an un-
known time between the most recent previous inspec-
tion, test, or demand and the present one.

Each demand corresponds to a standby time.  The only
thing that can be observed is whether the system is
failed or not at the end of the standby period.  From
Equation 2.3, the probability that the system is failed at
time t is

 . (6.17)p e t= − −1 λ

Suppose that x failures are observed on n demands.
For any one of the failures, denote the corresponding
standby time by ti, i = 1, ..., x.  For any one of the
successes, denote the corresponding standby time by sj,
j = 1, ..., n � x.  All these numbers are observable in
principle.  Therefore, the likelihood is proportional to
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Here the capital pi denotes a product, the analogue of
using capital sigma for a sum.  This likelihood will be
treated in three distinct ways below.  First, a simple
special case will be considered.  Second, an approxima-
tion of the likelihood will be developed and used.
Finally, a way to use the exact likelihood in Bayesian
analysis will be given.

First, consider a simple special case, when all the
standby times are equal, say to some number t.  This
can happen if all the demands are test demands at
equally spaced intervals.  In this case, the probability of
failure on demand is the same for each demand, the
quantity p given by Equation 6.17.  Therefore, the
number of failures in n demands is binomial(n, p).  The
analysis methods of Section 6.3 can all be used �
Bayesian or frequentist estimation of p and all the
methods of model validation.  At the very end of the
analysis, the conclusions in terms of p should be
translated into conclusions in terms of �, by solving
Equation 6.17 for

� = �ln(1 � p)/t  .

This equation for � can be approximated as

� 
 p/t

if p is small (say, < 0.1).

This last equation shows that the MLE of � is  approxi-

mated by  .  Here x is the number of� / /p t x nt=
failures and nt is the total standby time.  This total
standby time is approximately the total calendar time,
so a simple estimate of � is the number of failures
divided by the total calendar time.

The above simple approach assumes that all the
standby times are equal.  If the standby times are
approximately equal, or nearly all equal, it is very
appealing to use the above technique, calling it an
adequate approximation.  If, instead, the standby times
differ greatly, one of the two approaches given below
can be used.

The exact likelihood given in Equation 6.18 can be
approximated as follows.  It is well known that

1 � exp(-�ti) 
 �ti  .

This is the first order Taylor-series approximation, and
is valid when �ti is small.  The error is on the order of
(�ti)

2.  A second-order approximation is less well
known, but it is not hard to show that

1 � exp(-�ti) 
 �tiexp(-�ti/2)  .

That is, the two quantities have the same second order
Taylor expansions, and they differ only by a term of
order (�ti)

3.  Therefore, the likelihood in Equation 6.18
is approximately equal to
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This is proportional to
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where 
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model
{ for (i in 1:n) {
      p[i] <-  1 - exp(-lambda*t[i])
      x[i] ~ dbern(p[i])
   }
   lambda ~ dgamma(0.5, 0.00001)
}

Figure 6.35  Script for analyzing standby failure data
exactly.
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Compare this approximation of the likelihood with
Equation 6.1, and see that the approximate likelihood
here is proportional to the likelihood of x Poisson
events in time t, where t equals the total standby time
for the successes plus half the standby time for the
failures.

Therefore, all the likelihood-based methods for Poisson
data are approximately valid, treating the data as
showing x failures in time t.  The likelihood-based
methods consist of maximum-likelihood estimation and
all the Bayesian techniques.

The graphical methods for model validation from
Section 6.2 are also probably valid, because they do not
require a rigorous justification.  The above argument
also suggests that the chi-squared test of poolability in
Section 6.2 can be used with the present data, because
the chi-squared test is only an approximation in any
case.   However, no simulations to confirm this have
been carried out for this handbook.

Finally, we give a third approach, an exact Bayesian
method that can be used if the standby times have been
recorded, based on Equation 6.18.  Figure 6.35 gives a
portion of a script for analyzing this type of data with
BUGS, based on the exact likelihood.  (See Figures
6.13 and 6.31 for similar scripts in other situations.)

In this script, pi is defined as 1 � exp(��ti).  The
random variable Xi is assigned a Bernoulli(pi) distribu-
tion.  This means that Xi equals 1 with probability pi

and equals 0 with probability 1 � pi.  It is the same as
a binomial distribution with n = 1.  Finally, � is as-
signed a prior distribution.  In Figure 6.35, the prior

distribution is chosen to be close to the Jeffreys nonin-
formative prior for Poisson data, but any proper prior
distribution could be used.  BUGS requires a proper
distribution, so the second parameter of the gamma
distribution cannot be exactly zero.  An additional
required portion of the script, giving the data, is not
shown in Figure 6.35.

6.5 Failures to Run during 
Mission

6.5.1 Estimates and Tests

This type of data can be analyzed using almost exactly
the same tools as for event rates in Sec. 6.2.  Certain
tools carry over exactly, and others are approximately
correct.

6.5.1.1 Likelihood-Based Methods: MLEs and
Bayesian Methods

Suppose that n systems are run for their missions.
(Equivalently, we might assume that a system is run for
n missions.)  Suppose that x of the runs result in failure,
at times t1, ..., tx.  The remaining n � x runs are com-
pleted successfully, and the systems are turned off at
times s1, ..., sn!x.  Observe the notation: t for a failure
time and s for a completed mission time.  The likeli-
hood is the product of the densities of times to failure,
for the systems that fail, times the probability of no
failure, for the systems that did not fail:

�i f(ti) �j Pr(no failure by sj)

Under the model introduced in Section 2.4, the failure
rate is assumed to be constant, �, the same for all the
systems.  Therefore, the time to failure has an exponen-
tial distribution.  As stated in Appendix A.7.4, the
density of an exponential(�) distribution is

f(t) = �e!8t

and the cumulative distribution function (c.d.f.) is

F(t) = 1 �  e!8t.

In particular, the probability of no failure by time s is
1 � F(s).  Substitution of these values into the general
expression for the likelihood results in 
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�i [�exp(��ti)] �j exp(��sj) 
= �x exp[��(�ti + �sj)]
= �x exp(��t) ,

where t is defined as �ti + �sj, the total running time.

Except for a normalizer that does not depend on �, this
is the Poisson probability of x failures in time t,

exp(��t)�xtx/x! .

Recall that Section 6.2 dealt with x failures in time t.
Therefore, any statistical analysis that requires only a
multiple of the likelihood is the same in Section 6.2
and here.  In particular, the maximum likelihood
estimate of � is x/t.  The gamma distributions form the
family of conjugate priors, and any Bayesian analysis
is carried out the same way for the data here and the
data in Section 6.2.

The subtle difference is that �ti is randomly generated
here, so t is randomly generated (although if most of
the systems do not fail during their missions, the
random portion of t is relatively small.)  Also, the
likelihood here is not a probability, but a combination
of densities and probabilities � that explains the
missing normalizer in the likelihood.  These differences
between this section and Section 6.2 result in small
differences in the confidence intervals and the tests for
poolability.

6.5.1.2 Confidence Intervals

Engelhardt (1995) recommends the following method
when all the mission times equal the same value, s.
The probability of a system failure before time s is 

p = F(s) = 1 � exp(��s) . (6.19)

Based on x failures in n trials, find a confidence inter-
val for p, using the methods of Sec. 6.3.  Translate this
into a confidence interval for �, using Equation 6.19

�conf, 0.05 = �ln(1 � pconf, 0.05)/s
�conf, 0.95 = �ln(1 � pconf, 0.95)/s .

This method does not use all of the information in the
data, because it ignores the times of any failures, using
only the fact that there was a failure at some time

before the mission time s.  However, if failures are few
the loss of information is small.

Similarly, to perform tests when all the mission times
are the same, for example to test whether two data
subsets can be pooled, one can work with p, defined by
Equation 6.19, and use the tests given in Sec. 6.3.  The
translation to � needs to be made only at the very end
of the analysis. 

When the mission times are not all equal, no exact
confidence interval method exists.  However, Bayesian
intervals can still be found, and are suggested

6.5.1.3 Jeffreys Noninformative Prior

The Jeffreys prior can be worked out exactly, following
the process given in Appendix B.5.3.1.  If �×(typical
mission time) is small (say, < 0.1), then the Jeffreys
prior is approximately the same as in Section 6.2, an
improper distribution proportional to �-1/2.

6.5.1.4 Tests for Poolability

The above arguments suggest that it is adequate to
ignore the random element of t, and use the methods of
Sec. 6.2, when estimating �.  For testing whether
subsets of the data can be pooled, the same arguments
suggest that the chi-squared test of Sec. 6.2 can be
used.  The chi-squared distribution is only an asymp-
totic approximation in any case, and can probably be
used even when t has a small amount of randomness,
although no simulations to confirm this have been
carried out for this handbook.

The rest of this section considers a diagnostic plot that
was not introduced earlier.

6.5.2 Hazard Function Plot

One plot that is especially useful for failures to run is
the hazard function plot.  It is used to investigate
whether � is constant during the entire mission.  As
explained in Appendix A.4.4 for a nonrepairable
system, ��t is the approximate probability that the
system will fail during a time interval of length �t,
given that it has not yet failed.  The precise name for �
is the hazard rate, or hazard function, although it is
often also called the failure rate.
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Suppose that the system must run for some mission
time, and the data value for that mission is either the
mission time, if the system runs to the end without
failing, or the failure time, if the system fails during the
mission.  The outcome, failure or success, is also
recorded.  The total data set consists of the data from a
number of missions.

Now consider the possibility that � is not constant.
Therefore, we write it as �(t).  An estimate of �(t)�t at
some time t is the number of systems that failed during
the interval (t, t + �t] divided by the number of systems
that had not yet failed by time t.  This leads to the
following rather unsatisfactory estimate of �(t).  Divide
the mission time into little intervals, each of length �t,
with the intervals so short that hardly any of them
contain more than one failure time.  In an interval with
no recorded failures, estimate �(t) by 0.  In an interval
(t, t + �t] with one failure, estimate �(t)�t by 1/nt,
where nt is the number of systems that had not yet
failed by time t.  Therefore, the estimate of �(t) there is
1/(nt�t).  For intervals with more than one failure, set
the numerator to the number of failures.

This estimate consists of a number of spikes, at times
when failures were observed.  Because it is so un-
smooth, this estimate is not at all attractive.  However,
it motivates a very simple estimate of the cumulative
hazard function, defined as

 .Λ ( ) ( )t u du
t

= ∫ λ
0

In this definition, the argument t of � is the upper limit
of integration.  Here � and � are related in the same
way that a c.d.f. and a density are related.  In particular,
�(t) is the derivative of �(t).

A natural and simple estimate of �(t) is a step function,
which is flat except at times when failures occurred.
At a time t when a failure occurred, the estimate of �
jumps by 1/nt, where nt is defined, just as above, as the
number of systems that had not yet failed by time t.  If
exactly simultaneous failures occur, for example
because of roundoff in reporting the failure times, the
estimate of � jumps by the number of failures divided
by nt.  This plot is due to Nelson (1982).  The full name
of the plot is the cumulative hazard function plot.
This technique is illustrated with the following exam-
ple.

Example 6.11 EDG failure-to-run times.

Grant et al. (1996) state that 23 failures to run
occurred during the EDG tests performed approxi-
mately once every 18 months.  All these failures
were reported by plants subject to Regulatory
Guide RG1.108, and there were approximately
665 such tests performed at these plants during
the study period. These tests require the EDG to
run for 24 hours.  Of the 23 failure reports, 19
reported the times to failure.  The 19 reported
times are given below, in hours.

0.17
0.23
0.25
0.33

0.33 
0.35
0.93 
1.18

2.67
3.00 
4.00
5.50

  6.00   
  8.00 
10.00
10.00   

11.50   
13.00   
17.78

Grant et al. assume that the lack of a reported time
is statistically independent of the time at failure, so
that the 19 reported times are representative of all 23
times.

There were approximately 665 such tests.  There-
fore, the cumulative hazard plot jumps by 1/665 at
time 0.17 hours, by 1/664 at time 0.23 hours, and so
forth, until it jumps by 1/647 at time 17.78.  It is
important that the duration of all the tests is known to
be 24 hours.  This fact guarantees that none of the
EDGs drop out early, so that after 18 failures 647
EDGs are still running.  Actually, this is only approxi-
mate, because it ignores the four failures with unre-
ported times.

The jumps are almost the same height, because
1/665 equals 1/647 to two significant digits.  There-
fore Grant et al. plot the cumulative number of
failures (a jump of 1 at each failure), instead of the
estimated cumulative hazard function.  The two
graphs make the same visual impression, and the
cumulative failure plot was easier to explain in the
report.  This plot is shown here, as Figure 6.36.

The cumulative hazard plot would differ only in that
the vertical scale would be different, and the jumps
would not be exactly the same size, though the
jumps would be almost the same size in this exam-
ple.

As explained in introductory calculus courses, when a
function is graphed as a curve, the derivative of the
function is the slope of the curve.  Therefore, the slope
of a cumulative hazard plot near time t estimates the
derivative of � at time t.  But the derivative of �(t) is
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Figure 6.36 Plot of cumulative failure count, a close
approximation of plot of cumulative hazard function
when only a small fraction of the systems fail.

�(t).  Therefore, a constant slope indicates constant
�(t), and a changing slope indicates changing �(t).

Grant et al. note that for times less than about one
half hour the slope is approximately constant, and
steep.  It is again constant, but less steep, from
about 1/2 hour until about 14 hours, and it is smaller
yet after 14 hours.  Therefore, Grant et al. estimate
three values for , corresponding to these three time
periods.  They comment that the early, middle, and
late failures seem to correspond in part to different
failure mechanisms. 

6.6 Unavailability

The discussion here is presented in terms of trains,
although other hardware configurations, from individ-
ual components up to an entire reactor, could be
considered equally well.  A standby train, such as the
single train of the HPCI system or a motor-driven train
of the AFW system, is normally available if it should
be demanded, but sometimes it is out of service for
planned or unplanned maintenance.  The event of a
train being unavailable will be called an outage here,
and the length of time when it is unavailable is called
an outage time or out-of-service time.  The unavail-
ability is the probability that the system is unavailable
when demanded.  More precisely, the planned-
maintenance unavailability is the probability that the
system is out of service for planned maintenance, and
the unplanned-maintenance unavailability is defined
similarly.  In summary, outage times are random but
the unavailability is a parameter, an unknown constant,
denoted here by u.  Subscripts "planned" and "un-
planned" can be attached to u for clarity if needed.

As mentioned in Section 2.5.2, we assume the follow-
ing kind of data.

� Only summary data are available, such as the
total outage time for each calendar quarter.
Such data could be obtained from industry
data bases such as EPIX (INPO 1998).

This section is much less detailed and prescriptive than
the other sections of this chapter, because data analysis
methods are less fully developed for unavailability than
for other parameters.

Unavailability data typically are proprietary.  There-
fore, the methods of this section will be illustrated with
the hypothetical data provided in Example 6.12.

Data from many train-months may be reported, (28 in
the example, not counting the one month when plant Y
was shut down and its trains were not required to be
available).  The task now is to estimate uplanned by a
point estimate, and to quantify the uncertainty in the
estimate by a confidence interval or a Bayesian distri-
bution.

Denote the exposure time at plant i, train j, and month
k by tijk.  Denote the corresponding outage time by Oijk.
The upper-case letter emphasizes that the outage time
is random.  The observed values are denoted by lower
case letters oijk.  The corresponding  estimator of the

unavailability u is the ratio = Oijk/tijk .  It is random.�Uijk

After the data have been observed, the estimate of u is
.  This gives one such estimate of u for� /u o tijk ijk ijk=

each train-month of data.  The estimate from any one
train-month is not very good, because it is based on
only a small data set.

The data may contain many zeros.  Actual data might
contain more zeros than shown in this hypothetical
example.  As a result of the many zeros and few
relatively large outage times, the data can be quite
skewed.  To eliminate some of the zeros and make the
data less skewed, the data can be pooled in time
periods longer than one month.  The sums for the
calendar quarter are given in the column on the right of
the table in Example 6.12. This assumes that the
parameter u does not change from month to month.
Denote the summed outage times and exposure times
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by oij+ and tij+, and denote the corresponding estimate
by .� /u o tij ij ij+ + +=

Example 6.12 Hypothetical outage times.

Five plants, named U, V, W, X, and Y, each have
a chemical and volume control (CVC) system with
two trains, named A and B.  The first four plants
were operating for an entire calendar quarter, but
plant Y was operating only for about half the time.
Each train was supposed to be available
whenever the plant was operating (the exposure
time).  Exposure times and planned outage times
are shown below

April May June Total

Exposure time 719 744 720 2183

U-A outage time 0 2 0 2

U-B outage time 0.6 0 0.6 1.2

V-A outage time 10.1 1 0 11.1

V-B outage time 9.8 1.3 0 11.1

W-A outage
time

13.5 0 5.5 19.0

W-B outage
time

8.9 0 0.3 9.2

X-A outage time 0.4 2.1 0 2.5

X-B outage time 0 0 0 0.0

Exposure time 0 446 720 1166

Y-A outage time 0 0.4 5.8 6.2

Y-B outage time 0 0 2.2 2.2

The data can be aggregated further, by summing the
quarterly data over the two trains at each plant, and
finally by summing the plant data.  Assuming that u is
the same for both trains and for all plants, this gives
estimates  and .  The corresponding random�ui+ + �u+ + +

quantities are denoted with upper case letters.  Notice,
this approach pools the numerators and denominators
separately and then calculates the ratio.  It does not
simply average the ratios.

The purpose of this aggregation is to produce multiple
observations of an estimator that we denote generically

as X.  For example, we might decide to use  or�Uij+

 as the observable X.  To carry out the estimation,�Ui+ +

X must have a distribution that can be analyzed.
Bayesian methods will want to use a simple distribu-
tion for X, such as lognormal or normal.  Frequentist
methods will be easiest if X is normal.  These distribu-
tions do not permit observed values of zero.  In addi-
tion, the normal distribution does not produce strongly
skewed data.  We must aggregate enough to obtain data
that have these desired characteristics

Table 6.16 gives some sample statistics for these
estimates, based on the data of Example 6.12.  The
sample median is defined in Section 6.7.1.1.2.  The
sample mean, standard deviation and skewness are
defined in Appendix B.2  The skewness is a measure
of asymmetry.  Positive skewness corresponds to a
long tail on the right.  Zero skewness corresponds to
a symmetrical distribution.

Table 6.16 Sample statistics for estimators of u.

�Uijk
�Uij+

�Ui+ +
�U+ + +

n 28 10 5 1

Mean 3.21E�3 3.29E�3 3.29E�3 3.26E�3

Median 6.95E�4 3.05E�3 3.60E�3 3.26E�3

St. dev.,
s

5.29E�3 2.81E�3 2.61E�3 —

s/n1/2 9.95E�4 8.90E�4 1.17E�3 —

Skew-
ness

1.79 0.61 0.02 —

6.6.1 Frequentist Estimation

The best estimate of u is the sum of the outage times
divided by the sum of the exposure times, .  This�u+ + +

ratio of the sums is not quite the same as the average of
the ratios, because the various cells are not based on
the same exposure times.  For example, in Example
6.12 plant Y has fewer exposure hours.  Averaging the
ratios for the plants treats the data from plant Y with as
much weight as the data from the other plants.  Sum-
ming the outage times and exposure times first, before
taking the ratio, gives plant Y only the weight that it
should have.
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A method to obtain a confidence interval for u uses
facts about normally distributed random variables that
are presented in Section 6.7.1.2.1 in the context of
lognormal random variables, and summarized here.

Suppose that x1, ..., xn are a random sample from a
normal distribution with unknown mean µ and standard
deviation �.  The maximum likelihood estimate of  µ is

, the sample mean.  A 100(1 � �)% confidencex
interval for µ is

x t n s n± −−1 2
1 21α /
/( ) /

where t1 ! "/2(n � 1) is the (1 � �/2) quantile of Stu-
dent’s t distribution with n � 1 degrees of freedom, and
s is the usual estimate of the standard deviation of X,
given in Appendix B.  Do not misread the (n � 1) as a
multiplier; it is a parameter, the degrees of freedom, of
the Student’s t distribution.  In Table C.3 each row of
the table corresponds to one value of the degrees of
freedom.

Therefore, a method is to aggregate data until the
corresponding estimates appear to be approximately
normally distributed, and then construct an overall
estimate and confidence interval based on those esti-
mates.

In Example 6.12, the  values are not a random�uijk

sample from a normal distribution.  They are too
skewed, as is seen by the fact that the mean
(3.21E�3) is very different from the median
(6.95E�4), and the skewness (1.79) is far from zero.

Pooling the three months for each train makes the
distribution much more nearly symmetrical: the mean
and median are within 10% of each other, and the
skewness is down to 0.61.  When months and trains
are pooled, the distribution appears to be fully
symmetrical: the mean and median are within 10% of
each other, and the sample skewness is virtually
zero.  This indicates that the values of xi �  may�ui+ +

be treated as a random sample from a normal
distribution.  A goodness-of-fit test could be per-
formed, as discussed in Section 6.7, but no depar-
ture from normality will be detectable with only five
observations.

Therefore, a 90% confidence interval for uplanned is

3.29E�3 ± 2.132×1.17E�3
  = 3.29E�3 ± 2.49E�3

because 2.132 is the 95th percentile of the Student’s
t distribution with 4 degrees of freedom.  Thus, the
lower and upper confidence limits are

uconf,0.05 = 8.E�4
uconf,0.95 = 5.8E�3 .

This interval is approximate because the  values�ui+ +

come from an approximately normal distribution.

Table 6.16 shows that the mean hardly changes as
various levels of aggregation are used.  Similarly, s/n1/2

hardly changes.  They change somewhat because of
randomness of the data and the unbalancedness of the
data � the inequality of the exposure times.  This
shows that data aggregation is not a magic trick to
improve the estimator or reduce the variance of the
estimator.  The only purpose of the pooling is to
eliminate the skewness and permit the use of normal
methods.

If the data were more badly unbalanced, the data
aggregation could be modified to improve the balance.
For example, if plant Y had contributed only one
month of data, the two trains could have been aggre-
gated immediately, to have produced an estimate based
on two train-months of data.  This would be compara-
ble to the three train-months of data used for estimating
the unavailability of a single train in any other plant.

Real data may not allow aggregation across plants.
That is, the observed unavailability may differ greatly
from plant to plant, because of differences in plant-
maintenance procedures or in data-reporting policies.
In such a case, plant-specific data must be used
(assuming that the data reporting for the plant appears
reasonable).  With several years of such data, one
might aggregate within calendar quarters or calendar
years or some other time period.

6.6.2 Bayesian Estimation

When X is normally distributed, the conjugate prior
distribution is given in Section 6.7.1.2.1 in the context
of the lognormal distribution.  In particular, the non-
informative prior results in  as the posterior mean forx
u, and a 100(1� �)% credible interval for u is given by
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 .x t n s n± −−1 2
1 21α /
/( ) /

The posterior distribution of u follows from the fact
that the expression

( ) / ( / )U x s n−
has a Student’s t distribution with n�1 degrees of
freedom.  The parameter u is capitalized here to em-
phasize that it is the quantity with the probability
distribution.

In Example 6.12, based on the noninformative prior,
the posterior 90% credible interval goes from 8.E�4
to 5.8E�3, as calculated above.

Although Section 6.7.1.2.1 gives the update formulas
when using an informative conjugate prior, no example
of this updating is worked out here.  The reason is that
justification of an informative prior is too complicated
to carry out here.  The update formulas are straight-
forward, after the hard work of deciding on a prior.

If X is modeled as having a lognormal distribution, then
the same methods can be followed.  Work with ln(X),
which is normally distributed, instead of with X.  The
only complication is that the unavailability u is not one
of the prior parameters.  Instead, u is the mean of X,
exp(µ + �2/2).  Therefore, let ln(X) be normal(µ, �2).
When the joint posterior distribution of µ and �2 has
been found, randomly generate values from this distri-
bution.  For each randomly generated pair (µ, �2),
calculate the value of u = exp(µ + �2/2).  This sample
mimics the desired posterior distribution.

Nonconjugate priors can also be considered.  Then the
posteriors cannot be found by simple algebraic updat-
ing.  Instead, random sampling is the most promising
tool.  For examples of such sampling in more compli-
cated settings, see the discussions of Bayesian analysis
of trends in Section 7.2, and of hierarchical Bayes
models in Section 8.3.3.

6.6.3 Model Validation

A crucial feature of the simple method proposed above
is aggregation of data, to reduce skewness.  An implicit
assumption when pooling data subsets is that the two
subsets correspond to the same distribution.  Therefore,
one may try to check this assumption.

The methods discussed in detail in Sec. 6.7.2.1 may be
used, although the data may not be of good enough
quality to show much.  In particular, box plots may be
used to suggest whether subsets can be pooled.  The
Kruskal-Wallis test, the nonparametric analogue of the
analysis-of-variance test for equal means of normally
distributed random variables, can be used to test
equality of the unavailability in the data subsets.

To construct box plots or to perform the Kruskal-
Wallis test, the data subsets must contain multiple
observations.  In Example 6.12, the data for Plant i
could consist of up to six values of , or two values$uijk

of , or two or three values of .  When so many$uij+ �ui k+

of the observations are tied at zero, the test probably
will not detect a statistically significant difference
between trains.

The methods are identical to those of Sec. 6.7.2.1,
where they are covered in full detail.  Therefore, no
further discussion is given here.

6.7 Recovery Times and Other
Random Duration Times

The previous analyses have all involved a single
parameter, � or p or u.  The analysis of duration times
is different because now a distribution must be esti-
mated, not just a single parameter.

A distribution can be estimated in many ways.  If the
form of the distribution is assumed, such as exponential
or lognormal, it is enough to estimate one or two
parameters; the parameter or parameters determine the
distribution.  If the form of the distribution is not
assumed, the distribution can be estimated nonparamet-
rically, or characteristics of the distribution, such as
moments or percentiles, can be estimated.

To test whether data sets can be combined (pooled),
both parametric tests and nonparametric tests exist.
The parametric tests typically test whether the means or
variances of two distributions are equal, when the
distributions have an assumed form.  The most com-
mon nonparametric tests test equality of the distribu-
tions against the alternative that one distribution is
shifted sideways from the other.
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This section is long, because so many distribution
models can be assumed and because the model as-
sumptions can be violated in so many ways.  A brief
outline of the section is as follows.

6.7.1  Characterization of a single distribution
Estimation of moments, percentiles, c.d.f.s
Fitting of four parametric models (frequentist
and Bayesian parameter estimates)

6.7.2  Model validation (graphs and hypothesis tests)
Poolability, trend
Goodness of fit to assumed parametric models
Consistency of data with prior for Bayesian
parameter estimates

6.7.3  Nonparametric density estimation

Many of the methods will be illustrated using the data
of Example 6.13, taken from Atwood et al. (1998).

This example shows the times when power could
have been recovered, for plant-centered LOSP
events, that is, for events not caused by grid prob-
lems or by widespread severe weather.  (Real life is
complicated: sometimes a plant does not restore
power as quickly as it could, and the event report
states when power was actually restored, and when
it could have been restored.  The times given by
Atwood et al. 1998 as “recovery times” show when
power could have been restored, if that time was
reported and different from the actual recovery time.)
Discussions of this example will use the terms
recovery time and duration interchangeably.
Momentary events (duration less than two minutes)
and events with no reported duration have been
excluded.  For common-cause events that affected
multiple units at a site, the average recovery time is
used.

The group P exists because some plants are permit-
ted to remain at power during certain LOSP events.

Throughout this section, the random variable is denoted
by T, because typically the random quantity is a dura-
tion time, such as time to recovery of the system.
Examples were given in Section 2.6.1: time until
restoration of offsite power, duration of a repair time,
and others.  Let F denote the c.d.f. of T, F(t) = Pr(T �
t).  It is assumed that n times will be observed, T1, T2,
... , Tn.  The assumptions of Section 2.6.2 are repeated
here.

	 The Ti s are independent,

	 Each Ti has the c.d.f. F(t).

Example 6.13 LOSP recovery times.

.
Atwood et al. (1998) report 115 times of recovery of
lost offsite power.  The data are categorized into
three possible values for plant status:  T, S, and P,
with meanings explained in the table below.  The
durations in minutes and the dates (MM/DD/YY) are
shown.

P: Plant remained at power throughout LOSP event
(8 times)

   6   03/01/80
  45   07/25/85
  65   07/16/88

 113   01/18/96
 147   06/03/80
 355   11/12/90

 385   04/11/94
1138   01/03/89

S: Plant was shut down before and during LOSP event
(62 times)

   2   06/04/84
   2   08/17/87
   2   06/29/89
   2   05/21/94
   3   06/26/93
   3   10/22/84
   3.5 11/21/85
   4   04/22/80
   4   04/04/87
   4   10/20/91
   5   05/03/84
   8   06/24/88
   9   12/26/88
  10   08/01/84
  10   04/28/92
  10   12/23/81
  11   10/04/83
  11   07/24/91
  12   06/22/93
  12   07/19/86 
  14   02/26/90

  14   11/16/84
  14   02/01/81
  15   04/27/81
  15   12/19/84
  15   10/12/93
  17   04/26/83
  17   10/14/87
  20   03/23/92
  22   08/24/84
  24   07/29/88
  24   07/29/88
  29   03/20/91
  29   09/16/87
  29   05/14/89
  35   04/02/92
  37   03/21/87
  37   05/19/93
  37   07/09/90
  43   05/07/85
  53   09/11/87
  59   10/16/87

  60   06/22/91
  60   06/16/89
  62   07/15/80
  67   03/13/91
  73   08/28/85
  77   03/29/92
  97   01/08/84
 120   06/05/84
 120   01/16/81
 127   01/20/96
 132   02/27/95
 136   04/08/93
 140   03/20/90
 155   03/05/87
 163   10/08/83
 240   11/14/83
 240   03/07/91
 335   04/29/85
 917   10/21/95
1675   11/18/94

T: Plant tripped because of LOSP event
(45 times)

   2   02/28/84
   4   11/21/85
   4   11/17/87
   5   08/16/85
   6   05/03/92
  10   09/10/93
  10   10/12/93
  11   07/26/84
  13   10/07/85
  14   08/13/88
  15   02/16/84
  15   09/14/93
  19   10/25/88
  20   12/12/85
  20   03/27/92 

  20   08/21/84
  20   07/16/84
  20   06/27/91
  24   06/15/91
  25   10/03/85
  29   06/22/82
  38   07/17/88
  40   02/11/91
  45   01/16/90
  45   03/25/89
  46   01/01/86
  57   10/19/92
  60   03/21/91
  60   10/22/85
  62   07/15/80

  90   02/12/84
  90   03/29/89
  90   06/17/89
  95   12/31/92
  95   12/31/92
  95   10/16/88
  96   12/27/93
 100   01/28/86
 106   06/03/80
 118   07/23/87
 118   07/23/87
 277   04/23/91
 330   02/06/96
 388   07/14/87
 454   08/22/92

A data set satisfying these assumptions is called a
random sample from the distribution.  Sometimes the
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Ti s are called independent identically distributed
(i.i.d.).  The term random sample also refers to the
observed values, t1, t2, ... , tn.  The data are used to
estimate properties of the distribution.  This can also be
described as estimating properties of the population,
where the population is the infinite set of values that
could be randomly generated from the distribution.

6.7.1 Characterization of Distribution

6.7.1.1 Nonparametric Description

The tools in this subsection are called nonparametric
because they do not require any assumption about the
form of the distribution.  For example, the distribution
is not assumed to be lognormal, exponential, or of any
other particular form.

6.7.1.1.1   Moments

To estimate the population mean µ or a population
variance �2, two simple estimators are the sample
mean, defined as

T
n

Ti
i

n

=
=
∑1

1

and the sample variance, defined as

 .S
n

T Ti
i

n
2 2

1

1

1
=

−
−

=
∑ ( )

The sample mean and sample variance are known to be
unbiased for the population mean and variance,
respectively.  In other words, E(T

_
) = µ and E(S 2) = � 2.

These statements are true regardless of the distribution
F, requiring only the assumptions of a random sample.
The sample standard deviation, S, is the square root
of the sample variance.

These are all-purpose estimators, but they are not the
only possible estimators.  For example, the variance of
an exponential distribution is the square of the mean.
Therefore, a good estimator of the variance would be
the square of the estimator of the mean.  This estimator
relies heavily on the assumption of exponentiality,
whereas the above estimators make no such assump-
tions.  General principles of estimation are discussed in
Appendix B.4.1.

6.7.1.1.2    Percentiles

To estimate percentiles of a distribution, it is useful to
put the data in ascending order from the smallest to the
largest observation.  The recovery times in Exam-
ple 6.13 have been arranged this way.  The variables
obtained by ordering the random sample are called the
order statistics, and are denoted by T(1) � T(2) � ··· �
T(n).  The observed values are written t(1) � t(2) � ··· � t(n).
Some important estimates based on the order statistics
are the sample median, other sample percentiles, and
the sample range.  The general definition of the 100qth
sample percentile, where 0 < q < 1, is a number t such
that the fraction of observations that are � t is at least
q and the fraction of observations that are � t is at least
1 � q.

For example, the sample median is defined to be t
such that at least half (because q = 0.5) of the observa-
tions are � t and at least half (because 1 � q = 0.5) are
� t.  This boils down to the following.  If n is odd, the
sample median is the "middle" order statistic,  t(m) with
m = (n + 1)/2.  If n is even, with m = n/2, there is no
unique "middle" order statistic.  Any number between
the two middle order statistics, t(m) � t � t(m+1), could be
used, although nearly everyone uses the average of the
two middle order statistics (t(m) + t(m+1))/2 as "the"
sample median.

The other sample percentiles are defined similarly, with
some averaging of two order statistics if necessary.
Note that the sample 90th percentile is t(n) if n < 10, the
sample 95th percentile is t(n) if n < 20, and so forth.

Order statistics that are sometimes used are:  the lower
and upper quartile, defined as the 25th and 75th
percentiles; percentiles that include most of the distri-
bution, such as the 5th and 95th percentiles; and the
extremes,  t(1) and   t(n).  The interquartile range is the
upper quartile minus the lower quartile.  The sample
range is the difference between the largest and smallest
ordered observations, t(n) � t(1).  Be careful with inter-
pretation.  As data continue to be collected, the sample
interquartile range stabilizes at the interquartile range
of the distribution, but the sample range does not
stabilize at all � it just grows every time a new t is
observed that is outside the former observations.
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The sample median has the advantage of not being
strongly influenced by extreme observations.  The
sample mean, on the other hand, can be strongly
influenced by even one extreme data value.  The
sample variance is even more sensitive to extreme
values, because it is based on squared terms.  There-
fore, the sample standard deviation, defined as the
square root of the sample variance, is also sensitive to
extreme terms.  Other measures of dispersion, such as
the interquartile range, are much less sensitive to
extreme values.  In general, sample percentiles are
much less sensitive to extreme observations than are
sample moments.

The recovery times of Example 6.13 have sample
moments and percentiles given in Table 6.17.

Table 6.17 Statistics based on the recovery
times (minutes) of Example 6.13.

P S T

n 8 62 45

Stand. deviation   373.2 241.4   99.9

95th %ile 1138 240 330

75th %ile
(upper quartile)

  370   73   95

Mean  281.75   92.3   73.4

50th %ile
(median)

  130   24   40

25th %ile
(lower quartile)

    55   10   15

5th %ile       6     2     4

For the P group, the sample median is taken as the
average of the two middle numbers.  Even though
the S group has an even number of observations, its
sample median is unique, because t31 and t32 happen
to be equal!  The T group has an odd number of
observations, so its sample median is unique, t23.

The S group has one very extreme value, which
influences the moments.  The sample mean for this
group is larger than the upper quartile — someone
who considers the mean to be “the” average could
say that more than 75% of the observed times are
below average.  This happens with skewed distribu-

tions.  This is one reason why many people prefer
percentiles to moments for describing a skewed
distribution.

There are situations in which some of the times are not
observed.  Sec. 6.5 dealt with such a situation, when
the times of interest were times of EDG failure to run,
and not all these times were reported.  In the present
section, nearly all the times are assumed to be ob-
served, with no systematic bias in which times fail to
be observable.

6.7.1.1.3    The Empirical Distribution Function

An estimate of F(t) called the empirical distribution
function (EDF) is defined as follows:  For an arbitrary
value of t > 0, define

= (Number of observations � t) / n.� ( )F t

The EDF is a step function.  It increases by 1/n at each
observed time if all observations are distinct.  More

generally, if there are m times equal to t,  has a� ( )F t

positive jump of m/n at t.

In some settings the function 

1 � F(t) = Pr(T > t)

is of interest.  If T is the time until failure, 1 � F(t) is
called the reliability function, R(t), in engineering
contexts, and the survival function, S(t), in medical
contexts.  A suitable word remains to be coined when
T is the time until recovery or repair.  The empirical
reliability function, or the empirical survival function,
is defined as 1 minus the EDF.  Anything that can be
done with F can be translated in terms of 1 � F, so this
discussion will only consider F.

With a little mental exercise, the EDF can be expressed
in familiar terms.  For any particular t, let p denote F(t)
= Pr(T � t).  In the data, define a "demand" to be the
generation of an observed time, and define the ith
observation ti to be a "failure" if ti � t.  By the assump-
tions for a random sample, any observation has proba-
bility p of being a failure, and the outcomes (failures or
successes) are statistically independent of each other.

By its definition,  is the number of failures� ( )F t
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Figure 6.39  Histogram of same data, with bin
width 10.

divided by the number of demands, which is ,�p

familiar from Section 6.3.1.  Therefore,  is an� ( )F t

unbiased estimator of F(t) at any t.  It is close to F(t)
when the number of observations is large, and a
confidence interval for F(t) can be constructed, the
familiar confidence interval for p.

Figure 6.37 shows the EDF based on the data in
Example 6.13 for group T.
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Figure 6.37  Empirical distribution function (EDF) for
the data from group T in Example 6.13.

6.7.1.1.4    Histogram Estimate of the Density

The eye smooths the EDF, compensating for its jagged
form.  To accomplish the same sort of smoothing for a
density estimate, group the observed times into bins of
equal width, count the number of observations in each
bin, and plot the histogram, a form of bar chart with the
height of each bin equal to the number of observations
in the bin.  Some software packages can rescale the
height so that the total area equals 1, making a true
density estimate.  If the vertical axis shows counts, the
histogram is proportional to an estimate of the density.
Books and Ph. D. theses have been written on density
estimation, and some modern density estimators are
quite sophisticated.  A few such are given in Sec. 6.7.3.
Nevertheless, the lowly histogram is often adequate for
PRA purposes.

Figures 6.38 and 6.39 show two histograms for the
data from the above EDF, using two different bin
widths.  The analyst must decide what bin width
gives the most reasonable results, based on belief
about how smooth or ragged the true density might

be.  Most people would judge Figure 6.39 to be too
rough, and would therefore choose wider bins.
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Figure 6.38  Histogram of the data from group T in
Table 6.16, with bin width 50.

6.7.1.2 Fitting a Parametric Distribution

Sometimes it is desirable to fit some assumed distribu-
tional form to data.  This subsection gives estimators if
the assumed distribution is lognormal, exponential,
gamma, or Weibull.  Bayesian and non-Bayesian
estimates are given, with much of the latter taken from
an INEEL report by Engelhardt (1996).

6.7.1.2.1    Lognormal Distribution

This model assumes that T has a lognormal distribu-
tion, or equivalently, that lnT has a normal(µ, �2)
distribution.  Define Y = lnT.  

Frequentist Estimates.  The usual estimates of µ and
�2 are the maximum likelihood estimates:
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These estimates have the same form as those given in
Section 6.7.1.1.1 for the mean and variance of T, but
these are for lnT.  Calculate the estimates of these
parameters to determine the estimated normal distribu-
tion of lnT, which determines the estimated lognormal
distribution of T.

The material below is presented in many statistics
books, based on the fact that lnT has a normal distribu-

tion.  The distribution of  is chi-squared( ) /n SY− 1 2 2σ
with n � 1 degrees of freedom.  It follows that a two-
sided 100(1 � �)% confidence interval for �2 is

.( )( ) / ( ), ( ) / ( )/ /n s n n s nY Y− − − −−1 1 1 12
1 2
2 2

2
2χ χα α

Here is the q quantile, that is, the 100qχq n2 1( )−
percentile, of the chi-squared distribution with n�1
degrees of freedom.

The distribution of  is normal(µ, �2/n).  If �2 isY
known, it follows that a 100(1��)% confidence inter-

val for µ is , where z1!"/2 is they z n± −1 2α σ/ /

100(1��/2) percentile of the standard normal distribu-
tion.  For example, z0.95 gives a two-sided 90% confi-
dence interval.

In the more common case that both µ and �2 are un-
known, use the fact that

( ) / ( / )Y S nY− µ

has a Student’s t distribution with n�1 degrees of
freedom.  It follows that a 100(1��)% confidence
interval for µ is

 ,y t n s nY± −−1 2 1α / ( ) /

where  is the 1��/2 quantile of thet n1 2 1− −α / ( )

Student’s t distribution with n�1 degrees of freedom.
For example, t0.95(n�1) gives a two-sided 90% confi-
dence interval.

Bayesian Estimation.  Bayesian estimates are given
here.

Conjugate Priors.  The conjugate priors and
update formulas are presented by Lee (1996, Sec.
2.13).  They depend on four prior parameters, denoted
here as d0, �0

2, n0, and µ0.  The notation here tries to
follow the notation used elsewhere in this handbook.
It is not the same as Lee’s.  Quantities with subscripts,
such as �0

2 or d1, are numbers.  Quantities without
subscripts,  �2 and µ, have uncertainty distributions.

It is useful to think of having d0 degrees of freedom,
corresponding to d0 + 1 prior observations for estimat-
ing the variance, and a prior estimate �0

2.  More pre-
cisely, let the prior distribution for �2/(d0�0

2) be in-
verted chi-squared with d0 degrees of freedom. That is,
d0�0

2/�2 has a chi-squared distribution with d0 degrees
of freedom.  Therefore it has mean d0, and therefore the
prior mean of 1/�2 is 1/�0

2.  (See Appendix A.7.7 for
more information on the inverted chi-squared distribu-
tion.)

An alternative notation for the above paragraph would
define the precision � = 1/�2, and the prior precision �0

= 1/�0
2.  Then the prior distribution of  d0�/�0 is chi-

squared with d0 degrees of freedom.  Although we shall
not use this parameterization, it has adherents.  In
particular, BUGS (1995) uses � instead of �2 as the
second parameter of the normal distribution; see
Spiegelhalter et al. (1995).

Conditional on �2, let the prior distribution for µ be
normal with mean µ0 and variance �2/n0.  This says that
the prior knowledge of µ is equivalent to n0 observa-
tions with variance �2.  It is not necessary for n0 to have
any relation to d0.    

The Bayes update formulas are

d1 = d0 + n
n1 = n0 + n
µ µ1 0 0 1= +( ) /n ny n
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Here the subscript 1 identifies the posterior parameters.
The posterior distributions are given as follows.  First,
�2/(d1�1

2) has an inverted chi-squared distribution with
d1 degrees of freedom.  That is, the posterior mean of
1/�2 is 1/�1

2, and a two-sided 100(1��) credible
interval for �2 is

.( )d d d d1 1
2

1 2
2

1 1 1
2

2
2

1σ χ σ χα α/ ( ), / ( )/ /−

Conditional on �2, the posterior distribution of µ is
normal(µ1, �

2/n1).  Therefore, conditional on �2, a two-
sided 100(1��)% credible interval for µ is

.µ σα1 1 2 1± −z n/ /

The marginal posterior distribution of µ, that is, the
distribution that is not conditional on �2, is as follows.
The expression

( ) / ( / )µ µ σ− 1 1 1n

has a Student’s t distribution with d1 degrees of free-
dom.  It follows that a 100(1 � �)% credible interval
for µ is

 .µ σα1 1 2 1 1 1± −t d n/ ( ) /

Noninformative Prior.  The joint noninfor-
mative prior for (µ, �2) is proportional to 1/�2.  Lee
(1997, Sec. 2.13) presents this prior, as do Box and
Tiao (1973, Sec. 2.4).  Lee points out that when d0 =
�1, n0 = 0, and �0

2 = 0, the conjugate prior distribution
reduces to the noninformative prior, and the credible
intervals then agree numerically with the confidence
intervals given above.

Possible Further Analyses.  Some data
analyses require only the posterior distribution of one
or both parameters.  In that case, use the above poste-
rior distributions, with either an informative or
noninformative prior.  Other analyses require more,
such as simulation of a set of lognormal times X or a
credible interval for the mean of X.  If so, simulation of

the quantity of interest is a useful technique.  Begin
each case of the simulation by generating a value of �2

from its posterior distribution.  Then generate a value
of µ from its distribution conditional on �2.  Then do
whatever is required next to obtain the quantity of
interest: generate a random value of X from the lognor-
mal(µ, �) distribution, or calculate E(X) = exp(µ +�2/2),
or calculate whatever else is needed.  Save the quantity
of interest produced in this way.  Repeat this process as
many times as needed to obtain a sample that accu-
rately represents the distribution of interest.

Model Validation.  Model validation is discussed in
general in Section 6.7.2.  Many of the methods given
there are applicable to any assumed distribution.  Some
methods, however, have been developed just for the
normal and lognormal distributions.  They are con-
tained in Sections 6.7.2.1.2, 6.7.2.2.2, and 6.7.2.3.2.

6.7.1.2.2    Exponential Distribution

The exponential distribution is presented in Appendix
A.7.4, with two possible parameterizations. The first
uses � = 1/E(T), and the second uses µ = 1/� = E(T).  In
data analysis, sometimes one parameter seems more
natural and convenient and sometimes the other does.
In the two parameterizations, the likelihood function is

�nexp(���ti)
or
µ!nexp(��ti/µ) .

Frequentist Estimation.  It can be shown that the

MLE of µ is the sample mean, .  Therefore, tot
estimate the distribution, estimate µ by .  Thist
determines the estimated exponential distribution.  The

corresponding estimate of � � 1/µ is .1 / t

For a (1 � �) confidence interval, or equivalently a
100(1 � �)% confidence interval, the lower limit for �
is

�conf, "/2 = 
χα / ( )2

2 2

2

n

tiΣ

and the upper limit is
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(See Martz and Waller 1991.)  Confidence limits for µ
= 1/� are obtained by inverting the confidence limits
for �.  For example, the lower confidence limit for µ
equals 1 divided by the upper confidence limit for �.

Bayesian Estimation.  Now consider Bayesian estima-
tion.

Conjugate Prior.  The gamma distribution is
a conjugate prior for �.  That is, let t1, ... , tn be inde-
pendent observations from an exponential(�) distribu-
tion.  Let the prior distribution of � be gamma(�0, �0).
This uses the same parameterization as when � is a
Poisson parameter, so that �0 has units of time and the
prior mean of � is �0/�0.  A direct calculation shows
that the posterior distribution of � is also gamma, with
posterior parameters

�1 = �0 + n
�1 = �0 + � ti .

The subscript 1 identifies the posterior parameters.
The prior parameters have a simple intuitive interpreta-
tion � the prior information is "as if" �0 duration times
had been observed with total value �0. 

The percentiles of the posterior distribution are given
by

λ
χ α

βp

p=
2

1

1

2

2

( )

Therefore, for example, a two-sided 90% credible
interval has end points

λ
χ α

β0 05
0 05
2

1

1

2

2.
. ( )

=

and 

 .

There are two possible ways to perform the corre-
sponding analysis in terms of µ.  (a) One way is to
perform the above analysis in terms of �, and then
translate the answer into answers for µ = 1/�.  Be

careful when doing this.  The percentiles translate
directly, with the pth percentile µp = 1/�p.  The mo-
ments do not translate directly, however.  For example,
the mean of µ is not 1 divided by the mean of �.  (b)
The other way is to let µ have an inverted gamma
distribution.  This distribution is defined in Appendix
A.7.7.

Either analysis gives exactly the same results.  The
second approach is just a disguised version of the first
approach, using a different distribution to avoid intro-
duction of the symbol �.

Noninformative Prior.  The Jeffreys nonin-
formative prior for � can be expressed as a gamma(0,
0) distribution.  This is an improper distribution, that is,
it does not integrate to 1, but it results in proper poste-
rior distributions as long as some data have been
observed.  Note, this prior is slightly different from the
Jeffreys prior when the data have a Poisson distribu-
tion.  When the gamma(0, 0) prior is used with expo-
nential data, the posterior parameters reduce to

�post = n
�post = � ti .

Then the Bayes posterior credible intervals are numeri-
cally equal to the confidence intervals.  If the purpose
of a "noninformative" prior is to produce intervals that
match confidence intervals, this purpose has been
perfectly accomplished.

Discussion.  The above work has illustrated
some facts that are true in general. When the observa-
tions have a discrete distribution, such as Poisson or
binomial, the so-called noninformative priors do not
produce credible intervals that exactly match confi-
dence intervals.  This is related to the fact that confi-
dence intervals from discrete data do not  have exactly
the desired confidence coefficient.  Instead, they are
constructed to have at least the desired long-run
coverage probability.  The situation is different when
the observations are continuously distributed, as in the
present case with exponentially distributed times.  In
this case, the confidence intervals have exactly the
desired long-run coverage probability, and posterior
credible intervals based on the noninformative prior are
numerically equal to the confidence intervals.
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Nonconjugate priors can also be used, of course.  The
procedure is very similar to that in Section 6.2.2.6, but
now using the exponential likelihood given above.
Therefore it is not discussed here.

Model Validation.  Model validation is discussed in
general in Section 6.7.2.  Many of the methods given
there are applicable to any assumed distribution.  A few
methods, however, have been developed just for the
exponential distribution.  They are mentioned in
Sections 6.7.2.3.1 and 6.7.2.4.2.

6.7.1.2.3    Gamma Distribution

The distribution of T is gamma(�, �) if the density is

 .f t t e t( )
( )

/= − −1 1

τ αα
α τ

Γ

Note, this is a different parameterization from the
previous section and from Equation 6.3.  This parame-
terization is related to the earlier parameterization by
the relation � = 1/�.  In the present context, t and � both
have units of time.

The MLEs of the parameters are given by Bain and
Engelhardt (1991, p. 298) or by Johnson et al. (1994,
Sec. 17.7).  They are the solutions of the equations

τ α= t /

,ln( ) ( ) ln( / ~)α ψ α− = t t

where �(u) = ��(u)/�(u) is the digamma function,
calculated by some software packages, and

,[ ]~ exp ( / ) lnt n ti= 1 Σ

the geometric mean of the observed times.  The second
equation must be solved by numerical iteration.  Bain
and Engelhardt (1991, p. 298) give a table of approxi-
mate solutions, which may be interpolated.

The MLEs of the two parameters determine the esti-
mated gamma distribution.

Bayes estimation is more complicated than elsewhere
in Chapter 6 because the gamma distribution has two
parameters, and these two parameters must have a joint

distribution.  Martz and Waller (1991, Sec. 9.5.2) cite
Lwin and Singh (1974) for an analysis that was feasible
in the 1970s.  A simpler approach today would use the
freely available package BUGS (1995), described in
Section 8.2.3.3.3.  BUGS is designed for models with
many unknown parameters, and should make short
work of a model with only two.  The joint prior distri-
bution would not need to be conjugate.

6.7.1.2.4    Weibull Distribution

A three-parameter Weibull distribution is given in
Appendix A.7.5.  A two-parameter form of the Weibull
distribution is given here, by setting the location
parameter � to zero.  The density is

 .[ ]f t t t( ) ( / )( / ) exp ( / )= −−β α α αβ β1

As with the gamma distribution, the maximum likeli-
hood equations do not have closed-form solutions.  The
estimates must be found by iteratively solving

Σ
Σ

Σ
t t

t n
ti i

i
i

β

β β
ln( )

ln− −
1 1

and

 .α β
β
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tiΣ

/

Zacks (1992, Section 7.5) gives the following simple
method for solving the first equation.  Begin with

.  Then repeatedly solve the equation�β0 1=

� ln( )
ln

$

$

β
β

βn
i i

i

i

t t

t n
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n
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with n = 0, 1, 2, ...  The value of  converges quickly�βn

to the MLE .  Then set�β

 .�
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For more information, see Zacks (1992) or Bain and
Engelhardt (1991).

Alternatively, a simple approximate graphical estimate
is based on the hazard function.  Plots of the cumula-
tive hazard were discussed in Sec. 6.5.2.  It can be
shown that the cumulative hazard function of the
Weibull distribution is

H(t) = (t/�)$ .

Therefore, estimate the cumulative hazard function as
explained in Section 6.5.2, by jumping at each ob-
served time, with the size of the jump equal to 1
divided by the number of times that have not yet been
equalled or exceeded.  The jump at t(1) is 1/n, the jump
at t(2) is 1/(n � 1), and so forth until the final jump at t(n)

is 1.  Call this estimate .  The equation for the� ( )H t

Weibull cumulative hazard function can be rewritten as

log H(t) = �logt ��log� , (6.20)

which is linear in logt.  Therefore, plot log[ � ( )]H t

against logt, that is, plot  against t on log-log� ( )H t
paper, and fit a straight line to the plot by eye.  Pick a
point on the line and substitute those values of t and

 into Equation 6.20.  This is one equation that �� ( )H t

and log� must satisfy.  Pick a second point on the line
and obtain a second equation in the same way.  Solve
those two equations for � and log�, thus obtaining
estimates of � and �.  In the calculations, it does not
matter whether natural logarithms or logarithms to base
10 are used, as long as the same type is used every-
where.

This plot also gives a diagnostic test of whether the
Weibull distribution is appropriate.  The degree to
which the plotted data follow a straight line indicates
the degree to which the data follow a Weibull distribu-
tion.

Just as in Sec. 6.7.1.2.3, where T has a two-parameter
gamma distribution, Bayes estimation is complicated
here by the multiple parameters.  Martz and Waller
(1991, Sec. 9.1) cite a number of early papers using
various prior distributions.  However the easiest
Bayesian approach nowadays would be to assign

convenient diffuse priors to the parameters and use
BUGS (1995), described in Sec. 8.2.3.3.3.

6.7.2 Model Validation

This section considers several topics.  First, the usual
investigations of the model assumptions are consid-
ered: whether subsets of the data all correspond to the
same distribution, whether the distribution changes
with time, and whether the times are serially correlated
instead of statistically independent.  In addition, the
distribution may have been modeled by some paramet-
ric form, so the goodness of fit is investigated.  Finally,
if parameters have been estimated in a Bayesian way,
the consistency of the data with the prior must be
investigated.

The order described above follows the actual order of
analysis.  First the analyst would check to see what
data subsets can be pooled and whether the usual
assumptions seem to be satisfied.  Only then would it
be appropriate to try to fit some standard distribution to
the data.

6.7.2.1 Poolability of Data Sources

To illustrate the methods here, this subsection will
consider the three groups of data in Example 6.13,
corresponding to three conditions of the plant during
the LOSP event.  As elsewhere in this chapter, graphi-
cal methods are considered first, and statistical tests
second.

6.7.2.1.1   Graphical Methods

A simple graphical method of comparison is to overlay
the EDFs for the different data subsets on a single
graph.  Then look to see if the EDF are intertwined,
indicating that the subsets may be pooled, or if they are
separated, shifted sideways from each other, indicating
that the data subsets may not be pooled.  This method
is simple, but the graph can become very cluttered,
especially if a moderate or large number of subsets
must be compared.  The same comment can be made
for comparing separate histograms of the data subsets.

A graph that has come into fashion is the box-and-
whisker plot, often simply called a box plot.  The
lower and upper edges of the box are the lower and
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upper quartiles of the data.  Thus, the box can be
thought of as containing half the data, with 1/4 of the
remaining data on each side.  The median is marked
somehow.  The "whiskers" are two lines coming out of
the box and going out to cover the range of most of the
data.  A few outlying points are plotted individually.

Figure 6.40 shows a box plot of the group T data
from Example 6.14 generated using the STATISTICA
(1995) software.  The median is marked by a small
square in the box.  The software documentation does
not seem to give precise definitions of “most of the
data,” or of the difference between an outlier and an
extreme point.  Also, this release of the software
seems to have a small bug, in that the maximum
(excluding outliers) is labeled as 11, when it should
be 118.

Non-Outlier Max = 11
Non-Outlier Min = 4

75% = 95
25% = 17
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Figure 6.40  One form of a box plot.  The box shows
the lower and upper quartiles, with the median
marked.  The whiskers show most of the range, from
4 to 118, and individual outlying points are plotted.

Figure 6.41 shows the same box plot as drawn by a
different software package, SAS/INSIGHT (1995).
As before, the box shows the lower and upper quar-
tiles, and the median is marked, this time with a
stripe.  The whiskers are restricted in length, going
out to the extreme value if possible, but never more
than 1.5 times the interquartile range.  Any points
beyond that distance are shown as individual dots.
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         T

Figure 6.41  A different style box plot of the same
data.  The box shows the upper and lower quartiles,
with the median indicated by a stripe.  The whiskers
show much of the range, with dots marking outliers.

Box plots were invented by Tukey (1977), and are still
being modified according to individual taste.  Any
form of the plot that is produced by a convenient
software package is probably adequate.

The example here is typical, in that the data are
skewed, and the most obvious feature of the box plots
given here is the long distance from the box to the
largest value.  Box plots are supposed to focus on the
bulk of the data, with only moderate attention given to
the extremes.  Therefore, there are visual advantages to
transforming skewed data by taking logarithms.
Therefore, all the remaining box plots shown in this
section will use log10(recovery time) instead of the raw
times. 

Figure 6.42 shows side-by-side box plots of the three
data subsets in Example 6.13.  Incidentally, the box
plot of log(time) is different from the box plot of time
plotted on a logarithmic axis — the logarithms of
large times tend not to be considered as outliers.
This can be seen by comparing Figure 6.40 with the
group-T portion of Figure 6.42.
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Figure 6.42  Side-by-side box plots of the three
groups of data from Table 6.16, based on
log10(recovery time).

Figure 6.42 shows that group P seems to have
somewhat longer recovery times than the other
groups.  There seems to be little difference between
groups S and T.  Tests will be given below to investi-
gate whether  this visual impression is correct.

6.7.2.1.2 Statistical Tests

Tests Based on Normality.  Warning: these tests are
only valid if normality or lognormality can be assumed.
If each data subset corresponds to a lognormal distribu-
tion, work with Y = log(T).  Either natural logs or base-
10 logs can be used, because log10(T) = ln(T)/ln(10), so
both are normally distributed if either is. 

When Y has a normal distribution, standard tests based
on normal theory can be used, as given in many statis-
tic books.  These tests investigate whether µ, the mean
of Y, is the same in each data subset, under the assump-
tion that the variances are the same.  For added sophis-
tication, tests of equality of the variances can also be
performed.

� To compare the means of two data subsets,
perform a Student’s t test.

� To simultaneously compare the means of
two or more data subsets, perform a one-
way analysis of variance test.

� To compare the variances of two data sub-
sets, perform an F test.

� To compare variances of two or more data
subsets, use some version of a likelihood
ratio test, such as Bartlett’s test or a
Pearson-Hartley test, as discussed by Bain
and Engelhardt (1992, p. 426).

These tests are not considered further here, because
they rely heavily on the assumption of normality.  This
is especially true of the tests later in the list.  Most
statistical software packages will happily perform these
tests, no questions asked.  The analyst must ask wheth-
er the assumption of normality is well enough estab-
lished to justify the use of the tests.

Nonparametric Tests Based on Ranks.  For general
use when normality or lognormality is not well estab-
lished, nonparametric tests are preferable.  The books
by Conover (1999) and Hollander and Wolfe (1999)
are excellent summaries of standard tests.  As before,
let Y = log(T), but do not assume that Y has a normal
distribution or any other particular distribution.  Tests
for location assume that various data subsets have
distributions that are shifted sideways from each other.
The shapes are the same, but the medians may be
different.  This is the nonparametric analogue of
assuming that the distributions are normal with a
common variance but possibly different means.  Tests
for dispersion assume that the shapes are the same, but
possibly with different location and scale parameters.
This is the nonparametric analogue of assuming normal
distributions with possibly different means and vari-
ances.

To test equality of two medians against a shift alterna-
tive, use the Wilcoxon-Mann-Whitney test.  This test
was introduced in Sec. 6.3.3.2.2.  In the present con-
text, let W denote the sum of the ranks of times for the
first data subset, when all the times are considered
together.  The ranks are the same whether or not the
logarithmic transformation is performed.

For example, to compare group P to group S in
Example 6.13, arrange all 70 times from the two
groups in ascending order, and mark the times
corresponding to group P.  The smallest time from
group P is 6 minutes.  This has rank 12, because it
is preceded by 11 values in group S from 2 to 5
minutes.  The other ranks are found similarly.  Ties
are handled by assigning the average rank to all tied
values.  The rest of the test was explained in Section
6.3.3.2.  It is not detailed here, because the test is
normally performed by a computer.

To test whether two or more data subsets can be
pooled, the test of choice is the Kruskal-Wallis test.  It
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tests whether the distribution of T is the same in all the
data subsets, against the alternative that the distribu-
tions have the same shape but different medians.  The
test is based on a sum of ranks for each data subset.
Those who want details can look in Conover (1999) or
Hollander and Wolfe (1999); everyone else can just let
the computer do the test.

When the Kruskal-Wallis test is applied to the data of
Example 6.13, it rejects equality of the distributions
with p-value 0.026.  This is consistent with the
graphical comparison in Figure 6.42 — clear evi-
dence of a difference, though not extreme over-
whelming evidence.  Based on these analysis,
Atwood et al. (1998) dropped group P from the
analysis of durations, and combined groups S and T.
Group P consists of LOSP durations when the plant
remained at power throughout the event.  The
authors comment on reasons why plant personnel
might be very deliberate in restoring offsite power
while the plant is still up and running.

To test for equality of dispersion of two data subsets,
the rank-like test of Moses is recommended.  This
requires splitting each data subset into two or more
parts, and so is not suitable for very small data sets.
See Hollander and Wolfe or documentation of a
statistical software package for details of applying this
test.

A well-known nonparametric test has not been devel-
oped for testing equality of dispersion of more than two
data subsets.  Therefore, graphical comparisons, such
as side-by-side box plots, should be an important part
of the analysis.

Nonparametric Test Based on EDFs.  A well-known
test for comparing two data subsets is the two-sample
Kolmogorov-Smirnov test.  It is based on comparing
the empirical distribution functions for the two data
sets.  The test statistic is 

D F t G tt= −max [| � ( ) � ( )|]

where  and  are the empirical distribution� ( )F t � ( )G t

functions from the two data sets.  Many software
packages can perform this test.

6.7.2.2 No Time Trend

This section will be illustrated by an extension of
Example 6.13, taken directly from Atwood et
al. (1998).

Based on the above type of analysis of Example
6.13, the LOSP study (Atwood et al. 1998) pooled
the data from groups S and T, but excluded group P.
That report also combined common-cause pairs of
events at multiple units into single site-events (one
pair of shutdown events, two pairs of trip events, and
two pairs that involved a shutdown reactor and a
reactor that tripped).  This gave a total of 102 site
events instead of the 107 in Example 6.13.  They are
sorted by event date and listed as Example 6.14.
Times are in minutes, and dates are MM/DD/YY.

6.7.2.2.1    Graphical Methods

One natural way to examine the data for a trend is
through a scatter plot of the observed values against
calendar time.  Often, as in Example 6.14, a few large
values are outliers.  They will determine the scale of
the vertical axis.  Compared to those large values most
of the other values are very small, hugging the hori-
zontal axis.  In such a case, the observed values should
be transformed, typically by taking logs.

Figure 6.43, from the LOSP study (Atwood et al.
1998), shows a plot of log10(recovery time), for the
data of Example 6.14.  Does this plot show a trend in
time?  Visually, any trend appears to be very slight.
The section below, which considers statistical tests,
will re-examine this example.
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Figure 6.44  Cumulative duration of LOSP events
versus cumulative number of events.

Example 6.14 LOSP recovery times and
event dates.

   4   04/22/80
 106   06/03/80
  62   07/15/80
 120   01/16/81
  14   02/01/81
  15   04/27/81
  10   12/23/81
  29   06/22/82
  17   04/26/83
  11   10/04/83
 163   10/08/83
 240   11/14/83
  97   01/08/84
  90   02/12/84
  15   02/16/84
   2   02/28/84
   5   05/03/84
   2   06/04/84
 120   06/05/84
  20   07/16/84
  11   07/26/84
  10   08/01/84
  20   08/21/84
  22   08/24/84
   3   10/22/84
  14   11/16/84
  15   12/19/84
 335   04/29/85
  43   05/07/85
   5   08/16/85
  73   08/28/85
  25   10/03/85
  13   10/07/85
  60   10/22/85

   3.5 11/21/85
   4   11/21/85
  20   12/12/85
  46   01/01/86
 100   01/28/86
  12   07/19/86
 155   03/05/87
  37   03/21/87
   4   04/04/87
 388   07/14/87
 118   07/23/87
   2   08/17/87
  53   09/11/87
  29   09/16/87
  17   10/14/87
  59   10/16/87
   4   11/17/87
   8   06/24/88
  38   07/17/88
  24   07/29/88
  14   08/13/88
  95   10/16/88
  19   10/25/88
   9   12/26/88
  45   03/25/89
  90   03/29/89
  29   05/14/89
  60   06/16/89
  90   06/17/89
   2   06/29/89
  45   01/16/90
  14   02/26/90
 140   03/20/90
  37   07/09/90

  40   02/11/91
 240   03/07/91
  67   03/13/91
  29   03/20/91
  60   03/21/91
 277   04/23/91
  24   06/15/91
  60   06/22/91
  20   06/27/91
  11   07/24/91
   4   10/20/91
  77   01/29/92
  20   03/23/92
  20   03/27/92
  35   04/02/92
  10   04/28/92
   6   05/03/92
 454   08/22/92
  57   10/19/92
  95   12/31/92
 136   04/08/93
  37   05/19/93
  12   06/22/93
   3   06/26/93
  10   09/10/93
  15   09/14/93
  12.5 10/12/93
  96   12/27/93
   2   05/21/94
1675   11/18/94
 132   02/27/95
 917   10/21/95
 127   01/20/96
 330   02/06/96

A possibly more helpful plot is a cumulative plot of
recovery time against chronological sequence.  The
vertical axis shows cumulative recovery time, that is,
cumulative duration of LOSP events.  No logarithmic
transformation is made, because a sum of durations is
easy to interpret, but a sum of log(duration) is harder to
interpret.  Also, logarithms can be negative, so a cumu-
lative plot of logarithms would not necessarily be
monotone.
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Figure 6.43  Log10(recovery time) plotted against
event date, for data from groups S and T in Example
6.14.

What should the horizontal axis show?  If it shows
event date, the slope of the curve represents average
LOSP duration per calendar time.  If, instead, the
horizontal axis shows event sequence number, that is,
the cumulative number of events, then the slope repre-
sents average LOSP duration per event.  The latter is
more meaningful in a study of durations.

Finally, a diagonal line, connecting the origin to the
final point, provides a reference guide, so that the eye
can better judge the straightness of the plot.

Figure 6.44 shows the cumulative duration plot for
the data of Example 6.14.

The cumulative plot clearly departs from the diagonal
straight line, because of two large duration times
near the right of the plot.  The LOSP report mentions
that one of those two times is conservatively large.
The LER narrative states that recovery could have
been performed earlier, but it does not give an
estimated possible recovery time.  The LOSP report
used times when recovery would have been possi-
ble, when such times were available, but for this
event the report was forced to use the actual recov-
ery time.

In Figure 6.44, a second dashed line connects the
origin (0, 0) to the 97th point, just before the first of
the two large jumps.  The cumulative plot stays close
to this line until the large recovery times occur.
Thus, any “trend” is the result, not of a gradual
increase in recovery time, but of a couple of outlying
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values, one of which is conservatively large.  Figures
6.43 and 6.44 both reveal the two large recovery
times.  In this example, however, the cumulative plot
seems more informative than the scatter plot, be-
cause the log-transformation in Figure 6.43 makes
the large times appear less dramatic.  

6.7.2.2.2    Statistical Tests

Test Based on Normality.  Data from a scatter plot
may be fitted with a straight line by least squares.
Most software packages then test of the hypothesis that
the slope is zero, assuming normally distributed scatter
around the line.

The cited LOSP report fitted a straight line to the
data in Figure 6.43 by least squares.  The trend was
reported as statistically significant at the 0.03 level.

This conclusion of a statistically significant trend
seems surprising, based on the minimal apparent
trend in the figure.  The report authors did not have
the insights given by the cumulative plot, but they
critiqued the calculation in several ways.

• The calculation assumes that log(T) is
normally distributed around the trend line.
The lognormal distribution (without model-
ing a trend) was found to fit the data well,
and the scatter plot appears consistent
with normality.  Therefore, the calculated
p-value of 0.03 is apparently close to
correct.

• The evidence for trend was very sensitive
to  the two values in the upper right of the
figure.  Dropping either value raised the p-
value to 0.08.  Further, one of those val-
ues was known to be conservatively high,
as discussed above.  This means that the
trend may in part be an artifact of the data
coding.

• The magnitude of the trend is small.  A
linear trend in the mean of log(T) corre-
sponds to an exponential trend in the
median of T.  The magnitude of this trend
is a factor of 3.6 over the 17 years of the
study.  This is fairly small from an engi-
neering viewpoint.

• No solid engineering reasons were found
to explain the trend.

Section 6.2.3.1.2 of this handbook discusses how test
results should be interpreted.  It states that calculation
of a p-value is only part of the analysis, which should

be followed by some critical thinking.  The above
bulleted list of considerations illustrates that kind of
thinking.  Use of a cumulative plot would have helped
the report authors even more, revealing that a smooth
trend of any kind is inappropriate.  The authors of the
LOSP study chose not to model a trend, but recognized
that additional data might change this decision.

Nonparametric Test.  A test for trend that does not
assume normality is easy to construct.  Such a test is
necessary if normality cannot be assumed.  If normality
can be assumed, the nonparametric test is less powerful
for detecting a trend, because it ignores available infor-
mation, that the data are normally distributed.

The test is the Wilcoxon-Mann-Whitney test, first
introduced in Section 6.3.3.2.2.  To apply it here,
arrange the times sequentially, in order of their event
dates.  Count an event as A if it is above the median
and as B if it is below the median.  Discard any values
that equal the median.  Now carry out the Wilcoxon-
Mann-Whitney test based on the ranks of the As in the
sequence of all the events.  Because this test is based
only on comparisons to the median, it is the same
whether or not logarithmic transformations are used.

When this was done with the data from Example 6.14,
the median duration was 29.  The first duration in
Example 6.14 was a B, the next three were A, and so
forth.  In all, there were 48 As and 50 Bs.  The As had
higher average rank than the Bs, suggesting an upward
trend, but the p-value was 0.09, not quite statistically
significant.  The nonparametric test is not as sensitive
as the parametric test for detecting the small trend, in
part because it does not make as much use of the two
extreme values seen in Figure 6.44.  If the normality
assumption were not satisfied, only the nonparametric
test would be valid.

6.7.2.3 Goodness of Fit to Parametric Models

One way to model recovery times and other durations
is to model the distribution of the durations by some
parametric distribution, such as lognormal, Weibull,
etc.  One must then check to see if the data fit this
proposed model well.  This section gives graphical
methods and statistical tests for such investigations.
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Figure 6.45  Histogram of data from Table 6.19, with
multiple of lognormal density overlaid.  The skewness
makes goodness of fit difficult to assess.
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Figure 6.46  Histogram of ln(time), with a multiple of
a normal density overlaid.  Fit appears as good as
achievable without using a bimodal distribution.

6.7.2.3.1    Graphical Methods

The basic idea is to compare nonparametric estimates,
which come directly from the data, with estimates
based on the fitted model under consideration.  For
example:

� Compare the histogram to the density from the
fitted model.

� Compare the EDF to the c.d.f. of the fitted para-
metric model.  Equivalently, compare the empiri-
cal reliability function (1 minus the EDF) to the
fitted reliability function.

� Compare the quantiles of the data to the quantiles
of the fitted distribution.  This plot is called a
quantile-quantile plot, or a Q-Q plot.  Q-Q plots
have become very popular for assessing goodness
of fit, although they take getting used to.

These three comparisons are illustrated below, using
the data of Example 6.14, and an assumed lognor-
mal distribution.  First, the fitted distribution is found
by taking natural logarithms of the recovery times,
and estimating the mean and variance of their
distribution.  The estimated mean is 3.389 and the
estimated standard deviation is 1.434.  The ln(time)
values are modeled as normally distributed with this
mean and variance.  The raw times have the corre-
sponding lognormal distribution.

Figure 6.45 shows the histogram density  with a fitted
lognormal density overlaid.  Because this distribution
is concentrated at small values, the goodness of fit is
difficult to judge.  Therefore the histogram of the
ln(time) values are also plotted, with a normal density
overlaid, in Figure 6.46.  Actually, the area under the
histogram equals the number of observations, and
the density has been rescaled to have the same
area.

Figure 6.47, from the LOSP report, shows a plot of
the reliability function, 1 minus the EDF, with the
corresponding fitted function, 1 minus the lognormal
c.d.f.  The plot in this form is useful for interpreting
the degree to which the fitted c.d.f. differs from the
empirical c.d.f., because the horizontal axis is in
units of time.  A plot in terms of log(time) would not
hug the axes so closely.  Therefore, discrepancies
between the curves would be more visible, but their
magnitudes would be harder to interpret in real-world
terms.

Figure 6.47  Empirical and theoretical reliability
functions, where the reliability function is defined as
1 minus the c.d.f.

Finally, Figure 6.48 gives a Q-Q plot.  If only one plot
could be used, a Q-Q plot would be a strong con-
tender for that one.  Users of probability paper will
recognize that a plot on probability paper is a form of
a Q-Q plot.  In Figure 6.48, the software package
implemented the Q-Q plot by plotting the ordered
values of ln(time) against the theoretical expected
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Figure 6.49  Quantile-quantile plot of raw recovery
times against fitted normal distribution.  The strong
curvature indicates bad fit.

values of the corresponding order statistics.  For
example, denote ln(t) by y.  In the implementation of
this particular software package, the ith ordered
value, y(i), is plotted against the expected value of Z(i),
assuming that 102 values of Z are randomly sampled
from a standard normal distribution.
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Figure 6.48  Quantile-quantile plot of ln(recovery
time) and fitted normal distribution.  The points fall
nearly on a straight line, indicating good fit.

The parameters, µ and �, can be ignored in a Q-Q plot
based on the normal distribution, because a normal
random variable Y with mean µ and standard deviation
� is related to Z by Y = µ + �Z.  This is a linear trans-
formation, and so does not change the linearity or
nonlinearity of the plot.  In fact, it is not even necessary
to obtain estimates of µ and �.  For other distributions,
the parameters may need to be estimated before the Q-
Q plot can be constructed.

The expected values of the order statistics cannot be
constructed without tables or a computer program.
Users of probability paper may construct a simpler
version, plotting y(i) against the i/(n+1) quantile of a
standard normal distribution.  Here n is the total
number of observations, 102 in the present example.
This simpler version gave its name to the plot, a
quantile-quantile plot.

For the purpose of illustration, Figure 6.49 gives a Q-
Q plot of the same example data, assuming that the
raw recovery times have a normal distribution.  Of
course the fit is horrible — no one expects the raw
times to have a normal distribution.  This lack of fit is
shown by strong curvature in the plot.  The two
largest times show the lack of fit most emphatically,
but even without them the plot appears to show a
curvature that indicates non-normality.

The particular form of the distribution can sometimes
allow special tricks.  Let us leave the present example,
and consider investigating whether data t1, ..., tn come
from an exponential distribution.  Example 6.6, which
was deferred from Section 6.2.3.4, will be used to
illustrate the method.

The idea of the Q-Q plot is that, when the data come
from the assumed distribution, then 

t(i) 
 F!1[i/(n+1)],

where F!1 is the inverse of the assumed c.d.f.  It fol-
lows that

F(t(i)) 
 i/(n+1).

A plot of these terms is called a probability-probabil-
ity plot or P-P plot.  We are considering the exponen-
tial distribution, so F(t) = 1 � e!8t, for some unknown
�.  Therefore, when the data come from an exponential
distribution, the above approximate equality becomes

1 � exp(��t(i)) 
 i/(n+1),

and therefore

��t(i) 
 ln[1 � i/(n+1)], or

t(i) 
 �ln[1 � i/(n+1)]/� .
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Figure 6.50  Plot for checking exponential
distribution in Example 6.6.

Thus, a plot of the ordered times against �ln[1 �
i/(n+1)] should be approximately linear.  The reason
for the above mathematical gyrations is to obtain a plot
that is linear, regardless of the value of �.  The linearity
or nonlinearity of the plot does not depend on whether
� has been estimated well.  Nonlinearity is evidence
against the assumed exponential distribution. 
 
Example 6.6 contains times between LOSP events,
which should be exponentially distributed.  A plot of
the ordered times against �ln[1 � i/(n+1)] is shown in
Figure 6.50.  Because the plot does not show much

curvature, it indicates good fit to the exponential
distribution.

6.7.2.3.2    Statistical Tests

The tests in this section are called goodness-of-fit
tests, because they are intended to test whether the data
fit the assumed model well.  The null hypothesis is that
the data come from a distribution of the assumed form,
for example from a lognormal distribution.  The null
hypothesis does not specify the parameters.  Therefore,
the null hypothesis includes a family of distributions.
The alternative hypothesis is that the data come from
some other distribution.

As always, remember that "acceptance" of the null
hypothesis does not mean evidence that the null hy-
pothesis is true.  It merely means lack of evidence that
the null hypothesis is false.  For example, the data may
be consistent with a lognormal distribution, and also

consistent with a gamma distribution and a Weibull
distribution.  In such a case, the analyst should not
make assertions that are highly dependent on the form
of the distribution.  For example, a sample of 10
observations may be consistent with many possible
distributions.  An estimate of the 99.9th percentile of
the distribution would be a large extrapolation from the
actual data, highly dependent on the assumed form of
the distribution.  A confidence interval on this percen-
tile would be even worse, because it would give an
appearance of quantified precision, when in reality the
distribution could have practically any form out in the
tail.

Chi-Squared Test.  The chi-squared test, seen in
Sections 6.2 and 6.3, is also an all-purpose goodness-
of-fit test.  To apply it in the present context,  estimate
any unknown parameters of the hypothesized distribu-
tion of T.  Based on these parameter estimates, divide
the time axis into c bins of equal probability.  The letter
c stands for cell, another term for a bin in this context.
Based on the recommendations of Moore (1986),
choose the number of bins so that  n/c is at least 1, and
preferably at least 2.  Let xi be the observed number of
values of T in the ith bin.  Because the bins have equal
probability, the expected number of values of T that
will fall in any bin is n/c, the number of observations
divided by the number of bins.  The Pearson chi-
squared statistic is 

X2 = �j(xj � ej)
2/ej   ,

where each ej equals n/c and each xj is an observed
count.

If the null hypothesis is true, the distribution of X2 is
approximately chi-squared.  The commonly quoted rule
is that the degrees of freedom is c � 1 � p, where p is
the number of estimated parameters.  For example,
suppose the null hypothesis is that the distribution of T
is lognormal, or equivalently, that ln(T) is normal.
Then two parameters must be estimated, µ and �.
Thus, the commonly quoted rule for the degrees of
freedom is c � 3.  In fact, researchers have found that
this is not quite correct, for subtle reasons described by
Moore (1986, Section 3.2.2.1).  The correct degrees of
freedom are somewhere between  c � 1 � p and  c � 1.
The exact value depends on the form of the distribution
in the null hypothesis.
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Let us apply this to the data from Example 6.14, and
use Y = ln(T) for convenience.  Let H0 be the hypoth-
esis that Y is normally distributed.  As mentioned
above, the estimates of  µ and  are 3.389 and
1.434.  With 102 observations, it is convenient to
take 50 bins, so that each expected count is 102/50
= 2.04.  The bin boundaries are the 0.02, 0.04, ...,
0.98 quantiles of the distribution.  These are esti-
mated as

yq = 3.389 + 1.434zq ,

where q is 0.02, 0.04, etc., and zq is a quantile
interpolated from a table of the standard normal
distribution.  For example, z0.02 = �2.054.

When this is carried out, using a computer to perform
the calculations, the value of X2 is 63.69.  The
distribution under H0 is chi-squared with degrees of
freedom between 47 and 49.  Therefore, the p-value
is between 0.053 and 0.077.  The test almost rejects
normality of ln(T) at the 0.05 level, in spite of the
graphical evidence to the contrary!

Upon examination, the test is seen to be too powerful
for its own good.  It notices that the values tend to
cluster, five occurrences of 2 minutes, six values of
20 minutes but no values of 21 minutes, etc.  With 50
cells, each observed time is commonly the sole
occupant of a cell.  The test notices that the numbers
have been rounded to convenient times, such as 20
minutes, and uses this as evidence against normal-
ity.  In fact, such clustering is a departure from
normality, and from any other continuous distribution.
But it is not the kind of departure that is of interest to
most analysts.

A coarser binning, into fewer cells, would not be
distracted by fine clustering, and would search for
more global departures from the null hypothesis.

We conclude this discussion of the chi-squared test by
considering the exponential example that was deferred
from Section 6.2.3.4.

Example 6.6 consists of 25 times.  The null hypothe-
sis is that the data come from an exponential distri-
bution.  The unknown  is estimated as the number
of events divided by the total observation period,
25/(2192 days) = 0.0114 events per day.  This MLE
is justified based on the Poisson count of events, as
in Section 6.2.1.1.  To obtain a moderate expected
count in each bin, let us use ten bins.  They have

equal estimated probabilities, 0.10 each, if they run
from

0 days to [�ln(0.9)]/0.0114 = 9.24 days
9.24 days to [�ln(0.8)]/0.0114 = 19.57 days
...
201.89 days to infinity.

These calculations are all based on the exponential
c.d.f., F(t) = 1 - exp(� t).  Setting F(t) to 0.1, 0.2, and
so forth gives the bin boundaries.

There are four observed times in the first bin, two in
the second, and so forth.  The expected count in
each bin is 25/10 = 2.5.  The calculated value of X 2

is 9.00.  This must be compared with the percentiles
of the chi-squared distribution.  There are c = 10
bins, and p = 1 estimated parameter.  Therefore, the
degrees of freedom are between 10 � 1 = 9 and 10
� 2 = 8.  The value 9.00 is in the middle of both of
these distributions, the 56th percentile of one and the
66th percentile of the other.  Therefore, the chi-
squared test finds no evidence against the exponen-
tial distribution.  This agrees with the earlier graphical
analysis.

Shapiro-Wilk Test for Normality.  Many software
packages offer the Shapiro-Wilk test for normality.  It
is based on seeing how closely the order statistics
follow theoretical normal values, as displayed for
example in Figure 6.48.  For testing the normal distri-
bution, the Shapiro-Wilk test is one of the most power-
ful tests against a wide variety of alternatives.  Details
are not given here, because all the calculations are
carried out by the computer.

With the logarithms of the data of Example 6.14, the
Shapiro-Wilk test does not reject normality of ln(T),
giving a p-value of 0.34.  This agrees with the visual
evidence of Figure 6.45.

Tests Based on the EDF.  Several families of tests
have been proposed based on the empirical distribution
function.  The idea is to reject the null hypothesis if the
EDF is not "close to" the theoretical c.d.f.  Closeness
can be measured in various ways, giving rise to a
variety of tests.  EDF-based tests are appealing because
they do not require a choice of bins, but simply use the
data as they come.
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The most famous such test is the Kolmogorov test, also
known as the Kolmogorov-Smirnov test.  It is de-
scribed in Appendix B.3.4.  It rejects H0 if

max | � ( ) ( )|F t F t−

is large, where the maximum is over all values of t.
Here, any unknown parameters in F must be estimated;
the effect of this estimation is typically ignored.

When SAS (SAS Version 8, 2000) performs the
Kolmogorov test of lognormality on the times in
Example 6.14, it gives a p-value > 0.15.  That is, it
does not calculate the exact p-value, but it does
report that the departure from lognormality is not
statistically significant.

The Cramér-von Mises test and the Anderson-Darling
test are other EDF-based tests, designed to remedy
perceived weaknesses in the Kolmogorov test.  The
Cramér-von Mises test is based on

.[ � ( ) ( )] ( )F t F t f t dt−∫ 2

Here, F is the distribution that is assumed under the
null hypothesis, and f is the corresponding density.
Thus, the Kolmogorov test looks at the maximum

difference between and F, while the Cramér-von�F
Mises test looks at an average squared difference.  The
Anderson-Darling test is based on 

.{ }[ � ( ) ( )] / { ( )[ ( )]}F t F t F t F t dt− −∫ 2 1

This division by F(t)[1 � F(t)] gives greater weight to
the tails of the distribution, where departures from F
might most likely occur.  Thus, this test is intended to
be more powerful than the Cramér-von Mises test
against common alternative hypotheses.  Many  statisti-
cal packages perform one or more of these tests.

When testing lognormality of the data in Example
6.14, SAS reports a p-value of >0.25 for the Cramér-
von Mises test and also for the Anderson-Darling
test.  Just as for the Kolmogorov test, SAS does not
compute the exact p-value, but it reports that the
departure from lognormality is not statistically signifi-
cant.

6.7.2.4 Consistency of Data with Prior, in
Bayesian Parametric Estimation

The issue here is whether the data are consistent with
an assumed informative prior distribution for the
unknown parameters.  If a noninformative prior distri-
bution is used, then the question does not arise, because
the noninformative distribution is supposed to be
consistent with anything.

6.7.2.4.1    Exponential Durations

A quantitative approach is possible when T has an
exponential(�) distribution.  In this case all the infor-
mation of interest about � is contained in �ti, as shown
in Section 6.7.1.2.2.  Therefore, we can compare �ti to
what would be expected based on prior belief about �.

If �ti is surprisingly large or surprisingly small, that is,
if �ti is in either tail of the distribution of �Ti, then the
prior distribution is questionable.  The value �ti is in
the lower tail if Pr(�Ti < �ti) is a small probability, and
in the upper tail if  Pr(�Ti > �ti) is a small.  To be
specific, consider the lower tail.  The relevant probabil-
ity is 

Pr(�Ti < �ti) = �Pr(�Ti < �ti | �) fprior(�) d� . (6.21)

The inner conditional probability can be evaluated by
using the fact that the distribution of �Ti , given �, is
gamma(n, �). If the prior distribution of � is not
conjugate, the integral in Equation 6.21 must be
evaluated numerically, just as in Sections 6.2.3.5 and
6.3.3.4: either (a) compute the integral using numerical
integration, or (b) generate a random sample of �
values from the prior distribution, find Pr(�Ti < �ti | �)
for each such �, and find the average of these probabil-
ities as the overall probability. 

Treatment of the upper tail follows the same pattern.

If the distribution of � is conjugate, that is, gamma(�,
�), for some prior parameters � and �, then Equation
6.21 simplifies.  By working out the integrals it can be
shown that �Ti/(�Ti + �) has a beta(n, �) distribution.
Equivalently, �/(�Ti + �) has a beta(�, n) distribution.
These are marginal distributions corresponding to
Equation 6.21, from which � has been integrated out.
Therefore, if �ti /(�ti +�) is in either extreme tail of a
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beta(n, �) distribution, or equivalently, if � /(�ti +�) is
in either extreme tail of a beta(�, n) distribution, then
the gamma(�, �) prior distribution is questioned.

In Example 6.13, suppose that the group of S (shut-
down) events art the only ones of interest.  Suppose
also that the times are assumed to be exponential( )
– the realism of that assumption is not the subject of
the present investigation.  Finally, suppose that  is
assigned a gamma(2, 30) prior distribution, roughly
equivalent to two prior observed times with total
duration of 30 minutes.  The shape parameter of only
2 means that the prior is not very informative, so we
expect the data to be consistent with it, unless 30
minutes is very unrealistic.

From Table 6.15, we find n = 62 and the total of the
durations is 62×92.3 = 5722.6.  The beta tables in
Appendix C assume that the first beta parameter is
smaller than the second, so it is convenient to work
with the beta(2, 62) distribution rather than the
beta(62, 2) distribution.  Therefore, we ask if

30/(5722.6 + 30) = 5.2E�3 

is in either tail of a beta(2, 62) distribution.  Table C.5
shows that the 5th percentile of the beta(2, 62)
distribution is roughly 6E�3 (it is an interpolation of
7.01E�3 and 3.53E�3 in the table).  Table C.6 shows
that the 2.5th percentile is roughly 4E�3.  So the
observed value is somewhere between the 2.5th and
5th percentiles of the predictive distribution.  This
means that the prior may need rethinking.  It should
either be modified or it should be justified more
carefully.  (In the present example the prior came out
of thin air, but the real difficulty is that the durations
are not really exponential – the whole exercise is
only for illustration.)

6.7.2.4.2 Distributions Having Two or More 
Parameters

When this topic � comparing the data to the prior �
arose in connection with estimating � or p, there was a
single parameter of interest, and a single observed
random variable that contained all the information of
interest for that parameter.  This random variable was
the total count of initiating events, the count of failures
on demand, or in the previous section the total dura-
tion.

However, the present subsection considers a distribu-
tion with (at least) two parameters, such as µ and � or

� and �.  No single random variable contains all the
information of interest.  Therefore, in such cases it is
simplest to compare the data with the prior by con-
structing

1. a prior credible region for the two parameters, or
a pair of prior credible intervals, and

2. a posterior credible region based on noninforma-
tive priors, or alternatively a pair of confidence
intervals.

The first case shows what the prior distribution says,
and the second case shows what the data say.   Com-
pare the answers from 1 and 2 to see if the prior
distribution and the data seem consistent.

6.7.3 Nonparametric Density Estimation

The most prevalent methods of estimating a density
function are parametric methods.  As described in
Section 6.7.1.2, the density is specified in terms of a
functional form, such as lognormal or Weibull, with
unknown parameters.  The parameters are then esti-
mated  from the data.  However, there also exist
nonparametric methods for estimation of a density
function, some of which are described here. 

The simplest and best known method of estimating a
density function is to construct a frequency table, and
then to plot the histogram.  This method was discussed
in Sec. 6.7.1.1.4.  Two illustrations are given there,
Figures 6.38 and 6.39.  Both use the 45 recovery times
from part T of Example 6.13.  The methods discussed
below are illustrated with the same set of 45 recovery
times.

6.7.3.1 Smoothing Techniques and Kernel 
Estimators

                    
Smoothing techniques can be motivated by recalling
that the density function, f(t), is the derivative of the
c.d.f., F(t).  The EDF, discussed in Section 6.7.1.1.3

and denoted by , is a natural estimator of F(t).� ( )F t

Thus, a natural estimator of the density is the differen-
tial quotient using the EDF in place of the c.d.f.,

(6.22)� ( )
� ( ) � ( )

f t
F t h F t h

h
n =

+ − −

2
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Figure 6.51  Density estimate of the data from group
T in Example 6.13, with rectangular kernel and
bandwidth 25.

where h is an increment of the variable t.  The main
problem in applying such an estimator is to choose h
small enough so that the differential quotient ade-
quately approximates the derivative, but large enough
so that the interval with limits t ± h contains a suffi-
cient amount of data.

Recall that  equals the number of observations� ( )F t

having a value less than or equal to t divided by the
total number of observations, n.  Therefore, Equa-
tion 6.22 can also be written as

(6.23)� ( )f t
nh

K
t t

hn
i

i

n
=

−
∑ 



=

1

1

where K is a function defined as K(u) = 1/2 if u is
between ± 1, and zero otherwise, and ti is the ith
observation.  Notice that an observation ti only enters
into this calculation if (ti � t)/h is between ± 1, or in
other words if ti is near t; specifically if ti is within h
units of t.  Thus, the estimate is based on averaging
values of 1/2 when observations are near t.  This is a
special case of a general type of estimator known as a
kernel density estimator.  The function K(u) is called
the kernel and the increment h is called the bandwidth.
The bandwidth defines a "window" centered at t and
having width 2h, which contains the data involved in
the estimate at the point t.

6.7.3.1.1   The Rectangular Kernel

When graphed, the kernel corresponding to Equa-
tion 6.23 is a rectangle of height 1/2 and width 2h.  The
resulting estimator is illustrated here with group T of
Example 6.13 and two bandwidths.

Figure 6.51 shows a graph of the estimate of the
density when the bandwidth is h = 25 minutes.

Notice that the estimated density is zero in the
interval roughly from150 to 250 minutes. This corre-
sponds to the fourth and fifth bins of the histogram of
Figure 6.38, both of which were empty.

It is also evident that the graph is somewhat jagged,
indicating that the bandwidth may be too small so
that not enough data are being captured in the
window.

The vertical dashed line marks the point t = 0, to be
discussed later.

Consider now a rectangular kernel estimate with the
same data but with a larger bandwidth, h = 50
minutes.  The results are shown in Figure 6.52.

There is still some jaggedness, but it is somewhat
less than in Figure 6.51.   There is still a noticeable
low point in the vicinity of 200 minutes, but it is
narrower than in Figure 6.51. 
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Figure 6.52  Density estimate of the data from
group T in Example 6.13 with rectangular kernel and
bandwidth 50.

It is clear that by smoothing over a very wide window
any features can be smoothed out.  For this reason, it is
desirable to give some thought to whether there is some
explanation of low density.  In other words, are these
real effects or are they just due to randomness?  If the
low estimates can be explained by something other
than random fluctuation, smoothing would tend to
cover it up, but if they are due to randomness, then
smoothing should be helpful.

This issue was also seen with histograms.  Choosing
too narrow bins for the size of the data set caused the
shape to be influenced too much by random variation.
Choosing too wide bins smoothed out nearly all the
variation.  The question of how much to smooth and
how much roughness to allow is inherent in all forms
of density estimation.

6.7.3.1.2   Boundary Problems

Notice that as the bandwidth is increased the interval
over which the estimated density is positive becomes
wider.  This is because the window is picking up more
data as it gets wider.  This causes the anomaly that the
estimated density is positive over negative values of the
t axis, even though t represents a positive variable,
namely recovery time.  The vertical dashed line marks
the point t = 0 in each figure, and the portion of the

density to the left of this line is substantial.  In addition,
although many values of ti are close to zero, the density
estimate decreases as t moves leftward to zero.  Vari-
ous methods have been suggested for correcting the
estimate at the boundary of the possible region.

Silverman (1986) gives a method that is very easy to
implement.  If the density is allowed to be positive only
for t � 0, augment the data by reflecting it around 0.
That is, create a new data set that consists of

{..., �t2, �t1, t1, t2, ... } .

Estimate the density based on this data set.  Call this

estimate .  The integral from �� to � of  is
~

( )f t
~

( )f t

1.0, because  is a density.  Also, if the kernel is a~
f

symmetrical function then is symmetrical around~
f
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Figure 6.54  Density estimate of the data from group
T in Example 6.13, with standard normal kernel and
bandwidth 25.

Figure 6.53  Density estimate from group T of
Example 6.13, with rectangular kernel and bandwidth
50, forced to be nonzero on positive axis only.

zero, that is, . Now define the real density
~

( )
~

( )f t f t− =
estimate by

for t < 0�( )f t = 0

for t � 0 .�( )
~

( )f t f t= 2

Then is a density that is zero for negative t and$f

nonnegative for positive t.  It estimates the unknown
true density.

Figure 6.53 shows the resulting estimate with the
data of this section, when the kernel is rectangular
and the bandwidth h = 50.  This estimate can be
compared with Figure 6.52.

For large t, this estimate is very similar to that of
Figure 6.52.  However, it is quite different for t near
zero.  The density is not plotted for t < 0, but it equals
zero there.

The simple method just given forces the density
estimate to have slope zero at the boundary.  Those
who want to allow a density estimate with nonzero
slope at the boundary can see Hart (1997, Sec. 2.5).
Technically, Hart’s book deals with smoothing a scatter
plot, but the method given there can be adapted as
follows to smoothing a density estimate: construct a
rough histogram density estimate, place a dot at the top

of each histogram bar (including the bars with height
zero!), and treat those dots as a scatter plot.

6.7.3.1.3 The Triangular Kernel

It may also be desirable in some cases to give less
weight to the data in the extremes of the window and to
produce a smoother graph.  This can be accomplished
by choosing a different function for the kernel.  A very
simple one which does this is the function K(u) = 1�|u|
if u is between ± 1, and zero otherwise.  The graph of
K(u) is an isosceles triangle with base two units in
width.  This kernel gives more weight to the data in the
middle of the window and less to data at the sides of
the window.  It is also possible, by choosing a kernel
function with a smoother graph, to produce a kernel
estimate which is also smoother.  The normal kernel,
given next, is such a smooth kernel.

6.7.3.1.4 The Standard Normal Kernel

A kernel function that is often used is the standard
normal kernel, equal to the standard normal p.d.f.,
which is given in Appendix A.7.2.  Figure 6.54 shows
the density estimate for the same recovery time data,
but using the standard normal kernel and bandwidth 25.
The density has been made positive on the positive
time axis only, by the technique of Section 6.7.3.1.2.
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Figure 6.55  Density estimate of the data from group
T in Example 6.13, with standard normal kernel and
bandwidth 50.

The resulting plot is clearly much smoother than the
ones obtained using the rectangular kernel.  The
increased smoothness is provided by the standard
normal kernel, which is differentiable everywhere.
The low estimate of density near 200 is still present,
but the low spot does not drop to zero as it did in
Figure 6.53.  This is because the standard normal
kernel is always positive valued.  Even though this
kernel gives less weight to data which are farther
from the center of the kernel, it makes use of every
observation in the data set.  Consequently, with the
standard normal kernel, all terms in the density
estimate of Equation 6.23 are positive, although the
extreme ones will tend to be relatively small.

For the sake of comparison, Figure 6.55 shows the
standard normal kernel estimates for bandwidth h =
50.

Although the graphs shown in Figures 6.54 and 6.55
retain some general features of the graphs in Figures
6.51 through 6.53, they are somewhat smoother.  As
mentioned in the case of the rectangular kernel in
Section 6.7.3.1.1, this type of smoothing is desirable if
the sparsity of data in these intervals is due to random-
ness, but possibly not if there is an explanation for the
sparseness.

6.7.3.2 Choosing the Bandwidth

General guidelines for choosing a kernel and band-
width are difficult to formulate.  The choice of a
bandwidth always involves a trade-off between bias
and variability.   An attempt to reduce bias generally
requires a small bandwidth, but this tends to result in a
large variance.  On the other hand, choosing a large
bandwidth will reduce the variance, but at the expense
of increasing the bias.  A criterion which accounts for
both the bias and variance is based on a quantity called
the mean squared error, MSE = mean squared
difference between the unknown parameter and its
estimator.  It is easy to show that 

MSE = (bias)2 + variance of estimator

so that as the MSE approaches zero, both the bias and
the variance of the estimator approach zero.

A reasonable choice of bandwidth should take into
account the amount of data, and so the solution must
depend on n.  Thus, we consider a sequence, h = h(n).
The sequence should converge to zero, but not too fast
or too slowly.  It is known, for example, that under
certain fairly modest assumptions, a desirable form for
the bandwidth is

h(n) = cn!1 / 5 .

The main problem is that calculation of the constant c
requires more than is typically known about the p.d.f.
to be estimated, and it also depends on the choice of a
kernel.  For example, according to p. 45 of Silverman
(1986), for the standard normal kernel and assuming
the distribution of the data to be normal with standard
deviation �, the bandwidth which minimizes the
integrated MSE asymptotically is 

h(n) = 1.06�n!1 / 5 .

Notice that the constant c in this case requires that the
standard deviation be known or at least estimated.

For example, with the recovery time data the sample
standard deviation, which is given in Table 6.17, is
99.9 minutes.  If this is used to estimate , then the
optimal bandwidth is h(n) = 105.9n!1/5.  Using the
sample size n = 45 yields  h = 49.5.  This choice is
very nearly the bandwidth of 50 minutes that was
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used in Figure 6.55.

Keep in mind that this choice of bandwidth was de-
rived for the case where both the distribution being
estimated and the kernel are normal, so the result
would be good with these assumptions.  However, this
might be a good place to start if trial and error is used
to determine what bandwidth to use.  In other words, if
it is not clear what to assume, then it would be best to
try a few different bandwidths and choose one which
provides some smoothing, but does not obscure basic
features.  As Silverman says, "There is a case for
undersmoothing somewhat; the reader can do further
smoothing ‘by eye’ but cannot easily unsmooth."

Another problem that often occurs in practice is that
the data will be plentiful in some parts of the range, but

sparse in others.   This is typical with data from highly
skewed distributions.  For example, with a positively
skewed distribution, such as any of the distributions in
Sec. 6.7.1.2, there will tend to be more data in the
lower end than in the upper tail.  This would suggest
the desirability of having a bandwidth that varies with
t, so that a shorter increment can be used in the lower
end where the data points are more abundant, and a
larger increment used in the upper tail where there are
not as many points.  This idea is not developed here,
but such methods exist.  For additional reading on this
topic see the discussions of the nearest neighbor
method and the variable kernel method in  Silverman
(1986). 


