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2.  BASIC EVENT PROBABILITY MODELS

2.1 Overview

This chapter introduces the models used for basic
events and for initiating events.  This first section is an
overview, and the remaining sections of the chapter
give more details.

Probabilistic risk assessment (PRA) considers various
possible accident sequences.  An accident sequence
begins with some initiating event, which challenges
the safety of the plant.  Typically one or more standby
safety systems are then demanded, and other, normally
operating systems must continue operating to ensure
that no serious undesirable consequences occur.  For
the systems to fail to bring the situation under control,
several components must either fail or be unavailable.
The logic events in the PRA model that represent these
failures or modes of unavailability are called basic
events.

It is not possible to predict precisely when an initiating
event or a component failure will occur, because the
processes that lead to their occurrences are complex.
Therefore, the initiating events and basic events are
modeled as resulting from random processes.

The first step in the data analysis task is, therefore, to
determine the appropriate probability model to repre-
sent the initiating event or basic event.  These proba-
bility models typically have one or more parameters.
Thus, the next major step is to estimate the values of
these parameters.  This estimation is based on the most
applicable and available data.  This process of choosing
data sources, extracting the data in an appropriate form,
and using it to estimate the parameters is the main
subject of this handbook.

Basic events are customarily divided into unavailability
(because the equipment is undergoing testing or
maintenance), failure to start or change state, and
failure to run  (after successfully starting) or maintain
state to the end of the required mission time.
Unavailability and failure to run are each modeled in a
single way.  On the other hand, two different proba-
bility models have been used to represent a failure to

start or to change state.  The first, and more commonly
used, method is to model the failures as having a
constant probability of failure on a demand.  The
second method is to model the failures as occurring, in
an unrevealed way, randomly in time.  The failed
condition is then discovered at the time of the demand.
This is usually called the standby failure-rate model.
Both models will be discussed.

The above events are the typical ones considered in a
PRA.  In addition, however, one must occasionally
analyze durations, such as the time to restore offsite
power or time to recover a failed component.  Although
such an analysis is not needed for a typical accident
sequence, it is discussed in this handbook.

In summary, five topics are considered in the rest of
this chapter:

• initiating events
• failures to start or change state (modeled in

two possible ways)
• failures to run or maintain state
• unavailability from being out of service
• durations

These topics are the subjects of Sections 2.2 through
2.6.  Each section begins with examples of the data that
might be analyzed.  This is followed by a brief
subsection presenting the assumptions of the usual
model for the random process (the result of underlying
physical mechanisms) and a describing the kind of data
that can be observed.  The next subsection summarizes
the data required to estimate the model parameter(s).
The example data sets are then examined in the light of
the model assumptions.  These examinations illustrate
the kind of thinking necessary for the data analyst.
Finally, the section may conclude with a short
discussion of related issues.

As a preview, Table 2.1 indicates the models, the
parameters, and the data needed for each of the topics
in the above five bullets.  The top line of the table also
indicates which section of Chapter 2 treats the topic.  
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Table 2.1   Kinds of models considered.

2.2 Initiating
Events

2.3 Failures to Start or Change
State (2 models)

2.4 Failures to Run
or Maintain State

2.5 Unavailability 2.6 Durations

Typical Event

Event occurs
initiating
accident
sequence

Standby system fails on demand System in operation
fails to run, or
component changes
state during mission

System is
unavailable,
intentionally out of
service, when
demanded

A condition
persists for a
random time
period

Parameter(s) to Estimate

, event
frequency

For failure on
demand:
p, probability
of failure on
demand

For standby
failure:
, rate of

occurrence of
standby
failures

, rate of failure to
run

u, fraction of time
when component
will be out of
service

Parameters of
assumed
probability
distribution of
duration time

Data Required to Estimate Parametersa

Number of
events, x, in
total time, t

Number of
failures, x, in
total number
of demands, n

Number of
failures, x, in
total standby
time, t

Number of failures,
x, in total running
time, t

Observed fractions
of time when
component out of
service; OR
durations of
observed out-of-
service events

Depends on
model, but
typically the
lengths of the
observed
durations

a.  The data here are the minimal requirements to estimate the parameter.  More detailed data are needed to check the
model assumptions.

The term system is used in Table 2.1 and from here on
to denote the set of hardware for which data are
collected; it may be an entire nuclear power plant
(NPP), or a system in the traditional sense, such as the
auxiliary feedwater (AFW) system, or a train,
component, or even piece part.  This reduces the need
for phrases such as “system or component.”

The lengthiest part of each section below consists of

examination of examples to see whether the
assumptions of the probability model appear to be
satisfied.  Verifying model assumptions is an important
part of good data analysis.  Ways to investigate the
appropriateness of assumptions are considered in
Chapter 6, along with parameter estimation.  The
present chapter, however, only introduces the
assumptions and illustrates their meanings through
examples.  If the assumptions are clearly not satisfied,
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some mention is given of ways to generalize the model,
although such generalizations are not presented until
Chapters 7 and 8 in this handbook.

Also, examples and extended discussion of examples
are printed in Arial font, to distinguish them from the
more general material.

2.2 Initiating Events

2.2.1 Examples

In the context of a nuclear power plant PRA, an
initiating event is any event that perturbs the steady
state operation of the plant thereby initiating an
abnormal event such as a transient or loss-of-coolant
accident within a plant.  Initiating events begin
sequences of events that challenge plant control and
safety systems.  Failure of these systems can lead to
core damage and a release of radioactivity to the
environment.  However, the consideration of the
potential plant response to initiating events, is
irrelevant when estimating their frequencies.  

Here are several examples of data sets counting such
initiating events.

Example 2.1 Unplanned reactor trips

A U.S. commercial nuclear power plant had 34
unplanned reactor trips in 1987 through 1995.  It
had its initial criticality on Jan. 3, 1987, and
experienced a total of 64651 critical hours, or
7.38  critical years (Poloski et al. 1999a).

Example 2.2 Shutdown loss of offsite power

In U.S. commercial nuclear power plants in 1980-
1996, there were 80 plant-centered loss-of-offsite-
power (LOSP) events during shutdown.  In that
period, the plants experienced  455.5 reactor-
shutdown years (Atwood et al. 1998).

Example 2.3 Through-wall pipe leaks

In world-wide experience of western-style PWRs
(3362 calendar years of operation), a single
through-wall leak event has been reported in
large-diameter piping ( Poloski et al. 1999a,
Appendix J).

Example 2.4 Temperature sensor/ transmitters

Eide et al. (1999) report that temperature sensor/
transmitters in the reactor protection system
(RPS) of Westinghouse NPPs had 32 failures in
2264.1 component-years.  These sensor/transmit-
ters operate continuously, and when they fail they
are repaired or replaced in a relatively short time.
The number of failures is conservatively estimated
from sometimes incomplete NPRDS data, and the
number of component years is based on an
estimated number of components per loop.

These examples have several elements in common.
First, they involve a number of events that occurred,
and an exposure time, or time at risk, when the events
could have occurred.  The next subsection will give a
simple probability model for generating random events
in time.  In addition, in each of the above examples
corrective action is taken after any event, so that the
system then resumes operation (the system is
repairable.)  This means that the recorded operating
history consists of a sequence of random event
occurrences, which is summarized as a count of events
in some fixed time.  This type of data will direct us to
a particular type of analysis, presented in Chapter 6.

The events may be the initiating events of an ordinary
PRA (Example 2.1), initiating events of a shutdown
PRA (Example 2.2), failures in a passive system
(Example 2.3), which incidentally happen also to be
initiating events in a PRA, or failures of a continuously
running system (Example 2.4), which initiate quick
repair action.  A PRA analyst would distinguish among
the examples based on their safety consequences.  The
present discussion, however, adopts the viewpoint of
probability modeling, in which the important fact is not
the consequence of the events, but the way that they
occur randomly in time.  Reactor trip initiators are the
prototypical example of such events, but not the only
example.

The exposure time is the length of time during which
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the events could possibly occur.  In the Example 2.1,
the exposure time is reactor-critical-years, because a
reactor trip can only occur when the reactor is at power.
Because only one plant is considered, “critical years”
can be used as  shorthand for “reactor-critical-years.”
In Example 2.2, the event of interest is LOSP during
shutdown, so the exposure time must be the number of
reactor-shutdown-years in the study period.  In
Example 2.3, reactor-calendar-years are used, primarily
because more detailed worldwide data could not be
easily obtained.  The model therefore assumes that a
crack in large-diameter piping could occur with equal
probability during operation and during shutdown.  The
model also does not consider differences between
plants, such as differences in the total length of large-
diameter piping at a plant.  In Example 2.4 the
exposure time is the number of component-years,
because the components operate constantly.

The possible examples are endless.  The events could
be unplanned demands for a safety system, forced
outage events, or many other kinds of events that
resemble initiating events.

The data given in the above examples are expressed in
the crudest summary terms, a count of events in a total
exposure time.  This is sufficient for the simple model
of this section.  Section 2.6 will consider more sophist-
icated models using the exact event times.

The data could also be broken down into smaller
pieces.  For example, the initiating event data could be
summarized for each calendar year, with an event count
and an exposure time reported separately for each year
from 1987 through 1995.  This additional information
allows one to look for trends or other patterns, as
discussed in Chapter 7.

2.2.2 Probability Model

The assumptions concerning the physical process are
given here, and a description of the kind of data that
can be observed.

It is standard to assume that the event count has a
Poisson distribution.  As listed in Section A.6.2, the
usual assumptions (following Thompson 1981) for a
Poisson process are:

1. The probability that an event will occur in any

specified short exposure time period is
approximately proportional to the length of
the time period.  In other words, for an
interval with exposure time t the probability
of an occurrence in the interval is
approximately  × t for some  > 0.

2. Exactly simultaneous events do not occur.

3. Occurrences of events in disjoint exposure
time periods are statistically independent.

In addition, it is worthwhile to spell out the kind of data
that can be observed.

• A random number of events occur in some
prespecified, fixed time period.  As a
minimum, the total number of events and the
corresponding time period are observed.

Under the above assumptions, the number of
occurrences X in some fixed exposure time t is a
Poisson distributed random variable with mean µ = t,

  . (2.1)Pr( ) / !X x e xx= = − µ µ

The probability distribution function, or p.d.f., is
sometimes used to abbreviate this: f(x) = Pr(X = x).
(Throughout this handbook, upper case letters are used
for random variables and lower case letters are used for
particular numbers.)

The parameter  is a rate or frequency.  To make
things clearer, the kind of event is often stated, that is,
“initiating event rate” in Example 2.1, “through-wall-
crack occurrence frequency” in Example 2.3, and so
forth.  Because the count of events during a fixed
period is a unitless quantity, the mean number of
occurrences µ is also unitless.  However, the rate 
depends on the units for measuring time.  In other
words, the units of  are 1 per unit of time, such as
1/year or 1/reactor-critical-hour.

This model is called a Poisson process.  It is extremely
simple, because it is completely specified by the
exposure time, t, and the one unknown parameter, .
Assumption 1 implies that the rate  does not change
over time, neither with a monotonic trend, nor
cyclically, nor in any other way.  Assumption 2 says
that exactly simultaneous events do not occur.  The
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only way that they could occur (other than by
incredible coincidence) is if some synchronizing
mechanism exists, a common cause.  Therefore, the
operational interpretation of Assumption 2 is that
common-cause events do not occur.  Assumption 3 says
that the past history does not affect the present.  In
particular, occurrence of an event yesterday does not
make the probability of another event tomorrow either
more or less likely.  This says that the events do not
tend to occur too much in clusters, nor do they tend to
be systematically spaced and evenly separated.

2.2.3 Data Needed to Validate Model
and Estimate  

Suppose that the Poisson model holds.  Then any
reasonable estimator of  needs only two pieces of
information: the total exposure time, t, in the data
period, and the number of events, x, that occurred then.

However, more information is needed to investigate
whether the Poisson model is valid.  For example, the
data might cover a number of years or a number of
plants, and  might not be constant over time or the
same at all plants.  These possibilities are not allowed
by the listed model assumptions.  To study whether
they occur, the times and locations of the initiating
events should be recorded, or at  least the data should
be partitioned into subsets, for example corresponding
to plants or years.  Then the event count and exposure
time, xi and ti, should be given for each subset.

2.2.4 Case Studies: Validity of Model
Assumptions in Examples

Let us examine the reasonableness of the Poisson
model assumptions for Examples 2.1 through 2.4.
Chapter 6 will address this issue by performing data
analysis.  Here we will merely cite the results of
published studies and use critical thinking.

Example 2.1  Initiating Events

To make this example more precise, assume that
any time interval starts on some date at some time
and ends on some date at some time, and that the
length of the interval, t, is the number of critical
years contained between the start and stop of the
time interval.  For example, if the time period is two
24-hour days and the reactor was critical for half of

that time, then t = 1/365 critical years.  An initiating
event is an event with the reactor critical, causing an
unplanned reactor trip.

Assumption 1 is violated in two ways.  First, in the
industry as a whole, and presumably in individual
plants, the probability of an initiating event in an
interval of length t (such as one critical day) has not
been constant.  Instead, the probability dropped
substantially from 1987 to 1995.  Equivalently, the
event rate, , dropped from 1987 to 1995. This
violation can be eliminated by considering only a
short time period for the study, such as one calendar
year instead of nine years.  If, however, the whole
nine-year period is of interest, a more complicated
model must be used, such as one of the trend
models described in Chapter 7.

A second violation of Assumption 1 arises because
this particular plant was new at the start of the study
period, with initial criticality on January 3, 1987, and
commercial start on May 2, 1987.  Many new plants
seem to experience a learning period for initiating
events, and this plant had 15 of its 34 initiating
events during the first 6 months of 1987.  After that
initial period with a high event rate, the event rate
dropped sharply.  This violation of Assumption 1 can
be resolved by eliminating data before the plant
reached a certain age.  That is, do not count either
the operating time or the initiating events from the
plant until it has reached a certain age — exclude
that portion of the plant’s history from the universe
being studied.

Assumption 2 says that exactly simultaneous
initiating events do not occur.  This is quite
reasonable for events at a single plant.

Assumption 3 says that the probability of an initiating
event in one time period does not depend on the
presence or absence of an initiating event in any
earlier time period.  This assumption may be
challenged, if the plant personnel learn from the first
event, thus reducing the probability of a second
event.  This kind of dependence of one event on
another is not allowed by Assumption 3.  Suppose,
however, that the learning is modeled as a general
kind of learning, so that the event rate decreases
over time but not as a clear result of any particular
events.  This may justify using a Poisson model with
a trend in the event rate, as considered in detail in
Chapter 7.

One might worry about the finite length of time that a
reactor is down after a reactor trip.  During that time,
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no initiating events can occur, because the definition
of  initiating event requires that the reactor be at
power.  This is a false worry.  During the time when
the reactor is down, the plant has dropped out of the
study.  Its shutdown hours are not counted in the
exposure time.  Only when the reactor comes up
again does it begin contributing hours of exposure
time and possible initiating events.

Example 2.2  Shutdown LOSP

Just as with the previous example, consider the three
assumptions of the Poisson model.  In this case,
because data come from the entire industry,  is
interpreted as the average rate for the entire industry.

Consider first Assumption 1.  The report that studied
this data (Atwood et al. 1998) found no evidence of
a trend in the time period 1980 through 1996.  It did
find evidence of differences between plants,
however.  These differences can affect the industry
average, as plants enter the study when they start up
or leave the study when they are decommissioned.
When a plant with an especially high or low event
rate enters or leaves the study, this will affect the
industry average somewhat.  However, the event rate
at the worst plant differed from the industry average
by only a factor of about 3.4, and the best plant
differed from the average by less than that.  Many
plants, 116, were considered.  Therefore, the effect
of a single plant’s startup or decommissioning should
be small.  Therefore, it appears that the overall
industry event rate was approximately constant, as
required by Assumption 1.

Assumption 2 rules out exactly simultaneous events.
This is not quite true for events at sister units at a
single site, because a common cause can result in
simultaneous LOSP at both units. 

Of the 80 events in the data, two pairs of events
occurred together at sister units, each pair from a
common cause.  Thus, simultaneous events do
occur, but they are not frequent.  The departure from
Assumption 2 is probably not large enough to be
serious.  Chapter 6 will return to this issue, when it
considers goodness of fit to a model.

Assumption 3 requires statistical independence of
the number of events in disjoint time intervals.  As
with Example 2.1, there may be some learning,
although the lack of trend indicates that any learning
is minimal.

In summary, the assumptions for the Poisson model

seem to be approximately satisfied.

Example 2.3  Through-Wall Leaks

This differs from the other examples in that the
number of events is very small.  Any departures from
the Poisson assumptions cannot be seen in the data,
because so few events have occurred.  With no
theoretical reason to postulate a trend or other
nonconstancy, or a high rate of multiple events, or
dependence between events, we accept the Poisson
assumptions.  The assumptions may not be perfectly
true, and a different model may be more accurate,
but the Poisson model is simple, and good enough
for analyzing such a sparse data set.

Example 2.4  Temperature Sensor/Transmitters

The report (Eide et al. 1999) divides the total study
time into two halves, and finds a difference between
 in 1984-1989 and  in 1990-1995.  The example

here is for 1990-1995 only.  Within this time period
the report does not see strong evidence of a trend.
That is, a small trend may be present, but the time
period is too short, and the failures too few, for any
trend to be clear.  Further, because the components
are regularly maintained, it is reasonable to assume
that the failure rate, , is roughly constant, as
required by Assumption 1.  

Assumption 2 requires that common-cause failures
be negligible.  However, the report states that 14 of
the 32 component failures occurred during 4
common-cause events.  Thus, Assumption 2 is
seriously violated.

Finally, Assumption 3 requires independence of the
number of events in disjoint time intervals.  The
report does not address this issue, but independence
appears plausible.

In summary, the example violates Assumption 2, but
probably satisfies the other two assumptions.  One
way to deal with the violation of Assumption 2 would
be to model the independent failures and the
common-cause failures separately, although Eide et
al. do not do this.

2.2.5 Discussion

2.2.5.1 More General Models

The model considered here is a homogeneous Poisson
process (HPP), which has a constant event occurrence
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rate, .  The number of events in time t is a Poisson
random variable with parameter µ = t.  A
generalization is a  nonhomogeneous Poisson process
(NHPP), in which  is a function of t.  Such a model is
useful for analyzing trends.  Chapter 6 includes ways to
test the assumptions of a homogeneous Poisson
process, and Chapter 7 includes ways to analyze data
where a trend is present.

When data come from the industry, one may consider
the differences between plants.  Ways to model such
differences are discussed in Section 8.2 of this
handbook.  The present chapter’s interest is restricted
to  when no such variation is present.  Of course, if
the data come from only one plant,  refers to that plant
and the issue of differences typically does not arise.

Any mathematical model, such as the model for a
homogeneous Poisson process given here, is an
imperfect approximation of the true process that
generated the data.  When the data set is sparse (few
events in the above examples), (a) it is difficult or
impossible to see evidence of departures from the
model, and (b) the data set is too small to allow realistic
estimation of the parameters of a more complicated
model.  When the data set has many events, departures
from the model become visible, and typically a more
complicated model is appropriate.  These statements
have been illustrated by the small and large data sets
given as examples.

2.2.5.2 Constancy of t

In the model considered here, the exposure time is
treated as fixed, and the number of events is treated as
random.  This is the normal type of data found in PRA
work.  In reliability analysis, on the other hand,
equipment is sometimes tested until it fails.  That is, a
predetermined number of items are tested, say n items.
Each item is run until it fails, and the total running time
of the items is random.  This is an example of duration
data, discussed in Section 2.6.  The probability model
is the Poisson process presented above, but the data
collection, and resulting data analysis, are different.

2.3 Failure to Change State

2.3.1 Examples

Here are four examples of failure to change state, three
with failure to start and one with failure to close.

Example 2.5 HPCI failures to start

At 23 BWRs in the 1987-1993 time period, the high
pressure coolant injection (HPCI) system had 59
unplanned attempts to start. The system failed to
start on 5 of these demands (Grant et al. 1995).  The
failures were typically erratic starts, which the
operator stabilized manually.  These demands
occurred during 113.94 reactor-critical-years.

Example 2.6 EDG failures to start

Emergency diesel generators (EDGs) are
sometimes demanded because of unplanned loss of
power to a safety bus, and they are also tested
periodically, with one set of tests during each
operating cycle and another set of tests monthly.  In
addition, a return-to-service test is normally
performed after maintenance of an EDG.  At one
plant over an 18-month time period, the number of
such demands is counted, and the number of
failures to start is counted. 

Example 2.7 Steam binding in AFW

Between demands, steam binding can develop in
the AFW system, so that one or more pumps cannot
function when demanded.  This is mentioned by
Wheeler et al. (1989), and by Nickolaus et al.
(1992).

Example 2.8 Failures of isolation valves

Nickolaus et al. (1992) review the causes of about
45 failures of air-operated and motor-operated
isolation valves.  Some of the principal causes are
corrosion, instrument drift, and moisture in
instrument and control circuits.  Other causes
include contamination and corrosion products in the
instrument air system, and debris in the system.
These are all conditions that can develop while the
valves are not being used.

2.3.2 Failure on Demand

All these examples involve a number of demands and
a number of failures, where the terms “demand” and
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“failure” can be defined according to the purposes of
the study.  Non-PRA contexts provide many other
examples of failures on demand.  An early example in
elementary probability or statistics courses is tossing a
(possibly biased) coin n times, and counting the
number of heads.  Count either a head or a tail as a
“failure.”  Just as in the PRA examples, this example
has a number of demands, with a random number of the
demands resulting in failures.

2.3.2.1 Probability Model

The standard model for such data assumes that the
number of failures has a binomial distribution.  The
assumptions are listed in Appendix A.6.1.  The as-
sumptions about the physical process can be boiled
down to these two.

1. On each demand, the outcome is a failure with
some probability p, and a success with
probability 1 � p.

2. Occurrences of failures for different demands
are statistically independent; that is, the
probability of a failure on one demand is not
affected by what happens on other demands.

The following kind of data can be observed.

• A random number of failures occur in some
fixed, prespecified number of demands.  As a
minimum, the total number of failures and
number of demands are observed.

Under these assumptions, the random number of
failures, X, in some fixed number of demands, n, has a
binomial(n, p) distribution.
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This distribution has two parameters, n and p, of which
only the second is unknown.  (Although n may not
always be known exactly, it is treated as known in this
handbook.  Lack of perfect knowledge of n, and other
uncertainties in the data, are discussed briefly in
Section 6.1.2.)

2.3.2.2 Data Needed to Validate Model and
Estimate p

Suppose that the binomial model holds.  Then any
reasonable estimator of p needs only two pieces of
information: the number of demands, n, in the data
period, and the number of failures, x, that occurred
then.

However, more information is needed to investigate
whether the binomial model is valid.  For example,
Assumption 1 assumes that p is the same on all
demands.  If the data cover a number of years or a
number of plants, p might not be constant over time or
the same at all plants.  To study whether this is true, the
times and locations of the demands and failures should
be recorded, or at  least the data should be partitioned
into subsets, for example corresponding to plants or
years.  Then the failure and demand counts, xi and ni,
should be given for each subset.

2.3.2.3 Case Studies: Validity of Model
Assumptions in Selected Examples

Let us examine Examples 2.5 and 2.6 to see if the
assumptions appear to be true.

Example 2.5  HPCI Failures to Start

Assumption 1 says that the probability of failure on
demand is the same for every demand.  If data are
collected over a long time period, the assumption
requires that the failure probability does not change.
Likewise, if the data are collected from various
plants, the assumption is that p is the same at all
plants.

In the HPCI example, the five failures do not reveal
any clear trend in time.  However, one Licensee
Event Report (LER) mentions that a better-designed
switch had already been ordered before the HPCI
failure.  This gives some evidence of a gradual
improvement in the HPCI system, which might be
visible with more data.
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As for differences between plants, it happens that 3
of the 5 failures occurred at a single plant.
Therefore, it might be wise to analyze that one plant
(3 failures in 9 demands) separately from the rest of
the industry (2 failures in 50 demands).  In fact,
Grant et al. (1995) did not analyze the data that way,
because they considered two types of failure to start,
and they also considered additional data from full
system tests performed once per operating cycle.
However, the high failure probability for the one plant
was recognized in the published analysis.

Assumption 2 says that the outcome of one demand
does not influence the outcomes of later demands.
Presumably, events at one plant have little effect on
events at a different plant.  However,  the experience
of one failure might cause a change in procedures or
design that reduces the failure probability on later
demands at the same plant.  One of the five LERs
mentions a permanent corrective action as a result of
the HPCI failure, a change of piping to allow faster
throttling.  This shows some evidence of dependence
of later outcomes on an earlier outcome at that plant.

Example 2.6  EDG Failures to Start

Assumption 1 says that every demand has the same
probability, p, of failure.  This is certainly not true for
return-to-service tests, because such tests are
guaranteed to result in success.  If the EDG does not
start on the test, maintenance is resumed and the
test is regarded as a part of the maintenance, not as
a return-to-service test.  Therefore, any return-to-
service tests should not be used with the rest of the
data.

As for the other demands, one must  decide whether
the unplanned demands, operating cycle tests, and
monthly tests are similar enough to have the same
value of p.  Can plant personnel warm up or
otherwise prime the diesel before the test?  Can an
operator stop the test if the EDG is clearly having
trouble, and then not consider the event as a test?
If so, the different types of demands do not have the
same p, and they should not be analyzed as one
data set.  For PRA purposes, one is interested in the
failure probability on an actual unplanned demand.
To estimate this, one should use only data from
unplanned demands and from tests that closely
mimic unplanned demands.

If the EDGs in the data set differ in some way, such
as having different manufacturers, this may also lead
to different values of p on different demands.
Analyzing the data while ignoring differences

between the individual EDGs will allow us to estimate
the average p, corresponding to failure to start for a
random EDG.  However, this average p is not the
same as the p for a particular EDG.

Assumption 2 says that the outcome on one demand
does not affect the probability of failure on a different
demand.  When the plant is very new there may be
some learning from individual failures, but when the
plant is mature, failure or success on one demand
should not change the chances of failure or success
on later demands.  The only way for such
dependence to arise is if the first failure results from
a common cause.  If the plant is mature and
common-cause failures are rare, then Assumption 2
is approximately satisfied.

Example 2.7 Steam binding in AFW

This is clearly a case of a latent failed condition that
waits undetected until the demand.  Therefore, it is
better modeled as a standby failure, and is discussed
in a later section.

Example 2.8 Failures of isolation valves

Here the causes listed are degradations, so that the
probability of failure increases over time.  If failures
from such causes are rare, then the increase in
failure probability may not be a problem.  However,
in that case there seems to be little reason for
separating these failures from other failures of the
isolation valves.  This example is also discussed
further in the section on standby failures.

2.3.2.4 Discussion

2.3.2.4.1 More General Models

The model considered here has a constant failure
probability, p.  A generalization would let p be a
function of time.  Such a model is useful for analyzing
trends.  Chapter 6 includes ways to test the assumptions
of the model assumed here, and Chapter 7 includes
ways to analyze data where a trend is present.

When data come from the industry, one might consider
the differences between plants, just as for events in
time.  Ways to model such differences are discussed in
Chapter 8.  The present section’s interest is restricted to
p for the industry as a whole, the average of all the
plants.  Of course, if the data come from only one
plant, p refers to that plant and the issue of differences
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typically does not arise.

As in all the sections of this chapter, any mathematical
model is an imperfect approximation of the true process
that generated the data.  When the data set is sparse
(few demands, or few or no failures, or few or no
successes), (a) it is difficult or impossible to see
evidence of departures from the model, and (b) the data
set is too small to allow realistic estimation of the
parameters of a more complicated model.  When the
data set has many events, departures from the model
become visible, and a more complicated model may be
appropriate.

2.3.2.4.2 Constancy of n

In the model considered here, the number of demands
is treated as fixed, and the number of failures is treated
as random.  This is the normal type of data found in
PRA work.  It is possible to consider a model in which
data are collected until x failures occur, and we count
the number of demands, n, required to obtain x failures.
In this case, the number of demands is random and
follows a so-called negative binomial distribution.
Such “waiting-time” models have little application in
PRA, and are not considered in this handbook.

One could argue that the numbers of demands in the
examples are not really fixed in advance.  That is, no
one decided in advance to look at the outcomes of 59
unplanned HPCI demands.  Instead, Grant et al.
decided to look at seven years of data from 23 plants,
and they observed that 59 demands had taken place.
The response to this argument is that we are actually
conditioning on the number of demands, that is, dealing
with conditional probabilities assuming that 59
demands take place.  Conditioning on the number of
demands enables us to focus on the quantity of interest,
p.  Treating both the number of failures and the number
of demands as random is needlessly complicated, and
yields essentially the same conclusions about p as do
the simpler methods of this handbook.

2.3.3 Standby Failure

As stated in the introduction to this chapter, failure to
change state can be modeled in two ways.  One way
was given in Section 2.3.2.  The second way is given
here, in which the system (typically a component) is

assumed to transition to the failed state, at a constant
transition rate, while the component is in standby.  This
latent failed condition ensures that the system will fail
when it is next demanded, but the condition is not
discovered until the next inspection, test, or actual
demand.

2.3.3.1 Probability Model

The underlying assumption is that the transition to the
failed condition occurs randomly in time.  Two settings
must be distinguished:

1. the data, the operational experiences in the
past that allow us to estimate , and

2. the application to PRA, in which the estimate
of  is used to estimate the probability that a
component will fail when demanded.

These two settings are discussed in the next two
subsections.

2.3.3.1.1 Probability Model for the Data
 
It is customary to consider only the simplest model.   

1. Assuming that the system is operable at time
t, the probability that the system will become
failed during a short time period from t to t +

t depends only on the length of the exposure
period, t, not on the starting time of the
period, t.

2. Failure of distinct systems, or of one system
during distinct standby periods, are
independent of each other.

The kind of observable data is spelled out here.  It is
obvious, but is written down here for later comparison
with the data for similar models.

• At times unrelated to the state of the system,
the condition of each system (failed or not)
can be observed.  As a minimum, the total
number of failures and the corresponding total
standby time are observed.

The times mentioned here can be scheduled tests or
unplanned demands.
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Assumption 1 is essentially the same as for a Poisson
process in Section 2.2.2.  It implies that there is a
proportionality constant, , satisfying

t � Pr(t < T � t + t � T > t),

where T is the random time when the system becomes
failed.  Then the probability that the system is failed
when observed at time t is

Pr(system is in failed state at time t) = 1 � e! t . (2.3)

This follows from Equation 2.5, given in Section 2.6
for the exponential distribution.  The parameter  is
called the standby failure rate.

2.3.3.1.2 Application of Model to PRA
 
The model is used to evaluate the probability of failure
on demand by assuming that (a) the failure is revealed
by a periodic test and the component is then returned to
operation, and (b) the demand occurs at a random time
within the testing cycle.  With these assumptions, the
probability of failure on demand is approximated by 

p = ttest/2  , (2.4)

where  is the standby failure rate and ttest is the time
interval between tests.

A more accurate expression is the average of terms
from Equation 2.3, averaging over all the possible
demand times in the test interval:
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2.3.3.2 Data Needed to Validate Model and
Estimate 

Suppose that the standby failure rate model holds.  If
the standby times are all similar, then an estimator of 
needs only two pieces of information:  the number of
failures, x, in the data period, and the corresponding
total standby time, t.  If, instead, the standby times vary
substantially, then the total standby times should be
recorded separately for the failures and the successes,

as stated in Section 6.4.

To validate the model, the data could be partitioned.
As with initiating events, if the data come from various
years of plants, the data could be partitioned by year
and/or by plant, and  the above information should be
given for each subset.

2.3.3.3 Case Studies: Validity of Model
Assumptions in Examples

Let us now examine the applicability of the model
assumptions in the examples given above.

Examples 2.5 and 2.6

Which is more appropriate, the failure-on-demand
model or the standby-failure model?  In these two
examples, either model could be used.

Under the failure-on-demand model, the expected
number of failures is proportional to the number of
demands.  Under the standby-failure model, the
expected number of failures is proportional to the
standby time.  The statistician looks for data with
variation in number of demands and standby time, to
see which is more closely correlated with the
observed failure counts.  The engineer, on the other
hand, looks at the apparent mechanisms of the
observed failures.  Do the mechanisms suggest that
the number of failures is proportional to the number
of demands or to the standby exposure time?

Examples 2.7 and 2.8
 
Assumption 1 says that the failed-condition event is
as likely to hit the system in one time interval as in
another of the same length.  In Example 2.7, if the
steam comes from backflow through a check valve,
it will build up, and become more of a problem when
the AFW system has been unattended longer.  In this
case, Assumption 1 is violated.  Many of the causes
mentioned for the valves in Example 2.8 also involve
gradual buildup, not a sudden transition.   For such
causes,  the random failed-condition shock is
inappropriate as a model, although it has sometimes
been used.  A model of cumulative degradation
would be more appropriate.

Assumption 2 says that the systems (AFW pumps or
isolation valves) act independently.  However, many
of the causes in the examples can act as common-
cause mechanisms.  Steam-binding of the AFW
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system was a recognized common-cause
mechanism in the 1970s and 1980s.   This means
that Assumption 2 may be plausible if interest is in
the performance of a single AFW pump or a single
isolation valve, but not if interest is in an intercon-
nected set of such components.

Section D-1 of Poloski et al. (1998) says that steam
binding has not been seen in 1987-1995 AFW
experience.  Therefore, Example 2.7 is probably no
longer relevant, although it received great attention
at one time.

2.3.3.4 Discussion

The discussion of Examples 2.7 and 2.8 has shown that
some modeled standby-failure mechanisms involve
gradual degradations, not instantaneous transitions.  A
wear-out model, as described in Section 2.6, would
mimic the physics of failure more closely, and so be
more appropriate.  To estimate the rate of wear-out,
data are needed for systems at various times.  In the
present context, this means knowing the state (failed or
not) of AFW systems or isolation valves at various
times after the last test or inspection.  Such data are
rarely available from operating plants, which have
fixed testing schedules.  This lack of data undoubtedly
contributes to the use of the simple, but inappropriate,
standby-failure model.

Fortunately, degradation mechanisms have become
minor contributors to risk.  When a degradation
mechanism is recognized as important, the natural
response is not to collect data to better estimate the rate
of degradation.  Instead, the natural response is to shor-
ten the interval between preventive maintenance
activities, and so to identify and correct incipient
degradation, or to modify the plant to mitigate or elimi-
nate the problem.  Examples are the apparent
elimination of steam-binding in AFW pumps,
mentioned above, and of intergranular stress corrosion
cracking (IGSCC) in BWR piping (Poloski et al.
1999a, Appendix J).

2.3.4 Comparison of the Two Models for
Failure to Change State

One great appeal of the standby-failure model is that
the parameter estimator does not need knowledge of the
number of demands.  Standby time is normally much
easier to obtain than a count of demands.  To validate

the use of the standby-failure model, reason as in the
above discussion of Examples 2.5 and 2.6, trying to
decide if the number of failures is proportional to the
standby time or to the demand count.

The choice of model makes a difference!  For example,
suppose that an EDG is tested monthly by starting it.
In 100 monthly tests, 2 failures have been seen.  A
simple estimate of p, the probability of failure on
demand, is 2/100 = 0.02.  A simple estimate of , the
standby failure rate, is 0.02/month.  Now suppose that
a basic event in a PRA is that the EDG fails to start,
when demanded at a random time.  Based on the
estimate of p, the estimated probability of the basic
event is 0.02.  Based on the estimate of  and Equation
2.4, the estimated probability of the basic event is

(0.02/month)×(1 month)/2 = 0.01 .

The two models give estimates that differ by a factor
of 2!  The reason is simple.  The failure-on-demand
model says that all demands have the same probability
of failure.  The standby-failure model says that
demands soon after a successful test have smaller
probability of failure.

2.4 Failure to Run during Mission

Aspects of this type of failure closely resemble the
initiating events of Section 2.2.  One important
difference is in the kind of data normally present.  The
difference is summarized here.

Example 2.4 of Section 2.2 is an example of
continuously running components, temperature sensor/
transmitters, that occasionally failed to run.  When a
component failed, it was repaired or replaced in a
relatively short time, and  resumed operation.  That is,
the component was repairable.  The present section
considers components or systems that do not run
continuously.  Instead, they are occasionally demanded
to start, and then to run for some mission time.  If they
fail during the mission, they are nonrepairable, that is,
they cannot be repaired or replaced quickly.  Three
points deserve clarification:

• Some failures may be recoverable.  They
would not be modeled as failures in the sense
of causing mission failure.  Unrecoverable
failures cause mission failure, however. 
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• Given enough time, almost any system can be
repaired.  During a mission, however, time is
not available.  Because the component or
system cannot be repaired within the time
constraints, it is called “nonrepairable.”

• From the viewpoint of data analysis, the terms
“repairable” and “nonrepairable” refer to how
data are reported.  If data collection stops
after the first failure, at least for that particular
application of that component or system, the
system is called nonrepairable.  If, instead, a
sequence of failure times is recorded, the
system is called repairable.

As stated earlier, the word system is used generally for
any piece of hardware for which data are taken.  In
particular, components and trains are kinds of systems.

2.4.1 Examples

Here are two examples of failures to run during
missions.

Example 2.9 EDG failures to run

Grant et al. (1996) report that in 844 demands of
30 minutes or more for emergency diesel
generators (EDGs) to run, there were
approximately 11 unrecovered failures to run in
the first 30 minutes.  The count is approximate
because a few failure times were not given and
had to be inferred.

Example 2.10 AFW turbine train failures to run

Poloski et al. (1998) report that in 583 unplanned
demands of auxiliary feedwater (AFW) system
turbine trains, the train failed to run 2 times, and
the total running time was 371 train-hours.  The
information is taken from LERs, only 17% of
which report running times for the train.  The total
running time of 371 hours is an extrapolation from
the LERs with reported run times.

These examples are typical, in that hardly any of the
demands to run resulted in a failure.  Therefore, for
most demands the time when failure would eventually
have occurred is unknown.

2.4.2 Probability Model

In principle, the times to failure are durations.
Section 2.6 deals with duration data, in the context of
recovery times.  That section mentions various possible
distributions of time to failure, of which the simplest is
the exponential distribution.  In the present setting,
however, nearly all of the observed times are truncated
before failure.  This is illustrated by the above
examples.  Therefore, the full distribution of the time to
failure cannot be observed.  In Example 2.9, no infor-
mation is given about the distribution of failures times
after the first 30 minutes.  In Example 2.10, the average
run time was only 38 minutes, and most AFW missions
lasted for less than one hour.  In such cases the
exponential distribution, restricted to the observed time
period, is a simple, reasonable approximation of the
observable portion of the distribution.

Two assumptions are made concerning the physical
process.

1. Assuming that no failure has occurred by time
t, the probability that the failure will occur in
a short time period t to t + t depends only on
the length of the exposure period, t, not on
the starting time of the period, t.

2. Failures of distinct systems, or of one system
during distinct missions, are independent of
each other.

The kind of observable data is as follows.
  
• For each observed mission, the run time is

observable, and whether the run terminated in
failure or in successful completion of the
mission.  As a minimum, the total run time
and the number of failures to run are
observed.

Assumption 1 implies that the time to failure is
exponentially distributed with parameter .  The inter-
pretation of  is that if the system is running, the
probability of failure in the next short interval of length

t is approximately  t.  That is

t � Pr(t < T � t + t � T > t),

where T is the random time until failure.  When defined
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this way,  is sometimes called the failure rate, or rate
of failure to run.  Many authors use the term hazard
rate, denoted by h, and discussed in Appendix A.4.4.

Note, the definition of  is different for repairable
systems (Section 2.2) and nonrepairable systems (the
present section), even though it is represented by the
same Greek letter and is called “failure rate” in both
cases.  See Thompson (1981) for a reasonably clear
discussion of the subtle differences, and the glossary of
this handbook for a summary of the definitions.  The
topic is discussed further in Appendix A.4.4.

It is instructive to compare the models for failure to run
and standby failure.  The physical process is essentially
identical, but the observable data differs in the two
models.

2.4.3 Data Needed to Validate Model
and Estimate 

Suppose that the time to failure has an exponential
distribution.  Then any reasonable estimator of  needs
only two pieces of information: the total running  time,
t, in the data period, and the number of failures to run,
x, that occurred then.

However, more information is needed to investigate
whether the exponential distribution is valid.  Assump-
tion 1 says that  is constant during the mission.  To
investigate this, the analyst should know the failure
times, that is, how long the failed pumps ran before
failing.  The analyst should also know the mission
times, that is, how long the system ran when it did not
fail; often, however, this information is not recorded
and can only be estimated or approximated.

Implicit in Assumption 1 is that  is the same over all
the years of data, at all the plants where the data were
collected.  To investigate this, the data should be
divided into subsets, corresponding to the different
plants and years.  Then the failure count and running
time, xi and ti, should be given for each subset.   This is
the exact analogue of what was said in Section 2.2.3 for
initiating events.

2.4.4 Case Studies: Validity of Model
Assumptions in Examples

Consider now whether the assumption of the model is
plausible for the two examples.

Example 2.9  EDG Failures to Run

Assumption 1 says that a running EDG is as likely to
fail in one short time interval as in any other time
interval of the same length.  That is, the EDG does
not experience burn-in or wear-out failures.  The
reference report (Grant et al. 1996) says that this is
not true over a 24-hr mission.  Indeed, that report
divides the EDG mission into three time periods (first
half hour, from ½  hour to 14 hours, and from 14 to
24 hours) to account for different failure rates during
different time periods.  Within the first half hour,
however, the data do not give reason for believing
that any short time interval is more likely to have a
failure than any other time interval.  Therefore,
Assumption 1 can be accepted.

Assumption 2 is violated by common-cause failures.
It is also violated if a failure’s root cause is incorrectly
diagnosed, and persists on the next demand.  If
these two conditions are rare the assumption may be
an adequate approximation.  More subtle
dependencies are difficult to detect from data.

Example 2.10  AFW Turbine Train Failures to Run

Assumption 1 says that a running turbine train is as
likely to fail in one short time interval as in any other
time interval of the same length.  The data are too
sparse — only 2 observed failures — to confirm or
refute this assumption.

2.4.5 Discussion

The exponential time to failure can also be derived as
the time to first failure in a Poisson process of
Section 2.2.  The present context is simpler, however,
because the process ends after the first event, failure to
run.  The Poisson-process assumptions about
hypothetical additional failures are irrelevant.
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2.5 Unavailability

Unavailability is the fraction of time when a system is
not able to perform its function.  Sometimes this is
qualified.  For example, test-and-maintenance
unavailability is the unavailability caused by testing and
maintenance of the system.

2.5.1 Example

The example here is typical.

Example 2.11 HPCI unavailability for test and
maintenance

The HPCI system is typically available when
demanded unexpectedly, but sometimes it is out
of service for testing or maintenance, scheduled
or unscheduled.

The system has two states, up (in service) and down
(out of service), and a long-term fraction of time when
the system is down.  The fraction of time when a
standby system is up is called the system availability.

2.5.2 Probability Model

The simplest data consist of measurements in a number
of time periods, called reporting periods here.  Each
reporting period corresponds to an exposure time, or
time at risk, the time when the system should be
available.  The system’s down time, or outage time, is
the time when the system was out of service.  One set
of  mathematical assumptions for unavailability  is
given here.

1. The down times during different reporting
periods are statistically independent of each
other.

2. The system has the same probability of being
down at a random time in one reporting period
as in any other reporting period.

Two kinds of data can be considered.

• For each reporting period, the outage time and
exposure time are observed.

• Alternatively, the number of individual
outages and the duration each outage are

observed.

With data described under the second bullet, the
number of outages can be considered a Poisson count
(Section 2.2), and the durations can be modeled as in
Section 2.6.  Therefore, such data will be considered
only briefly, in Section 2.5.4.  Data described under the
first bullet will be used in most of the treatment of this
handbook.

In Example 2.11 unexpected down times occur
randomly, but planned down times also occur at regular
intervals, scheduled maintenance for the system.  This
must be recognized when the reporting periods are
defined.  For example, if a motor-driven pump has most
of its scheduled maintenance during the plant’s
refueling outages, and the pump’s availability during
shutdown is of interest, then separate analyses should
probably be performed for the time when the reactor is
up and when the reactor is down, to keep Assumption
2 from being violated.

If a system is maintained periodically, one must define
long enough reporting periods so that each reporting
period includes the same number of regularly
scheduled lengthy down times.

A mathematical way to model the status of a repairable
system uses a state variable, defined as S(t) = 1 if the
system is up at time t, and S(t) = 0 if it is down at time
t.  The availability of a system is the probability that
the system is up at a random time T,

A = Pr[S(T) = 1],

and the unavailability is

.A S T A= = = −Pr[ ( ) ]0 1

Reliability textbooks consider availability as a function
of time.  In typical PRA applications, however, the
relevant availability and unavailability are at the
random time of an unplanned demand for a system, and
therefore are the constants defined above.  From the
perspective of this data analysis handbook, availability
and unavailability are parameters to be estimated.  In
keeping with the notation of lower-case letters for
parameters, this handbook often denotes the

unavailability by u instead of by .A



2.  Probability Models                                                     DRAFT

DRAFT NUREG/CR-XXX REVISION 0 Date: 11/27/022-16

A particular system history is illustrated in Figure 2.1,
from Engelhardt (1996).  This figure shows when a
particular system was operating (S = 1) or shutdown (S
= 0).  A nominally identical system would have a
somewhat different history for the same period, or the
same system would have a different history over a
different time period of the same length.

Figure 2.2  Uptime and downtime status for one
system.

Actually, this figure refers to uptime for a nuclear
power plant, not the kind of “system” normally
analyzed by a PRA.  However, the figure is shown only
as an illustration of the up-and-down behavior that
must be analyzed when estimating unavailability.

2.5.3 Data Needed to Validate Model
and Estimate u 

The unavailability, u, can be estimated from the total
exposure time and corresponding outage time in a
single reporting period.

However, every data reporting period will give a
somewhat different estimate of u.  To quantify the
uncertainty in the estimate, data from a number of
reporting periods are needed, for example, data from
separate time periods or from separate, nominally
identical hardware systems.  Moreover, the methods
given in Chapter 6 aggregate, that is, combine,
reporting periods, at the very least so that the
aggregated reporting periods do not contain outage
times of zero. 

In summary, a large enough data set is needed so that
it consists of more than two reporting periods (as a bare
minimum), and each reporting period is long enough so
that outage times of zero do not occur.

Assumption 1 is normally validated by careful thinking,
not by data analysis.

To validate Assumption 2 of the model, the data should
be partitioned into subsets, corresponding, for example,
to different years or safety systems or plants.  Then
each subset must be large enough to give data as
described in the previous paragraph.

2.5.4 Discussion

Suppose now that the observed data are described by
the second bullet in Section 2.5.2, so that the individual
durations of up times and down times are reported.
Then the mean time to failure (MTTF) can be
estimated from the durations of the up times, and the
mean time to repair (MTTR) can be estimated from
the durations of the down times.  A strong result can be
shown under the following assumptions.

1. The times to failure are identically distributed
and the times to repair are identically
distributed.

2. All the durations are statistically independent
of each other.

Then (see Ross 1983, pp. 66-67) it can be shown that
the unavailability equals

 .A
MTTR

MTTF MTTR
=

+

This provides a basis for estimating availability and
unavailability when the full duration data are available.

Upon reflection, this striking result is not so surprising.
If the data consist of n up times with n down times
interspersed, MTTR would be estimated by (total down
time)/n and MTTF would be estimated by (total up
time)/n.  Then the natural estimate of unavailability
would be 

[down-time/n]/[up-time/n + down-time/n]
= down-time/(up-time + down-time) ,

which is just the observed fraction of time when the
system is down.
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2.6 Recovery Times and Other
Random Duration Times

This section is about modeling of time data.  Often, a
measurement of interest is a random duration time,
such as the time required to return a failed system to
service or the lifetime of a piece of hardware.  The
distinction between random duration times here and
events in time in Sections 2.2 and 2.4 is that here the
individual times are measured on a continuous scale
with units such as minutes or hours, while the earlier
data sets involve discrete counts of the number of
events occurring in a total length of time.

2.6.1 Examples

Here are some examples involving random duration
times.  They are only summarized here.  Actual exam-
ples, with lists of durations times, will be analyzed in
Chapter 6.

Example 2.12 Recovery times from loss of
offsite power

A plant occasionally loses offsite power.  When
this happens, the plant reports the time until
power is restored.  Atwood et al. (1998) present
such durations for LOSP events in 1980-1996.

Example 2.13 Repair times for turbine-driven
pumps

A turbine-driven pump must occasionally be taken
out of service for unplanned maintenance.  The
duration of time out of service for maintenance
may be extractable from maintenance records.

Example 2.14 Time to failure of a component

A typical power plant will have many individual
components such as compressors.  When a
component is put into service, it operates
intermittently until it fails to perform its required
function for some reason.  Høyland and Rausand
(1994) give an example of such data.

Example 2.15 Times to suppress fires

When a fire occurs in a nuclear power plant, the
time until the fire is suppressed is of interest.
Nowlen et al. (2002) report on analysis of such
suppression times.  One difficulty is that the time
of fire onset often is not known exactly.

Example 2.16 Gradual degradation until failure

Examples 2.7 (steam binding) and 2.8 (failure of
isolation valves) involve gradual degradation,
which builds up until the system is inoperable.
The time until the system is inoperable can be
modeled as a duration time.

The common element in these examples is a duration
time that varies in an unpredictable way.  In Examples
2.12 and 2.13, the recovery time is composed of several
factors such as time to diagnose, perform and test
repairs, and the time to complete documentation
required before returning the plant to normal operating
conditions.  Example 2.14 is a failure-to-run example,
similar to those of Section 2.4.  This example differs
from that of Section 2.4, however, because here it is
assumed that virtually all of the times to failure are
recorded.  In Section 2.4, on the other hand, most of the
systems did not fail during the test period or
operational mission.  The severe truncation of the data
in Section 2.4 meant that only a simple model could be
considered.  The more complete data here allows
analysis of a more complex model.  Example 2.15 is
complicated by the lack of exact knowledge of the
duration time.  Finally, Example 2.16 gives a realistic
conceptual way to model the gradual degradations
encountered in Section 2.3.1, although good data are
unobtainable.

All five examples involve a duration time that is
uncertain due to random factors.  Consequently the
duration times are modeled as continuous random
variables.

2.6.2 Duration-Time Models

The duration, T, is random, following some probability
distribution.  Two assumptions are made about the
process.

1. Each duration is statistically independent of
the others.

2. All the random durations come from the same
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probability distribution.

The data description is simple:

3. The individual durations are observable.  As
a bare minimum, the number of durations and
the total duration time are observed.

Assumptions 1 and 2 can be summarized by saying that
the durations are independent and identically
distributed.  Independence means that one duration
does not influence the probability of any other duration.
The assumption of identical distributions means that
each random duration is as likely as any other to be
long or short.   If the durations are from distinct
systems, the systems are assumed to be identical and to
act independently.  If the durations are in sequence, as
for a system that alternates being up and down, the
assumption implies that no learning or long-term aging
takes place, and that each repair restores the system to
a condition as good as new.  Such a process is called a
renewal process.

The assumptions do not require a particular distribution
for the time between events.  The most important such
distributions in PRA applications are: 

• lognormal
• exponential
• Weibull
• gamma

These distributions are all summarized in Appen-
dix A.7.  An important part of the data analysis consists
of deciding on the form (or several plausible forms) of
the distribution.  This will be discussed in Chapter 6.
For now, we simply note that these and other
distributions are possible.

There are different ways to specify a probability
distribution, and the next material summarizes some of
the concepts: their definitions, how to interpret them,
and how they are related to each other.  The data-
analysis techniques of Chapter 6 will use these ways of
characterizing distributions.  The usual convention is to
denote the random variables using capital letters, T, and
observed times as lower case, t.  The letter T is used,
rather than some other letter such as X, because the
random quantities are times.  As seen from the
examples, the durations may be times to repair, times to

failure, or other times.  However, the concepts and
formulas are valid for any application.

The cumulative distribution function (c.d.f.) of a
real-valued random variable T is defined as

F(t) = Pr(T � t)

for all real numbers t.  The name is sometimes
abbreviated to distribution function.  The c.d.f. is the
probability that the random variable T will assume a
value which is either less than or equal to t.  The c.d.f.
is a monotonic increasing function of t, with the
limiting properties F(0) = 0 and F(+�) = 1. [For
random variables that, unlike durations, can take
negative values, the limiting properties are F(��) = 0
and F(+�) = 1.  That general case has few applications
in this handbook.]

The distribution is commonly used to characterize the
lifetimes, or recovery times, or some other kind of
durations, of a whole population of systems.  The
population might be a large set of identical systems that
are operating in similar applications and with durations
that vary due to random influences.  F(t) is the fraction
of items that have durations t or less, in a hypothetical
infinite population.  

A related function, denoted by f(t), is called a
probability density function (p.d.f.) for a
continuously distributed positive-valued random
variable T.  It is related to the c.d.f. by

   andf t
d

dt
F t( ) ( )=

   .F t f u du
t

( ) ( )= ∫0

The variable u is a dummy variable of integration, and
t is the upper limit of the integral.  An example of a
p.d.f. and the associated c.d.f. are shown in Figure 2.3.

It follows that probabilities corresponding to
occurrences in a small interval of time are
approximately proportional to the p.d.f.,

Pr(t < T � t + t) � f(t) t.
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Figure 2.3  Probability density function (p.d.f.) and
cumulative distribution function (c.d.f.).

Therefore, the ordinate of a p.d.f. has units of
“probability density” and not probability (as for a
c.d.f.).  Thus, a p.d.f. determines how to assign 

probability over small intervals of time.  Now consider
an arbitrary interval from a to b.  In this case we have

 .Pr( ) ( )a T b f t dt
a

b< ≤ = ∫

This simplest distribution is the exponential distribu-
tion.  It arises when the assumption of Section 2.4.2 is
satisfied.  (That assumption is phrased as if T is a time
until failure.)  In that case, the probability distribution
is exponential, and determined by a single parameter, .
The p.d.f. and c.d.f. are given by 

f(t) = e! t

F(t) = 1 � e! t . (2.5)

2.6.3 Data Needed to Estimate
Distribution of Durations and
Validate Model

In general, a sample of observed durations is needed to
estimate the distribution of duration times.  These
durations must independent and identically distributed,
that is, they must be generated by a process satisfying
the two assumptions given at the beginning of Section
2.6.2.

The special case when the times are assumed to have an
exponential( ) distribution is simpler.  Only the number
of durations and the total duration time are needed to
estimate ,.  However, the individual durations are still
needed to investigate whether the distribution is
exponential or some other form.  Incidentally, when the
distribution is assumed to be exponential, the model
given here differs from the standby-failure model
(Section 2.3.3.1) and from the failure-to-run model
(Section 2.4.2) only by the kind of data that can be
observed.

To validate whether the distribution is the same for all
the data, extra information should be recorded for each
duration, the relevant circumstances of each duration.
The circumstances of interest are those that might
affect the durations, such as time of the event, system

location, and system condition just before the event.

2.6.4 Validity of Model Assumptions in
the Examples

Examples 2.12 through 2.14 all appear to satisfy the
assumptions of Section 2.6.2.  Example 2.15 also
does, except that the durations are not observed
exactly.

In each case, all the distributions come from some
distribution.  Discovering the form of that distribution
is a task for the data analyst.

One might ask whether the durations are statistically
independent.  For example, does a long repair time
for a turbine-driven pump add an extra benefit to the
pump, so that the next few repair times will be short?

One might also ask, for each example, whether the
durations all come from the same probability distribu-
tion.  For example, if the data cover a period of
years, has there been any long-term learning, so that
recovery times, repair times, or refueling times tend
to be shorter than at the start of the data period?  Are
different durations associated with different systems
for the turbine-driven pumps, with different causes of
loss of offsite power, or with different kinds of fires?

The above are questions that could be investigated
during the data analysis, if enough durations have
been observed.

Example 2.15 is complicated by lack of exact
measurements of the durations.  Bounds can be
given, and the analysis must be based on these
upper and lower bounds rather than on exact times.

Example 2.16 is different because the durations are
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not observable at all.  It might be theoretically
interesting to model the time until the system is in a
failed condition as a duration.  But there is no
monitor on the pump or valve that says, “At this time
the system just became inoperable.”  Therefore, the
durations are not directly observable, not even in
principle.  Therefore the methods of this handbook
are not applicable to this example.


