

# ESBWR Scaling Report – NEDC 33082P

**Robert Gamble** 

NRC Staff - GE Meeting Closed Session December 12, 2002 Rockville, Maryland



## ESBWR Technology Program Elements



#### Outline

- Objectives and Scope
- Methodology
  - Hierarchical Two-tiered Scaling (H2TS)
    - Top-down
    - Bottom-up
  - Two-parallel applications
    - 1) obtain general scaling criteria (for ideal case of perfectly scaled facilities)
    - 2) detect the scaling distortions and evaluate their importance (for the actual test facilities)
      - What phenomena are important
      - How well are they scaled

#### ESBWR Results

- What phenomena are important
- Comparison of ESBWR and Test Facility Scaling Results
  - How well are important phenomena scaled in tests
- Observed Effects of Scale
- Conclusions

#### **Scaling Objectives**

- Obtain criteria for test facility design
- Show how well various experiments represent behavior of ESBWR systems
- Determine if experimental data is sufficiently representative for validation of TRACG code phenomenological models

#### Scope

#### LOCA ACCIDENTS

- MAIN STEAM LINE
- GRAVITY DRIVEN COOLING SYSTEM LINE
- BOTTOM DRAIN

#### SBWR SAFETY SYSTEMS

- GRAVITY DRIVEN COOLING SYSTEM (GDCS)
- ISOLATION CONDENSER SYSTEM (ICS)
- PASSIVE CONTAINMENT COOLING SYSTEM (PCCS)

#### IMPORTANT PHENOMENA

- SYSTEM PRESSURE RATES
  - REACTOR PRESSURE VESSEL
  - DRYWELL
  - WETWELL
- MASS
  - REACTOR VESSEL
- TEST FACILITIES
  - GIST
  - GIRAFFE
  - PANDA
  - PANTHERS

# H2TS Methodology

- Top-down scaling analysis is performed at the system level (e.g., RPV, DW, WW)
- Top-down scaling identifies important processes for bottomup scaling analysis
- Bottom-up scaling is performed at the local level for important phenomena
- Two main applications of top-down scaling
  - thermodynamic evolution in volumes  $\rightarrow$  mass, energy and pressure
  - Transfer of mass between volumes  $\rightarrow$  momentum

#### Thermodynamic Evolution of Containment Volumes with Mass and Energy Additions



A containment volume receiving mass flow rates  $W_i$  with corresponding total enthalpies  $h_{o,i}$ , and heat at rate  $\dot{Q}$ 

#### *Transfers of Mass Between Volumes Driven by Pressure Differences*



Momentum Equation for path 1-2:

 $\sum_{n} \frac{\ell_{n}}{a_{n}} \frac{dW}{dt} = \Delta P_{12} + \rho g \sum_{n} \ell_{nv} - \rho_{L} g H - \sum_{n} \frac{F_{n}}{a_{n}^{2}} \frac{W^{2}}{2\rho} \qquad F_{n} = \frac{f_{n} \ell_{n}}{D_{n}} + k_{n} \qquad L_{m} = \sum_{n} \ell_{nv} \Delta P_{12} = P_{1} - P_{2}$ 

- For Volumes
  - total mass  $\frac{dM}{dt} \sum_{i} W_{i} = 0$
  - conservation of constituent j

$$\frac{\mathrm{dM}_{\mathrm{j}}}{\mathrm{dt}} - \sum_{\mathrm{i}} \mathrm{W}_{\mathrm{ij}} = 0$$

• energy  
• energy  

$$V\rho\frac{de}{dt} = -P\frac{dV}{dt} + \dot{Q} + \sum_{i}(h_{i} - h)W_{i} + \frac{P}{\rho}\sum_{i}W_{i}$$
• rate of P change  

$$\frac{dP}{dt} = \frac{1}{Vf_{2}} \left\{ \sum_{i} [W_{i}(h_{i} - h)] + \sum_{i} W_{i}\frac{P^{*}}{\rho} + \dot{Q} - P^{*}\frac{dV}{dt} - V\sum_{j} \left[ f_{1j}\frac{dy_{j}}{dt} \right] \right\}$$

• vapor volume fraction 
$$\rho_{g} \frac{d\alpha}{dt} = \frac{1}{V} \sum_{i} W_{g,i} + \frac{\sum_{i} (h_{\ell,i} - h_{f}) W_{\ell,i}}{Vh_{fg}} + \frac{\dot{Q}}{V} + \frac{\psi}{h_{fg}} \frac{dP}{dt}$$

• For Flow Paths

• momentum 
$$\left(\frac{L}{a}\right)\frac{dW}{dt} = \Delta P - \frac{1}{\rho}\left(\frac{F}{a^2}\right)\frac{W^2}{2} - \rho gH$$

- (1) General scaling rules for facility design
  - For ideal case of perfectly scaled facilities
  - A minimal set of unique (global) reference scales is used:

 $\{z_r\} = t_r, v_r, W_r, \dot{Q}_r, \rho_r, \Delta P_r, \Delta h_r$ 

- non-dimensional variables are formed as:  $z^+ = \frac{z}{z_r}$
- (2) Detect the scaling distortions and evaluate their importance
  - For the actual plant design and test facilities
  - the minimal set  $\{z_r\}$  is supplemented by additional specific reference scales

- Definition of the minimal set of reference scales {z<sub>r</sub>}
  - For time,  $t_r$
  - For volume:  $V_r$
  - For mass flow rates: W<sub>r</sub>
  - For heat addition: Q<sub>r</sub>
  - For densities:  $\rho_r$
  - For pressure, a reference pressure difference:  $\Delta P_r$
  - For constituent j fraction: y<sub>j,r</sub>
  - For properties involving vapor mass fraction:  $\psi_r$
  - For enthalpies and internal energies, a reference specific enthalpy difference:  $\Delta h_r \rightarrow h_{fg,r}$
- Normalize equation variables as

$$z^{+} \equiv \frac{z}{z_{r}}$$

#### Non dimensionalized equations

• Mass Conservation

$$\begin{split} & \frac{d}{dt^{+}} \Big( V^{+} \rho^{+} \Big) - \Pi_{t} \sum_{i} W_{i}^{+} = 0 \\ & \frac{d}{dt^{+}} \Big( V^{+} \rho_{j}^{+} \Big) - \Pi_{t,j} \sum_{i} W_{i}^{+} y_{i,j}^{+} = 0 \end{split}$$

• <u>Energy</u>

$$V^{+}\rho^{+}\frac{de^{+}}{dt^{+}} = -\frac{1}{\Pi_{hp}}\rho^{+}\frac{dV^{+}}{dt^{+}} + \Pi_{t}\Pi_{pch}\dot{Q}^{+} + \Pi_{t}\sum_{i}W_{i}^{+}h_{i}^{+} + \frac{\Pi_{t}}{\Pi_{hp}}\frac{P^{+}}{\rho^{+}}\sum_{i}W_{i}^{+}$$

Pressure Rate

$$\frac{dP^{+}}{dt^{+}} = \frac{1}{V^{+}f_{2}^{+}} \left\{ \Pi_{t} \sum_{i} W_{i}^{+}h_{i}^{+} + \frac{\Pi_{t}}{\Pi_{hp}} \frac{P^{*+}}{\rho^{+}} \sum_{i} W_{i}^{*} + \Pi_{t}\Pi_{pch}\dot{Q}^{+} - \frac{1}{\Pi_{hp}}P^{*+} \frac{dV^{+}}{dt^{+}} - V^{+}\sum_{j} f_{l,j}^{+} \frac{dy_{j}^{+}}{dt^{+}} \right\}$$

Vapor Fraction

$$D_{g}^{+} \frac{d\alpha}{dt^{+}} = \Pi_{t} \sum_{i} W_{g,i}^{+} + \Pi_{t} \frac{\sum_{i} h_{sub,i}^{+} W_{\ell,i}^{+}}{h_{fg}^{+}} + \Pi_{t} \Pi_{pch} \frac{\dot{Q}^{+}}{h_{fg}^{+}} + \frac{\Pi_{\psi}}{\Pi_{hp}} \psi^{+} \frac{dP^{+}}{dt^{+}}$$

Momentum

$$\Pi_{in} \frac{dW^{+}}{dt^{+}} = \Pi_{pd} \Delta P^{+} - \Pi_{loss} \frac{W^{+2}}{\rho^{+}} + \Pi_{hyd} \rho^{+} L^{+} - \Pi_{sub} \rho^{+} H^{+}$$

## **Resulting Scaling Criteria**

- **8 Pi Groups:**  $\Pi_t, \Pi_{in}, \Pi_{pd}, \Pi_{loss}, \Pi_{sub}, \Pi_{hp}, \Pi_{pch}$  and  $\Pi_{\psi}$
- Define a system scale R:

$$R \equiv \frac{\dot{Q}_{prot}}{\dot{Q}_{mod}} = \dot{Q}_{R}$$

- Choose H<sub>R</sub> = 1 (full height to preserve pressure differences) then:
- The following scaling rules result
   Volumes

- 
$$(h_{fg})_R = \rho_R = 1$$
  
-  $H_R = (y_j)_R = \alpha_R = \Delta P_R = 1$   
-  $Q_R = (A_{lg})_R = W_R = R$   
Piping  
-  $L_R = F_R = 1$   
-  $a_R = R$ 

# **Global Momentum Scaling**

- Two primary objectives
  - Identify any additional nondimensional numbers that may result
  - Identify any interactions between different flow paths that may occur
- Results of **SBWR** global momentum scaling work
  - No new nondimensional groups resulted
  - No significant interaction terms identified
  - Most interaction terms scaled relatively well
  - Confirmed result from sepearate line analyses:
    - flow controlled by balance of resistance and pressure difference (△P, hydrostatic head)
    - Inertia not important
- Global momentum scaling for SBWR yielded no new results
- ESBWR configuration basically the same as the SBWR

Global momentum scaling not repeated for ESBWR

# Summary of General Scaling Criteria and System Design Rules

- Minimum set of criteria for system design
- All facilities nominally scaled according to "General Scaling Criteria"
  - Full-vertical-scale
  - Flow area/Heat transfer area/Mass/Power/Flow scaled to system scale
  - Prototypical fluids
  - Prototypical initial conditions
- Various unique modifications within these criteria to meet facility constraints or improve some aspect of facility such as:
  - Removal of unimportant volumes in PANDA (bottom of vessel and SP)
  - Pancaking of LDW in GIRAFFE
  - Use of 2 DW and WW in PANDA to study larger horizontal length scale and hideout

# Scaling for Important Phenomena and Facility Distortions

- Different focus from general scaling criteria
  - What are important phenomena
  - How well are important phenomena scaled for use in code qualification
- More detailed reference values are used
- Special care is taken to assure nondimensional variables are close to 1 so that PI group comparisons are meaningful
- Selection of Reference Values
  - Pressures, temperatures and mass fractions taken from test initial conditions
  - Flows calculated using choked or unchoked flow formulations
  - Reference flow, pressure and time changes selected to maintain variables and their derivatives of order one
  - No code calculations used for tests other than for test initial conditions
    - Tests cover range of initial conditions

## Summary of System Equations...again

- Start with same set of equations
  - For Volumes
    - total mass

$$\frac{dM_j}{dt} - \sum_i W_{ij} = 0$$

• energy  

$$V\rho \frac{de}{dt} = -P \frac{dV}{dt} + \dot{Q} + \sum_{i} (h_{i} - h)W_{i} + \frac{P}{\rho} \sum_{i} W_{i}$$
• rate of P change  

$$\frac{dP}{dt} = \frac{1}{Vf_{2}} \left\{ \sum_{i} \left[ W_{i}(h_{i} - h) \right] + \sum_{i} W_{i} \frac{P^{*}}{\rho} + \dot{Q} - P^{*} \frac{dV}{dt} - V \sum_{j} \left[ f_{1j} \frac{dy_{j}}{dt} + \frac{P}{\rho} \right] \right\}$$

 $\frac{\mathrm{d}M}{\mathrm{d}t} - \sum_{i} W_{i} = 0$ 

• vapor volume fraction  

$$\rho_{g} \frac{d\alpha}{dt} = \frac{1}{V} \sum_{i} W_{g,i} + \frac{\sum_{i} (h_{\ell,i} - h_{f}) W_{\ell,i}}{Vh_{fg}} + \frac{\dot{Q}}{V} + \frac{\psi}{h_{fg}} \frac{dP}{dt}$$

• For Flow Paths

• momentum 
$$\left(\frac{L}{a}\right)\frac{dW}{dt} = \Delta P - \frac{1}{\rho}\left(\frac{F}{a^2}\right)\frac{W^2}{2} - \rho gH$$

# Non Dimensionalized Equations for Facility Comparison

# New nondimensionalized equations

- <u>Mass Conservation</u>  $\frac{d}{dt^+} (V^+ \rho^+) \Pi_t \sum_i W_i^+ = 0$   $\frac{d}{dt^+} (V^+ \rho_j^+) \Pi_{t,j} \sum_i W_i^+ y_{i,j}^+ = 0$
- **Energy**  $M^{+}\frac{de^{+}}{dt^{+}} = -\Pi_{e,\dot{V}}P^{+}\frac{dV^{+}}{dt^{+}} + \sum_{i}\Pi_{e,\dot{Q}}\Pi'_{\dot{Q}}\dot{Q}_{i}^{+} + \sum_{i}\Pi_{e,wh,i}W_{i}^{+}h_{i}^{+} + \frac{P^{+}}{\rho^{+}}\sum_{i}\Pi_{e,mech,i}W_{i}^{+}$
- <u>**Pressure Rate</u>**  $f_2^+ V^+ \frac{dP^+}{dt^+} = \sum_i \Pi_{P,\dot{Q},i} Q_i^+ \Pi_{P,\dot{V}} P^{*+} \frac{dV^+}{dt^+} + \sum_i \Pi_{P,Whj} W_i^+ h_i^+$  $+ \frac{P^{*+}}{c^+} \sum_i \Pi_{P,mech,j} W_i^+ - V^+ \sum_i \Pi_{P,y,j} \left( f_{1,j}^+ \frac{dy_j^+}{dt^+} \right)$ </u>
- **Liquid Mass\***  $h_{fg}^{+} \frac{dM_{\ell}^{+}}{dt^{+}} = -\sum_{i} \Pi_{M,\dot{Q},i} \dot{Q}_{i}^{+} + h_{fg}^{+} \sum_{i} \Pi_{M,W,i} W_{\ell,i}^{+} + \sum_{i} \Pi_{M,sub,i} h_{sub,i}^{+} W_{\ell,i}^{+}$  $- \left[ \Pi_{M,\dot{P}1} V_{RPV}^{+} f_{3}^{+} + \Pi_{M,\dot{P}2} f_{4}^{+} M_{\ell}^{+} \right] \frac{dP^{+}}{dt^{+}}$
- <u>Momentum</u>  $\Pi_{in} \frac{dW^+}{dt^+} = \Pi_{pd} \Delta P^+ \Pi_{loss} \frac{W^{+2}}{\rho^+} + \Pi_{hyd} \rho^+ L^+ \Pi_{sub} \rho^+ H^+$

\*Switched to liquid mass from void fraction - result is the same

# **Application - Important Parameters in ESBWR**

- RPV
  - Primary parameter: Water level
    - Keep the core covered
  - Secondary parameter: Pressure
    - Controls initiation of GDCS

#### Containment

- Primary parameter: Pressure
  - Maintain pressure below design limit

#### Integral Test Coverage for ESBWR LOCA



# *Time periods for scaling evaluation*

- Break transient into periods where:
  - Dominant phenomenon remains the same
  - Magnitudes of phenomenon are *relatively* constant
  - Or, there is a special interest



#### **Parameters and Regions Selected for Scaling**

#### **Evaluation Points**

#### **ESBWR** Results

→ What phenomena are important to plant behavior

#### Momentum Scaling

Momentum Equation

$$\Pi_{in} \frac{dW^{+}}{dt^{+}} = \Pi_{pd} \Delta P^{+} - \Pi_{loss} \frac{W^{+2}}{\rho^{+}} + \Pi_{hyd} \rho^{+} L^{+} - \Pi_{sub} \rho^{+} H^{+}$$

- Terms for:
  - Inertia, pressure drop, flow losses, hydrostatic head and submergence
- SBWR Results:

• Nothing has changed in the ESBWR with the exception of the GDCS being in the WW

#### • Momentum Equation for GDCS Line

Hydrostatic driving head

Hydrostatic head above nozzle in RPV

$$\Pi_{\rm in} \frac{dW^{+}}{dt^{+}} = \Pi_{\rm pd} \Delta P^{+} - \Pi_{\rm loss} \frac{W^{+2}}{\rho^{+}} + \Pi_{\rm hyd} \rho^{+} L^{+} - \Pi_{\rm sub} \rho^{+} H^{+}$$

Difference in cover gas pressures

SBWR:  $\Delta P_{PD} = P_{RPV} - P_{DW}$  in ESBWR:  $\Delta P_{PD} = P_{RPV} - P_{WW} = P_{RPV} - P_{DW}$  - PCC vent submergence head

**RPV Late Blowdown:** Time Rate of Pressure Change (Pdot)

**RPV Late Blowdown**: Time Rate of Liquid Mass Change (Mdot)

- Pressure change during transition phase small compared to late blowdown and VERY small compared to entire blowdown
- Depressurization driven by ADS flow
- Stored energy release and GDCS subcooling make measurable contribution
- IC and break flow contribution negligible
  - No IC interactions expected
- No volume change

Transition phase of limited interest. Timing of phase initiation of most interest.

## **RPV Liquid Mass – GDCS Transition**

- Mass loss affected by all parameters except IC
- GDCS and Flashing contributions are very transient during phase
  - GDCS contribution given at ¼ of rated GDCS flow
  - GDCS ranges from 0 to 4 times height shown
  - Flashing ranges from bar shown to 0

- Mass change during transition phase small compared to blowdown
- Mass loss affected by all parameters except IC
- GDCS and Flashing contributions are very transient during phase
  - GDCS contribution given at 1/4 rated GDCS flow
  - GDCS ranges from 0 to 4 times height shown
  - Flashing ranges from bar shown to 0

Mass controlled by timing of transition phase start

- GDCS flow dominates all other phenomena after transition period
- GDCS subcooling (blue) will offset boiling due to decay heat collapsing voids

Reflood is a straightforward single phase calculation

**Drywell Long Term/PCCS:** Time Rate of Pressure Change (Pdot)

#### DW Pressure – Long Term

- The DW volume is purged many times over (indicated by large bars)
  - Pressure will quickly adjust to boundary condition controlling outlet flow (i.e. WW pressure)
- Energy inputs are unimportant to behavior
- PCC heat removal has no direct effect on DW
  - PCC flow would be the same with no heat removal

Details of DW are unimportant except as they affect timing of release of noncondensible gas to WW

Wetwell Long Term/PCCS: Time Rate of Pressure Change (Pdot)

#### WW Pressure – Long Term

- WW is a balance of very small terms in the long term
- Pressure increase is dominated by short term noncondensible gas addition
- Heat capacity of wall is sufficient to absorb VB leakage for many days
  - Wall heat absorption adjusts to heat sources from VB leakage or pool evaporation

Important parameter for WW is addition of noncondensibles - as long as heat inputs are weaker than wall energy storage capability

# Summary for ESBWR

#### • RPV

- Blowdown dominated by ADS flow and flashing
- Short transition period where several phenomena are of similar magnitude but mass change is unimportant
- GDCS flow dominates RPV mass behavior during reflood

RPV Mass controlled by blowdown period. Minimum mass determined by timing of GDCS initiation.

#### Containment

- Pressure change dominated by movement of noncondensible from DW to WW
- DW pressure just follows WW pressure
  - Hide out of noncondensibles can change timing of pressure change
- PCC only important in controlling amount of energy into SP
- Long-term changes in containment pressure small compared to initial pressurization due to noncondensibles

Containment pressure change dominated by movement of noncondensibles from DW to WW

#### **Comparison of ESBWR and Test Facilities**

→ How well are facilities scaled

- Goal of tests is to:
  - Represent phenomena important to system behavior at scaled magnitudes similar to the prototype so that models can be qualified for predicting important phenomena over a range of conditions similar to those expected in prototype
    - Important phenomena should be represented in test at similar magnitude to prototype
    - Unimportant phenomena need not be modeled
    - Phenomena not important in prototype should not be important in test
- No specific criteria exists to define well scaled
  - An acceptable criteria is to maintain important phenomena within factor of ~3 of prototype
    - Same order of magnitude in test and prototype
    - Differentiates from factor of 15 used to identify unimportant phenomena

• Parameters are well matched

• Parameters are well matched

#### **RPV** Pressure – GDCS Transition

- Parameters well
   matched
- Parameters not very important to overall system behavior

• Although transition period is not important to minimum mass, parameters are still matched well Parameters are well matched

DW Pressure – Long Term

 Important Parameters are well matched

#### WW Pressure – Long Term

- Pressure change in long term is small compared to early pressure increase due to noncondensible movement
- Parameters are matched reasonably well



#### **Bottom-up Scaling**

#### Bottom up scaling not extended beyond what was done in SBWR report

- Only a small number of phenomena important to system behavior
- Dominant phenomena are well scaled in test facilities
- Less important phenomena scaled well also, although not necessary to do so
- No new phenomena in tests

**Observed effects of scale from tests** 

#### Effect of N/C Gas Transport on Wetwell Pressure

#### Containment Pressure Varies with Noncondensable Gas Quantity in Wetwell

## **PCC/IC Performance - Data at Different Pressure and Scale**

# No Scale Effects in IC/PCC for Pure Steam

# **PCC Performance - Effect of Non-condensables at Different Scales**

No Scale Effects on PCC Performance with Non-condensable Gas

# Scaling Summary

- Only a small number of phenomena important to system behavior
- Important phenomena well scaled in tests
- No surprises no unexpected phenomena present in tests\*
- No additional bottom-up scaling needed as part of ESBWR work
- Comparison of test results at different scales confirm these results

\*

some non prototypic heat leakage for portions of tests resulted in non representative phenomena for short periods