Validation of Fuel Performance

Presented to Nuclear Regulatory Commission Staff 28 January 2003

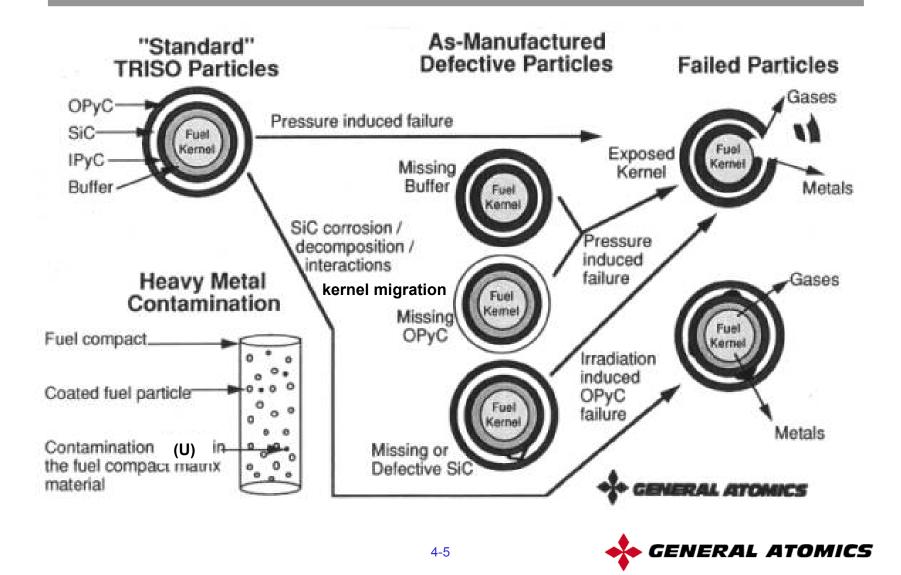
Donald W McEachern Manager, GT-MHR Fuel General Atomics

Outline Validation of Fuel Performance

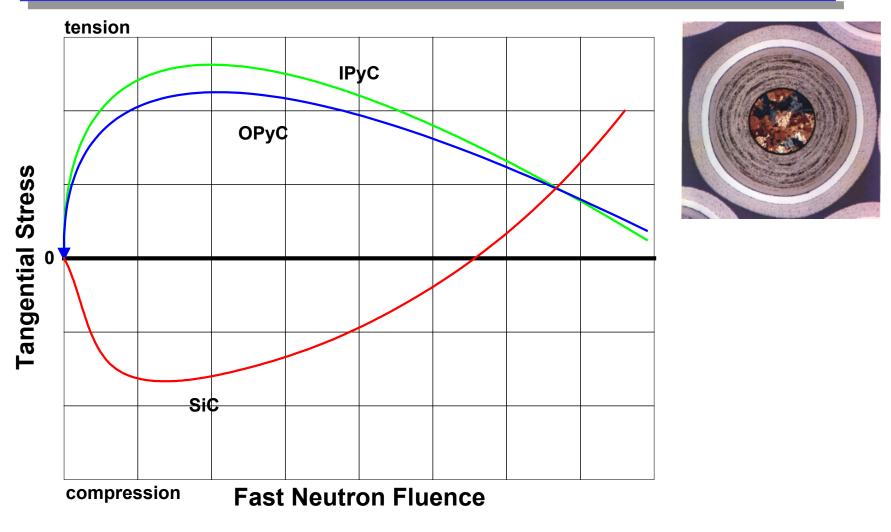
- Fuel Performance Summary
- Fuel Performance Validation Program
- Fuel Materials Design Data Needs
- Fuel Performance Design Data Needs

Summary of GT-MHR Fuel Requirements

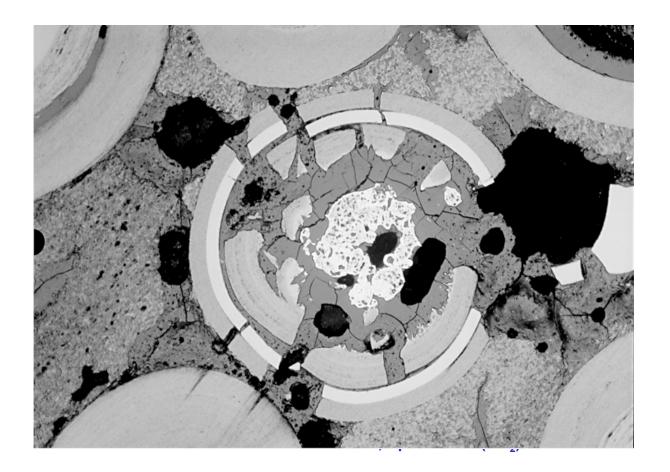
FUEL ATTRIBUTE	P <u>></u> 50%	P <u>></u> 95%
As-Manufactured Fuel Quality		
Heavy metal contamination fraction	<u>≤</u> 1.0 x 10 ⁻⁵	<u>≤</u> 2.0 x 10 ⁻⁵
Missing buffer fraction	<u>≤</u> 1.0 x 10 ⁻⁵	<u>≤</u> 2.0 x 10 ⁻⁵
SiC coating defection fraction	<u>≤</u> 5.0 x 10 ⁻⁵	<u>≤</u> 1.0 x 10 ⁻⁴
In-Service Performance		
Failure fraction (normal operation)	<u>≤</u> 5.0 x 10 ⁻⁵	<u>≤</u> 2.0 x 10 ⁻⁴
Incremental failure during accident	<u>≤</u> 1.5 x 10 ⁻⁴	<u>≤</u> 6.0 x 10 ⁻⁴



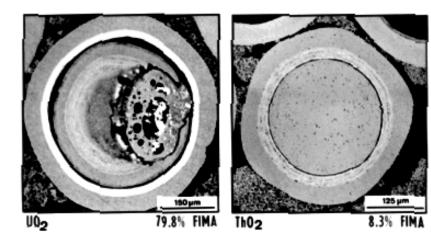
Types of In-Service Failure

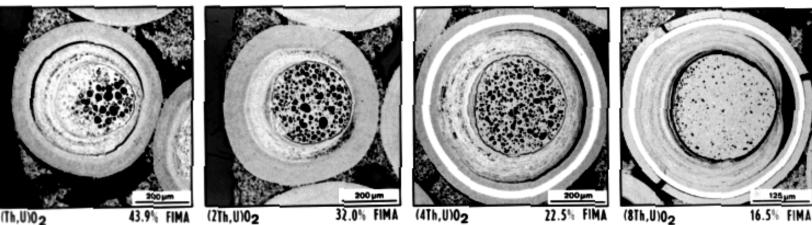

- Mechanical failure
 - Pressure vessel failure
 - Mainly from particles with as-manufactured defects
 - OPyC compact matrix bonding
- Thermochemical failures
 - Kernel migration
 - Fission product reactions with SiC
 - Thermal decomposition of SiC

Coating Failure Mechanisms



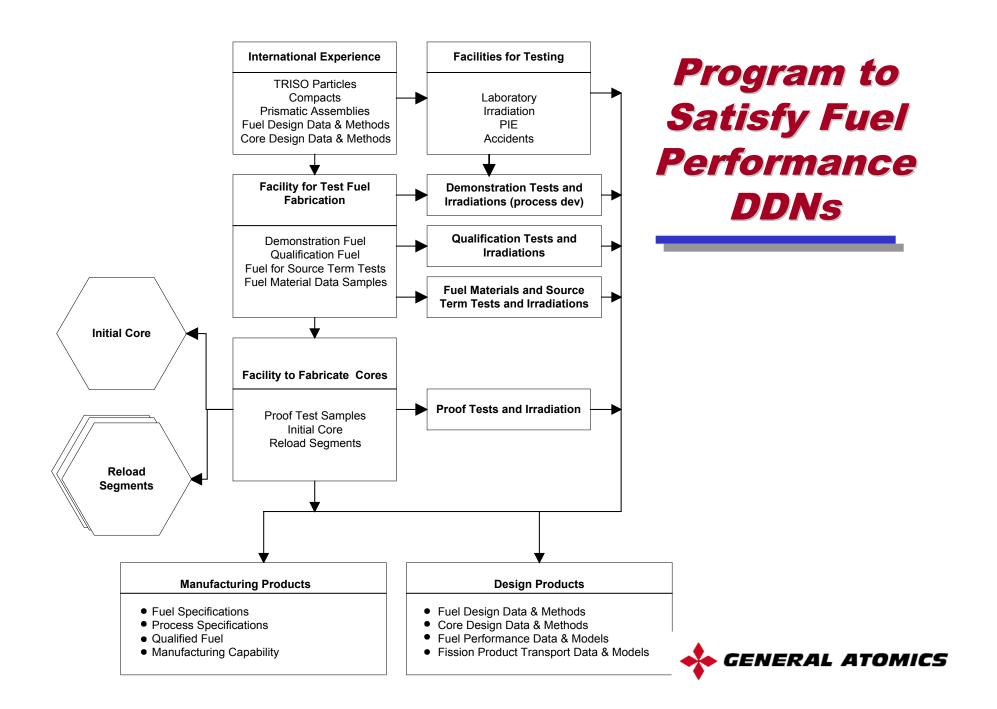
Pyrocarbons Keep SiC in Compression


Pressure Vessel Failure Seen During PIE (1976)



PIE Used to Quantify Kernel Migration

Relative Thermal stability of HTGR Candidate Recycle **Oxide Fuel Kernels Irradiated** in HRB-7. Time-average temperature, 1200-1220°C; thermal gradient, 1000-1030°C/cm; fast fluence, 6 x 10²¹ n/cm².



43.9% FIMA

Two Groups of Fuel Technology Design Data Needs

MATERIAL PROPERTIES

- C.07.02.01 Coating material property data
- C.07.02.03 Thermochemical performance data for fuel
- C.07.02.04 Fuel compact thermophysical properties

FUEL PERFORMANCE VALIDATION TESTING

- C.07.02.05 Normal operation fuel performance validation data
- C.07.02.02 Defective particle performance data
- C.07.02.06 Accident fuel performance validation data
- C.07.02.07 Fuel proof test

Fuel Materials DDNs

MATERIAL PROPERTIES

- C.07.02.01 Coating material property data
- C.07.02.03 Thermochemical performance data for fuel
- C.07.02.04 Fuel compact thermophysical properties

C.07.02.01 Coating material property data

OBJECTIVE

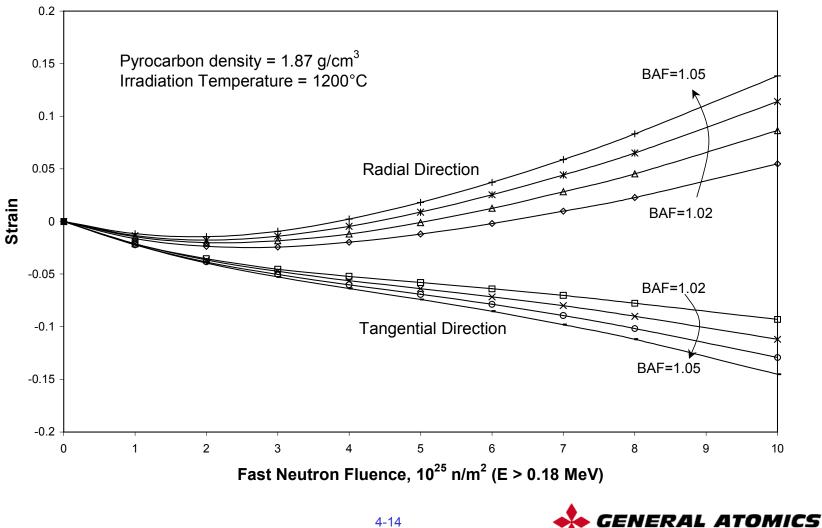
 Obtain pyrocarbon and silicon carbide thermal and mechanical property data needed for fuel design and fuel performance models for various temperatures and irradiation states

EXISTING DATA

- Coating thermal data compiled in "Fuel Design Data Manual"
- Coating mechanical data compiled in "Material Models of Pyrocarbon and Pyrolitic Silicon Carbide"
- Uncertainties in mechanical properties high

C.07.02.01 Coating material property data (cont'd)

ADDITIONAL DATA NEEDED


- Thermal and mechanical data for irradiated coatings on GT-MHR fuel at core temperatures
 - CTE, irradiation-induced dimensional change, thermal and irradiation induced creep, coating strength, poisson's ratio, etc.
 - thermal conductivity and heat capacity
- Specific GT-MHR materials reduce uncertainties

PLANNED TECHNOLOGY PROGRAMS

- Plan experiments to measure thermal and mechanical coating properties and prepare samples for test
- Irradiate samples and make measurements
- Update design manuals and performance models

Pyrocarbon Irradiation-Induced Dimensional Change

C.07.02.03 Thermochemical performance data for fuel

OBJECTIVE

 Obtain data on thermochemical behavior models applicable for GT-MHR fuel and core design under normal operation and accident conditions

• EXISTING DATA

- Oxidation potential calculated for UCO as a function of burnup and temperature
- Coating failure models based on existing data for the thermochemical processes are in the "Fuel Design Data Manual:
 - kernel migration
 - fission product attack on SiC coatings
 - thermal decomposition rates of SiC

C.07.02.03 Thermochemical performance data for fuel (cont'd)

- ADDITIONAL DATA NEEDED
 - Thermochemical data for GT-MHR fuel materials supplementing existing data base
- PLANNED TECHNOLOGY PROGRAMS
 - Irradiate special samples of fissile and fertile particles
 - Measure:
 - quantity and composition of gas in particles as function of irradiation conditions and temperature
 - measure rates of thermochemical coating failure mechanisms from irradiations and from special tests on irradiated fuels

Fuel Performance Design Data Needs

FUEL PERFORMANCE VALIDATION TESTING

- C.07.02.05 Normal operation fuel performance validation data
- C.07.02.02 Defective particle performance data
- C.07.02.06 Accident fuel performance validation data
- C.07.02.07 Fuel proof test

C.07.02.05 Normal operation fuel *performance*

- OBJECTIVE
 - Demonstrate fuel meets performance requirements under normal operating conditions
 - Validate performance models for normal operation

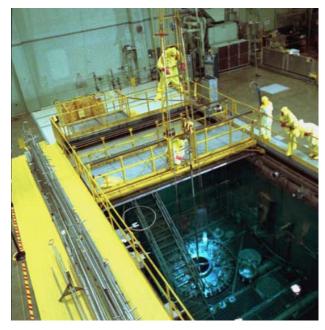
• EXISTING DATA BASE

- Experience with over 100 coated particle fuel capsules in US and other countries testing a variety of fuel designs including TRISO-coated dense UCO
- Data from FSV ((U/Th)C₂ & ThC₂) and other reactors

C.07.02.05 Normal operation fuel performance (cont'd)

ADDITIONAL DATA NEEDED

- Demonstrate that the TRISO-coated dense UCO (LEU) fissile and the TRISO-coated dense UCO (natural U) fertile particles in GT-MHR compacts satisfy coating integrity and fission product retention requirements
- Obtain an independent data base validating that the design methods used to predict fuel failure during normal operation are accurate to a factor of 4.


PLANNED TECHNOLOGY PROGRAMS

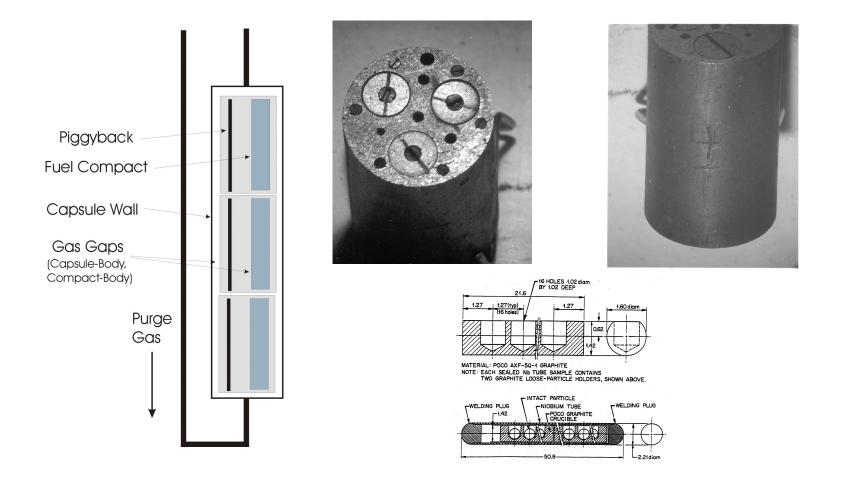
- Irradiate multicell fuel capsules in the temperature range up to maximum burnup and fast neutron fluence
- Post-irradiation examination of each capsule to determine fuel condition and fission product distrubution and extract quantitative data

Examples of Irradiation & PIE Testing Facilities with Experienced Staff Available

- 40 years experience in coated particle testing
 - HFIR at ORNL and ATR at INEEL can irradiate test fuel
 - ORNL has hot cells and equipment to perform Post-Irradiation Examination, and Accident Condition Testing

Irradiated Fuels Examination Lab

HFIR



GT-MHR CORE SERVICE CONDITIONS

Fuel:	LEU (19.9%) TRISO/Natural UCO TRISO		
Fuel Cycle:	Once-through, graded cycle one-half core replaced at each reload		
Refueling Frequency:	417 EFPD's (1.5 calendar yrs. @ 90% CF)		
Core Residence Time:	834 EFPD's (3.0 calendar yrs. @ 90% CF)		
Maximum Equilibrium Burnup):		
Fissile Particle	≤ 26% FIMA		
Fertile Particle	≤ 7% FIMA		
Maximum Fast Fluence (E > 0.18 Mev)	≤ 5x10 ²⁵ n/m²		
Peak Fuel Temperature	≤ 1250°C		

Typical Irradiation Capsule & Internals

Examples of TRISO-UCO Fuel Irradiations

Irradiation	UCO/TRISO ^{**} enrichment	Irrad temp (°C)	Burnup (%) FIMA	Fission Gas Release @ 4 x 10 ²⁵ n/m2 fast fluence
GT-MHR	LEU		26	1.6 x 10 ⁻⁶
Requirement	Nat	1250	7	1.0 × 10
HRB-17-18	HEU	775	78	
R2-K13 Cell 2	LEU	1190	22.5	8 x 10 ⁻⁵
R2-K13 Cell 3	LEU	9 85	22.2	5 x 10 ⁻⁷
FRJ2-P24	LEU	850-1300	18.6 - 22.2	2 x 10 ^{-7 *}

*max fluence 2.8 x 10²⁵ n/m²

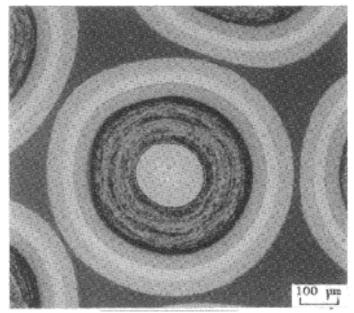
** abbreviations

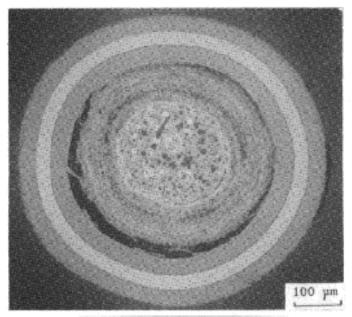
UCO - UO₂, UC₂ kernel mixture

HEU - highly-enriched uranium

LEU - < 20% enriched uranium

Nat - natural uranium


T-TRISO coating


Irradiations Indicate Good TRISO Coating Performance

UCO Kernels Perform Well Even at Burnup Levels Far Above Commercial Requirements

AS MANUFACTURED

78% FIMA BURNUP 4.2 x 10²⁵ n/M² (E>0.18 Mev) 755°C TEMPERATURE HRB-17 IRRAD CAPSULE

Irradiation in Test Reactors Used to Generate Fuel Materials and Performance Data

- Validation of fuel performance and fuel models for normal operation
- Procedure
 - Test conditions
 - representative fuel samples
 - conditions to envelope GT-MHR operation including uncertainties from core design estimates
 - Preparation
 - characterize the test fuel samples properties and distributions
 - predict fuel behavior prior to test
 - irradiation conditions quantify uncertainties (temperature, gradients, fluxes and fluences, burnup, etc.)
 - coating integrity accounting for various failure mechanisms
 - fission product transport
 - fission product retention of barriers

Irradiation in Test Reactors Used to Generate Fuel Materials and Performance Data (cont'd)

- Procedures (cont'd)
 - Irradiation Test
 - control irradiation conditions
 - test conditions envelope core conditions including uncertainties
 - in-pile measurements
 - test reactor conditions
 - thermocouple temperatures
 - gas flows and purity
 - noble gas fission product release
 - Comprehensive post-irradiation examination
 - burnup and fast neutron fluence
 - coating integrity vs. irradiation conditions
 - fission product distribution
 - calculations of irradiation detailed time and spacial variations of irradiation conditions from measurements

Irradiation in Test Reactors Used to Generate Fuel Materials and Performance Data (cont'd)

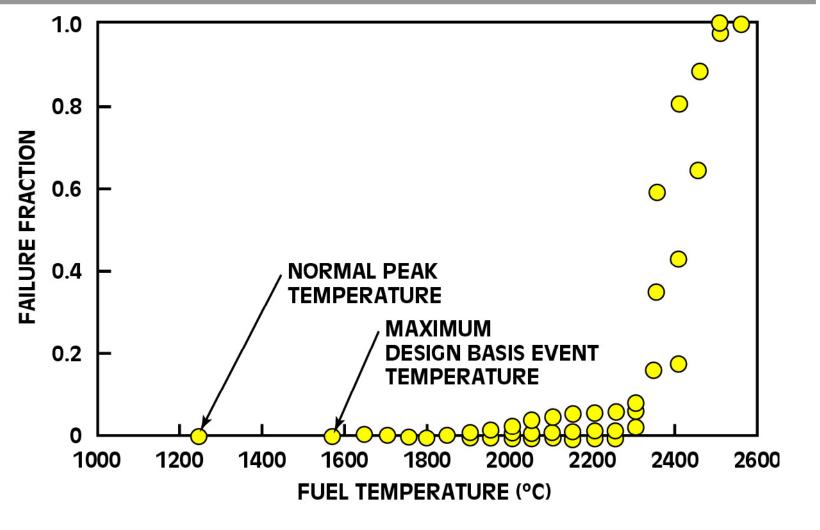
- Success Criteria
 - Meets objectives of the test
 - Final Qualification Test demonstrated that performance goals were satisfied
 - test conducted according to plan
 - required fission product retention achieved
 - required coating integrity achieved

Post-Irradiation Examination (PIE)

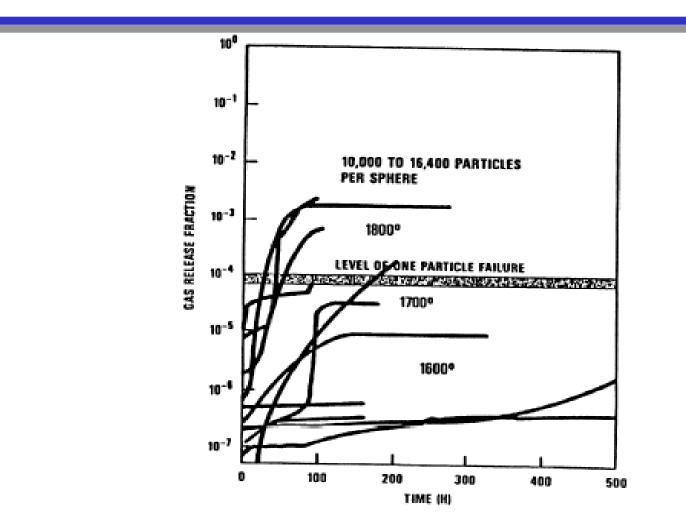
- Examine irradiated fuel
 - Tests (examples)
 - metallography
 - burn-leach for failed SiC
 - compact deconsolidation
 - individual particle gamma counting
 - scanning electron microscope images
 - Coating failure
 - mechanisms
 - quantification and dependence on in-service conditions
 - incipient coating failures and mechanisms
 - In-pile fission product release (mass balance and distribution in capsule components)

C.07.02.06 Accident fuel performance validation data

• OBJECTIVE


- Determine performance of fuel at various stages of irradiation during core conduction cooldown conditions
- Validate performance models used for core conduction cooldown events

• EXISTING DATA BASE


- Coating failure fractions from gaseous fission product release during rapid heatup of loose particles to temperatures 2500 °C
- Extensive US and international database for the constant temperature heating of oxide and carbide-based TRISO particles in spheres and compacts to 2000°C including tests of UCO-TRISO

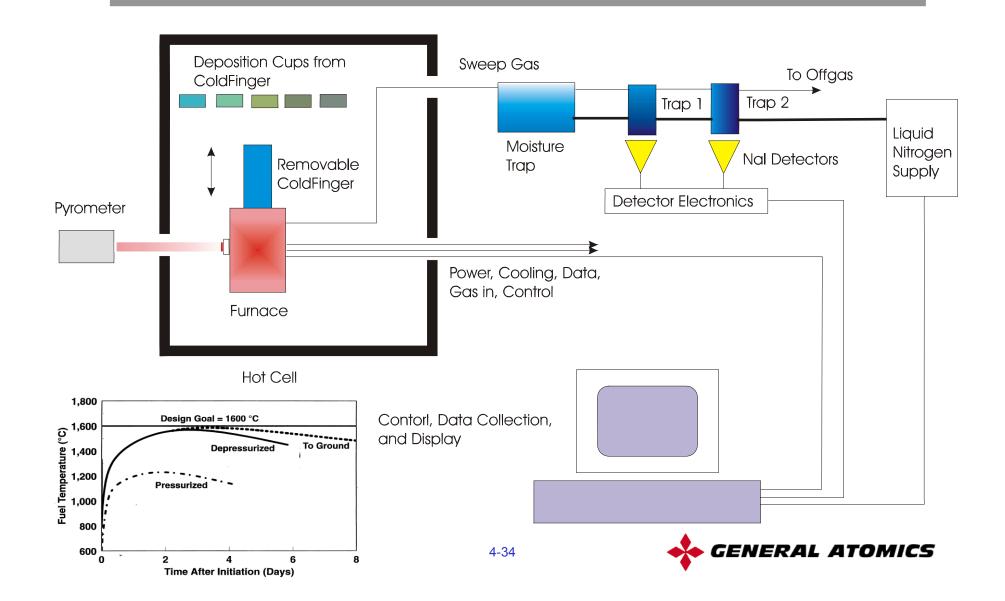
Short-Term Temperature Limit ~2200 °C where SiC Decomposes

COATING FAILURE IS NOT OBSERVED DURING TEMPERATURE EXCURSIONS UP TO 1600 °C FOR SEVERAL HUNDRED HOURS

CENERAL ATOMICS

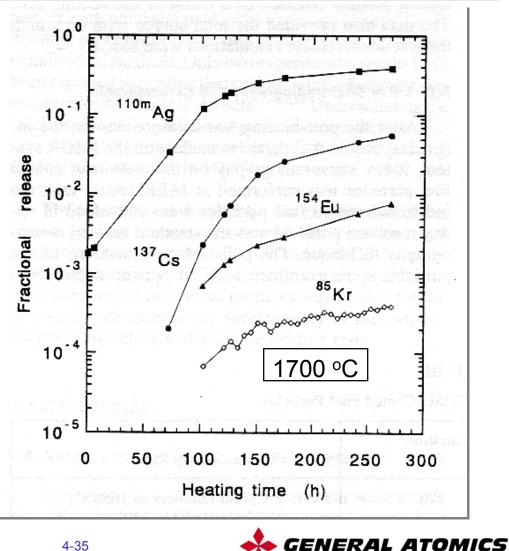
M-285(54) 8-27-01

C.07.02.06 Accident fuel performance validation data (cont'd)


- ADDITIONAL DATA NEEDED
 - Accident simulation data for irradiated GT-MHR fuel in compacts for temperatures up to 2000°C
 - Post-heating examination to assess fuel condition, identify failure mechanisms, and quantify rates

PLANNED TECHNOLOGY PROGRAMS

- Heat fuel compacts irradiated under various conditions
- Collect solid and gaseous fission product release data as a function of test conditions and time
- Examine heated fuel and identify and quantify coating failure



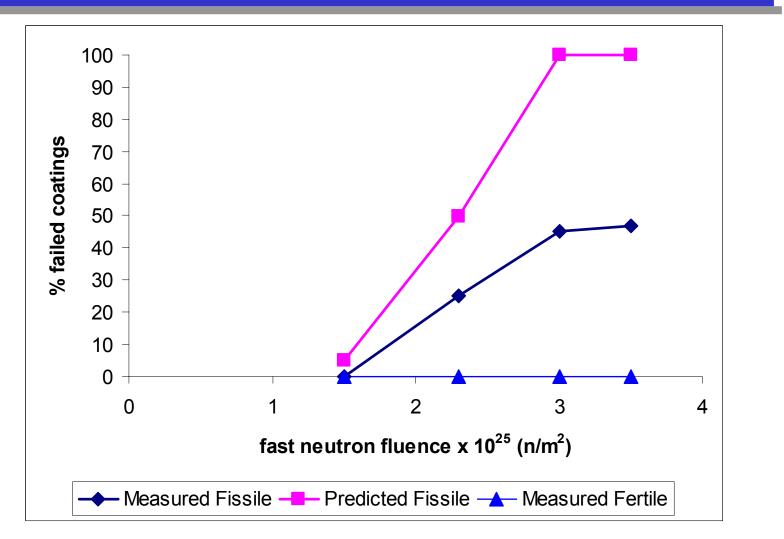
Accident Testing

Fission Product Release Data Collected **During Accident Simulation Test**

- HRB-22 UO₂ LEU fuel • (Minato, et. al. Nucl. Tech 131, July 2000)
- Irradiated fuel compacts
- Solid and gaseous • fission product release vs. Time

C.07.02.02 Defective particle performance data

• OBJECTIVE


 More precise performance models for particles with defective coatings, especially missing buffers and SiC defects

• EXISTING DATA BASE

- Irradiated particles with:
 - missing buffers
 - missing OPyC
 - heavy metal dispersed in buffer

Missing Buffer Failure Data/Predictions

C.07.02.02 Defective particle performance data (cont'd)

ADDITIONAL DATA NEEDS

- Improved performance models for particles with missing buffers as function of irradiation conditions & temperature
- Improved performance models for particles with failed SiC and intact OPyC layers as a function of burnup, fluence, and temperature
- PLANNED TECHNOLOGY PROGRAMS
 - Irradiate batches of particles with missing buffers and particles with failed SiC but intact OPyC coatings followed by PIE to determine failure characteristics
 - Post-irradiation heating of these batches of defective particles to determine coating failure under accident conditions

C.07.02.07 Fuel Proof Test

OBJECTIVE

- Demonstrate fuel produced for the initial GT-MHR core:
 - meets product specification
 - normal operation performance meets requirements
 - accident performance meets performance
 - consistent with fuel performance models

• EXISTING DATA BASE

- Fuel Proof Tests for Peach Bottom I and FSV
- Experience with over 100 coated particle fuel capsules

C.07.02.07 Fuel Proof Test (cont'd)

ADDITIONAL DATA NEEDED

- Irradiation, PIE, accident testing of fuel from the initial core production line
- Test under normal and accident conditions enveloping expected in-service conditions
- Demonstration that production line fuel meets performance requirements
- PLANNED TECHNOLOGY PROGRAMS
 - Remove a random sample of fuel compacts from the production line
 - Irradiate under enveloping conditions
 - Perform PIE to confirm performance
 - Test irradiated fuel under accident
 - Perform examination to confirm performance

Fuel Technology Program Summary

- The fuel technology program as described will:
 - Improve and scale-up fabrication facilities and and fabricate GT-MHR coated particle fuel for tests
 - Qualifying fuel by test
 - Obtaining fuel data for design and licensing
 - When commercially ready, establishing a GT-MHR fuel fabrication plant
 - Demonstrating fuel from fabrication plant meets the requirements of the GT-MHR

The planned fuel technology program will accomplish the objectives:

- Finalize process and product specifications
- Scale-up and improve fuel fabrication equipment
- Provide a statistically significant demonstration of GT-MHR fuel
 - Fuel manufacturing processes and Quality Control methods ensure production of fuel meeting specification requirements
 - Fuel meets GT-MHR performance requirements under normal operation and accident conditions
 - Validated methods are available to accurately predict fuel performance

Outcome Objectives

- NRC feedback on the approach being taken to finalize fuel process and product specifications
- NRC agreement or feedback on the adequacy of DDNs supporting validation of fuel performance

