GT-MHR Source Term Overview

Presented to Nuclear Regulatory Commission Staff 28 January 2003

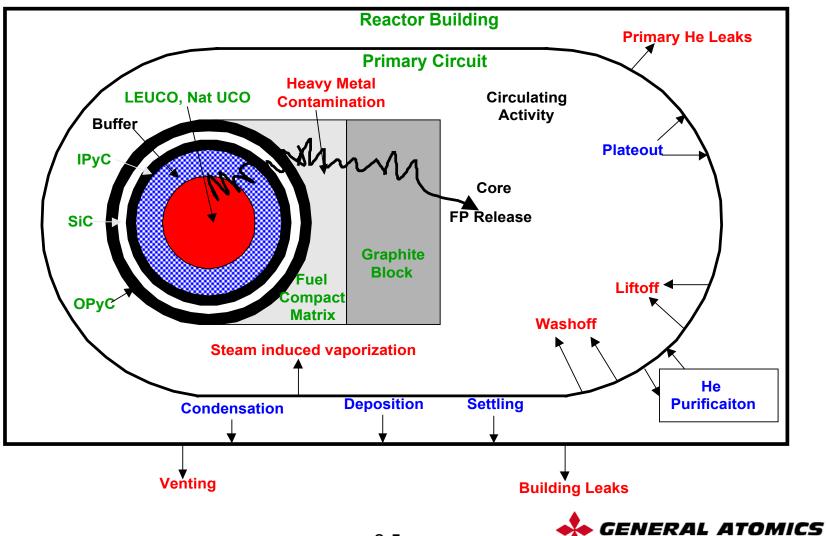
David L. Hanson

Senior Staff Engineer General Atomics

- Radionuclide Containment System
 - Multiple release barriers
 - Defense-in-depth
- Controlling Radionuclide Transport Phenomena
- Methodology for Deriving Barrier Performance Requirements (e.g., Fuel Product Specification)
- Example Derivation of Fuel Quality Requirements
- Methodology for Identifying Design Data Needs (DDNs) Required to Validate Source Term

Radionuclide Control Methodology

- Design Selections to Limit Fuel Temperatures
 - Limited core thermal power
 - Low power density
 - Annular core geometry
- Multiple Radionuclide Release Barriers
 - TRISO-coated fuel particles
 - Inherent properties of ceramic core
 - Natural removal mechanisms in vessel & building
- Fuel Product Specifications
 - As-manufactured fuel attributes
 - Allowable heavy-metal contamination
 - Allowable coating defects
- He Purification System
 - Limits circulating noble gas and H-3 activities
 - Limited effect on condensible radionuclides

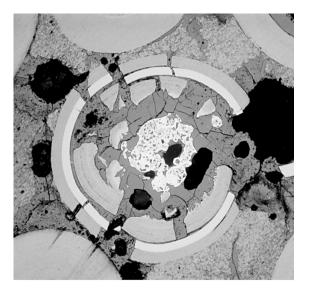

DOMINANT RADIONUCLIDES IN GT-MHR

Nuclide	Half Life	Primary Impact
I-131	8 Day	Offsite Dose, O&M Doses
Cs-134	2.1Year	O&M Doses, Offsite Dose
Cs-137	30 Year	O&M Doses, Offsite Dose
Ag-110m	250 Day	O&M Doses
Sr-90	29 Year	Offsite Dose
Kr & Xe		Normal Gaseous Effluent
H-3	12 Year	Normal Liquid Effluent

GT-MHR

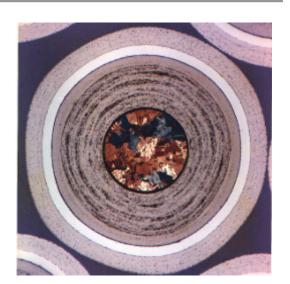
Radionuclide Containment System

THE COATINGS ON THE FUEL PARTICLES ARE THE MOST IMPORTANT BARRIER

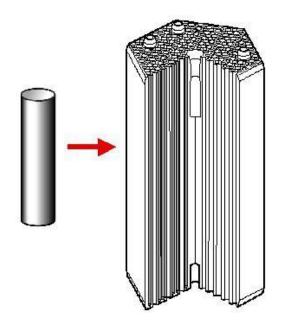

- GT-MHR Design Employs a Multiple-barrier, Radionuclide (RN) Containment System to Meet Radionuclide Control Requirements
 - Fuel kernels
 - Particle coatings
 - Compact matrix/fuel element graphite
 - Primary circuit
 - Reactor building
- Performance Criteria for Each Barrier Derived using a Top-down Allocation Process

Radionuclide Release Barriers Fuel Kernels

- POTENTIAL RELEASE MECHANISMS
 - Fission recoil
 - Diffusion
 - Hydrolysis (reaction with H₂O)
- CONTROLLING PARAMETERS
 - Fuel temperatures
 - Time
 - H₂O concentration
 - Burnup (metal diffusivities Increase)
- KERNEL RETENTION
 - Fractional gas release function of time/temperature history
 - Increased gas release in case of hydrolysis
 - Partial diffusive release of volatile fission metals
 - Other radionuclides, including actinides, completely retained

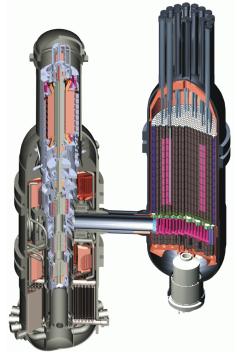

Radionuclide Release Barriers Particle Coatings

- POTENTIAL RELEASE MECHANISMS
 - Diffusion through intact coatings
 - In-service coating failure
 - SiC corrosion by fission products
 - SiC thermal decomposition
- CONTROLLING PARAMETERS
 - Fuel temperatures
 - Time


- COATING RETENTION
 - Only Ag Released by Diffusion from Intact Particles
 - No Pressure-Induced Failure of Standard Particles
 - SiC Thermochemical failure function of time/temperature
 - Gases Retained by OPyC with Defective/Failed SiC

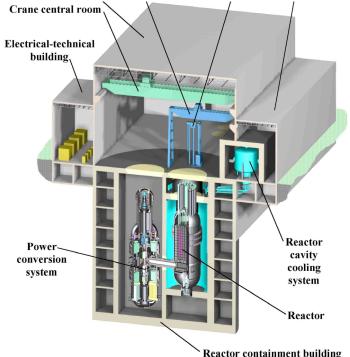
Radionuclide Release Barriers Core Matrix/Graphite

- POTENTIAL RELEASE MECHANISMS
 - Diffusion/vaporization
 - Matrix/graphite oxidation
- CONTROLLING PARAMETERS
 - Temperature
 - Time
 - Fast neutron fluence
 - H₂O Concentration
- MATRIX/GRAPHITE RETENTION
 - Cs and Sr partially released at hotter locations
 - Released Cs and Sr partially resorb on cooler graphite
 - Sorbed metals assumed to be released by oxidation



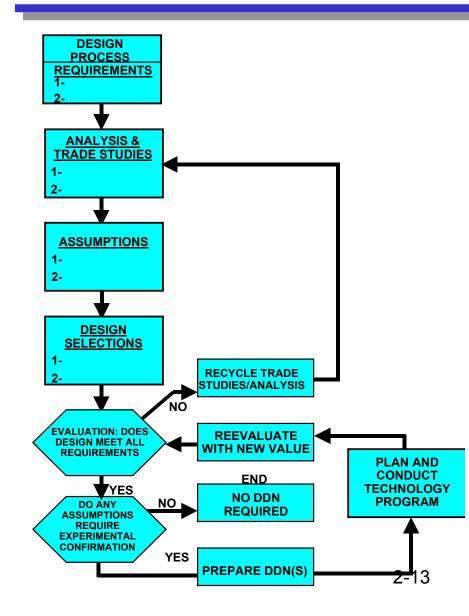
GENERAL ATOMICS

Radionuclide Release Barriers Primary Circuit


- POTENTIAL RELEASE MECHANISMS
 - Primary coolant leaks
 - Liftoff (mechanical reentrainment)
 - Steam-Induced vaporization
 - **Washoff** (removal by liquid H₂O)
- CONTROLLING PARAMETERS
 - Temperatures in primary circuit
 - Size/location of coolant leaks
 - Particulate matter in primary circuit
 - Steam/Liquid H₂O ingress and egress
- PRIMARY CIRCUIT RETENTION
 - Condensible RNs plate out during normal operation
 - Circulating Kr, Xe and H-3 limited by HPS
 - Plateout largely retained during rapid blowdowns
 - RN holdup due to thermal contraction of gas in vessel

Radionuclide Release Barriers Reactor Building

- POTENTIAL RELEASE MECHANISMS ELE
 - Venting through louvers
 - Building leakage
- CONTROLLING PARAMETERS
 - Leak path(s) and rates
 - Contaminated steam/liquid H₂O
 - Contaminated particulate matter
 - Temperatures along leak path(s)
- **REACTOR BUILDING RETENTION**
 - Noble gases decay during holdup
 - Condensible fission products, including I, deposit
 - Contaminated steam condenses
 - Contaminated dust settles out and deposits


A Top-Down Functional Analysis Used to Develop MHR Design Basis

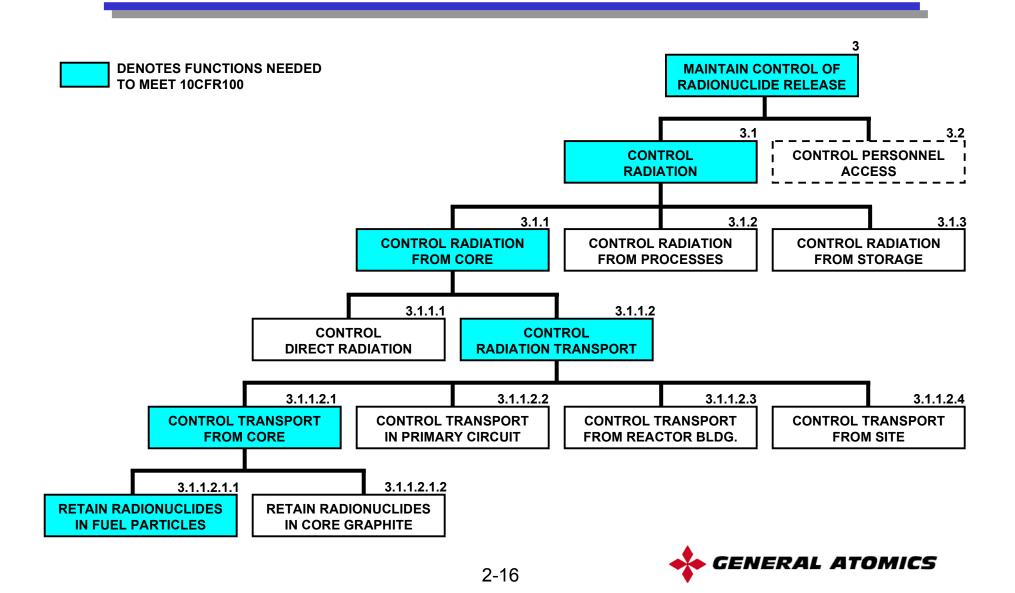
Requirements Are Specified and Design Selections Made for Each Function; These Requirements and Design Selections Cascade Downward until the Design Basis Is Completely Defined

Methodology for Deriving Barrier Performance Requirements

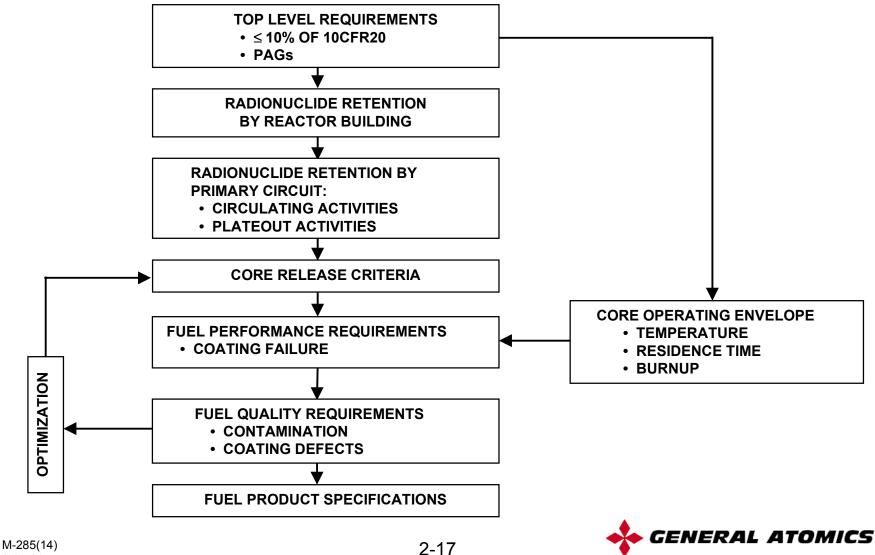
- Requirements Specified to
 Quantify Each Function
- Analyses & Trade Studies Performed; Assumptions Made as Necessary
- Design Selections Made to Satisfy Requirements
- Certain Assumptions Require Technology Development before Validity Determined
- As Part of the Functional Analysis, Fuel Performance Requirements Are Derived from Top-Level Radionuclide Control Requirements

Example Derivation of Fuel Quality Requirements

- A Top-Down Functional Analysis Was Performed for the 350 MW(t) Steam-Cycle MHTGR in 1980s
- This Methodology Provides a Logical Basis for Deriving Fuel Requirements from Top-Level Radionuclide Control Requirements
 - In-service fuel failure limits
 - As-manufactured fuel quality requirements
- Example Derivation of Fuel Quality Requirements for the Steam-Cycle MHTGR Follows
- A Comparable Analysis Needs Be Done for the Direct-Cycle GT-MHR; Similar Results Anticipated



Key Top-level Radionuclide Control Requirements for Steam-Cycle MHTGR


- TOP-LEVEL REGULATORY CRITERIA
 - 10CFR50 App I and 40 CFR190 limits for radionuclides in effluents
 - 10CFR20 occupational doses
 - 10CFR100 offsite accident dose guidelines
 - EPA-520 protective action guides (PAG) for emergency planning
 - NRC safety goal risk limits
- UTILITY/USER REQUIREMENTS
 - Top-level regulatory criteria (including lower level PAG dose limits) without shelter or evacuation
 - Worker doses <10% of 10CFR20</p>

MHTGR MEETS 10CFR100 BY RADIONUCLIDE RETENTION IN FUEL

Logic for Deriving Key Fuel Product Specifications

8-27-01

Key Events in Deriving Fuel Quality Criteria for Steam-Cycle MHTGR

- Normal Plant Operation
 - Steady-state full-power operation
 - Normal operating transients
- Postulated Accidents
 - Primary coolant leak (rapid depressurization)
 - Large H₂O ingress plus pressure relief
 - Depressurized core conduction cooldown

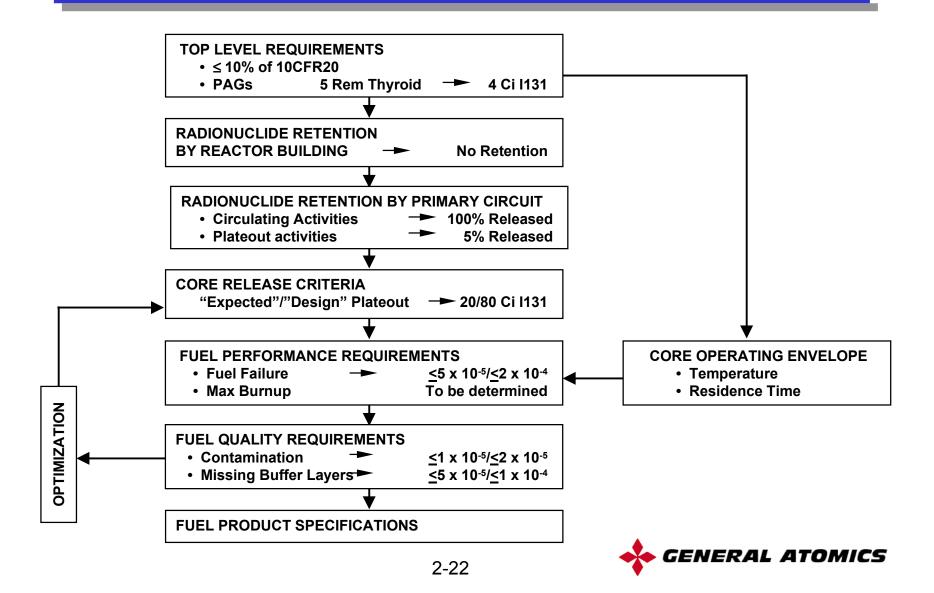
Quantitative Example for Primary Coolant Leak Accident Follows; Most Constraining Event for Steam-Cycle MHTGR for Establishing As-Manufactured Fuel Quality Requirements

Example Derivation of Fuel Quality Allocation

- PART 1: DURING PRIMARY COOLANT LEAK ACCIDENT
 - Use offsite dose limit of 5 Rem thyroid from PAG
 - Event Summary: rapid primary coolant leak with forced cooling
 - Use Reg. Guide weather/breathing rates:
 5 Rem 4 Ci iodine-131 releasable from reactor building
 - Allocate no retention in reactor building
 - Assume conservatively that 5% of normal operation "Design" level plateout in primary circuit is released due to liftoff:
 - 4 Ci allowable I-131 release > 80 Ci "Design" level plateout in primary circuit during normal operation

Example Derivation of Fuel Quality Allocation - Cont.

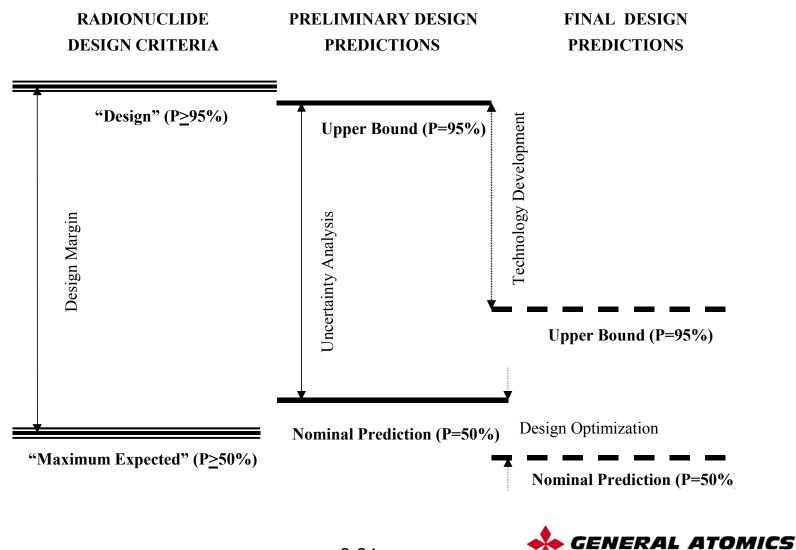
- PART 2: DURING NORMAL OPERATION
 - Assume that "Expected" plateout is factor of 4 less:
 80 Ci design plateout ---- 20 Ci "Expected" plateout
 - Assume no holdup of iodine in graphite
 - Assume design methods for predicting gas release accurate to within 4x at 95% confidence $(R_{95\%}/R_{50\%} \le 4)$
 - Allocate equal contributions from exposed kernels and contamination: 20 Ci 10 Ci from each
 - Assume 0.1 fractional release from contamination and 10 million Ci iodine core inventory: 10 Ci 10/10 million/ 0.1 = 1 x 10⁻⁵ allowable fraction of contamination
 - Assume 0.02 fractional release from exposed kernels:
 10 Ci 10/10 million/.02 = 5 x 10⁻⁵ fraction of exposed kernels


Example Derivation of Fuel Quality Allocation - Cont.

• PART 3: QUALITY AFTER MANUFACTURE

- Assume design methods for predicting fuel failure are accurate to within 4x at 95% confidence $(F_{95\%}/F_{50\%} \le 4)$
- Assume that particles with missing buffers are dominant contributor to exposed kernels: 5 x 10⁻⁵ fraction of exposed kernel _____ 5 x 10⁻⁵ allowable fraction of missing buffers from manufacturer

Allocated Barrier Performance Criteria for Rapid Depressurization Event



Functional Analysis Provides Design Basis for Radionuclide Containment System

- Barrier Performance Requirements Derived
 - Retention by reactor building
 - Retention by primary circuit
 - Retention by core ("RN Design Criteria")
- Design Margins for each Barrier Quantified
- Predictive Accuracy Goals for Radionuclide
 Transport Methods Established
- Fuel Design Requirements
 - In-service fuel performance requirements
 - As-manufactured fuel quality requirements
- Design Data Needs to Validate RN Containment System Performance Identified

Design Margins Are Explicitly Included in Radionuclide Containment System

Summary Basis for Key Steam-Cycle MHTGR Fuel Quality Requirements

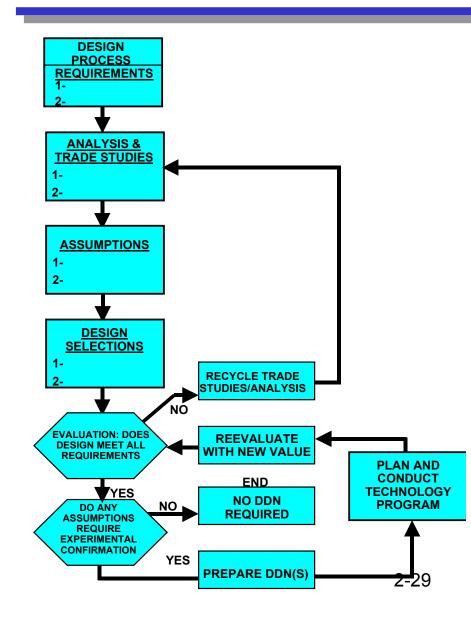
- <u>U contamination</u> fraction allocated from PAG thyroid dose limit during rapid depressurization
- <u>Missing buffer</u> fraction allocated from exposed kernel limit derived from PAG thyroid dose limit during rapid depressurization
- <u>SiC defect</u> fraction allocated from allowable core Cs release derived from occupational exposure limit

Fuel Requirements May Be Optimized as Design Evolves

- Initial Functional Analysis ("Back-of-the-Envelope") Provides Logical Point of Departure at Beginning of Preliminary Design:
 - To establish provisional fuel requirements
 - To identify Design Data Needs and attendant technology development programs
- These Fuel Provisional Requirements Must Be Confirmed by Detailed Design Evaluation and Safety Analyses
 - PRA to confirm dominant events identified
 - Detailed deterministic consequence analyses
- Design Process Is Iterative: some Re-allocation of Barrier Performance Requirements Should Be Anticipated
- Nevertheless, Detailed Consequence Analysis for Steam-Cycle MHTGR largely Validated Provisional Fuel Requirements

GT-MHR Fuel Design Basis

- GT-MHR Fuel Requirements Are Comparable to Steam-Cycle MHTGR for Preliminary Design
 - Identical radionuclide control requirements
 - Modest impact of plant design differences (~2x)
- MHTGR Fuel Requirements Adopted for GT-MHR
 - Exception: missing buffer fraction reduced 5x
- DDNs Revised to Reflect GT-MHR Design
 - Priority of H₂O ingress DDNs reduced
 - Higher temperatures, etc., in core and primary circuit
- Fuel Requirements and DDNs Will Be Revisited
 during GT-MHR Preliminary Design



Summary of GT-MHR Fuel Requirements

FUEL ATTRIBUTE	P <u>></u> 50%	P <u>></u> 95%
As-Manufactured Fuel Quality		
Heavy metal contamination fraction	<u>≤</u> 1.0 x 10 ⁻⁵	<u>≤</u> 2.0 x 10 ⁻⁵
Missing buffer fraction	<u>≤</u> 1.0 x 10 ⁻⁵	<u>≤</u> 2.0 x 10 ⁻⁵
SiC coating defection fraction	<u>≤</u> 5.0 x 10 ⁻⁵	<u>≤</u> 1.0 x 10 ⁻⁴
In-Service Performance		
Failure fraction (normal operation)	<u>≤</u> 5.0 x 10 ⁻⁵	<u>≤</u> 2.0 x 10 ⁻⁴
Incremental failure during accident	<u>≤</u> 1.5 x 10 ⁻⁴	<u>≤</u> 6.0 x 10 ⁻⁴

Methodology for Identifying Design Data Needs

- DDNs Are Identified as Part of the Functional Analysis Process
- Assumptions Are Made when Making Design Selections to Satisfy Requirements
- Certain Assumptions Require Technology Development before their Validity Can Be Determined

GT-MHR Design Data Needs

- A Preliminary Set of Design Data Needs Have Been Identified for the 600 Mw(t) GT-MHR, including:
 - Fuel process development DDNs
 - Fuel materials development DDNs
 - Fission product transport DDNs
- The Fuel/Fission Product DDNs Will Be Summarized during the Remainder of the Current Meeting
- Only the <u>High</u> Priority Fission Product Transport DDNs Will Be Presented
- As the GT-MHR Design Matures, Additional DDNs May Be Identified, and the Existing DDNs May Be Modified
- Major Additions And/or Changes Are Not Anticipated

GT-MHR Design Data Needs Fuel Process Development

<u>DDN No.</u>	DDN Title	<u>Priority</u>
C.07.01.01	UCO Kernel Process Development	Medium
C.07.01.02	Fuel Particle Coating Process Development	High
C.07.01.03	Fuel Compact Fabrication Process	High
C.07.01.04	Quality Control Test Techniques Development	High
C.07.01.05	Fuel Product Recovery Development	Medium

GT-MHR Design Data Needs Fuel Materials Development

<u>DDN No.</u>	DDN Title	<u>Priority</u>
C.07.02.01	Coating Material Property Data	High
C.07.02.02	Defective Particle Performance Data	Medium
C.07.02.03	Thermochemical Performance Data for Fuel	Medium
C.07.02.04	Fuel Compact Thermophysical Properties	Low
C.07.02.05	Normal Operation Fuel Performance Validation Data	High
C.07.02.06	Accident Fuel Performance Validation Data	High
C.07.02.07	Fuel Proof Test	High

GT-MHR Design Data Needs Radionuclide Transport

DDN No.	DDN Title	Priority
C.07.03.01	Fission Gas Release from Core Materials	High
C.07.03.02	Fission Metal Diffusivities in Fuel Kernels	Medium
C.07.03.03	Fission Product Diffusivities in Particle Coatings	High
C.07.03.04	Fission Product Diffusivities/Sorptivities in Graphite	High
C.07.03.05	Tritium Permeation in Heat Exchanger Tubes	Low
C.07.03.06	Tritium Transport in Core Materials	Low
C.07.03.07	RN Deposition Characteristics for Structural Materials	High
C.07.03.08	Decontamination Protocols for Turbine Alloys	Medium
C.07.03.09	RN Reentrainment Characteristics for Dry Depressurization	High

GT-MHR Design Data Needs Rn Transport - Continued

DDN No.	DDN Title	Priority
C.07.03.10	RN Reentrainment Characteristics for Wet Depressurization	Low
C.07.03.11	Characterization of the Effects of Dust on RN Transport	Medium
C.07.03.12	Fission Product Transport in Vented Low-Pressure Containment	High
C.07.03.13	Decontamination Efficiency of Depressurization Train Filter	Medium
C.07.03.14	Fission Gas Release Validation Data	High
C.07.03.15	Fission Metal Release Validation Data	High
C.07.03.16	Plateout Distribution Validation Data	High
C.07.03.17	Radionuclide "Liftoff" Validation Data	High
C.07.03.18	Radionuclide "Washoff" Validation Data	Medium

Conclusions

- GT-MHR Uses Multiple-Barrier Radionuclide Containment System to Meet Radionuclide Control Requirements
- Fuel Particle Coatings Are the Most Important Barrier
 - Coatings alone are sufficient to meet 10CFR100 limits
 - Additional barriers needed to meet User requirements (e.g., PAGs at EAB)
- Certain Assumptions Made in the Assessment of the RN
 Containment System Must Be Validated
 - Fabrication of high-quality fuel meeting specifications
 - Coating integrity during normal operation and LBEs
 - Accuracy of codes for modeling release barriers

Outcome Objectives

- NRC concurs with adequacy and logic of approach for defining fuel requirements
 - In-service fuel failure limits
 - As-manufactured fuel quality
- NRC concurs with adequacy and logic of approach for identifying DDNs relevant to validating source term

