

R. A JONES Vice President

Duke Power 29672 / Oconee Nuclear Site 7800 Rochester Highway Seneca, SC 29672

864 885 3158 864 885 3564 fax

January 27, 2003

U. S. Nuclear Regulatory Commission Document Control Desk Washington, D. C. 20555

Subject: Oconee Nuclear Station Docket Nos. 50-269, -270, -287 Emergency Plan Implementing Procedures Manual Volume B, Revision 2003-01

Please find attached for your use and review copies of the revision to the Oconee Nuclear Station Emergency Plan:

Volume B Revision 2003-01 January 2003

This revision is being submitted in accordance with 10 CFR 50-54(q) and does not decrease the effectiveness of the Emergency Plan or the Emergency Plan Implementing Procedures.

Any questions or concerns pertaining to this revision please call Rodney Brown, Emergency Planning Manager at 864-885-3301.

By copy of this letter, two copies of this revision are being provided to the NRC, Region II, Atlanta, Georgia.

Very ryly yours, R. / lones

VP, Oconee Nuclear Site

xc: (w/2 copies of attachments)
Mr. Luis Reyes,
Regional Administrator, Region II
U. S. Nuclear Regulatory Commission
61 Forsyth St., SW, Suite 24T23
Atlanta, Georgia 30303

w/copy of attachments Mr. Steven Baggett Rockville, Maryland

(w/o Attachments, Oconee Nuclear Station) NRC Resident Inspector M. D. Thorne, Manager, Emergency Planning

2045

January 27, 2003

OCONEE NUCLEAR SITE

SUBJECT: Emergency Plan Implementing Procedures Volume B, Revision 2003-01

Please make the following changes to the Emergency Plan, Volume B by following these instructions.

REMOVE

ADD

Cover Sheet Rev. 2002-11	Cover Sheet Rev. 2003-01
Table of Contents page 1	Table of Contents page 1
CP/1/A/2002/004C - (01/08/02)	CP/1/A/2002/004C - (01/10/03)
CP/2/A/2002/004C - (01/08/02)	CP/2/A/2002/004C - (01/10/03)
CP/3/A/2002/004C - (01/08/02)	CP/3/A/2002/004C - (01/10/03)

VOLUME B TABLE OF CONTENTS

Chemistry Lab LM-O-P003C	Determination Of Boron By Manual Colorimetric Titration	11/06/02
Chemistry Lab LM-O-P919	Boron Analysis by Mettler DL 58 Boron Titration	10/28/02
CP/1/A/2002/004C	Operating Procedure For The Post Accident Liquid Sampling System (PALSS)	01/10/03
CP/1&2/A/2002/005	Post Accident Caustic Injection Into The Low Pressure Injection System	07/24/02
CP/2/A/2002/004C	Operating Procedure For The Post Accident Liquid Sampling System (PALSS)	01/10/02
CP/3/A/2002/004C	Operation Procedure For The Post-Accident Liquid Sampling System (PALSS)	01/10/03
CP/3/A/2002/005	Post Accident Caustic Injection Into The Low Pressure Injection System	07/24/02
HP/0/B/1009/009	Procedure For Determining The Inplant Airborne Radioiodine Concentration During Accident Conditions	12/03/97
HP/0/B/1009/012	Distribution Of Potassium Iodide Tablets In The Event Of A Radioiodine Release	01/09/01
HP/0/B/1009/015	Procedure For Sampling And Quantifying High Level Gaseous Radioiodine And Particulate Radioactivity	07/23/01
HP/0/B/1009/016	Procedure For Emergency Decontamination Of Personnel And Vehicles On-Site And From Off-Site Remote Assembly Area	12/29/97
HP/1/A/1009/017	Operating Procedure For Post-Accident Containment Air Sampling System	09/13/00
HP/2/A/1009/017	Operating Procedure For Post-Accident Containment Air Sampling System	09/13/00
HP/3/A/1009/017	Operating Procedure For Post-Accident Containment Air Sampling System	09/13/00
RP/0/B/1000/011	Planned Emergency Exposure	02/01/94
RP/0/B/1000/025	Operational Support Center Manager Procedure	11/21/02
RP/0/B/1000/027	Re-Entry Recovery Procedure	05/30/00
	D	avision 2002 0

Revision 2003-01 January 2003

(R04.D1)	Duke Power C	ompany (I) D	No CP/1/A/20	02/004
	PROCEDURE PROC	$\mathbf{ESS RECORD}_{\mathbf{R}}$	evision No	
			Continuo	us L
REPARATION	INFORMATION	ONLY		
(2) Station	Oconee Nuclear S	Station		
(3) Procedure Title	Operating Procedure for the Post	Accident Liquid Sampling	g (PALSS)	
	<u>_</u>			
(4) Prepared By	Ar & Clark		Date//_/_/	102
 (5) Requires NSD 228 A ☑ Yes (New proce ☑ No (Revision v ☑ No (To incorport 	pplicability Determination? dure or revision with major changes) vith minor changes) orate previously approved changes)			
(6) Reviewed By	et wht	(QR)	Date <u>12-2-</u>	2002
Cross-Disciplinary Re	eview By	(QR) NA	Date/2//6	102
Reactivity Mgmt. Re	view ByR	(QR) NA	Date <u></u>	5/02
Mgmt. Involvement F	teview By	(Ops. Supt.) NA	Date	
(7) Additional Reviews				
QA Review By			Date ·	
Reviewed By		•	Date	
Reviewed By		·····	Date	
, Temporary Approval	(if necessary)			
•• Ву		(OSM/QR)	Date	
Ву	A	(QR)	Date	
(9) Approved By	Sugar J. Ylon		Date _/ /10	/\$3
PERFORMANCE (Com	pare with control copy every 14 calendar d	ays while work is being perfor	rmed.)	
(10) Compared with Cont	rol Copy		Date	·
Compared with Cont	rol Copy		Date	
Compared with Cont	rol Copy		Date	
(11) Date(s) Performed				
Work Order Number	(WO#)			
COMPLETION				
 (12) Procedure Completic □ Yes □ NA Ch □ Yes □ NA Re □ Yes □ NA Da □ Yes □ NA Ch □ Yes □ NA Ch □ Yes □ NA Pro 	n Verification eck lists and/or blanks initialed, signed, quired enclosures attached? ta sheets attached, completed, dated, an arts, graphs, etc. attached, dated, identi- pocedure requirements met?	, dated, or filled in NA, as a d signed? fied, and marked?	ppropriate'?	
Verified By	•		Date	
Procedure Completic	n Approved		Date	
(14) Remarks (Attach add	litional pages if necessary)			

,

2

-

CP/**1**/A/2002/004 C Page 2 of 36

1

Operating Procedure for the Post Accident Liquid Sampling System (PALSS)

- **NOTE:** 1. This <u>entire</u> procedure supports an AP or EOP action. The procedure will require AP/EOP validation per NSD 705.
 - 2. Seven Control copies and one Information Only copy of this procedure shall be routed to the Emergency Preparedness Team within three working days after any approved changes.

1. Purpose

- -

The post accident liquid sampling system (PALSS) provides the capability to obtain a primary coolant sample via the HPI Letdown, LPI Pump Discharge or the RCS "J" leg during a nuclear reactor accident condition(s) as described in the FSAR and in accordance with NUREG-0737.

2. Limits and Precautions

- □ 2.1 This procedure should be used to operate PALSS to sample the Reactor Coolant System under the following conditions:
 - 2.1.1 Post Accident.
 - 2.1.2 Inaccessibility of (routine) Primary Sampling Area <u>AND/OR</u> HPI Letdown Sampling not possible.
 - 2.1.3 Request from the Chemistry Manager or his designee.
- □ 2.2 Under accident conditions, valve alignments shall <u>NOT</u> be made and samples shall <u>NOT</u> be taken without prior authorization from the Emergency Coordinator <u>OR</u> the TSC/OSC! (Containment isolation valves may be closed upon ES actuation, see Enclosure 7.6.)
- □ 2.3 Under accident conditions, do <u>NOT</u> attempt any phase of sampling <u>OR</u> analysis without Radiation Protection job coverage!
- □ 2.4 Consider portable shielding, remote handling equipment, video equipment, etc., where practical or available during sampling, sample preparation, and sample analysis.
- \Box 2.5 Chemistry personnel shall operate only those <u>valves</u> operated by the Control Panel <u>OR</u> via the sample panel unless clearly specified otherwise in this procedure.

CP/**1**/A/2002/004 C Page 3 of 36

ŧ

- □ 2.6 IF power is NOT available at the PALSS Control Panel, return to a low dose area and contact Chemistry management.
 - 2.6.1 Refer to Enclosure 7.5 and troubleshoot as required to determine source of problem.
 - 2.6.2 Notify the OSC/TSC.
 - 2.6.3 The following breakers should be closed to ensure power availability:
 - 1L2 Bkr. #39 Sampling/Control Panels Power Supply (located next to U2 sampling panel)
 - MCC1XL Bkr. for 1DW-278 (DW Flush Supply to Post Accident Sample) (PALSS Control Panel)

CAUTION: Chemical hazards shall be known prior to use. For additional information and first aid requirements, refer to the MSDS sheet.

- □ 2.7 Personal protective requirements for chemicals used in this procedure are pH buffers 4.0, 7.0, and 10.0:
 - lab coat

. .

- gloves (rubber/vinyl)
- chemical splash goggles
- □ 2.8 <u>WHEN</u> flushing the desired sample to the waste tanks, request Operations add a second compressor on the GWD header because fresh fission gasses may cause a serious problem in the Aux. Building.
 - IF possible, this increased vacuum should be maintained until sampling is complete.
- □ 2.9 All sample vials should be cleaned and rinsed to protect against chloride contamination.
 - Do <u>NOT</u> place bare finger tips on the surface of the septum.

CP/**1**/A/2002/004 C Page 4 of 36

Ĭ

3. Apparatus

١

- 3.1 A minimum of 4 Lockable Glass (Gas) Syringes
- 3.2 Liquid Sample Carrier (Bucket, Etc.), Gas Syringe Carrier
- 3.3 Watch or Lab Timer
- 3.4 Plastic Bags
- 3.5 15 40cc Evacuated Sample Vial(s) for Liquid Sample
- 3.6 Nitrogen Supply Bottle with > 600 psi available. (with Two Stage Regulator; 0 to 200 psig on Delivery Stage) replace as required

4. Reagents

4.1 <u>Buffer Solutions</u> - Use purchased 4.00, 7.00 and/or 10.00 buffers or equivalent

5. Procedure

• •

- 5.1 Prerequisites and Panel Preparation (preliminary)
 - \Box 5.1.1 Initiate Enclosure 7.7.
 - ____ 5.1.2 IF routing waste to the RBES or sampling from the RCS "J" Leg:
 - Take Enclosure 7.6 to the responsible individual in Operations (designated by the OSC).
 - Request Operations complete the appropriate step(s) of Enclosure 7.6 through Step 3.5.10.
 - \Box 5.1.3 Label glass vial(s) for collecting the liquid sample.

Ì

5.2 Panel Preparation (prior to sampling)

۲

•

NOTE: <u>I</u>	F any iter and 7.2.	m on the cont	rol or sample panel is not clearly identified, refer to Enclosure 7.1
	5.2.1	Inform the U PALSS pane	J-1 Control Room that sampling of the RCS will be done via the el.
		• Identify t	he flowpath J-Leg, LPI OR Letdown.
		• Recomm	end an extra waste gas compressor be placed into service.
		Person co	ontacted
	5.2.2	At the Controposition.	rol Panel, ensure that SW 1 (valve power switch), is in the "OFF"
		• Ensure P	ALSS safety switch is "ON".
	<u>cable c</u> may be	connection m ecome energi Position the	ade. IF this is not done last, the exposed pins of the other cables zed and become an electrical hazard. Control Panel using RP as a guideline, in the lowest dose area
		possible.	
	5.2.4	IF necessary from the Co ending with	y, route and connect the six required cables (CON 6 - CON 1) ntrol Panel to the Junction Box, starting with connector 6 and connector 1.
		5.2.4.1	Connect CON-6 cable at both ends.
		5.2.4.2	Connect CON-5 cable at both ends.
		5.2.4.3	Connect CON-4 cable at both ends.
		5.2.4.4	Connect CON-3 cable at both ends.
		5.2.4.5	Connect CON-2 cable at both ends.
		5.2.4.6	Connect CON-1 cable at the PALSS control panel end.
		5.2.4.7	Connect CON-1 cable to the junction box last.
п	5.2.5	Ensure off a	Il control and solenoid valves (no lights).

CP/**1**/A/2002/004 C Page 6 of 36

5.2.6 Position the following valves: (outside of Sample Panel)

CAUTION: Nitrogen cylinder must be replaced if pressure is < 600 psig in order to prevent backflow of fission gas into the cylinder.

- Open valve(s) on Nitrogen Supply Bottle (> 600 psi tank pressure required & ~100 psi delivery pressure)
- \Box IF necessary, replace cylinder.

٦

- Den 11A-2423 (IA Supply to Post Accident Sample Panel).
- Ensure closed 1LP-122 (Post Accident Sample System High Point Vent).

NOTE: The following switches are found on the PALSS Control Panel.

□ 5.2.7 Turn system power on by inserting Control Panel Key into (KS 1) Key Lock Switch and turning the key to the "ON" position.

NOTE: The lights in the middle of each switch which controls a valve should be "OFF". The green lights should be "LIT" on the push-button switches, (PB 1) through (PB 8).

- □ 5.2.8 Ensure all lamps on the Control Panel are functioning by turning ON SW 2 (lamp test switch) to the "ON" position.
 - 5.2.9 Make note of <u>OR</u> repair any not functioning properly. (The lamp test switch does not light).
 - \Box 5.2.9.1 Turn SW 2 (lamp test switch) to "OFF".
- \Box 5.2.10 Turn SW 1 (valve power switch) to the "ON" Position.
- **NOTE:** In an accident situation, waste will be routed to the RBES unless otherwise directed by supervision. The alternate route is the HAWT via PB1 (1LP-130).
 - 5.2.11 IF routing waste to the RBES, open PB2 (1LP-121, Post Accident Sample Panel Return).
 - 5.2.12 IF routing waste to the HAWT, open PB1 (1LP-130, Sample Return to HAWT).

CP/**1**/A/2002/004 C Page 7 of 36

5.3 Panel Preparation (pH Meter Standardization) (PALSS Control Panel)

5.3.1 Purge the pH housing with Nitrogen as follows:

•

•

	NOTE:	All other control valve	es <u>must be</u> closed.
		□ 5.3.1.1	Open 204
		□ 5.3.1.2	Open 206
		□ 5.3.1.3	Open 103
		□ 5.3.1.4	Open 102
		□ 5.3.1.5	Open 105
		□ 5.3.1.6	Open 202
		□ 5.3.1.7	Wait ≥ 2 minutes.
		□ 5.3.1.8	Close 105.
		5.3.2 Pressurize	Buffer Tank A as follows:
• •	NOTE:	SV 209 controls both	buffer tanks (A and B).
		□ 5.3.2.1	Place 209 in the 'A' position.
		□ 5.3.2.2	Wait \geq 30 seconds.
		□ 5.3.2.3	Place 209 in the "OFF" position.

□ 5.3.2.4 Close 202

CP/**1**/A/2002/004 C Page 8 of 36

5.3.3 Evacuate pH housing as follows:

- □ 5.3.3.1 Open 208
- □ 5.3.3.2 Open 201
- \Box 5.3.3.3 <u>WHEN</u> the pressure on PG 4 stabilizes (normally < 2.0 PSIA),
 - □ A. Close 201
 - □ B. Record the pH Housing pressure from PG 4 <u>OR</u> PG 5.

pH Housing Pressure for A Buffer = _____ PSIA

- □ 5.3.3.4 Close 102
- □ 5.3.3.5 Close 103
- □ 5.3.3.6 Close 206
- □ 5.3.3.7 Close 204
- □ 5.3.3.8 Close 208

5.3.4 Transfer A Buffer into the pH housing as follows:

- \Box 5.3.4.1 Place 209 in the 'A' position.
- \Box 5.3.4.2 Wait \geq 1 minute.
- \Box 5.3.4.3 Place 209 in the "OFF" position.
- 5.3.5 Standardize the pH meter as follows:
- **NOTE:** 1. The following keys are located on the pH meter in the face of the PALSS control panel.
 - 2. Refer to Enclosure 7.8 for pH meter key descriptions.
 - 5.3.5.1 Use the "menu" key to move to the main menu. The display will show: ("Configuration, Calibration, Maintenance, I/O Setup").
 - 5.3.5.2 Using the "arrow up or down" keys, move to and highlight "Calibration".
 - 5.3.5.3 Press "enter".

CP/**1**/A/2002/004 C Page 9 of 36

- 5.3.5.4 Using the "arrow up or down" keys, move to and highlight "Buffer Cal".
- 5.3.5.5 Press Enter.
- 5.3.5.6 Press the "Hold" key.
- 5.3.5.7 Press the "next" key to move to the next screen.
- NOTE: A flashing value indicates the probe may be broken.
 - A value that <u>CANNOT</u> be adjusted to within \pm .5 pH offset will make the unit return to the calibration screen, indicating that the pH electrode may need to be replaced.
 - 5.3.5.8 The display will show the pH of the 'A' buffer solution.
 - 5.3.5.9 Wait for a stable reading.
 - 5.3.5.10 Press the up or down arrow once to activate the side to side arrows.
 - 5.3.5.11 Use the "function keys, side to side" to select the desired digit space and change the value on the display using the "arrow up and down" keys to match the actual 'A' buffer pH.
 - 5.3.5.12 <u>WHEN</u> the unit display indicates the buffer pH, press the "ENTER" key.
 - 5.3.5.13 Record the pH meter value set for the 'A' buffer pH.

'A' Buffer Solution pH _____

5.3.5.14 <u>WHEN</u> the unit successfully meets the preset specifications and the entered buffer value is displayed, press "next" until the screen with the following is visible:

SLOPE

Note: Buffer must be > 2 pH units away from the STD buffer.

CP/**1**/A/2002/004 C Page 10 of 36

NOTE: The unit should still be in the "hold" mode.

5.3.5.15 Press "next". The following screen should be visible:

SLOPE

Place electrode in Buffer Attention. Wait for Stable Reading!

- 5.3.6 Purge the pH housing with nitrogen as follows:
 - □ 5.3.6.1 Open 202
 - □ 5.3.6.2 Open 204
 - □ 5.3.6.3 Open 206
 - □ 5.3.6.4 Open 103
 - □ 5.3.6.5 Open 102
 - □ 5.3.6.6 Open 105
 - \Box 5.3.6.7 Wait \geq 2 minutes.
 - □ 5.3.6.8 Close 105
 - \Box 5.3.6.9 Place 209 in the 'A' position.
 - \Box 5.3.6.10 Place 209 in the "OFF" position.
 - □ 5.3.6.11 Close 102
 - □ 5.3.6.12 Close 103
 - □ 5.3.6.13 Close 206
 - □ 5.3.6.14 Close 204
 - □ 5.3.6.15 Close 202

5.3.7 Flush the pH housing with DW as follows:

□ 5.3.7.1 Open 101

ı

- --

- □ 5.3.7.2 Open 102
- □ 5.3.7.3 Open 105
- □ 5.3.7.4 Open PB-6 (1DW-278, DW Flush Supply to Post Accident Sample).
- \Box 5.3.7.5 Wait \geq 5 minutes.
- □ 5.3.7.6 Close 101
- □ 5.3.7.7 Close PB-6 (1DW-278, DW Flush Supply to Post Accident Sample).
- 5.3.8 Purge the demineralized water out of the pH housing with nitrogen as follows:
 - □ 5.3.8.1 Open 202
 - □ 5.3.8.2 Open 204
 - □ 5.3.8.3 Open 206
 - □ 5.3.8.4 Open 103
 - \Box 5.3.8.5 Wait \geq 2 minutes.
 - □ 5.3.8.6 Close 105
- 5.3.9 Pressurize Buffer Tank B as follows:
 - \Box 5.3.9.1 Place 209 in the 'B' position.
 - \Box 5.3.9.2 Wait \geq 30 seconds.
 - \Box 5.3.9.3 Place 209 in the "OFF" position.
 - □ 5.3.9.4 Close 202

CP/**1**/A/2002/004 C Page 12 of 36

5.3.10	Evacuate pH	I housing as follows:
	5.3.10.1	Open 208
	5.3.10.2	Open 201
	5.3.10.3	Let the pressure on PG 4 stabilize (normally < 2.0 PSIA).

- □ 5.3.10.4 Close 201.
- \Box 5.3.10.5 Record pH Housing pressure from PG 4.

pH Housing Pressure for B Buffer = _____ PSIA

- □ 5.3.10.6 Close 102
- □ 5.3.10.7 Close 103
- □ 5.3.10.8 Close 206
- □ 5.3.10.9 Close 204
- □ 5.3.10.10 Close 208
- 5.3.11 Transfer B Buffer into the pH housing as follows:
 - \Box 5.3.11.1 Place 209 in the 'B' position.
 - \Box 5.3.11.2 Wait \geq 1 minute.
 - \Box 5.3.11.3 Place 209 in the "OFF" position.
- 5.3.12 Calibrate the pH meter as follows: (pH meter on the face of the PALSS Control Panel)
- NOTE: 1. Refer to Enclosure 7.8 for pH meter key description.
 - 2. The unit should still be in the "HOLD" mode. This key causes the pH meter to maintain a constant output and alarm condition. This allows the electrode to be removed (optional) for calibration in a buffer without process upset. The temperature compensation feature is also disabled in the "HOLD" mode (this allows calibration of the meter to the particular temperature of the buffer used).
 - 5.3.12.1 Press "next". The display will show the pH of the 'B' buffer as measured by the electrode.

CP/**1**/A/2002/004 C Page 13 of 36

- 5.3.12.2 Wait for a stable reading.
- 5.3.12.3 Press the up or down arrow once to activate the side to side arrows.
- 5.3.12.4 Select the desired digit space using the "function keys side to side". Adjust the value on the display using the "arrow up and down" keys, until the display matches the actual pH of the buffer solution.
- 5.3.12.5 Press "enter". This will set the instrument slope.
- 5.3.12.6 Record the pH meter value set for the 'B' buffer pH.

'B' Buffer Solution pH _____

5.3.12.7 **IF** the slope adjustment was successful, the Completed screen will be displayed:

SLOPE Slope Completed Slope Buffer Value Saved

5.3.12.8 Using the "hold" key, take the unit out of the hold mode.

NOTE: <u>IF</u> the calibration was not successful, the menu will return to the original Calibration Menu by itself and display an error code.

- 5.3.12.9 Use the "next" key to rotate back to the original Calibration menu screen.
- 5.3.12.10 Press the "Display" key. The pH meter is now in the sample measurement mode.
- 5.3.13 Purge the pH housing with nitrogen as follows:
 - □ 5.3.13.1 Open 202
 - □ 5.3.13.2 Open 204
 - □ 5.3.13.3 Open 206
 - □ 5.3.13.4 Open 103
 - □ 5.3.13.5 Open 102

CP/**1**/A/2002/004 C Page 14 of 36

- □ 5.3.13.6 Open 105
- \Box 5.3.13.7 Wait \geq 2 minutes.
- □ 5.3.13.8 Close 105
- \Box 5.3.13.9 Place 209 in the 'B' position.
- □ 5.3.13.10 Place 209 in the "OFF" position.
- □ 5.3.13.11 Close 102
- □ 5.3.13.12 Close 103
- □ 5.3.13.13 Close 206
- □ 5.3.13.14 Close 204
- □ 5.3.13.15 Close 202
- 5.3.14 Flush the pH housing with DW as follows:
 - □ 5.3.14.1 Open 101
 - □ 5.3.14.2 Open 102
 - □ 5.3.14.3 Open 105
 - □ 5.3.14.4 Open PB 6 (1DW-278, DW Flush Supply to Post Accident Sample)
 - \Box 5.3.14.5 Wait \geq 3 minutes.
 - □ 5.3.14.6 Close 101
 - □ 5.3.14.7 Close PB 6 (1DW-278, DW Flush Supply to Post Accident Sample)
- 5.3.15 Purge the demineralized water out of the pH housing with nitrogen as follows:
 - □ 5.3.15.1 Open 202
 - □ 5.3.15.2 Open 204
 - □ 5.3.15.3 Open 206
 - □ 5.3.15.4 Open 103

CP/**1**/A/2002/004 C Page 15 of 36

- □ 5.3.15.5 Wait \ge 2 minutes <u>OR</u> until pressure on PG 3 drops rapidly (below 50 psi).
- □ 5.3.15.6 Close 105

•

- -

- □ 5.3.15.7 Close 202
- □ 5.3.15.8 Close 204
- □ 5.3.15.9 Close 206
- □ 5.3.15.10 Close 103
- □ 5.3.15.11 Close 102
- 5.4 Panel Preparation (pH Housing and Gas Tank(s) Evacuation) (PALSS Control Panel)
 - 5.4.1 Evacuate pH housing and gas tanks as follows:
 - □ 5.4.1.1 Open 208
 - □ 5.4.1.2 Open 201
 - □ 5.4.1.3 Open 203
 - □ 5.4.1.4 Open 204
 - □ 5.4.1.5 Open 205
 - □ 5.4.1.6 Open 206
 - □ 5.4.1.7 Open 207
 - □ 5.4.1.8 Open 103
 - □ 5.4.1.9 Open 102
 - \Box 5.4.1.10 Monitor the pressure in the pH housing and gas tanks on PG 5 OR PG 4 let the pressure stabilize (normally < 2.0 PSIA).
 - □ 5.4.1.11 Close 201
 - □ 5.4.1.12 Close 208

CP/**1**/A/2002/004 C Page 16 of 36

5.4.2	pH Housing	g Pressure
Ľ	5.4.2.1	Record pH Housing pressure from PG 5 (alternate PG 4).
		pH Housing Pressure PSIA
Ľ	5.4.2.2	Close 102
	5.4.2.3	Close 103
C	5.4.2.4	Close 206
	5.4.2.5	Close 207
5.4.3	30 mL and	500 mL Gas Tanks Pressure
	5.4.3.1	Record gas tank pressures from PG 5 (alternate PG 4).
		Gas tanks (30mL and 500mL) pressure PSIA
] 5.4.3.2	Close 205
C] 5.4.3.3	Close 204
E] 5.4.3.4	Close 203
Panel Or	peration (Read	ctor Coolant Sample Flush/Acquisition) (PALSS Control Panel)
The samp sample po	ole will be tak pint.	en via the LPI pump discharge, HPI Letdown, or the RCS "J-Leg"
□ 5.5.1	Contact OS	C to obtain authorization to begin sample flush/retrieval.

.

•

- -

5.5

NOTE:

Person contacted _____ Time _____

□ 5.5.2 Notify the Control Room the sample flush will begin via the appropriate sample point.

Person contacted _____

- CAUTION: 1. PB 6 (1DW-278) <u>must be</u> closed to prevent flow of RCS into the demineralized water header.
 - 2. CV-102 and CV-105 <u>must be</u> closed to prevent overpressurization and failure of the pH housing.
 - 5.5.3 Ensure position of the following valves:
 - □ 5.5.3.1 Close PB-6 (1DW-278, DW Flush Supply to Post Accident Sample).
 - □ 5.5.3.2 Close 102
 - □ 5.5.3.3 Close 105
 - □ 5.5.4 Ensure SS 3 (selector switch) is in the "PT 1" position.
 - _____ 5.5.5 IF sampling the RCS "J-Leg", then open PB 4 (1RC-179, Post Accident Sample Block).
 - 5.5.6 IF sampling the LPI pump Discharge, then open PB 3 (1LP-126, Isolation for LP Sample).
 - 5.5.7 IF sampling the HPI Letdown, then open PB 5 (1LP-124, Isolation for HP Sample (Letdown)).
 - □ 5.5.8 Open 101
 - □ 5.5.9 Open 104

CAUTION: Monitor PG 3 to ensure outlet pressure does NOT exceed 600 PSIG. Adjust slowly.

- □ 5.5.10 Open 401 to establish the maximum flow without exceeding 600 PSIG on PG 3.
- \Box 5.5.11 Record the flowrate from FG1 _____ gpm.
- \Box 5.5.12 Record the pressure from PG 3 _____ psig.

CP/**1**/A/2002/004 C Page 18 of 36

- \Box 5.5.13 IF LT 3 (clogged filter light switch) comes on and remains on, but flow on FG-1 is > 1.5 gpm, continue with procedure.
 - IF flow is < 1.5 gpm, contact Chemistry Staff for further instructions.
 - IF directed by management, proceed to Enclosure 7.3.
- $\Box 5.5.14 \qquad \text{Select the desired thermocouple to monitor the inlet } \underline{OR} \text{ outlet of the sample} \\ \underline{OR} \text{ the cooling water using SS 1:}$
 - TE 1 Measures sample inlet to heat exchanges.
 - TE 2 Measures sample return from heat exchanger.
 - TE 3 Measures cooling water inlet to heat exchanger.
 - TE 4 Measures cooling water return from heat exchanger.
 - □ 5.5.14.1 Switch SS 1 to "TE 1"
 - \Box 5.5.14.2 Record sample inlet temperature on TG 1.

INLET TEMPERATURE _____°F

- □ 5.5.14.3 Switch SS 1 to "TE 2".
- \Box 5.5.14.4 Record sample outlet temperature on TG 2.

OUTLET TEMPERATURE ______°

- 5.5.15 After > 15 gallons have flowed through the system (calculate time based on FG-1 reading):
 - \Box 5.5.15.1 Slowly throttle 401 until fully closed.
 - \Box 5.5.15.2 Immediately close 104
 - □ 5.5.15.3 Immediately close 101
 - □ 5.5.15.4 Record 500 mL liquid tank pressure from PG 1.

Pressure = _____ PSIG

□ 5.5.16 Move selector switch SS 3 to the "PT 2" position to measure discharge pressure of the injection valves.

NOTE: There are two continuous flow paths through the sample valve(s).

- <u>WHEN</u> the valve(s) is opened, the sample loop is moved to the sample flow path.
- <u>WHEN</u> the valve(s) is closed, the sample loop is moved to the sample injection (collection) flow path.
- 5.5.17 Ensure open the desired sample injection valve(s) of the 0.1 mL, 1 mL <u>AND/OR</u> 5 mL loop, respectively (normally the 5 mL and 1 mL loop are used):
 - □ 503 (0.1 mL Loop)
 - □ 502 (1 mL Loop)
 - 501 (5 mL Loop)
- □ 5.5.18 Open 107
- \Box 5.5.19 Slowly open 402 keeping flowrate on FG 2 < 300 mL/min.

NOTE: Greater than 40 PSIG sample pressure <u>must</u> be supplied to the injection valves.

- \Box 5.5.20 Wait \geq 5 minutes.
 - 5.5.21 Close the sample injection valve(s) opened in Step 5.5.17.
 - □ 503 (0.1 mL Loop)
 - □ 502 (1 mL Loop)
 - □ 501 (5 mL Loop)
 - 5.5.22 Record sample time: _____
- 5.5.23 Close the sample valve selected in Step 5.5.5 or 5.5.6 or 5.5.7
 - PB 4 (1RC-179, Post Accident Sample Block)
 - PB 3 (1LP-126, Isolation for LP Sample)
 - PB 5 (1LP-124, Isolation for HP Sample (Letdown))

 \Box 5.5.24 Wait \geq 1 minute.

- □ 5.5.25 Close 402
- \Box 5.5.26 <u>IF</u> the pressure on PG-1 is > 100 psi <u>OR</u> is increasing with time, contact Chemistry Staff and notify that RCS is leaking by sample valve.
- □ 5.5.27 After 1 minute, record the pressure on PG-1: _____psi
- □ 5.5.28 Close 107
- 5.6 Depressurization (PALSS Control Panel)
 - □ 5.6.1 Ensure SS 3 (selector switch) is in the "PT 1" position.
 - □ 5.6.2 Ensure closed 206
 - □ 5.6.3 Ensure closed 207
 - □ 5.6.4 Open 103

- -

 \Box 5.6.5 Wait \geq 2 minutes.

NOTE: Pressure on PG 1 should be < 50 PSIG.

- \Box 5.6.6 Record the pressure from PG 1 _____ PSIG.
- 5.7 Gas Collection (PALSS Control Panel)
 - 5.7.1 Verify pressure in the 30 mL and 500 mL gas tank is \leq 2.0 PSIA.

For 500 mL Gas Tank:

- □ 5.7.1.1 Open 205
- □ 5.7.1.2 Open 203
- \Box 5.7.1.3 Record PG 5 (alternate gauge PG 4).
 - 500 mL Gas Tank Pressure _____
- □ 5.7.1.4 Close 205
- □ 5.7.1.5 Close 203

CP/**1**/A/2002/004 C Page 21 of 36

For 30 mL Gas Tank:

□ 5.7.1.6	Open 204
□ 5.7.1.7	Open 203
□ 5.7.1.8	Record PG 5 (alternate gauge PG 4).
	30 mL Gas Tank Pressure
□ 5.7.1.9	Close 204
□ 5.7.1.10	Close 203

NOTE: The alternate (Total Gas Method) would be used if there was reason <u>NOT</u> to pull a gas sample.

- 5.7.2 **IF** the pressure in the 30 mL and 500 mL Gas Tank is ≤ 2.0 PSIA, proceed as follows.
 - \Box 5.7.2.1 IF the Nitrogen stripping method is to be used for gas collection and analysis, proceed to Step 5.7.4.
 - $\Box 5.7.2.2 \qquad \underline{IF} \text{ the alternate method (Total Gas Method) is to be used,} \\ proceed to Step 5.7.5.$
- \Box 5.7.3 IF the pressure in the 30 mL OR 500 mL Gas Tank is > 2.0 PSIA, then evacuation of the tanks must be repeated as follows:
 - □ 5.7.3.1 Close 103
 - □ 5.7.3.2 Open 204
 - □ 5.7.3.3 Open 205
 - □ 5.7.3.4 Open 201
 - □ 5.7.3.5 Open 208
 - □ 5.7.3.6 Open 203

CP/**1**/A/2002/004 C Page 22 of 36

		5.7.3.7	<u>¥</u> ≤	<u>WHEN</u> the reading from PG 5 (alternate gauge PG 4) is 2.0 PSIA, close
		E		A. 204
		0	ΓE	3. 205
		0		2. 201
		[0. 208
		E	ΞE	2. 203
		5.7.3.8	C	Open 103
		5.7.3.9	<u>I</u> a	\mathbf{F} the Nitrogen stripping method is to be used for gas collection nd analysis, continue with Step 5.7.4.
		5.7.3.10	<u>I</u> p	<u>F</u> the alternate method (Total Gas Method) is to be used, roceed to Step 5.7.5.
NOTE:	Nitrogen S	Stripping M	[etho	od is the typical method.
L				
L	5.7.4	Nitrogen S	Strip	pping Method (Gas Analysis)
<u> </u>	5.7.4	Nitrogen S 5.7.4.1	Strip E	oping Method (Gas Analysis)
L	5.7.4	Nitrogen S 5.7.4.1 5.7.4.2	Strip E C	oping Method (Gas Analysis) Ensure closed 205 Open 207
L	5.7.4 □ □	Nitrogen S 5.7.4.1 5.7.4.2 5.7.4.3	Strip E C	oping Method (Gas Analysis) Ensure closed 205 Open 207 Open 106
NOTE:	5.7.4	Nitrogen S 5.7.4.1 5.7.4.2 5.7.4.3 ure on PG-1 T-1 is a hig ration to ca	Estrip E C C l sho gh ra llibr	oping Method (Gas Analysis) Ensure closed 205 Open 207 Open 106 ould be monitored for an increase of approximately 15 psi. ange pressure transmitter the indicated reading on PG-1 will vary ation and may indicate anywhere from -15 to 15 psi initially.
NOTE:	5.7.4	Nitrogen S 5.7.4.1 5.7.4.2 5.7.4.3 are on PG-1 T-1 is a hig ration to ca 5.7.4.4	Strip E C C l sho gh ra llibr F 5	 pping Method (Gas Analysis) Ensure closed 205 Dpen 207 Dpen 106 Duld be monitored for an increase of approximately 15 psi. ange pressure transmitter the indicated reading on PG-1 will vary ation and may indicate anywhere from -15 to 15 psi initially. For a 10 minute interval, periodically turn on 109 to vibrate 00 mL liquid tank, monitor the pressure on PG 1 (switch SS 3 to PT 1").
NOTE:	5.7.4	Nitrogen S 5.7.4.1 5.7.4.2 5.7.4.3 are on PG-1 T-1 is a hig ration to ca 5.7.4.4 5.7.4.5	Strip E C C l sho gh ra llibr F 5 C C	pping Method (Gas Analysis) Ensure closed 205 Open 207 Open 106 ould be monitored for an increase of approximately 15 psi. ange pressure transmitter the indicated reading on PG-1 will vary ation and may indicate anywhere from -15 to 15 psi initially. For a 10 minute interval, periodically turn on 109 to vibrate 00 mL liquid tank, monitor the pressure on PG 1 (switch SS 3 to PT 1").
NOTE:	5.7.4	Nitrogen S 5.7.4.1 5.7.4.2 5.7.4.3 are on PG-1 T-1 is a hig ration to ca 5.7.4.4 5.7.4.4 5.7.4.5 5.7.4.6	Strip E C C l sho gh ra llibr F 5 C C C	 oping Method (Gas Analysis) cinsure closed 205 Open 207 Open 106 ould be monitored for an increase of approximately 15 psi. onge pressure transmitter the indicated reading on PG-1 will vary ation and may indicate anywhere from -15 to 15 psi initially. For a 10 minute interval, periodically turn on 109 to vibrate 00 mL liquid tank, monitor the pressure on PG 1 (switch SS 3 to PT 1"). Close 106 Open 205

•

- -

CP/**1**/A/2002/004 C Page 23 of 36

5.7.4.8	Wai	it \geq 5 minutes.
5.7.4.9	Clo	se the following valves:
	A.	204
	В.	205
	C.	207
	D.	103
5.7.4.10	Pro	ceed to Section 5.8.

NOTE: Calculated method should be used only as an <u>alternate</u>.

5.7.5 Total Gas Method (Calculated)

- -

- □ 5.7.5.1 Monitor PG 4.
- $\Box 5.7.5.2 \qquad \underline{\text{WHEN}} \text{ the pressure shown on PG 4 is < 30 PSIA, the low range pressure transmitter, PT 5, can be used to obtain a more accurate pressure measurement.}$
 - PT 5 can be used by opening 203.
- \Box 5.7.5.3 Ensure SS 2 switch is in the "RD 2" position.
- □ 5.7.5.4 Record the initial temperature reading from TG 2 and pressure reading from PG 5.

TG 2 Init. Temp. Reading _____°F

PG 5 Init. Press. Reading _____ PSIA

- □ 5.7.5.5 Open 206
- □ 5.7.5.6 Open 204
- \Box 5.7.5.7 Turn on the vibrator using 109 and monitor PG 5.

CP/**1**/A/2002/004 C Page 24 of 36

- $\Box 5.7.5.8 \qquad \underline{\text{WHEN}} \text{ the pressure of the 30 mL gas tank stabilizes, record the final pressure and temperature.}$
 - TG 2 Final Temp. Reading ______°F
 - PG 5 Final Press. Reading _____ PSIA
- □ 5.7.5.9 Close 203
- □ 5.7.5.10 Close 204
- □ 5.7.5.11 Close 206
- □ 5.7.5.12 Ensure 109 is off.
- □ 5.7.5.13 Close 103
- $\square 5.7.5.14 \qquad \text{Calculate the total amount of } H_2 \text{ in the sample using} \\ \text{Enclosure 7.4.}$
- \Box 5.7.5.15 Report results on Enclosure 7.7.
- 5.8 Sample pH Measurement (PALSS Control Panel)
 - \Box 5.8.1 Ensure closed 206

- -

- \Box 5.8.2 Ensure closed 204
- \Box 5.8.3 Ensure SS 3 switch is set on PT 1.
 - 5.8.4 Pressurize liquid tank to at least 60 PSIG as monitored on PG 1 (alternate PG 4), as follows:
 - □ 5.8.4.1 Open 202
 - □ 5.8.4.2 Open 205
 - □ 5.8.4.3 Open 207
 - □ 5.8.4.4 Open 103
 - \Box 5.8.4.5 Wait \geq 30 seconds.
 - □ 5.8.4.6 Close 103
 - □ 5.8.4.7 Close 207

CP/**1**/A/2002/004 C Page 25 of 36

□ 5.8.4.8 Close 20

□ 5.8.4.9 Close 202

- □ 5.8.5 Open 102
- \Box 5.8.6 Record pH on Enclosure 7.7.
- □ 5.8.7 Close 102
- ☐ 5.8.8 Notify OSC that RCS <u>sampling</u> via the PALSS is completed and that sample retrieval will begin following system flush.

Person contacted _____

- ☐ 5.8.9 IF waste was routed to the RBES <u>OR</u> sampling of the RCS was done via the J-Leg flowpath from the PALSS panel per Step 5.1.2:
 - Notify the Unit 1 Control Room that the RCS sample has been obtained <u>AND</u> they may complete Enclosure 7.6 from Step 3.6.

Person contacted

5.9 System Flush (PALSS Control Panel)

NOTE: Directions regarding sample panel flushing will be determined by management.

- □ 5.9.1 Ensure 204 and 206 <u>remain</u> closed <u>AND</u> the sample injection valve(s) selected (501, 502 and/or 503) is turned off.
- **IF** either LT 1 **OR** LT 2 indicator is illuminated:
 - □ 5.9.2.1 Open 108
 - □ 5.9.2.2 Turn on 110 (sump pump).
 - \Box 5.9.2.3 WHEN both LT1 and LT2 are out, close 108.
 - □ 5.9.2.4 Turn off 110 (sump pump).

CP/**1**/A/2002/004 C Page 26 of 36

□ 5.9.3 IF given the direction to flush the panel, flush the 500 mL liquid tank, pH housing, and sample injection valves as follows:

500 mL Liquid Tank

.

- -

- □ 5.9.3.1 Open 101
- □ 5.9.3.2 Open 104
- □ 5.9.3.3 Open 401
- □ 5.9.3.4 Open PB 6 (1DW-278, DW Flush Supply to Post Accident Sample)

pH Housing

- □ 5.9.3.5 Open 102
- □ 5.9.3.6 Open 105

Sample Injection Valves

- □ 5.9.3.7 Open 107
- □ 5.9.3.8 Open 402
- □ 5.9.3.9 Flush the sample panel until the general area dose rate on the exterior of the panel is ≤ 2 mR/hr <u>OR</u> a satisfactory level is achieved per RP.
- □ 5.9.3.10 Close 402
- □ 5.9.3.11 Close 107
- □ 5.9.3.12 Close 105
- □ 5.9.3.13 Close 102
- □ 5.9.3.14 Close 101
- □ 5.9.3.15 Close 104
- □ 5.9.3.16 Close 401
- □ 5.9.3.17 Close PB 6 (1DW-278, DW Flush Supply to Post Accident Sample)

5.10 Liquid & Gas Sample Retrieval (PALSS Control Panel)

Liquid Sample Retrieval

- \Box 5.10.1 Ensure open the waste route selected in Step 5.2.11 or 5.2.12:
 - PB 1 (1LP-130, Sample Return to HAWT)
 - OR PB 2 (1LP-121, 1B Emerg Sump Line Drn Blk).
- \Box 5.10.2 Ensure closed all other PB valves (motor operated).
- \Box 5.10.3 IF LT 1 OR LT 2 is illuminated, perform Step 5.9.2.
- ☐ 5.10.4 Select the flow path for sample collection by turning CV 612 to the desired injection valve (0.1 mL, 1 mL, or 5 mL loop).

Sample Loop(s) Selected _____

- \Box 5.10.5 Slowly turn CV 613 to the "N₂" position.
- □ 5.10.6 After collecting approximately 15 mL of liquid sample, turn CV 613 to the "VENT" position.
- \Box 5.10.7 Wait \geq 10 seconds for sample line depressurization.
- \Box 5.10.8 Turn CV 612 to the "OFF" position.
- □ 5.10.9 As necessary for additional sample(s), repeat Steps 5.10.4 through 5.10.8.

Gas Sample Retrieval

• •

- \Box 5.10.10 <u>WHEN</u> possible, use the gas-tight syringe(s) to retrieve the gas sample(s) from the 30 mL gas tank keeping syringe vertical (needle down).
- \Box 5.10.11 <u>IF</u> possible, place syringes in the gas locked position and store vertically (needle down).

CP/**1**/A/2002/004 C Page 28 of 36

5.11 30 mL Gas Tank and 500 mL Gas Tank Purge (PALSS Control Panel)

- \Box 5.11.1 Verify Nitrogen supply still has \geq 100 psig delivery pressure.
 - 5.11.2 Allow all of the following values to stay open ≥ 2 minutes <u>except</u> alternate the value pairs 204/206 and 205/207 open and close within the 2 minute period:
 - □ 5.11.2.1 Open 202

•

- □ 5.11.2.2 Open 204
- □ 5.11.2.3 Open 205
- □ 5.11.2.4 Open 206
- □ 5.11.2.5 Open 207
- □ 5.11.2.6 Open 103
- □ 5.11.2.7 Open 104
- □ 5.11.2.8 Open 401
- □ 5.11.2.9 After flushing for several seconds, close the following:
 - A. 204
 - B. 206
- \Box 5.11.2.10 After additional flush for several seconds, open the following:
 - A. 204
 - B. 206
- □ 5.11.2.11 Close 205
- □ 5.11.2.12 Close 207
- \Box 5.11.2.13 After several seconds, open the following:
 - A. 205
 - B. 207

CP/**1**/A/2002/004 C Page 29 of 36

- □ 5.11.2.14 IF the valves need further cycling (it has not been ≥ 2 minutes) return to Step 5.11.2.10.
- \Box 5.11.2.15 IF the time is ≥ 2 minutes, proceed to Step 5.11.3.
- □ 5.11.3 Close 202

•

•

- -

- □ 5.11.4 Close 401
- □ 5.11.5 Close 104
- □ 5.11.6 Close 103
- □ 5.11.7 Open 201
- □ 5.11.8 Open 208
 - 5.11.9 After \geq 10 seconds, close the following:
 - □ 5.11.9.1 206
 - □ 5.11.9.2 207
 - □ 5.11.9.3 204
 - □ 5.11.9.4 205
 - □ 5.11.9.5 201
 - □ 5.11.9.6 208
- □ 5.11.10 Repeat Step 5.11.2 through 5.11.9 until dose rates of 30 mL and 500 mL tank are ≤ 10 mR/hr (at contact) <u>OR</u> a satisfactory level is achieved per RP.

CP/**1**/A/2002/004 C Page 30 of 36

5.12 System Shutdown

.

- -

- 5.12.1 Ensure closed the following motor operated valves: (PALSS Control Panel)
 - □ PB 1 (1LP-130, Sample Return to HAWT)
 - □ PB 2 (1LP-121, Post Accident Sample Panel Return)
 - □ PB 3 (1LP-126, Isolation for LP Sample)
 - □ PB 4 (1RC-179, Post Accident Sample Block)
 - □ PB 5 (1LP-124, Isolation for HP Sample (Letdown))
 - □ PB 6 (1DW-278, DW Flush Supply to Post Accident Sample)
 - □ PB 8 (1LP-129, Sample Drain to the High Activity Waste Tank)
- 5.12.2 Ensure closed the following solenoid valves: (PALSS Control Panel)
 - □ 201
 - □ 202
 - □ 203
 - □ 204
 - □ 205
 - □ 206
 - □ 207
 - □ 208
 - □ 209

CP/**1**/A/2002/004 C Page 31 of 36

ŧ

- 5.12.3 Ensure closed the following control valves: (PALSS Control Panel)
 - □ 101

.

•

. ...

- □ 102
- □ 103
- □ 104
- □ 105
- □ 106
- □ 107
- □ 108
- 5.12.4 Return SW 1 (valve power switch) to the "OFF" position.
- 5.12.5 Return KS 1 (key switch) to the "OFF" position.
- 5.12.6 Close 1IA-2423 (IA Supply to Post Accident Sample Panel) (Outside the PALSS Sample Panel)
- 5.12.7 Ensure N_2 cylinder discharge pressure > 600 psi.
 - IF necessary, replace cylinder.
 - 5.12.8 Close N₂ Supply Bottle valves (Outside the PALSS Sample Panel)

NOTE: The following cable connections are located between the PALSS Control Panel and the cable junction box.

CAUTION: <u>Make the disconnection of connector cable 1 from the Junction Box the FIRST cable</u> <u>disconnection</u>. <u>IF</u> this is not done first, the exposed pins of the other cables may become energized and become an electrical hazard.

 \Box 5.12.9 IF directed by Chemistry Staff, disconnect the following cables in order:

Person contacted _____

- □ 5.12.9.1 CON-1 from the junction box (this is the first cable disconnect made), then from the PALSS Control Panel.
- \Box 5.12.9.2 CON-2 cable at both ends.
- \Box 5.12.9.3 CON-3 cable at both ends.
- \Box 5.12.9.4 CON-4 cable at both ends.
- \Box 5.12.9.5 CON-5 cable at both ends.
- \Box 5.12.9.6 CON-6 cable at both ends.
- □ 5.12.10 Store the control panel in the AB 1st floor hallway/corridor within ten (10) feet from the Unit 1 electrical junction box.
- □ 5.12.11 Ensure the control panel wheels are <u>locked</u> to prevent panel movement.
- □ 5.12.12 Ensure CV 609 is in the "AIR" position.
- □ 5.12.13 Ensure CV 610 is in the "NITROGEN" position.
- □ 5.12.14 Inform the OSC that flushing of the PALSS Panel has been completed.

Person contacted _____
CP/**1**/A/2002/004 C Page 33 of 36

5.13 Sample Analysis

ſ

NOTE:	Steps 5.1 order wr	3.1 - 5.13.3 c itten.	can be perform	med in any order. Substeps must be performed in the
	5.13.1	Gas (Nitro	gen Stripping	g Method)
		5.13.1.1	Analyze uj lab methoc	p to four syringes of stripped gas using the appropriate I for hydrogen analyis.
		5.13.1.2	Use the fol	llowing formula to calculate results:
			ç	
			Where:	% H_2 is determined from the lab method used in Step 5.13.1.1
				615.72 cc = 30 mL gas bomb + 500 mL gas bomb + tubing volume (volume occupied by sample gas).
				0.50 Kg = collected sample size
				$\underline{1}$ = conversion of percent to decimal 100
		5.13.1.3	Record res	sults in cc/kg H_2 on Enclosure 7.7.
		5.13.1.4	<u>IF</u> needed <u>OR</u> to per	, reserve other stripped gas syringes for use as backups form a gas sample gamma spectra.

5.13.2 Liquid

- 5.13.2.1 Submit sample to count room for gamma spectra analysis. The sample may be counted in the rheodyne sample vial using the loop volume (preferred) or in a 50 mL bottle.
 - Submit loop volume as volume of sample to Countroom.
- 5.13.2.2 Review and attach GeLi Spectra to Enclosure 7.7.
- 5.13.2.3 Analyze PALSS sample for boron.
 - To obtain a boron concentration that will correlate directly with the normal RCS, the dilution factor must be multiplied by the analyzed sample concentration (obtained from the Boron Titration).

ppm B = measured ppm B x <u>Total dilution volume (sample loop + dilution water), mLs</u> sample loop volume, mLs

- 5.13.2.4 Record results of boron sample analysis on Enclosure 7.7.
- 5.13.2.5 Perform a chloride analysis of the sample.
 - To obtain a Cl concentration that will correlate directly with the normal RCS, the dilution factor must be multiplied by the analyzed sample concentration.

ppb Cl = measured ppb Cl x <u>Total dilution volume (sample loop + dilution water)</u>, mLs sample loop volume, mLs

NOTE: <u>IF</u> the Cl results are below the Limit of detection (LOD) for the Cl analysis, multiply the LOQ by the dilution factor for reporting purposes (record as "< LOQ * dilution factor" instead of "TO").

- 5.13.2.6 Record results on Enclosure 7.7.
- 5.13.2.7 **IF** needed, reserve any remaining liquid sample for use as a backup.

- 5.13.3 **IF** approved by OSC & RP, prepare Panel for next use by performing the following: (PALSS Sample Panel)
 - Fill buffer tanks(s) with ~ 600 mLs of buffer solution for calibrating the pH meter.
 - This solution will be pressurized with nitrogen gas to at least 60 psig using the nitrogen purge system inside the PALSS sample panel.
 - Connect tank(s) to quick connect fittings inside sample panel.
- NOTE: 1. Buffer Tank A should be filled with the stronger buffer (pH 4 buffer if expected pH < 7.0 OR a pH 10 buffer if expected pH > 7.0). Always fill Buffer Tank B with a pH 7 buffer.
 - 2. Buffer tanks may be pre-prepared and stored inside of PALSS sample panel. Verify that buffer expiration dates have not been exceeded.
 - Fill the 50 mL sample flush cylinder with demineralized water for flushing the liquid sample from the Rheodyne sample injection valves.
 - While holding in a vertical position, attach the matching quick disconnects and fill the cylinder from the bottom to the top using demineralized water.
 - Connect to sample shelf inside sample panel.
 - Replace Gas Bomb Septa.
 - 5.13.4 Ensure all data is recorded and Enclosure 7.7 is complete.
 - 5.13.5 Route this procedure along with the gamma spectra(s) to the OSC.

6. References

- 6.1 NUREG-0737, Section II.B.3
- 6.2 DPC System Radiation Protection Manual
- 6.3 Post Accident Liquid Sampling System Manual, Production Support Department, OM-311C-0331
- 6.4 ASTM Volume 11.01, D-1293-84 (1990)
- 6.5 DPC LM/O/P008 (The Determination of Hydrogen Using the Carle or SRI Gas Chromatographs)
- 6.6 DPC LM/O/P004 (Determination of Chloride by Specific Ion Electrode)
- 6.7 ITS 5.5.4
- 6.8 PIP O-02-00614
- 6.9 PIP O-98-04532

7. Enclosures

- 7.1 Valve Arrangement Diagram (Control Panel)
- 7.2 Valve Arrangement Diagram (General One Line)
- 7.3 PALSS Inlet Filter/Strainer Back Flush Procedure
- 7.4 Calculation of Hydrogen Concentration Using the Ideal Gas Law (Differential Pressure)
- 7.5 Unit 1 PALSS Power Supply
- 7.6 Operations Checklist for Unit 1 PALSS Operating Procedure Valve Lineups to Route Reactor Coolant to the PALSS/Waste to the RBES
- 7.7 PALSS Authorization for Operation and Data Transmittal Form
- 7.8 Operating the Analyzer/Controller

•

CP/**1**/A/2002/004C Page 1 of 1

Valve Arrangement Diagram (Control Panel)

•

Valve Arrangement Diagram (General - One Line)

CP/**1**/A/2002/004C Page 1 of 1

PALSS Inlet Filter/Strainer Back Flush Procedure

CP/**1**/A/2002/004C Page 1 of 2

1. Purpose

This enclosure gives instructions for back flushing the PALSS inlet filter/strainer.

2. Initial Conditions

None

3. Limits and Precautions

- □ 3.1 The following RCS sample valves must be closed to prevent contamination of the demineralized water header with reactor coolant: (PALSS Control Panel)
 - PB 5 (1LP-124, Isolation for HP Sample (Letdown))
 - PB 3 (1LP-126, Isolation for LP Sample)
 - PB4 (1RC-179, Post Accident Sample Block)

4. Procedure (PALSS Control Panel)

- □ 4.1 Ensure closed PB 5 (1LP-124, Isolation for HP Sample (Letdown)).
- □ 4.2 Ensure closed PB 3 (1LP-126, Isolation for LP Sample).
- □ 4.3 Ensure closed PB 4 (1RC-179, Post Accident Sample Block).
- \Box 4.4 Wait \geq 30 seconds.
- □ 4.5 Close 104.
- □ 4.6 Ensure SS 3 (selector switch) is in the "PT-1" position.
- □ 4.7 Monitor pressure on PG-1 for one minute.
 - \Box 4.7.1 IF the pressure on PG-1 > 60 psi <u>OR</u> is increasing with time, immediately contact Chemistry Staff and notify the RCS may be leaking.
 - PB 5 (1LP-124, Isolation for HP Sample (Letdown))
 - <u>OR</u> PB 3 (1LP-126, Isolation for LP Sample)
 - OR PB 4 (1RC-179, Post Accident Sample Block).
 - Do <u>NOT</u> proceed without Staff approval.

PALSS Inlet Filter/Strainer Back Flush Procedure

CP/**1**/A/2002/004C Page 2 of 2

- □ 4.8 Close 101
- □ 4.9 Open PB 8 (1LP-129, Sample Drain to the High Activity Waste Tank)
- □ 4.10 Open PB 6 (1DW-278, DW Flush Supply to Post Accident Sample)
- \Box 4.11 Backflush \geq 5 minutes.
- \Box 4.12 Close the following values:
 - □ 4.12.1 PB 6 (1DW-278, DW Flush Supply to Post Accident Sample)
 - □ 4.12.2 PB 8 (1LP-129, Sample Drain to the High Activity Waste Tank)
- \Box 4.13 IF the purpose is to resume sampling, open:
 - PB 5 (1LP-124, Isolation for HP Sample (Letdown))
 - OR PB 3 (1LP-126, Isolation for LP Sample)
 - <u>OR</u> PB 4 (1RC-179, Post Accident Sample Block)
 - □ 4.13.1 Open 104
 - □ 4.13.2 Open 101

. .

- □ 4.13.3 Return to procedural step allowing completion of the sampling process.
- □ 4.14 IF the clogged filter light is still "ON" and no flow is shown on FG 1, stop sampling.
- □ 4.15 Notify Chemistry Staff.

Person contacted _____

Calculation of Hydrogen Concentration Using the Ideal Gas Law (Differential Pressure)

CP/**1**/A/2002/004C Page 1 of 2

1. Purpose

This enclosure provides guidance on calculations for hydrogen using Ideal Gas Laws.

2. Initial Conditions

None

- -

3. Procedure

3.1 Record the initial and final temperature and pressure readings from Steps 5.7.5.4 and 5.7.5.8.

Initial Temperature Reading ______°F Final Temperature Reading ______°F

Initial Pressure Reading _____ PSIA

Final Pressure Reading _____ PSIA

3.2 Calculate the average gas temperature reading using the following equation:

 $T_{avg} = (T_{final} + T_{init})/2$

where, T_{avg} = Average Gas Temperature, °C

T_{final} = Final Gas Temperature Reading, °C

T_{init} = Initial Gas Temperature Reading, °C

3.3 Calculate the differential gas pressure using the following equation:

 $P_{diff} = P_{final} - P_{init}$

where, $P_{diff} = Differential Gas Pressure, PSI$

P_{final} = Final Gas Pressure Reading, PSIA

 P_{init} = Initial Gas Pressure Reading, PSIA

CP/**1**/A/2002/004C Page 2 of 2

Calculation of Hydrogen Concentration Using the Ideal Gas Law (Differential Pressure)

3.4 Calculate the hydrogen concentration of the trapped PALSS gas sample using the following equation:

$$H_2 = \frac{(3,719.83)(P_{diff})}{(T_{avg} + 273)} + \frac{(P_{final} - 0.69)}{0.769}$$

.

.

- -

(H₂ in Gas Sample) (H₂ remaining in Liquid Sample)

where, $H_2 = PALSS$ gas sample Hydrogen Concentration, cc/Kg

3.5 Record hydrogen concentration result from Step 3.4 above on Enclosure 7.7.

ì

 \smile

 \sim

CP/**1**/A/2002/004C Page 1 of 4

Operations Checklist for Unit 1 PALSS Operating Procedure Valve Lineups to Route Reactor Coolant to the PALSS/Waste to the RBES

1. Purpose

This enclosure, performed by Operations, gives the valve lineups needed for routing reactor coolant from the RCS "J" Leg through the PALSS to the RBES.

2. Initial Conditions

2.1 Demineralized water header should be in service and have at least 60 psi pressure.

2.2 RCW System (sample cooling supply) should be in service.

3. Procedure

DV

3.1 Establish communications with Chemistry personnel assigned to the task.

Chemistry personnel assigned:

NOTE: The normal position of 1LP-65 is locked closed. {PIP O-02-00614}

3.2 **IF** containment integrity is required or being considered, station a person at the reach rod for 1LP-65 ('1B' Emer Sump Line Drn Blk) (Unit 1 LPI Hatch Area) to immediately close the valve **IF** ES actuation occurs. This person must be in constant contact with the Control Room.

3.3 Unlock and open 1LP-65 ('1B' Emer Sump Line Drn Blk) (Unit 1 LPI Hatch Area).

- ____ 3.4 Record that 1LP-65 ('1B' Emer Sump Line Drn Blk) is open on unit shift Turnover Sheet.
 - 3.5 Establish flow to the PALSS panel via the RCS "J" Leg as follows:

NOTE: Both 1RC-162 and 1RC-164 are powered from breaker 1KVIB-14.

- 3.5.1 Remove tag from breaker #14 on 1KVIB for: (Unit 1 Cable Rm.)
 - 1RC-162 (RC SAMPLE ISOL VLV)
 - 1RC-164 (RC SAMPLE ISOL VLV)
- _____ 3.5.2 Close breaker 1KVIB-14.

CP/**1**/A/2002/004C Page 2 of 4

Operations Checklist for Unit 1 PALSS Operating Procedure Valve Lineups to Route Reactor Coolant to the PALSS/Waste to the RBES

- _____ 3.5.3 Remove tag from breaker 1KVIA-4 (Unit 1 Cable Rm.) for 1RC-165, (RC SAMPLE ISOL VLV).
- 3.5.4 Close breaker 1KVIA-4.
- 3.5.5 IF containment integrity is required or being considered, assign an Operator to immediately close the following valves in case of an ES Actuation:
 - 1RC-162 (RC SAMPLE ISOL VLV)
 - 1RC-163 (RC SAMPLE ISOL VLV)
 - 1RC-164 (RC SAMPLE ISOL VLV)
 - 1RC-165 (RC SAMPLE ISOL VLV)

NOTE:	PIP O-98-04532 addresses the sequence of operation for Unit 1 (RC-162, RC-163, R 164 and RC-165)					
	_ 3.5.6	Open 1RC-163 (RC SAMPLE ISOL VLV).				
	3.5.7	Open 1RC-164 (RC SAMPLE ISOL VLV).				
DV	_ 3.5.8	Open 1RC-165 (RC SAMPLE ISOL VLV).				
DV	3.5.9	Open 1RC-162 (RC SAMPLE ISOL VLV).				
	3.5.10	Record the following containment isolation valves are open on unit shift Turnover Sheet.				
		• 1RC-162 (RC SAMPLE ISOL VLV)				
		• 1RC-163 (RC SAMPLE ISOL VLV)				
		• 1RC-164 (RC SAMPLE ISOL VLV)				
		• 1RC-165 (RC SAMPLE ISOL VLV)				
3.6	WHEN 3.7 and	notified by Chemistry that the RCS sample has been obtained, continue to Step complete the enclosure.				

Person contacted _____

Operations Checklist for Unit 1 PALSS Operating Procedure Valve Lineups to Route Reactor Coolant to the PALSS/Waste to the RBES

CP/**1**/A/2002/004C Page 3 of 4

3.7 Close the following valves:

DV

DV

- -

- _____ 3.7.1 IRC-165 (RC SAMPLE ISOL VLV)
- _____ 3.7.2 IRC-164 (RC SAMPLE ISOL VLV)
- _____ 3.7.3 IRC-163 (RC SAMPLE ISOL VLV)
 - _____ 3.7.4 IRC-162 (RC SAMPLE ISOL VLV)
 - _____ 3.8 Record the following containment isolation valves are closed on unit shift Turnover Sheet.
 - 1RC-162 (RC SAMPLE ISOL VLV)
 - 1RC-163 (RC SAMPLE ISOL VLV)
 - 1RC-164 (RC SAMPLE ISOL VLV)
 - 1RC-165 (RC SAMPLE ISOL VLV)
 - _ 3.9 The operator responsible for the sample isolation valves is relieved of the responsibility to close the following valve in case of an ES actuation:
 - 1RC-162 (RC SAMPLE ISOL VLV)
 - 1RC-163 (RC SAMPLE ISOL VLV)
 - IRC-164 (RC SAMPLE ISOL VLV)
 - 1RC-165 (RC SAMPLE ISOL VLV)
 - 3.10 <u>WHEN</u> RCS sampling is complete, ensure open the following breakers: (Unit 1 Cable Room)
- DV
 3.10.1
 Tag open breaker 1KVIB-14 for 1RC-162 (RC SAMPLE ISOL VLV) AND 1RC-164 (RC SAMPLE ISOL VLV) per applicable Operations procedure.
- _____ 3.10.2 Tag open breaker 1KVIA-4 for 1RC-165 (RC SAMPLE ISOL VLV) per applicable Operations procedure.
 - 3.11 Lock and close 1LP-65 ('1B' Emerg Sump Line Drn Blk). (Unit 1 LPI Hatch Area)

DV

|

1

i

.....

Enclosure 7.6

CP/**1**/A/2002/004C Page 4 of 4

Operations Checklist for Unit 1 PALSS Operating Procedure Valve Lineups to Route Reactor Coolant to the PALSS/Waste to the RBES

- _ 3.12 Record 1LP-65 ('1B' Emerg Sump Line Drn Blk) is locked closed on unit shift Turnover Sheet.
- _____ 3.13 The person responsible for 1LP-65 is relieved of the responsibility to close the valve in case of an ES actuation.
 - 3.14 Ensure completed enclosure is maintained by Chemistry.

-

.

 \smile

,

•

PALSS Authorization for Operation and Data Transmittal Form

CP/1/A/2002/004C Page 1 of 2

			and Data Transmittai Form
_		Date _	
	1.	Initia	Il Conditions
		None	
	2.	Proce	edure
-		2.1	Verbal/written direction for sampling the Reactor Coolant via the PALSS has been received from the TSC/OSC.
			Sample Point: RCS "J-Leg" Waste Route: RBES
			LPI Pump Discharge HAWT
			HPI Letdown
			Person Authorizing Sampling
		2.2	The specific post-accident analysis requested by TSC/OSC:
			Boron =ppm
\smile			Hydrogen =cc/kg
			Chloride =ppm
			pH =
			Gas Gamma (attach)
			Liquid Gamma (attach)
			Other (specify)
		2.3	Have RP determine general area dose rate at the PALS valve panel and record below.
			Dose rate (general area) = r/hr
		2.4	Determine by detailed planning meeting the exact course of action and data required.
		2.5	Evaluate the use of portable shielding, remove handling equipment, video equipment, etc., to minimize the exposure to personnel while sampling.

CP/**1**/A/2002/004C Page 2 of 2

PALSS Authorization for Operation and Data Transmittal Form

- 2.6 Have RP determine the required respiratory equipment and protective clothing to prevent or minimize internal exposure in any Planned Emergency situation. Use high range and/or extremity dosimetry if required.
- 2.7 Determine how long to flush the PALSS sample panel, based on general area dose readings.
- 2.8 Request RP to designate a route from PALSS to the Lab.

Sample route designated:_____

-

ż

2.9 Evaluate the use of portable shielding, remove handling equipment, video equipment, etc., to minimize the exposure to personnel in the Lab for the required analyses.

CP/**1**/A/2002/004C Page 2 of 2

PALSS Authorization for Operation and Data Transmittal Form

- 2.6 Have RP determine the required respiratory equipment and protective clothing to prevent or minimize internal exposure in any Planned Emergency situation. Use high range and/or extremity dosimetry if required.
- 2.7 Determine how long to flush the PALSS sample panel, based on general area dose readings.
- 2.8 Request RP to designate a route from PALSS to the Lab.

Sample route designated:_____

.

t

. .

2.9 Evaluate the use of portable shielding, remove handling equipment, video equipment, etc., to minimize the exposure to personnel in the Lab for the required analyses.

Operating the Analyzer/Controller

CP/**1**/A/2002/004 C Page 1 of 1

Front panel keys used for all operator tasks

.

r

- -

Table 1-1 Key Functions

Кеу	Name	Use
	DISPLAY	When process values are on display: Use DISPLAY to cycle through available real-time displays.
		When the main menu (Configuration, Calibration, Maintenance, I/O Setup) is on display: Use DISPLAY to return to displaying process values.
	MENU	When process values are on display: Use MENU to access the menus. If the security feature is enabled, the display will prompt for entry of the password before access to the menus is permitted. (Enter the password using the procedure for editing a parameter numeric value as described on the next page.)
		When any menu or configuration screen is on display: Use MENU to go up a level in the display hierarchy. Frequently this means returning to the main menu.
	UP	When a menu or configuration screen is on display: Use UP to highlight a different item.
		When changing a numerical value: Use UP key to increment the value of the digit at the cursor.
	DOWN	When a menu or configuration screen is on display: Use DOWN to highlight a different item.
	-	When changing a numerical value: Use DOWN to decrement the value of the digit at the cursor.
	ENTER	When a menu item is highlighted: Use ENTER to select it.
Y		When editing a parameter: Use ENTER to save the new value.
F 1	F1, F2, F3 [function keys]	When a "soft key" label is displayed below the alarm stripe: Use the function key directly below the label to perform the action.

	, Di PROCED	uke Power Company URE PROCESS RECORD	(1) ID No <u>C</u> Revision No Con	P/2/A/2002/004
PRE	PARATION IN	ORMATION ONLY		
(2)	StationOc	onee Nuclear Station		
(3)	Procedure Title Operating Procedur	re for the Post Accident Liquid Sar	npling (PALS	S)
(4)	Prepared By & Clar	h	Date	10/31/02
(5)	Requires NSD 228 Applicability Determination	ion? najor changes) ed changes)		
(6)	Reviewed By _ Kucheng ht	(QR)	Date	12-2-02
	Cross-Disciplinary Review By	(QR) N	IA Date	12/16/02
	Reactivity Mgmt. Review By	pres (QR) N	IA Date	12/16/02
	Mgmt. Involvement Review By	(Ops. Supt.) N	IA Date	
(7)	Additional Reviews			
	QA Review By		Date	
	Reviewed By		Date	
	Reviewed By		Date	
73)	Temporary Approval (if necessary)			
	By	(OSM/	QR) Date	
	By	(QR)	Date	
(9)	Approved By Huger 2.	Ylani	Date	1/10/03
PER	FORMANCE (Compare with control copy eve	ery 14 calendar days while work is being	perj`ormed.)	
(10)	Compared with Control Copy		Date	
	Compared with Control Copy		Date	
	Compared with Control Copy		Date	
(11)	Date(s) Performed			
	Work Order Number (WO#)			
COM	IPLETION			
(12)	Procedure Completion Verification			
	☐ Yes ☐ NA Check lists and/or blanks i	nitialed, signed, dated, or filled in NA	., as appropriat	e?
	\Box Yes \Box NA Data sheets attached. com	bleted, dated, and signed?		
	□ Yes □ NA Charts, graphs, etc. attache	ed, dated, identified, and marked?		
	☐ Yes ☐ NA Procedure requirements me	et?		
	Verified By	······································	Date	
1-2)	Procedure Completion Approved		Date	

....

CP/**2**/A/2002/004C Page 2 of 36

Operating Procedure for the Post Accident Liquid Sampling System (PALSS)

- **NOTE:** 1. This <u>entire</u> procedure supports an AP or EOP action. The procedure will require AP/EOP validation per NSD 705.
 - 2. Seven Control copies and one Information Only copy of this procedure shall be routed to the Emergency Preparedness Team within three working days after any approved changes.

1. Purpose

The post accident liquid sampling system (PALSS) provides the capability to obtain a primary coolant sample via the HPI Letdown, LPI Pump Discharge or the RCS "J" leg during a nuclear reactor accident condition(s) as described in the FSAR and in accordance with NUREG-0737.

2. Limits and Precautions

- □ 2.1 This procedure should be used to operate PALSS to sample the Reactor Coolant System under the following conditions:
 - 2.1.1 Post Accident.
 - 2.1.2 Inaccessibility of (routine) Primary Sampling Area <u>AND/OR</u> HPI Letdown Sampling not possible.
 - 2.1.3 Request from the Chemistry Manager or his designee.
- □ 2.2 Under accident conditions, valve alignments shall <u>NOT</u> be made and samples shall <u>NOT</u> be taken without prior authorization from the Emergency Coordinator <u>OR</u> the TSC/OSC! (Containment isolation valves may be closed upon ES actuation, see Enclosure 7.6.)
- □ 2.3 Under accident conditions, do <u>NOT</u> attempt any phase of sampling <u>OR</u> analysis without Radiation Protection job coverage!
- □ 2.4 Consider portable shielding, remote handling equipment, video equipment, etc., where practical or available during sampling, sample preparation, and sample analysis.
- □ 2.5 Chemistry personnel shall operate only those <u>valves</u> operated by the Control Panel <u>OR</u> via the sample panel unless clearly specified otherwise in this procedure.

CP/**2**/A/2002/004C Page 3 of 36

- □ 2.6 <u>IF</u> power is <u>NOT</u> available at the PALSS Control Panel, return to a low dose area and contact Chemistry management.
 - 2.6.1 Refer to Enclosure 7.5 and troubleshoot as required to determine source of problem.
 - 2.6.2 Notify the OSC/TSC.
 - 2.6.3 The following breakers should be closed to ensure power availability.
 - 1L2 Bkr. #39 Sampling/Control Panels Power Supply (located next to U2 sampling panel)
 - MCC1XL Bkr. for 2DW-278 (DW Flush Supply to Post Accident Sample) (PALSS Control Panel)

CAUTION: Chemical hazards shall be known prior to use. For additional information and first aid requirements, refer to the MSDS sheet.

- □ 2.7 Personal protective requirements for chemicals used in this procedure are pH buffers 4.0, 7.0, and 10.0:
 - lab coat
 - gloves (rubber/vinyl)
 - chemical splash goggles
- 2.8 <u>WHEN</u> flushing the desired sample to the waste tanks, request Operations add a second compressor on the GWD header because fresh fission gasses may cause a serious problem in the Aux. Building.
 - IF possible, this increased vacuum should be maintained until sampling is complete.
- □ 2.9 All sample vials should be cleaned and rinsed to protect against chloride contamination.
 - Do <u>NOT</u> place bare finger tips on the surface of the septum.

CP/**2**/A/2002/004C Page 4 of 36

3. Apparatus

- 3.1 A minimum of 4 Lockable Glass (Gas) Syringes
- 3.2 Liquid Sample Carrier (Bucket, Etc.), Gas Syringe Carrier
- 3.3 Watch or Lab Timer
- 3.4 Plastic Bags
- 3.5 15 40cc Evacuated Sample Vial(s) for Liquid Sample
- 3.6 Nitrogen Supply Bottle with > 600 psi available. (with Two Stage Regulator; 0 to 200 psig on Delivery Stage) replace as required

4. Reagents

4.1 <u>Buffer Solutions</u> - Use purchased 4.00, 7.00 and/or 10.00 buffers or equivalent

5. Procedure

- 5.1 Prerequisites and Panel Preparation (preliminary)
 - □ 5.1.1 Initiate Enclosure 7.7.
- 5.1.2 **IF** routing waste to the RBES or sampling from the RCS "J" Leg:
 - Take Enclosure 7.6 to the responsible individual in Operations (designated by the OSC).
 - Request Operations complete the appropriate step(s) of Enclosure 7.6 through Step 3.5.10.
 - \Box 5.1.3 Label glass vial(s) for collecting the liquid sample.

CP/**2**/A/2002/004C Page 5 of 36

5.2 Panel Preparation (prior to sampling)

NOTE:	IF any ite and 7.2.	m on the control or sample panel is not clearly identified, refer to Enclosure 7.1
	5.2.1	Inform the U-1 Control Room that sampling of the RCS will be done via the PALSS panel.
		• Identify the flowpath J-Leg, LPI OR Letdown.
		• Recommend an extra waste gas compressor be placed into service.
		Operator Notified:
] 5.2.2	At the Control Panel, ensure SW 1 (valve power switch), is in the "OFF" position.
		• Ensure PALSS safety switch is "ON".
CAUTIO	N: <u>Make</u> <u>cable</u> may b	the mating of connector cable 1 to connector 1 on the Junction Box the LAST connection made. IF this is not done last, the exposed pins of the other cables become energized and become an electrical hazard.
] 5.2.3	Position the Control Panel using RP as a guideline, in the lowest dose area possible.
] 5.2.4	<u>IF</u> necessary, route and connect the six required cables (CON 6 - CON 1) from the Control Panel to the Junction Box, starting with connector 6 and ending with connector 1.

- \Box 5.2.4.1 Connect CON-6 cable at both ends.
- \Box 5.2.4.2 Connect CON-5 cable at both ends.
- \Box 5.2.4.3 Connect CON-4 cable at both ends.
- \Box 5.2.4.4 Connect CON-3 cable at both ends.
- \Box 5.2.4.5 Connect CON-2 cable at both ends.
- □ 5.2.4.6 Connect CON-1 cable at the PALSS control panel end.
- \Box 5.2.4.7 Connect CON-1 cable to the junction box last.
- □ 5.2.5 Ensure off all control and solenoid valves (no lights).

CP/**2**/A/2002/004C Page 6 of 36

5.2.6 Position the following valves: (outside of Sample Panel)

CAUTION: Nitrogen cylinder must be replaced if pressure is < 600 psig in order to prevent backflow of fission gas into the cylinder.

- □ Open valve(s) on Nitrogen Supply Bottle (> 600 psi tank pressure required & ~100 psi delivery pressure)
- \Box <u>IF</u> necessary, replace cylinder.
- □ Open 2IA-2423 (IA to Post Accident Sample Panel).
- Ensure closed 2LP-122 (Post Accident Sample System Vent).

NOTE: The following switches are found on the PALSS Control Panel.

□ 5.2.7 Turn system power on by inserting Control Panel Key into (KS 1) Key Lock Switch and turning the key to the "ON" position.

NOTE: The lights in the middle of each switch which controls a valve should be "OFF". The green lights should be "LIT" on the push-button switches, (PB 1) through (PB 8).

- □ 5.2.8 Ensure all lamps on the Control Panel are functioning by turning ON SW 2 (lamp test switch) to the "ON" position.
 - 5.2.9 Make note of <u>OR</u> repair any not functioning properly. (The lamp test switch does not light).
 - □ 5.2.9.1 Turn SW 2 (lamp test switch) to "OFF".
- □ 5.2.10 Turn SW 1 (valve power switch) to the "ON" Position.

NOTE: In an accident situation, waste will be routed to the RBES unless otherwise directed by supervision. The alternate route is the HAWT via PB1 (2LP-130).

- 5.2.11 IF routing waste to the RBES, open PB2 (2LP-121, Post Accident Sample Panel Return).
- 5.2.12 **IF** routing waste to the HAWT, open PB1 (2LP-130, Sample Return to High Activity Waste Tank).

CP/**2**/A/2002/004C Page 7 of 36

5.3 Panel Preparation (pH Meter Standardization) (PALSS Control Panel)

5.3.1 Purge the pH housing with Nitrogen as follows:

NOTE:	<u>All</u> other control valves <u>must be</u> closed.		
	□ 5.3.1.1	Open 204	
	□ 5.3.1.2	Open 206	
	□ 5.3.1.3	Open 103	
	□ 5.3.1.4	Open 102	
	□ 5.3.1.5	Open 105	
	□ 5.3.1.6	Open 202	
	□ 5.3.1.7	Wait ≥ 2 minutes.	
	□ 5.3.1.8	Close 105	
	5.3.2 Pressurize	Buffer Tank A as follows:	
NOTE:	SV 209 controls both buffer tanks (A and B).		
	□ 5.3.2.1	Place 209 in the 'A' position.	
	□ 5.3.2.2	Wait \geq 30 seconds.	
	□ 5.3.2.3	Place 209 in the "OFF" position.	

□ 5.3.2.4 Close 202

CP/**2**/A/2002/004C Page 8 of 36

- 5.3.3 Evacuate pH housing as follows:
 - □ 5.3.3.1 Open 208
 - □ 5.3.3.2 Open 201
 - \Box 5.3.3.3 <u>WHEN</u> the pressure on PG 4 stabilizes (normally < 2.0 PSIA),
 - □ A. Close 201
 - \square B. Record the pH Housing pressure from PG 4 <u>OR</u> PG 5.

pH Housing Pressure for A Buffer = _____ PSIA

- □ 5.3.3.4 Close 102
- □ 5.3.3.5 Close 103
- □ 5.3.3.6 Close 206
- □ 5.3.3.7 Close 204
- □ 5.3.3.8 Close 208
- 5.3.4 Transfer A Buffer into the pH housing as follows:
 - \Box 5.3.4.1 Place 209 in the 'A' position.
 - \Box 5.3.4.2 Wait \geq 1 minute.
 - \Box 5.3.4.3 Place 209 in the "OFF" position.
- 5.3.5 Standardize the pH meter as follows:
- **NOTE:** 1. The following keys are located on the pH meter in the face of the PALSS control panel.
 - 2. Refer to Enclosure 7.8 for pH meter key descriptions.
 - 5.3.5.1 Use the "menu" key to move to the main menu. The display will show: ("Configuration, Calibration, Maintenance, I/O Setup").
 - 5.3.5.2 Using the "arrow up or down" keys, move to and highlight "Calibration".
 - 5.3.5.3 Press "enter".

CP/**2**/A/2002/004C Page 9 of 36

5.3.5.4 Using the "arrow up or down" keys, move to and highlight "Buffer Cal".
5.3.5.5 Press Enter.
5.3.5.6 Press the "Hold" key.
5.3.5.7 Press the "next" key to move to the next screen.

NOTE: • A flashing value indicates the probe may be broken.

- A value that <u>CANNOT</u> be adjusted to within \pm .5 pH offset will make the unit return to the calibration screen, indicating that the pH electrode may need to be replaced.
 - 5.3.5.8 The display will show the pH of the 'A' buffer solution.
 - 5.3.5.9 Wait for a stable reading.
 - 5.3.5.10 Press the up or down arrow once to activate the side to side arrows.
 - 5.3.5.11 Use the "function keys, side to side" to select the desired digit space and change the value on the display using the "arrow up and down" keys to match the actual 'A' buffer pH.
 - 5.3.5.12 <u>WHEN</u> the unit display indicates the buffer pH, press the "ENTER" key.
 - 5.3.5.13 Record the pH meter value set for the 'A' buffer pH.

'A' Buffer Solution pH _____

5.3.5.14 <u>WHEN</u> the unit successfully meets the preset specifications and the entered buffer value is displayed, press "next" until the screen with the following is visible:

SLOPE

Note: Buffer must be > 2 pH units away from the STD buffer.

CP/**2**/A/2002/004C Page 10 of 36

NOTE:	The unit sl	hould still be	in the "hold" mode.
		5.3.5.15	Press "next". The following screen should be visible:
			SLOPE
			Place electrode in Buffer Attention. Wait for Stable Reading!
	5.3.6	Purge the pl	H housing with nitrogen as follows:
		5.3.6.1	Open 202
		5.3.6.2	Open 204
		5.3.6.3	Open 206
		5.3.6.4	Open 103
		5.3.6.5	Open 102
		5.3.6.6	Open 105
		5.3.6.7	Wait ≥ 2 minutes.
		5.3.6.8	Close 105
		5.3.6.9	Place 209 in the 'A' position.
		5.3.6.10	Place 209 in the "OFF" position.
		5.3.6.11	Close 102
		5.3.6.12	Close 103
		5.3.6.13	Close 206
		5.3.6.14	Close 204
		5.3.6.15	Close 202

• •

5.3.7 Flush the pH housing with DW as follows:

- □ 5.3.7.1 Open 101
- □ 5.3.7.2 Open 102
- □ 5.3.7.3 Open 105
- □ 5.3.7.4 Open PB-6 (2DW-278, DW Flush Supply to Post Accident Sample).
- \Box 5.3.7.5 Wait \geq 5 minutes.
- □ 5.3.7.6 Close 101
- □ 5.3.7.7 Close PB-6 (2DW-278, DW Flush Supply to Post Accident Sample).
- 5.3.8 Purge the demineralized water out of the pH housing with nitrogen as follows:
 - □ 5.3.8.1 Open 202
 - □ 5.3.8.2 Open 204
 - □ 5.3.8.3 Open 206
 - □ 5.3.8.4 Open 103
 - \Box 5.3.8.5 Wait \geq 2 minutes.
 - □ 5.3.8.6 Close 105
- 5.3.9 Pressurize Buffer Tank B as follows:
 - \Box 5.3.9.1 Place 209 in the 'B' position.
 - \Box 5.3.9.2 Wait \geq 30 seconds.
 - \Box 5.3.9.3 Place 209 in the "OFF" position.
 - □ 5.3.9.4 Close 202

CP/**2**/A/2002/004C Page 12 of 36

J.J.10 Evacuate pri nousing as ronows	5.3.10	Evacuate	pH housing	as follows
---------------------------------------	--------	----------	------------	------------

- □ 5.3.10.1 Open 208 Open 201 □ 5.3.10.2 □ 5.3.10.3 Let the pressure on PG 4 stabilize (normally < 2.0 PSIA). □ 5.3.10.4 Close 201. Record pH Housing pressure from PG 4. □ 5.3.10.5 pH Housing Pressure for B Buffer = _____ PSIA □ 5.3.10.6 Close 102 □ 5.3.10.7 Close 103 5.3.10.8 Close 206 □ 5.3.10.9 Close 204 5.3.10.10 Close 208 5.3.11 Transfer B Buffer into the pH housing as follows: □ 5.3.11.1 Place 209 in the 'B' position. □ 5.3.11.2 Wait ≥ 1 minute.
 - □ 5.3.11.3 Place 209 in the "OFF" position.

CP/**2**/A/2002/004C Page 13 of 36

- 5.3.12 Calibrate the pH meter as follows: (pH meter on the face of the PALSS Control Panel)
- NOTE: 1. Refer to Enclosure 7.8 for pH meter key description.
 - 2. The unit should still be in the "HOLD" mode. This key causes the pH meter to maintain a constant output and alarm condition. This allows the electrode to be removed (optional) for calibration in a buffer without process upset. The temperature compensation feature is also disabled in the "HOLD" mode (this allows calibration of the meter to the particular temperature of the buffer used).
 - 5.3.12.1 Press "next". The display will show the pH of the 'B' buffer as measured by the electrode.
 - 5.3.12.2 Wait for a stable reading.
 - 5.3.12.3 Press the up or down arrow once to activate the side to side arrows.
 - 5.3.12.4 Select the desired digit space using the "function keys side to side" adjust the value on the display using the "arrow up and down" keys, until the display matches the actual pH of the buffer solution.
 - 5.3.12.5 Press "enter". This will set the instrument slope.
 - 5.3.12.6 Record the pH meter value set for the 'B' buffer pH.

'B' Buffer Solution pH _____

5.3.12.7 **IF** the slope adjustment was successful, the Completed screen will be displayed:

SLOPE

Slope Completed Slope Buffer Value Saved

5.3.12.8 Using the "hold" key, take the unit out of the hold mode.

NOTE:	IF the calibration was not successful, the menu will return to the original Calibration
	Menu by itself and display an error code.

- 5.3.12.9 Use the "next" key to rotate back to the original Calibration menu screen.
- 5.3.12.10 Press the "Display" key. The pH meter is now in the sample measurement mode.
- 5.3.13 Purge the pH housing with nitrogen as follows:
 - □ 5.3.13.1 Open 202
 - □ 5.3.13.2 Open 204
 - □ 5.3.13.3 Open 206
 - □ 5.3.13.4 Open 103
 - □ 5.3.13.5 Open 102
 - □ 5.3.13.6 Open 105
 - \Box 5.3.13.7 Wait \geq 2 minutes.
 - □ 5.3.13.8 Close 105
 - \Box 5.3.13.9 Place 209 in the 'B' position.
 - □ 5.3.13.10 Place 209 in the "OFF" position.
 - □ 5.3.13.11 Close 102
 - □ 5.3.13.12 Close 103
 - □ 5.3.13.13 Close 206
 - □ 5.3.13.14 Close 204
 - □ 5.3.13.15 Close 202

. .

5.3.14 Flush the pH housing with DW as follows:

- □ 5.3.14.1 Open 101
- □ 5.3.14.2 Open 102
- □ 5.3.14.3 Open 105
- □ 5.3.14.4 Open PB 6 (2DW-278, DW Flush Supply to Post Accident Sample)
- \Box 5.3.14.5 Wait \geq 3 minutes.
- □ 5.3.14.6 Close 101
- □ 5.3.14.7 Close PB 6 (2DW-278, DW Flush Supply to Post Accident Sample)
- 5.3.15 Purge the demineralized water out of the pH housing with nitrogen as follows:
 - □ 5.3.15.1 Open 202
 - □ 5.3.15.2 Open 204
 - □ 5.3.15.3 Open 206
 - □ 5.3.15.4 Open 103
 - □ 5.3.15.5 Wait \ge 2 minutes <u>OR</u> until pressure on PG 3 drops rapidly (below 50 psi).
 - □ 5.3.15.6 Close 105
 - □ 5.3.15.7 Close 202
 - □ 5.3.15.8 Close 204
 - □ 5.3.15.9 Close 206
 - □ 5.3.15.10 Close 103
 - □ 5.3.15.11 Close 102

CP/**2**/A/2002/004C Page 16 of 36

- 5.4 Panel Preparation (pH Housing and Gas Tank(s) Evacuation) (PALSS Control Panel)
 - 5.4.1 Evacuate pH housing and gas tanks as follows:
 - □ 5.4.1.1 Open 208
 - □ 5.4.1.2 Open 201
 - □ 5.4.1.3 Open 203
 - □ 5.4.1.4 Open 204
 - □ 5.4.1.5 Open 205
 - □ 5.4.1.6 Open 206
 - □ 5.4.1.7 Open 207
 - □ 5.4.1.8 Open 103
 - □ 5.4.1.9 Open 102
 - $\square 5.4.1.10 \qquad \text{Monitor the pressure in the pH housing and gas tanks on PG 5} \\ \underline{OR} PG 4 \text{ let the pressure stabilize (normally < 2.0 PSIA).} \\ \end{tabular}$
 - □ 5.4.1.11 Close 201
 - □ 5.4.1.12 Close 208
 - 5.4.2 pH Housing Pressure
 - □ 5.4.2.1 Record pH Housing pressure from PG 5 (alternate PG 4).

pH Housing Pressure _____ PSIA

- □ 5.4.2.2 Close 102
- □ 5.4.2.3 Close 103
- □ 5.4.2.4 Close 206
- □ 5.4.2.5 Close 207

CP/**2**/A/2002/004C Page 17 of 36

543		30 mL and 9	500 mL Gas Tanks Pressure
5.7.5	г	5 / 3 1	Record gas tank pressures from PG 5 (alternate PG 4)
		5.4.5.1	Record gas tank pressures from FG 5 (anothato FG 7).
			Gas tanks (30mL and 500mL) pressure PSIA
		5.4.3.2	Close 205
		5.4.3.3	Close 204
		5.4.3.4	Close 203
5.5 Pane	l Op	eration (Read	ctor Coolant Sample Flush/Acquisition) (PALSS Control Panel)
NOTE: The s samp	ampl le po	e will be tak int.	en via the LPI pump discharge, HPI Letdown, or the RCS "J-Leg"
□ 5.5.1		Contact OS	C to obtain authorization to begin sample flush/retrieval.
		Person cont	acted Time
\Box 5.5.2 Notify the Control Room that the sample flush will begin via the appropriate sample point.			
		Person cont	acted
CAUTION: 1	. PE wa	3 6 (2DW-27 ater header.	8) must be closed to prevent flow of RCS into the demineralized
2	. CV	V-102 and C e pH housing	V-105 <u>must be</u> closed to prevent overpressurization and failure of
5.5.	3	Ensure pos	ition of the following valves:
		5.5.3.1	Close PB-6 (2DW-278, DW Flush Supply to Post Accident Sample).
		5.5.3.2	Close 102
		5.5.3.3	Close 105
□ 5.5.	4	Ensure SS	3 (selector switch) is in the "PT 1" position.
5.5.	5	<u>IF</u> samplin Sample Blo	g the RCS "J-Leg", then open PB 4 (2RC-179, Post Accident ock).

•

.
CP/**2**/A/2002/004C Page 18 of 36

- 5.5.6 IF sampling the LPI pump Discharge, then open PB 3 (2LP-126, Isolation for LP Sample).
- 5.5.7 IF sampling the HPI Letdown, then open PB 5 (2LP-124, Isolation for HP Sample Stop).
 - □ 5.5.8 Open 101
 - □ 5.5.9 Open 104

CAUTION: Monitor PG 3 to <u>ensure</u> that the outlet pressure <u>does NOT exceed 600 PSIG</u>. Adjust slowly.

- □ 5.5.10 Open 401 to establish the maximum flow without exceeding 600 PSIG on PG 3.
- \Box 5.5.11 Record the flowrate from FG1 _____ gpm.
- \Box 5.5.12 Record the pressure from PG 3 _____ psig.
 - 5.5.13 IF LT 3 (clogged filter light switch) comes on and remains on, but flow on FG-1 is > 1.5 gpm, continue with procedure.
 - IF flow is < 1.5 gpm, contact Chemistry Staff for further instructions.
 - IF directed by management, proceed to Enclosure 7.3.
- $\Box 5.5.14 \qquad \text{Select the desired thermocouple to monitor the inlet } \underline{OR} \text{ outlet of the sample} \\ \underline{OR} \text{ the cooling water using SS 1:}$
 - TE 1 Measures sample inlet to heat exchanges.
 - TE 2 Measures sample return from heat exchanger.
 - TE 3 Measures cooling water inlet to heat exchanger.
 - TE 4 Measures cooling water return from heat exchanger.
 - □ 5.5.14.1 Switch SS 1 to "TE 1"
 - \Box 5.5.14.2 Record sample inlet temperature on TG 1.

INLET TEMPERATURE ______°F

CP/**2**/A/2002/004C Page 19 of 36

- □ 5.5.14.3 Switch SS 1 to "TE 2".
- \Box 5.5.14.4 Record sample outlet temperature on TG 2.

OUTLET TEMPERATURE _____

- 5.5.15 After > 15 gallons have flowed through the system (calculate time based on FG-1 reading):
 - \Box 5.5.15.1 Slowly throttle 401 until fully closed.
 - □ 5.5.15.2 Immediately close 104
 - □ 5.5.15.3 Immediately close 101
 - □ 5.5.15.4 Record 500 mL liquid tank pressure from PG 1.

Pressure = _____ PSIG

□ 5.5.16 Move selector switch SS 3 to the "PT 2" position to measure discharge pressure of the injection valves.

NOTE: There are two continuous flow paths through the sample valve(s).

- <u>WHEN</u> the valve(s) is opened, the sample loop is moved to the sample flow path.
- <u>WHEN</u> the valve(s) is closed, the sample loop is moved to the sample injection (collection) flow path.
- 5.5.17 Ensure open the desired sample injection valve(s) of the 0.1 mL, 1 mL <u>AND/OR</u> 5 mL loop, respectively (normally the 5 mL and 1 mL loop are used):
 - □ 503 (0.1 mL Loop)
 - □ 502 (1 mL Loop)
 - □ 501 (5 mL Loop)
- □ 5.5.18 Open 107
- \Box 5.5.19 Slowly open 402 keeping flowrate on FG 2 < 300 mL/min.

CP/**2**/A/2002/004C Page 20 of 36

NOTE:	Greater t	han 40 PSIG sample pressure <u>must</u> be supplied to the injection valves.
	5.5.20	Wait \geq 5 minutes.
	5.5.21	Close the sample injection valve(s) opened in Step 5.5.17.
		□ 503 (0.1 mL Loop)
		□ 502 (1 mL Loop)
		□ 501 (5 mL Loop)
	5.5.22	Record sample time:
	5.5.23	Close the sample valve selected in Step 5.5.5 or 5.5.6 or 5.5.7.
		• PB 4 (2RC-179, Post Accident Sample Block)
		• PB 3 (2LP-126, Isolation for LP Sample)
		• PB 5 (2LP-124, Isolation for HP Sample Stop)
	5.5.24	Wait ≥ 1 minute.
	5.5.25	Close 402
	5.5.26	<u>IF</u> the pressure on PG-1 is > 100 psi <u>OR</u> is increasing with time, contact Chemistry Staff and notify that RCS is leaking by sample valve.
	5.5.27	After 1 minute, record the pressure on PG-1:psi

□ 5.5.28 Close 107

CP/**2**/A/2002/004C Page 21 of 36

- 5.6 Depressurization (PALSS Control Panel)
 - \Box 5.6.1 Ensure SS 3 (selector switch) is in the "PT 1" position.
 - \Box 5.6.2 Ensure closed 206
 - □ 5.6.3 Ensure closed 207
 - □ 5.6.4 Open 103
 - \Box 5.6.5 Wait \geq 2 minutes.

NOTE: Pressure on PG 1 should be < 50 PSIG.

- \Box 5.6.6 Record the pressure from PG 1 _____ PSIG.
- 5.7 Gas Collection (PALSS Control Panel)
 - 5.7.1 Verify pressure in the 30 mL and 500 mL gas tank is \leq 2.0 PSIA.

For 500 mL Gas Tank:

- □ 5.7.1.1 Open 205
- □ 5.7.1.2 Open 203
- □ 5.7.1.3 Record PG 5 (alternate gauge PG 4).

500 mL Gas Tank Pressure _____

- □ 5.7.1.4 Close 205
- □ 5.7.1.5 Close 203

For 30 mL Gas Tank:

- □ 5.7.1.6 Open 204
- □ 5.7.1.7 Open 203
- \Box 5.7.1.8 Record PG 5 (alternate gauge PG 4).

30 mL Gas Tank Pressure _____

- □ 5.7.1.9 Close 204
- □ 5.7.1.10 Close 203

NOTE:	The alternate (Total Gas Method) would be used if there was reason <u>NOT</u> to pull a gas sample.				
C	5.7.2	IF the p follows	pressure in the 30 mL and 500 mL Gas Tank is \leq 2.0 PSIA, proceed a :		
		□ 5.7.2.1	IF the Nitrogen stripping method is to be used for gas collection and analysis, proceed to Step 5.7.4.		
		□ 5.7.2.2	IF the alternate method (Total Gas Method) is to be used, proceed to Step 5.7.5.		
Γ	∃ 5.7.3	\underline{IF} the proof the table	pressure in the 30 mL OR 500 mL Gas Tank is > 2.0 PSIA, evacuation anks must be repeated as follows:		
		□ 5.7.3.1	Close 103		
		□ 5.7.3.2	Open 204		
		□ 5.7.3.3	Open 205		
		□ 5.7.3.4	Open 201		
		□ 5.7.3.5	Open 208		
		□ 5.7.3.6	Open 203		
		5.7.3.7	<u>WHEN</u> the reading from PG 5 (alternate gauge PG 4) is ≤ 2.0 PSIA, close		
			□ A. 204		
			□ B. 205		
			□ C. 201		
			□ D. 208		
			□ E. 203		
		□ 5.7.3.8	Open 103		

• 、

CP/**2**/A/2002/004C Page 23 of 36

- $\Box 5.7.3.9 \qquad \underline{IF} \text{ the Nitrogen stripping method is to be used for gas collection} \\ and analysis, continue with Step 5.7.4.$
- $\Box 5.7.3.10 \qquad \underline{IF} \text{ the alternate method (Total Gas Method) is to be used,} \\ proceed to Step 5.7.5.$

 NOTE:
 Nitrogen Stripping Method is the typical method.

 5.7.4
 Nitrogen Stripping Method (Gas Analysis)

 □
 5.7.4.1
 Ensure closed 205

 □
 5.7.4.2
 Open 207

Open 106

NOTE: The pressure on PG-1 should be monitored for an increase of approximately 15 psi. Because PT-1 is a high range pressure transmitter the indicated reading on PG-1 will vary from calibration to calibration and may indicate anywhere from -15 to 15 psi initially.

- □ 5.7.4.4 For a 10 minute interval, periodically turn on 109 to vibrate 500 mL liquid tank, monitor the pressure on PG 1 (switch SS 3 to "PT 1").
- □ 5.7.4.5 Close 106

□ 5.7.4.3

- □ 5.7.4.6 Open 205
- □ 5.7.4.7 Open 204
- \Box 5.7.4.8 Wait \geq 5 minutes.
- \Box 5.7.4.9 Close the following values:
 - □ A. 204
 - □ B. 205
 - □ C. 207
 - D. 103
 - 5.7.4.10 Proceed to Section 5.8.

CP/**2**/A/2002/004C Page 24 of 36

NOTE:	Calculated method should be used only as an <u>alternate</u> .			
-	5.7.5 Total Gas Method (Calculated)			
	□ 5.7.5.1	Monitor PG 4.		
	□ 5.7.5.2	<u>WHEN</u> the pressure shown on PG 4 is < 30 PSIA, the low range pressure transmitter, PT 5, can be used to obtain a more accurate pressure measurement.		
		• PT 5 can be used by opening 203.		
	□ 5.7.5.3	Ensure SS 2 switch is in the "RD 2" position.		
	□ 5.7.5.4	Record the initial temperature reading from TG 2 and pressure reading from PG 5.		
		TG 2 Init. Temp. Reading°F		
		PG 5 Init. Press. Reading PSIA		
	□ 5.7.5.5	Open 206		
	□ 5.7.5.6	Open 204		
	□ 5.7.5.7	Turn on the vibrator using 109 and monitor PG 5.		
	□ 5.7.5.8	<u>WHEN</u> the pressure of the 30 \underline{mL} gas tank stabilizes, record the final pressure and temperature.		
		TG 2 Final Temp. Reading°F		
		PG 5 Final Press. Reading PSIA		
	□ 5.7.5.9	Close 203		
	□ 5.7.5.10	Close 204		
	□ 5.7.5.11	Close 206		
	□ 5.7.5.12	Ensure 109 is off.		
	□ 5.7.5.13	Close 103		

、

.

CP/**2**/A/2002/004C Page 25 of 36

. .

- $\square 5.7.5.14 \qquad \text{Calculate the total amount of } H_2 \text{ in the sample using} \\ \text{Enclosure 7.4.}$
- □ 5.7.5.15 Report results on Enclosure 7.7.
- 5.8 Sample pH Measurement (PALSS Control Panel)
 - \Box 5.8.1 Ensure closed 206

.

- □ 5.8.2 Ensure closed 204
- \Box 5.8.3 Ensure SS 3 switch is set on PT 1.
 - 5.8.4 Pressurize liquid tank to at least 60 PSIG as monitored on PG 1 (alternate PG 4), as follows:
 - □ 5.8.4.1 Open 202
 - □ 5.8.4.2 Open 205
 - □ 5.8.4.3 Open 207
 - □ 5.8.4.4 Open 103
 - \Box 5.8.4.5 Wait \geq 30 seconds.
 - □ 5.8.4.6 Close 103
 - □ 5.8.4.7 Close 207
 - □ 5.8.4.8 Close 205
 - □ 5.8.4.9 Close 202
- □ 5.8.5 Open 102
- \Box 5.8.6 Record pH on Enclosure 7.7.
- □ 5.8.7 Close 102
- □ 5.8.8 Notify OSC that RCS <u>sampling</u> via the PALSS is completed and that sample retrieval will begin following system flush.

Person contacted _____

CP/**2**/A/2002/004C Page 26 of 36

- ☐ 5.8.9 IF waste was routed to the RBES <u>OR</u> sampling was done via the J-Leg flowpath from the PALSS panel per Step 5.1.2:
 - Notify the U2 Control Room that the RCS Sample has been obtained and they may complete Enclosure 7.4 from Step 3.6.

Person contacted

5.9 System Flush (PALSS Control Panel)

N

NOTE: Directions regarding sample panel flushing will be determined by management.

- □ 5.9.1 Ensure 204 and 206 <u>remain</u> closed and the sample injection valve(s) selected (501, 502 and/or 503) is turned off.
- □ 5.9.2 IF either LT 1 OR LT 2 indicator is illuminated:
 - □ 5.9.2.1 Open 108
 - □ 5.9.2.2 Turn on 110 (sump pump).
 - \Box 5.9.2.3 WHEN both LT1 and LT2 are out, close 108.
 - □ 5.9.2.4 Turn off 110 (sump pump).
- □ 5.9.3 IF given the direction to flush the panel, flush the 500 mL liquid tank, pH housing, and sample injection valves as follows:

500 mL Liquid Tank

- □ 5.9.3.1 Open 101
- □ 5.9.3.2 Open 104
- □ 5.9.3.3 Open 401
- □ 5.9.3.4 Open PB 6 (2DW-278, DW Flush Supply to Post Accident Sample)

pH Housing

- □ 5.9.3.5 Open 102
- □ 5.9.3.6 Open 105

CP/**2**/A/2002/004C Page 27 of 36

. .

Sample Injection Valves

- □ 5.9.3.7 Open 107
- □ 5.9.3.8 Open 402
- □ 5.9.3.9 Flush the sample panel until the general area dose rate on the exterior of the panel is ≤ 2 mR/hr <u>OR</u> a satisfactory level is achieved per RP.
- □ 5.9.3.10 Close 402
- □ 5.9.3.11 Close 107
- □ 5.9.3.12 Close 105
- □ 5.9.3.13 Close 102
- □ 5.9.3.14 Close 101
- □ 5.9.3.15 Close 104
- □ 5.9.3.16 Close 401
- □ 5.9.3.17 Close PB 6 (2DW-278, DW Flush Supply to Post Accident Sample)
- 5.10 Liquid & Gas Sample Retrieval (PALSS Control Panel)

Liquid Sample Retrieval

- \Box 5.10.1 Ensure open the waste route selected in Step 5.2.11 or 5.2.12:
 - PB 1 (2LP-130, Sample Return to High Activity Waste Tank)
 - OR PB 2 (2LP-121, 2B Emerg Sump Line Drn Blk).
- □ 5.10.2 Ensure closed all other PB valves (motor operated).
- \Box 5.10.3 IF LT 1 OR LT 2 is illuminated, perform Step 5.9.2.
- \Box 5.10.4 Select the flow path for sample collection by turning CV 612 to the desired injection valve (0.1 <u>mL</u>, 1 <u>mL</u>, or 5 <u>mL</u> loop).

Sample Loop(s) Selected _____

 \Box 5.10.5 Slowly turn CV 613 to the "N₂" position.

CP/**2**/A/2002/004C Page 28 of 36

- \Box 5.10.6 After collecting approximately 15 <u>mLs</u> of liquid sample, turn CV 613 to the "VENT" position.
- \Box 5.10.7 Wait \geq 10 seconds for sample line depressurization.
- \Box 5.10.8 Turn CV 612 to the "OFF" position.
- \Box 5.10.9 As necessary for additional sample(s), repeat Steps 5.10.4 through 5.10.8.

Gas Sample Retrieval

- $\Box 5.10.10 \quad \underline{\text{WHEN}} \text{ possible, use the gas-tight syringe(s) to retrieve the gas sample(s)} \\ \text{from the 30 } \underline{\text{mL}} \text{ gas tank keeping syringe vertical (needle down).}$
- □ 5.10.11 IF possible, place syringes in the gas locked position and store vertically (needle down).
- 5.11 30 mL Gas Tank and 500 mL Gas Tank Purge (PALSS Control Panel)
 - \Box 5.11.1 Verify Nitrogen supply still has \geq 100 psig delivery pressure.
 - 5.11.2 Allow all of the following values to stay open ≥ 2 minutes <u>except</u> alternate the value pairs 204/206 and 205/207 open and close within the 2 minute period:
 - □ 5.11.2.1 Open 202
 - □ 5.11.2.2 Open 204
 - □ 5.11.2.3 Open 205
 - □ 5.11.2.4 Open 206
 - □ 5.11.2.5 Open 207
 - □ 5.11.2.6 Open 103
 - □ 5.11.2.7 Open 104
 - □ 5.11.2.8 Open 401
 - □ 5.11.2.9 After flushing for several seconds, close the following:
 - A. 204
 - B. 206

CP/**2**/A/2002/004C Page 29 of 36

- After additional flush for several seconds, open the following: □ 5.11.2.10 A. 204 B. 206 □ 5.11.2.11 Close 205 Close 207 □ 5.11.2.12 After several seconds, open the following: □ 5.11.2.13 A. 205 B. 207 <u>IF</u> the valves need further cycling (it has not been ≥ 2 minutes) □ 5.11.2.14 return to Step 5.11.2.10. □ 5.11.2.15 IF the time is ≥ 2 minutes, proceed to Step 5.11.3. □ 5.11.3 Close 202 . . □ 5.11.4 Close 401 □ 5.11.5 Close 104 □ 5.11.6 Close 103 □ 5.11.7 Open 201
- □ 5.11.8 Open 208
 - 5.11.9 After \geq 10 seconds, close the following:
 - □ 5.11.9.1 206
 - □ 5.11.9.2 207
 - □ 5.11.9.3 204
 - □ 5.11.9.4 205
 - □ 5.11.9.5 201
 - □ 5.11.9.6 208

CP/**2**/A/2002/004C Page 30 of 36

- □ 5.11.10 Repeat Step 5.11.2 through 5.11.9 until dose rates of 30 <u>mL</u> and 500 <u>mL</u> tank are \leq 10 mR/hr (at contact) <u>OR</u> a satisfactory level is achieved per RP.
- 5.12 System Shutdown
 - 5.12.1 Ensure closed the following motor operated valves: (PALSS Control Panel)
 - □ PB 1 (2LP-130, Sample Return to High Activity Waste Tank)
 - D PB 2 (2LP-121, Post Accident Sample Panel Return)
 - □ PB 3 (2LP-126, Isolation for LP Sample)
 - □ PB 4 (2RC-179, Post Accident Sample Block)
 - □ PB 5 (2LP-124, Isolation for HP Sample Stop)
 - □ PB 6 (2DW-278, DW Flush Supply to Post Accident Sample)
 - □ PB 8 (2LP-129, Sample Drain to the High Activity Waste Tank)
 - 5.12.2 Ensure closed the following solenoid valves: (PALSS Control Panel)
 - □ 201
 - □ 202
 - □ 203
 - □ 204
 - □ 205
 - □ 206
 - □ 207
 - □ 208
 - □ 209

CP/**2**/A/2002/004C Page 31 of 36

- 5.12.3 Ensure closed the following control valves: (PALSS Control Panel)
 - □ 101
 - □ 102
 - □ 103
 - □ 104
 - □ 105
 - □ 106
 - □ 107
 - □ 108
- 5.12.4 Return SW 1 (valve power switch) to the "OFF" position.
- 5.12.5 Return KS 1 (key switch) to the "OFF" position.
- 5.12.6 Close 2IA-2423 (IA to Post Accident Sample Panel) (Outside the PALSS Sample Panel)
- 5.12.7 Ensure N_2 cylinder discharge pressure > 600 psi.
 - IF necessary, replace cylinder.
- 5.12.8 Close N₂ Supply Bottle valves (Outside the PALSS Sample Panel)

. .

NOTE: The following cable connections are located between the PALSS Control Panel and the cable junction box.

CAUTION: <u>Make the disconnection of connector cable 1 from the Junction Box the FIRST cable</u> <u>disconnection</u>. <u>IF</u> this is not done first, the exposed pins of the other cables may become energized and become an electrical hazard.

□ 5.12.9 IF directed by Chemistry Staff, disconnect the following cables in order:

Person contacted _____

- □ 5.12.9.1 CON-1 from the junction box (this is the first cable disconnect made), then from the PALSS Control Panel.
- \Box 5.12.9.2 CON-2 cable at both ends.
- \Box 5.12.9.3 CON-3 cable at both ends.
- \Box 5.12.9.4 CON-4 cable at both ends.
- \Box 5.12.9.5 CON-5 cable at both ends.
- \Box 5.12.9.6 CON-6 cable at both ends.
- □ 5.12.10 Store the control panel in the AB 1st floor hallway/corridor within ten (10) feet from the Unit 1 electrical junction box.
- □ 5.12.11 Ensure the control panel wheels are <u>locked</u> to prevent panel movement.
- □ 5.12.12 Ensure CV 609 is in the "AIR" position.
- □ 5.12.13 Ensure CV 610 is in the "NITROGEN" position.
- □ 5.12.14 Inform the OSC that flushing of the PALSS Panel has been completed.

Person contacted

CP/**2**/A/2002/004C Page 33 of 36

5.13 Sample Analysis

.

NOTE:	Steps 5.1: order writ	Steps 5.13.1 - 5.13.3 can be performed in any order. Substeps must be performed in the order written.			
	5.13.1	Gas (Nitro	ogen Stripping Method)		
		5.13.1.1	Analyze up to four syringes of stripped gas using the appropriate lab method for hydrogen analysis.		
		5.13.1.2	Use the following formula to calculate results:		
			$\% H_2 \frac{615.72 \text{ cc}}{0.50 \text{ Kg}} \times \frac{1}{100} = \text{cc/Kg} H_2$		
			Where: $\%$ H ₂ is determined from the lab method used in Step 5.13.1.1.		
			615.72 cc = 30 mL gas bomb + $500 mL$ gas bomb + tubing volume (volume occupied by sample gas).		
			0.50 Kg = collected sample size		
			$\underline{1}$ = conversion of percent to decimal 100		
		5.13.1.3	Record results in $cc/kg H_2$ on Enclosure 7.7.		

5.13.1.4 **IF** needed, reserve other stripped gas syringes for use as backups **OR** to perform a gas sample gamma spectra.

CP/**2**/A/2002/004C Page 34 of 36

- 5.13.2 Liquid
 - 5.13.2.1 Submit sample to count room for gamma spectra analysis. The sample may be counted in the rheodyne sample vial using the loop volume (preferred) or in a 50 mL bottle.
 - Submit loop volume as volume of sample to Countroom.
 - 5.13.2.2 Review and attach GeLi Spectra to Enclosure 7.7.
 - 5.13.2.3 Analyze PALSS sample for boron.
 - To obtain a boron concentration that will correlate directly with the normal RCS, the dilution factor must be multiplied by the analyzed sample concentration (obtained from the Boron Titration).

ppm B = measured ppm B x <u>Total dilution volume (sample loop + dilution water), mLs</u> sample loop volume, <u>mLs</u>

- 5.13.2.4 Record results of boron sample analysis on Enclosure 7.7.
- 5.13.2.5 Perform a chloride analysis of the sample.
 - To obtain a Cl concentration that will correlate directly with the normal RCS, the dilution factor must be multiplied by the analyzed sample concentration.

ppb Cl = measured ppb Cl x <u>Total dilution volume (sample loop + dilution water), mLs</u> sample loop volume, mLs

NOTE: <u>IF</u> the Cl results are below the Limit of detection (LOD) for the Cl analysis, multiply the LOQ by the dilution factor for reporting purposes (record as "< LOQ * dilution factor" instead of "T0").

- 5.13.2.6 Record results on Enclosure 7.7.
- 5.13.2.7 **IF** needed, reserve any remaining liquid sample for use as a backup.

CP/**2**/A/2002/004C Page 35 of 36

- 5.13.3 <u>IF</u> approved by OSC & RP, prepare Panel for next use by performing the following: (PALSS Sample Panel)
 - Fill buffer tanks(s) with ~ 600 mLs of buffer solution for calibrating the pH meter.
 - This solution will be pressurized with nitrogen gas to at least 60 psig using the nitrogen purge system inside the PALSS sample panel.
 - Connect tank(s) to quick connect fittings inside sample panel.
- NOTE: 1. Buffer Tank A should be filled with the stronger buffer pH 4 buffer if expected pH < 7.0 <u>OR</u> a pH 10 buffer if expected pH > 7.0. Always fill Buffer Tank B with a pH 7 buffer.
 - 2. Buffer tanks may be pre-prepared and stored inside of PALSS sample panel. Verify that buffer expiration dates have not been exceeded.
 - Fill the 50 mL sample flush cylinder with demineralized water for flushing the liquid sample from the Rheodyne sample injection valves.
 - While holding in a vertical position, attach the matching quick disconnects and fill the cylinder from the bottom to the top using demineralized water.
 - Connect to sample shelf inside sample panel.
 - Replace Gas Bomb Septa.
 - 5.13.4 Ensure all data is recorded and Enclosure 7.7 is complete.
 - 5.13.5 Route this procedure along with the gamma spectra(s) to the OSC.

CP/**2**/A/2002/004C Page 36 of 36

6. References

- 6.1 NUREG-0737, Section II.B.3
- 6.2 DPC System Radiation Protection Manual
- 6.3 Post Accident Liquid Sampling System Manual, Production Support Department, OM-311C-0331
- 6.4 ASTM Volume 11.01, D-1293-84 (1990)
- 6.5 DPC LM/O/P008 (The Determination of Hydrogen Using the Carle or SRI Gas Chromatographs)
- 6.6 DPC LM/O/P004 (Determination of Chloride by Specific Ion Electrode)
- 6.7 ITS 5.5.4
- 6.8 PIP O-02-00614
- 6.9 PIP O-98-04532

7. Enclosures

- 7.1 Valve Arrangement Diagram (Control Panel)
- 7.2 Valve Arrangement Diagram (General One Line)
- 7.3 PALSS Inlet Filter/Strainer Back Flush Procedure
- 7.4 Calculation of Hydrogen Concentration Using the Ideal Gas Law (Differential Pressure)
- 7.5 Unit 2 PALSS Power Supply
- 7.6 Operations Checklist for Unit 2 PALSS Operating Procedure Valve Lineups to Route Reactor Coolant to the PALSS/Waste to the RBES
- 7.7 PALSS Authorization for Operation and Data Transmittal Form
- 7.8 Operating the Analyzer/Controller

CP/**2**/A/2002/004C Page 1 of 1

Valve Arrangement Diagram (Control Panel)

.

Valve Arrangement Diagram (General - One Line)

CP/**2**/A/2002/004C Page 1 of 1

PALSS Inlet Filter/Strainer Back Flush Procedure

CP/**2**/A/2002/004C Page 1 of 2

1. Purpose

This enclosure gives instructions for back flushing the PALSS inlet filter/strainer.

2. Initial Conditions

None

3. Limits and Precautions

- □ 3.1 The following RCS sample valves must be closed to prevent contamination of the demineralized water header with reactor coolant: (PALSS Control Panel)
 - PB 5 (2LP-124, Isolation for HP Sample Stop)
 - PB 3 (2LP-126, Isolation for LP Sample)
 - PB4 (2RC-179, Post Accident Sample Block)

4. Procedure (PALSS Control Panel)

- □ 4.1 Ensure closed PB 5 (2LP-124, Isolation for HP Sample Stop).
- □ 4.2 Ensure closed PB 3 (2LP-126, Isolation for LP Sample).
- □ 4.3 Ensure closed PB 4 (2RC-179, Post Accident Sample Block).
- \Box 4.4 Wait \geq 30 seconds.
- □ 4.5 Close 104
- \Box 4.6 Ensure SS 3 (selector switch) is in the "PT-1" position.
- □ 4.7 Monitor pressure on PG-1 for one minute.
 - \Box 4.7.1 IF the pressure on PG-1 > 60 psi <u>OR</u> is increasing with time, immediately contact Chemistry Staff and notify the RCS may be leaking.
 - PB 5 (2LP-124, Isolation for HP Sample Stop)
 - OR PB 3 (2LP-126, Isolation for LP Sample)
 - OR PB 4 (2RC-179, Post Accident Sample Block).
 - Do <u>NOT</u> proceed without Staff approval.

PALSS Inlet Filter/Strainer Back Flush Procedure

CP/**2**/A/2002/004C Page 2 of 2

- □ 4.8 Close 101
- □ 4.9 Open PB 8 (2LP-129, Sample Drain to the High Activity Waste Tank)
- □ 4.10 Open PB 6 (2DW-278, DW Flush Supply to Post Accident Sample)
- \Box 4.11 Backflush \geq 5 minutes.
- \Box 4.12 Close the following values:
 - □ 4.12.1 PB 6 (2DW-278, DW Flush Supply to Post Accident Sample)
 - □ 4.12.2 PB 8 (2LP-129, Sample Drain to the High Activity Waste Tank)
- \Box 4.13 IF the purpose is to resume sampling, open:
 - PB 5 (2LP-124, Isolation for HP Sample Stop)
 - OR PB 3 (2LP-126, Isolation for LP Sample)
 - **OR** PB 4 (2RC-179, Post Accident Sample Block)
 - □ 4.13.1 Open 104
 - □ 4.13.2 Open 101
 - \Box 4.13.3 Return to procedural step allowing completion of the sampling process.
- □ 4.14 IF the clogged filter light is still "ON" and no flow is shown on FG 1, stop sampling.
- □ 4.15 Notify Chemistry Staff.

Person contacted _____

CP/**2**/A/2002/004C Page 1 of 2

Calculation of Hydrogen Concentration Using the Ideal Gas Law (Differential Pressure)

1. Purpose

This enclosure provides guidance on calculations for hydrogen using Ideal Gas Laws.

2. Initial Conditions

None

3. Procedure

3.1 Record the initial and final temperature and pressure readings from Steps 5.7.5.4 and 5.7.5.8.

Initial Temperature Reading ______°F

Final Temperature Reading	°F
---------------------------	----

Initial Pressure Reading _____ PSIA

Final Pressure Reading _____ PSIA

3.2 Calculate the average gas temperature reading using the following equation:

 $T_{avg} = (T_{final} + T_{init})/2$

where, T_{avg} = Average Gas Temperature, °C

T_{final} = Final Gas Temperature Reading, °C

T_{init} = Initial Gas Temperature Reading, °C

3.3 Calculate the differential gas pressure using the following equation:

 $P_{diff} = P_{final} - P_{init}$

where, P_{diff} = Differential Gas Pressure, PSI

P_{final} = Final Gas Pressure Reading, PSIA

P_{init} = Initial Gas Pressure Reading, PSIA

CP/**2**/A/2002/004C Page 2 of 2

- -

Calculation of Hydrogen Concentration Using the Ideal Gas Law (Differential Pressure)

3.4 Calculate the hydrogen concentration of the trapped PALSS gas sample using the following equation:

$$H_2 = \frac{(3,719.83)(P_{diff})}{(T_{avg} + 273)} + \frac{(P_{final} - 0.69)}{0.769}$$

(H₂ in Gas Sample) (H₂ remaining in Liquid Sample)

where, $H_2 = PALSS$ gas sample Hydrogen Concentration, cc/Kg

3.5 Record hydrogen concentration result from Step 3.4 above on Enclosure 7.7.

.

CP/**2**/A/2002/004C Page 1 of 4

Operations Checklist for Unit 2 PALSS Operating Procedure Valve Lineups to Route Reactor Coolant to the PALSS/Waste to the RBES

1. Purpose

This enclosure, performed by Operations, gives the valve lineups needed for routing reactor coolant from the RCS "J" Leg through the PALSS to the RBES.

2. Initial Conditions

2.1 Demineralized water header should be in service and have at least 60 psi pressure.

2.2 RCW System (sample cooling supply) should also be in service.

3. Procedure

DV

□ 3.1 Establish communications with Chemistry personnel assigned to the task.

Chemistry personnel assigned:

NOTE: The normal position of 2LP-65 ('2B' Emer Sump Line Drn Blk) is locked closed. {PIP O-02-00614}

- 3.2 IF containment integrity is required or is to be considered, station personnel at the reach rod for 2LP-65 ('2B' Emer Sump Line Drn Blk) (Unit 2 LPI Hatch Area west wall) to immediately close the valve IF ES actuation occurs. This person must be in constant contact with the Control Room.
- _____ 3.3 Unlock and open 2LP-65 ('2B' Emerg Sump Line Drn Blk). (Unit 2 LPI Hatch Area west wall)
 - _____ 3.4 Record that 2LP-65 ('2B' Emerg Sump Line Drn Blk) is open on unit shift Turnover Sheet.
 - 3.5 Establish flow to the PALSS panel via the RCS "J" Leg as follows:

NOTE: Both 2RC-162 and 2RC-164 are powered from breaker 2KVIB-9.

- 3.5.1 Remove tag from breaker 2KVIB-9 for: (Unit 2 Cable Room)
 - 2RC-162 (RC SAMPLE ISOL VLV)
 - 2RC-164 (RC SAMPLE ISOL VLV)

_____ 3.5.2 Close breaker 2KVIB-9.

CP/**2**/A/2002/004C Page 2 of 4

Operations Checklist for Unit 2 PALSS Operating Procedure Valve Lineups to Route Reactor Coolant to the PALSS/Waste to the RBES

- _____ 3.5.3 Remove tag from breaker 2KVIA-4 (Unit 2 Cable Room) for 2RC-165, (RC SAMPLE ISOL VLV).
- 3.5.4 Close breaker 2KVIA-4.
- _____ 3.5.5 IF containment integrity is required or is being considered, assign an Operator to close the following valves in case of an ES Actuation:
 - 2RC-162 (RC SAMPLE ISOL VLV)
 - 2RC-163 (RC SAMPLE ISOL VLV)
 - 2RC-164 (RC SAMPLE ISOL VLV)
 - 2RC-165 (RC SAMPLE ISOL VLV)

NOTE: PIP O-98-04532 addresses the sequence of operation for Unit 2 (RC-162, RC-163, RC-164, and RC-165).

- $\underline{\qquad}$ 3.5.6 Open 2RC-163 (RC SAMPLE ISOL VLV).
 - _____ 3.5.7 Open 2RC-164 (RC SAMPLE ISOL VLV).
 - _____ 3.5.8 Open 2RC-165 (RC SAMPLE ISOL VLV).
 - _____ 3.5.9 Open 2RC-162 (RC SAMPLE ISOL VLV).
 - 3.5.10 Record that the following containment isolation valves are open on unit shift Turnover Sheet.
 - 2RC-162 (RC SAMPLE ISOL VLV)
 - 2RC-163 (RC SAMPLE ISOL VLV)
 - 2RC-164 (RC SAMPLE ISOL VLV)
 - 2RC-165 (RC SAMPLE ISOL VLV)
 - 3.6 <u>WHEN</u> notified by Chemistry that the RCS sample has been obtained, continue to Step 3.7 <u>AND</u> complete enclosure.

Person contacted _____

CP/**2**/A/2002/004C Page 3 of 4

Operations Checklist for Unit 2 PALSS Operating Procedure Valve Lineups to Route Reactor Coolant to the . PALSS/Waste to the RBES

3.7 Close the following valves:

DV

DV

DV

D''

- _____ 3.7.1 2RC-165 (RC SAMPLE ISOL VLV)
- _____ 3.7.2 2RC-164 (RC SAMPLE ISOL VLV)
- _____ 3.7.3 2RC-163 (RC SAMPLE ISOL VLV)
- _____ 3.7.4 2RC-162 (RC SAMPLE ISOL VLV)
- 3.8 Record the following containment isolation values are closed on unit shift Turnover Sheet.
 - 2RC-162 (RC SAMPLE ISOL VLV)
 - 2RC-163 (RC SAMPLE ISOL VLV)
 - 2RC-164 (RC SAMPLE ISOL VLV)
 - 2RC-165 (RC SAMPLE ISOL VLV)
 - 3.9 The operator responsible for the sample isolation valves is relieved of the responsibility to close the following valves in case of an ES actuation:
 - 2RC-162 (RC SAMPLE ISOL VLV)
 - 2RC-163 (RC SAMPLE ISOL VLV)
 - 2RC-164 (RC SAMPLE ISOL VLV)
 - 2RC-165 (RC SAMPLE ISOL VLV)
 - 3.10 <u>WHEN</u> RCS sampling is complete, ensure open the following breakers:
 - _____ 3.10.1 Tag open breaker 2KVIB-9 (Unit 2 Cable Room) for 2RC-162 (RC SAMPLE ISOL VLV) <u>AND</u> 2RC-164 (RC SAMPLE ISOL VLV) per applicable Operations procedure.
 - _ 3.10.2 Tag open breaker 2KVIA-4 (Unit 2 Cable Room) for 2RC-165 (RC SAMPLE ISOL VLV) per applicable Operations procedure.
- _____ 3.11 Lock and close 2LP-65 ('2B' Emerg Sump Line Drn Blk). (Unit 2 LPI Hatch Area west wall)

CP/**2**/A/2002/004C Page 4 of 4

• •

Operations Checklist for Unit 2 PALSS Operating Procedure Valve Lineups to Route Reactor Coolant to the PALSS/Waste to the RBES

- 3.12 Record 2LP-65 ('2B' Emerg Sump Line Drn Blk) is locked closed on unit shift Turnover Sheet.
- 3.13 The person responsible for 2LP-65 ('2B' Emerg Sump Line Drn Blk) is relieved of the responsibility to close the valve in case of an ES actuation.
- 3.14 Ensure completed enclosure is maintained by Chemistry.

< ____

•

CP/**2**/A/2002/004C Page 1 of 2

PALSS Authorization for Operation and Data Transmittal Form

	Date _	
1.	Initia	Conditions
	None	
2.	Proce	dure
	2.1	Verbal/written direction for sampling the Reactor Coolant via the PALSS has been received from the TSC/OSC.
		Sample Point: RCS "J-Leg"Waste Route: RBES
		LPI Pump Discharge HAWT
		HPI Letdown
		Person Authorizing Sampling
	2.2	The specific post-accident analysis requested by TSC/OSC:
		Boron =ppm
		Hydrogen =cc/kg
		Chloride =ppm
		pH =
		Gas Gamma (attach)
		Liquid Gamma (attach)
		Other (specify)
	2.3	Have RP determine general area dose rate at the PALS valve panel and record below.
		Dose rate (general area) = r/hr
	_ 2.4	Determine by detailed planning meeting the exact course of action and data required.
	2.5	Evaluate the use of portable shielding, remove handling equipment, video equipment, etc., to minimize the exposure to personnel while sampling.

CP/**2**/A/2002/004C Page 2 of 2

PALSS Authorization for Operation and Data Transmittal Form

- 2.6 Have RP determine the required respiratory equipment and protective clothing to prevent or minimize internal exposure in any Planned Emergency situation. Use high range and/or extremity dosimetry if required.
- 2.7 Determine how long to flush the PALSS sample panel, based on general area dose readings.
- 2.8 Request RP to designate a route from PALSS to the Lab.

Sample route designated:

2.9 Evaluate the use of portable shielding, remove handling equipment, video equipment, etc., to minimize the exposure to personnel in the Lab for the required analyses.

, (R0J-01)		Duke Power Con PROCEDURE PROCES	npany (1) SS RECORD	ID No <u>CP/3/A/2002/004</u> Revision No. <u>20</u> Continuous Us
PRF	PARATION	INFORMATION ()NI Y	
(2)	Station	Oconee Nuclear Stat	tion	
(3)	Procedure Title <u>Ope</u>	rating Procedure for the Post Acc	cident Liquid Sampl	ing System (PALSS)
(4)	Prepared By	bro 7 Clock		Date 11/01/02
(5)	Requires NSD 228 Applicab☑Yes(New procedure or□No(Revision with min□No(To incorporate procedure)	ility Determination? revision with major changes) for changes) eviously approved changes)		
(6)	Reviewed By	- cy ht	(QR)	Date <u>12-2-02</u>
	Cross-Disciplinary Review E	y Block	(QR) NA_	Date <u>12/10/02</u>
	Reactivity Mgmt. Review By	·	(QR) NA_	Date 12/14/02
	Mgmt. Involvement Review	Ву	(Ops. Supt.) NA_	Date
(7)	Additional Reviews			
	QA Review By	· · · · · · · · · · · · · · · · · · ·		Date
	Reviewed By	······································		Date
	Reviewed By			Date
(ه)	Temporary Approval (if neces	isary)		
•	Ву		(OSM/QR)	Date
	By		(QR)	Date
(9)	Approved By	you J. Hens		Date 1/10/02
PER	FORMANCE (Compare with	n control copy every 14 calendar days	while work is being perf	Formed.)
(10)	Compared with Control Cop	ý		Date
	Compared with Control Copy	y		Date
	Compared with Control Copy	У		Date
(11)	Date(s) Performed			
	Work Order Number (WO#)			
CON	MPLETION			
(12)	Procedure Completion Verifi	cation		
	 ☐ Yes □ NA Procedure 	and/or blanks initialed, signed, dat inclosures attached? s attached, completed, dated, and supply, etc. attached, dated, identified requirements met?	ed, or filled in NA, as gned? , and marked?	appropriate?
	Verified By			Date
(j.	Procedure Completion Appro	oved		Date
	- ••			

(14) Remarks (Attach additional pages, if necessary)

CP/**3**/A/2002/004 C Page 2 of 36

Operating Procedure for the Post Accident Liquid Sampling System (PALSS)

- **NOTE:** 1. This <u>entire</u> procedure supports an AP or EOP action. The procedure will require AP/EOP validation per NSD 705.
 - 2. Seven Control copies and one Information Only copy of this procedure shall be routed to the Emergency Preparedness Team within three working days after any approved changes.

1. Purpose

The post accident liquid sampling system (PALSS) provides the capability to obtain a primary coolant sample via the HPI Letdown, LPI Pump Discharge or the RCS "J" leg during a nuclear reactor accident condition(s) as described in the FSAR and in accordance with NUREG-0737.

2. Limits and Precautions

- □ 2.1 This procedure should be used to operate PALSS to sample the Reactor Coolant System under the following conditions:
 - 2.1.1 Post Accident.
 - 2.1.2 Inaccessibility of (routine) Primary Sampling Area <u>AND/OR</u> HPI Letdown Sampling not possible.
 - 2.1.3 Request from the Chemistry Manager or his designee.
- □ 2.2 Under accident conditions, valve alignments shall <u>NOT</u> be made and samples shall <u>NOT</u> be taken without prior authorization from the Emergency Coordinator <u>OR</u> the TSC/OSC! (Containment isolation valves may be closed upon ES actuation, see Enclosure 7.6.)
- □ 2.3 Under accident conditions, do <u>NOT</u> attempt any phase of sampling <u>OR</u> analysis without Radiation Protection job coverage!
- □ 2.4 Consider portable shielding, remote handling equipment, video equipment, etc., where practical or available during sampling, sample preparation, and sample analysis.
- □ 2.5 Chemistry personnel shall operate only those <u>valves</u> operated by the Control Panel <u>OR</u> via the sample panel unless clearly specified otherwise in this procedure.

CP/**3**/A/2002/004 C Page 3 of 36

- □ 2.6 <u>IF</u> power is <u>NOT</u> available at the PALSS Control Panel, return to a low dose area and contact Chemistry management.
 - 2.6.1 Refer to Enclosure 7.5 and troubleshoot as required to determine source of problem.
 - 2.6.2 Notify the OSC/TSC.
 - 2.6.3 The following breakers should be closed to ensure power availability.
 - 3KTH1 Bkr. #8 Sampling/Control Panels Power Supply (located next to U3 sampling panel)
 - MCC3XL Bkr. 4CT for 3DW-278 (DW Flush Supply to Post Accident Sample) (PALSS Control Panel)

CAUTION: Chemical hazards shall be known prior to use. For additional information and first aid requirements, refer to the MSDS sheet.

- □ 2.7 Personal protective requirements for chemicals used in this procedure are pH buffers 4.0, 7.0, and 10.0:
 - lab coat
 - gloves (rubber/vinyl)
 - chemical splash goggles
- □ 2.8 <u>WHEN</u> flushing the desired sample to the waste tanks, request Operations add a second compressor on the GWD header because fresh fission gasses may cause a serious problem in the Aux. Building.
 - IF possible, this increased vacuum should be maintained until sampling is complete.
- □ 2.9 All sample vials should be cleaned and rinsed to protect against chloride contamination.
 - Do <u>NOT</u> place bare finger tips on the surface of the septum.

CP/**3**/A/2002/004 C Page 4 of 36

3. Apparatus

- 3.1 A minimum of 4 Lockable Glass (Gas) Syringes
- 3.2 Liquid Sample Carrier (Bucket, Etc.), Gas Syringe Carrier
- 3.3 Watch or Lab Timer
- 3.4 Plastic Bags
- 3.5 15 40cc Evacuated Sample Vial(s) for Liquid Sample
- 3.6 Nitrogen Supply Bottle with > 600 psi available. (with Two Stage Regulator; 0 to 200 psig on Delivery Stage) replace as required

4. Reagents

4.1 <u>Buffer Solutions</u> - Use purchased 4.00, 7.00 and/or 10.00 buffers or equivalent

5. Procedure

- 5.1 Prerequisites and Panel Preparation (preliminary)
 - \Box 5.1.1 Initiate Enclosure 7.7.
- _____ 5.1.2 IF routing waste to the RBES or sampling from the RCS "J" Leg:
 - Take Enclosure 7.6 to the responsible individual in Operations (designated by the OSC)
 - Request Operations complete the appropriate step(s) of Enclosure 7.6 through Step 3.5.7.
 - 5.1.3 Label glass vial(s) for collecting the liquid sample.
CP/**3**/A/2002/004 C Page 5 of 36

5.2 Panel Preparation (prior to sampling)

1.

NOTE: IF any i and 7.2	item on the co	ontrol or sample panel is not clearly identified, refer to Enclosure 7.1		
□ 5.2.1	Inform the PALSS pa	e U-3 Control Room that sampling of the RCS will be done via the anel.		
	• Identify	y the flowpath J-Leg, LPI OR Letdown.		
	• Recom	mend an extra waste gas compressor be placed into service.		
	Operat	or Notified:		
□ 5.2.2	At the Co position.	ntrol Panel, ensure SW 1 (valve power switch), is in the "OFF"		
CAUTION: <u>Mak</u> cabl may	te the mating e connection become ener	of connector cable 1 to connector 1 on the Junction Box the LAST made. IF this is not done last, the exposed pins of the other cables gized and become an electrical hazard.		
□ 5.2.3	Position the possible.	he Control Panel using RP as a guideline, in the lowest dose area		
□ 5.2.4	IF necess	IF necessary, route and connect the six required cables (CON 6 - CON 1) from the Control Panel to the Junction Box, starting with connector 6 and ending with connector 1.		
	from the C ending wi	Control Panel to the Junction Box, starting with connector 6 and th connector 1.		
	from the C ending wi	Control Panel to the Junction Box, starting with connector 6 and th connector 1. Connect CON-6 cable at both ends.		
	from the C ending wi □ 5.2.4.1 □ 5.2.4.2	Control Panel to the Junction Box, starting with connector 6 and th connector 1. Connect CON-6 cable at both ends. Connect CON-5 cable at both ends.		
	from the C ending wi 5.2.4.1 5.2.4.2 5.2.4.3	Control Panel to the Junction Box, starting with connector 6 and th connector 1. Connect CON-6 cable at both ends. Connect CON-5 cable at both ends. Connect CON-4 cable at both ends.		
	from the C ending wi 5.2.4.1 5.2.4.2 5.2.4.3 5.2.4.3	Control Panel to the Junction Box, starting with connector 6 and th connector 1. Connect CON-6 cable at both ends. Connect CON-5 cable at both ends. Connect CON-4 cable at both ends. Connect CON-3 cable at both ends.		
	from the C ending wi 5.2.4.1 5.2.4.2 5.2.4.3 5.2.4.3 5.2.4.4 5.2.4.5	Control Panel to the Junction Box, starting with connector 6 and th connector 1. Connect CON-6 cable at both ends. Connect CON-5 cable at both ends. Connect CON-4 cable at both ends. Connect CON-3 cable at both ends. Connect CON-2 cable at both ends.		
	from the C ending wi 5.2.4.1 5.2.4.2 5.2.4.3 5.2.4.4 5.2.4.4 5.2.4.5 5.2.4.5	Control Panel to the Junction Box, starting with connector 6 and th connector 1. Connect CON-6 cable at both ends. Connect CON-5 cable at both ends. Connect CON-4 cable at both ends. Connect CON-3 cable at both ends. Connect CON-2 cable at both ends. Connect CON-2 cable at both ends.		

 \Box 5.2.5 Ensure off all control and solenoid valves.

CP/**3**/A/2002/004 C Page 6 of 36

5.2.6 Position the following valves: (outside of Sample Panel)

CAUTION: Nitrogen cylinder must be replaced if pressure is < 600 psig in order to prevent backflow of fission gas into the cylinder.

- Open valve(s) on Nitrogen Supply Bottle (> 600 psi tank pressure required & ~100 psi delivery pressure)
- □ <u>IF</u> necessary, replace cylinder.
- □ Open 3IA-2423 (IA to Post Accident Sample Panel).
- Ensure closed 3LP-122 (Post Accident Sample System Vent).

NOTE: The following switches are found on the PALSS Control Panel.

□ 5.2.7 Turn system power on by inserting Control Panel Key into (KS 1) Key Lock Switch and turning the key to the "ON" position.

NOTE: The lights in the middle of each switch which controls a valve should be "OFF". The green lights should be "LIT" on the push-button switches, (PB 1) through (PB 8).

- □ 5.2.8 Ensure all lamps on the Control Panel are functioning by turning ON SW 2 (lamp test switch) to the "ON" position.
 - 5.2.9 Make note of <u>OR</u> repair any not functioning properly. (The lamp test switch does not light).
 - \Box 5.2.9.1 Turn SW 2 (lamp test switch) to "OFF".
- □ 5.2.10 Turn SW 1 (valve power switch) to the "ON" Position.

NOTE: In an accident situation, waste will be routed to the RBES unless otherwise directed by supervision. The alternate route is the HAWT via PB1 (3LP-130).

- 5.2.11 <u>IF</u> routing waste to the RBES, open PB2 (3LP-121, Post Accident Sample Panel Return).
- _____ 5.2.12 IF routing waste to the HAWT, open PB1 (3LP-130, HAWT Return).

CP/**3**/A/2002/004 C Page 7 of 36

5.3 Panel Preparation (pH Meter Standardization) (PALSS Control Panel)

5.3.1 Purge the pH housing with Nitrogen as follows:

.

NOTE:	All other control valves must be closed.				
	□ 5.3.1.1	Open 204			
	□ 5.3.1.2	Open 206			
	□ 5.3.1.3	Open 103			
	□ 5.3.1.4	Open 102			
	□ 5.3.1.5	Open 105			
	□ 5.3.1.6	Open 202			
	□ 5.3.1.7	Wait ≥ 2 minutes.			
	□ 5.3.1.8	Close 105			
	5.3.2 Pressuriz	e Buffer Tank A as follows:			
NOTE:	SV 209 controls both	h buffer tanks (A and B).			
	□ 5.3.2.1	Place 209 in the 'A' position.			
	□ 5.3.2.2	Wait \geq 30 seconds.			
	□ 5.3.2.3	Place 209 in the "OFF" position.			
	□ 5.3.2.4	Close 202			

CP/**3**/A/2002/004 C Page 8 of 36

- 5.3.3 Evacuate pH housing as follows:
 - □ 5.3.3.1 Open 208
 - □ 5.3.3.2 Open 201
 - \Box 5.3.3.3 <u>WHEN</u> the pressure on PG 4 stabilizes (normally < 2.0 PSIA),
 - □ A. Close 201
 - B. Record the pH Housing pressure from PG 4 OR PG 5.

pH Housing Pressure for A Buffer = _____ PSIA

- □ 5.3.3.4 Close 102
- □ 5.3.3.5 Close 103
- □ 5.3.3.6 Close 206
- □ 5.3.3.7 Close 204
- □ 5.3.3.8 Close 208
- 5.3.4 Transfer A Buffer into the pH housing as follows:
 - \Box 5.3.4.1 Place 209 in the 'A' position.
 - \Box 5.3.4.2 Wait \geq 1 minute.
 - \Box 5.3.4.3 Place 209 in the "OFF" position.
- 5.3.5 Standardize the pH meter as follows:
- **NOTE:** 1. The following keys are located on the pH meter in the face of the PALSS control panel.
 - 2. Refer to Enclosure 7.8 for pH meter key descriptions.
 - 5.3.5.1 Use the "menu" key to move to the main menu., The display will show: ("Configuration, Calibration, Maintenance, I/O Setup").
 - 5.3.5.2 Using the "arrow up or down" keys, move to and highlight "Calibration".
 - 5.3.5.3 Press "enter".

CP/**3**/A/2002/004 C Page 9 of 36

- 5.3.5.4 Using the "arrow up or down" keys, move to and highlight "Buffer Cal".
- 5.3.5.5 Press Enter.
- 5.3.5.6 Press the "Hold" key.
- 5.3.5.7 Press the "next" key to move to the next screen.
- NOTE: A flashing value indicates the probe may be broken.
 - A value that <u>CANNOT</u> be adjusted to within $\pm .5$ pH offset will make the unit return to the calibration screen, indicating that the pH electrode may need to be replaced.
 - 5.3.5.8 The display will show the pH of the 'A' buffer solution.
 - 5.3.5.9 Wait for a stable reading.
 - 5.3.5.10 Press the up or down arrow once to activate the side to side arrows.
 - 5.3.5.11 Use the "function keys, side to side" select the desired digit space and change the value on the display using the "arrow up and down" keys to match the actual 'A' buffer pH.
 - 5.3.5.12 <u>WHEN</u> the unit display indicates the buffer pH, press the "ENTER" key.
 - 5.3.5.13 Record the pH meter value set for the 'A' buffer pH.

'A' Buffer Solution pH _____

5.3.5.14 <u>WHEN</u> the unit successfully meets the preset specifications and the entered buffer value is displayed, press "next" until the screen with the following is visible:

SLOPE

Note: Buffer must be > 2 pH units away from the STD buffer.

CP/**3**/A/2002/004 C Page 10 of 36

NOTE:	The ur	nit should still b	be in the "hold" mode.
		5.3.5.15	Press "next". The following screen should be visible:
			SLOPE
			Place electrode in Buffer Attention. Wait for Stable Reading!
	5.3.6	Purge the	pH housing with nitrogen as follows:
		□ 5.3.6.1	Open 202
		□ 5.3.6.2	Open 204
		□ 5.3.6.3	Open 206
		□ 5.3.6.4	Open 103
		□ 5.3.6.5	Open 102
	-	□ 5.3.6.6	Open 105
		□ 5.3.6.7	Wait ≥ 2 minutes.
		□ 5.3.6.8	Close 105
		□ 5.3.6.9	Place 209 in the 'A' position.
		□ 5.3.6.10	Place 209 in the "OFF" position.
		□ 5.3.6.11	Close 102
		□ 5.3.6.12	Close 103
		□ 5.3.6.13	Close 206
		□ 5.3.6.14	Close 204
		□ 5.3.6.15	Close 202

. .

5.3.7 Flush the pH housing with DW as follows:

- □ 5.3.7.1 Open 101
- □ 5.3.7.2 Open 102
- □ 5.3.7.3 Open 105
- □ 5.3.7.4 Open PB-6 (3DW-278, DW Flush Supply to Post Accident Sample).
- \Box 5.3.7.5 Wait \geq 5 minutes.
- □ 5.3.7.6 Close 101
- □ 5.3.7.7 Close PB-6 (3DW-278, DW Flush Supply to Post Accident Sample).
- 5.3.8 Purge the demineralized water out of the pH housing with nitrogen as follows:
 - □ 5.3.8.1 Open 202
 - □ 5.3.8.2 Open 204
 - □ 5.3.8.3 Open 206
 - □ 5.3.8.4 Open 103
 - \Box 5.3.8.5 Wait \geq 2 minutes.
 - □ 5.3.8.6 Close 105
- 5.3.9 Pressurize Buffer Tank B as follows:
 - \Box 5.3.9.1 Place 209 in the 'B' position.
 - \Box 5.3.9.2 Wait \geq 30 seconds.
 - □ 5.3.9.3 Place 209 in the "OFF" position.
 - □ 5.3.9.4 Close 202

CP/**3**/A/2002/004 C Page 12 of 36

5.3.10 Evacuate pH housing as follows:

- □ 5.3.10.1 Open 208 □ 5.3.10.2 Open 201 5.3.10.3 Let the pressure on PG 4 stabilize (normally < 2.0 PSIA). □ 5.3.10.4 Close 201. □ 5.3.10.5 Record pH Housing pressure from PG 4. pH Housing Pressure for B Buffer = ____ PSIA □ 5.3.10.6 Close 102 □ 5.3.10.7 Close 103 □ 5.3.10.8 Close 206 □ 5.3.10.9 Close 204 □ 5.3.10.10 Close 208 5.3.11 Transfer B Buffer into the pH housing as follows: □ 5.3.11.1 Place 209 in the 'B' position. □ 5.3.11.2 Wait ≥ 1 minute. 5.3.11.3 Place 209 in the "OFF" position. 5.3.12 Calibrate the pH meter as follows: (pH meter on the face of the PALSS Control Panel)
- **NOTE:** The unit should still be in the "HOLD" mode. This key causes the pH meter to maintain a constant output and alarm condition. This allows the electrode to be removed (optional) for calibration in a buffer without process upset. The temperature compensation feature is also disabled in the "HOLD" mode (this allows calibration of the meter to the particular temperature of the buffer used).
 - 5.3.12.1 Press "next". The display will show the pH of the 'B' buffer as measured by the electrode.
 - 5.3.12.2 Wait for a stable reading.

CP/**3**/A/2002/004 C Page 13 of 36

- 5.3.12.3 Press the up or down arrow once to activate the side to side arrows.
- 5.3.12.4 Select the desired digit space using the "function keys side to side". Adjust the value on the display using the "arrow up and down" keys, until the display matches the actual pH of the buffer solution.
- 5.3.12.5 Press "enter". This will set the instrument slope.
- 5.3.12.6 Record the pH meter value set for the 'B' buffer pH.

'B' Buffer Solution pH _____

5.3.12.7 **IF** the slope adjustment was successful, the Completed screen will be displayed:

SLOPE Slope Completed Slope Buffer Value Saved

5.3.12.8 Using the "hold" key, take the unit out of the hold mode.

NOTE: IF the calibration was not successful, the menu will return to the original Calibration Menu by itself and display an error code.

- 5.3.12.9 Use the "next" key to rotate back to the original Calibration menu screen.
- 5.3.12.10 Press the "Display" key. The pH meter is now in the sample measurement mode.
- 5.3.13 Purge the pH housing with nitrogen as follows:
 - □ 5.3.13.1 Open 202
 - □ 5.3.13.2 Open 204
 - □ 5.3.13.3 Open 206
 - □ 5.3.13.4 Open 103
 - □ 5.3.13.5 Open 102
 - □ 5.3.13.6 Open 105

CP/**3**/A/2002/004 C Page 14 of 36

- \Box 5.3.13.7 Wait \geq 2 minutes.
- □ 5.3.13.8 Close 105
- \Box 5.3.13.9 Place 209 in the 'B' position.
- \Box 5.3.13.10 Place 209 in the "OFF" position.
- □ 5.3.13.11 Close 102
- □ 5.3.13.12 Close 103
- □ 5.3.13.13 Close 206
- □ 5.3.13.14 Close 204
- □ 5.3.13.15 Close 202
- 5.3.14 Flush the pH housing with DW as follows:
 - □ 5.3.14.1 Open 101
 - □ 5.3.14.2 Open 102
 - □ 5.3.14.3 Open 105
 - □ 5.3.14.4 Open PB 6 (3DW-278, DW Flush Supply to Post Accident Sample)
 - \Box 5.3.14.5 Wait \geq 3 minutes.
 - □ 5.3.14.6 Close 101
 - □ 5.3.14.7 Close PB 6 (3DW-278, DW Flush Supply to Post Accident Sample)
- 5.3.15 Purge the demineralized water out of the pH housing with nitrogen as follows:
 - □ 5.3.15.1 Open 202
 - □ 5.3.15.2 Open 204
 - □ 5.3.15.3 Open 206
 - □ 5.3.15.4 Open 103

CP/**3**/A/2002/004 C Page 15 of 36

- □ 5.3.15.5 Wait \ge 2 minutes <u>OR</u> until pressure on PG 3 drops rapidly (below 50 psi).
- □ 5.3.15.6 Close 105
- □ 5.3.15.7 Close 202
- □ 5.3.15.8 Close 204
- □ 5.3.15.9 Close 206
- □ 5.3.15.10 Close 103
- □ 5.3.15.11 Close 102
- 5.4 Panel Preparation (pH Housing and Gas Tank(s) Evacuation) (PALSS Control Panel)
 - 5.4.1 Evacuate pH housing and gas tanks as follows:
 - □ 5.4.1.1 Open 208
 - □ 5.4.1.2 Open 201
 - □ 5.4.1.3 Open 203
 - □ 5.4.1.4 Open 204
 - □ 5.4.1.5 Open 205
 - □ 5.4.1.6 Open 206
 - □ 5.4.1.7 Open 207
 - □ 5.4.1.8 Open 103
 - □ 5.4.1.9 Open 102
 - \Box 5.4.1.10 Monitor the pressure in the pH housing and gas tanks on PG 5 OR PG 4 let the pressure stabilizes (normally < 2.0 PSIA).
 - □ 5.4.1.11 Close 201
 - □ 5.4.1.12 Close 208

CP/**3**/A/2002/004 C Page 16 of 36

	5.4.2		pH Housing	Pressure
			5.4.2.1	Record pH Housing pressure from PG 5 (alternate PG 4).
				pH Housing Pressure PSIA
			5.4.2.2	Close 102
			5.4.2.3	Close 103
			5.4.2.4	Close 206
			5.4.2.5	Close 207
	5.4.3		30 mL and 5	500 mL Gas Tanks Pressure
			5.4.3.1	Record gas tank pressures from PG 5 (alternate PG 4).
				Gas tanks (30mL and 500mL) pressure PSIA
			5.4.3.2	Close 205
			5.4.3.3	Close 204
			5.4.3.4	Close 203
5.5	Panel	Ope	ration (React	tor Coolant Sample Flush/Acquisition) (PALSS Control Panel)

.

· _ ·

NOTE: The sample will be taken via the LPI pump discharge, HPI Letdown, or the RCS "J-Leg" sample point.

□ 5.5.1 Contact OSC to obtain authorization to begin sample flush/retrieval.

Person contacted _____ Time _____

□ 5.5.2 Notify the Control Room the sample flush will begin via the appropriate sample point.

Person contacted _____

CAUTION:	1.	PB 6 (3DW-278) <u>must be</u> closed to prevent flow of RCS into the demineralized water header.			
	2.	CV-102 and C the pH housing	V-105 <u>must be</u> closed to prevent overpressurization and failure of g.		
5.	5.3	Ensure posi	ition of the following valves:		
		□ 5.5.3.1	Close PB-6 (3DW-278, DW Flush Supply to Post Accident Sample).		
		□ 5.5.3.2	Close 102		
		□ 5.5.3.3	Close 105		
□ 5.	5.4	Ensure SS 3	3 (selector switch) is in the "PT 1" position.		
5.:	5.5	<u>IF</u> sampling Sample Blo	g the RCS "J-Leg", then open PB 4 (3RC-179, Post Accident ock).		
5.:	5.6	<u>IF</u> sampling Sample).	g the LPI pump Discharge, then open PB 3 (3LP-126, DH Cooler		
5.:	5.7	<u>IF</u> sampling Stop).	g the HPI Letdown, then open PB 5 (3LP-124, Letdown Sample		
□ 5.:	5.8	Open 101			
□ 5.:	5.9	Open 104			
CAUTION: Monitor PG 3 to ensure that the outlet pressure does NOT exceed 600 PSIG. Adjust					

۰.

slowly.

- □ 5.5.10 Open 401 to establish the maximum flow without exceeding 600 PSIG on PG 3.
- \Box 5.5.11 Record the flowrate from FG1 _____ gpm.
- \Box 5.5.12 Record the pressure from PG 3 _____ psig.

CP/**3**/A/2002/004 C Page 18 of 36

- 5.5.13 IF LT 3 (clogged filter light switch) comes on and remains on, but flow on FG-1 is > 1.5 gpm, continue with procedure.
 - IF flow is < 1.5 gpm, contact Chemistry Staff for further instructions.
 - IF directed by management, proceed to Enclosure 7.3.
- $\Box 5.5.14 \qquad \text{Select the desired thermocouple to monitor the inlet } \underline{OR} \text{ outlet of the sample} \\ \underline{OR} \text{ the cooling water using SS 1:}$
 - TE 1 Measures sample inlet to heat exchanges.
 - TE 2 Measures sample return from heat exchanger.
 - TE 3 Measures cooling water inlet to heat exchanger.
 - TE 4 Measures cooling water return from heat exchanger.
 - □ 5.5.14.1 Switch SS 1 to "TE 1"
 - \Box 5.5.14.2 Record sample inlet temperature on TG 1.

INLET TEMPERATURE ______°F

- □ 5.5.14.3 Switch SS 1 to "TE 2".
- \Box 5.5.14.4 Record sample outlet temperature on TG 2.

OUTLET TEMPERATURE _____°

- 5.5.15 After > 15 gallons have flowed through the system (calculate time based on FG-1 reading):
 - \Box 5.5.15.1 Slowly throttle 401 until fully closed.
 - □ 5.5.15.2 Immediately close 104
 - \Box 5.5.15.3 <u>Immediately close 101</u>
 - □ 5.5.15.4 Record 500 mL liquid tank pressure from PG 1.

Pressure = _____ PSIG

□ 5.5.16 Move selector switch SS 3 to the "PT 2" position to measure discharge pressure of the injection valves.

CP/**3**/A/2002/004 C Page 19 of 36

NOTE: There are two continuous flow paths through the sample valve(s).

- <u>WHEN</u> the valve(s) is opened, the sample loop is moved to the sample flow path.
- <u>WHEN</u> the valve(s) is closed, the sample loop is moved to the sample injection (collection) flow path.
- 5.5.17 Ensure open the desired sample injection valve(s) of the 0.1 mL, 1 mL <u>AND/OR</u> 5 mL loop, respectively (normally the 5 mL and 1 mL loop are used):
 - □ 503 (0.1 mL Loop)
 - □ 502 (1 mL Loop)
 - □ 501 (5 mL Loop)
- □ 5.5.18 Open 107
- \Box 5.5.19 Slowly open 402 keeping flowrate on FG 2 < 300 mL/min.

NOTE: Greater than 40 PSIG sample pressure <u>must</u> be supplied to the injection valves.

- \Box 5.5.20 Wait \geq 5 minutes.
 - 5.5.21 Close the sample injection valve(s) opened in Step 5.5.17.
 - □ 503 (0.1 mL Loop)
 - □ 502 (1 mL Loop)
 - □ 501 (5 mL Loop)
 - 5.5.22 Record sample time: _____
- 5.5.23 Close the sample valve selected in Step 5.5.5 or 5.5.6 or 5.5.7.
 - PB 4 (3RC-179, Post Accident Sample Block)
 - PB 3 (3LP-126, DH Cooler Sample)
 - PB 5 (3LP-124, Letdown Sample Stop)

\Box 5.5.24 Wait \geq 1 minute.

CP/**3**/A/2002/004 C Page 20 of 36

- □ 5.5.25 Close 402
- \Box 5.5.26 IF the pressure on PG-1 is > 100 psi OR is increasing with time, contact Chemistry Staff and notify that RCS is leaking by sample valve.
- □ 5.5.27 After 1 minute, record the pressure on PG-1: _____psi
- □ 5.5.28 Close 107
- 5.6 Depressurization (PALSS Control Panel)
 - □ 5.6.1 Ensure SS 3 (selector switch) is in the "PT 1" position.
 - \Box 5.6.2 Ensure closed 206
 - \Box 5.6.3 Ensure closed 207
 - □ 5.6.4 Open 103
 - \Box 5.6.5 Wait \geq 2 minutes.

NOTE: Pressure on PG 1 should be < 50 PSIG.

- \Box 5.6.6 Record the pressure from PG 1 _____ PSIG.
- 5.7 Gas Collection (PALSS Control Panel)
 - 5.7.1 Verify pressure in the 30 mL and 500 mL gas tank is \leq 2.0 PSIA.

For 500 mL Gas Tank:

- □ 5.7.1.1 Open 205
- □ 5.7.1.2 Open 203
- □ 5.7.1.3 Record PG 5 (alternate gauge PG 4).

500 mL Gas Tank Pressure _____

- □ 5.7.1.4 Close 205
- □ 5.7.1.5 Close 203

CP/**3**/A/2002/004 C Page 21 of 36

For 30 mL Gas Tank:

□ 5.7.1.6	Open 204
□ 5.7.1.7	Open 203
□ 5.7.1.8	Record PG 5 (alternate gauge PG 4).
	30 mL Gas Tank Pressure
□ 5.7.1.9	Close 204
□ 5.7.1.10	Close 203

NOTE: The alternate (Total Gas Method) would be used if there was reason <u>NOT</u> to pull a gas sample.

5.7.2	<u>IF</u> the pressure in the 30 <u>mL</u> and 500 <u>mL</u> Gas Tank is \leq 2.0 PSIA, proceed as
	follows:

- $\Box 5.7.2.1 \qquad \underline{IF} \text{ the Nitrogen stripping method is to be used for gas collection} \\ and analysis, proceed to Step 5.7.4.$
- $\Box 5.7.2.2 \qquad IF \text{ the alternate method (Total Gas Method) is to be used,} \\ proceed to Step 5.7.5.$
- \Box 5.7.3 IF the pressure in the 30 mL OR 500 mL Gas Tank is > 2.0 PSIA, then evacuation of the tanks must be repeated as follows:
 - □ 5.7.3.1 Close 103
 - □ 5.7.3.2 Open 204
 - □ 5.7.3.3 Open 205
 - □ 5.7.3.4 Open 201
 - □ 5.7.3.5 Open 208
 - □ 5.7.3.6 Open 203

CP/3/A/2002/004 C			
Page 22 of 36			

		5.7.3.7	$\frac{\mathbf{W}}{\leq 2}$	HEN the reading from PG 5 (alternate gauge PG 4) is 2.0 PSIA, close
		٢] A.	204
		[] B.	205
		C] C.	201
		E] D.	208
		C] E.	203
		5.7.3.8	Op	en 103
		5.7.3.9	<u>IF</u> and	the Nitrogen stripping method is to be used for gas collection l analysis, continue with Step 5.7.5.
		5.7.3.10	<u>IF</u> pro	the alternate method (Total Gas Method) is to be used, acceed to Step 5.7.6.
NOTE:	Nitrogen S	Stripping M	ethod	is the typical method.
	5.7.4	Nitrogen S	trippi	ing Method (Gas Analysis)
		5.7.4.1	Ens	sure closed 205
		5.7.4.2	Op	en 207
		5.7.4.3	Op	en 106
NOTE:	The pressu Because P from calib	re on PG-1 T-1 is a high ration to cal	shou h rang ibrati	ld be monitored for an increase of approximately 15 psi. ge pressure transmitter the indicated reading on PG-1 will vary ion and may indicate anywhere from -15 to 15 psi initially.
		5.7.4.4	For 500 "P1	a 10 minute interval, periodically turn on 109 to vibrate) <u>mL</u> liquid tank, monitor the pressure on PG 1 (switch SS 3 to [71]).
		5.7.4.5	Clo	ose 106
		5.7.4.6	Op	en 205
		5.7.4.7	Op	en 204

CP/**3**/A/2002/004 C Page 23 of 36

□ 5.7.4.8 Wait ≥ 5 minutes. □ 5.7.4.9 Close the following valves: □ A. 204 □ B. 205 □ C. 207 □ D. 103 5.7.4.10 Proceed to Section 5.8.

 NOTE:
 Calculated method should be used only as an <u>alternate</u>.

 5.7.5
 Total Gas Method (Calculated)

- □ 5.7.5.1 Monitor PG 4.
- □ 5.7.5.2 <u>WHEN</u> the pressure shown on PG 4 is < 30 PSIA, the low range... pressure transmitter, PT 5, can be used to obtain a more accurate pressure measurement.
 - PT 5 can be used by opening 203.
- □ 5.7.5.3 Ensure SS 2 switch is in the "RD 2" position.
- □ 5.7.5.4 Record the initial temperature reading from TG 2 and pressure reading from PG 5.

TG 2 Init. Temp. Reading ______°F

PG 5 Init. Press. Reading _____ PSIA

- □ 5.7.5.5 Open 206
- □ 5.7.5.6 Open 204
- \Box 5.7.5.7 Turn on the vibrator using 109 and monitor PG 5.

CP/**3**/A/2002/004 C Page 24 of 36

- □ 5.7.5.8 WHEN the pressure of the 30 mL gas tank stabilizes, record the final pressure and temperature. TG 2 Final Temp. Reading ______°F PG 5 Final Press. Reading _____ PSIA □ 5.7.5.9 Close 203 □ 5.7.5.10 Close 204 □ 5.7.5.11 Close 206 □ 5.7.5.12 Ensure 109 is off. □ 5.7.5.13 Close 103 □ 5.7.5.14 Calculate the total amount of H₂ in the sample using Enclosure 7.4. □ 5.7.5.15 Report results on Enclosure 7.7.
- 5.8 Sample pH Measurement (PALSS Control Panel)
 - \Box 5.8.1 Ensure closed 206
 - □ 5.8.2 Ensure closed 204
 - \Box 5.8.3 Ensure SS 3 switch is set on PT 1.
 - 5.8.4 Pressurize liquid tank to at least 60 PSIG as monitored on PG 1 (alternate PG 4), as follows:
 - □ 5.8.4.1 Open 202
 - □ 5.8.4.2 Open 205
 - □ 5.8.4.3 Open 207
 - □ 5.8.4.4 Open 103
 - \Box 5.8.4.5 Wait \geq 30 seconds.
 - □ 5.8.4.6 Close 103
 - □ 5.8.4.7 Close 207

CP/**3**/A/2002/004 C Page 25 of 36

- □ 5.8.4.8 Close 205
- □ 5.8.4.9 Close 202
- □ 5.8.5 Open 102

.

- \Box 5.8.6 Record pH on Enclosure 7.7.
- □ 5.8.7 Close 102
- □ 5.8.8 Notify OSC that RCS <u>sampling</u> via the PALSS is completed and that sample retrieval will begin following system flush.

Person contacted

- □ 5.8.9 IF waste was routed to the RBES <u>OR</u> sampling was done via the J-leg flowpath from the PALSS panel per Step 5.1.2:
 - Notify the Unit 2 Control Room that the RCS sample has been obtained <u>AND</u> they may complete Enclosure 7.6 from Step 3.6.

Person contacted

5.9 System Flush (PALSS Control Panel)

NOTE: Directions regarding sample panel flushing will be determined by management.

- □ 5.9.1 Ensure 204 and 206 <u>remain</u> closed and the sample injection valve(s) selected (501, 502 and/or 503) is turned off.
- \Box 5.9.2 IF either LT 1 OR LT 2 indicator is illuminated:
 - □ 5.9.2.1 Open 108
 - □ 5.9.2.2 Turn on 110 (sump pump).
 - \Box 5.9.2.3 WHEN both LT1 and LT2 are out, close 108.
 - □ 5.9.2.4 Turn off 110 (sump pump).

CP/**3**/A/2002/004 C Page 26 of 36

. .

□ 5.9.3 IF given the direction to flush the panel, flush the 500 mL liquid tank, pH housing, and sample injection valves as follows:

500 mL Liquid Tank

□ 5.9.3.1 Open 101

.

- □ 5.9.3.2 Open 104
- □ 5.9.3.3 Open 401
- □ 5.9.3.4 Open PB 6 (3DW-278, DW Flush Supply to Post Accident Sample)

pH Housing

- □ 5.9.3.5 Open 102
- □ 5.9.3.6 Open 105

Sample Injection Valves

- □ 5.9.3.7 Open 107
- □ 5.9.3.8 Open 402
- □ 5.9.3.9 Flush the sample panel until the general area dose rate on the exterior of the panel is ≤ 2 mR/hr <u>OR</u> a satisfactory level is achieved per RP.
- □ 5.9.3.10 Close 402
- □ 5.9.3.11 Close 107
- □ 5.9.3.12 Close 105
- □ 5.9.3.13 Close 102
- □ 5.9.3.14 Close 101
- □ 5.9.3.15 Close 104
- □ 5.9.3.16 Close 401
- □ 5.9.3.17 Close PB 6 (3DW-278, DW Flush Supply to Post Accident Sample)

5.10 Liquid & Gas Sample Retrieval (PALSS Control Panel)

Liquid Sample Retrieval

- \Box 5.10.1 Ensure open the waste route selected in Step 5.2.11 or 5.2.12:
 - PB 1 (3LP-130, HAWT Return)
 - **OR** PB 2 (3LP-121, 3B Emerg Sump Line Drn Blk).
- □ 5.10.2 Ensure closed all other PB valves (motor operated).
- \Box 5.10.3 IF LT 1 OR LT 2 is illuminated, perform Step 5.9.2.
- \Box 5.10.4 Select the flow path for sample collection by turning CV 612 to the desired injection valve (0.1 mL, 1 mL, or 5 mL loop).

Sample Loop(s) Selected _____

- \Box 5.10.5 Slowly turn CV 613 to the "N₂" position.
- □ 5.10.6 After collecting approximately 15 <u>mLs</u> of liquid sample, turn CV 613 to the ... "VENT" position.
- \Box 5.10.7 Wait \geq 10 seconds for sample line depressurization.
- \Box 5.10.8 Turn CV 612 to the "OFF" position.
- □ 5.10.9 As necessary for additional sample(s), repeat Steps 5.10.4 through 5.10.8.

Gas Sample Retrieval

- □ 5.10.10 <u>WHEN</u> possible, use the gas-tight syringe(s) to retrieve the gas sample(s) from the 30 <u>mL</u> gas tank keeping syringe vertical (needle down).
- □ 5.10.11 IF possible, place syringes in the gas locked position and store vertically (needle down).

CP/**3**/A/2002/004 C Page 28 of 36

. .

- 5.11 30 mL Gas Tank and 500 mL Gas Tank Purge (PALSS Control Panel)
 - \Box 5.11.1 Verify Nitrogen supply still has \geq 100 psig delivery pressure.
 - 5.11.2 Allow all of the following values to stay open ≥ 2 minutes <u>except</u> alternate the value pairs 204/206 and 205/207 open and close within the 2 minute period:
 - □ 5.11.2.1 Open 202
 - □ 5.11.2.2 Open 204
 - □ 5.11.2.3 Open 205
 - □ 5.11.2.4 Open 206
 - □ 5.11.2.5 Open 207
 - □ 5.11.2.6 Open 103
 - □ 5.11.2.7 Open 104
 - □ 5.11.2.8 Open 401
 - □ 5.11.2.9 After flushing for several seconds, close the following:
 - A. 204
 - B. 206
 - □ 5.11.2.10 After additional flush for several seconds, open the following:
 - A. 204
 - B. 206
 - □ 5.11.2.11 Close 205
 - □ 5.11.2.12 Close 207
 - \Box 5.11.2.13 After several seconds, open the following:
 - A. 205
 - B. 207

CP/**3**/A/2002/004 C Page 29 of 36

- □ 5.11.2.14 IF the valves need further cycling (it has not been ≥ 2 minutes) return to Step 5.11.2.10.
- \Box 5.11.2.15 IF the time is ≥ 2 minutes, proceed to Step 5.11.3.
- □ 5.11.3 Close 202
- □ 5.11.4 Close 401
- □ 5.11.5 Close 104
- □ 5.11.6 Close 103
- □ 5.11.7 Open 201
- □ 5.11.8 Open 208
 - 5.11.9 After \geq 10 seconds, close the following:
 - □ 5.11.9.1 206
 - □ 5.11.9.2 207
 - □ 5.11.9.3 204
 - □ 5.11.9.4 205
 - □ 5.11.9.5 201
 - □ 5.11.9.6 208
- □ 5.11.10 Repeat Step 5.11.2 through 5.11.9 until dose rates of 30 <u>mL</u> and 500 <u>mL</u> tank are \leq 10 mR/hr (at contact) <u>OR</u> a satisfactory level is achieved per RP.

CP/**3**/A/2002/004 C Page 30 of 36

- 5.12 System Shutdown
 - 5.12.1 Ensure closed the following motor operated valves: (PALSS Control Panel)
 - D PB 1 (3LP-130, HAWT Return)
 - □ PB 2 (3LP-121, Post Accident Sample Panel Return)
 - □ PB 3 (3LP-126, DH Cooler Sample)
 - □ PB 4 (3RC-179, Post Accident Sample Block)
 - □ PB 5 (3LP-124, Letdown Sample Stop)
 - □ PB 6 (3DW-278, DW Flush Supply to Post Accident Sample)
 - □ PB 8 (3LP-129, PALS Inlet Strainer Drain)
 - 5.12.2 Ensure closed the following solenoid valves: (PALSS Control Panel)
 - □ 201
 - □ 202
 - □ 203
 - □ 204
 - □ 205
 - □ 206
 - □ 207
 - □ 208
 - □ 209

CP/**3**/A/2002/004 C Page 31 of 36

- 5.12.3 Ensure closed the following control valves: (PALSS Control Panel)
 - □ 101
 - □ 102
 - □ 103
 - □ 104
 - □ 105
 - □ 106
 - □ 107
 - □ 108
- 5.12.4 Return SW 1 (valve power switch) to the "OFF" position.
- 5.12.5 Return KS 1 (key switch) to the "OFF" position.
- 5.12.6 Close 3IA-2423 (IA to Post Accident Sample Panel) (Outside the PALSS Sample Panel)
- 5.12.7 Ensure N_2 cylinder discharge pressure > 600 psi.
 - IF necessary, replace cylinder.
- _____ 5.12.8 Close N₂ Supply Bottle valves (Outside the PALSS Sample Panel)

NOTE: The following cable connections are located between the PALSS Control Panel and the cable junction box.

CAUTION: <u>Make the disconnection of connector cable 1 from the Junction Box the FIRST cable</u> <u>disconnection</u>. <u>IF</u> this is not done first, the exposed pins of the other cables may become energized and become an electrical hazard.

□ 5.12.9 IF directed by Chemistry Staff, disconnect the following cables in order:

Person contacted _____

- □ 5.12.9.1 CON-1 from the junction box (this is the first cable disconnect made), then from the PALSS Control Panel.
- \Box 5.12.9.2 CON-2 cable at both ends.
- \Box 5.12.9.3 CON-3 cable at both ends.
- \Box 5.12.9.4 CON-4 cable at both ends.
- \Box 5.12.9.5 CON-5 cable at both ends.
- \Box 5.12.9.6 CON-6 cable at both ends.
- □ 5.12.10 Store the control panel in the AB 1st floor hallway/corridor within ten (10) feet from the Unit 1 electrical junction box.
- □ 5.12.11 Ensure the control panel wheels are <u>locked</u> to prevent panel movement.
- \Box 5.12.12 Ensure CV 609 is in the "AIR" position.
- □ 5.12.13 Ensure CV 610 is in the "NITROGEN" position.
- □ 5.12.14 Inform the OSC that flushing of the PALSS Panel has been completed.

Person contacted

Sample Analysis 5.13

NOTE:	Steps 5.1 order wr	3.1 - 5.13.3 (itten.	.1 - 5.13.3 can be performed in any order. Substeps must be performed in the en.			
	5.13.1	Gas (Nitro	gen Stripping Method)			
		5.13.1.1	Analyze up to four syringes of stripped gas using the appropriate lab method for hydrogen analysis.			
		5.13.1.2	Use the following formula to calculate results:			
			$\% H_2 \frac{615.72 \text{ cc}}{0.50 \text{ Kg}} \times \frac{1}{100} = \text{cc/Kg H}_2$			
			Where: $\%$ H ₂ is determined from the lab method used in Step 5.13.1.1.			
			615.72 cc = 30 mL gas bomb + $500 mL$ gas bomb + tubing volume (volume occupied by sample gas).			
			0.50 Kg = collected sample size			
			$\underline{1}$ = conversion of percent to decimal 100			
		5.13.1.3	Record results in $cc/kg H_2$ on Enclosure 7.7.			
		5.13.1.4	IF needed, reserve other stripped gas syringes for use as backups OR to perform a gas sample gamma spectra.			

- 5.13.2 Liquid
 - 5.13.2.1 Submit sample to count room for gamma spectra analysis. The sample may be counted in the rheodyne sample vial using the loop volume (preferred) or in a 50 mL bottle.
 - Submit loop volume as volume of sample to Countroom.
 - 5.13.2.2 Review and attach GeLi Spectra to Enclosure 7.7.
 - 5.13.2.3 Analyze PALSS sample for boron.
 - To obtain a boron concentration that will correlate directly with the normal RCS, the dilution factor must be multiplied by the analyzed sample concentration (obtained from the Boron Titration).

ppm B = measured ppm B x <u>Total dilution volume (sample loop + dilution water), mLs</u> sample loop volume, <u>mLs</u>

- 5.13.2.4 Record results of boron sample analysis on Enclosure 7.7.
- 5.13.2.5 Perform a chloride analysis of the sample.
 - To obtain a Cl concentration that will correlate directly with the normal RCS, the dilution factor must be multiplied by the analyzed sample concentration.

ppb Cl = measured ppb Cl x <u>Total dilution volume (sample loop + dilution water)</u>, mLs sample loop volume, mLs

- **NOTE:** IF the Cl results are below the Limit of detection (LOD) for the Cl analysis, multiply the LOQ by the dilution factor for reporting purposes (record as "< LOQ * dilution factor" instead of "T0").
 - 5.13.2.6 Record results on Enclosure 7.7.
 - 5.13.2.7 **IF** needed, reserve any remaining liquid sample for use as a backup.

CP/**3**/A/2002/004 C Page 35 of 36

- 5.13.3 <u>IF</u> approved by OSC & RP, prepare Panel for next use by performing the following: (PALSS Sample Panel)
 - Fill buffer tanks(s) with ~ 600 mLs of buffer solution for calibrating the pH meter.
 - This solution will be pressurized with nitrogen gas to at least 60 psig using the nitrogen purge system inside the PALSS sample panel.
 - Connect tank(s) to quick connect fittings inside sample panel.
- NOTE: 1. Buffer Tank A should be filled with the stronger buffer pH 4 buffer if expected pH < 7.0 <u>OR</u> a pH 10 buffer if expected pH > 7.0. Always fill Buffer Tank B with a pH 7 buffer.
 - 2. Buffer tanks may be pre-prepared and stored inside of PALSS sample panel. Verify that buffer expiration dates have not been exceeded.
 - Fill the 50 mL sample flush cylinder with demineralized water for flushing the liquid sample from the Rheodyne sample injection valves.
 - While holding in a vertical position, attach the matching quick disconnects and fill the cylinder from the bottom to the top using demineralized water.
 - Connect to sample shelf inside sample panel.
 - Replace Gas Bomb Septa.
 - 5.13.4 Ensure all data is recorded and Enclosure 7.7 is complete.
 - 5.13.5 Route this procedure along with the gamma spectra(s) to the OSC.

CP/**3**/A/2002/004 C Page 36 of 36

6. References

- 6.1 NUREG-0737, Section II.B.3
- 6.2 DPC System Radiation Protection Manual
- 6.3 Post Accident Liquid Sampling System Manual, Production Support Department, OM-311C-0331
- 6.4 ASTM Volume 11.01, D-1293-84 (1990)
- 6.5 DPC LM/O/P008 (The Determination of Hydrogen Using the Carle or SRI Gas Chromatographs)
- 6.6 DPC LM/O/P004 (Determination of Chloride by Specific Ion Electorde)
- 6.7 ITS 5.5.4
- 6.8 PIP O-02-00614
- 6.9 PIP O-98-04532

7. Enclosures

- . 7.1 Valve Arrangement Diagram (Control Panel)
 - 7.2 Valve Arrangement Diagram (General One Line)
 - 7.3 PALSS Inlet Filter/Strainer Back Flush Procedure
 - 7.4 Calculation of Hydrogen Concentration Using the Ideal Gas Law (Differential Pressure)
 - 7.5 Unit 3 PALSS Power Supply
 - 7.6 Operations Checklist for Unit 3 PALSS Operating Procedure Valve Lineups to Route Reactor Coolant to the PALSS/Waste to the RBES
 - 7.7 PALSS Authorization for Operation and Data Transmittal Form
 - 7.8 Operating the Analyzer/Controller

Enclosure 7.1

.

CP/3/A/2002/004C

Valve Arrangement Diagram (Control Panel)

TE1 TE2 TE3 TE4 N₂ AE 1 201 202 f TG1 F Ċ 203 208 1 AIR 205 204 RD1 (RD) P SOOML RD2 102 F JUNC. 611 207 206 PT2 PGI PSIC INCREASE DECREASE \$\$3 U VIBRATOR Ç 103 PT 109 500ML 104 PC3 PSIG 401 Ţ PH 108 (मृ 101 102 DECREASE 105 PG4 AIZ9 (C) B Ģ, 209 PH BUFFER 110 PUMP INCREASE 402 ·N2 LTI HICH(R) Ł PGS PSIA 1 Ġ F F LOW(Y) 503 502 501 LT2 SUMP FILTER CLOCCED OPEN OPEN OPEN (Y) LIJ RG RG RG FG1 CPM CLOSE CLOSE CLOSE œ SW2 SWI KSI P85 P83 PB1 **0**FT OFF OFF OPEN OPEN OPEN OPEN ON ON ON RG RG RG RG VALVE LAMP AC CLOSE CLOSE CLOSE CLOSE P86 P84 889 P82

Page 1 of 1

`.

Valve Arrangement Diagram (General - One Line)

CP/**3**/A/2002/004C Page 1 of 1

Enclosure 7.3

PALSS Inlet Filter/Strainer Back Flush Procedure

CP/**3**/A/2002/004C Page 1 of 2

1. Purpose

This enclosure gives instructions for back flushing the PALSS inlet filter/strainer.

2. Initial Conditions

None

3. Limits and Precautions

- □ 3.1 The following RCS sample valves must be closed to prevent contamination of the demineralized water header with reactor coolant: (PALSS Control Panel)
 - PB 5 (3LP-124, Letdown Sample Stop)
 - PB 3 (3LP-126, DH Cooler Sample)
 - PB4 (3RC-179, Post Accident Sample Block)

4. Procedure (PALSS Control Panel)

- □ 4.1 Ensure closed PB 5 (3LP-124, Letdown Sample Stop).
- □ 4.2 Ensure closed PB 3 (3LP-126, DH Cooler Sample).
- □ 4.3 Ensure closed PB 4 (3RC-179, Post Accident Sample Block).
- \Box 4.4 Wait \geq 30 seconds.
- □ 4.5 Close 104
- □ 4.6 Ensure SS 3 (selector switch) is in the "PT-1" position.
- □ 4.7 Monitor pressure on PG-1 for one minute.
 - $\Box 4.7.1 \qquad \underline{IF} \text{ the pressure on PG-1} > 60 \text{ psi } \underline{OR} \text{ is increasing with time, immediately} \\ \text{contact Chemistry Staff and notify the RCS may be leaking.}$
 - PB 5 (3LP-124, Letdown Sample Stop)
 - OR PB 3 (3LP-126, DH Cooler Sample)
 - **OR** PB 4 (3RC-179, Post Accident Sample Block)
 - Do <u>NOT</u> proceed without Staff approval.

Enclosure 7.3

PALSS Inlet Filter/Strainer Back Flush Procedure

CP/**3**/A/2002/004C Page 2 of 2

. .

- □ 4.8 Close 101
- □ 4.9 Open PB 8 (3LP-129, PALS Inlet Strainer Drain)
- □ 4.10 Open PB 6 (3DW-278, DW Flush Supply to Post Accident Sample)
- \Box 4.11 Backflush \geq 5 minutes.
- \Box 4.12 Close the following values:
 - □ 4.12.1 PB 6 (3DW-278, DW Flush Supply to Post Accident Sample)
 - □ 4.12.2 PB 8 (3LP-129, PALS Inlet Strainer Drain)
- \Box 4.13 IF the purpose is to resume sampling, open:
 - PB 5 (3LP-124, Letdown Sample Stop)
 - <u>OR</u> PB 3 (3LP-126, DH Cooler Sample)
 - OR PB 4 (3RC-179, Post Accident Sample Block)
 - □ 4.13.1 Open 104
 - □ 4.13.2 Open 101
 - □ 4.13.3 Return to procedural step allowing completion of the sampling process.
- □ 4.14 IF the clogged filter light is still "ON" and no flow is shown on FG 1, stop sampling.
- □ 4.15 Notify Chemistry Staff.

Person contacted _____
CP/**3**/A/2002/004C Page 1 of 2

Calculation of Hydrogen Concentration Using the Ideal Gas Law (Differential Pressure)

1. Purpose

This enclosure provides guidance on calculations for hydrogen using Ideal Gas Laws.

2. Initial Conditions

None

3. Procedure

3.1 Record the initial and final temperature and pressure readings from Steps 5.7.5.4 and 5.7.5.8.

Initial Temperature Reading _____°F

Final Temperature Reading	°F
---------------------------	----

Initial Pressure Reading _____ PSIA

Final Pressure Reading _____ PSIA

3.2 Calculate the average gas temperature reading using the following equation:

 $T_{avg} = (T_{final} + T_{init})/2$

where, T_{avg} = Average Gas Temperature, °C

T_{final} = Final Gas Temperature Reading, °C

T_{init} = Initial Gas Temperature Reading, °C

3.3 Calculate the differential gas pressure using the following equation:

 $P_{diff} = P_{final} - P_{init}$

where, P_{diff} = Differential Gas Pressure, PSI

P_{final} = Final Gas Pressure Reading, PSIA

 P_{init} = Initial Gas Pressure Reading, PSIA

CP/3/A/2002/004C Page 2 of 2

. .

Calculation of Hydrogen Concentration Using the Ideal Gas Law (Differential Pressure)

3.4 Calculate the hydrogen concentration of the trapped PALSS gas sample using the following equation:

$$H_2 = \frac{(3,719.83)(P_{diff})}{(T_{avg} + 273)} + \frac{(P_{final} - 0.69)}{0.769}$$

.

(H₂ in Gas Sample) (H₂ remaining in Liquid Sample)

where, $H_2 = PALSS$ gas sample Hydrogen Concentration, cc/Kg

3.5 Record hydrogen concentration result from Step 3.4 above on Enclosure 7.7.

۰.

.

Unit 3 PALSS Power Supply

CP/**3**/A/2002/004C Page 1 of 1

.....

CP/**3**/A/2002/004C Page 1 of 3

Operations Checklist for Unit 3 PALSS Operating Procedure Valve Lineups to Route Reactor Coolant to the PALSS/Waste to the RBES

1. Purpose

This enclosure, performed by Operations, gives the valve lineups needed for routing reactor coolant from the RCS "J" Leg through the PALSS to the RBES.

2. Initial Conditions

2.1 Demineralized water header should be in service and have at least 60 psi pressure.

____ 2.2 RCW System (sample cooling supply) should be in service.

3. Procedure

3.1 Establish communications with Chemistry personnel assigned to the task.

Chemistry personnel assigned:

NOTE: The normal position of 3LP-65 is locked closed. {PIP O-02-00614}

______ 3.2 IF containment integrity is required or being considered, station a person at the reach rod for 3LP-65 ('3B' Emer Sump Line Drn Blk) (Unit 3 LPI Hatch Area) to immediately close the valve IF ES actuation occurs. This person must be in constant contact with the Control Room.

- 3.3 Unlock and open 3LP-65 ('3B' Emerg Sump Line Drn Blk). (Unit 3 LPI Hatch Area)
 - _____ 3.4 Record 3LP-65 ('3B' Emerg Sump Line Drn Blk) is open on unit shift Turnover Sheet.
 - 3.5 Establish flow to the PALSS panel via the RCS "J" Leg as follows:
 - 3.5.1 <u>IF containment integrity is required OR</u> is being considered, assign an Operator to close the following valves in case of an ES Actuation:
 - 3RC-162 (RC SAMPLE ISOL VLVE)
 - 3RC-163 (RC SAMPLE ISOL VLVE)

_				Enclosure 7.6 Operations Checklist for Unit 3 PALSS Operating Procedure Valve Lineups to Route Reactor Coolant to the PALSS/Waste to the RBES	CP/ 3 /A/2002/004C Page 2 of 3
	NOTE:		The normal position of 3RC-164 and 3RC-165 is locked closed. {PIP O-02-00614}		
		<u> </u>	_ 3.5.2	Station a responsible person in the vicinity of the follo immediately close them in case of an ES actuation. T constant communication with the Control Room the e open: (Unit 3 LPI Hatch Area)	owing valves to his person must be in ntire time the valves are
				• 3RC-164 (Post Accident Liquid Sample (PALS) V	/alve)
				• 3RC-165 (Post Accident Sample Valve)	
	N	OTE:	PIP O-98 164, and 1	-04532 addresses the sequence of operation for Unit 3 (IRC-165).	RC-162, RC-163, RC-
			_ 3.5.3	Open 3RC-163 (RC SAMPLE ISOL VLVE).	
	DV		_ 3.5.4	Unlock and open 3RC-164 (Post Accident Liquid San (Unit 3 LPI Hatch Area)	nple (PALS) Valve).
	DV	. <u></u>	_ 3.5.5	Unlock and open 3RC-165 (Post Accident Sample Va Area)	lve). (Unit 3 LPI Hatch
		<u> </u>	_ 3.5.6	Open 3RC-162 (RC SAMPLE ISOL VLVE).	
	Dv	<u></u>	_ 3.5.7	Record the following containment isolation valves are Turnover Sheet:	e open on unit shift
				• 3RC-162 (RC SAMPLE ISOL VLVE)	
				• 3RC-163 (RC SAMPLE ISOL VLVE)	
				 3RC-164 (Post Accident Liquid Sample (PALS) V Area) 	/alve) (Unit 3 LPI Hatch
				• 3RC-165 (Post Accident Sample Valve) (Unit 3 I	LPI Hatch Area)
	3.6 <u>WHI</u> 3.7 <u>A</u>		<u>WHEN</u> 3.7 <u>ANI</u>	notified by Chemistry that the RCS sample has been obt complete enclosure.	tained, continue to Step
			Person c	ontacted	
<u> </u>	<u></u>	_ 3.7	Close an	d lock 3RC-165 (Post Accident Sample Valve). (Unit 3	LPI Hatch Area)

۰.

CP/**3**/A/2002/004C Page 3 of 3

Operations Checklist for Unit 3 PALSS Operating Procedure Valve Lineups to Route Reactor Coolant to the PALSS/Waste to the RBES

- _____ 3.8 Close and lock 3RC-164 (Post Accident Liquid Sample (PALS) Valve). (Unit 3 LPI Hatch Area)
- _____ 3.9 Close 3RC-163 (RC SAMPLE ISOL VLVE).

DV

DV

DV

- _____ 3.10 Close 3RC-162 (RC SAMPLE ISOL VLVE).
 - ____ 3.11 Record the following containment isolation valves are closed on unit shift Turnover Sheet.
 - 3RC-162 (RC SAMPLE ISOL VLVE)
 - 3RC-163 (RC SAMPLE ISOL VLVE)
- _____ 3.12 Record the following containment isolation valves are locked closed on unit shift Turnover Sheet.
 - 3RC-164 (Post Accident Liquid Sample (PALS) Valve)
 - 3RC-165 (Post Accident Sample Valve)
- 3.13 The responsible persons for the sample isolation valves are relieved of the responsibility to close the following valves in case of an ES actuation:
 - 3RC-162 (RC SAMPLE ISOL VLVE)
 - 3RC-163 (RC SAMPLE ISOL VLVE)
 - 3RC-164 (Post Accident Liquid Sample (PALS) Valve)
 - 3RC-165 (Post Accident Sample Valve)
- 3.14 Close and lock 3LP-65 ('3B' Emerg Sump Line Drn Blk). (Unit 3 LPI Hatch Area)
 - 3.15 Record 3LP-65 ('3B' Emerg Sump Line Drn Blk) is locked closed on unit shift Turnover Sheet.
 - _____ 3.16 The person responsible for 3LP-65 ('3B' Emerg Sump Line Drn Blk) is relieved of the responsibility to close the valve in case of an ES actuation.
 - ____ 3.17 Ensure completed enclosure is maintained by Chemistry.

- .

. ;

.

PALSS Authorization for Operation and Data Transmittal Form

CP/**3**/A/2002/004C Page 1 of 2

	and Data Transmittal Form					
	Date _					
1.	Initia	l Conditions				
	None					
2.	Proce	dure				
	2.1	Verbal/written direction for sampling the Reactor Coolant via the PALSS has been received from the TSC/OSC.				
		Sample Point: RCS "J-Leg" Waste Route: RBES				
		LPI Pump Discharge HAWT				
		HPI Letdown				
		Person Authorizing Sampling				
	2.2	The specific post-accident analysis requested by TSC/OSC:				
		Boron =ppm				
		Hydrogen =cc/kg				
		Chloride =ppm				
		pH =				
		Gas Gamma (attach)				
		Liquid Gamma (attach)				
		Other (specify)				
	2.3	Have RP determine general area dose rate at the PALS valve panel and record below.				
		Dose rate (general area) = r/hr				
.	2.4	Determine by detailed planning meeting the exact course of action and data required.				
	2.5	Evaluate the use of portable shielding, remove handling equipment, video equipment, etc., to minimize the exposure to personnel while sampling.				

CP/**3**/A/2002/004C Page 2 of 2

PALSS Authorization for Operation and Data Transmittal Form

- 2.6 Have RP determine the required respiratory equipment and protective clothing to prevent or minimize internal exposure in any Planned Emergency situation. Use high range and/or extremity dosimetry if required.
- ____ 2.7 Determine how long to flush the PALSS sample panel, based on general area dose readings.
- 2.8 Request RP to designate a route from PALSS to the Lab.

Sample route designated:_____

2.9 Evaluate the use of portable shielding, remove handling equipment, video equipment, etc., to minimize the exposure to personnel in the Lab for the required analyses.

_

-

CP/**3**/A/2002/004 C Page 1 of 1

... .

Operating the Analyzer/Controller

Front panel keys used for all operator tasks

•

÷

Table 1-1 Key Functions

Кеу	Name	Use
	DISPLAY	When process values are on display: Use DISPLAY to cycle through available real-time displays.
		When the main menu (Configuration, Calibration, Maintenance, I/O Setup) is on display: Use DISPLAY to return to displaying process values.
	MENU	When process values are on display: Use MENU to access the menus. If the security feature is enabled, the display will prompt for entry of the password before access to the menus is permitted. (Enter the password using the procedure for editing a parameter numeric value as described on the next page.)
		When any menu or configuration screen is on display: Use MENU to go up a level in the display hierarchy. Frequently this means returning to the main menu.
	UP	When a menu or configuration screen is on display: Use UP to highlight a different item.
· ·		When changing a numerical value: Use UP key to increment the value of the digit at the cursor.
	DOWN	When a menu or configuration screen is on display: Use DOWN to highlight a different item.
	-	When changing a numerical value: Use DOWN to decrement the value of the digit at the cursor.
	ENTER	When a menu item is highlighted: Use ENTER to select it.
Ł		When editing a parameter: Use ENTER to save the new value.
F1	F1, F2, F3 [function keys]	When a "soft key" label is displayed below the alarm stripe: Use the function key directly below the label to perform the action.