Gregory H. Halnon General Manager, Nuclear Plant Operations 803.345.4007

April 23, 2001

Mr. L. A. Reyes Regional Administrator USNRC, Region II Sam Nunn Atlanta Federal Center 61 Forsyth Street SW Suite, 23T85 Atlanta, GA 30303-8931

Dear Mr. Reyes:

Subject: VIRGIL C. SUMMER NUCLEAR STATION DOCKET NO. 50/395 OPERATING LICENSE NO. NPF-12 RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT (RR 8300)

Enclosed is the South Carolina Electric & Gas Company (SCE&G) Annual Radiological Environmental Monitoring Report as required by Regulatory Guide 4.8 and Section 6.9.1.6 of the Virgil C. Summer Nuclear Station Technical Specifications.

If there are any questions, please contact Ms. Susan B. Reese at (803) 345-4591.

Very truly yours,

Gregory H. Halnon

SBR/GHH/sr Enclosures

c: N. O. Lorick (w/o enclosures) T. G. Eppink (w/o enclosures) R. J. White (w/o enclosures) K. R. Cotton J. W. Sowell (402) J. A. Orr (P40) NRC Resident Inspector (502) W. G. Wendland K. W. Sutton INPO Records Center J&H Marsh & McLennan NSRC RTS (O-L-99-0112-1) File (818.02-2, RR 8300) DMS (RC-01-0081)

RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT

VIRGIL C. SUMMER NUCLEAR STATION

FOR THE OPERATING PERIOD

JANUARY 1, 2000 - DECEMBER 31, 2000

APRIL 2001

Prepared by:

William A. Smith Jr., Health Physics Specialist

Reviewed by:

Joé Ørr, Health Physicist

Approved by:

ha

L.A. Blue, Manager Health Physics Services

EXECUTIVE SUMMARY

This Annual Radiological Environmental Operating Report describes the V.C. Summer Environmental Monitoring Program and the program results for the calendar year 2000.

Included are the identification of sample locations, descriptions of environmental sampling and type of analysis, comparisons of present environmental radioactivity levels and pre-operational environmental data, land use census comparisons of doses calculated from environmental measurements, and a summary of environmental radiological sampling results. Quality assurance practices, sampling deviations, and unavailable samples are also discussed.

Sampling activities were conducted as prescribed by the Offsite Dose Calculation manual for V.C. Summer Nuclear Station (ODCM) and applicable Health Physics Procedures. Required analyses were performed and detection limits were met for all required samples as required by the ODCM. Supplemental analyses were performed on some media for additional information. Nine hundred forty two samples were collected comprising eleven hundred thirty-four analyses performed to compile data for the 2000 Environmental Report. Based on the results from the annual land use census, the current number of sampling sites for V.C. Summer Nuclear Station is sufficient.

Concentrations observed in the environment in 2000 for V.C. Summer related radionuclide concentrations were within the range of concentrations observed in the past. Review of the data showed that radioactivity concentrations in shoreline sediment was the only indicator with activity slightly greater than the detection LLD. This concentration is less than the level reported in the past and within the limits of the ODCM. The total body dose calculated to the maximum exposed member of the public, excluding TLD data, calculated from shoreline sediment sample data was 3.85E-2 mrem/yr for 2000. It is therefore concluded that V.C. Summer Nuclear Station's operations have no significant radiological impact on the health and safety to the public or the environment.

TABLE OF CONTENTS

.

.

.

£

	PAGE
INTRODUCTION	1
DESCRIPTION OF THE RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM	2
LAND USE CENSUS	4
MONITORING RESULTS AND DISCUSSION	4
CONCLUSION	7

LIST OF TABLES

.

.

TABLE		PAGE
1	Monitoring Methods for Critical Radiation Exposure Pathways	3
2	2000 Fission and Activated Corrosion Product Activity in Sediment	7
3	Radiological Environmental Monitoring Program Required Sampling Site Locations	8
4	Results of the 2000 Environmental Intercomparison with Independent Lab	10
5	Results of the 2000 Intercomparison Program with Independent Lab	13
6	Summary of the 2000 Intercomparison Program with SCDHEC	15
7	Results of the 2000 Land Use Census Verification	16
7a	Critical Receptor Evaluation for 2000	17
8	Radiological Environmental Monitoring Program Specifications	18
9	Supplemental Radiological Environmental Monitoring	22
10	Radiological Environmental Monitoring Program Summary for 2000	25
11	Radiological Environmental Monitoring Program Preoperational (Baseline) Summary	31
12	2000 Environmental Sampling Program Exceptions	37

.

.

LIST OF FIGURES

.

<u>FIGURE</u>		PAGE
1-1	Control Site Locations (50 mile radius around the Virgil C. Summer Nuclear Station)	38
1-2	Radiological Monitoring Program Local Indicator Sample Sites (5 mile radius around Virgil C. Summer Nuclear Station)	39
1-3	Radiological Monitoring Program Local Indicator Sample Sites (1 mile radius around Virgil C. Summer Nuclear Station)	40

INTRODUCTION

Virgil C. Summer Nuclear Station (VCSNS) utilizes a pressurized water reactor rated at 2900 MWt (990 MWe gross). The station is located adjacent to the Monticello Reservoir near Jenkinsville, South Carolina and approximately 26 miles northwest of Columbia. VCSNS achieved initial criticality on October 22, 1982, reached 50% power December 12, 1982 and 100% power June 10, 1983 following steam generator feedwater modifications. Steam generators were replaced in the fall of 1994. During the ninth refuel the plant was uprated to 2900 MWt (990 MWe gross). VCSNS is currently operating in the 13th fuel cycle.

VCSNS is operating in conjunction with the adjacent Fairfield Pump Storage Facility (FPSF) which consists of eight reversible pump-turbine units of 60 MWe capacity each. During periods of off-peak power demand, base load generating capacity is used to pump water from Parr Reservoir to Monticello Reservoir. Monticello Reservoir has a surface area of approximately 6800 acres and lies about 150 feet above Parr Reservoir whose full pool area is approximately 4400 acres. The pump-turbine units operate in the generating mode to meet peak system loads while Monticello Reservoir also provides condenser cooling water for VCSNS. Cooling water intake and discharge structures are separated by a jetty to ensure adequate circulation within the reservoir.

VCSNS is located in Fairfield County which, along with Newberry County, makes up the principle area within a 10 mile radius of the plant. This area is mainly forest with only about 30% devoted to small farming activities principally producing small grains, feed crops and beef cattle. Significant portions of Lexington and Richland Counties are encompassed within the 20 mile radius of the plant and exhibit similar agricultural activities. Columbia, the state capital, is the only large city within the 50 mile radius of the plant. Small agricultural concerns are predominant, but make up less than 50% of the land area. The main industrial activity is concentrated around Columbia and is generally greater than 20 miles from the VCSNS.

Liquid effluents from VCSNS are released into the Monticello/Parr Reservoirs at two discharge points: the Circulating Water Discharge Canal (CWDC) and the FPSF Penstocks. Nonnuclear drains are released to the CWDC. Effluent from the liquid waste processing system and processed steam generator blowdown are released through the penstocks. Radioactive gaseous effluents from VCSNS are released from three points: the Main Plant Vent, the Reactor Building Purge Exhaust and the Oil Incineration Facility, all considered to be ground level releases.

Radioactive liquid and gaseous releases from the facility and their potential influence on the surrounding biota and man are the primary concern of the Radiological Environmental Monitoring Program at VCSNS. This report summarizes the results of the Radiological Environmental Monitoring Program conducted during 2000. Data trends, control/indicator and preoperational/operational data intercomparisons and other data interpretations are presented.

DESCRIPTION OF THE RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

The Radiological Environmental Monitoring Program is carried out in its entirety by South Carolina Electric and Gas Company. The program has been designed to meet the following general commitments:

- 1. To analyze selected samples in important anticipated pathways for the qualification and quantification of radionuclides released to the environment surrounding VCSNS.
- 2. To establish correlations between levels of environmental radioactivity and radioactive effluents from VCSNS operation.

The program utilizes the concepts of control/indicator and preoperational/operational intercomparisons in order to establish the adequacy of radioactivity source control and to realistically verify the assessment of environmental radioactivity levels and subsequent radiation dose to man.

Sample media and analysis sensitivity requirements have been established to ensure that the maximum dose pathways are monitored and sensitivities represent a small fraction of annual release limits. Effluent dispersion characteristics, demography, hydrology and land use have been considered in selection of environmental sampling locations. These criteria were used to establish both the preoperational and operational phases of the Radiological Environmental Monitoring Program. Elements of the program monitor the impact of gaseous and liquid effluents released from VCSNS.

Specific methods used in monitoring the pathways of these effluents which may lead to radiation exposure of the public, based on existing demography, are summarized below in Table 1. Requirements of the Radiological Environmental Monitoring Program are specified in the VCSNS Offsite Dose Calculation Manual (ODCM). Elements of the program monitor the impact of gaseous and liquid effluents released from VCSNS.

Effluent Release Type	Exposure Pathway	Monitoring Media
Gaseous	Immersion Dose and other	Thermoluminescent Dosimetry (TLD),
	External Dose	Area Monitoring, Air Sampling
	Vegetation (Ingestion)	Vegetation and Food Crop Sampling,
\$	Milk (Ingestion)	Milk Sampling, Grass (Forage)
		Sampling
Liquid	Fish (Ingestion)	Fish Sampling
	Water & Shoreline	Surface Water Sampling, Ground
	Exposure (Ingestion and	Water Sampling, Shoreline and
	Immersion)	Bottom Sediment Sampling
	Drinking Water (Ingestion)	Drinking Water Sampling

Table 1 - Monitoring Methods for Critical Radiation Exposure Pathways

Monitoring sites indicative of plant operating conditions are generally located within a 5 mile radius of the plant. Table 8 provides a list of ODCM required sampling locations. Table 9 provides a list of supplemental sampling locations. Maps showing radiological environmental sampling locations within a radius of approximately 5 miles from VCSNS are presented as Figures 1-2 and 1-3. Figure 1-1 shows monitoring sites at distances greater than 10 miles from the plant. These locations indicate regional fluctuations in background radiation levels.

In addition to preoperational/operational data intercomparisons, control/indicator data intercomparisons are utilized. This is done to assess the probability that any observed abnormal measurement of radioactivity concentration is due to random or regional fluctuations rather than to a true increase in local environmental radioactivity concentration.

Environmental data is gathered through multiple types of sampling and measurements at specific locations. Several multiple sampling combinations are in use around the VCSNS. For example, all air sampling locations serve as environmental dosimetry monitoring locations. At these locations, airborne plant effluents are monitored for gamma immersion dose (noble gases), in addition to air contaminants. Three of these locations have additional complementary sampling/measurement pathways for monitoring plant effluents. Sampling locations 6 (1.0 mi ESE) and 7 (1.0 mi E) have broadleaf vegetation gardens for monitoring gaseous effluent deposition (ingestion pathway) in the two sectors having the highest deposition coefficients (D/Q) with real potential for exposure. Sampling location 18 (16.5 mi S) serves as a control location for direct radiation and garden monitoring.

Liquid effluents are monitored using three different monitoring media (fish, bottom sediment and surface water) at the two most probable affected bodies of water around the plant: Site 21, Parr Reservoir (2.7 mi SSW) and Site 23, Monticello Reservoir (0.5 mi ESE). The control location for liquid effluent comparisons is at Site 22, Neal Shoals (26.0 mi NNW) on the Broad River.

Quality of analytical measurements is demonstrated by participation in a laboratory intercomparison program. Results of the intercomparison program with an outside vendor and VCSNS Count Room are included in Table 4 and Table 5. The intercomparison program with South Carolina Department of Health and Environmental Control (SCDHEC) is outlined in Table 6. Results are reported by SCDHEC. The results of each of these three quality control checks of the Radiological Environmental Monitoring program verify the technical credibility of analytical data generated and reported by the program.

The Radiological Environmental Monitoring Program described in Tables 8 and 9 incorporates all the elements of the VCSNS ODCM and includes numerous supplemental sampling locations.

LAND USE CENSUS

Annually a land use census is performed within a 5 mile radius of VCSNS to verify the adequacy of sample locations. In addition, the location of the maximum exposed individual (MEI) is identified. The results of the land use census performed in 2000 are included in Table 7. A verification of the maximum exposed individual location is presented in Table 7a. Identification of the highest offsite dose locations was performed by calculating a hypothetical dose based on predicted VCSNS source term (Operating License Environmental Report) and 5 year average meteorological data. Exposure pathways used in the analysis were those identified during the land use census.

During the 2000 land use census, the location and pathway presently used in the ODCM for offsite organ dose calculations (E 1.1 miles - residence/garden - beef - goat) was found to have a calculated dose of 2.90 mrem/yr. In addition, the ODCM required environmental gardens (E 1.0 and ESE 1.0 miles) were found to have a calculated dose of 3.71 and 2.34 mrem/year which are higher calculated doses than garden locations of all real individuals. Potential cumulative calculated annual dose reported in the 2000 Annual Effluent and Waste Disposal Report was 4.56E-5 mrad, 2.63E-5 mrad and 1.97E-3 mrem for gamma, beta, and organ dose respectively. There were no milking animals or dairy activity found within 5 miles of VCSNS. Therefore, changes to the ODCM gaseous effluent calculations or garden sample locations are not indicated.

MONITORING RESULTS AND DISCUSSION

The results of the Radiological Environmental Monitoring Program for 2000 are summarized in Table 10. For comparison, preoperational data are summarized in Table 11. During 2000, the Radiological Environmental Program attained a program compliance rate of approximately 96.6%. A listing of program exceptions and their respective causes are included in Table 12. Analysis of the impact of these omissions verified that program guality has not been affecte

Airborne gross beta activity measured in air particulate samples collected at indicator locations around VCSNS were consistent with preoperational levels and not statistically different from control locations. Mean preoperational control and all indicator levels were 2.8E-2 and 2.7E-2 pCi/m³, respectively. Mean indicator and control location measurements during 2000 were 2.35E-2 and 2.31E-2 pCi/m³, respectively. The highest site specific mean activity (2.53E-2 pCi/m³) was measured at indicator location no. 6 (Env.

Lab Garden 1.0 ESE). A comparison was performed between the 2000 results and the mean for the previous operational results. No statistically significant trends were observed. The results indicate that operation of VCSNS has not resulted in detectable increases of airborne gross beta activity in the environment.

Gamma spectroscopy measurements of air particulate samples and activated charcoal cartridges support the gross beta activity trend. Only natural background activities of ⁷Be ²²⁶Ra and ⁴⁰K were detected. The highest minimum detectable activity (MDA) levels for¹³⁴Cs, ¹³⁷Cs and ¹³¹I were 2.22E-3, 2.83E-3 and 2.19E-2 pCi/m³, respectively. The average maximum results support the gaseous effluent release data reported in the 2000 Annual Effluent and Waste Disposal Reports for VCSNS. No measurable iodine or particulate were released.

Environmental dosimetry measurements during 2000 did not differ significantly from preoperational measurements. Indicator and control dosimetry measurements also showed no appreciable differences during 2000. Comparison with other operational years shows no statistically significant difference. Sampling location no. 55, St. Barnabas Church (2.8 miles E), was the indicator location showing the highest mean exposure rate of $1.16E+1 \mu R/hr$. This value is slightly higher than in 1999 of $1.08E+01 \mu R/hr$ and consistent with the highest mean exposure rate of $1.4E+1 \mu R/hr$ measured during the preoperational period. Gaseous effluent release data reported indicated that no measurable fission and activation gases were released from VCSNS in 2000.

Gamma spectroscopy measurements of surface water samples did not indicate the presence of activated corrosion or fission products above the respective MDA's (MDA's are maintained below required LLD's). Liquid effluent release data reported for 2000 in the Annual Effluent and Waste Disposal Report indicated a total of 6.28E-2 Ci of measurable fission and activated corrosion product activity were released from VCSNS; a level not discernible in surface water due to dilution available during the releases and the detection limits of analytical methods used during gamma spectroscopy analysis.

Surface water tritium was detected in 4 of 24 indicator samples with concentrations ranging from 4.80E+2 to 1.26E+3 pCi/liter. The highest concentration was detected at site 21 (Parr Res 2.7 mi. SSW). This activity is less than the preoperational indicator mean of 1.6E+3 pCi/liter. Total tritium release in liquid effluents during 2000 was reported to be 6.33+2 Ci; a level not usually discernible in surface water due to dilution available during the releases and the detection limitations of analytical equipment used for tritium analysis.

Gamma spectroscopy measurements of ground water samples did not indicate the presence of activated corrosion or fission products above the MDA's for the respective radionuclides. Tritium analysis did not indicate the presence of any tritium above the detectable levels. The maximum MDA level for tritium at all indicator and control sites was 4.86E+2 pCi/l.

Gamma spectroscopy measurements of drinking water samples collected from the Jenkinsville and Columbia water supplies did not indicate the presence of activated corrosion or fission product activity above the MDA's of the respective radionuclides.

Naturally occurring radionuclides, ²²⁶Ra, ²¹⁴Pb and ²¹⁴Bi, were observed in the Jenkinsville water supply (site #28) at levels above those found in surface water. These elevated activity levels were also observed in the preoperational program and are attributed to several deep water wells. The supply for Jenkinsville community water is located more than 5 miles from VCSNS.

The highest mean gross beta activity in drinking water was measured at site 28 (Jenkinsville) at a level of 9.29E+0 pCi/liter, slightly higher than last year. Jenkinsville drinking water originates from various deep wells located in Fairfield County and is the only municipal drinking water from wells. There was no detectable tritium in drinking water samples. The maximum tritium MDA value is 5.99E+2 pCi/liter. The result compares to a preoperational mean of 7.8E+2 pCi/liter.

There were no milk samples collected in 2000. Milk sampling is required to be performed at the three highest dose locations (> 1 mrem/year) within 5 miles of the plant. Presently there are no locations meeting the criteria for indicator dairies. This reflects the reduction of control/indicator locations. Controls are in place where milk samples will be obtained if gaseous releases from the plant exceed 5% of quarterly organ dose limits or radionuclides (attributed to VCSNS operations) are detected in broadleaf vegetation, grass, or air samples at concentrations greater than required LLD's.

Grass samples collected from indicator sites 2 and 7, with control site 18. Site 2 indicated ¹³⁷Cs in 10 of 12 samples at concentrations ranging from 2.07E+1 to 4.32E+1 pCi/kg, below the maximum preoperational control activity of 3.4E+2 pCi/kg. A review of site #2 air sample results indicated that no ¹³⁷Cs was detected during 2000.

Broadleaf vegetation collected from gardens at location numbers 6, 7 and 18 were the principal food products analyzed during 2000. The highest minimum detectable activity (MDA) levels for ¹³⁴Cs, ¹³⁷Cs and ¹³¹I were 1.67E+1, 1.91E+1 and 2.15E+1 pCi/kg, respectively. No activation or fission products detected.

Other vegetation sampled in 2000 included corn, tomatoes and turnips representing the non-leafy vegetation group. No radionuclides were detected other than naturally occurring. Naturally occurring nuclides were observed in all samples at concentrations consistent with those observed during the preoperational period.

Fish species sampled at two indicator and one control location included bass, bream, catfish and carp. ¹³⁷Cs was detected in 0 of 12 samples collected at indicator locations and 1 of 6 at the control location. At the control location (Neal Shoals, 26 mi, NNW) the maximum ¹³⁷Cs concentration was 1.43E+1 pCi/kg. Since the levels of ¹³⁷Cs in fish at control location and indicator locations are about the same but less than preoperational concentrations, the ¹³⁷Cs radioactivity is attributed to residual fallout.

Gamma spectroscopy measurements of sediment samples collected during 2000 resulted in detection of ⁶⁰Co that is attributed to VCSNS operation. ⁶⁰Co was detected in two samples taken at the Discharge Canal at Lake Monticello (Site 23) and one sample at Parr Res. (site 21) at mean concentrations of 3.18E+1 and 2.77E+1 pCi/kg, respectively. ¹³⁷Cs was detected in all four indicator samples at an average concentration of 2.43E+2 pCi/kg. The mean ¹³⁷Cs concentration at the control location (site 22) is 1.75E+2 pCi/kg, which is about the same as the average indicator activity. Since the levels of ¹³⁷Cs at the

control location are about the same as the indicator locations, the ¹³⁷Cs radioactivity is attributed to residual fallout. Note that preoperational mean level at control locations was 4.2E+2 pCi/kg.

Radiation doses to man, corresponding to the concentrations of activity in bottom sediments, was calculated using Regulatory Guide 1.109 Doses from Shoreline Deposit Methodology. A 500-hour/year exposure to shoreline sediment containing maximum and mean concentrations of ⁶⁰Co, and ¹³⁷Cs, a shoreline width factor of 1 and a sediment mass of 40 kg/m² were assumed. The results are included in Table 2 and show a maximum dose to the public from contaminated sediment to be 3.85 E-2 mrem (⁶⁰Co and ¹³⁷Cs) for 2000 based on sediment samples from Parr Reservoir. This dose is conservative because ¹³⁷Cs is used in the dose calculation when actually only 7.75E-3 mrem/yr (⁶⁰Co) is from VCSNS and historically bottom sediment has higher radionuclide concentrations than shoreline sediments.

Location	Radionuclide	Activity (pCi/kg)		Annual Dos	ng Calculated e Equivalent m/yr)
				Total	Body
Monticello		Maximum	Mean	Maximum	Mean
Reservoir	⁶⁰ Co	3.18E+1	2.91E+1	1.08E-2	9.89E-3
(Site 23)	¹³⁷ Cs	2.13E+2	2.09E+2	1.79E-2	1.76E-2
· · · ·	Total			2.87E-2	2.75E-2
Parr Reservoir	⁶⁰ Co	2.28E+1	2.28E+1	7.75E-3	7.75E-3
(Site 21)	¹³⁷ Cs	3.66E+2	2.77E+2	3.07E-2	2.33E-2
	Total			3.85E-2	3.11E-2

Table 2 - 2000 Fission and Activated Corrosion Product Activity in Sediment

CONCLUSION

As in previous years of VCSNS operation, the presence of fission product activity attributed to residual fallout from atmospheric weapons testing and the Chernobyl accident were detected in environmental media including fish and sediment.

No detectable fission or activation product activity attributed to VCSNS operation was observed in environmental media except for sediment samples from Lake Monticello and Parr Reservoir. The dose from sediment represents a small fraction of the observed variation in natural background and a small fraction of VCSNS effluent dose limits. The reported whole body and organ dose for liquid effluents during 2000 was 5.16E-3 and 5.47E-3 mrem respectively (VCSNS Annual Effluent Release Report, 2000). The absence of an impact was expected since, historically, releases from VCSNS have been a small fraction of ODCM Specification limits. The dose calculated for the maximally exposed individual will not result in observable effect on the ecosystem or general public. The results of the Radiological Environmental Monitoring Program, therefore, substantiate the continuing adequacy of source control at VCSNS and conformance of station operation to 10 CFR 50, Appendix I design objectives.

Site No.	Description	Distance ¹ (Miles)	Direction ²	Sample Type(s) ³
1	Borrow Pit	1.2	1.79.8 S	DQ
2	Transmission Line	1.1	225.0 SW	AP, RI, DQ
3	Firing Range	1.2	270.0 W	DQ
4	Fairfield Hydro	1.2	289.5 WNW	DQ
5	Transmission Line Entrance	0.9	144.0 SE	DQ
6	Env. Lab Garden	1.0	111.0 ESE	AP,RI, ,GA, DQ
7	Environmental Lab Garden	1.0	97.8 E	AP,RI,DQ, GA
8	Monticello Res. S of Rd 224	1.5	62.0 ENE	DQ
9	Ball Park	2.3	41.6 NE	DQ
10	Meteorological Tower #2	2.5	25.5 NNE	DQ
12	Old Hwy 99	4.2	349.4N	DQ
13	North Dam	2.9	333.0 NNW	DQ
_14	Dairy (Shealy) ⁴	6.5	277.0 W	MK,GR
16	Dairy (Parr) ⁴	20.0	275.5 W	MK,GR
16a	TLD Location	28.0	278.6W	DQ
17	Columbia Water Works	25.0	144.0 SE	AP,RI,DQ,DW
18	Residence/Pine Island Club ⁵	16.5	165.0 S	DQ,GA
19	Residence/Little Saluda	21.0	224.0 SSW	DQ
20	Residence/Whitmire	22.0	309.5 NW	DQ
21	Parr Reservoir	2.7	199.5 SSW	SW,FH,BS
22	Neal Shoals	26.0	343.1 NNW	SW,FH,BS
23	Discharge Canal (Mont, Res.)	0.5	104.5 ESE	SW,FH,BS
26	On Site Well (P2)	460 Ft	270.0 W	GW
27	On Site Well (P5)	510 Ft	180.0 S	GW
28	Nuclear Training Center (EOF) ⁶	2.6	170.2 SSE	DW
29	Trans. Line WSW of VCSNS	1.0	260.6 WSW	DQ
30	Oak Tree North of Borrow Pit ⁷	1.0	196.2 SSW	DQ, AP, RI
31	McCrorey-Liston School	6.6	11.5 NNE	DQ
32	Clark Bridge Road and Brooks Drive	4.6	24.0 NNE	DQ
33	Rd 48 near Hwy 213	4.2	68.0 ENE	DQ
34	Rd 419 North of Hwy 60	4.9	111.0 ESE	DQ
35	Glenn's Bridge Road	4.6	132.0 SE	DQ
36	Woods Behind Jenk. Post Office	3.1	151.0 SSE	DQ
37	Residence	4.9	304.8 NW	DQ
39	LMWTF	14.0	168.0 SSE	DW
41	Below Catwalk at Trestle	3.8	182.0 S	DQ
42	Broad River Rd (Residence Peak)	3.8	198.0 SSW	DQ
43	Hwy 176 and Rd 435	5.2	236.0 SW	DQ
44	Rd 28 at Cannon's Creek	2.8	256.6 WSW	DQ
45	Rd 33 at Pomaria	5.8	253.2 WSW	DQ
46	Rd 28 at Heller's Creek	3.7	291.5 WNW	DQ
47	Fairfield Tailrace	1.0	316.0 NW	DQ
52	Monticello (Rd 11)	3.8	13.0 NNE	DQ

Table 3 - Required Sampling Site Locations

.

.

Table 3 (Cont.) – Required Sampling Locations

Site No.	Description	Distance ¹ (Miles)	Direction ²	Sample Type(s) ³
53	Rd 359	3.0	46.5 NE	DQ
54	Jenkinsville School	1.7	72.5 ENE	DQ
55	St. Barnabas Church	2.8	91.5 E	DQ
56	Old Jenkinsville Dinner	2.0	144.0 SE	DQ
58	Residence	2.5	157.0 SSE	DQ
59	Nuclear Training Center (EOF) ⁶	2.6	170.2 SSE	DQ, GW
60	Rd 98 near Rd 28	3.5	274.6 W	DQ

Footnotes

- 1. Distance given is the distance between the site location and the VCSNS reactor containment building.
- 2. Direction given in degrees from true north-south line through center of reactor containment building.
- 3. Sample Types: AP = Air Particulate RI = Air Radioiodine DQ = Quarterly TLD SW = Surface Water

GW = Ground Water DW = Drinking Water MK = Milk GR = Grass (Forage) GA = Garden FH = Fish BS = Bottom Sediment

- 4. Site 14 and 16 are not presently in use. If conditions change, requiring a renewal of dairy sampling these sites will be reactivated.
- 5. Site 18 consists of 2 locations in close proximity to Lake Murray. Garden product samples are taken at the Wyse residence. The TLD is located on Pine Island.
- 6. Site 28 for drinking water and site 59 for quarterly TLD measurements are colocated at the location of the SCE&G Nuclear Training Center which also serves as the Virgil C. Summer Station Emergency Offsite Facility.
- 7. Site 30 air sampler and TLD though not in line of sight are located in the same sector.

Comparison Study (Measurement Unit)	Date	Nuclides	Vendor Lab Results	Env Lab Results	Agreement
Gamma Isotopic Liquid 1 liter (pCi/l)	3/28	¹³⁴ Cs ¹³⁷ Cs ⁵⁴ Mn ⁶⁵ Zn ⁶⁰ Co	92 151 68 98 171	93 160 77 112 184	Yes Yes Yes Yes Yes
Gamma Isotopic Soil Density = 1 gm/cc (pCi/kg)	3/16	¹³⁴ Cs ¹³⁷ Cs ⁵⁴ Mn ⁶⁰ Co	161 490 284 215	132 491 312 246	Yes Yes Yes Yes
Gross Beta Filter (pCi)	3/30	N/A	44	38.3	Yes
Gamma Isotopic Liquid 1 liter (pCi/l)	6/29	¹³¹ I ¹⁴¹ Ce ⁵¹ Cr ¹³⁴ Cs ¹³⁷ Cs ⁵⁸ Co ⁵⁴ Mn ⁵⁹ Fe ⁶⁵ Zn ⁶⁰ Co	84 74 226 98 204 111 127 54 158 152	83.9 75 233 93.3 214 120 140 62 172 174	Yes Yes Yes Yes Yes Yes Yes Yes Yes
Gamma Isotopic Sediment Density = 1 gm/cc (pCi/kg)	7/11	¹⁴¹ Ce ⁵¹ Cr ¹³⁴ Cs ¹³⁷ Cs ⁵⁸ Co ⁵⁴ Mn ⁵⁹ Fe ⁶⁵ Zn ⁶⁰ Co	136 416 180 502 205 233 99 289 279	150 426 151 531 212 230 102 291 277	Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table 4 results of 2000 Environmental Intercomparison Program with IndependentLab, Analytics, Inc.

Table 4 (Cont.) Results of 2000 Environmental Intercomparison Program withIndependent Lab, Analytics, Inc.

Comparison Study (Measurement Unit)	Date	Nuclides	Vendor Lab Results	Env Lab Results	Agreement
Alpha/Beta Liquid	7/31	Alpha	44	44.1	Yes
(pCi/l)		Beta	170	154	Yes
Tritium (pCi/l)	7/05	ЗН	11400	11100	Yes
Alpha/Beta Liquid	9/19	N/A	44	43.6	Yes
(pCi/l)			170	173.3	Yes
Tritium (pCi/l)	9/15	³ H	11400	11100	Yes
Gamma Isotopic	9/19	¹⁴¹ Ce	136	159	Yes
Sediment		⁵¹ Cr	416	345	Yes
Density=1gm/cc		¹³⁴ Cs	180	149	Yes
(pCi/kg)		¹³⁷ Cs	502	537	Yes
		⁵⁸ Co	205	211	Yes
		⁵⁴ Mn	233	233	Yes
		⁵⁹ Fe ⁶⁵ Zn	99	92	Yes
		⁶⁰ Co	291 279	315	Yes
				293	Yes
Gamma Isotopic Liquid	12/22	¹³¹	60	67	Yes
4 liters		¹⁴¹ Ce	376	379	Yes
(pCi/l)		⁵¹ Cr	532	550	Yes
		¹³⁴ Cs	90	85	Yes
		¹³⁷ Cs	210	220	Yes
		⁵⁸ Co ⁵⁴ Mn	81	86	Yes
		⁵⁹ Fe	161 86	170	Yes
		⁶⁵ Zn	156	92 169	Yes
		⁶⁰ Co	194	203	Yes
			134	203	Yes

Comparison Study (Measurement Unit)	Date	Nuclides	Vendor Lab Results	Env Lab Results	Agreement
Gamma Isotopic Rock Density =1.5 gm/cc pCi/kg	12/24	¹⁴¹ Ce ⁵¹ Cr ¹³⁴ Cs ¹³⁷ Cs ⁵⁸ Co ⁵⁴ Mn ⁵⁹ Fe ⁶⁵ Zn ⁶⁰ Co	649 917 155 490 139 278 149 269 336	510 685 116 399 111 230 118 223 269	Yes ¹ Yes Yes Yes Yes Yes Yes Yes
Beta Filter (pCi)	12/19	N/A	66	61	Yes
Gamma Isotopic Composite Air Filters (pCi)	12/27	¹⁴¹ Ce ⁵¹ Cr ¹³⁴ Cs ¹³⁷ Cs ⁵⁸ Co ⁵⁴ Mn ⁵⁹ Fe ⁶⁵ Zn ⁶⁰ Co	287 406 69 161 62 123 66 119 149	258 365 51 153 62 127 67 142 149	Yes Yes No ² Yes Yes Yes Yes Yes Yes
Charcoal Cartridge (pCi)	12/19	¹³¹	63	68	Yes

 Table 4 (Cont.) Results of 2000 Environmental Intercomparison Program with Independent Lab, Analytics, Inc.

1 Vendor sent the wrong amount of sample. Requested 600cc at density of 1.5 gms/cc to equal 900 gms. Vendor sent 900 cc at density of 1.5 gms/cc to equal 1350 gms

2 Low due to coincidence summing. Note that ¹³⁴Cs in 4 liter sample is affected less by coincidence summing than in smaller close samples.

Comparison Study (Measurement Unit)	Qtr.	Nuclides	Env Lab Results	Second Lab Results ¹	Agreement
Tritium (μCi/ml) (Analytics)	Second	³Н	8.97E-4	9.34E-4	Yes
Gross Beta Liquid (µCi/ml)	Second	N/A	1.92E-5	N/A	N/A
Gross Alpha Liquid (µCi/ml)	Second	N/A	2.41E-4	5.04E-4	No ²
Gamma Isotopic Liquid 1 liter, (μCi/ml)	Second	¹⁴¹ Ce ⁵¹ Cr ¹³⁴ Cs ¹³⁷ Cs ⁵⁸ Co ⁵⁴ Mn ⁵⁹ Fe ⁶⁵ Zn ⁶⁰ Co	5.46E-3 2.00E-2 2.76E-3 6.59E-3 5.18E-3 4.51E-3 3.46E-3 5.98E-3 5.07E-3	4.95E-3 1.76E-2 2.93E-3 5.71E-3 4.64E-3 3.88E-3 2.85E-3 4.96E-3 4.63E-3	Yes Yes Yes Yes Yes Yes Yes Yes Yes
Gas Sample, 25 mg, 1lmg (μCi)	Second	¹³³ Xe ⁸⁵ Kr ¹³³ Xe ⁸⁵ Kr	7.08E+0 5.00E+1 8.89E+0 6.52E+1	8.36E+0 6.35E+1 8.36E+0 6.35E+1	Yes Yes Yes Yes
Gamma Isotopic Filter, Composite (μCi/ml)	Third	¹⁴¹ Ce ⁵¹ Cr ¹³⁴ Cs ¹³⁷ Cs ⁵⁸ Co ⁵⁴ Mn ⁵⁹ Fe ⁶⁵ Zn ⁶⁰ Co	3.74E-2 5.27E-2 9.02E-3 1.91E-2 7.60E-3 9.20E-3 9.98E-3 1.46E-2 2.17E-2	4.03E-2 5.66E-2 1.17E-2 1.93E-2 7.85E-3 8.65E-3 9.02E-3 1.33E-2 2.21E-2	Yes Yes Yes Yes Yes Yes Yes Yes

Table 5 - Results of the 2000 Intercomparison Program with Independent Lab

- 1 The Second (Independent) Laboratory was Analytics, Inc. for 2000.
- 2 Wrong sample volume used during calculation. Total volume of 13 ml was split into two samples and 13 ml instead of 6.5 ml was used. Factor of 2 brings results into agreement.

Comparison Study (Measurement Unit)	Qtr.	Nuclides	Env Lab Results	Second Lab Results ¹	Agreement
Gamma Isotopic Filter,	Third	¹⁴¹ Ce	6.26E-2	6.16E-2	Yes
47 mm (μCi)		⁵¹ Cr	8.74E-2	8.63E-2	Yes
		¹³⁴ Cs	1.47E-2	1.78E-2	Yes
		¹³⁷ Cs	3.13E-2	2.95E-2	Yes
		⁵⁸ Co	1.22E-2	1.20E-2	Yes
		⁵⁴ Mn	1.49E-2	1.32E-2	Yes
		⁵⁹ Fe	1.61E-2	1.38E-2	Yes
		⁶⁵ Zn	2.37E-2	2.03E-2	Yes
		⁶⁰ Co	3.47E-2	3.37E-2	Yes
Gamma Istopic, Rock	Third	¹⁴¹ Ce	6.33E-5	6.92E-5	Yes
(ρ=1.5 g/cc) (μCi/g)		⁵¹ Cr	8.79E-5	9.71E-5	Yes
		¹³⁴ Cs	1.67E-5	2.01E-5	Yes
		¹³⁷ Cs	3.10E-5	3.31E-5	Yes
		⁵⁸ Co	1.24E-5	1.35E-5	Yes
		⁵⁴ Mn	1.44E-5	1.48E-5	Yes
		⁵⁹ Fe	1.49E-5	1.55e-5	Yes
		⁶⁵ Zn	2.17E-5	2.28E-5	Yes
		⁶⁰ Co	3.48E-5	3.79E-5	Yes
Charcoal Cartridge CP 100(μCi)	Third	131]	7.24E-1	7.44E-1	Yes
Tritium (μCi/ml)	Fourth	³ H undis	1.9E-4	1.9E-4	Yes
(VCSNS) WMT		³ H dist	1.7E-4	1.8E-4	Yes

Table 5 - Results of the 2000 Intercomparison Program with Independent Lab

.

¹ The Second (Independent) Laboratory was Analytics, Inc. for 2000 except for VCSNS tritium intercomparisons.

Table 6 – Summary of 2000 Intercomparison Program with South Carolina Department of Health and Environmental Control

Pathway (Units)	Sample Location	Frequency	Nuclide
Surface Water (pCi/liter)	No. 21	Monthly	³ H Mixed Gamma
	No. 22	Monthly	³ H Mixed Gamma
Air (pCi/m ³)	No. 6	Monthly	Gross Beta, Iodine, Mixed Gamma
	No. 17	Monthly	Gross Beta, Iodine, Mixed Gamma
Sediment (pCi/kg)	No. 23	Semiannually	Mixed Gamma
Fish (pCi/kg)	No. 23	Semiannually	Mixed Gamma
Vegetation (pCi/kg)	No. 6	Semiannually	Mixed Gamma

¹ Intercomparison results were not yet available for publication in this report. Results will be reported by SCDHEC.

Sector	Nearest Residence	Miles	Nearest Garden	Miles	Nearest Cattle	No. Milked	Miles	Nearest Goat	No. Milked	Miles
N	P. Olver	3.7			John Robinson	0	3.4			
NNE	Bessie Crumblin	2.9	Bessie Crumblin	2.9	Bessle Crumblin	0	2.9			
NE	Ella B. Herndon	1.5	Ella Herndon	1.5	David Stone	0	2.1			
ENE	Robert Martin	1.6	Essie Mae Glenn	1.7	Linbergh Rabb (C)	0	2.3	Robert Martin	0	1.6
E	George Mosley	1.2	George Mosley	1.2						
ESE	Walter Martin	1.1	Walter Martin	1.1	Glover/Kennedy	0	5.0			
SE	John White (A)	1.4	John White (B)	1.4	Sim Roberts	0	4.7			
SSE	Tony Taffer	2.5								
S	Schmauder/Dinger (A)	3.9	Joe Smith (B)	3.9	Shirley Counts	0	5.0			
SSW	Bernice Cawley	3.3	Nora Wicker	3.8	G.A. Mayers	0	4.7			
SW	Marvin Miller	3.3	Marvin Miller	3.3	Marvin Miller	0	3.3			
WSW	Ron Hope	2.9	Mary Davis	3.0	Cynthia Aull	0	4.5			
W	Jerry Cassado (A)	2.6	Marion Livingston	2.8	Marion Livingston	0	2.0		· · · · · · · · · · · · · · · · · · ·	
W					Ken / Virg Graham	90	5.0			
WNW	Lorraine Wicker	4.2	Claude Ringer	4.8	Claude Ringer	0	4.8	Carrol Leitzey	0	4.8
NW	Louise Workman	3.9	Louise Workman	3.9						
NNW	Frank March	2.9	Frank March	2.9	Frank March	0	2.9			

Table 7 – Results of the 2000 Land Use Census Verification

(A) CHANGE IN CLOSEST RESIDENCE (B) CHANGE IN CLOSEST GARDEN (C) CHANGE IN CLOSEST BEEF CATTLE

.

NAME	SECTOR	MILES	PATHWAY	X/Q	D/Q	Dose* mRem/y
Joe Smith	S	3.9	Res, Gar	7.49E-08	3.45E-10	8.75E-02
Schmauder&Dinger	S	3.9	Res	7.46E-08	3.43E-10	2.84E-03
Shirley Counts	S	5.0	Res, Gar, B	4.64E-08	2.06E-10	7.48E-02
Bernice Cawley	SSW	3.3	Res	1.29E-07	7.55E-10	5.00E-03
G.A. Mayer	SSW	4.7	Res, Gar, B	6.27E-08	3.51E-10	1.25E-01
Nora Wicker	SSW	3.8	Res, Gar	9.78E-08	5.63E-10	1.45E-01
Marvin Miller	SW	3,3	Res, Gar, B	1.31E-07	9.60E-10	3.39E-01
Ron Hope	WSW	2.9	Res	1.43E-07	9.27E-10	5.60E-03
Mary Davis	WSW	3.0	Res, Gar	1.33E-07	8.58E-10	2.20E-01
Cynthia Auli	WSW	4.5	Res, B	5.80E-08	3.53E-10	3.73E-02
Marion Livingston	W	2.0	Res, Gar, B	1.66E-07	1.53E-09	3.38E-01
Ken/Virgil Graham	W	5.0	Res, Gar, B, C/M	5.21E-08	1.97E-10	1.06E-01
Jerry Cassado	W	2.6	Res	2.02E-07	8.65E-10	7.68E-03
Lorraine Wicker	WNW	4.2	Res	4.94E-08	1.67E-10	1.85E-03
Carroll Leitzey	WNW	4.8	Res, Gar, B	3.90E-08	1.27E-10	2.98E-03
Claude Ringer	WNW	4.8	Res, Gar, B	3.90E-08	1.27E-10	4.70E-02
Louise Workman	NW	3.9	Res, Gar	1.11E-07	3.21E-10	8.84E-02
Frank March	NNW	2.9	Res, Gar, B	3.51E-07	9.68E-10	3.65E-01
John Robinson	N	3.4	В	2.83E-07	8.13E-10	8.15E-02
P. Oliver	N	3.7	Res,	2.36E-07	6.63E-10	8.80E-03
Bessie Crumblin	NNE	2.9	Res, Gar, B	3.76E-07	1.13E-09	4.24E-01
Ella B. Herndon	NE	1.5	Res, Gar	2.01E-06	6.73E-09	1.82E +00
David Stone	NE	2.1	Res,Gar, B	9.68E-07	2.98E-09	1.11E+00
Robert Martin	ENE	1.5	Res, G	2.00E-06	5.81E-09	1.45E-01
Essie Mae Glenn	ENE	1.7	Res, Gar	1.63E-06	4.61E-09	1.27E+00
Linbergh Rabb	ENE	2.3	Res, B	8.68E-07	2.26E-09	2.59E-01
**VCS Garden #7	E	1.0	Res, Gar	4.43E-06	1.36E-08	3.71E+00
ODCM Assumed MEI	E	1.1	Res, Gar	3.54E-06	1.10E-08	2.90E+00
George Mosley ⁽¹⁾	E	1.2	Res, Gar	2.89E-06	8.46E-09	2.33E+00
**VCS Garden #6	ESE	1.0	Res, Gar	2.64E-06	8.62E-09	2.34E+00
Walker Martin	ESE	1.1	Res, Gar	2.10E-06	6.72E-09	1.83E+00
Glover/Kennedy	ESE	5.0	Res, Gar, B	8.90E-08	1.94E-10	7.53E-02
John White	SE	1.4	Res, Gar	7.17E-07	2.69E-09	7.19E-01
Sim Roberts	SE	4.7	Res, Gar, B	6.18E-08	1.70E-10	6.41E-02
Tony Taffer	SSE	2.5	Res	1.44E-07	6.28E-10	5.48E-03

Table 7a - Critical Receptor Evaluation for 2000

Pathways:

•

Res = Residence Gar = Garden

B = Beef C/M = Cow/Milk (Infant) G= Goat

Footnotes:

Maximum exposed individual.

Hypothetical dose based on Operating License Environmental Report Source Term. X/Q and D/Q were derived from ODCM 5-year average meteorological data ODCM required environmental gardens. *

**

,

Exposure	1	II		
Pathway and/or Sample	Criteria for Selection of Sample Number & Location	Sampling and Collection Frequency	Sample Location	Type & Frequency of Analysis
AIRBORNE: I. Particulate	A) 3 Indicator samples to be taken at locations (in different sectors) beyond but as close to the exclusion boundary as practicable where the highest offsite sectorial ground level concentrations are anticipated. ²	Continuous sampler operation with weekly collection.	2 7 30	Gross beta following filter change; Quarterly composite (by location) for gamma isotopic.
	B) 1 Indicator sample to be taken in the sector beyond but as close to the exclusion boundary as practicable corresponding to the residence having the highest anticipated offsite ground level concentration or dose. ²	Continuous sampler operation with weekly collection.	6	Gross beta following filter change: Quarterly composite (by location) for gamma isotopic.
	C) 1 Indicator sample to be taken at the location of one of the dairies being sampled meeting the criteria of VII(A). ^{2,4}	Continuous sampler operation with weekly collection.	N/A	Gross beta following filter change; Quarterly composite (by location) for gamma isotopic.
	D) 1 Control sample to be taken at a location at least 10 air miles from the site and not in the most prevalent wind directions. ²	Continuous sampler operation with weekly collection.	17	Gross beta following filter change; Quarterly composite (by location) for gamma isotopic.
II. Radioiodine	 A) 3 Indicator samples to be taken at two locations as given in I(A) above 	Continuous sampler operation with weekly canister collection.	2 7 30	Gamma Isotopic for lodine 131 weekly.
	B) 1 Indicator sample to be taken at the location as given in 1(B) above.	Continuous sampler operation with weekly canister collection.	6	Gamma Isotopic for lodine 131 weekly.
	C) 1 Indicator sample to be taken at the location as given in I(C) above.	Continuous sampler operation with weekly canister collection.	N/A	Gamma Isotopic for lodine 131 weekly.
	 D) 1 Control sample to be taken at a location similar in nature to I(D) above. 	Continuous sampler operation with weekly canister collection.	17	Gamma Isotopic for lodine 131 weekly.
III. Direct	 A) 13 Indicator stations to form and inner ring of stations in the 13 accessible sectors within 1 to 2 miles of the plant. 	Monthly or quarterly exchange ^{5,7} two or more dosimeters at each location.	1,2,3,4,5,6, 7,8,9,10,29, 30,47	Gamma dose monthly or quarterly
	B) 16 indicator stations to form an inner ring of stations in the 16 accessible sectors within 3 to 5 miles of the plant	Monthly or quarterly exchange ^{5,7} two or more dosimeters at each location.	12,13,32,33, 34,35,36,37, 41,42,43,44, 46,53,55,60	Gamma dose monthly or quarterly

Table 8 – Radiological Environmental Monitoring Program Specifications

Table 8 (Cont.) - Radiological Environmental Monitoring Program Specifications

*

.

Exposure			<u> </u>	
Pathway and/or Sample	Criteria for Selection of Sample Number & Location	Sampling and Collection Frequency	Sample Location	Type & Frequency of Analysis
WATERBORNE IV. Surface Water	A) 1 Indicator sample downstream to be taken at a location which allows for mixing a dilution in the ultimate receiving river.	Time composite samples with collection every month ⁵	21 ^{3,6}	Gamma isotopic monthly with quarterly composite (by location) to be analyzed for tritium ⁷
	B) 1 Control sample to be taken at a location on the receiving river sufficiently far upstream such that no effects of pumped storage operation are anticipated.	Time composite samples with collection every month ⁵	22 ³	Gamma isotopic monthly with quarterly composite (by location) to be analyzed for tritium ⁷ .
	C) 1 Indicator sample to be taken in the upper reservoir of the pumped storage facility at the plant discharge canal.	Time composite samples with collection every month ⁵	233	
				Gamma isotopic monthly with quarterly composite (by location) to be analyzed for tritium ⁷ .
V. Ground Water	 A) 2 Indicator samples to be taken within the exclusion boundary and in the direction of potentially affected ground water supplies. 	Quarterly grab sampling ⁷	26 27	Gamma isotopic and tritium analyses quarterly ⁷ .
	 B) 1 Control sample from unaffected location 	Quarterly grab sampling ⁷	59	Gamma isotopic and tritium analyses quarterly ⁷ .
VI. Drinking Water	 A) 1 Indicator sample from a nearby public ground water supply source. 	Monthly grab sampling ^s .	28	Monthly ⁵ gamma isotopic, gross beta and quarterly ⁷ composite for tritium analyses.
	B) 1 Indicator (finished water) sample from the nearest downstream water supply.	Monthly composite sampling.	17	Monthly ⁵ gamma isotopic, and gross beta and quarterly ⁷ composite for tritium analyses.
	C) 1 Control (finished water) sample from an unaffected water supply.	Monthly composite sampling.	39	Monthly ⁵ gamma isotopic, and gross beta and quarterly ⁷ composite for tritium analyses

Table 8 (cont.) - Radiological Environmental Monitoring Program Specifications

•

Exposure		······		
Pathway	Criteria for Selection	Sampling and	Sample	Type & Frequency
and/or Sample	of Sample Number & Location	Collection Frequency	Location	of Analysis
INGESTION: VII. Milk⁴	A) Samples from milking animals in 3 locations within 5 km having the highest dose potential. If there are none then 1 sample from milking animals in each of 3 areas between 5 to 8 km distance where doses are calculated to be greater than 1 mrem per year. ¹⁰	Semimonthly when animals are on pasture ^{®,} monthly other times ⁵	To be supplied when milk animals are found in accordance with criteria VII.A.	Gamma isotopic and I-131 analysis semimonthly ⁸ when animals are on pasture, monthly other times ⁵
	B) 1 Control sample to be taken at the location of a dairy > 20 miles distance and not in the most prevalent wind direction ² .	Semimonthly when animals are on pasture ^{8,} monthly other times ^{5,11}	16	Gamma isotopic and I-131 analysis semimonthly ⁸ when animals are on pasture, monthly other times ⁵
	C) 1 Indicator grass (forage) sample to be taken at the location of one of the dairles being sampled meeting the criteria of VII(A),above, when animals are on pasture	Monthly when available ⁵	To be supplied when milk animals are found in accordance with criteria VII.A.	Gamma isotopic.
	D) 1 Control grass (forage) sample to be taken at the location of VII(B) above.	Monthly when available ^{5,11}	16	Gamma isotopic.
VIII. Food Products	A) 2 Samples of broadleaf vegetation grown in the 2 nearest offsite location of highest calculated annual average ground level D/Q if milk sampling is not performed within 3 km or if milk sampling is not performed at a location within 5-8 km where the doses are calculated to be greater than 1 mrem/yr ¹⁰ .	Monthly when available ⁵ .	6 7	Gamma isotopic on edible portion.
	B) 1 Control sample for the same foods taken at least 10 miles distance and not in the most prevalent wind direction if milk sampling is not performed within 3 km or if milk sampling is not performed at a location within 5 to 8 km where the doses are calculated to be greater than 1 mrem/yr ¹⁰	Monthly when available ⁵ .	18	Gamma isotopic on edible portion.

Table 8 (cont.) - Radiological Environmental Monitoring Program Specifications

Exposure Pathway and/or Sample	Criteria for Selection of Sample Number & Location	Sampling and Collection Frequency	Sample Location	Type & Frequency of Analysis
IX. Fish	 A) 1 Indicator sample to be taken at a location in the upper reservoir. 	Semiannual ⁹ collection of the following specie types if available: bass; bream, crappie; catfish, carp.	23 ³	Gamma isotopic on edible portions semiannually ⁹ .
	B) 1 Indicator sample to be taken at a location in the lower reservoir.	Semiannual ⁹ collection of the following specie types if available: bass; bream, crapple; catfish, carp.	21 ³	Gamma isotopic on edible portions semiannually ⁹ .
	C) 1 Control sample to be taken at a location on the receiving river sufficiently far upstream such that no effects of pumped storage operation are anticipated	Semiannual ⁹ collection of the following specie types if available: bass; bream, crappie; catfish, carp.	22 ³	Gamma isotopic on edible portions semiannually ⁹ .
AQUATIC: X. Sediment	 A) 1 Indicator sample to be taken at a location in the upper reservoir. 	Semiannual grab sample. ⁹	233	Gamma isotopic.
	B) 1 Indicator sample to be taken on or near the shoreline of the lower reservoir.	Semiannual grab sample. ⁹	213	Gamma isotopic.
	C) 1 Control sample to be taken at a location on the receiving river sufficiently far upstream such that no effects of pumped storage operation are anticipated.	Semiannual grab sample. ⁹	223	Gamma isotopic. `

FOOTNOTES

- 1. Reserved for future use.
- 2. Sample site locations are based on 5 year average meteorological analysis.
- 3. Though generalized areas are noted for simplicity of sample site enumeration, airborne, water and sediment sampling is done at the same location whereas biological sampling sites are generalized areas in order to reasonably assure availability of samples.
- 4. Milking animal and garden survey results will be analyzed annually. Should the survey indicate new dairying activity the owners shall be contacted with regard to a contract for supplying sufficient samples. If contractual arrangements can be made, site(s) will be added for additional milk sampling up to a total of 3 Indicator Locations.
- 5. Not to exceed 35 days.
- 6. Time composite samples are samples which are collected with equipment capable of collecting an aliquot at time intervals which are short (e.g. hourly) relative to the compositing period.
- 7. At least once per 100 days.
- 8. At least once per 18 days.
- 9. At least once per 200 days.
- 10. The dose shall be calculated for the maximum organ and age group, using the guidance/methodology contained in Regulatory Guide 1.109, Rev. 1 and the parameters particular to the site.
- 11. Milk and forage sampling at the control location is only required when locations meeting the criteria of VII(A)are being sampled.

Table 9 – Supplemental Radiological Environmental Monitoring

-

÷

.

Exposure Pathway and/or Sample	Criteria for Selection of Sample Number & Location	Sampling and Collection Frequency	Sample Location	Type & Frequency of Analysis
AIRBORNE: S-I. Particulate	 A) 1 Indicator sample monitoring the nearest community with the highest anticipated dose or ground level concentration. 	Continuous sampler operation with weekly collection.	8	Gross beta following filter change; Monthly ⁺ Composite (by location) for gamma isotopic.
S-II. Radioiodine	A) 1 Indicator sample to be taken from the location of S-1(A) above.	Continuous sampler operation with weekly collection.	8	Gamma isotopic for I- 131 weekly.
S-III, Direct	 A) 5 stations to be placed within the exclusion boundary. 	Quarterly exchange ⁷ ; two or more dosimeters at each location.	61,62,63, 68 & 99	Gamma dose quarterly.
	 B) 2 stations to be placed around VCSNS sludge lagoons. 	Quarterly exchange ⁷ ; two or more dosimeters at each location.	94,97	Gamma dose quarterly.
WATERBORNE: S-IV. Surface Water	 A) 1 indicator sample to be taken of the combined wastewater discharge. 	Composite samples with monthly collection. ^{13,5}	77	Gamma isotopic and tritium.
	 B) 1 Indicator sample taken at each storm drain outfall. 	Daily sample with monthly composite.	72,73	Gamma isotopic and tritium.
S-V. Groundwater	A) 4 Indicator samples to be taken at NPDES monitoring wells.	Semiannual ⁹	GW-9, GW-12, GW-13A, GW15	Gamma isotopic, tritium and other as directed.
	 B) 1 Control sample to be taken at NPDES monitoring wells. 	Semiannual ⁹	GW-8	Gamma isotopic, tritium and other as directed.

Table 9 - Supplemental Radiological Environmental Monitoring

Exposure Pathway and/or Sample	Criteria for Selection of Sample Number & Location	Sampling and Collection Frequency	Sample Location	Type & Frequency of Analysis
INGESTION: S-VII. Milk ⁴	 A) 1 Sample from one of the nearest affected dairies at or beyond 5 miles. 	Biweekly grab sample. ^{8,14} ★	14	Gamma isotopic and I- 131 analysis biweekly.
	 B) 1 Control sample to be taken at the location of a dairy greater than 20 miles distance and not in the most prevalent wind direction. 	Biweekly grab sample. ^{8,14,} †	16	Gamma isotopic and I- 131 analysis biweekly.
	C) 1 Indicator grass (forage) sample to be taken at the location of S-VII(A) above.	Monthly when available. ¹⁴	14	Gamma isotopic.
S-VII. Milk⁴	 D) 1 Control grass (forage) sample to be taken at the location of S-VII(B) above. 	Monthly when available. ¹⁴	16	Gamma isotopic.
	E) 2 Indicator grass (forage) samples to be taken at 2 of the locations beyond but as close to the exclusion boundary as practical where the highest offsite sectorial ground level concentra- tions are anticipated.	Monthly when available.	2,7	Gamma isotopic.
	 F) 1 Control grass (forage) sample to be used for routine monitoring along with S-IV(E) above. 	Monthly when available.	18	Gamma isotopic.
S-VIII. Food Products	 A) 1 Indicator sample of various types of foods grown in the area sur- rounding the plant (root, fruit, grain). 	Annually during growing season. ¹¹	6,7	Gamma isotopic on edible portion.

FOOTNOTES

- 1. Reserved for future use.
- 2. Reserved for future use.
- 3. Reserved for future use.

Table 9 (cont) - Supplemental Radiological Environmental Monitoring

- 4. Milking animal and garden survey results will be analyzed annually. Should the survey indicate new activity the owners shall be contacted with regard to a contract for supplying sufficient samples. If contractual arrangements can be made, site(s) will be added for additional milk sampling up to a total of 3 Indicator Locations.
- 5. Not to exceed 35 days.
- 6. Reserved for future use.
- 7. At least once per 100 days.
- 8. At least once per 18 days.
- 9. At least once per 200 days.
- 10. Reserved for future use.
- 11. At least once per 400 days.
- 12. Reserved for future use.
- 13. Weekly, when circulating water is not operational.
- 14. Milk and grass (forage) sampling is not required unless VCSNS gaseous releases exceed 5% of quarterly organ dose limits or radionuclides (attributed to VCSNS operation) are detected in broadleaf vegetation, grass or air samples at concentrations greater than required LLD. Sampling should continue for 2 months after plant releases are reduced to less than trigger levels and milk contamination levels have returned to background levels.
- + Reserved for future use.
- + The ODCM requires semimonthly sampling when animals are on pasture, monthly at other times.

				Location with High	est Annual Mean		Number of
Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed ¹	Lower Limit of Detection ² Actual (Max.)	All Indicator Locations Mean ³ (#/total #) (Range)	Name (Distance & Direction)	Mean ^s (#/total #) (Range)	Control Location s Mean ³ (#/total #) (Range)	Nonroutine Reported ⁴ Measurement s
Air Particulate (pCi/m ³)	Gross Beta (300)	6.21E-3 (1.0E-2)	2.31E-2 (249/249) (2.52E-3 to 5.20E-2)	Site 6 Environmental Lab Garden (1.0 mi. ESE)	2.53E-2 (50/50) (8.94E-3 to 5.20E-2)	2.35E-2 (51/51) (7.73E-3 to 4.67E-2)	0
	Gamma Spec (72)						
	¹³⁴ Cs	2.22E-3 (5.0E-2)	All < LLD			All < LLD	0
	¹³⁷ Cs	2.83E-3 (6.0E-2)	Ail < LLD			All < LLD	0
Air Radioiodine (pCi/m ³)	¹³¹ I (300)	2.19E-2 (7.0E-2)	Ali < LLD			All < LLD	0
Direct (TLD) ³ (μR/hr)	Gamma(132) Quarteriy	N/A	8.45E+0 (113/113) (5.69E+0 to 1.22E+1)	Site 55, St Barnabas Church (2.8 mi., E)	1.16E+1 (4/4) (1.14E+1 to 1.22E+1)	8.53E+0 (19/19) (5.95+0 to 1.18E+1)	0
	Gamma(24) Special Interest	N/A	8.91E+0 (24/24) (5.39E+0 to 1.17E+1)	Site 31 McCorey Liston School (6.6 mi., NNE)	1.10E+1 (4/4) (9.74E+0 to 1.17E+1)	N/A	0
Surface Water (pCi/l)	³ H (36)	4.89E+2 N/A	6.96E2 (4/24) (4.80E2 to 1.26E3)	Site 21 Dam at Parr Res. (2.7mi.SSW)	8.7E+2 (2/12)	All < LLD	0
	Gamma Spec(36)						
	⁵⁴ Mn	1.79E+0 (1.5E+1)	All < LLD			All < LLD	0
	58Co	1.73E+0 (1.5E+1)	All < LLD			All < LLD	0
	⁵⁹ Fe	4.20E+0 (3.0E+1)	All < LLD			Ali < LLD	0
	⁶⁰ Co	1.74E+0 (1.5E+1)	All < LLD	*		All < LLD	0
	⁶⁵ Zn	3.65E+0 (3.0E+1)	All < LLD			All < LLD	0
	⁹⁵ Zr	3.31E+0 (3.0E+1)	All < LLD			Ali < LLD	0
	⁹⁵ Nb	2.16E+0 (1.5E+1)	All < LLD			All < LLD	0
	¹³⁴ Cs	1.56E+0 (1.5E+1)	All < LLD			All < LLD	0

Table 10 – Radiological Environmental Monitoring Program Summary for 2000

Table 10 (Cont.) - Radiological Environmental Monitoring Program Summary for 2000

				Location with High	est Annual Mean	1	Number of
Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed ¹	Lower Limit All Indicator Locations of Mean ³ (#/total #) Detection ² (Range) Actual (Max.)	Name (Distance & Direction)	Mean ^ə (#/total #) (Range)	Control Locations Mean ³ (#/total #) (Range)	Nonroutine Reported ⁴ Measurements	
Surface Water (Continued)	¹³⁷ Cs	1.76E+0 (1.8E+1)	All < LLD			All < LLD	0
	¹⁴⁰ Ba	1.12E+1 (6.0E+1)	Aíl < LLD			All < LLD	0
	140La	3.93E+0 (1.5E+1)	All < LLD			All < LLD	0
Ground Water (pCi/I)	³ H (12)	4.86E+2 N/A	All < LLD		<u> </u>	All < LLD	0
	Gamma Spec (12)						
	⁵⁴ Mn	2.48E+0 (1.5E+1)	All < LLD			AII < LLD	0
	⁵⁸ Co	2.52E+0 (1.5E+1)	All < LLD			All < LLD	0
	⁵⁹ Fe	4.79E+0 (3.0E+1)	All < LLD			Ali < LLD	0
	⁶⁰ Co	2.62E+0 (1.5E+1)	All < LLD			All < LLD	0
	⁶⁵ Zn	5.37E+0 (3.0E+1)	All < LLD			Ali < LLD	Ó
	⁹⁵ Zr	4.16E+0 (3.0E+1)	All < LLD			All < LLD	0
	⁹⁵ Nb	3.26E+0 (1.5E+1)	All < LLD			All < LLD	0
	¹³⁴ Cs	2.48E+0 (1.5E+1)	All < LLD		·····	. All < LLD	0
	¹³⁷ Cs	2.44E+0 (1.8E+1)	All < LLD			All < LLD	0
	¹⁴⁰ Ba	9.16E+0 (6.0E+1)	All < LLD			All < LLD	0
	¹⁴⁰ La	3.38E+0 (1.5E+1)	Ali < LLD			All < LLD	0

٠

٠.

				Location with Hig		Number of	
Medium or Pathway Sampled (Unit of Measurement)	Number of of Analyses Detection	Lower Limit of Detection ² Actual (Max.)	All Indicator Locations Mean ³ (#/total #) (Range)	Name (Distance & Direction)	Mean ³ (#/total #) (Range)	Control Locations Mean ³ (#/total #) (Range)	Nonroutine Reported ⁴ Measurements
Drinking Water ^s (pCi/l)	Gross Beta (36)	1.36E+0 (4.00E+0)	2.57E+0 (24/24) (1.59E+0 to 9.29E+0)	Site 28, Nuc. Trng. Center (2.6 ml., SSE)	2.90E+0 (12/12) (9.93E-1 to 9.29E+0)	2.32E+0 (12/12) (1.51E+0 to 3.26E+0)	0
	³ Н (36)	4.66E+2 (2.0E+3)	5.99E+2 (1/24)	Site 17	5.99E+2 (1/12)	All < LLD	0
	Gamma Spec (36)			¢			
	⁵⁴ Mn	5.63E+ 0 (1.5E+ 1)	All < LLD			All < LLD	0
	⁵⁸ Co	5.04E+0 (1.5E+ 1)	Alí < LLD			All < LLD	0
	⁵⁹ Fe	1.02E+ 1 (3.0E+ 1)	All < LLD			All < LLD	0
	⁶⁰ Co	5.67E+0 (1.5E+1)	All < LLD			Ali < LLD	0
	⁶⁹ Zn	1.13E+1 (3.0E+ 1)	Alí < LLD	······		All < LLD	Ō
	Zr-95	2.15E+ 1 (3.0E+ 1)	Ail < LLD			All < LLD	0
	⁹⁵ Nb	7.22E+ 0 (1.5E + 1)	All < LLD			Ali < LLD	0
	131	3.97E-1 (1.0E+ 0)	All < LLD		·····	All < LLD	0
	¹³⁴ Cs	5.04E+ 0 (1.5E + 1)	All < LLD			AII < LLD	0
	¹³⁷ Cs	5.14E+ 0 (1.8E + 1)	All < LLD			All < LLD	0
	™Ва	1.85E+ 1 (6.0E+ 1)	All < LLD		······································	All < LLD	0
	¹⁴⁰ La	6.61E+ 0 (1.5E+ 1)	All < LLD			All < LLD	0

Table 10 (Cont.)- Radiological Environmental Monitoring Program Summary for 2000

				Location with Hig	hest Annual Mean		Number of
Medium or Pathway Sampled (Unit of Measurement)	Pathway Number of of Me Sampled (Unit of Analyses Detection ²		All Indicator Locations Mean ³ (#/total #) (Range)	Name (Distance & Direction)	Mean ³ (#/total #) (Range)	Control Locations Mean ³ (#/total #) (Range)	Nonroutine Reported ⁴ Measurement
Grass (pCi/kg wet)	Gamma Spec (36)						
	131	1.83E+1 (6.0E+1)	All < LLD			All < LLD	0
	¹³⁴ Cs	1.64E+1 (6.0E+1)	All < LLD			All < LLD	0
	¹³⁷ Cs	1.97E+1 (8.0E+1)	3.05E+1 (10/24) (2.07E+1 to 4.32E+1)	Site 2 Env. Lab Garden (1 mi. ESE)	3.05E+1(10/12) (2.07E+1 to 4.32E+1)	All < LLD	0
Broadleaf Vegetation (pCi/kg wet)	Gamma Spec (33)						
	131	2.15E+ 1 (6.0E+ 1)	All < LLD			All < LLD	0
	¹³⁴ Cs	1.67E+ 1 (6.0E+ 1)	Ail < LLD			All < LLD	0
	¹³⁷ Cs	1.91E+ 1 (8.0E+ 1)	Ali < LLD			All < LLD	0
Other Vegetation (pCi/kg wet)	Gamma Spec (9)						1
	131	1.38E+ 1 (6.0E+ 1)	All < LLD			All < LLD	0
	¹³⁴ Cs	1.11E+ 1 (6.0E+ 1)	All < LLD	· · · ·		All < LLD	0

All < LLD

All < LLD

All < LLD

All < LLD

0

0

0

0

.

.

Table 10 (Cont.)- Radiological Environmental Monitoring Program Summary for 2000

All < LLD

All < LLD

All < LLD

All < LLD

¹³⁷Cs

Gamma Spec

(18) ⁵⁴Mn

⁵⁸Co

⁵⁹Fe

Fish'

(pCi/kg wet)

1.59E+1 (8.0E + 1)

1.44E+ 1 (1.3E+ 2) 1.52E + 1 (1.3E+ 2)

3.89E+ 1 (2.6E+ 2)

				Location with Hig	hest Annual Mean		Number of
Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed ¹	Lower Limit of Detection ² Actual (Max.)	All Indicator Locations Mean ³ (#/total #) (Range)	Name (Distance & Direction)	Mean ^s (#/total #) (Range)	Control Locations Mean ³ (#/total #) (Range)	Nonroutine Reported ⁴ Measurement 8
Fish ⁷ (Cont)	⁶⁰ Co	2.04E+1 (1.3E+2)	All < LLD			All < LLD	0
	652n	3.89E+1 (2.6E+2)	All < LLD			All < LLD	0
	¹³⁴ Cs	1.31E+1 (1.3E+2)	Ail < LLD			All < LLD	0
	¹³⁷ Cs	1.48E+1 (1.5E+2)	All < LLD			1.43E+1 (1/6)	0
Sediment (pCi/kg) ^s	Gamma Spec (6)						
	⁵⁴ Mn	2.32E+1 N/A	All < LLD			All < LLD	0
	⁵⁸ Co	1.64E+1 N/A	All < LLD			All < LLD	0
	⁶⁰ Co	1.93E+1 N/A	2.70E+1 (3/4) (2.28E+1 to 3.18E+1)	Site 23 Disc. Canal (Mont. Res.0.5 mi. ESE)	2.91E+1 (2/2) (2.63E+1 to 3.18E+1)	All < LLD	0
	¹³⁴ Cs	1.81E+1 (1.5E+2)	All < LLD			All < LLD	0
	¹³⁷ Cs	* (1.8E+2)	2.43E+2 (4/4) (1.88E+2 to 3.66E+2)	Site 21	2.77E+2 (2/2) (1.88E+2 to 3.66E+2)	1.75E+2 (2/2) (1.40E+2 to 2.11E+2)	0

Table 10 (Cont.)- Radiological Environmental Monitoring Program Summary for 2000

Table 10 (cont) - Radiological Environmental Monitoring Program Summary for 2000

Footnotes

- 1. Includes indicator and control analyses. Does not include supplemental samples. Site 8 Air Particulate and Air Radioiodines are included as indicators. All supplemental sample results were consistent with the tabulated results shown.
- 2. Values given are maximum MDA values for indicator locations calculated from the program data analyses with maximum acceptable LLD values allowed from NRC guidelines are given in parentheses.
- 3. Mean and range are based on detectable measurements only. The fractions of detectable measurements (i.e., number of positive results/total number of measurements) at specific locations are indicated in parentheses.
- 4. Any confirmed measured level of radioactivity in any environmental medium that exceeds the reporting requirements of ODCM, Section 1.4.1.2.
- 5. Detection sensitivity is approximately 10 mrem/yr (1.0 μ R/hr).
- 6. Elevated levels of ²¹⁴Pb and ²¹⁴Bi were observed in all Jenkinsville drinking water samples. The values are not reported here because they are naturally occurring (do not originate from VCSNS) and furnish no quantifiable information of interest.
- 7. Fish include 3 groups (Bass, Bream/Crappie, Catfish/Carp).
- 8. Elevated levels of ²¹⁴Pb and ²¹⁴Bi plus other ²²⁶Ra daughter products and ²²⁸Ac plus other ²³²Th daughter products were observed in all sediment samples. The values are not reported here because they are naturally occurring (do not originate from VCSNS) and furnish no quantifiable information of interest.
- 9. Maximum MDA from control location used.
- * All measurements had positive results, no MDA values calculated.

				Location with High	1	Number of	
Medium or Pathway Sampled (Unit of Measurement and Reporting Period)	Type and Total Number of Analyses Performed	Lower Limit of Detection ¹ Actual (Max.)	All Indicator Locations Mean ² (#/total #) (Range)	Name (Distance & Direction)	Mean ² (#/total #) (Range)	Control Locations Mean ² (#/total #) (Range)	Nonroutine Reported ³ Measure- ments
Air Particulate (pCi/m ³) (1981-1982)	Gross Beta (1300)	4.1E-3 (1.0E-2)	1.1E-1 (562/564)* (1.3E-2 to 5.5E-1)	Site 13, North Dam (2.9 mi. NNW)	1.3E-1 (52/52) (2.1E-2 to 5.5E-1)	1.2E-1 (153/155) (7.9E-3 to 6.1E-1)	0
			2.7E-2 (456/462) ⁴ (9.3E-3 to 6.6E-2)	Site 8, Mon. Res. S of Rd 224 (1.5 ENE)	3.0E-2 (42/42) (1.2E-2 to 6.0E-2)	2.8E-2 (125/126) (1.2E-2 to 5.8E-2)	
	Gamma Spec (307)						
	¹³⁴ Cs	3.0E-3 (1.0E-2)	Ali < LLD			All < LLD	0
	^{13/} Cs	3.1E-3 (1.0E-2)	3.2E-3 (22/241) (1.5E-3 to 5.2E-3)	Site 10, Met Tower (2.4 mi, NNE)	3.8E-3 (2/22) (2.5E-3 to 5.2E-3)	4.2E-3 (4/66) (3.2E-3 to 5.6E-3)	0
Air Radioiodine (pCi/m ³) (1982)	¹³¹ I (290)	3.6E-2 (7.0E-2)	All < LLD			Alí < LLD	0
Direct (TLD)⁵ (µR/hr) (1978-1982)	Gamma(1220) Monthiy	0.5 N/A	9.9 (915/915) (6.7 to 14.7)	Site 13, North Dam (2.9 mi. NNW)	13.1 (61/61) (12.2 to 14.2)	9.7 (305/305) (6.4 to 13.5)	0
	Gamma(161) Quarterly	0.5 N/A	10.2 (154/154) (6.8 to 14.7)	Site 55, St. Barnabas Church (2.8 mi, E)	14.0(7/7) (13.1 to 14.7)		0
Surface Water (pCi/l) (1981-1982)	³ Н (43)	1.1E+3 (2.0E+3)	1.4E+3 (18/29) (1.1E+3 to 2.4E+3)	Site 17, Columbia Canal (24.7 ml, SE)	1.6E+3 (2/7) (1.4E+3 to1.8E+3)	1.2E+3 (6/14) (6.7E+2 to 1.6E+3)	0
	Gamma Spec (140)			· · · · · · · · · · · · · · · · · · ·		(
	⁵⁴ Mn	2.7E-1 (1.5E+1)	Ali < LLD			All < LLD	0
	⁵⁸ Co	2.9E-1 (1.5E+1)	Alf < LLD			All < LLD	0
	⁵⁹ Fe	6.0E+0 (3.0E+1)	All < LLD	· · · · · · · · · · · · · · · · · · ·		Ali < LLD	0
	⁶⁰ Co	2.4E-1 (1.5E+1)	Ali < LLD			All < LLD	0
	65ZN	7.9E-1 (3.0E+1)	All < LLD			All < LLD	0

.

4

Table 11 – Radiological Environmental Program Preoperational (Baseline) Summary

				Location with H	lighest Annual Mean		Number of
Medium or Pathway Sampled (Unit of Measurement and Reporting Period)	Type and Total Number of Analyses Performed	Lower Limit of Detection ¹ Actual (Max.)	All Indicator Locations Mean ² (#/total #) (Range)	Name (Distance & Direction)	Mean ² (#/total #) (Range)	Control Locations Mean ² (#/total #) (Range)	Nonroutine Reported ³ Measure- ments
	⁹⁵ Zr	5.2E-1 (1.5E+1)	All < LLD			All < LLD	0
	⁹⁵ Nb	3.3E-1 (1.5E+1)	All < LLD			Áll < LLD	0
	¹³⁴ Cs	3.0E-1 (1.5E+1)	Ail < LLD			All < LLD	0
	^{13/} Cs	2.2E-1 (1.8E+1)	All < LLD			All < LLD	0
	¹⁴⁰ Ba	2.2E+0 (6.0E+1)	All < LLD			Ali < LLD	0
· · · · · · · · · · · · · · · · · · ·	¹⁴⁰ La (1982 only)	5.5E-1 (1.5E+1)	All < LLD			All < LLD	0
Ground Water (pCi/l) (1981-1982)	³ H (29)	9.0E+2 (2.0E+3)	1.5E+3 (16/16) (9.5E+2 to 2.3E+3)	Site 26, Onsite Well P4 (265 ft, W)	1.6E+3 (8/8) (9.5E+2 to 2.3E+3)	1.3E+3 (13/13) (1.0E+3 to 1.9E+3)	0
	Gamma Spec (32)						
	⁵⁴ Mn	3.7E+0 (1.5E+1)	All < LLD			All < LLD	0
	⁵⁸ Co	3.8E+0 (1.5E+1)	All < LLD			All < LLD	0
	⁵⁹ Fe	7.8E+0 (3.0E+1)	All < LLD			All < LLD	0
	⁶⁰ Co	3.8E+0 (1.5E+1)	All < LLD			All < LLD	0
	652n	8.1E+0 (3.0E+1)	All < LLD			All < LLD	0
	⁹⁵ Zr	6.8E+0 (1.5E+1)	All < LLD			All < LLD	0
	⁹⁵ Nb	4.6E+0 (1.5E+1)	A∦ < LLD			All < LLD	0
	¹³⁴ Cs	3.7E+0 (1.5E + 1)	All < LLD			All < LLD	0
	¹³ ′Cs	3.8E+0 (1.8E + 1)	Ali < LLD			A∦ < LLD	0

е <u>н</u>

Table 11 (Cont.) - Radiological Environmental Program Preoperational (Baseline) Summary

٠

			[Location with I	Highest Annual Mean	· · · · · · · · · · · · · · · · · · ·	Number of
Medium or Pathway Sampled (Unit of Measurement and Reporting Period)	Type and Total Number of Analyses Performed	Lower Limit of Detection ¹ Actual (Max.)	All Indicator Locations Mean ² (#/total #) (Ra <u>nge</u>)	Name (Distance & Direction)	Mean ² (#/total #) (Range)	Control Locations Mean ² (#/total #) (Range)	Nonroutine Reported ³ Measure- ments
	¹⁴⁰ Ba	1.9E+1 (6.0E+1)	All < LLD			Ali < LLD	0
	¹⁴⁰ La (1982 only)	5.0E0 (1.5E+1)	All < LLD			All < LLD	0
Drinking Water ⁸ (pCi/l) (1981-1982)	Gross Beta ⁷	(2.0E+0)					
<u></u>	³ H (14)	6.3E+2 (1.0E+3)	7.8E+2 (6/14) (6.8E+2 to 9.8E+2)	Site 28, Jenkinsville (2.0 mi. SE) ⁷	8.4E+2 (3/7) (7.0E+2 to 9.8E+2)		0
	Gamma Spec (44)						
<u>, , , , , , , , , , , , , , , , , , , </u>	⁵⁴ Mn	3.0E-1 (1.5E+1)	All < LLD				0
	⁵⁸ Co	2.7E-1 (1.5E+1)	All < LLD	······································			0
	⁵⁰ Fe	9.6E0 (3.0E+1)	All < LLD				0
······································	⁶⁰ Co	2.6E-1 (1.5E+1)	All < LLD				0
	6bZn	3.4E-1 (3.0E+1)	All < LLD				0
······································	95Zr	4.8E-1 (1.5E+1)	All < LLD				0
	131	3.4E-1 (1.5E+1)	All < LLD				0
	95Nb	7.4E-1 (1.0E+0)	All < LLD				0
	¹³⁴ Cs	2.2E-1 (1.0E+1)	All < LLD				0
	¹³⁷ Cs	2.4E-1 (1.8E+1)	Ali < LLD				0
	¹⁴⁰ Ba	2.5E0 (6.0E+1)	All < LLD				0
	¹⁴⁰ La (1982 only)	4.4E-1 (1.5E+1)	All < LLD				0

٤

Table 11 (Cont) - Radiological Environmental Program Preoperational (Baseline) Summary

		· · · · · · · · · · · · · · · · · · ·	[Location with I	lighest Annual Mean		Number of Nonroutin e Reported ³ Measure- ments
Medium or Pathway Sampled (Unit of Measurement and Reporting Period)	Type and Total Number of Analyses Performed	Lower Limit of Detection ^s Actual (Max.)	All Indicator Locations Mean ² (#/total #) (Range)	Name (Distance & Direction)	Mean ² (#/total #) (Rangø)	Control Locations Mean ² (#/total #) (Range)	
Milk (pCi/l) (1981-1982)	Gamma Spec (94)						
	131	6.3E-1 (1.0E+0)	All < LLD			All < LLD	0
	¹³⁴ Cs	3.3E+0 (1.5E+1)	All < LLD			All < LLD	0
······································	¹³⁷ Cs	4.6E0 (1.5E+1)	4.1E+0 (8/47) (2.8E+0 to 6.1E+0)	Site 14, Dairy (5.1 mi., W)	4.1E+0 (8/47) (2.8E+0 to 6.1E+0)	5.7E+0 (37/47) (3.7E+0 to 9.2E+0)	0
	¹⁴⁰ Ba	1.1E+1 (1.5E + <u>1)</u>	All < LLD			All < LLD	0
	¹⁴⁰ La	4.4E+0 (1.5E+1)	All < LLD			All < LLD	0
Grass (pCi/kg wet) (1981-1982)	Gamma Spec (82)						
	<u> </u>	6.7E+1 (6.0E+1)	All < LLD			All < LLD	0
	¹³⁴ Cs	2.7E+1 (8.0E+1)	All < LLD			All < LLD	0
	¹³⁷ Cs	3.3E+1 (8.0E+1)	5.0E+1 (13/51) (1.6E+1 to 1.6E+2)	Site 14, Dairy (5.1 mi. W)	5.9E+1 (5/29) (1.6E+1 to 1.6E+2)	1.3E+2 (6/31) (1.3E+1 to 3.4E+2)	0
Broadleaf Vegetation (pCi/kg wet) (1980-1982)	Gamma Spec (10)						
	137	3.7E+1 (6.0E+1)	All < LLD				0
	¹³⁴ Cs	1.9E+1 (8.0E+1)	All < LLD				0
	¹³⁷ Cs	2.1E+1 (8.0E+1)	3.1E+1 (2/7) (1.8E+1 to 3.6E+1)	Site 2, Trans. Line (1.2 mi, SW)	3.6E+1 (1/1) (Single Value)	All < LLD	Ō

•

r-

······				Location with H	ighest Annual Mean		Number of
Medium or Pathway Sampled (Unit of Measurement and Reporting Period)	Type and Total Number of Analyses Performed	Lower Limit of Detection ¹ Actual (Max.)	All Indicator Location s Mean ² (#/total #) (Range)	Name (Distance & Direction)	Mean² (#/total #) (Range)	Control Locations Mean ² (#/total #) (Range)	Nonroutine Reported ³ Measure- ments
Other Vegetation (pCi/kg wet) (1980-1982)	Gamma Spec (32)						
	¹³⁴ Cs	8.4E+0 (8.0E+1)	All < LLD			All < LLD	0
	¹³⁷ Cs	1.0E+1 (8.0E+1)	All < LLD			Ali < LLD	Ö
Fish (pCi/kg wet) (1980 - 1982)	Gamma Spec (92)						
	(92) ¹³⁴ Cs	1.4E+1 (1.3E+2)	All < LLD			All < LLD	Ō
	¹³⁷ Cs	1.8E+1 (1.3E+2)	2.8E+1 (50/71) (1.1E+1 to 1.0E+2)	Site 24, Recreation Lake (5.5 mi. N)	3.4E+1 (17/23) 1.2E+1 to 1.0E+2)	3.1E+1 (19/21) (1.0E+1 to 7.9E+1)	0
	⁵⁸ Co	2.6E+1 (1.3E+2)	All < LLD			All < LLD	0
	⁵⁴ Mn	1.8E+1 (1.3E+2)	All < LLD			All < LLD	0
	⁵⁹ Fe	9.0E+1 (2.6E+2)	All < LLD			All < LLD	0
	⁶⁵ Zn	4.1E+1 (2.6E+2)	All < LLD			Ali < LLD	0
	⁶⁰ Co	1.8E+1 (1.3E+2)	A(I < LLD			All < LLD	0
Sediment (pCl/kg) (1980-1982)	Gamma Spec (24)						
	¹³⁴ Cs	2.3E+1 (1.5E+2)	All < LLD			Ail < LLD	0
	¹³⁷ Cs	2.4E+1 (1.5E+2)	1.7E+2 (12/18) (2.6E+1 to 4.5E+2)	Site 21, Parr Reservoir (2.7 ml., SSW)	2.6E+2 (6/6) (2.6E+1 to 4.5E+2)	4.2E+2 (6/6) (1.8E+1 to 1.0E+3)	0

-

.

٤.

P

Table 11(Cont.) - Radiological Environmental Program Preoperational (Baseline) Summary

Table 11 (Cont.)- Radiological Environmental Program Preoperational (Baseline) Summary

Footnotes

- 1. Values given are MDA values calculated from the program data analyses with maximum acceptable LLD values allowed from NRC guidelines given in parentheses.
- 2. Mean and range are based on detectable measurements only. The fractions of detectable measurements at specific locations are indicated in parentheses.
- 3. A non-routine measurement is any confirmed measured level of radioactivity in an environmental medium that exceeds the reporting requirements of VCSNS ODCM, Section 1.4.1.2.
- 4. The baseline values are high because of the fallout from the Chinese bomb test in 1980. The first set of data reflects the 1981 baseline. The second set of data reflects the 1982 baseline, essentially free of bomb test fallout. The 1982 data covers the period 1/1/82 10/22/82.
- 5. Detection sensitivity is approximately 5 mrem/yr (0.5 μ R/hr) determined from the analyses of five years of preoperational data.
- 6. No control location was specified for drinking water during the preoperational monitoring period.
- 7. Inconclusive data.

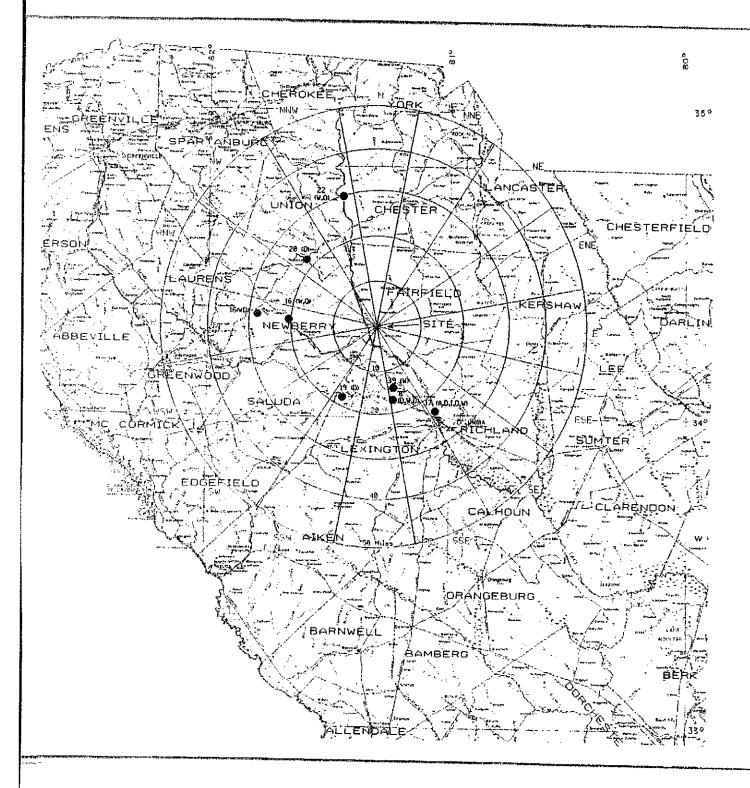

	Sample	Month	
Media	Location	(Week No.)	Cause for Exception
Air	6 7 6 2 7 2 30 7 2 30 7 2 17 7	Feb (5) Mar (10) May (19) May (22) May (22) Jun (23) Jun (23) Jun (23) July (29) Aug (35) Sep (36) Dec (49) Dec (51)	Loss of power to site Breaker trip Breaker trip Breaker trip Breaker trip Breaker trip Loss of power to site Breaker trip Breaker trip Breaker trip Breaker trip Breaker trip
Air Radioiodine	6 7 6 2 7 2 30 7 2 2 17 7	Feb (5) Mar (10) May (19) May (22) May (22) Jun (23) Jun (23) July (29) Aug (35) Sep (36) Dec (49) Dec (51)	Loss of power to site Breaker trip Breaker trip Breaker trip Breaker trip Breaker trip Loss of power to site Breaker trip Breaker trip Breaker trip Breaker trip Breaker trip Breaker trip
Broadleaf	18 18 18	Jan (3) Feb (7) Mar (11)	Sample not available Sample not available Sample not available
Direct Radiation	16 32 35 44	First Quarter First Quarter First Quarter First Quarter	Missing Missing Missing Missing

Table 12 – 2000 Environmental Sampling Program Exceptions

.

÷

Breaker trips at air sample sites due to GFI breakers which were installed during 1999 refurbishment of all sites. These breakers are more likely to trip during power surges.

LEGEND

CONTROL SAMPLE LOCATIONS
 A=AIR PARTICULATE SITE
 D=DIRECT (TLD) SITE
 I=AIRBORNE RADIOIODINE SITE
 W=WATER SITE
 O=OTHER (CARDEN)

O=OTHER (GARDEN PRODUCTS, FISH, SEDIMENT, GRASS, MILK)

REFERENCE: THE BASE FOR THIS HAP WAS PREPARED FROM A PORTION OF USGS STATE OF GEORGIA, 1970.

South Carolina Electric & Gas Co. Virgil C. Summer Nuclear Station

Regional Location Map

Figure 1-1