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ABSTRACT 

This paper focuses on the methodology for evaluating the corrosion performance of high-level waste container 
materials in the U.S. repository program. The performance of the container material depends critically on the 
environment contacting it. The composition of the environment contacting the container is determined by 
evaporation, rewetting, and radiolysis. The time or relative humidity at which condensation of water occurs depends 
on the dissolved salt concentration. The paper reports recent work related to the measurement of deliquescence point 
as a function of salt concentration and the use of repassivation and corrosion potentials in determining the conditions 
for the onset of localized corrosion. The repassivation and corrosion potentials are shown to be functions of solution 
composition, temperature, and microstructure. The passive dissolution rate is measured as a function of 
environmental conditions. Mechanistic modeling of passive dissolution is discussed to increase the confidence in 
performance estimate. Calculations of the failure time of the containers using the EBSFAIL module of the 
NRC/CNWRA Total-system Performance Assessment (TPA) code are presented.  

Key Words: High-level waste repository, corrosion, repassivation potential, container life 

INTRODUCTION 

In the United States, the Department of Energy (DOE) is responsible for the design and construction of a 
potential geological repository for the safe disposal of the spent fuel (SF) from nuclear reactors and high-level waste 
(HLW) from reprocessing operations. If any DOE license application is submitted, the NRC would evaluate it for 
compliance with the regulatory requirements for the proposed repository at Yucca Mountain, Nevada, contained in 
the U.S. Code of Federal Regulations (10 CFR Part 63. The current DOE design of the waste package (WP)' 
consists of a 20-mm [0.787 in] thick Alloy 22 (22Cr-13.5Mo-3W-3Fe-balance Ni) outer container surrounding a 50
mm [1.969 in] thick type 316 nuclear grade (NG) stainless steel inner container to provide structural strength only.  

For repository conditions that are expected to be reducing, container materials that can provide thermodynamic 
immunity, such as copper, have been considered. However, the overall redox condition of the environment at the 
proposed U.S. repository at Yucca Mountain, Nevada is anticipated to be oxidizing! Under such conditions, copper 
or steel will not provide the long container life desired. Carbon steel was thought to corrode in a predictable, 
uniform mode, but under certain pH and potential conditions, may suffer localized corrosion? The U.S. Department 
of Energy has chosen alloys containing chromium among other alloying elements that may provide long life through 
their low kinetics of corrosion. Low corrosion rates of these alloys result from the presence of a protective oxide 
film, called passive film. However, under some conditions, the passive film can be breached locally and the ensuing 
localized corrosion rates or stress corrosion cracking can lead to premature release of radionuclides.



ENVIRONMENT CONTACTING THE CONTAINERS

The repository in the U.S. is proposed to be sited in the unsaturated zone of Yucca Mountain, thus creating 
nominally dry conditions. For a scenario that assumes 50-year ventilation, followed by permanent closure, the 
calculated temperature on the surface of the WP and drift wall are shown in Figure 1. This figure represents one of 

the many design options considered by the DOE. In the first 50 years prior to closure, the repository is considered to 
be ventilated. After the repository is closed, the temperature initially rises, reaching a peak at about 100 years, 
followed by a gradual cooling as the radioactivity continues to decay. The predicted relative humidity is shown in 
Figure 2, along with a critical relative humidity above which water will condense as an aqueous layer on a given 
surface. The critical relative humidity is a function of container surface condition. Presence of hygroscopic salts or 
corrosion products can reduce the critical relative humidity and thus promote aqueous corrosion at an earlier time in 

the repository. It must be noted that certain iron corrosion products (e.g., iron chloride) are especially hygroscopic 
and corrosion may occur at relative humidity values below about 40 percent.
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3 temperature at two different Figure 2. Calculated relative humidity at the 
- drift wall and critical relative humidity.13

Deposition of aerosol and dust from ventilation air 
and the evaporation of water seeping into the drift may 
cause accumulation of hygroscopic salt on the drip shield 
and waste package surfaces.- Thus, the accumulated salt 
may be mixtures of different salts. Figure 3 shows that the 
experimental values of deliquescence relative humidity 
(DRH) of salt mixtures containing Nat, K", N0 3 and C1
are significantly lower than those of the single salt 
components. At 86 * C, the lowest DRH among the single 
salts is 65% (for NaNO3), whereas the DRH of the 
NaCI+NaNO3+KNO 3 mixture is only 43%. Therefore, 
when two or more salts are present, the DRH of the salt 
mixture should be used, as the critical relative humidity 
for aqueous corrosion in model analysis.  

LOCALIZED CORROSION PREDICTION 

The most important forms of localized corrosion are 
pitting and crevice corrosion. It is increasingly believed, at 
least for the chromium-containing alloys, that the 
fundamental mechanisms for pitting and crevice corrosion
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are the same.8'9 However, crevice corrosion can be initiated more easily than pits. The parameters that determine 
whether localized corrosion will occur for a given material-environment combination are the repassivation and 
corrosion potentials. If the corrosion potential, E,,,,, exceed the repassivation potential, Erp or Erce, localized 
corrosion is initiated and stabilized. The repassivation potential depends on the alloy composition and the presence 
of aggressive and inhibiting ionic species. The Ep represents the repassivation potential for pitting, whereas Er'rev 
represents the repassivation potential for crevice corrosion Previous work9 has shown that these potentials are 
identical for deep pits. The corrosion potential depends on the presence of oxidizing species, as well as the pH and 
temperature. It also depends on the class of material (e.g. carbon steel), but within a class of material it is not highly 
sensitive to alloy composition. The effect of environmental conditions on localized corrosion differs for various 
alloy systems. Two types of metallic materials will be 1,0o0 INo evice Cive Alloy 22 

discussed in this paper. oCorrion Corrosion 95 c 
BoA A Autoclave 

Stainless steels and Nickel-based Alloys P S600 %-" X l• 

The stainless steels and nickel-base alloys considered by - Alloy\ 625 
DO vryi trm 400 - 825 

DOE vary in terms of their nickel, chromium, ' o Aly2 Alloy 22 
molybdenum, and tungsten contents as well as minor .l 200 

impurities such as carbon. Generally, the higher the Cr, A .  
Mo, and W contents, the higher the resistance of the alloy " 1 0 31' K. '..  

to localized corrosion. The localized corrosion resistance ' -200 * . .  

of a number of alloys, including Alloy 22 the current 
candidate material, to chloride containing solutions is 0 
shown in Figure 4. It can be seen that 0 for a given -400 11111 7 i , 
chloride concentration, the repassivation potentials of the 0-4 10"- 10-2 10- 100 10' 102 
alloys are arranged in the order of increasing resistance to Chloride concentraton, mnoahr 
localized corrosion as Type 316L SS> Alloy 825 > Alloy 
625 > Alloy 22 and; (ii) at the highest chloride Figure 4. Repassivation potentials of a number of 
concentration studied, all the alloys have similar Ni-Fe-Cr-Mo alloys in chloride environments.  
repassivation potentials. When no localized corrosion 
occurs, the repassivation potential has no relevance to 
localized corrosion, but represents a combination of oxygen evolution and transpassive dissolution. The presence of 
nitrate has a significant inhibitive effect on localized corrosion (Figure 5). The nitrate to chloride ratio needed for 
inhibition of Alloy 22 at 95 oC is approximately 0.2. It is possible that evaporative concentration of the groundwater 
near the waste containers may result in an increase in both chloride and nitrate. It must be noted that nitrate inhibits 
crevice corrosion even when it is added after active crevice corrosion has taken place. An increase in temperature
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I Crevice corrosion 

Q No crevice corrosion '1

results in a reduction in crevice repassivation potential 
(Figure 6). It is known10 that in 6 weight percent FeCI3 
solution, Alloy 22 has a critical crevice temperature of 
about 55°C, which means that the alloy will suffer 
crevice corrosion at temperatures above this value. The 
data in Figure 6 is consistent with this independent 
information because the corrosion potential in FeCI3 is 
approximately 600 mVscE, which is higher than the 
repassivation potential at 80'C for a 1.1 molar chloride 
solution.  

LOCALIZED CORROSION PROPAGATION

I Nitrate added after If localized corrosion occurs under conditions 1 crevice corrosion initiation discussed in the previous section, the growth rate of 
SI i I such corrosion is important to determine the time of 

0 1 2 3 4 cordplete penetration of the container. The growth rate 
e o c e c r of pits and crevices have been examined by. many 

Nitrate to chiloride concentration ratio investigators9 and has been found in general to be 
determined by the transport of metal-chloride 

Effect of nitrate in inhibiting localized complexes from within the pit to the external 
ns of Alloy 22. environment. An example of the growth rate of crevice
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weight-change techniques are not accurate. Electrochemical techniques can provide greater resolution, but need to 
be interpreted carefully since multiple electrochemical reactions contribute to the measured currents. The dissolution 
rates shown in Figure 8 for Alloy 22 are independent of potential up to about 600 mVscE, beyond which they 
increase with potential. The region of steep increase in current with potential is governed by a combination of 
oxygen evolution and transpassive dissolution in which Cr in the metal dissolves as Cr (VI) species. However, from 
a practical point of view the transpassive regime is not of relevance to repository environment. This is because even 
in the presence of highly oxidizing radiolytic species the corrosion potential of the alloy is not expected to attain 
such high values. The passive dissolution rates in Figure 8 are also relatively independent of the chloride 
concentration and pH in the environment. The range of current densities in the passive dissolution regime 
correspond to uniform corrosion rates of 10-4 to 10-3 mm/year.  

CONTAINER PERFORMANCE ASSESSMENT 

The NRC has developed a Total-System Performance Assessment (TPA) code" to support a risk-informed, 

Iperformance-based safety review of the proposed repository. A module in this code, EBSFAIL, is used to compute 
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corrosion for Type 316L stainless steel is shown in Figure 7.  
The growth rate in this figure was measured during exposure to 
a naturally aerated solution. The measurement is performed by 
galvanically coupling a creviced sample to a large open sample 
of Type 316L stainless steel through a zero-resistance ammeter 
and measuring the resulting current. The current is then 
converted to a crevice corrosion growth rate. The value of the 
exponent indicates that the morphology of the pitting within the 
crevice is not perfectly hemispherical. It is also important to 
note that the crevice corrosion growth rates are extremely high.  
Therefore, long container life can not be obtained for these 
materials when they suffer localized corrosion.  

PASSIVE DISSOLUTION 

Passive dissolution occurs when an alloy is covered by an 
non-porous, oxide film. Passive dissolution may occur through 
a variety of mechanisms, some of which have implications on 
the long-term life of the container. Because of the extremely 
low dissolution rates and the continual formation and 
dissolution of the oxide film, measurements using conventional
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Figure 8. Uniform passive dissolution in the absence of 
localized corrosion as measured by electrochemical 
techniaues.2

the failure time of the containers as a result of 
corrosion processes that 'are considered the 
primary degradation modes. The Engineered 
Barrier System Performance Assessment Code 
(EBSPAC) Version 1.1, which served as a basis 
for the development of the EBSFAIL module, 
is described in detail in a previous paper12. As 
mentioned previously, aqueous corrosion 
models are used to estimate container life by 
calculating the uniform corrosion rate using 
measured values of the passive current density 
if the corrosion potential is lower than the 
critical potential for the initiation of localized 
(crevice) corrosion. Otherwise, if the corrosion 
potential is higher than the critical potential, the 
corrosion rate is calculated using estimated 
values of the penetration rate due to crevice 
corrosion, assuming that the initiation time for 
this process is negligible.

Using appropriate electrochemical and 
environmental parameters, the corrosion potential, Eor,, defined as the potential at which the current due to all the 
cathodic processes is equal to the current due to the electrochemical dissolution of the metal, is calculated in the 
EBSFAIL module as a function of time.11't 2 The two cathodic reactions implemented in the EBSFAIL module are 
the oxygen reduction and the hydrogen evolution reactions. The oxygen reduction reaction is assumed to be limited 
by a combination of activation-controlled charge transfer and molecular diffusion-controlled transport processes.  

The current density for oxygen reduction, io, , is then given by Eq. (1)

-k/ Cbulkex ZO 202 Cor 0 2"o•'' , e p - R T

i02

1

(1)
k. ep z 02 I32FE'Crr) 

Ip 2 eP RT A 

4FD0 2

where koi is the reaction rate constant for the oxygen reduction reaction, d is the thickness of the water film, Do2 is 
cbulk 

the oxygen diffusivity in the water film, Co 2 is the bulk concentration of oxygen in solution, which is related to 

the partial pressure of oxygen through Henry's law, Zo, is the charge associated with the oxygen reduction, flo3 is 

the transfer coefficient, F is the Faraday's constant, and EO,, is the corrosion potential.  

For the water reduction reaction, the cathodic current is assumed to be controlled only by the charge transfer 
process and the cathodic current density is given by Eq. (2)

(2)
1HO = kH o exp ZRT0 JP 0 F j

where kH2o is the reaction rate constant for the water reduction reaction andz and P3 represent similar parameters as for 

Eq. (1) for water reduction. The temperature dependence of the reaction rate constants for the oxygen evolution and the 
water reduction reactions is given by an Arrhenius-type relationship. The Ecor is then calculated by solving 
simultaneously for E,,,, using the passive current density, which is assumed to be independent of potential and 
temperature, and Eqs. (1) and (2). Details of the derivation and values for the various electrochemical parameters are 
provided elsewhere.1 2 For simplicity, Er,,, is assumed to depend only on chloride concentration and temperature, even



though both nitrate and sulfate may act as inhibitors above a certain concentration ratio of nitrate plus sulfate to 
chloride.13"14 Above a critical chloride concentration and a threshold temperature which are both dependent on the alloy, 
the dependence of E,,- on chloride concentration and temperature for the three Ni-Cr-Mo alloys, as determined 
experimentally 12, is given by Eq. (3) 

Er = E (T) + B(T) log [cl-] (3) 

where the constants Ero,,v (7) and B(T) are linear functions of temperature given by Eq.(4) and (5).  

E°ru,,(T) = -4 + A2 T (4) 

B(T) = B, + B 2 T (5) 

The coefficients of these equations are listed in Table 1.  

TABLE 1. COEFFICIENTS OF THE CREVICE CORROSION REPASSIVATION POTENTIAL 
EXPRESSIONS 

Alloy T (0 CQ [CI, C M) A I (mVs1E) A. mV/WC) B, (mV) B, (mV/°C) 
825 50-100 0.002 422.8 -4.1 -64.0 -0.80 
625 95 0.03 98.5 * -160.8 * 

22 80-125 0.5 1,540 -13.1 -362.7 2.3 
*Not measured; data only for 95 *C.  

If E.o. is higher than F-,,, localized (crevice) corrosion penetration is given by Eq. (6) 

P=At (6) 

where P is the depth of the localized attack, t is time, and A and n are experimentally determined constants. If E,,,, is 
less than Ec,, penetration of the WVP wall will occur by passive dissolution and the corrosion rate is calculated 
using Eq. (7) 

CR = ipass EW 
(7) 

where ipass is the passive dissolution current density, EWis the equivalent weight, and p is the density of the alloy. It 
should be noted, however, that the life of the Alloy 22 WP outer container under passive conditions depends on the 
long-term stability of the protective Cr (III)-rich oxide film. Recent modeling of the long-term passive dissolution of 
Ni-Cr-Mo alloys, using a modification of the Point Defect Model,13 suggest that in the long term, dissolution is 
stoichiometric. Although preferential dissolution of Ni has been observed in short-term experiments, passive 
dissolution will be stoichimetric in the long term, presumably accompanied by periodic spalling of the passive film, 
unless either fast penetrating paths of the corrosion front (e.g., grain boundaries) or substantial changes in the 
reactive surface area occur.1 3 

RESULTS OF COMPUTATIONS 

Figure 9 shows the results of Eco, and E, calculations as a function of time for the Alloy 22 WP using both 
chloride concentration and temperature as inputs at a constant pH equal to 9.0. Two periods where aqueous 
corrosion occurs, as determined by RH > RI-aq r, are identified in Figure 1. The first period is relatively short, 
lasting from 5 to 50 years after waste emplacement. The second period occurs after 1,000 years when the WPs cool 
to temperatures below boiling. The Eo,, is calculated using both a low current density of 5.0 x 10-9 A c-f 2 [32.26 x 
10-9 A in 2] and a high current density of 5.4 x 10-s A cnm2 [34.84 x 10-s A in2], corresponding to corrosion rates of 
4.9 x 10-5 and 5.3 x 10-4 mmyr-' [1.93 x 10" and 2.09 x I0"' in yri-]. The Eor, varies approximately 50 mV with 
such variation in corrosion rates, and the highest E., is approximately 200 mVsHE. The Er,,, is defined for [C1] >
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Figure 9. Corrosion potential and crevice corrosion repassivation potential as a function 
of time for the Alloy 22 waste package outer container. S 

[cr-],nt when the RH > RHaq or. During the initial wet period after waste emplacement, the Eerrv is calculated for 
both a low and a high chloride concentration. The low chloride concentration (1.8 M CI) is based on the total Na+ 
concentration in J-13 water (a reference groundwater from the vicinity of Yucca Mountain) saturated with respect to 
halite (NaCI), whereas the high chloride concentration (6.6 M Cr) is that corresponding to saturated NaCI in water 
with no other dissolved sodium salts. Localized corrosion is not initiated because Ecorr never exceeds Ererv for either 
the low or the high chloride concentration, and only passive dissolution of Alloy 22 WPs occurs in the initial wet 
period. After 1,000 years when the WPs cool down to temperatures below boiling, the value of E,,"' becomes very 
high because the chloride concentration in the concentrated solutions is assumed to rapidly decrease to very low 
values when more water contacts the WPs and hence only passive dissolution occurs

Plots of the remaining WP wall thickness for two values of passive current density are shown in Figure 10 as a 
function of time. Even though the regulations require assessment for 10,000 years, the calculations are extended to 
100,000 years to illustrate the effect of uncertainties in the values of the corrosion rate. Penetration of the WP wall 
by uniform corrosion is estimated to occur after 37,000 years if a passive current density of 5A x 10"8 A cm'2 [34.84 

0.025 x 10"8 A in2] is used but life is extended beyond 100,000 1 years if a value of 5.Ox 10=9 A cm-2 [32.26 x l0=9 Arin2] 
S0.02 -is adopted. It is apparent that the extremely long WP E• . I"lifetime is the result of the excellent resistance of 4 Alloy 22 to localized corrosion as indicated by the high 

0.015 values of [C1-]ct and Er.
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Figure 10. Remaining wall thickness for the 
Alloy 22 MP as a function of time after 
waste emplacement.13

The fraction of WPs failed as a function of time is 
plotted in Figure 11, as an example of the computations 
conducted with the probabilistic TPA code, Version 4.0.  
The 95"t and 5 th percentiles and the mean fraction of waste 
packages failed are shown in this example. Failure is 
assumed to be penetration of the outer container of the 
waste package, since no credit is assumed for the 
performance of the inner container made out of Type 
316L stainless steel. It is shown in Figure 11 that the 
fraction of failed WPs starts to increase significantly 
beyond the 10,000-yr compliance period as a result of 
slow uniform corrosion under passive conditions in 
agreement with the results of the deterministic 
calculations plotted in Figure 10.
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Figure 11. Calculated number of Alloy 22 waste packages that fail at various 
times.  

SUMMARY 

This paper outlines the approach used to model container life in the proposed repository at Yucca Mountain. The 
approach involves (i) an estimation of the temperature and chemistry of water contacting the waste package, (ii) 
calculation of the corrosion potential, (iii) calculation of the repassivation potential, (iv) calculation fo the time at 
which localized corrosion would occur, and (v) calculation of the rates of localized and uniform corrosion rates.  
Based on this approach, it has been shown that container life depends on the chemical composition of the 
environment, temperature, and passive dissolution rate. The performance assessment calculations presented in this 
paper, are not intended to demonstrate container life, but are intended to determine the factors that are important to 
the overall performance of the containers. More detailed, process level and mechanistic models are being evaluated 
to increase the confidence in the performance assessment calculations. Long-term laboratory studies, 2 and studies of 
natural analogs will provide additional confidence to the model assumptions and parameters.' 7 Finally, methods are 
being evaluated for confirmation of container performance in the proposed repository using remotely monitored 
sensors.
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