Preliminary Assessment of Physics Toolset for ACR Applications

By Hank Chow Presented to US NRC December 5, 2002

Presentation Outline

- Physics Codes and Data Libraries
- Preliminary assessments to ascertain adequacy of physics toolset
 - Requirements imposed by ACR lattice design
 - Requirements imposed by ACR core design
 - Preliminary ZED-2 measurements
 - Lattice-cell model study and inter-code comparisons
 - Full core modeling considerations
- Summary

Major Physics Codes

• WIMS-AECL

- NDAS ENDFB/VI 89-group library, with patch for Dy burnup
- Fully qualified for CANDU physics analysis

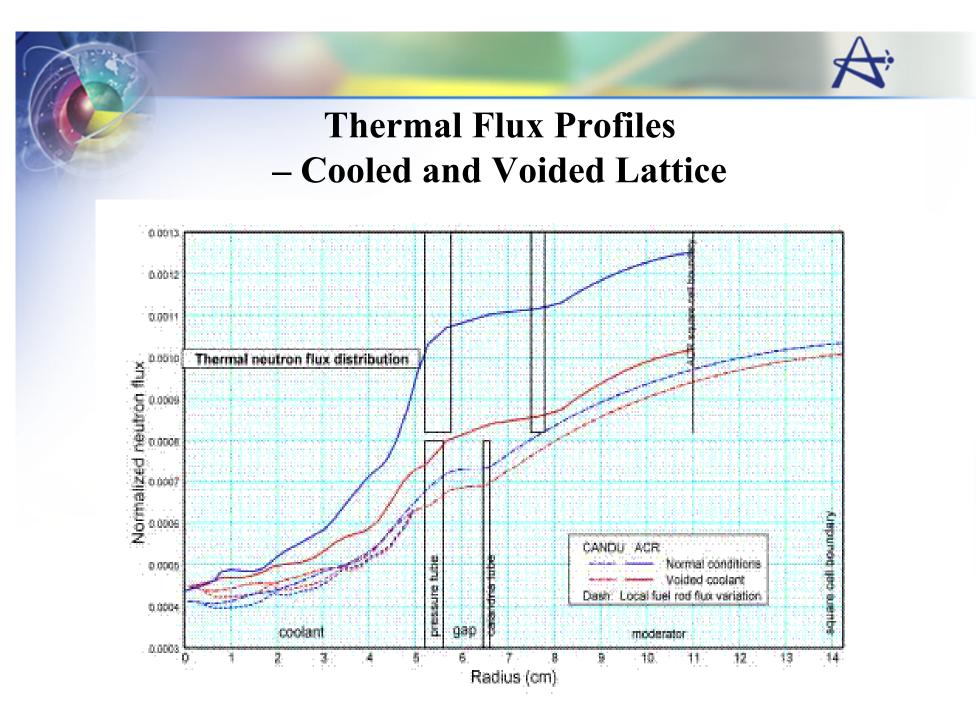
• DRAGON-IST

- Use same ENDFB/VI 89-group library
- For supercell calculations only
 - Device incremental x-section
 - Bundle end-flux peaking
- Fully qualified for CANDU physics analysis
- **RFSP-IST** 2-group diffusion method
 - Fully qualified for CANDU physics analysis

Other Physics Tools

• MCNP-4C

- AECL Library ENDF65MT
- Extensively used for benchmarking the major physics codes


• DONJON

- Multi-group diffusion code from U of Montreal
- Use WIMS-AECL (or DRAGON) lattice-cell properties

Neutronic Characteristics arising from lattice design - with implications on lattice-cell model

- Negative coolant void reactivity
- Dy burnout and impact on CVR
- Reduced moderation harder energy spectrum
- Much shorter mean free path in coolant
- Steeper flux depression across bundle, and across fuel elements
- Neutron streaming in gap between CT/PT (and voided coolant sub-channels)
- Stronger coupling to neighboring lattices
- Much higher fuel burnup

A

Requirements on ACR Lattice Code and Model

- CVR Prediction must be accurate
- Accurate Dy burnout modeling
- Fine meshes, particularly in coolant and fuel regions
- Appropriate coolant volume associated with each fuel element for correct resonance treatment (spectral type specification)
- Optimal energy spectrum discretization (energy group specification)
- Suitable Outer cell-boundary condition
- Suitable leakage treatment in 2-D cell calculations
- Optimal burnup and transport calculation steps cover extended burnup range
- Acceptable run time for production calculations

ACR Core Design Features - with implications on supercell and core models

- Flat global flux shape across the core
- Small core size, relatively higher importance of leakage out of core
- Flux rise in peripheral core and reflector region upon loss of coolant, further enhanced negative coolant void reactivity
- Higher neutron utilization in SEU fuel
- Lower absorber worth and moderator poison worth
- Nine pairs of zone control elements inserting from top and bottom
- Twenty SOR, 6 LIZZ nozzles in reflector region
- Non-circular control elements and SOR

Full-Core and Supercell Model Considerations

- Adequacy of 2-group calculations
- Convergence of spatial flux calculations sensitivity to core mesh structure
- Adequacy of diffusion theory
- Directional diffusion coefficients (axial and radial)
- Small time steps in dynamic transients calculations
- Device modeling considerations
 - Flux spectrum at interstitial locations
 - Running-Track shape device modeling approximation
 - Size of supercell model and boundary conditions
 - Fuel burnup of neighboring bundles

Adequacy of Physics Toolset - Preliminary Assessments

- ZED-2 measurements
 - Comparisons with WIMS-AECL
 - Comparisons with preliminary MCNP calculations
- Lattice-cell modeling and inter-code comparisons
 - WIMS versus MCNP
- Core Modelling
 - RFSP vs DONJON (2-group)
 - DONJON N-group

ZED-2 Measurements - with relevance to ACR Lattice

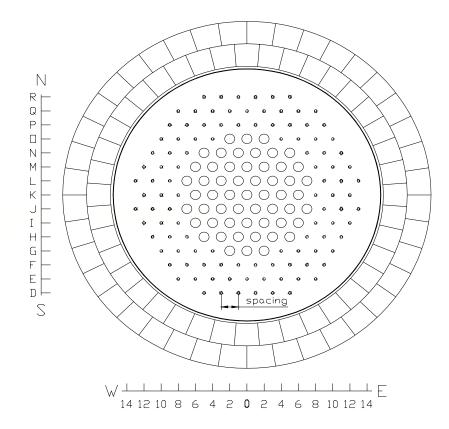
• Lattice arrangement for flux-map measurements

- 55 rods with 28-element NU fuel, outer driver with 108 ZEEP rods
- H₂O coolant
- Tight hex pitches in the range of 20 23 cm

• Flux maps measurements

- H_2O cooled and air cooled
- Three lattice pitches 22.86 cm (9"), 21.59 cm (8.5") and 20 cm
- Provided data on CVR variation with lattice pitch
- Cu activation data fitted to cosine and Bessel function

 $A(z,r) = A_o * Cos a (z-z_o) * J_o (?r)$


• Substitution measurements

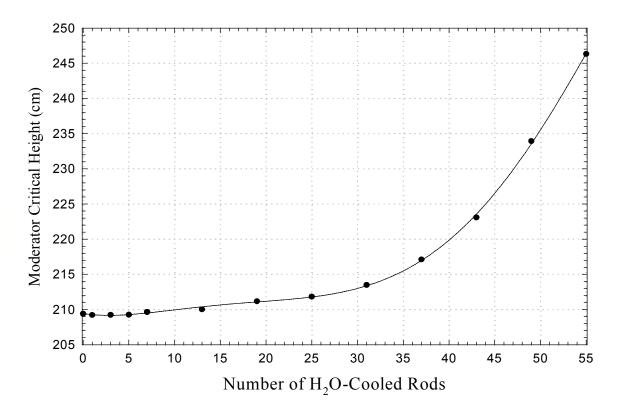
- 21.59 cm pitch and 20 cm pitch lattices
- Voided core reference , substituted 1, 3, 5, 7 , ... to full H_2O cooled lattice
- Full flux map with 7-rod substitution

ZED-2 Lattice for Full-Core Flex Map

○ ZED-2 28-Element UD2 Assembly

• ZEEP BOOSTER Rod

Drawing is to scale



Substitution Measurement Lattice

7-Rod Lattice	13-Rod Lattice	19-Rod Lattice
25-Rod Lattice	31-Rod Lattice	37-Rod Lattice
	000 000000 000000000000000000000000000	$\begin{array}{c} 0 & 0 \\$
43-Rod Lattice	49-Rod Lattice	55-Rod Lattice
$\bigcirc \bigcirc $	$\bigcirc \bigcirc $	$\begin{array}{c} 0 & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$

Critical Height variation with Number of Substitution Rods – 20 cm Pitch Lattice

20.0-cm Pitch Lattice

WIMS-AECL Lattice-Cell Model Study

- Frozen WIMS version and data library
- WIMS relies on simplifications / approximations of real physical situations
- Benchmark against MCNP for both cooled and voided lattice
- Assessment of individual elements of computation model and numerical method
- Goal: Reduce individual element CVR errors to 0.1 mk if possible
 - Apply high accuracy numerical approximations
 - Use most adequate physical model
 - Avoid heuristic approaches
 - Run time is a constraint

WIMS Modelling Features Investigated

• Spatial approximations

- Outer cell boundary model
- Extent of coolant spectral region
- Annulus sub-divisions for coolant and moderator regions
- Fuel rod subdivisions
- Extent of 2-D numerical integration for collision probabilities

• Cross-Sections and Few-Group Structure

- ENDF/B-VI library
- Combinations of resonance-shielded or unshielded zirconium data, and U238 and U238NF data
- 89-Group vs condensed number of groups
- Burnup Time Steps

Most accurate WIMS Model

- Most accurate model has been established
- Other error sources
 - Cylindrical cell boundary
 - Deficiencies in resonance treatment
 - Inaccuracies in data library
 - Unshielded Dy cross-section data
 - Old Pu-239 / U-235 data
 - Room temperature data for fission products
 - Flux spectrum used in X-section average not specific to ACR
 - Zr data independent of temperature
 - Cancellation of errors
- Upgrade of both code and data library in progress

Core Modelling Study - RFSP / DONJON Diffusion Solution Method

- RFSP-IST currently formulated in 2 energy-group
- DONJON has multi-group capability not an IST code
- RFSP vs DONJON (2-group)
- Accuracy of 2-group calculations
 - DONJON 2-group compared with N-group (N up to 10, with some checks extending up to 32 groups)
 - Variations in key core parameters
 - K-eff
 - CVR
 - Power distribution
 - ZCR device worth

Preliminary Conclusions

- Accuracy of 2-Group Core Calculations

- Variations of integral quantities with increasing energy groups are reasonably small
 - Core reactivity over-estimate by about 2.5 mk
 - CVR
 - Relatively insensitive to number of groups (within ±0.5 mk)
 - 2-group "error" within uncertainties arising from WIMS input model
 - ZCR Worth
 - 2-group under-estimates worth (fully in to fully out) by ~ 0.5 mk
- Larger uncertainties in distributed parameters (e.g. channel powers)
 - 2-group under-estimates maximum CP roughly 3%
 - 2-group under-estimates CP increases upon voiding
 - Currently under further investigation

Summary

- Basic Toolset consists of WIMS-AECL, DRAGON-IST and RFSP-IST
- Analysis of Relevant ZED-2 measurement data
 - WIMS predicts CVR variation with lattice pitch with constant bias
- Extensive comparisons of WIMS and MCNP lattice-cell calculations
- Assessment of adequacy of two-group core calculations and uncertainties
- Suitability and performance of Toolset judged to be satisfactory biases and uncertainties need to be more precisely quantified
- Full-fledge Toolset Qualification Plan discussed in next presentation