Evolution of ACR Physics from CANDU 6

By Peter Chan, ACR Fuel & Physics Section Head

Presented to US Nuclear Regulatory Commission Office of Nuclear Reactor Regulation December 4, 5, 2002 at CRL

Outline

- **Major differences between ACR and CANDU 6 Core Designs**
	- **Coolant**
	- $-$ Fuel
	- **Lattice Pitch**
- **Core Physics of ACR**
	- $-$ High Power Output in a Compact Core
	- **Negative Power Feedback Reactivity Coefficients**
	- **Contract Contract Contract Negative Coolant Void Reactivity**
	- **Unique LOCA features**
- **Summary**

Major Differences between CANDU 6 and ACR

- **Coolant**
	- **CANDU 6 (D ²O)**
	- **ACR (H ²O)**
- **Fuel**
	- **CANDU 6 (NU in 37-element bundle)**
	- **ACR (2.0 % SEU in 42 pins, Central Pin Dy/NU, CANFLEX bundle)**
- **Lattice Pitch**
	- **CANDU 6 (28.575 cm, 11.25 inches)**
	- **ACR (22.0 cm, 8.66 inches)**

Comparison of CANDU 6 and ACR Lattices

CANDU 6 Lattice

ACR Lattice

Reactivity Effects in ACR-700 and CANDU 6 (Equilibrium Core)

Safety & Control Parameters in ACR-700 and CANDU 6

Effect of Prompt Neutron Lifetime on Power Transients

Characteristics of ACR-700 and CANDU 6

CANDU Fuel Bundle Designs

37-Element 37-Element Bundle C6 Fuel Channel C6 Fuel Channel

Pg 10 CANFLEX CANFLEX Bundle (43 elements) (43 elements) ACR Fuel Channel ACR Fuel Channel

Effects of CANFLEX SEU Fuel in ACR

- **Enables the use of H ²O Coolant**
- **Allows the reduction of moderator to reduce Coolant VoidReactivity (CVR)**
- **Allows the use of neutron absorber in the central fuel pin to further reduce CVR to target of – 3 mk**
- **High fuel burnup and high power output**
- **Flat radial channel power profile (0.93 form factor)**
- **Reduction in maximum fuel element rating**
- **Inlet skewed axial power profile improves thermalhydraulic margin**

Element Ratings (ACR vs CANDU-6) for 900 kW bundle power at mid-burnup

** lower element rating allows higher power and higher burnup

End-View of ACR-700

END VIEW OF REACTOR SHOWING PRINCIPAL CALANDRIA DIMENSIONS, FUEL CHANNELS AND BOUNDARY OF INNER FUEL ZONE

Schematic Face View of CANDU 6 Reactor*Pg 14*

Pg 15

Axial Thermal Flux Profiles

ACR-700

CANDU 6

Channel Power Profiles in ACR-700 and CANDU 6

Pg 17

Axial Power Profiles in ACR and in C6

Bundle Position from Inlet End (Channel Power = 7.5 MW)

Effect of Coolant Void in ACR

- ACR lattice is under-moderated with normal H_2O coolant
- H_2O acts as both coolant and moderator
- \bullet LOCA further reduces moderation from the lattice
- Coolant Void Reactivity (CVR) is a combined effect due to loss of absorption (positive) and loss of moderation (negative) from $\mathsf{H}_2\mathsf{O}$
- Increase in fast flux and decrease in thermal flux upon LOCA
- U238 and Pu239 generate negative components in CVR
	- $-$ Increase in Resonance Absorption (1 eV to 100 keV) in U238 $\,$
	- $-$ Decrease in Fission (0.3 eV resonance) in Pu239 $\,$

Physics Innovations to achieve slightly negative CVR (H ²O Coolant)

- Large Moderator/Fuel ratio (Vm/Vf) means high CVR
- Current Lattice Pitch (LP) 28.575 cm (11.25 inches) $Vm/Vf = 16.4$ $CVR = +60$ mk
- Target CVR **=** -3 mk requires Vm/Vf < 6.0, 0 LP < 20 cm (7.87 inches)
- Minimum LP **⁼** 22 cm (8.66 inches) required to provide space for feeders between channels

 $Vm/Vf = 8.4$

- Use larger CT, OR =7.8 cm (3.07 inches) to displace more moderator
	- \triangleright Vm/Vf = 7.1
	- \triangleright Add Dy (4.6%) to central NU pin CVR = -3 mk

Neutron Flux Averaged over Fuel and Coolant within the Pressure Tube (MCNP Model)

Change in Power/Flux Profile due to LOCA for 900 kW bundle power at mid-burnup of ACR CANFLEX Fuel

** current CVR design target is – 3 mk

-10 mk CVR can be achieved by using less than 10 wt% Dy in the central pin

Typical Power Pulses in CANDU 6 for Individual Bundle and for Broken- & Intact-Loop Core Halves

Unique LOCA Features in ACR

- **Power in reactor core region drops upon LOCA due to negative void reactivity**
- **LOCA power transients not sensitive to trip time (relative to CANDU 6)**
- **Rapid rise in thermal neutron flux in the reflector region due to migration and subsequent thermalization of fast neutrons from the core region**
- **Fast neutronic trip is available from neutron detectors in the reflector region**
- **Slower process trip is sufficient to terminate LOCA**

Effect of Trip Time on LOCA Transient

1.1 1CVR -3 mk, Trip at 1 s, 1.36 FPS CVR -3 mk, Trip at 2 s, 2.11 FPS **0.9** $-CVR -3 mk$, Trip at 3 s, 2.81 FPS **0.8 0.7**Relative Power **Relative Power 0.6** \blacksquare \blacksquare **0.50.4** \blacksquare **0.3 0.2 0.1 00 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5**

ACR 100% RIH LOCA Transient

Time after break (second)

Thermal Flux Profile upon LOCA at t=0 s

 $\frac{1}{\epsilon}$

Thermal Flux Profile upon LOCA at t=0.015 s

Thermal Flux Profile upon LOCA at t=0.02 s

Thermal Flux Profile upon LOCA at t=0.03 s

Thermal Flux Profiles in ACR-700 upon LOCA

(click picture to start animation)

Thermal Flux Ratios in ACR-700 upon LOCA

(click picture to start animation)

Summary

- **ACR is an evolutionary design of current CANDUs**
- **Common features between ACR and current CANDUs:**
	- **Horizontal fuel channels**
	- $-$ D₂O moderator
	- **On-power fueling**
	- **Simple fuel bundle design**
- \bullet **ACR specific features:**
	- $-$ H₂O coolant
	- $\frac{1}{2}$ **Smaller lattice-pitch and compact reactor core**
	- \equiv **High burnup SEU fuel**
	- $-$ High power output
	- **Negative coolant void reactivity**
	- **Negative power feedback coefficients**

