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SUPPLEMENT NO. I

to 

REQUEST FOR LICENSE TO TRANSPORT IRRADIATED 
TRIGA FUEL IN BMI-l SHIPPING CASK 

June 15, 1972 

INTRODUCTION 

In a letter dated March 10, 1972, additional information was 

requested by the Division of Material Licensing to support the request by the 

University of Arizona to transport TRIGA fuel assemblies in the BMI-I ship

ing cask. The BMI-l cask has previously been licensed and the license 

application concerned the use of a Fuel Shipping Assembly (fuel can) to 

hold the TRIGA fuel assemblies in the cask during transport. The request 

for additional information concerned substantiation of the fuel can integrity 

in the event of the 30-ft free fall hypothetical accident, confirmation in 

the use of specific sealant materials and a request for a copy of the report 

upon which the criticality analyses were based.  

RESPONSE TO SPECIFIC QUESTIONS 

In a telephone conversation with the DML reviewer clarification 

was obtained of the specific questions underlying some of the items noted 

in the request for additional information. It was noted that for the 30-ft 

free fall incident, the cask impact forces calculated by DML during their 

review differ slightly from those presented in the Safety Analysis Report 

for the cask. For the purpose of consistency, the impact forces determined 

by DML are used in this response. They are presented in Table I. It should 

be noted that the impact forces presented in Table I are those calculated to 

exist at the outer surface of the cask in the region of impact. No credit 

is taken for energy attenuation through the walls of the cask and at the inter

face of the cask cavity and the fuel can. This conservative approach is taken 

since the exact degree of attenuation cannot be accurately predicted.
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TABLE 1. IMPACT FORCES USED IN ANALYSES 

FOR FUEL CAN INTEGRITY

Orientation Impact Force, G 

End Fail, on top 87.5 

End Fall, on bottom 368 

Side Fall 400 

Corner (oblique) 153

1. Top End Impact 

The cover plate of the fuel can has been modified as shown on the 

attached University of Arizona drawing, Sheet 1020, Revision A. A solid 

ring of rectangular cross section has been added at the outer edge of the 

cover to support the edge of the cover in the event of a top impact. Since 

the ring thickness is the same as the head of the draw bolt, the bolt and 

the ring will strike the end of the cavity simultaneously in the event of a 

top end impact. In order to evaluate the stresses on the fuel can in the 

event of a top end fall incident, the can was modeled and analyzed with the 

aid of a computer program, MONSA (Multilayer Orthotropic Nonsymmetric Shell 

Analysis), used by the Applied Solid Mechanics Division at Battelle. This 

program, based on the work of Dr. A. Kalnins, is discussed briefly in 

Appendix A. A paper by Dr. Kalnins which is the basis for the computer 

program is also included in Appendix A.  

The can is sketched in Figure 1 and the model used in the analyses 

for the top end impact incident is presented in Figure 2. Because of the 

massiveness of the anchor nut relative to the thickness of the bottom, a 

fully fixed condition was assumed for the can bottom at the location of the 

anchor nut. The stresses in the can bottom and walls were analyzed by 

superimposing the effect of the static load of the draw bolt and 

the inertia load of the can and comparing the result with the effect of the 

static load and inertia load of the draw bolt. A seal load of 10 lb per inch 

is usually considered adequate for the type of seal used on the fuel can.
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However, as an extra assurance factor a seal load of 20 lb per inch has been 

selected. This would tequire a draw bolt tensile load of 945 lb. The 

operations manual was revised to indicate that the bolt should be tightened 

to a torque of 22 ft lb which will result in about 1,000 lb tensile load in 

the bolt (-21 lb per inch seal load).  

The MONSA program was first run for the static condition, i.e., 

the effect of the 1,000 lb normal draw bolt load on the can. The results are 

summarized in Table 2. Under an impact condition, the inertial load of the 

anchor nut and bolt might either increase the load on the can or decrease it 

depending on the relative deformation between the can and the bolt. It is 

noted in Table 2 that for the 1,000 lb static condition the deformation of 

the can bottom at Point A is 0.00433. The MONSA computer program was then 

run to evaluate the effect of the inertia load of the can bottom and walls on 

the stresses in the can. As shown in Table 2, the can bottom at Point A 

would deflect 0.00607 inches if unsupported by the draw bolt. The total de

formation then would be 0.01040 inches.  

The deformation of the bolt under static and impact load can be 

calculated by the relation 
SFL 

e= eL- -A 
AE 

where 

e = total deformation of bolt, inches 

e = unit strain 

a = stress in the bolt 

E = Young's Modulus = 29(10 6) psi 

L = length of the bolt = 49.75 inches 

F = static force of 1,000 lb or impact force at 87.5 G, lb 

A = area of the 1-1/4 OD x 1/4 wall bolt = 0.7854 sq in.  

g = impact force = 87.5 G 

For the static load condition, the bolt would be elongated 0.00218 inches.  

For the impact case, it was assumed that the effective force acting at the 

top of the bolt is equal to half the weight of the bolt plus the weight of 

the anchor nut. The weight of the bolt is 2.67 lb per ft and the weight of 

the 4-inch-diameter nut is 42.73 lb per ft. Thus the total effective force is 

F = (1/2)(2.67)(49.75)(87.5)/12 + (42.73)(3.5)(87.5)/12 = 1575 lb.



TABLE 2. RESULTS OF ANALYSIS OF TOP END IMPACT ORIENTATION

At Point A(a) At Point B (a) At Point C(a) 

Stress, psi Deflection Stress, psi Stress, psi 

Load Condition relative 
Inner Outer to Point C, Inner Outer Inner Outer 
Surface Surface inches Surface Surface Surface Surface 

Static 1000 lb 5,412 -5,492 -0.00433 -5,333 4,862 472 - 943 

Inertia of can 
bottom & can walls 3,624 -3,715 -0.00607 -6,299 5,317 3,608 -7,217 
only, no restraint 
from bolt 

Total 8,036 -9,207 -0.01040 -11,632 10,179 4,080 -8,160 

(a) Refer to Figure 2.

a%

(
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Therefore, the total compressive deformation is 0.00344 inches. The effect 

of the inertia loading on the bolt itself would be to relieve the tensile 

load on the bolt and place it in a compression. Its total deflection then 

is 0.00344 + 0.00218 = 0.00563 inches. Since the bolt would only deflect 

0.00562 inches'and the bottomif unsupported, would deform 0.01040 inches, 

the bolt will provide a significant degree of restraint to deformation of 

the can. Thus the greatest stress which the can will experience is probably 

1/2 to 1/3 the maximum stress of 11,632 psi shown in Table 2. The margin of 

safety, based on a 30,000 psi yield strengtbwill be greater than 1.5, 

(MS =30,000 I = 1.58) 

11,632 

The can also acts as a column under compressive loading. By inspection, it 

is seen that the case for the bottom end impact is more severe than for the 

top end impact since the impact force, 368 G, is greater and the cover is 

heavier than the can bottom. Thus, the column action of the can was not 

evaluated here.  

Analyses of the effect of the added load from the can on the draw 

bolt was not considered necessary. The bolt closely fits through cover and 

thus misalignment during impact is prevented. Should the bolt experience any 

plastic deformation during the impact, it would not be detrimental to the seal.  

Any "shortening" of the bolt due to the impact would produce a greater tensile 

load in the bolt tending to keep the cover in place. Therefore, the above 

analyses have indicated that the integrity of the can and seal are maintained 

during a top end impact condition.  

2. Bottom End Impact 

In the event of an impact on the bottom end, the inertia force of 

the cover will tend to increase the pressure on the seal at the edge of the 

cover. However, the pressure on the seal under the head of the draw bolt 

could be lessened. The possibility of this occurring is evaluated below.  

The MONSA computer program was used to evaluate the model shown in Figure 3a 

for the static condition and for the inertia effect on the cover as if the
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draw bolt were not present, The maximum deflection of the cover, Point A 

in Figure 3a, relative to the outer seal, Point B, was calculated to be 

0.00340 inches under the combined static and inertia load, Table 3. The 

MONSA program was then used to analyze the model of the can shell alone, 

shown in Figure 3b. The force F is 1000 lb for the static case and, for the 

impact case, F is the total inertia force of the cover acting on the top 

edge of the can. The cover weighs 65.67 lbs. Thus for the 368 G inertia 

load the force, Fc, is 24,170 lb. The total deflection of the shell alone 

under the static load is 0.00042 inches. Under the inertia load of the cover 

and the shell, the deflection is 0.01507 inches (Point B to Point C in 

Figure 3b). Thus, the total deflection of the shell only is 0.01549 inches, 

and the total deflection of the cover, Point A, relative to the bottom of the 

can, Point C, is 0.01889 inches.  

It was shown above that the bolt is elongated 0.00218 inches under 

the static 1000 lb load. It was also shown above that the bolt will compress 

axially 0.00344 inches under a 87.5 G load. Thus, under a 368 G load the 

bolt will compress (368)(0.00344)/87.5 or 0.01466 inches. Thus the total 

deflection which the bolt will experience is 0.00218 + 0.01446 = 0.01664 inches.  

Since this is less than the deflection of the cover, the bolt does not con

tribute any load to the cover under the impact condition. These calculations 

indicate that the compression on the seal under the bolt head will be relieved 

0.00225 inches. However, the seal is initially compressed about 0.030 inches 

so that this amount of relief under impact represents only about 7.5 percent 

of the initial amount. Stated another way, the O-ring is still compressed 

over 90 percent of its initial amount which is considered sufficient to main

tain the seal.  

The maximum stress in the can, Table 3, is 17,667 psi. The margin 

of safety is 
MS = 30,000 1 - 0.70.  

17,667 

The can also acts as a column under a compressive load equal to the 

inertia weight of the cover and can shell. It was assumed that the total 

inertia load experienced by the can as a column is equivalent to the cover 

weight and half of the inertia "weight" of the shell. From above, the inertia



TABLE 3. RESULTS OF ANALYSIS OF BOTTOM END IMPACT

At Point A(a) At Point B(a) At Point C(a) 

Stress, psi Deflection Stress, psi Deflection Stress, psi 

Load Condition relative relative 

Inner Outer to Point B, Inner Outer to Point C, Inner Outer 

Surface Surface inches Surface Surface inches Surface Surface 

Static load on cover - 423 -1,689 -0.00044 145 36 -

only 

Inertia load on 1,391 -2,787 -0.00296 1,493 373 

cover only 

Total, static and 968 -4,476 -0.00340 1,638 409 - -

Inertia of cover 
on cover only 

Static load on shell - - - - 236 -236 -0.00042 - 107 - 364 

only 

Inertia Load of shell -5,696 -5,696 -0.01507 -5,146 -17,293 

& cover on shell only 

Total, static and -5,932 -5,932 -0.01549 -5,253 -17,667 

Inertia of cover & 
shell on shell only 

(a) Refer to Figure 3.

0

(

I
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weight of the cover is 24,170 lb. The static weight of the shell is 63.27 lb.  

Thus, total inertia load on the can shell as a column is 

P = 24,170 + (1/2)(368)(63.27) = 35,810 lb.  

The critical buckling load for a column rigidly fixed at one end is 

P =r2 EI/4L2 Pcrit= 

where 

E = Youngs Modulus 29(10 6) psi 

I = Moment of inertia = •d3t/8 

d = Mean diameter 14.91 inches 

t = Thickness = 0.09 inches 

L = Length = 51.75 inches.  

Then 

pcrit = 3.13(10 6) lb 

Thus, the can will not buckle.  

As above, any deformation or shortening of the draw bolt due to the 

impact incident would not be detrimental to the integrity of the seal. There

fore, it was not considered necessary to evaluate the impact effect on the bolt.  

3. Corner Drop 

The fuel can fits in the cask cavity with only nominal clearance.  

Thus for the corner drop orientation the can is supported both on the side and 

an end. Since the impact loads for the corner drop orientation are less 

severe (153 G) than for the impact loads for the bottom end drop or side drop 

configurations, the analyses for the bottom corner drop configuration need not 

be evaluated. For the case of a top corner impact orientation, the 153 G 

impact force is greater than that experienced by the cask for the top end drop 

configuration, 87.5 G. However, the aspect ratio of the cask (L/d) is relatively 

large; thus the top edge drop orientation is very close to the vertical orientation 

of the end fall condition. The response of the fuel can to a top corner impact 

orientation can then be evaluated by taking the conservative approach and 

assume it strikes on the top end with the 153 G impact force. This is con

servative since for the end impact orientation, no support is considered by the 

side walls of the cask cavity.
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The response of the fuel can is proportional to the impact load.  

Since for the assumed case here the impact force is 153 G, the stresses and 

deflections experienced by the fuel can would be 153/87.5 - 1.75 times greater 

than for the case of the top end drop orientation. By inspection, it is seen 

that the stresses are well below the yield stress and thus the can integrity 

is maintained. Similarly, by inspection it is seen that the seals will not 

be loosened for the top corner impact orientation and thus seal integrity is 

maintained.  

4. Side Impact 

For the side impact orientation, the side of the can and the cover 

are supported by the full length of the cask cavity. Thus the critical 

regions which must be considered include the stress and deflection in several 

regions of the draw bolt and the integrity of the seal under loads and moments 

transmitted by the bolt. A general schematic model of the can is shown in 

Figure 4. As shown, the bolt is rigidly supported at the bottom by the anchor 

nut and at the top by the close fitting hole in the cover. It also nominally 

has a center support, the spacer can bottom,except that the spacer can has a 

0.090 inch radial clearance and thus the center of the bolt could deflect 

about 0.095 inches (the spacer can guide clearance plus the bolt clearance) 

before any degree of support could be expected.  

Consider the model in Figure 5. The bolt is represented as a beam 

under a tensile load, restrained at the ends from bending and with a center 

support available after 0.095 inch of deflection. In the actual situation the 

"center" support is about 1.38 inches from the midlength of the bolt. For 

purposes of analysis it was considered sufficiently accurate to assume that 

deflections at the center and 1.38 inches from the center were essentially the 

same. Then from Roach(1) Table VI, Case 18, the deflection at the center is 

y = 2[4 U(1 - cosh U/2) + U2 

Y 8p sinh U/2 

(1) Roach, R. J., Formulas for Stress and Strain, 4th Edition, McGraw Hill 

Book Co., New York.
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where 

w = uniform load 
_= El• 

E = Elastic modulus = 29(10 6) psi 

I = Area moment of inertia = rr(D 4- Di 4)/64 

D = OD of draw bolt = 1.25 inches 
0 

D. = ID of draw bolt = 0.75 inch 
I 
P = Tensile load = 1000 lb 

U = L/j 

L = Length of the bolt = 47.75 inches.  

This equation was solved for w for the case where y = 0.095. At this de

flection w = 21.62 lb per inch. However, the bolt weighs 2.67 lb per ft 

and, therefore, under a 400 G impact force the distributed load would be 89.0 

lb per inch. Since this is more than the 21.62 lb per inch distributed load 

required to deflect the center of the bolt 0.095 inch, the bolt will receive 

support from the spacer can bottom under the 400 G impact. The maximum moment 

in the bolt occurs at the end and is expressed as 

M = wj2 [f(U/2)/ tanh U/2 - 1i .  

With a distributed load of 21.62 lb per inch, the moment is 4,058 in lb.  

After the bolt receives support from the spacer can bottom it then, 

for practical purposes, will respond as before, a beam with fixed ends and 

under a tension load. This is not truely the case since the "center" support 

is not truely at the midspan but 1.38 inches away. However, it is felt that 

negligible error will be introduced by this assumption. The calculation is as 

above, then, except that w = 89.0 lb per inch and L = 25.25 inches.  

.Then 

M = 4,712 in. lb.  

This is greater than the moment experienced by the bolt at the point it obtained 

support from the spacer can bottom. The fiber stress then is 
MC 

where 

M = 4,712 in lb 

C = Maximum fiber distance from neutral axis of I-inch bolt 

in end of draw bolt (at thread root) = 0.4517 inches.  

I = Moment of inertia of 1-inch bolt at thread root = rrC4 /4
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Then the fiber stress is 

af 65,100 psi 

The shear stress is 
Fsh 

ash A" 

The shear force, F sh' was taken as half th6 impact force or 

Fsh = wL/2 = (89.0)925.25)/2 = 1125 lb 

The shear area, A, is 

2 2 
TTc = (T) (0.4517) = 0.641 sq inch 

The shear stress is 

ash = 1125/0.641 = 1,760 psi 

The combined stress is 

a comb = f + ash2  65,100 psi 

The threaded section of the bolt is made of A 325 steel which has a yield strength 

of 92,000 psi. The margin of safety is F 
FS -Y---- - 1 - 92,000 I = 0.41 
0 comb 65,1 00 

At the center of the span the bending moment is 

M = wj2 (I U/2 
sinh U/2 

where the terms are defined as above and w = 89.0 lb per inch and L = 25.25 inches.  

Then 

M = 2350 inch-lb 

The stress is 

af = Mc/l 

where 

M = 2350 in-lb 

c = Maximum fiber distance = 1.25/2 = 0.625 inch 44 

I = Moment of inertia - Tr(D - D4 )/64 

D = 1.25 inches 
0 

D. = 0.75 inch 

Then 

G4 = 12,260 psi
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The body of the bolt is made of C-l018 cold rolled carbon steel 

which has a yield strength of 60,000 psi. The margin of safety is 

M =60,000 - 1 = 3.89 

12,260 

The above analyses assume that the center support, i.e., the spacer 

can bottom will not move radially more than about 0.095 inch. The spacer can 

is supported by the guide tube which fits into the inner can. The inner can 

is rigidly held by the nest of fuel tubes except for the end most 5.75 inches 

into which the spacer can guide fits. This 5.75 inch extension, therefore,acts 

as a cantilever beam in supporting the spacer can bottom. Consider the model 

of Figure 6. The fiber stress in the inner can is 

MC FLc 
I I ' 

where 

F = Inertia force of bolt and spacer can 

L = Length of inner can extension = 5.75 inches 

c = Maximum fiber distance = 4.25 inches 

I = Moment of inertia = rrd3 t/8 

d = Mean diameter = 8.41 inches 

t = Thickness = 0.09 inch .  

The force was taken as half the inertia weight of the bolt and 3/4 the 

inertia weight of the spacer can. The spacer can has a static weight of 

about 35 lb. Then the inertia force is 

F = (89.0)47.75)/2 + (400)(35)(3/4) = 12,620 lb 

Then 

af = 14,680 psi 

The shear stress is 

ash = F/A = 12,620/(Ttdt) = 5,300 psi.  

The combined stress is 

comb = 2 2 = 15,600 psi.  comb af + Osh, 

The margin of safety for the inner can which is made of Type 304 stainless 

steel is 

MS = -1 _ 30,000 - 1 = 0.92 

comb 15,600
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The total deflection is 

y = FL3 /3EI = 0.0013 inch.  

Thus, the spacer can will move 0.0013 inch more than the 0.095 inch assumed 

above. This difference, however, will not significantly change the results 

presented above.  

The integrity of the weld between the spacer can guide and the 

spacer can bottom must also be evaluated. The stress is 

ash = F/A = 12,620/(0.707 rrdt) 

where 

d = Mean weld diameter •" 7.90 inches 

t = Weld thickness = 0.12 inch.  

Then 

ash = 5,990 psi 

The margin of safety is 
MS = -Fsh - 1 15,000 1 = 1.50 

ash 5,990 

In the side fall incident, the bending moment present in the bolt 

at the cover will tend to "lift" one edge of the seal. The close fit of the 

bolt in the cover negates any possibility of "lifting" of the seal under the 

bolt head. However, the tendency for lifting of the seal at the edge of the 

cover must be evaluated. Consider the model in Figure 7. The moment, M, tends 

to lift the seal at Point B while the moment of the draw bolt tensile force, P, 

about Point A tends to maintain the seal at Point B. The moment, M, is assumed 

to be the same as the moment in the draw bolt at the anchor nut. (It actually 

will be slightly less since the unsupported span of the top part of the bolt 

is 2.75 inches shorter than the bottom part.) Then, M = 4,712 in lb. The 

restoring moment is 

MR = Pd/2 = (1000)(15/2) = 7500 in-lb 

This is about 60 percent greater than the moment tending to open the seal.  

Thus the tendency for lifting is sufficiently restrained to maintain the seal.  

The conclusion of the above analysis is that the integrity of the 

fuel can and seal is maintained in the event of a side fall impact orientation.
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5. O-Ring Material 

All applicable drawings and operation procedures have been revised to 

reflect the use of only silicone rubber (silastic) seal materials.  

6. Thread Sealant 

There are no plugs on fuel can which form part of the sealing system.  

The operating procedures for the shipping cask specify the use of a non

hardening thread sealant.  

7. Basis of Criticality Analysis 

Appendix B contains an extract from proprietary Report GANB-7445 

which forms the basis of the criticality analyses.
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APPENDIX A

DESCRIPTION OF MONSA COMPUTER PROGRAM 

MONSA (multilayer Orthotropic Nonsymmetric Shell Analysis) is a 

digital computer program written in FORTRAN IV. It is based on the multi

segment numerical integration method for the analysis of boundary value 

problems.  

MONSAS determines the displacements, forces, and stresses for a 

composite shell of revolution. A composite shell is defined as a shell 

composed of a number of distinct parts which may have the following shapes: 

cylindrical, spheroidal, ellipsoidal, paraboloidal, conical and toroidal.  

The shell wall may be composed of four different layers of orthotropic mater

ials, The shell layers are specified by giving their location with respect 

to a reference surface.  

Mechanical and temperature loadings can be applied to the shell.  

For nonsymmetric loadings, the user must determine the Fourier harmonics of 

the loadings and perform the appropriate number of shell calculations.  

Temperatures can vary along the shell meridian as well as through the thick

ness of the wall. 'Te latter can be accomplished by specifying the temperature 

on the inner and outer surfaces and on three internal surfaces of the shell 

wall. A shell spinning about its longitudinal axis can be analyzed. A shell 

subjected to harmonically varying mechanical or temperature loadings can also 

be analyzed.  

MONSAV will determine the natural frequencies and mode shapes of 

composite shells of revolution described above. The procedure is based on an 

iterative technique in which a trial frequency is picked and a determinant is 

calculated. The trial frequency becomes a natural frequency when the deter

minant vanishes.
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stresses anid dlisp.leiccmentIs of a pressurized toruts are calculated and detailed ?71 ~r:a 

results are Presented.

111 shell of revolutionl is t"n iinporrilitt structural 

elei'lent, and the literature devoted to its analysis is extcTn'iivC.  

Ivith rfe,,rcl to aiyreiCdeformation, various mnethods have 

beenempoyedto bt~n soutias f thec bending theory of shells 

of revolution by mcas of the IT. IIc;55,Cz T Sfe_ 1 cquotionls.  

For exa-mple, Nagiirli and Dila[112 use asymiptotic integra

tion; Lc-limann (2], 'Mibz [3], Elimngbei 1[1, employ a direct 

Dumnerir' 1 intfegral ion approach; Gallitly, et al. [51 find the solu
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*o- direction of 4 

to, to, n =ullit -. , tangecnt to 

lh , ` il = 1r i. ,dii of cureva-,t 
tuil Imiddle surface 

(list:' of a1 point on] 
ýIlb Snrfnvcc fenvIll 
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11p 'O Ilao'llj 
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tion. for an ellipsoidal shell of revolution by both the f'-iC 

eneand the Itunge-Kutta. mlethod; and Penny [01, Ila("!U-n 

et al. [7], and Sepotorki, et al. [S] utili7ze the finite-differCý:iciC 

technique. A numnber of a.ddition al references which ceial wit!.  

the solutionl of the 11. Reissnar-Meiszfler equations can b2 foundt 

in the plapers cited.  

For problemis of bending in the absence of axialsvrnt ya 

reduction of the -Overn~ing equiticans of arbitrory shellsQ ofrsl

tion to a. systemt of four stecond-order differential eciuaý'Iozs in

volving four unknowns has boen carried out by BcQKx i: nd 

Radk,.,..ki [0]. A method for obtaining the solution. rf thzSa, 

equations is given in [9] which is an extension of that eC~np~oyel 

ini [71 and [S]. Further-more, treatmnic ts of nonsym'n-etric2 

deformation of shiells of revolution are found in paars __y Gzet-i

berg andl Bogdanoff [101, whare a system of flrst-ordmi 1.1',ii 

equations for conical shell's is d~crived, and by Steelle [111]:

Schile [121, where solutions of certain typcs are eo ire!2c'1 ,by 

meanis of asymptotic integration.  

Amiong the pepors which employ numerical anal rzis, twl (I"-

mont of middle surface 

00, fib ngle of rotation of nor

N., Poe p = coniponcnts of mechanli
cal surf:Ic. loads 

inje, no conlipoctiets of rnomnent 
Of surface loq ds 

.71, 71 7, = tcmlperaituro, inlevemctit 
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sultants 

NO, ijyo, nteclanI1a:1 stress reskilt
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St r -,- v.  

i~~r~~eerintI~~~ clo ArbdS~ncI 7 lowindary ,vlttnctproblin of defo r-,nationi of a0oa niysnmem csili 'IX 

Yule ulliv:rsilyl . ./-ikc ; 

How liuven, Ccn,. erSoa e sVsteM of first-order oidinniiny di.Lfcrcniticl cqeqntioins wihcnb ~r 

Morn ASF. Iforcuvconls"Ient linear t/di.- lcorv of shells. The dep, ndron varitbhs ma, ::-J in! 

this system of aq.tiu rc those qunif ie whI peri h i~~lLea~ 

ontonS on, (I rote tionolly synzflC2/i edge of a shla!1 (f;j nln ~. u: 

vicmthod of souinwii m~zines thc edvantages of both thrc dirct inegatom a;: fx 

f, n ite-difecc apoch is tlczvclopcd for the analysis of rotationa"lly sySAc CPshel.  

T'his viethod eliuninnlcS the loss of acccuracy encozznicred in. the usual flappl'Ca1i:fl cf ':

S �*'* .  

of En'

x, 
.



fvi-'.t. ,eLJ.,id., of soduLiri of the bullid:%I'y-valdu pr1olem of 

• udcf ii:rthri I f Lhi( li -,,ll '. lu , I, r ,, ' , - '. .c i ýe ;.: 

t.i [' 5] (h (le finikte ! dif;:rtnrcu . ouch [5 9]. WIJle tle 
, 'direct nr~tE',~cth approuih ]!:, ceitan ompý,:tant alvaiit.'c: it 

ld.;) ]:c :.crim:s di:,acdv:L:it:; i.e., vhrn the lengilh of the shell 
is increased, a los.s of acer'acy invariably raTs. his pi!I.JOze-.  

~noi wains elcraIYJ or.,-) cird. '0 1~.'ii [g]r116 0ii ý5O acCura-fcy, cocsý Il 
re.,ul t frai ina.ecoumu I ll titv erro,- i 't 'ill .. ,i, but it i*i C'uScd by" 
the subiraction of :duuost equial umrrcrs in the process of dceter

mination of te unknown boundary values. It. follows that for 

every set of geometric and material parameters of the shell thcre 
is a ciitiral lengtih beyond which the solution loes -i accuracy.  

The advartAge of the finitc-difference approach over direct into

gration is that it can avoid such a los of accuracy. It. is con
cluded from [S] that if the Slution of the sysC;te of -aIgebraic 

equalmni, whiich result fiior'zi the finitu-dil'ierciI1e Cquatos, is 
obtained by means of GauLssian elimin ation, then no loss of ac

curacy is experienced if the length of the shell is increased.  

This paper is concerned with the general problem of deformia

tion of thin, elastic shells of revolution, symmetrically or non

symmetrically loaded, and with the development of a numerical 
* method of its solution, . employs tile direct integration tech

nique, but eliminates the loss of accuracy owing to the length of 
the shell. The method developed here is appl*icable to any two
point boundary-value problem which is governed within an in

. terval by a system of rn first-order linear ordinary differential 
equations together with m/2 boundary conditions prescribed at 
.Fih eend of the interval. It is shown that the boundary-value 
. -roblem of a rotationally symmetric shell can be stated in this 

form for any consistent linear bending theory of shells in terms 

of those quantities which appear in the natural boundary condi
tions on a rotationally symmetric edge.  

The niethod of this paper offers definite advantages over the 

finite-difference approach. The main advantages are: (a) It 
can be applied conveniently to a large system of first-order dif

ferential equations, and (b) it permits an automatic selection of 
an optiihuln step size ol ,,agration at each step according to the 
desired accuracy of the solution. The first point means that the 

equations of the theory of shells of revolution, characterized in 
terms of first-order differential equations, can be integrated 

directly, and further reduction of the equations to a smaller num
ber of unknowns is not necessary. The second point seems to be 
of great importance if a truly general method is desired which is 

expected to hold for arbitrary loads, shell configurations, thick
ness, and so on. With the finite-difference approach, a meaning
ful a priori estimate of the step size is often difficult, if not im

possible, especially when rapid changes and discontinuities iii the 
shell parameters are encountered. If a predictor-corrector direct 
integration approach is employed with the method of this paper, 

then the step size can be selected automatica1 !y at each step 
which ensures a prescribed accuracy of time solution and optimum 
efficiency in thl! calculation.  

The unetio.J 'iven in this paper can be divided into two parts: 
(a) Direct int'. lion of m -+ 1 initial value problems over pro

selected segr- •,r the total interval, and (b) the use of Gaus
sian clininati. thie solution of the resulting system of inatix 

equations. T3: .1 part of this method is a generalization of 
that ih is, , d over the whole interval in [2-5]. Here, 
however, the -.Jue. problems are defined over -cgirents of 
the total iiitc • lengths of which .rc within the range of the 
applical inity I i rect ilute, ration a~p'proach. After the initial 

value probl"n . integrante'] over these se.mcnts, continuity 
condithiuns oni variables aire wrvitten at the ci poilits of tihen: 
seginents, and they conr:Ititute a siiul[:.neoums system of Ilnear 

atrix eq l:,ti,,.':'. This i'i "I of Ii,:1trix\ (:qI:tltin :w is thco solved 
dilcvtly 1." 1,."- .., of (an. i: dan .li,ia ,o . ThV e r.:llt. i.; that the 
dirt",.'{ ot I". ,: nm, u 'tho,l i.. e~nl•:X',c :',,i~ : i '." . t:;n toi'n, the're 

i6 16A .. a[ ,, ., e " -:': ;: li hr: I:; of. theo s"','mcnt; : 

uzIcft''led ill .:lh a way tht:lt thl n i k , , :it of the i(O iti::I vazle 

])i) "r nr . :'c le.t tur icic ly : :, l. A ro;i\m ,imit l, c'. r it!

.ivc u ru i Ir Ihu thIe IIli:[ur ],(:I I h ',l t)hIe. (If tie :W r I Itnr' 4C I cII 

1i1 the ap11lic:toil ..•1.1i.; uclihd to tlt' ' :n y:r hr of r,,tnirraiy 
syrniniiric ethcils, the bomndary-value prol.ermn i.- formu:lated in 

teriis of fn.n;t-order onldii:iy dit'firCItiat Ce ui ,,niriis. For tisii.  
ltrpuoae, starting with tjie equations of the.llnc:-"r ,lascýsd ljcr-.  

'rgie�r�rr3'of shels iii 'hiclith.e fliermna etoo i e ' n.lh:, fcrtsI.  

a .,,le'1 o, ctnmcins -s dIri\ ld in Oie form of elig.ht trti:rl dif
fereniti:dh eqtiationis involving eight uirkulowuis in such a nuaniter 
that. the systeimi of equations Crnritairns no derivatives of the uIla
terial parameters, thit~kncss, or principal radii of curvatrure. The 
absence of the derivatives in tire coetficicnt. of tile differential 

equations pm its the ealcultIti iu of tile ncefficints at a minut 
withbout regnrd to the values of the shell parameters at precediog 
or following ,oints. Then, as'ennundrig icplar:nhility N. th reilwn.t t') 

the iiidcecndnt variables, tile (I:.-sired system of[ eight fi -t-urdcr 
ordinary differential equaltions tis Obtained which t,,gethcrr will, 
the boundary conditions on two edges of the shell constitute a 

two-point boundary-value problem. The derived system of 

equations is applicable to rotationally symnnetric shells Awith 

arbitrary ,neridional variations (including discouitinuities) in 

You;..'s modulus, Poisson's ratio, radii of curvatu-i , thickness, 
and coefficient of thermal expansion. While such a system of 

equations is derived in this piper only for one version of the 
classical theory of shells, it can be derived in the same way for all 

other consistent linear bending theories of shells, including those 
which account for the dynamic effects, transverse shear deforma

tion, nonhomogeneity, and anisotropy.  
Finally, with the use of the method and the equations given in 

this paper, stresses and displaccments are calculated in a thin
walled torus subjected to internal pressure. The solution shows 

that the meridional membrane stress is almost identical to that 
predicted by membrane theory, but that the beniding stresses 
even for a relatively thin torus may not be negligible.  

C-2 3iin'ry Pi , L Msiý Equtý i n,! , S 
The position of a point of a shell of revolution is given by the 

coordinates 0, 0, r measured along the triplet of unit vectors to, t, 
n, respectively, as shown in Fig. 1. The shape of the shell is de
termined by specifying the two principal radii of curvature Re, 

Re of the middle surface as functions of 0. Instead of Re, it is 

convenient to usq the distance x from a point on the middle sur
face to the Z-axis; from Fig. 1 it follows that

r = Re sin 4 (1)

If the generating curve of the middle surface is given by r =r(z 

then

x
ri:. I v1.c:s:e.1,,i c h l r, voI:!;.,I



(C"ir)

i.',12 r t

(2)

The fol,)\. zng aiv.il,3.; re(llil Cd freqtoiIt diftl.rentiation (4 r (or Ro) 

with rc- , ;t It 4, rind it. i-; co:n to exprc-;C thiO derivative 

by the CowI ;:i, relot ion

dr - R eos41 
de1 (3)

The d 1plce',lent eulponenis of thei, middi.ý surf '•e of the shell 

and the rotatlon'; of the normal are defined by the cxpiesýion bf 

the displaceient vector U of the form

U = (u, + Pjl)to -+- (u0 -+- 003o)t- + wn (4a)

The shell is subjctcd to 1l1- mchanica! load vector p, which is 

measured as force par unit arca of the middle surface and written 

As

(4b)p -- p7o + pots + pn

and the momne:,t vector ni, which is recosured as moment per unit 

area and given by

m =-- -rz~. F +neto
(4c)

With reference to Fig. 1, equations (4) serve the purpose for 

establialfing the positive directions of the components of the 

displacement and mechanical load vectors.  

The tempeiz-ture distribution in the shell caused by some ther

mal loads is accounted for in the usual manner by means of the 

integrated temperature effrpt of the form 
h 

T0 fp, 0) f T(O, 0, f)dý (5a) 

_L2¢ f) r -•,0 ýý(b 2 

A 

~ 2 

The derivation of a new set of equations carried out in tile next 

section is bsred on a linear classicl theory of shells given by 

Reissner [13]. When referred to arbitrary shells of revolution, 

tile ov(;i'i;iri, system of cqu:.tions of [13] can be written in tile 

following form. Equation's of equilibrium: 

N6.0 + - 0 -1- 2 cos 41 NCO + -0 sin 4 + rpa 0 (6a) 

,.o -- ,,N., -+- (No - No) cos + >Q + rp• ( 

r r 

Q0.0 + Qý, o+'+ -t- 0•.Cos N' -$o Sin ¢-,4 --• N' + rp 0- (7) 

Ao~ IF +7 M2. t " c o s 0 2 A e,'i e - QO e +t - 1 2 ,' e (& 'l) 

r 

r1 . . ~.. lh 41 1c.), 0 (S 

r: lIi

(21• , = . . -)
....~~~~~~~~~ ~ ~~~ ~ .. ...,...,.....,-..,.-. ): .....-. :,-:,.:...",.--'...--v) ( -t )DT, .,Oul;) • d z .,. , . . , . .. •? . " -, ... ", "..',.''. . ": ": L

." - ( -4- W) 

1~4 

1 

S- (u.e - U• ¢o. €) C - - u+ ,1, 
2 re

I" e -1 (96.0 + ~ cos 1 
r 

1 

1 1 
2: = - (/j%,o - Ps cos 4') + - ,

I 7 + sin U 
l"r 

1 1 

= ~W." + l

(lir) 

(12a) 

(12b) 

(12c) 

(1.3a) 

( 13b)

The ;eitive directions of the stress resultants in tbe' foreoing 
equations are the same as the corresponding stresses on the edge 

of the shell. The definitions of the stress resultants are fould in 

[13].  
The order of the system of equations (0)-(13) is cight with re

spect to 41, and consequently it is possible to reduce (G)-(]3) to 

eight first-order differential equations which involve eight un

knowns. If the eight unknowns are those quantities vlých enter 

into the natural boundr.ry condition. at the edge -- coxst, t!an 

the boundiry-value prob!em of a rot.tionally symmnetric •hal, can 

be completely stated in terms of these unkncowns. For t.is 

reason, the eight differential equations, derived in the fh e.i.g 

sections, and the eight unknowns are called the fundn.ne:;t:d. set, 

of equationz and the fundamental variables, respectively.  

According to the clae-sical theory of shells, tile quantlt*;c. v,!.- h 

appear in the nratural boundary conditions on. a rotation.'ly syv

metric edge of a shell of revolution include the effective s.r 

sultants N and Q defined by

r 

Q

(1 4)')

q'huill~ the funlol:'nl~nta~. ~~::! i~v:o-, - vh.l 1 arc co i:t: P, wth 

•fl f.- I f.  

fr.:.h', ;1, 0~ l-. f 1)" h I'm,:,:, " "fth r :,,,

t I' .)



* .* 1.  
* w.k �--* tf.

A LIj.i ji oi l'ý,r , it, i.i twcc-m v.0 to ex .'wv.3 No~, Ale, AI0c.. inl 

w~fO e l fum('awneo:.I Faibv; rom, (11a) it follovis tha:t,

. I, t'a :1 
-'u - I/,A - - 1.  

r r

No \ -*- (wrsinle + 1.1".0 [- .tz Cos IJ 7... I N.o- ( + rT (22;,)

- cK(1 - 1'1)7'0 (15) 

and flOnl (10a) thaLt 

Ale vMf + D -Y2 I- 10.0, d -Sil 10. + go Cos4) 

Elimination of i'o.~ and wO, fromu eoamtion (12c) leaids to an exvpros
sion for 111,ý in the form 

31e~ LI) - [2flo.e + 2 Cos 4,teec

+ Hue cos 4, - Juý,,o]
LD sin 4, (7 
K r

where 

L 
+ in2 4,D 

In the derivation of the four equations of the, fundamental set 
which involve thle derivatives of the stress resultanits with respcct 
to s, the use of (14) is es~eutial. Elimination of QO from (Ga) and 
(8a) by nneans of (14a) leads to 

N.,, = U- Mo I- r 
r r 

-i2 -Afe.o _ -O -oin 0 (18) 
r

2  1* 

Similarly, elimination of QO from (7) and (8a) gives 

2 cos4 Qs Bin4 

+ No - A!. 0  -- oe(1) 

Solving (6b) from N,,,, there results 

A'. - N,5 + 71o.

--(Ne- N,ý) Q- P 
Rr

and it follows from (SV' 

2 
= - J

(20)

(Afo- M) + - z,%(21) 
r

111wrerc~r ne~~ ,A* A Q,. icr linniin.'ted with th, Ilse of 
(14).  

''efuil jj:- utJ sEt . q'trSonLsof (18) -(21), where 
A's Ab 'n aj'd ~dirtn:fy in' t'-nor of tho udn'u~ 

1';3 jw-yin of (15)-(1'4 ")d::n fimýr -:1,1ini j'niin 

(1'forwin: o!L of :' (,f ~!;';e, 'c~ i 1(1:01 oif

LI) sin 24, 1 / IJ(i , KO r Kr 

+ !,5 fr -- ( Ile 
r KCrKr 

2 V '-!W 2). (2?2c) 

(I - Kr'e 

+ A4+ (1+ O'Th (22d1) 

.Q D( +T - -' 21)D Cos! 4 

+ (I + P)Kr2 sin2o, it j-f (I -v) co~lLDJ-~

I r2 I r 

+ 1+ ,) K sin 0] +~ DC Iu + 4Bil- LTI!ct'4 

-D(1 - v) co4 1+ v +j 21)ý,,xo0  + UiA'. - 11.6 

LD sin 24, coi I 
- - -. Q - p P10 on0 

Kr3 r 

r (.  

r2r 

+ QI-)o4 (I.LJl+ + )] * JI 

Ir r\ Kr 

- -~l -I")J cosT 0 (22f) 
r 

RLD-

(.1 1 ') (mný A
))::i 

r

IO Z. '

V 

r r



("• r2 ( , ,.  

__ --.+ , .. .27;!0r J 

, , ,-/1 /.. K rr 10_1, k ""4i ' 

- D(I -- A Coso~ + 1) P.) 

+D 1 v) cos! 4P 2Ljfl'A Q J N.  
030 4 _ s_ Cli uos.0 

-(1 - ') -- - - (ft - PT) . _ 7', (22h) 
r T" 

Equations (22), (14), and (15) to (17) determine all unknown 

variables exccpt. Q6 which c'- I.e found from (Sr) and writ ten in 

the form

Qo - Ale0 + J110.. + -__eý, + ,'s 
=r r

(23)

By calculating . from (17) and making use of (16), it is possi

ble to express Qo directly in terms of the fundamental variables.  

This expreasion is lengthy and contains derivatives with re.pect to 

s of the shell parameters. Since Qo does not enter into any bound

ary conditions on the cdge s = const, it is pref6rable to calculate 

Qo as the last unthnov.n directly from (23). The derivative of 1fo0, 

can be easily obtained by num-nrical differentiation.  

The procedure for the derivation of an equivalent set of equa

tions for other linear classical theories of isotropic shells is identi

cal to t•at given before. '"P-- general anisotropic and/or non

homogeneous shells of revolution with rotationally symmetric 

properties, the fundamental set of equations is derived in the 

same way as (22) except thLt (9) and (10) must. be replaced by the 

appropriate'stress-strain relations given, for example, by Am

bartsunmyan 114]. Otherwise, the derivation is straightforward.  

For the improved theory of shells, such as the one given by Naglidi 

115], in which the effects of transverse-shear defornrvation are 

accounted for, the following ten fundamental varialk are re

quired: I,, iq,, uo, fPO, 05, Q¢,C,IN, IVO. , l, 11. Since . Q0 and 

Q6 appear in (13), the elimnination of Q, from (Ga), Se), is 

done by mcans of (13a). The required equ[ations ft. ' riva

tives of the generalized forces are obtained directly f five 

equations of equilibrium (6), (7), (S). The remainii -:1ua

tions are derived by following a procedure similar t, the 

foregoin'g.  

11.9 " 1' n ýn,,I., (IS 

For shells of revolution which consirt, of comr.  

circles, the surface loa-ds are periodic with respect 

period of 2-, and they can be assumed to be of the fo: 

Isil 1c0,,0

lct~s 110ý 

jill 1y~ ::," if ,7 in (21) ": h" rl."2 ,!q " i, 

tlo .i~t I .: •. rtl "Ion' " .-l '.: ( ' a ;!f : 
• ,.1 . ,

1;) 

(2.Ic) 

., ('in.()

S ,pj) nAhle V,,l kiti,,i of ' '. rrT. p, ndi .• to t v' -V til e 4' f 7z i 

(241), arc-thuln (0& i:nviI il..-: fw rl 

"".. , ,-fl . , (25a) 

7. !~~'A~. ~''~ ~ ou ~j††††

(25b) 

(25c)

mo... "Q " t : 

,, T.,) .in ,nO 0 
{;!,N}-- {.o,^'• !os nof

The s-dependent coefficients with subscripts It OIL the right

handl side of (-9,) are governed by a systeml of equations whf-l is 

obtained from (22) and, after using, thic assumption that thc shell 

is thin,3 can be written as

I

v cos • n " =~n, -- -Usu.' -t¢• :: -- p 
7 r 

+ N.1 + a(1 + v,)Tc,. (26b) 

K* 

D sin 24) n cos 0 
uo, K wA= r - ue,+ 

r
3 r r

2 M sin (P . 2 N Kr'- (i - v)K

",12  Piz siil 4) V Cos , =Ft -- 10,i •", 

+ M•+o, + a(, ,. (26.)

--- [(I +l ±)n 4 D 

+ 2n 2D cos' ) +- (1 + Y)Kr2 sin" 0]w.  

+ -U v) (I +v)Ksin4) - "i2DJ 

v ~ ( I + P)Db Sill 0 + (i + )K sin o; lie.  

cos € os 4' , "U 
+ n'( - v)(3 + j')D - r-- S . - Cos + , 

nD sin 2_ _ N ,n 
:F-Kr

3  --• M¢ -p •- n 

-- a1 -v" -- Ksin T€.+ T,. (6.r 

N . = (1 -- v ."--- (I + l)K sin4 - - JD I", 

1- F 

-1- -- (1 + .)7s co,• 4 +- , , 

( - v:)nK c-is <, n 2(1 

rg r! 

0, - -0 A',:.: T -- , .  

& I') * j -r r

1,., (:"?).

(2C" )

(26.-)



- •,,,.., -- a(,--- )�1- 1) ' , 7",, (2C6f) 

S -I.. +- (.--)D. s 6 1-(1-0 -1 )Ksm S ,( 

:( '-- -i- co03 (1 n- ( .. .t i, 
tr2 

:b - co- ^%.. -1- Cos -- + 

P 2 cos ý 

Va in S sin 0 
.. . -T1 1r

(2Gg)

= ,(1 -- v)(3 + v)D C cs - -,, -- JDuO, 
1--_ F sin¢i 1 

-E nD os. + ) -sr -- n.  

+ D + P) cos- +- 20-&. + Q 4- 2nD sin N 
r2 ["--] Q Kr" 

-- (1 -- ) --- ,, -- -- a(1 - v')D cO TI,, (2670 

The double signs in (26) correspond to the top or bottom trigono

metric function employed in (21) and (25).  

The quantitieo which are not included in the fundamental 

variables can be expressed by means of separation of variables by

!111C doutibie fl:'. • 3., .r 0i, t I t ho p or ,tm O I t tr'?: 
1101nC', Iic ftl;wt ol C;~ , III (.I)k , (".5*), aid (2.7).  

'J'he rc l:iindu r .1 thi,; Jlp'r i. ;. Ofilh t . : l oi " 

the systcm of uc 1aia11111 ( .26), bl.,J,, to the b,,,ii (.  

on twoed-ges s.-" eoust, it. shouhld be n,,ted 'that, aftcr thce.,CN)AnI- .  

sIson of tile loIda.i ill .oU n rtI'- , .the (,luti.,a to (,!;) L; ot-,in',d 

for cach intcgral val-o' of n r.epa.•irly, and ice thlii rhit i,-arI are 

Su crhn poie[I) to for t k ]"uurie r "cric.u 'xl r, Osion f'i' I, .II O:. lr V-' 

variables.  

RcOCuiotn to hliDil 'JI!uo PrV21iis 
This Section is concerned with the redurtion of :t two-point 

boundary-value problem governed by

..... . A( )y(.r) -I- ](-) 
dc

(29a)

to a series of initial-value probleiivs. In (29a), y(z) ih; an (in, 1) 
matrix which represents m unkuown functions; z is the inde
pendent variable; A(x) denotes the (m, in) coef~iient, matrix; 
and B(x) is the (7,, 1) matrix of the nonhomogeneous t.rras. Tire 
elements of A(x) and B(x) are given piecewise continuous Nie
tions of x. The object is to determine y(x) in lIhe intecval a e_ x __ 

b subject to in boundary conditions stated in terms of linear 
combinations of y(a) and y(b) in tile form

F.y(a) + FYy(b) = G (29b)

where F,, Fb are (7n, ??) matrices and G is an (?i, 1) me-trix, which 
are known from the statement of the houndary cond-itions of the 
problem. It should be clear that the governing system of equa

tions (2G) derived in the precedirg suction is stzted in the form of 
(29a), and that the appropriate boundary conditions for a shell of 
revolution can be expressed in the form of (29b).  

Let the complete solution of (29a) be written as

if - rN C nOl 

f~,, Aloo Qo] QC,1 (sin nO 
JiO~, 165 e tc, 3 7101no

(27a) 

(27b)

Y(W) " Y()C + Z(W) (30)

where the (m, 1) matrix C represents mn arbitrary constants, and 

Y(z) is an (mi, 7n) and Z(x) an (m, I ) matrix whlichr arc defined as 
the homogeneous and particular solutions of (29a) in the form

where the s-dependent coefficients with subscripts n must satisfy 

a set of equations obtained from equations (14)-(17) and (23) in 

the form 

Nc. = v , - (1 0- v) K (w,, sin 4 + --.. cos q5 :f: nuo,,) 

-- a(i - P')KT', (28a) 

= VO, + (1 +/p2) W., + N, cos r r 
sin ¢ ) 

d- ni.... u,, - a(1 - v')DT,,, (28b) 
T T 

+ JJ cos 97 2nf,3..) + s- -r- N,, (Ms) 

( T. _ M,., -t- A!,, ... -I+ ,'•, (28d) 
r 

•- - . ,,( .. ,w:

ii (� ('.:;f)

dY(x) . d= A(z)Y(x) 

dZ = A(z)Z(x) + B(z) 
dX

The initial conditions for detcrmniningi Y(x) n. Z(x) are

Y(a) = I 

Z(O) = 0

(31a) 

(31b) 

(32r) 

(32b)

where I is the unit matrix.  
Evaluation of (30) at x = a leads at once, in view of (32... b), to 

C = y(a), and then (30) at x = b can be written as

y(b) = Y(b)g(a) 4 Z(b) (33)

Together with (20b), equation (:Vý) constitutes (i sy:A.,a of 2,m 
linear algebra ic ecqu:ations frmw whi. h the 2nt u;r,! ' f(e) 
and i (Q), tre det -rhied. O:'.e !/C") is Ln.rw1,, hih duti,, :,t 

Pny valuae of x is O(A:.inlcd fron (2,0) provitr.,l t l hat t,:.r,.s of 
}'(:) aril 7(y) et. flt.'! ]ali.ut :'. r .7 " st~r, .1. 'ill'},i: ' ' m~ ~ h 

redloi n (f a tw ]- I i,{.. i , , .,y- .' , pr,,'!,. d. 1 : ; ( 
to z, I d 7;- :!m ]:.Y •: 'i..nby (H .) 

by I.r.of th" ,...... ..  
S I ., ,3 h 1. , 1h, -I : , I :i.1. 'j. re " ,II.t f1,- " - . 1,i:' 

ji ' ivi ,' rn 1 0 I.' n ., , 2! :'. fn. , (::2.). X\Vl." t;-,' .::i! , •

:: a) KO i i
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Fig. 2 ?o~clio5 for dMiv ion of tclul inlcrvac irlo s$ol 'nlIls 

tions (26) for shells of revolution, it is observed thia the elements 

of Y(x) and 7(x) increase in lnagnitude in such a way that if the 

length is incrcased by any factor 7l, then these solutions increase 

in magnitude approximately exponenti-lly with it.  
Consider, for example, IL -xi.syminctric ca-e when the defor

mation in the shell is caused by some prescribed edge conditions at 

x = a, say, by M'(a) =1 and et(a) = Q(a) = 0. It is reasonable 

to expect th:-t the corresponiding solutions at x = bbecome smaller 

and Smaller wLen the interval (a, b) is increased in length. The 

connection betwveen y(b) and y(a) is given by the matrix equation 

(33) with the following magilitudes of the elements: y(b)-small, 
Y(b)-l'rgc, y'(e)-undty. Clearly, the only way that the matrix 

product of (33) can give small values of y(b) is that a number of 

significant digits of the large values of Y(b) subtract out. When 
the length of the interval is increased, Y(b) increase, while 

y(b) decrease, and ilnvariably all accuracy is lost at some critical 

length becausý all significant digits of Y(b) in (33) are lost. This 

simple example serves as an illustration for the los:. of accuracy 

encountered in the analysis of shells if the foregoing reduction 
technique is employed.  

A convenient length factor, defined by 

ft= 1[3(1 -- 0)]/'/(R)'' (34) 

where I is the length of the meridian of the shell and R is a mini

mum radius of curvature, can be used for an approximate esti

mate of the critical length of th-e shell. If the solutions Y(z) and 

Z(x) are obtained with a six-digit accuracy, then the foregoing 

procedure gives good results in the range P •5 3 - 5.  
However, thf loss of accuracy of the solution can be avoided and 

shells of revolution with much h1.rger values of ý can be analyzed 
by means of the direct integration technique if the multisegincnt 
method given in the next section is employed.  

Let the shell be divided into M-seglnents (denoted by Sj, whlere 

i = 1, 2, . ., M) of arbitrary length in each of which f < 3.  

Denote the coordinates of the ends of the segments by x =x, 

where the left-hand edge of the shell is at. x = xL and the right.

hand edge is at z = x.v+j, as shown in Fig. 2. In anlalogy to'(30), 

the solution in the total interval x, :5 z :5 x.irMi now can be written 
as

y(x) == Y,(x)y(x,) + Z,(z)

,y.. .( - 0

lh'uhi;'.(:;',3u~ly'•/',l clmc~:•of Y('l) At th 11(i : .' 
i :- 2, 3, . 1). ."f " 1" . lihc t.Mhw ,;,I-nitrix cq : 11,: : " , 

tahmed froin (35) 
yy 11. (.',) *v; Y :;i',)y(•,--X-; + '"('37:Y"'; 

,vhe-rcx i ,m ,2,..., . .Equalions (3/) involve M + I unb"invwn 

(ti, 1) iatric: y(xi), i -- 1, 2, . .. , M + 1. lIfv.evcr, if the 

qwu:titics Ire.-lcliL- d at tie cdges of the shell are the fund:" wicnlt~ll 
variables, then tl'h. tot:dl number of unknowns is redleed b"y In, be

cause in/2 elements of y(,-,) and v2/2 elements of y((r-.M,) are 

known. The tane is true if thc boundary condition.' :re stated 

in terifs of linear combillat n:." of the fundalicntaL valriab,:L- i: the 

form of (29b). In thi" c:ise, y(.r,) and y(x.lr i) should tie prominlti

plied by nonsing•ular (m, m) tranlsformation matrices F, and I"-.t, 

rc'•ectively, so that the elements of the products contain the 

quantities prescribed at each edge. After eliminating y(x') and 

y(x.Ifw) from (37) by means of these products, it is concluded 

that (37) will retain its form if, aftcr integration and before sub

sti!ut ,lip into (37), Yl(x2 ) is p1simultiplied by F!-. while 

Y.,u(z.-.fq) and Zi.,.) are prelnultiplied by Fi,4r. Ju the 

following, it wvill be regarded that this transformation is carried 
out and that y(x1 ) and y(xjM+l) contain among their elemcns thlose 

qunntities which are prescribed at x =ý x, and x = xsr.4, rc, pec
tively.  

Thus for all boundary conditions in the form of (T2.5), the sys

tem of Al matrix equations (37) involves exMctly Al times m un

knowns, and formally it can be solved by any method which is 

applicable to a large niumber of equations. However, the. success 

of the procedure given in this paper lies in the application of 

Gaumsian elimin-atiort directly on the mnatrix equations (37).  

First a rearrangement of elements is performed. Since those 

vt/2 elements of y(x,) and y(x.,+l) which are known through the 

bound'ary conditions can be any ln/2 of the m-elements, it is 

necersar- to rearrange the rows of y(7i) and y(x.sf+) so that the 
known elements are separated from the unknown elements. It is 

assumed here that the first m/2 elements of y(x1 ), denotcd by 

yi(x1), are known and that the last in/2 elements, denoted by 
y2(x 1 ), are unknown. On the other hand, yl(xZM+) are the un

known and yý(xMr+l) are the known elcmcnts of y(x.v,,). Since 

the order of the variab!es in the columnn matrix y(x) is arbitrary, 

it should be emphasized that this separation of elements does not 

involve any restriction on the boundary conditions, and that any 

natural boundary condition in the form of (295) can be prescribed 

at each edge. The separn.tion is achieved by a simple rearrange

ment of the co!umns of Y1(.2) and the rows of Y.,;(xa.i+i) and 

ZM(,(a+) after integrating the initial-value problems defined by 
(36) to the ends of the segmenits S, and 3.1 and multiplying by 

F1 -l and F.,n+1 as 3tated in the foregoing.  
0; - it is established which parts of y(x 1) and y(x.:tr,) are 

knc,., the continuity conditions (37) are rewritten as a parti

tio.. ,. trix product of the form 

Y , = L-i!); ",(J Lx ..(z,)_ ] X - (-i._l 

(33)

(35) SO : 
giv;

.1a of the equations (37) turns into a pair of equations,

bhere 21,(1) aid Y,(x) denote the matricea :-ponding to l'(x) 

and Z(x.) in Sc.ll :eg)lent Si(.,i • x < xi < ) and are givc:i , Y )'(xi) -- Y (i+):(x) "- yb( , y.T) = - ,(.i ) (39)

dx 

Y I 

elx

(3 T'~ . .:l t, !ý. a ,%ir u]:i• .:: "•'oni of 22[ liC:tr . , 1.! 1;'i: cVl::

tier ' in \.Yl l:.ju,.! ,.,% ;: '. 'i(.r/,) cxhl :,"! ) , 

knoV'. ': c .,") ,"111:2 I .t.%( 

(:,t~J) l:n,.,...., t, al,, c!:::.' v ..,4 ,l ,.uu ,V, : yfx.), " i 3' 
M ~ ~ ~~~1 2 .,.. .(.') ih ,•..., If.



]Jymc.:. of (r.cu:.:'ian cliniic:ctio, I ,sh'i) of eq1:1 ionts (39) 
':s'lil:1l t ,• to theo fol II

I - 1  -1 0 00 0 0 

:.:,"') ".. I : -:-0:- .:0 0:"9 

0 0;.. . 1 0 0 
0 0 0 C -I 0 

0 0 0 0 E4 -

0 0 0 0 0 CM

where, the (ots indicate the tri:cigularized equations (39) with 
i =3, 4,..., Af -- 1. The (7/2, m/2) matrices E-',, C, are defined

by

and for i = 2, 3, . .., Mt 

Ei = 1"7 + YiCi-t-i 

Ci = (Y,• -d- Y'C•i-, -1A') 

The (mc/2, 1) matrices /A ,, 1, are given by 

Aa = Z -- Y23y.(z1) 
B1. = -Zt - Y'Fuc(zi) - Yl'-A 

_ mnd fort = 2,3, .. .,1" - 1

(41a) 
(41b) 

(41c) 

(41d) 

(42a) 

(42b)

Ai = -- Zi'- Y'lC- BJ-. (42c) 

Bi = -- Z,2 - YCS..-t-ti- - (Y' - 1''C,--)Ei-'u (42d) 

Finally, for the Mth segment 

A t= .- Zatf YMaCM._i-B.J.Vl (42e) 

Bt = Y2(xat'4) -- Zm' - YM?
3C cc-'BM

- (y', + Ya1,,C.ct_t-mr )E:,r-'Aj (42f) 

For brevity, in place of YjGix.ci) and Zji(xi+÷), the symbols Yji 

and Zji have been used.  
By means of (41) and(42), the unknowns of (39) are obtained by 

yi( = C,- mB:.t (43a) 

y2(xM) = E~u-'[yi(zau+,) + A.1f] (43b) 

and fori = 1, 2, . . ., Ai - I

h/c(XM.-_,i) = Csr.m_ -'(zu:- ++ B.up-,] 

M-')= Ev-•-L(z.-+u) --+ AM-i]

* y'•:): '

Ya(XM.1) 

y_(XIr) 

.ycz.'li

At 

A, 

1?,•t

(40)

4ý, on the shell. Such loads introduce discontinuitics in the solu
tion for the ciiirrespjnidig st-ress resultants, and they call be repre

sented at every'xi 1,y am (in, 1) discontinuity m.atrix which is 

simply added to tlc matrix Z,(x, 4 ) on the right-hancd sidh of (37).  

This feature is of great• value if shell joints are considc.rcd. Any 

discontinuity, either in geometry or in loads, is easily handled by 

requiring that the end point of a scgment coincides With the loca

tion of the discontinuity. Since integration is reatairted at the 

begin,''- of each segment, the precise effect of the disc-,, inuity is 

obtained. The prograin output-s all fundamental vaw-r.bles at a 

number of desired points within each segment, and it al-so com

putes the values of y(xc) twice; once from (43) and then from 

(35). If a certain number of significant figures of these values 

match, then the continuity conditions are known to be satisfied to 

the same number of figures. In this way, a convenient error esti

mate of the solution is obtained for every ease.  

Exam ',!: Prcssuvicti Ternis 
In this section the stresses and displacements are determined in 

a complete torus subjected to a constant internal prcssure. It is 

well known that the solution of this problem, when obtained by 

means of the linear n-embrane theory of shells, has a discontinuity 

in the displacement field. It has been shown by Jordn [16] and 

by Sanoers and Liepirs [17] that a satisfactory solhtriojt with re

gard to the displacement field for a sufficiently thin shell can be 

obtained if the nonlinear membrame theory of shells is employed.  

Subsequently, Reissner [IS] established bounds on certain 

parameters which show when the nonlinear menibrane and when 

the linear bending theory is applicable. It. seems worthwhile to 

give here the solution for a pressurized torus as predictcd by the 
linear bending theory.  

The geometry of the torus is shown in Fig. 3. With regard to 

the quantities employed ill equations (26), the two necessary 
parameters for a torus are given as

(43d)

It should lbe inoted that (41)--(43) rnucct be evaluated in succession, 

because each equation involves the result obtained by the preced
ing equation.  

Once all the unknowns y(xi) arc round, the fundamental 

variables are determined fi orn (35) at value of X at which the 

solutions Yj(,r) and Z,(x) stored d: the integration of the 

initial-value problems of " 'Th' : tion of (36) can be' 

aecomplishied by meamis r 1* --d direct integration 

methods.  
On the ba..s of the s. . ) given in an earlier 

section and the method, d . ,c ill the last ti) sec

tiolis, tllr auctlhor NIS 111, :4 co: priograun, wvlichi has 

beei cppl ied to Io:nly sI' c. gii'ti, , .: it Vallc s' of 03 

icil siicc-.'ruiy tested :, ..Alhnoix i I,.. lts. Mcle examniloc (if :a 

lcre:.:.v uloric, t s i ,'illi [J :07 is Irc 'ntil ill tr. next sctioin.  

Ttl , rc : .'c.c .,ii icc ,'R l czci y ciicili,,!rkl x.Y: Ii: ci, , incluiia.  

di. . cill :0 I1 - l "l , : o s i". It c n, m".t ' ri ng l"lc; h):iL.  

iii : . f ' " vdu'i' cf A, .' ', r Q. o f c it ! "mv '1t,' of 

('l' I.. .. .:.. ,:I v.'r ii c, .l• :ln, :11 ,c:.h' :.ic (, c - v. v,,' c:iii 

,ul Iy I . 1:i1,-1 d , on Ii,,. lIN! 7 ),i" :ci. ct Ow Y:ct (C,,lwrt-tci 

(tcI'c :. iTi' Ir., - I or i",,;. i' ( ,"I . 1 ,rc ..c i ,y m% ccii I iof Oin.  
At\iitci. I,.i-I, a.,,.tc ci,,lcit. c, !c. c, b :-'l, ccii c-jcli:iiccc I.h Ii 
.17, ' v -!. : ,: ; I..: % 1: h .1 , '-1 ,:I .

r = b 

r = a AI- b sinll

(44a) 

(44b)

Because of symmetry with respect to the plane XX, Fig. 3, thme

X -x

¢
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...90 1.1 .0 3 . -0 ,,051 7 -0.016. 1.2-19 
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144 1.720 -1 .9i5 -. 0.9108 -0.020. I.7S6 

162 .832 -- 0. ,i915 -- 1. 37 -- 0.910 2. 820 

171 1.O0M 1 .002 0. 1US -0.GO.5 3.467 

ISO 1 .9960 3.0S) 2.277 1.482 3.99-1 

181.5 2.0 12 3. S90 3,035 . NIS 4i.150 

ISO 2.10-1 4.270 3.119 1.520 4.203 

19:3.5 2.175 4. i7S 2. 580 0.530 4.156 

198 2.251 3.610 1.519 -0.27-1 3.9 3T 

210 2.0.12 -0.5S7 -0.957 -0.079 2.652 

234 3.16B -- 1.2-15 -- 0.291 "-0.065 1.273 

252 3.730 -0.71-7 -0.314 -0.077 0.41G 

270 3 097 -- 0.2-1 -0.331 -- 0.0SI 0.103

,2700 1800 900

Fig. 4 .Acridioncl bending stress cob at outer fiber versus meridional 

coordinate 5 

intergration of the initial-value problems is carried out from q5 

•0)o to 4, = 2700), and the boundary conditions at these endpoints 

"IrrM o= f P = Q = 0. For the purpose of comparison with the 

results of [10] and [17], the load parameter is chosen as pb/Eh 

0.002 and a/b = 1.5.  

'The numerical v'alues of the normal displacement, meridional 

membrane stiess ,,r- = N¢./h, and meridional beniding stress 

,,= 0,, f¢/hi5 at " = h/2 for a pressurized torus are shown in 

T',lhk 1 and in Figs. 4 and 5. Thles results were taken from the 

wiltput of the computer program prepared for an arbitrary shell of 

rvolution after prescribing the geometric parameters as given by 

(41). The meridiiml membrane stress distribution agrees very 

w-l1 with that obltained in [17] by nceams of the nembrane theory 

"fi hells and iL shows only a sniz-Al va nri ion with h/b. The de

1,, i,1'd sl;:ipe. of this cro.s section of thple tornis shown in Fig. 5 fin 

0hi,e valhes o," h/b :rrc in qwIlitalive arinecmaent with thfnsq givi'n 

I it; and [t17], liut their q1uantnlt:tive n."ocllelit Caotllo e cx

" ,I , :'s the 'alhl{' of 14/!h ks:td inl is ('x:i. )lh' ann or l ide 

h , v if, O:f Ti' , tl,; i14,3 :; ' . .' r . : ) .' l l (3 Fig.-I.  

S,,'. 11'05 f ,:" h/b - (3.,)5, v.lih r:il :: a 1 he , ll' il&3 of 

i 4:.. 4 043m I .1 , , t h (( i tl:ii l4 :4 ~ (tcImv:,tIIc :r is ill F]ir. 5.  

i", of ~ ~ ~ '1 01I "'i tl,•, 1fld 

. . . k.,".i:~ d m m ,f l ,i: : iv t n :. .. " .

I.) x I()'- .  

().02 0.005

1.2-S;.1 

1.1!i 7 

2.5:4) 

3.4 193 
4.3:)1 
4-576 
4. 6:17 
4 .509 
4.221 
2.527 
1 .209 
0.417 
0.101

1. 427 
I. 625 
"2. 1 .", 

3. 297 
4., 15 
5.24S8 15.1 

4. W;13 
4. 162 
2.481 
1.269 
0.414 
0.100

Fig. 5 Normal displacement w versus 'k showing deformed section 

Table 2 hMAximurn meridional bending st1ress and mcrsdionel mernLrCne 

stress at 0 =00 

h/b 0.05 0.02 0.005 

00 ISO* 189" 184.5") 

/T,,)X10
3  2.053 2.0S2 2.0.12 -

(o 5 E) )x 103 0.427 0.312 0.197 

100 (o,/nao,) 20.5 15.0 9.0 

It is of significance to note that even for the thiclne.s ratio 

h/b = 0.005, which for many applications would be regaLrded as 

small, the maxinmm bending stress is about 10 percent of the 

membrane stress at. the samen lioilnt. Such effects of bedii 1ng i a 

torus were previously noted by Clark [101, and they are niso in 

ngrcemient with the sttdement made by Goldenveizer [20] that 

when tie middle surface touchol s a el,,4ed-liano curve, rye, li h ill na 

torus corresponds to 4') 1 0°), 1llh,, in the vicinity of thli.- cr\1ve 

bell(d ing stresses should tm ez tcd anud the memlhr:ae theory is 

not appi c"ic.1Ile.  
'l', I,,-i t:i.'5 laye'r shownl ill Viý.. 'I is also in :. ,, m .t . i' l 

the c,iji1lia;iin5 r,,acll'i il [IN] 14 the e'ffect. tha1t /Z all'! p 

1 '( l --- -

p -- 12(i - p*-)s,



aeI *rp:id1'1i nlV, 0thn R I' Jai~ -r int t'.:c nigh

* Isul I f s'i ]$ '.lddill vnil'ipi'1'ueJ. FoSr liii; pre;.oit.  
C~al~lli P _** :1' to .1,Jj~: p f ti: l¶ So 71. Hol;e~vcr, 
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SUMMARY OF INITIAL CRITICALITY EXPERIMENT 

FOR 

TORREY PINES TRIGA MARK III REACTOR STARTUP 

Introduction 

The reactor is a movable core water reflected reactor using standard 

stainless steel clad fuel elements containing 8. 5 weight-percent uranium with 

20% enrichrnent. The hydrogen-zirconium ratio is 1. 65 to 1. 0. A detailed 

description and safety analysis for the reactor is given in GA-5400, Rev. B.  

Initial Criticality 

On January 19, 1966 the reactor was loaded to criticality with 56 fuel 

elements plus 4 fuel followers. The inverse multiplication data is shown in 

Table 1 and the loading sequence is shown in Figure 1 and in Table 2.  

Figures 2, 3, 4 and 5 show the inverse multiplication data for the four 

instrumentation channels. Because of their low sensitivity the ion chambers 

did not respond until a number of fuel elements were loaded.  

The instrumentation used for the startup included one fission counter, 

one BF 3 counter and two gamma compensated neutron sensitive ion chambers.  

The fuel was loaded to give the most compact core possible, that is, the 

fuel elements with the highest uranium loading were placed in the center of the 

core. The average uranium loading in the core for initial criticality was 8. 5Z 

wt. q0 

Neutron Instrumentation 

The standard reactor instrumentation for the startup and post-startup 

tests consisted of two gamma compensated neutron sensitive ion chambers 

which provided information to log and linear reactor power channels. A 

fission counter which supplied startup data at low power levels and an un

compensated gamma ion chamber which was used for power indication at high 

reactor power levels. The compensated ion chambers were mounted above 

the reactor core over the E, F and G rings. These two chambers were located 

at opposite sides of the core. The fission and gamma chambers were also

I I
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located above the core over the F and G ring region. Figure 9 indicates 

the relative position of these four reactor power sensing devices.



Table 1 

Multiplication Data

FC 
M

Core configuration 

i. All rods up 

2. 30 elements all 
rods up 
a. Reg DN 
b. Safe DN 
c. Shim I DN 
d. Shim II DN 

3. 45 elements all 

rods up 
a. Reg DN 
b. Safe DN 
c. Shim I DN 
d. Shim II DN 

4.." 46 elements all 
rods up 

5. 51 elements all 
rods up 
a. Reg DN 
b. Safe DN 
c. Shim I DN 
d. Shim II DN 

6. 52 elements all 
rods up 

7. 53 elements all 
rods up 

8. 54 elements all 
rods up 

9. 55 elements all 
rods up

3373 11.63 

4574 15.77 

7284 25.11

19936 68.81

CB/min
48 

8o8 

682 
583 
587 
670

BF 3 
M

16.8 
14.2 
12.1 
12.2 
13.9

cts/min.  

290 

467 

439 
452 
427 
442 

610 

765 
832 
658' 
824 

832 

2898 

1539 
1845 
1153 
1597

1.64 
1.51 
1.55 
1.47 
1.52 

2.10 

2.63 
2.86 
2.26 
2.84 

2.86 

9.99 

5.30 
6.36 
3.97 
5.50

0.188 0.157 
0.251 
0.181

6769 7835 
5639 
7781

lhZ.O 163.2 
117.14 
162.1

0.0859 '23833 496.4 

0.0634 37000 770.8

0.0398 66100 

o.o145 194000

1377 

Iv041

10. 56 elements all 
rods up

on 25 see period

Fuel element in A ring.

l./M 

0.609 

o.66o 
.o.640 
o.679 
0.656..  

0.475 

0.379 
o.348 
0.4140 
o.351 

0 0.348

0.00709 0.00612 
0.00851 
o.xo616 

0.00201 

0.00129 

0.0O0726 

0.00247

2

0.100. 17333 361.1

5733 119.4 
3226 67.2 
3554 74.0 
2960 61.6 
4401 91.6 

6314 131.5

0.0594 

0.0703 
0.0823 
0.0817 
o.o716 

0.00837 

o.o148 
0.0135 
0.162 
0.0109 

0.00760



Table 2 

Loading Sequence

U-235 in 
Element

Total U-235 in 
Core Excluding 
Fuel Followers

First loading

A-1 
B-i 
B-2 
B-3 

B-4 

B-6 
C-1 
C-2 
C-3 
c-4 
C- 5 
c-6 
c-7 
c-8 
C-9 
C-10 
C-il 
C-la 
D-1 
fl-a 
Dl-4 
D-7 

D-2.3 

D-16 
D-18

3922 
4061 
4084 
W049 
4110 
4100 
4.121 
4053 
41-13 
h068 
4092 
4118 
4091 
4076 
3672 
4123 
4102 
4070 
4050 
WQ66 
4109 
4072 
4060 
4058 
14055 
4057 
4111 
4120 
4125 
4W63

Second loading

38 
39 
38 
38.  
38 
38 
38 
38 
39 
38 
38 
38 
38 
38 
39

8.47q 
8.59 
8.42 
8.42 
8.41 
8.45 
8. I1 
8.43 
8.49 
8.142 
8. ho 
8.)49 
8.11i2 
8.A9 
8.56

Grid 
Position

Fuel 
Element 

No.

3

No. of
Elem~ents 
In- corc

38 
39 
39 
39 
39.  
40 

39 
39 
39 
39 
39 
39 
39 
39 
39 
39 
ý39 
39 
39 
38 
38 
38 
38 
38 
39 
.38 
38 
39 
38 
38

8.52 
8.75 

8.70 
8.75 
8.75 
8.70 
8.69 
8.55 
8.69 
8.62 
8.6o 
8.58 
8.69 
8.61 
8.68 
8.53 
8.64 
8.64 
8.45 
8.50 
8.52 
8.42 
8.51 
8.58 
8.47 
8.145 
8.54 
8.44 
8.49

38 
*77 

u16 
155 
1914 
234 
273 
312 
351 
390 
429 
468 
507 

.546 
585 
.624 
663 
'(02 
741 
7179 
817 

* 855 
8903 

970 
1008 
io146 
1085 
1123 
1161

1 
2 
3 
4 
5 
6 
7 
8 

.9 
10 
:11 
12 
13 

* 14 
* 15 
* 16 

17 
1L8 
*19 
20 

* 21 
22 
23 
24 
25 
26 

* 27 
28 
29 
30

D-6G' 
D- 5 
E-6 
E-7 
E-8 

E-3 

E- 5 
E- 2 
E-1 
E-21; 
E-23 
E-22 
E-21 
E-PO

4062 
4083 
4119 
3677 
4054 
4081 
4080 
4103 
40146 
3679 
3683 
385)4 
11077 
3855 
11090

1199 
1238 
.12706 
1314 
1352 
1390 
1428 
11466 
1505 
1-543 
1581 
16,19 
1657 
1695 
17314

31 
32 
33 
314 
35 
36 
37 
38 
39 
140 

143 

)15



Fuel 

Grid Element 

Position No.

"Third Loading 

E-17 

Fourth Loading

D-14 
E-19 
E-18 
E-16 
E-15

4089

4071 
4105 
3675 
3673 
4082

Fifth Loading 

E-9 -. 3680 

Sixth Loading

E-10 3682

U-235 in 
Element

38

39 38 
38 
38 
38

38 

38

Total U-235 in 
Core Excluding 

__U Fuel Followers

8.50 8.40 
8.33 
8.32 
8.47 

8.36 

8.36

1772

1811 1849 
1887 
1925 
1963

2001 

2039

Seventh Loading 

SE-1l - 3685 

Eighth Loading 

E-12 .. 3671

38

38

8.44

8.33

51,2077 

2115
55

Ninth ts&•a•ning

2153 56
3684 38 8.43

It

No. of 
Elements 
In-core

46

47 48 
49 
50 
51

52

53

E-13



'A
North

"Fission Counter

Fig. 1 - Critical loading sequence
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Gamma Ion Chamber
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Fig. 9 - Location of instrunmentation


