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SUPPLEMENT NO. 1
to

REQUEST FOR LICENSE TO TRANSPORT TRRADTATED
TRIGA FUEL IN BMI-1 SHIPPING CASK

June 15, 1972

INTRODUCTTION

In a letter dated March 10, 1972, additional information was
requested by the Division of Material Licensing to support the request by the
University of Arizona to transport TRIGA fuel assemblies in the BMI-1 ship-
ing cask., The BMI-1 cask has previously been licensed and the license
application concerned the use of a Fuel Shipping Assembly (fuel can) to
hold the TRIGA fuel assemblies in the cask during transport. The request
for additional information concerned substantiation of the fuel can integrity
in the event of the 30-ft free fall hypothetical accident, confirmation in
the use of specific sealant materials and a request for a copy of the report

upon which the criticality analyses were based.

RESPONSE TO SPECIFIC QUESTIONS

In a telephone conversation with the DML reviewer clarification
was obtained of the specific questions underlying some of the items noted
in the request for additional information. It was noted that for the 30-ft
free fall incident, the cask impact forces calculated by DML during their
review differ slightly from those presented in the Safety Analysis Report
for the cask, For the purpose of consistency, the impact forces determined
by DML are used in this response. They are presented in Table 1. It should
be noted that the impact forces presented in Table 1 are those calculated to
exist at the outer surface of the cask in the region of impact. No credit
is taken for energy attenuation through the walls of the cask and at the inter-
face of the cask cavity and the fuel can. This conservative approach is taken

since the exact degree of attenuation cannot be accurately predicted,



TABLE 1, TIMPACT FORCES USED IN ANALYSES
FOR FUEL CAN INTEGRITY

Orientation , Impact Force, G
End Fall, on top 87.5
End Fall, on bottom . 368
Side Fall ' 400
Corner (oblique} 153

1. Top End Impact

The cover plate of the fuel can has been modified as shown on the
attached University of Arizona drawing, Sheet 1020, Revision A, A solid
ring of rectangular cross section has been added at the outer edge of the
cover to support the edge of the cover in the event of a top impact. Since
the‘ring thickness is the same as the head of the draw bolt, the bolt and
the ring will strike the end of the cavity simultaneously in the event of a
top end impact., In order to evaluate the stresses on the fuel can in the
event of a top end fall incident, the can was modeled and analyzed with the
aid of a computer program, MONSA (Multilayér Orthotropic Nonsymmetric Shell
Analysis), used by the Applied Solid Mechanics Division at Battelle, This
program, based on the work of Dr. A. Kalnins, is discussed briefly in
Appendix A. A paper by Dr. Kalnins which is the basis for the computer
program is also included in Appendix A,

The can is sketched in Figure 1 and the model used in the analyses
for the top end impact incident is presented in Figure 2. Because of the
massiveness of the anchor nut relative to the thickness of the bottom, a
fully fixed condition was assumed for the can bottom at the location of the
anchor nut. The stresses in the can bottom and walls were analyzed by
superimposing the effect of the static load of the draw bolt and
the inertia load of the can and comparing the result with the effect of the
static load and inertia load of Ehe draw bolt. A seal load of 10 1b per inch

is usually considered adequate for the type of seal used on the fuel can,
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However, as an extra assurance factor a seal load of 20 1b per inch has been
selected. This would require a draw bolt tensile load of 945 1b, The
operations manual was revised to indicate that the bolt should be tightened
to a torque of 22 ft 1b which will result in about 1,000 Ib tensile load in
the bolt (21 1ib per inch seal load).

The MONSA program was first run for the static condition, i.e.,
the effect of the 1,000 Ib normal draw bolt load on the can. The results are
summarized in Table 2. Under an impact condition, the inertial load of the
anchor nut and bolt might either increase the load on the can or decrease it
depending on the relative deformation between the can and the bolt. It is
noted in Table 2 that for the 1,000 lb static condition the deformation of
the can bottom at Point A is 0,00433, The MONSA computer program was then
run to evaluate the effect of the inertia load of the can bottom and walls on
the stresses in the can. As shown in Table 2, the can bottom at Point A
would deflect 0.00607 inches if unsupported by the draw bolt., The total de-
formation then would be 0.01040 inches.

The deformation of the bolt under static and impact load can be

calculated by the relation

c_FL
e=e¢k=F =KE
where A
e = total deformation of bolt, inches

= unit strain

= stress in the bolt

= Young's Modulus = 29(106) psi

length of the bolt = 49.75 inches

= gtatic force of 1,000 1b or impact force at 87.5 G, 1b
= area of the 1-1/4 OD x 1/4 wall bolt = 0,7854 sq in.

ge » = = M Q ®
it

= impact force = 87.5 G .

For the static load condition, the bolt would be elongated 0,00218 inches.

For the impact case, it was assumed that the effective force acting at the

top of the bolt is equal to half the weight of the bolt plus the weight of

the anchor nut. The weight of the bolt is 2,67 1b per ft and the weight of

the 4-inch-diameter nut is 42.73 1b per ft. Thus the total effectiﬁe force is
F = (1/2)(2.67)(49.75)(87.5)/12 + (42.73)(3.5)(87.5)/12 = 1575 1b.



TABLE 2., RESULTS OF ANALYSIS OF TOP END IMPACT ORIENTATION

At Point A% At Point B2’ At Point G’
Stress, psi Deflection Stress, psi Stress, psi
Load Condition relative
Inner Outer to Point C, Inner Quter Inner Quter
Surface Surface inches Surface Surface Surface Surface
Static 1000 1b 5,412 =5,492 -0.00433 -5,333 4,862 472 - 943
Inertia of can
bottom & can walls 3,624 -3,715 -0,00607 -6,299 5,317 3,608 -7,217
only, no restraint
from bolt
- Total 8,036 -9,207 -0,01040 -11,632 10,179 4,080 -8,160

(a) Refer to Figure 2.




Therefore, the total compressive deformation is 0.00344 inches. The effect
of the inertia loading on the bolt itself would be to relie ve the tensile
load on the bolt and place it in a compression. Its total deflection then
is 0.00344 + 0,00218 = 0.00563 inches. Since the bolt would only deflect
0.00562 inches ‘and the bottom, if unsupported, would deform 0.01040 inches,
the bolt will provide a significant degree of restraint to deformation of
the can. Thus the greatest stress which the can will experience is probably
1/2 to 1/3 the maximum stress of 11,632 psi shown in Table 2. The margin of
safety, based on a 30,000 psi yield strength, will be greater'than 1.5,
130,000
11,632

The can also acts as a column under compressive loading. By inspection, it

(MS = - 1 = 1058) .

is seen that the case for the bottom end impact is more severe than for the
top end impact since the impact force, 368 G, is greater and the cover is
heavier than the can bottom. Thus, the column action of the éan was not
evaluated here.

Analyses of the effect of the added load from the can on the draw
bolt was not considered necessary. The bolt closely fits through cover and
thus misalignment during impact is prevented. Should the bolt experience any
plastic deformation during the impact, it would not be detrimental to the seal,
Any “shortening" of the bolt due to the impact would produce a greater tensile
load in the bolt tending to keep the cover in place. Therefore, the above
analysés have indicated that the integrity of the can and seal are maintained

during a top end impact condition,

2. Bottom End Impact

In the event of an impact on the bottom end, the inertia force of
the cover will tend to increase the pressure on the seal at the edge of the
cover. However, the pressure on the seal under the head of the draw bolt
could be lessened. The possibility of this occurring is evaluated below,
The MONSA computer program was used to evaluate the model shown in Figure 3a

for the static condition and for the inertia effect on the cover as if the
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draw bolt were not present. The maximum deflection of the cover, Point A

in FigureIBa, relative to the outer seal, Point B, was calculated to be
0.00340 inches under the combined static and inertia load, Table 3. The
MONSA program was then used to analyze the model of the can shell alone,
shown in Figure 3b, The force Fc is 1000 1b for the static case and, for the
impact case; Fc is the total inertia force of the cover acting on the top
edge of the can. The cover weighs 65.67 i1bs, Thus for the 368 G inertia
load the force, Fc, is 24,170 1b, The total deflection of the shell alone
under the static load is 0,00042 inches. Under the inertia load of the cover
and the shell, the deflection is 0,01507 inches (Point B to Point C in

Figure 3b)., Thus, the total deflection of the shell only is 0.01549 inches,
and the total deflection of the cover, Point A, relative to the bottom of the
can, Point C, is 0.01889 inches.

Tt was shown above that the bolt is elongated 0.00218 inches undexr
the static 1000 1b load., It was also shown above that the bdlt will compress
axially 0.00344 inches under a 87.5 G load. Thus, under a 368 G load the
bolt will compress (368)(0.00344)/87.5 or 0,.01466 inches. Thus the total
deflection'which the bolt will experience is 0,00218 + 0.01446 = 0,01664 inches.
Since this is less than the deflection of the cover, the bolt does not con-
tribute any load to the cover under the impact condition. These calculations
indicate that the compression on the seal under the bolt head will be relieved
0.00225 inches. However, the seal is initially compressed about 0.030 inches
so that this amount of relief under impact represents only about 7.5 percent
of the initial amount. Stated another way, the O-ring is still compressed
over 90 percent of its initial amount which is considered sufficient to main-
tain the seal.

The maximum stress in the can, Table 3, is 17,667 psi. The margin

of safety is

= LA - 7
MS 17’557 l O. 0.

The can also acts as a column under a compressive load equal to the
inertia weight of the cover and can shell. Tt was assumed that the total
inertia load experienced by the can as a column is equivalent to the cover

weight and half of the inertia 'weight" of the shell, From above, the inertia



TABLE 3. RESULTS OF ANALYSIS OF BOTTOM END IMPACT

At Point A3 At Point B At Point ¢
Stress, psi Deflection Stress, psi Deflection Stress, psi
Load Condition relative relative
Inner Qutex to Point B, Inner Outer to Point C, Inner OQuter
Surface Surface inches Surface Surface inches Surface Surface
Static load on cover - 423 -1,689 -~ 0.00044 145 36 - - -
only ‘
Inertia load on 1,391 -2,787 -0,00296 1,493 373 ‘ - - -
cover only
Total, static and 968 -4,476 ~0,00340 1,638 409 - - -
Inertia of cover
on cover only
Static load on shell - - - - 236 -236 -0,00042 - 107 - 364
only '
Inertia Load of shell - - - ~5,696 -5,696 -0.01507 -5,146 -17,293
& cover on shell only .
Total, static and - - - -5,932 ~-5,932 - 0.01549 -5,253 -17,667

Inertia of cover &
shell on shell only

(a) Refer to Figure 3.
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weight of the cover is 24,170 1b. The static weight of the shell is 63.27 1b.

Thus, total inertia load on the can shell as a column is
P = 24,170 + (1/2)(368)(63.27) = 35,810 1b.

The critical buckling load for a column rigidly fixed at one end is

Pcrit = n2 EI/Z+L2 s
where
E = Youngs Modulus = 29(106) psi
I = Moment of inertia = nd3t/8
d = Mean diameter = 14.91 inches
t = Thickness = 0.09 inches
L = Length = 51,75 inches.
Then
P, = 3.13010% b .

Thus, the can will not buckle.
As above, any deformation or shortening of the draw bolt due to the
impact incident would not be detrimental to the integrity of the seal. There-

fore, it was not considered necessary to evaluate the impact effect on the bolt.

3. Corner Drop

The fuel can fits in the cask cavity with only nominal clearance.
Thus for the corner drop orientation the can is supported both on the side and
an end. Since the impact loads for the corner drop orientation are less
severe (153 G) than for the impact loads for the bottom end drop or side drop
configurations, the analyses for the bottom corner drop configuration need not
be evaluated. For the case of a top corner impact orientation, the 153 G
impact force is greater than that experienced by the cask for the top end drop
configuration, 87.5 G. However, the aspect ratio of the cask (L./d) is relatively
large; thus the top edge drop orientation is very close to the vertical orientation
of the end fall condition. The response of the fuel can to a top corner impact
orientation can then be evaluated by taking the conservative approach and
assume it strikes on the top end with the 153 G impact force. This is con-
servative since for the end impact orientation, no support is considered by the

side walls of the cask cavity.
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The response of the fuel can is proportional to the impact load.
Since for the assumed case here the impact force is 153 G, the stresses and
deflections experienced by the fuel can would be 153/87.5 = 1,75 times greater
than for the case of the top end drop orientation. By inspection, it is seen
that the stresses are well below the yield stress and thus the can integrity
is maintained. Similarly, by inspection it is seen that the seals will not
be loosened for the top corner impact orientation and thus seal integrity is

maintained.

4, Side Impact

For the side impact orientation, the side of the can and the cover
are supported by the full length of the cask cavity. Thus the critical
regions which must be considered include the stress and deflection in several
regions of the draw bolt and the integrity of the seal under loads and moments
transmitted by the bolt. A general schematic model of the can is shown in
Figure 4. As shown, the bolt is rigidly supported at the bottom by the anchor
nut and at the top by the close fitting hole in the cover. It also nominally
has a center support, the spacer can bottom,except that the spacer can has a
0.090 inch radial clearance and thus the center of the bolt could deflect
about 0,095 inches (the spacer can guide clearance plus the bolt clearance)
before any degree of support could be expected,

Consider the model in Figure 5. The bolt is represented as a beam
under a tensile load, restrained at the ends from bending and with a center
support available after 0,095 inch of deflection. In the actual situation the
Ycenter" support is about 1.38 inches from the midlength of the bolt., For
purposes of analysis it was considered sufficiently accurate to assume that
deflections at the center and 1.38 inches from.the center were essentially the
same. Then from Roach(l), Table VI, Case 18, the deflection at the center is

_ Wj2 4 Ul - cosh u/2)

2
Y =8 - sinh U/2 +Ul,

(1) Roach, R. J., Formulas for Stress and Strain, 4th Edition, McGraw Hill
Book Co., New York.
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where

uniforﬁ load

-/

£
"

Elastic modulus = 29(106) psi

E =

I = Area moment of inertia = ﬂ(Doa- Di4)/64
D0 = 0D of draw bolt = 1.25 inches
Di = ID of draw bolt = 0,75 inch

P = Tensile load = 1000 1b

U=1L/j

L = Length of the bolt = 47.75 inches.

This equation was solved for w for the case where y = 0.095. At this de-
flection w = 21,62 1b per inch. However, the bolt weighs 2.67 1b per ft

and, therefore, under a 400 G impact force the distributed load would be 89.0
1b per inch. Since this is more than the 21,62 1b per inch distributed load
‘required to deflect the center of the bolt 0.095 inch, the bolt will receive
support from the spacer can bottom under the 400 G impact. The maximum moment
in the bolt occurs at the end and is expressed as

M = wj? [(U/2)/ tanh U/2 - 1] .

With a distributed load of 21.62 1b per inch, the moment is 4,058 in Ib.

After the bolt receives support from the spacer can bottom it then,
for practical purposes, will respond as before, a beam with fixed ends and
under a tension load. This is not truely the case since the ''center" support
is not truely at the midspan but 1,38 inches away. However, it is felt that
negligible error will be introduced by this assumption. The calculation is as
above, then, except that w = 89,0 1b per inch and L = 25.25 inches.

. Then

M= 4,712 in. 1b.

This is greater than the moment experienced by the bolt at the point it obtained

support from the spacer can bottom, The fiber stress then is

MC
o= T ’
where
' M= 4,712 in 1b
C = Maximum fiber distance from neutral axis of l-inch bolt
in end of draw bolt (at thread root) = 0,4517 inches.
I = Moment of inertia of l-inch bolt at thread root = WC4/4 .
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Then the fiber stress is

cf = 65,100 psi .
The shear stress is
Ssh = A °

The shear force, Fsh’ was taken as half thé impact force or

F wL/2 = (89.0)925.25)/2 = 1125 1b .

i

sh

The shear area, A, is

me? = (m)(0.4517)% = 0.641 sq inch .

The shear stress is

o 1125/0.641 = 1,760 psi .

sh

The combined stress 1is

2 2 ~ .
S omb O¢ + S - 65,100 psi .

The threaded section of the bolt is made of A 325 steel which has a yield strength
of 92,000 psi. The margin of safety is

F
Y _ 7 .92,000 , _
MS G 1= 55100 1= 0.41 .

At the center of the span the bending moment is

u/2

Me=vit - Sn o7z )

where the terms are defined as above and w = 89.0 1b per inch and L = 25.25 inches.

Then
M = 2350 inch~1b .
.The stress is
op = Mc/I ,
where
M = 2350 in-1b
¢ = Maximum fiber distance = 1,25/2 = 0,625 inch
I = Moment of inertia = ﬁ(DO4 - Dia)/64
0 = 1.25 inches
i = 0.75 inch .
Then
o = 12,260 psi .
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The body of the bolt is made of C-1018 cold rolled carbon steel
which has a yield strength of 60,000 psi. The margin of safety is

60,000

M5 = 12,260 "

1 =23.89.

The above analyses assume that the center support, i.e., the spacer
can bottom will not move radially more than about 0.095 inch. The spacer can
is supported by the guide tube which fits into the inner can. The inner can
is rigidly held by the nest of fuel tubes except for the end most 5.75 inches
into which the spacer can guide fits. This 5.75 inch extension, therefore, acts
as a cantilever beam in supporting the spacer can bottom, Consider the model
of Figure 6. The fiber stress in the inner can is

MC _ Flc
I~ 1 °

where

Inertia force of bolt and spacer can

[
I

Length of inner can extension = 5.75 inches

Maximum fiber distance = 4.25 inches

Moment of inertia = nd3t/8

Mean diameter = 8.41 inches

= Thickness = 0,09 inch .

t & H 0
L]

The force was taken as half the inertia weight of the bolt and 3/4 the
inertia weight of the spacer can. The spacer can has a static weight of

about 35 Ib. Then the inertia force is

F = (89.0)47.75)/2 + (400)(35)(3/4) = 12,620 1b .
Then
o = 14,680 psi .
The shear stress is
| Oop, = F/A = 12,620/ (Tdt) = 5,300 psi.

The combined stress is

2 2 .
ccomb =J ¢ + osh = 15,600 psi,

The margin of safety for the inner can which is made of Type 304 stainless

steel is _
MS—-—EL _l_w-1=0.92.

conb 15,600
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The total deflection is
y = FL3/3EI = 0.0013 inch.

Thus, the spacer can will move 0.0013 inch more than the 0,095 inch assumed
above., This difference, however, will not significantly change the results
presented above.

The integrity of the weld between the spacer can guide and the

spacer can bottom must also be evaluated., The stress is

Oep = F/A = 12,620/(0.707 mdt) ,
where
d = Mean weld diameter ¥ 7.90 inches
t = Weld thickness = 0.12 inch.
Then
c = i
sh 5,990 psi .
The margin of safety is
F
MS=v—Sll-l=w~l=l.50.
Och 5,990

In the side fall incident, the bending moment present in the bolt
at the cover will tend to "1ift" one edge of the seal. The close fit of the
bolt in the cover negates any possibility of "lifting" of the seal under the
bolt head. However, the tendency for lifting of the seal at the edge of the
cover must be evaluated. Consider the model in Figure 7. The moment, M, tends
to lift the seal at Point B while the moment of the draw bolt tensile force, P,
about Point A tends to maintain the seal at Point B. The moment, M, is assumed
to be the same as the moment in the draw bolt at the anchor nut. (It actually
will be slightly less since the unsupported span of the top part of the bolt
is 2.75 inches shorter than the bottom part.) Then, M = 4,712 in 1b, The
restoring mowment is

MR = Pd/2 = (1000) (15/2) = 7500 in-1b .

This is about 60 percent greater than the moment tending to open the seal.
Thus the tendency for lifting is sufficiently restrained to maintain the seal,

The conclusion of the above analysis is that the integrity of the

fuel can and seal is maintained in the event of a side fall impact orientation.
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5. O-Ring Material

All applicable drawings and operation procedures have been revised to

reflect the use of only silicone rubber (silastic) seal materials.

6. Thread Sealant

There are no plugs on fuel can which form part of the sealing system.
The operating procedures for the shipping cask specify the use of a non-

hardening thread sealant.

7. Basis of Criticality Analysis

Appendix B contains an extract from proprietary Report GAMB-7445

which forms the basis of the criticality analyses.
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APPENDIX A

DESCRIPTION OF MONSA COMPUTER PROGRAM

MONSA (multilayer Orthotropic Nonsymmetric Shell Analysis) is a
digital computer program written in FORTRAN IV, It is based on the multi-
segment numerical integration method for the analysis of boundary value
problems.

MONSAS determines the displacements, forces, and stresses for a
composite shell of revolution. A composite shell is defined as a shell
composed of a number of distinct parts which may have the following shapes:
eylindrical, spheroidal, ellipsoidal, paraboloidal, conical and toroidal,

The shell wall may be composed of four different layers of orthotropic mater-
ials. The shell layers are specified by giving their location with respect
to a reference surface,

Mechanical and temperature loadings can be applied to the shell.
For nonsymmetric loadings, the user must determine the Fourier harmonics of
the loadings and perform the appropriate number of shell calculations.
‘Temperatures can vary along the shell meridian as well as through the thick-
ness of the wall, The latter can be accomplished by specifying the temperature
on the inner and outer surfaces and on three internal surfaces of the shell
wall, A shell spinning about its longitudinal axis can be analyzed. A shell
subjected to harmonically varying mechanical or temperature loadings can also
be analyzed,

MONSAV will determine the natural frequencies and mode shapes of
composite shells of revolution described above. The procedure is based on an
jterative technique in which a trial frequency is picked and a determinant is
calculated, The trial frequency becomes a natural frequency when the deter-

minant vanishes,
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ferent methoads of solulion of the bLuundary-value problem of
deformation of shella mued be recasnic 1,
tion [0

Ve
Lo,

onch [&4].

tho (irpet intomen.
the direc mioprn

While the

snd he finite dilfcrence |

. . . ~—t .
direet integeation approseh Lag cerlain nuportant advantages, it

alio his acserious disadvantage; e, when the tengih of thie shell
is increased, a Joss of aceuragy invariably xv‘ul\s This ph(nomc-
ehearly pol‘ltvd oub i1 18] Thé ok

the suldraction of almost cqual pumbars in the process of deler-
mination of the unknown boundary values. 1t follows that for
every set of peometric and material parameters of the shell there
is a critical length beyond which the solution loges all accuracy.
The advantage of the finite-differcuce approuch over direet inte-
gration is that it can avoid such a loss of aceuracy. It is con-
cluded from {S] that if the solution of the systein of algebraic
equations, which result from the finite-dilierence cquations, is
obtained by mmeans of Gaussian eliinination, then no loss of ac-
curacy is exparicnced if the length of the shell is increased.

This paper is concerned with the general problem of deforma-
tion of thin, elastic shells of revolution, symmetrically or non-

symmetrically loaded, and with the development of a numerieal

. method of its solution, wi.l h employs the direct integration tech-
- nique, but eliminates the loss of accuracy owing to the length of
" the chell.
- point boundary-value problem which is governed within an in-

The method developed here is applicable to any two-

terval by a system of m first-order lincar ordinary differential

'quq‘ti_o_ns together with m/2 boundary conditions preseribed at
each end of the interval.
Cproblem of a rotationally symmetric shell can be stated in this

It is shown that the boundary-value

form for any consistent lincar bending theory of shells in lerms
of those quantities which appsar in the natural boundary condi-
tions on a rotationally symmetric edge. .

The method of this paper offers definite advantages over the
finite-difference approach. The main advantages are: (a) It
can be applied conveniently to a large system of first-order dif-
ferential equations, and (b) it perinits an automatic selection of
an optiraum step size of inwogration at each step according to the
desired accuracy of the solution. The first point means that the
equations of the theory of shells of revolution, characlerized in
terms of first-order differential equations, can be integrated
directly, and further reduction of the equations to a smaller num-
ber of unknowns is not necessary. The second point secms to be
of great importance if a truly general method is desired which is
expected to hold for arbitrary loads, shell configurations, thick-
ness, and so on.  With the finite-difference approach, a meaning-
ful a prior? estimate of the step size is often diflicult, if not im-
possible, especizlly when rapid changes and discontinuities in the
shell parameters are encountered. I a predictor-corrector direct
integration approach is employed with the method of this paper,
then the step size can be selected automatically at each step
which ensures a preseribed accuracy of the solution and optimum
efficiency in the caleulution. .

The metho.! iven in this paper can be divided iuto two parts:
(a) Direct int« - tion of m 4 1 initial valuc problems over pre-
sclected segm~ - of the lotal interval, and (b) the use of Gaus-
sian eliminati; - the solution of the resulting system of matyix
equations. 71 - part of this method is a generalization of
that which iz« .«d over the whole interval in {2-5]). lerc,
however, the § +.Jue problems are deflined over segments of
the total inte »lengths of which are within the range of the
applicability « Jdireet integration approach.  Afler the initial

value problen ¢ intearated over these segments, continuity
conditiong on : 1 variables are writlen at the budnninh of the
segments, and they constitule a gimullancous system of linear
watrix equatioes. Thixsyatem of wetrix eguation: is {hen solved
diteetly by e s of CGauesdsn elimination. The reault s thad the
dircetinte i method L eaploved ond st A be vane tine there
lengths of the g
releeted dnosuels noway that the solutions of the mm::l \'.‘l]'lC

= nn b oof aeviraey Levnus the inents

problemc are kept sufirciently small A eanvenient parameisr jo

ertinndad ennily,

. purpose, starting with the equations of the Lincar
g tllcury of shells i W hicly the thermal’ chcx s

v ‘of héentacy does ot
cresul, fromenceumulaGvE errors in inddgration, but it catsed by’

piven from whiclh the approprinte lengths of the segments cm b

I the application.__ais melhod to the analysiz of rotstionally
symmetric shells, the bounduwry-value problem ia formulated in
terms of first- md(r ordinary  dilferential cquadions. Por this
i ghassjead Lendl- .
e mcl(ulod Tiret
a syslent of criations s devived in the form of ¢ foht prortial Qi
ferential equaticns involving cight unknowns in such a manner
that the system of equations contains no derivadives of the na-
terial paramelers, thickness, or principal radii of curvatare. The
absence of the derivatives in the cocfficients of the differential
cquations permits the ealeulation of the coeflicients at a point
without regard to the values of the shell parameters at preceding
or following points.  Then, assuming separabitity with respect to
the indopendent variables, the desived sysiem of eight first-order
ordinary differential equations is obtained which together with
the boundary conditions on {wo cdges of the shell constitute a
two-point boundary-value problem. The derived system of
equations is applicable to rotationally symmetric shells with
arbitrary meridional variations (including discontinuities)
Youi..'s modulus, Poisson’s ratio, radii of curvatiue, thickness,
and coeflicient of thermal cxpansion. While such 2 system of
cquations i3 derived in this paper only for one version of the
classical theory of shells, it can be derived in the sume way for all
other consistent linear bending theorics of shells, including those
which account for the dynamic effceets, transverse shear deforma-
tion, nonhomogeneity, and anisotropy.

Tinally, with the use of the method and the equations given in
this paper, stresses and displaccments are caleulated in a thin-
walled torus subjected to internal pressure. The solution shows
that the meridional membrane stress is almost identical to that
predicted by membrane theory, but that the bending stresses
even for a relatively thin terus may not be negligible.

Geametry and Dasic Ecuations

The position of a point of a shell of revolution is given by the
coordinates 0, ¢, { measured along the triplet of unit vectors tg, tg,
n, respectively, as shown in ¥Fig. 1. "The shape of the shell is de-
termined by specifying the two principal radii of curvature R,
Rp of the middle surface as functions of ¢. Instead of R, it is
convenient to use the distance  from a point on the middle sur-
face to the z-axis; from Fig. 11it follows that

= Rpsin ¢ 1)

r(z)

If the generating curve of the middle surface is given by r =
then
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The fullow ing analysis requirea frequent differentiation of r {or Rg)

witl respect fo @, snd it s eonveniont Lo express this derivative
by the Codazzi relation .

3)

The displacement components of the middle surface of the'shell
and the rotations of the normal are defined by the expression of
the displacement veetor U of the form ’

U = (ug + {Belte -+ (ue - §Belte + wn (4a)
The shell is subj'cctcd to th~ mechanical load vector p, which is
measured as foree par unit arca of the middle surface and written
as

p = pele + pets + pn (4b)

and the mome:.t vector m, which is measured as moment per unit

area and given by

* With reference to Fig. 1, equalions (4) serve the purpose for

m = —mgy -t mglo (4c)

establishing the positive directions of the componeuts of the
displacement and mechanical Joad vectors.

The tempersture distribution in the shiclt caused by some ther-
mal loads is accounted for in the usuel manner by means of the
integrated temperature efiert of the form

A .
r6,0 - 5 [, T4000 (5)
Tz
. h
12 re £
1,0 = o= [* e, 00 (&)
T2

The derivation of a new set of equations carried out in the next

section is baced on o lineur classical theory of skells given by

Reissner [13]. When referred to arbitrary shells of revolution,
the governing system of equsiions of [13] can ba written in the
following form. Lquations of equilibrium:

Nos + é— Nago +-2cos ¢ Neg -+ Qosin ¢ - tpa = 0 (62)
[~
. . r C .
Nego + Pi Now + (Ng = No)cos ¢ + Qo+ 7p6 = 0 (Gb)
‘.", I.¢
' ) .
Qos + — Qup + Qucos b — Nesing — — No+r1p =0 (7)
s R
,r-

Meo b7 Moo -+ 208 S Ay — 7;()3 31 = 0

&
I

Mo 1o B b (g = Me) ene = rlQy -t ming = 0 (89)

Give. o cfedn red fon
No == Ko | ve) = (1 -4 p)al 7% (Y]
N o Jilea ] o) = (04 m)ok Ty (oh)

(8«)

;\'0'4. = N (i - V)I\'ecg.' ...('.vr) .
j——a
Mo = Dire -\ rig) — (1A )T e
Mo = - Dixe 4 )= (L4 aDls )
© Mo = Mes = (1= 9)Dkeg )
Struin-displacerent reladions:
1 .
@=" (1g.p -+ wg cos ¢ -k wsin &) (114)
1
€ = 7 (uss + ) (118)
It¢
1 1
eps = — (ug.e — g €OS )+ = wse (1ic)
r R¢
1
Ko = — (Be.0 - Bo co5 @) (12s)
Kg = —1—-3 (12b)
¢ = R¢ ¢ 9
1 1,
2xgs = — (B0 — Bocos @) + z. Bee (12¢)
r s
: 1 - sin :
By = —— we + ‘—éua (132)
r r
1 ! (134)

Bs = —Ew-¢+§;ﬂ¢

The pesitive directions of the stress resultants in the foregoing
equations are the same as the corresponding stresses on the edze
of the shell. The definitions of the stress resultants are found in
[13].

The order of the system of equations {6)-(13) is eight with re-
spect to ¢, and consequently it is possible to reduce (6)-(12) 2
eight first-order differentis! equations which involve cizht un-
knowns. T the eight unknowns are those quantities which enter
into the natural boundary conditions at the edge ¢ = comnst, then
the boundary-value problem of & rotationally symmetric ehall ¢
be completely stated in terms of these unknewns. For thi
reason, the eight difierential equatinns, derived in the fotlowin
sections, and the cight unknowns are called the fundaments! seb
of equations and the fundamental variables, respactively.

wivnll el apere Teteliace
srivaticn of Fendamontel Sot of Egnelions

According to the clacsical theory of shells, the quantities whic
appesr in the natural boundary conditions an 2 rotation -
metric edge of a shell of revalution include the efiective !
sultants A and @ defined by

N = Ngs + S_l_n;é Mey (1ta)
) ‘
Q= Qs Mog.a {11h)

Thas, the fundament:] varishles, which sre convintent
ooy of {131, sre tha ooy ceperadized disphuencntar, v v AN
and the four gever tred forees Q Ny, N, and M

I tha deriy et of dbe fonlinental egutiong s, it
venient Lo employ the dianee 8 e, aired o it ool
Wie chell, rathey (N the anenlny coordinnte G Mowwevor, s
the cpuntions wre & rivedd, the problem enn sein b
fopide L i tere of @ by menns of the relation

with e
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As i proliminary stop, 3 s neecosivy o express No, Me, Mo, in
terms of the fundamental varisbles, From (9a) it follovs that

LA R -T

— (wsin ¢ -t ug0 ok vy cos )

— aK(1 — )70 (15)

and from (10a) that

1~ 1 sit
Ay == V’Ug, + D "T”‘ (—- ;‘ w.69 - "l‘l'? wp.e + 64, cos q’>)
. r
— aD(1 — v¥)T, (10)
Elimination of wg., and w.g, from eguation {12¢) leads Lo an expres-
sion for Mg in the form

1 - 2¢
Mgy = LD —=~ [2ﬁ¢.9 + -—(%s—""— we

LD
+ Hug cos ¢ — J1¢¢,o] + 2= s‘—“—‘é N (7)
where

1

L=
. m?

14 sin ‘_g_') __Dé
rr K

In the derivation of the four equations of the fundamental set .

" which involve the derivatives of the stress resultants with respect
to s, the usc of (14) is essentinl. Elimination of Qg from (Ga) and
(8a) by neans of (14a) leads to

¥ 2
N, = coss(;’)Mqu _ _cos¢N _ 1 NM
_ &in ¢ -2 18)
;
Similarly, climination of Q¢ from (7) and (8a) gives
2 co8 cos ¢ sin
Qum 22 s — Ry,
r? r
1, 1 ‘ 1 :
Ny — = Mogg — p — = 19).
+ R¢A¢ s Mogs — p = Mo (19
Solving (6D) from N 4., there results
1 1 '
Ngo= ——N — J2Myg,
& S N + ; 02.0
3
b P N = 0= pe OD)
and it follows from (8%
2 v b '
ﬂfq,,. = = ]UL ”1‘.—‘ (Afo - 11[4,) + Q - Mgy (21)
T

Wherever necessary, N
(14).

The fundamental set o f
Ne, Moy, Mes can be veploced dire

“nd Qg were eliminated with the use of

cquetions consists of (18) -(21), where
Iy in teres of the fnudamendsa!

variabt o by meer v of (353-(17), and four wdditiand eque imn;
involvics i decivative of w1, 1, fiovithone ol fo g, which
Cnreehtieed S (03, (LY, Q1T (1900 clively, Tiediy
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r B - -
. el e "‘.i' TG e TN I e
-+ ~N + a(l -+ )T (220)
. Ll) sin 2¢) 1 1 LI sin ¢
(g 22—t g = = (1= g,
0.s Kri ¢ r Kr 0
c LI st oLD
pese () PDIsing) o 2Dstug g
r Kr Kr®
9 D sin? )
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(=K Krt
v ysin ¢ yeos b
Beu = W~ e — P

+ 1M, 4l 0T (220)

D
1— v > >
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cos g LD sin b N sin b h sing
R IR N — et e pe T M
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1 ing
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‘ 3 ¢ - ' : -
M= —(1 = 0D 52 (1 v 2L b LD }—--,-'—’ o
T . . r
. }) H
4D - ) ST [(1 Pt m,] 0.
r r -
1-—-v . 0 2LDsing ,
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Equations (22), (14), and (15) to (17) determine all unknown
variables except Qs which con he found from (Sa) and writien in
the form

2 cos @
T

1
Q = - Moo + Mpes -+ Meg + ms (23)

By calculating Mzs.s from (17) and making use of (16), it is possi-
ble to express Qo directly in terms of the fundamental variables.
This cxpreasion is Jengthy and contains derivatives with respect to
s of the shell parameters. Since Qo does not enter into any bound-
ary conditions on the edge s = const, it is preférable to ealevlate
Qp as the last unknown dircetly from (23). ‘The derivative of 3gg
can be easily obtained by ruaarical difierentiation.

The procedure for the derivation of an equivalent set of equa-
tions for other lincar classical theories of isotropic shells is identi-
cal to that given before. For general anisotropic and/or non-
homogeneous shells of revolution with rotationally symmetric
properiies, the fundamental set of equations is derived in the
same way as (22) except that (9) and (10) must be replaced by the
appropriate’ stress-strain relations given, for example, by Am-
bartsumyan [14]. Otherwise, the derivation is straightforward.
For the improved theory of shells, such as the one given Ly Naghdi
{15], in whick the efiects of transversc-shear deforrantion are
accounted for, the following ten fundamental variab'o: are re-
quired: 1, ug, wo, Be Bs, Qe N, Nag, Mo, Meg. Sincer oo Qsand
Q¢ appear in (13), the climination of Qp from (Ga), {

done by means of (13z). The required equetions fo. Yoriva-
tives of the generalized forces are obtained directly f .» five
equations of equilibrium (6), {7), (8). The remaini Sua-
tions are derived by following a procedure similar t: " the
foregoing.
Fundamonial Enuatioss for Separelic Sernticus
Tor shells of revolution which consist of comp!
circles, the surface loads are periodie with respeet
period of 2w, and they can be assumed to be of the fo:
4 cos nf
{Pér Ps mé} = {7’»‘-"1 P mv""} 1 2

. 4
sin nl;

{4, 74

{Ten, T} {cos 710} )

sin nf

~fsin 2l
{pe: mal {M‘u mc,,} {(:m 7:0}

(2le)

<) each
o=

whire e vaviebles with sulsevipls 5 depenidd ondy
inteeral volue ol 2 in (21) enn b rerarded eq on
cral Foirier ¢ovfee expocton of il

piannt b i prrioie

1.

ARSI NS P
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{3a),is °

‘Beparable elutions of 7 I r't1}'r('5=ln«‘x\(1i11g'{tv the value of n in
24), are-then ehlained in s farm

oo 2 Bel 7w n Bl {m "0}-. B

- ..{8in nf

“

{Ng) Mo, Q

e [ Nem Mo 0.} {00_3 1:0} . o)

sin ul

o) = Lo X2 {20 01

cos n

235¢)

The s-dependent cocflicients with subscripts n on the right-
haud side of (25) are governed by a system of equatinns which is
oblained from (22) and, afler using the assumption that the shell
is thin,? can be written as

1
Wy, = 757 Wea — 6¢n (262)
Ry
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r
1 R
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Ko Pe T aTaE )
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vn? ya sin ¢ veosd
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r? r? r
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r
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4 1 —
B gne = 1X1 — ¥)(3 + »)D WS P, e —r-,—f JDitgn

,-J
ES nD coq ¢ l:(l -+ v) 5":_—¢ — HJ Uga
) cost ¢ + 202Ben + Q F 2"1;{—%
— (1 - ) °—°S—¢ Myn — mgn — a(l — ¥D 93:—‘1’ Ty (26k)

The double signs in (26) correspond to the top or botiom trigeno-
imetric funetion cimployved in (24) and (23).

Ths quantitics which are not included in the fundamental
variables can be expressed by means of separation of variables by

{A,Gny AIGI:) Q¢n} {c.os no} (27&)

AT
{ 3 AIF; Q¢} sin 716

v sin nfd
N {2 = /| ny ny n
{Nog, Moo, Qo) = {Nogn, Megn, Qen} {cos 110} (27{7)

where the s-dependent cocfficients with subscripts n must =1ti<f)
a set of equations obtained from equations (14)-(17) and (23) in
the foxm

K
Nea = vNg + (1 — ) pr (w, sin & 4 ugn cos G == NugM)

: — a(l — v)KT e (282)
, D (n?
Moy = pMan + (1~ ) - (’-lr— w, + Bon cos P
*n El—%—é tlc,.) — ol —- p)DTi,  (28b)
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D
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2 (8K
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r
1'\.:‘,;. v 1’\'1. - "" q’ 4""‘ ” (2‘\—;"’)
r
Gy s Q7 Meg )

whe doubie signe aen

1 . L .
“by nars of this proseeline

orrespoint ta the top or hatl i trgo-
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nomettic funclion cinpioyed o (), (25), and (7).
The remainder of this paper i coneernesd with the

the system of cquations (26), subject Lo the Lonnkay conditions

solition of

n _ontwoedges § = const. s Tt should be nofed tluet nfter the. expaa- -
_sion of the loads in Fourier series, the golution to 20} i obtaiund

for cach mtc;vml value of n '\p wately, “aned then the solutisns are
superimposed to forn a Fourier sericas expansion for U unknnwn
variables,

Reguction Lo tuitiol Value Preticis
This section is concerned with the redurtion of a Lwo-point
boundary-value problem governed by

dy(z)

= = A(X)y(r) & B{x) (29a)
dz

to 2 series of initial-value problems. Tn (291), 4(x) is an (m, 1)
matrix which represents m unkuown functions; z is the inde-
pendent variable; A(x) denotes the (m, m) cocflicient matrix;
and B{z) is thc (a2, 1) matrix of the nenhomogencous {ermis. The

elements of A(z) and B(z) are given pieccwise continuous fune-

tions of z. The object is to delermine #{z) in the intervala €z £
b subject to in bourdary conditions stated in terms of lincar
combinations of y{a) and y(b) in the form

Fya) 4 Fyy®) = G

where Fo, F, are (a, m) matrices and G is an (2, 1) matvix, which

(295)

_are keown from the statement of the boundary conditions of the

problem. It should be clear ithat the governing system of eqm—
tious (2G) derived in the preceding scection is stated in the form of
(29a), and that the approprinte boundary conditions for a shell of
revolution can bz exprezzed in the form of (29b).
Tt the complete solution of (29a) be written as

y(z) = Y(x)C + Z(z) (30)

where the (m, 1) matrix C represents 2 arbitrary constants, and
Y(z) is an (1, m) and Z(z) an (m, 1) matrix which ere defined 23
the homogeneous and particular solutions of (29a) in the form

D~ s (31a)
92 g2z + Bl (310)
z ,
The initixl conditions for determining Y(z) and Z(z) are
Y(a) = (32}
Z(a) = (32b)

where I is the unit matrix.
Evaluation of (30) ot z = a leads at once, in view of (322, b), to

= y(a), and then (30) at # = b can be written as
y(b) = Y(byle)

+ Z(b) (33)

Together with (203), equation (33) constitites & system of 2m
linear algebraic equntions fram whicli the 2m unlnov.re, yle)
and y(d), are determined. Oncn ple) is known, the solution «t
eny valus of z is ohtained from (30) prov ided that tha valoes of
Y () and Z{r) ot thet particolie 7 sreston Jo Thiz eongdetas the
reduetion of £ Gy it bowr doryevelen probles &
Lo -4 Timtlihaw lu]u“ oo by (81, 220
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Fig. 2 HNotetion for division of tetul interval icto scgments

tions (26) for shelis of revolution, it is obzerved that the clements
of Y(z) and Z(z) increase in magnitude in such a way that if the
length is increased by any factor », then these solutions increase
in magnitude approximately exponentially withz.

Consider, for example, 1!.2 rxisymmetric caze when the defor-
mation in the shell is caused by some preseribed edgc conditions at
z = g, 80y, by Me(a) = 1 aud Nu(a) = Qa) = 0. It is reasonable
to expeet that the corresponding solutionsat z = b become sinaller
and emaller when the interval (g, b) is increasad in length. The
conncetion batween u(b) and y(«) is given by the matrix equation
{33) with the following magnitudes of the elements: %(b)-small,
Y(b)urge, #{a)-unity. Clearly, the only way that the matrix
product of (33) cen give small values of y(b) is that & number of
significant digils of the large values of Y(b) subtract out. When
the lenglh of the interval is increased, Y(b) increzse, while
y(b) decrease, and invariably all aceuracy is lost at some critical
length beeause all significant digits of Y(b) in (33) are lost. This
simple example serves as an illusiration for the loss of aceuracy
encountered in the apalysis of shells if the foregoing reduction
technique 1s employed.

A convenicnt lengih factor, defined by

B = U3(1 — v))]'//(RR)/ (34)

where 1 is the length of the maoridizn of the shell end 12 is 2 mini-
mum radius of curvature, can be used for an approximate esti-
mate of the eritical length of the shell. If the solutions Y{x) and
Z(xz) are cbtained with a six-digit sccuracy, then the foregoing
procedure gives good results in the range 5 <£3 -5

However, the loss of accuracy of the solution can be aveided and
shells of revolution with mucl lurger values of 8 can be analyzed
by means of the direct integration technigue if the multizegment
mnethod given in the next section is employed.

Plultissurent [lothed of

Let the shiell be divided into Af-segments (dencted by S;, where
i= 1,2 ... M)of arbitrary length in each of which 8 £ 3.
Denote the coordinates of the cnds of the segments by = = z,
where the Jeft-hand cdze of the shell is at z = 7, and the right-
hand cdge is at 2 = T34y, as shown in Fig. 2. In anzlozy to'(30),
the solution in the totalinterval ; € 2 £ xar41 now c2n be written
08

W) = Yl + Bidx) (35)

where Y,(2) and Z,(z) denote the matricea conezponding to Y{x)
and Z(x) in coch segment Sy <2 £ z:) and are givea by

1V

WY v (36-1)
dr

Yo =4 (39)

1

N TRVAT R (360)
adr

MERIE IR )

vl e ZEN =0 ()

Reguiring (ontinuity's—all cements of ${z) at the paints oy,
i 2,8, .., A o, the following Af-matrix equn o are oh-
tained from (35):

e ¥

B T RN RO RN e |

o IR R ACTV I C O
whetes == 1,2,.., M. Equations (37) involve M/ |- T unknown
(1, 1) matrices: w{x)), £ = 1,2, ..., M -+ L However, if the
quantitiea presetibod at the edges of the shell are the fundamental
variables, then the totu] number of unknownas is reduced by 1, be-
cause m/2 clements of ylr) and /2 clements of W{rwn) are
known. The goane is true if the boundary conditions ove stated
in terms of lincar combinations of the fundumental variables in the
form of (200). In (his case, {7 ) and y(zaryr) should be premualti-
plicd by nonsingular (m, m) transforn:ation malrices Frawd Py,
respeetively, so that the clements of the products coulain the
quantities prescribed at each edge.  After climinating y{21) and
y(rarqr) from (37) by means of these products, it is conctuded
that (37) will retain its form if, after integration and before sub-
stitution into (37), Yi(22) is postmultiplied by Fy7h while
Yalzag) and Zp(zyq) are premultiplied by Farsi Tu the
following, it will be regarded that this transformution is carried
out and that ¢z} and v(7 1) contain among their clements those
quentitics which are prezeribed at £ == and z = Zapy, TCIpPCC-
tively.

"Thus for all boundary conditions in the form of (203), the sys-
tera of M matrix equations (37) involves exaetly A times 22 un-
knowans, and formally it can be solved by any method which is
anplicable to a large number of equations. However, the suceess
of the procedure given in this paper lies in the application of
Gaussian eliminstion directly on the matrix equations (37).

Tirst a rearranzement of elements is perforined. Since those
m/2 elements of ¥(x) and y{zarn) which are known through the
boundary conditions can be any m/2 of the m-elements, 14 i3
pecesaary to rearrange the rows of y(n) and y(zy.) so that the
known clements are separated from the unknown clements. It is
assumed here that the first /2 elements of y(a1), denoted by
vi(z), are knovn and that the last mn/2 elements, denoted by
y:(2:), are unknown. On the other hand, yi{zara) sre the un-
known and y«ziry) are the known elements of y(z241). Since
the order of the variables in the column matrix y(z) is arbitrary,
it should be emphasized that this separation of elements does not
involve any restriction on the boundury conditions, znd that any
natura! boundary condition in the form of (290) can ba preseribed

" &t ench edge. The separation is achieved by a simple rearrange-

ment of the colunns of Yi(#:) and the rows of Yy(z:n) and
Zalx3r) after integrating the initial-valae problems defined by
(36) to the ends of the segments S; and Sy and multiplying by
Fy—1and Fygy as stated in the foregoing.

O: 2 it is cstablished which parts of y(zm) and y(zxy) are
knos- . the continuity conditions (37) are rewritten as a parti-
tiow © :ndrix produet of the form

[ 1 [?.’.-'f?iie_?i_’fsf(fff.t)] [’»!zﬁ-?i-;’] + [.7'_';‘_(1:':5?}
L. P LY eV o d Luzd ZXzi0)

(33)

so !
gy
Yo D) - Y i de(x) -~ w(zin)

,i:i:-‘-;l)lll(fl‘i) -+ Y."(Ii;l):’!:{-'f-) — yfrin) =

1 of the equalions (37) turns into a pair of equalions,

It

—Z,,(-qu)

-—Z,»:(.l'.u,\)

(39)
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By means of Gaussian elimination, - estenvof eepintions (39)
st branghit to the form —~

B o 0 {0
N R S R Y
0 0-. B =l g o
?.____,____9____'____9 ______ C: N Jg —1I
0 0 o o By
| O 0 0 0 0

where the dots indicate the triangularized equations (39) with
i=3,4,...,M— 1 The(m/2,m/2) matrices By, Cyare defined
by C

E, = ¥ (41a)
Gy = Yt (41b)
and for? = 2,3,..., M
E; = Y&+ Y™t (41¢)
C; = (V04 YPCa~H)E (41d)
The (n/2, 1) inatrices 4, I3, are given by
Ay = —-Z - Yily(an) (42a)
B, = —Z? — Yip(n) ~ VB, (42b)
and fori = 2/3,.., M-—1
A, = =2 - Y0, Bia (42¢)
B; =

- Z2 = Y0y~ Bia — (YA + Y0 EA; (424d)

* Finally, for the Mth segment

Ay = —Zy' — YuCri™Byra (42¢)
By = wlzarsr) — Za? — Y 32Caa By

— (Vi 4 YarlCua ™ NE Ay (42)

For brevily, in place of ¥/(xin) and Z{zi;), the symbols Y,/
and Z; have been used.
By means of (41) and{42), the unknowns of (39) are obtained by

‘wlzan) = Oy~ By (43a)
yo(z3) = ExyMwa(zorar) + Anl (43b)
andfor7 =1,2,..,AM -1
(zsroin) = Caua yulzain) + Bar-i (430)A
ylza) = EvoiMylzvoin) + Ay (434d)

1t should be noted that (41)-(43) inust be evaluated in succession,
becausc each equation involves the result oblained by the preced-
ing equation.

Once all the unknowns y{x,) arc found, the fundamental
variables ave determined from (33) at & - value of x at which the
solutions Y(x) and Z(«) - stored - the integration of the

initial-value problems of © % The * v :tion of (36) can be’
accomplished by means o RN -+ direct inlegration
methods.

On the busis of the sv _3) given in an carlier
gection and the method o7 RIS 4 in the last two see-
tions, the author has pu Daoeons,. o oprogram? which has

SDanraticr wving harge vadues of B
St known re alts, Oue example of 2
57 is presontad i Oy next seetion.

been spplied (o many sh-
and successlully tested oo
prezsurized torus with 5
Phe proseam admits el oy meridional vivis Hons, sehiding
dizeantnytiog, Tt osteo admits ring lowds
i U foran of pre edbed valies of N Mo, Ny or Qateny value of

b shelt pracancbers,

CThe prozrtem veoas writlen and all endenliGon- were carried
ol by the cuthor on the TEAD 00 computer of the Yele Computer
Coenter, Fhe divect intemmtion of (363 i performed by means of the
Adiia pe methed, whieh = lects an optinpi step

LT v ctep neeotdig to o preeniboal seonaey,

RO Lo
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HESK

B () [~ Ay ] .
BT T R O K e
0. yix) ~ Ax (40) ‘
0 () D,
-1 yxar) Ay
Cord Ln(raria) L Bar .

¢ on (he shell. Such loads introduce discontinnitics in the solu-
tion for the eorresponding stress resultants, and they can be repre-
sented at every z; by an (m, 1) discontinnity matrix which is
simply added to the matrix Z(xiqr) on the right-hand side of (37).
This feature is of great value if shell joints are considered.  Any
discontinuity, cither in geometry or in loads, is easily handied by
requiring that the end point of a scginent coineides with the loca-
tion of the diseoutinuity. Since integration is restarled at the
beginninz of each segment, the precise effect of the discontinuity is
obtained. The program outputs all fundamentzl varizbles at a
number of desived points within cach scgment, and it also com-
puics the values of y{z:i) twice; once from (43) and then from
{35). If a certain number of significant figures of these values
match, then the continnity conditions are known to be satisfied to
the same number of figures. In this way, a convenicnt error esti-
mate of the solution is obtained for every case.

Exampie: Frossuiized Terus

In this section the stresses and displrcements are determined in
a complete torus subjected {o a constant internal pressure. It is
well known that the solution of this problem, when obtained by
means of Lhe Lincar membrane theory of shells, has & discontinuity-
in the displaccment feld. It has been shown by Jordan [16] and
by Sanaers and Liepins [17] that 2 satisfactory soluiiun with re-
gard to the displacenent field for 2 sufficiently thin shell can be
obiained if the nonlincar membrane theory of shelis is employed.
Subsequently, Reissner [18) established bounds on certain
parameters which show when the nonlinear menibrane and when
the lincar bending theory is applicable. It seems worlhwhile to
give here the solution for 2 pressurized torus as predicted by the
lincar bending theory.

The geometry of the torus is shown in Tig. 3. With regurd to
the quantitics employed in equations (26), the two nccessary
parameters for a torus are given as

Ry = b
a+bsing

(44a)
(44b)

¥

1

Because of symmelry with respect to the plane X\, Fig. 3, the

& =180°

Fig. 3 Craaety of baus censldornd i e b
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Fig. 4 Mcridionel bending stress o ot ouler fiber versus meridional
eoordinate ¢

integration of the initial-value problems is carried out from ¢ = .

9N° {o ¢ = 270°, and the boundary conditions at these endpoints
areng = Be = Q@ = 0. Tor the purpose of comparison with the
results of [16]) and {17}, the load parameter is chosen as pblEh
2 0.002and a/b = 1.5. :

The numerical values of the normal displacement, meridional
membrane stress oen = Ne/h, and meridional bending stress

Mg = OMa/htat = /2 fora pressurized torus are shown in

Table 1 and in Figs. 4 and 5. These resulls were taken from the
ontput of the compuler program prepared for an arbitrary shell of
revolution after preseribing the geomelric paramelers as given by
{41). 'The meridional membrane stress distribution agrees very
well with that obtained in [17] by means of the membrane theory
of 1hells and it shows only a small variation with 1/b. The de-
Baned shapes of the cross seetion of the torus shown in Fig. 5 for
Phiee values of /b e in qualitative agreement with thase given
o 116) and (17, but their quantitaiive ngreament cannot be ex-
poed Because the values of I/b used in this exaumple nre oulside
Sdivibles Thic s

v sheven i Fig, 4
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Fig. 5 Normal displacement w versus & showing deformed section

- Jable 2 Maximum meridional bending siress and meridionel membrene

stress at & = &

Y 0.05 0.02 0.005
do 189° 186° . 184.5°
(oen/E) X 102 2.053 2.082 2,082 _-
(ces/E) X 10° 0.427 0.312 0.197
100 (ces/oen) 20.8 15.0 9.6

1t is of significance to note that even for the thickness mitio

" Rh/b = 0.003, which for many applications would be regavded as

small, the maximum bending stress is about 10 pereent of the
membrane stress at the same point.  Such eficcts of bending ina
torus were previously nofed by Clurk [19], and they arc also in
agreainent with the statement made by Goldenveizer [20] that
when the middle surface touches a closed-plane curve, which ina
forus corresponds to ¢ = 150°, then in the vicinity of this crve
bending stresses should he expected and the membrane theory is
nol appliceble. »

Phe bonndary Jayer shown in Vi 4 is alsn in coreement vith
(he coneluzions reached in (18] 1o the effect hat when pand p
piven by

0= (1 = e a)(b /i)

p = 1200 - U p/ERb /Y
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are Lwge cornpared (o unity, then a b

Jeathiaed of oo 186 should be antiaded. Tor the present
exarnple, oranpes froncd  to 40 mid p from 0 o 8710 However,

ginee 3 i the only Joud pacameter of the problem, the sulutions

large vihies of p the deformation of the torus may exceed the
limits of @ linear theary which according to [18] restrict p Lo the
range p < p'h, '
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EXTRACT FROM REPORT GAMD=-7445
PRESENTING BASIS FOR CRITICALITY ANALYSES




SUMMARY OF INITIAL CRITICALITY EXPERIMENT
FOR

—————

TORREY PINES TRIGA MARK III REACTOR STARTUP

Introduction

The reactor is a movable core water reflected reactor using standard
stainless steel clad fuel elements containing 8.5 weight-percent uranium with
20% enrichinent. The hydrogen-zirconium ratio is 1.65 to 1.0, A detailed

description and safety analysis for the reactor is given in GA-5400, Rev. B.

Initial Criticality

On January 19, 1966 the reactor was loaded to criticality with 56 fuel
elements plus 4 fuel followers. The inverse multiplication data is shown in
Table 1 and the loading sequence is "shown in Figure 1 and in Table 2.

Figures 2, 3, 4 and 5 show_ the inverse multiplication data for the four
instrumentation channels. Because of their low sensitivity the ion chambers
did not respond until a number of fuel elements were loaded.

' The instrumentation used for the startup included one fission counter,
one BF, counter and two gamma compensated neutroﬁ sensiti;\fe ion chambers.

. The fuel was loaded to give the most compact core Apossible, that is, the
fuel elements with the highest uranium loading wexe placed in the center of the
core. The average uranium loading in the core for initial criticality was 8.52

wi, a/O 5

Neutron Instrumentation

The standard reactor instrumentation for the startup and post-startup
tests consisted of two gamma compensated neutron sensitive ion chambers
which provided information to log and linear reactor power channels. A
fission counter which supplied startup data at low péwer levels and an un-
compensated gamma ion chamber which was used for power indication at high
reactor power levels. The compensated ion chambers were mounted above
the reactor core over the E, F and G rings. These two chambers were located

at opposite sides of the core., The fission and gamma chambers were also



2.

" Jocated above the core over the F and G ring region. Figure 9 indicates

the relative position of these four reactor power sensing devices.



core Configuration

1.

2.

10.

A11 rods up

30 elements all '

rods up

a. Reg DN

b. ,Safe DN

c. Shim I DN
d. Shim II DN

45 elements all
rods up

a. Reg DN

b. Safe DN

¢. Shim I DN

d. Shim II DN

. 46 elements all

rods up

51 elements all
" rods up

a. Reg DN

b. Safe DN

c. Shim I DN
d. Shim II DN

52 elements all
rods up

53 elements all
rods up

5L elements all
rods up

55 elements all
rods up

56 elements all
rods up '

Multiplicétion Date

FC

cts{min. M ' 1/M

" 290 . . _
467 .68 0.609
k39  1.51  0.660

452 1.55 ,0.6L0
Lot 1.h7 0.679

kb2 - 2.52 0.655.-

610 2.10 0.475

765 2.63 0.379
832 ~ 2.86 0.348
658 2.26 0.140
g2  2.8%  0.351

g3 2.86 0.3

2898 '_9.99f' '0.100

1539 5.30  0.188
1845 6.36  0.157
1153 3.97 0.251
1597 5.50 0.181

3373 11.63 - 0.0859 23833

us7h  15.77  0.063h 37000

7284 25,11 0.0398 66100

19936 68.81 0.01L5. 19k000

on 25 sec period

- Fuel element in A ring.

BF

3
CBZmin. g
L8 -
808 16.8
g8z - 1k.2
583 12.1
587 12.2
670 13.9
5733 119.4
3226 67.2
3554 4.0
2960 61.6
:'hA01 91.6
631k 131.5

17333 36LL

6760  1k1.0
7835 163.2
5639 117.4
17181 162.1
Lo6. h
770.8

1377

hol1

1/M
0.059%
0.0703

0.0823
0.0817

. 0.0716

0.00837

0.0148

" 0.0135

0.162
0.0109

0.00760

0.00709
0.00612
0.00851
0.00616

© 0.00201

0.00129
0.0007256

0.00247



Table 2

loading Sequence

Total U-235 in No. of

S  Puel . - e e .
Grid . Element U-235 in : Core Excluding Elements
Position No. Element % U Fuel Followers In-core.
First Loading
A-2 3922 38 8.52 38 1
B-1 Lo61 39 8.75 11 2
B-2 ko8L 39 8.71 $ 116 3
B-3 "~ holg . 39 8.70 155 -4
B-4 . W0 _ 39. 8.75 ~ 19% 5 .
B-5 %3100 Lo 8.75 23L 6
B-6 2y " 39 8.70 ° 273 T
c-1 4053 . 39 8.69 - 312 8
c-2 %113 39 8.55 351 .9
c-3 Lo68 39 8.69 390 10
c-h Log2 . 39 - 8.62 - L29 11
c-5 IR 1 B 2 B 39 - 8.60 -~ h68 R
c-6 -~ . ko9l . 39 - 8.58 - 507 A3
c-7 Lho76 B 39 . 8.69 - .56 1k
" c-8 3672 .39 8.61 .88 15
c-9 43123 : 39 8.68 - - 62k .16
c-10 k102 39 - 8.53 663 S
c-11 4070 .39 8.6k 702 E 18
c-12 Los50 ' - 39 - 8.6h - Thl .. 19
D-1 - Lobb - 38 - 8.45 179 - 20
D-2 koo . 38 8.50 817 .21
D-k LoT72 - 38 .- 8.%2 855 . 22
D-7 - koGO - 38 8.42 803 . 23
D-9 Los8 38 8.51 932 24
. D-10 - Lo55 .. .39 - 8.58 g0 -~ . - 25
-Dp-13 - Los5T : 38 - 8.4 1008 26
D-13 ~ hila : 38 8.45 -10kh6 27
D-15 . hizo | 39 . 8.5k . 1085 _ 28
D-16 - Ji25 _ 38 " 8.4k 1123 29
D-18 4063 ' 38 8.49 1161 30
Second Loading
D-6& Lot2 38 8.47 1199 T3
D-5 4083 .39 8.59 1238 32
E-6 L4119 38 : 8.h2 1276 - 33
E-7 3677 38 8.h2 131k 3k
£-8 Losh 38 8.41 ' 1352 35
E-3 Lo81 - 38 8.45 1390 36
E-k Lo80 38 - 8.l : 1428 37
E-5 %103 38 8.43 1466 _ 38
- E-2 LoL6 39 8.h9 1505 . : 39
E-1 3679 , 38 8.h2 1543 10
E-2h 3683 38 8.4h0 1581 L1
E-23 385k 38 8.49 1619 Lo
E-22 o i ' 38 8.h2 1657 43
E-21 3895 38 8.hg - 1695 WL
E-20

%090 39 8.56 173k L5



. Fuel
Grid Element
Position - No.

B o ter-di
P s v

" Third Loading

E-1T7 Lo89

Fourth loading'

D-1k4° - hOT1
E-19 1105
E-18 3675
E-16 3673
B-15 - 4082

Fifth Loading

B9 ‘.“L'368¢. . o

sixth Ioading

E-10 3682

" geventh Iloading

Bighth loading

. B2 . 3671

Ninth ¥oading ?ﬁiwiéifﬁzii;;g;y%;;ﬁ?:f{;fﬁ,}.ﬁfff::.
- 8.k3

E-13 368k

U-235 in

Element

:'38 :

pm . 8 38
38

.38 |

. Total U-235 in

Core Excluding
Fuel Followers

% U

'8.50

8.40
8.32

&A1
't;i:é;3§ i
T ». - N
M

. 8.33

1772

No. of
Elements

In-core

. v

T s

| : 5h'_4

s

56 -
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l 00 v
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Fig. 1 - Critical loading sequence
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