C. This amended license shall be deemed to contain and is subject to the conditions specified in the following Commission regulations in 10 CFR Chapter I: Part 20, Section 30.34 of Part 30, Section 40.41 of Part 40, Sections 50.54 and 50.59 of Part 50, and Section 70.32 of Part 70; and is subject to all applicable provisions of the Act and to the rules, regulations, and orders of the Commission now or hereafter in effect; and is subject to the additional conditions specified or incorporated below:

(1) Maximum Power Level

ENO is authorized to operate the facility at steady state reactor core power levels not in excess of 3067.4 megawatts thermal (100% of rated power).

Amdt. 213 11-26-02

(2) <u>Technical Specifications</u>

The Technical Specifications contained in Appendices A and B, as revised through Amendment No. 213 are hereby incorporated in the License. ENO shall operate the facility in accordance with the Technical Specifications.

(3) Less Than Four Loop Operation

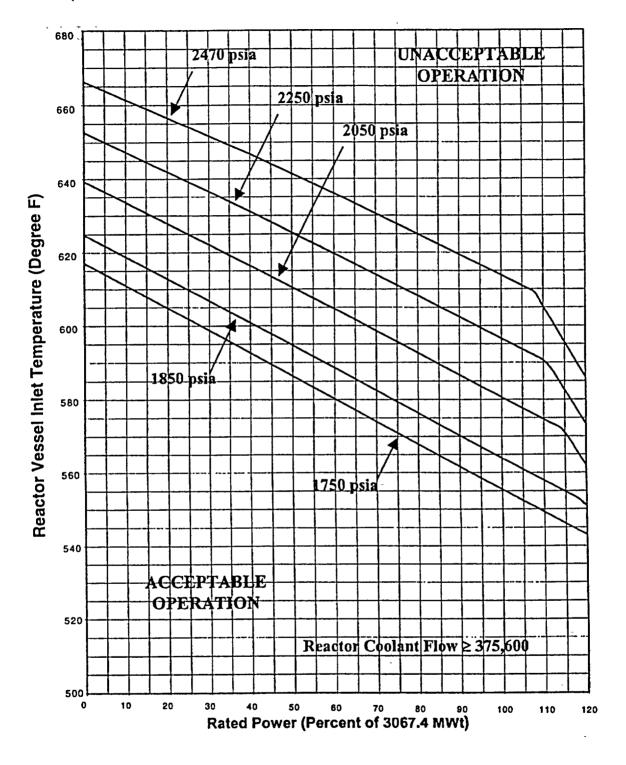
ENO shall not operate the reactor at power levels above P-7 (as defined in Section 7.2 of the Final Facility Description and Safety Analysis Report) with less than four (4) reactor coolant loops in operation until safety analyses for less than four loop operation have been submitted by ENO and approval for less than four loop operation at power levels above P-7 has been granted by the Commission and amendment of this license.

(4) <u>Pressurizer Weld inspection</u>

The results of the UT inspection of pressurizer weld L-1 (ref. Appendix A Technical Specification 4.2.5.f) shall be reported to the NRC and approval of the results obtained prior to return to power operation following the second refueling shutdown.

D.	(DELETED)	Amdt.46 2-16-83
E.	(DELETED)	Amdt.37 5-14-81

Amendment No. 213


Amdt.16

8-11-78

1.1 Defin	nitions
-----------	---------

	•	
MODE	(continued)	vessel head closure bolt tensioning specified in Table 1.1-1 with fuel in the reactor vessel.
OPERAJ	BLE-OPERABILITY	A system, subsystem, train, component, or device shall be OPERABLE or have OPERABILITY when it is capable of performing its specified safety function(s) and when all necessary attendant instrumentation, controls, normal or emergency electrical power, cooling and seal water, lubrication, and other auxiliary equipment that are required for the system, subsystem, train, component, or device to perform its specified safety function(s) are also capable of performing their related support function(s).
PHYSI	CS TESTS	PHYSICS TESTS shall be those tests performed to measure the fundamental nuclear characteristics of the reactor core and related instrumentation. These tests are:
		a. Described in FSAR Chapter 13, Initial Tests and Operations;
		b. Authorized under the provisions of 10 CFR 50.59; or
		c. Otherwise approved by the Nuclear Regulatory Commission.
-	ANT POWER TILT (QPTR)	QPTR shall be the ratio of the maximum upper excore detector calibrated output to the average of the upper excore detector calibrated outputs, or the ratio of the maximum lower excore detector calibrated output to the average of the lower excore detector calibrated outputs, whichever is greater.
RATED (RTP)	THERMAL POWER	RTP shall be a total reactor core heat transfer rate to the reactor coolant of 3067.4 MWt.

(continued)

This curve does not provide allowable limits for normal operation. (see LCO 3.4.1, Pressure, Temperature and Flow DNB limits, for DNB limits)

Figure 2.1-1 Rated Power (Percent of 3067.4 MWt) 100 PERCENT RATED POWER IS EQUIVALENT TO 3067.4 MWt Pressures and temperatures do not include allowance for instrument error

Amendment 213

1

		FUNCTION	APPLICABLE MODES OR OTHER SPECIFIED CONDITIONS	REQUIRED CHANNELS	CONDITIONS	SURVEILLANCE REQUIREMENTS	ALLOWABLE VALUE
•	Safe	ety Injection					
	а.	Manual Initiation	1,2,3,4	2	В	SR 3.3.2.6	NA
	b.	Automatic Actuation Logic and Actuation Relays	1.2,3,4	2 trains	С	SR 3.3.2.2 SR 3.3.2.3 SR 3.3.2.5	NA
	c.	Containment Pressure-Hi	1.2.3	3	D	SR 3.3.2.1 SR 3.3.2.4 SR 3.3.2.7	∡ 4.80 psig
	d.	Pressurizer Pressure·Low	1.2,3 ^(b)	3	D	SR 3.3.2.1 SR 3.3.2.4 SR 3.3.2.7	≥ 1690 psig
	e.	High Differential Pressure Between Steam Lines	1.2.3	3 per steam line	D	SR 3.3.2.1 SR 3.3.2.4 SR 3.3.2.7	NA
	f.	High Steam Flow in Two Steam Lines	1,2 ^(d) ,3 ^(d)	2 per steam line	D	SR 3.3.2.1 SR 3.3.2.4 SR 3.3.2.7	(c)
		Coincident with T _{avg} - Low	1,2 ^(d) .3 ^(d)	l per loop	D	SR 3.3.2.1 SR 3.3.2.4 SR 3.3.2.7	≥ 538 °F
							(continu

Table 3.3.2-1 (page 1 of 6) Engineered Safety Feature Actuation System Instrumentation

(a) Not used

(b) Above the Pressurizer Pressure interlock.

(c) Less than or equal to turbine first stage pressure corresponding to 54% full steam flow below 20% load, and increasing linearly from 54% full steam flow at 20% load to 120% full steam flow at 100% load, and corresponding to 120% full steam flow above 100% load. Time delay for SI \leq 6 seconds.

(d) Except when all MSIVs are closed.

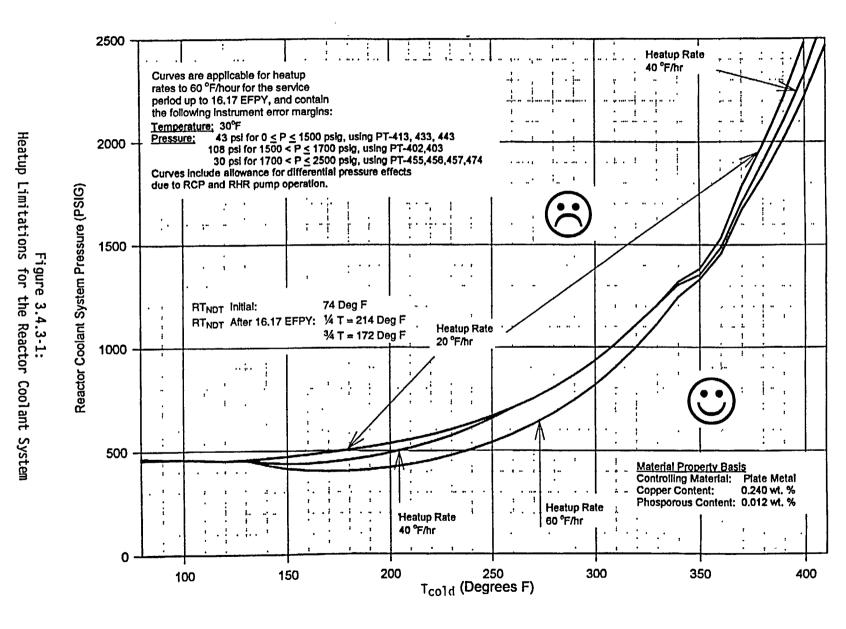
		FUNCTION	MODES OR OTHER SPECIFIED CONDITIONS	REQUIRED CHANNELS	CONDITIONS	SURVEILLANCE REQUIREMENTS	ALLOWABLE VALUE
•		ty Injection ontinued)					
		High Steam Flow in Two Steam Lines	1.2 ^(d) ,3 ^(d)	2 per steam line	D	SR 3.3.2.1 SR 3.3.2.4 SR 3.3.2.7	(c)
		Coincident with Steam Line Pressure-Low	1.2 ^(d) ,3 ^(d)	l per steam line	D	SR 3.3.2.1 SR 3.3.2.4 SR 3.3.2.7	≥ 500 psig
2.	Cont	ainment Spray					
	а.	Manual Initiation	1.2.3.4	2 per train, 2 trains	В	SR 3.3.2.6	NA
	b.	Automatic Actuation Logic and Actuation Relays	1.2,3.4	2 trains	C	SR 3.3.2.2 SR 3.3.2.3 SR 3.3.2.5	NA
	c.	Containment Pressure (Hi-Hi)	1.2.3	2 sets of 3	E	SR 3.3.2.1 SR 3.3.2.4 SR 3.3.2.7	∡ 24 psig
							(contin

Table 3.3.2-1 (page 2 of 6) Engineered Safety Feature Actuation System Instrumentation

- (c) Less than or equal to turbine first stage pressure corresponding to 54% full steam flow below 20% load, and increasing linearly from 54% full steam flow at 20% load to 120% full steam flow at 100% load, and corresponding to 120% full steam flow above 100% load. Time delay for SI \leq 6 seconds.
- (d) Except when all MSIVs are closed.

FUNCTION	APPLICABLE MODES OR OTHER SPECIFIED CONDITIONS	REQUIRED CHANNELS	CONDITIONS	SURVEILLANCE REQUIREMENTS	ALLOWABLE VALUE
Steam Line Isolation					
a. Manual Initiation	1.2 ^(d) .3 ^(d)	2 per steam line	F	SR 3.3.2.6	NA
b. Automatic Actuation Logic and Actuation Relays	1.2 ^(d) .3 ^(d)	2 trains	G	SR 3.3.2.2 SR 3.3.2.3 SR 3.3.2.5	NA
c. Containment Pressure (Hi-Hi)	1.2 ^(d) . 3 ^(d)	2 sets of 3	E	SR 3.3.2.1 SR 3.3.2.4 SR 3.3.2.7	≤ 24 psig
d. High Steam Flow in Two Steam Lines	1.2 ^(d) . 3 ^(d)	2 per steam line	D	SR 3.3.2.1 SR 3.3.2.4 SR 3.3.2.7	(c)
Coincident with T _{ave} - Low	1,2 ^(d) . 3 ^(d)	1 per loop	D	SR 3.3.2.1 SR 3.3.2.4 SR 3.3.2.7	≥ 538•F
e. High Steam Flow in Two Steam Lines	1.2 ^{(d).} 3 ^(d)	2 per steam line	D	SR 3.3.2.1 SR 3.3.2.4 SR 3.3.2.7	(c)
Coincident with Steam Line Pressure — Low	1.2 ^(d) . 3 ^(d)	l per steam line	D	SR 3.3.2.1 SR 3.3.2.4 SR 3.3.2.7	≥ 500 psig
					(continu

Table 3.3.2-1 (page 4 of 6) Engineered Safety Feature Actuation System Instrumentation

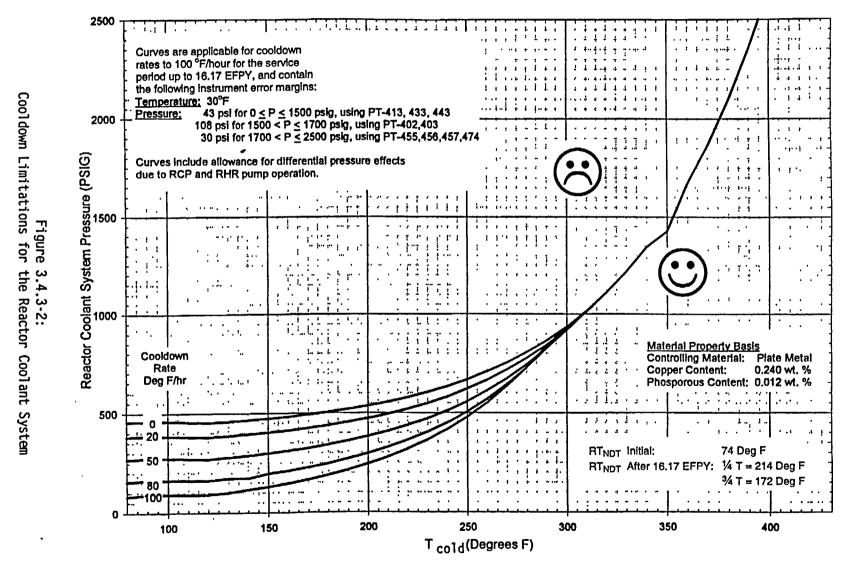

(c) Less than or equal to turbine first stage pressure corresponding to 54% full steam flow below 20% load, and increasing linearly from 54% full steam flow at 20% load to 120% full steam flow at 100% load, and corresponding to 120% full steam flow above 100% load. Time delay for SI \leq 6 seconds.

(d) Except when all MSIVs are closed.

Amendment . 213

3.4.3-3

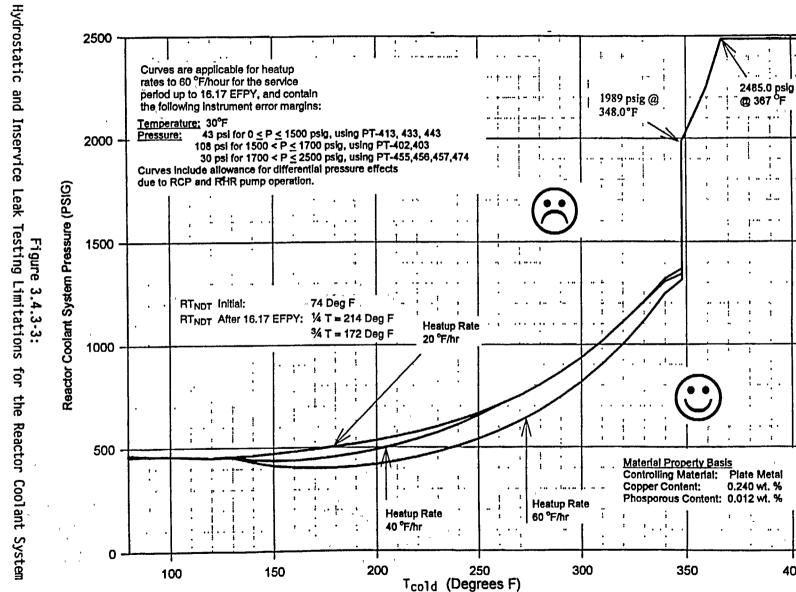
INDIAN POINT 3



RCS P/T Limits 3.4.3

Amendment :213

3.4.3-4


INDIAN POINT 3

RCS P/T Limits 3.4.3

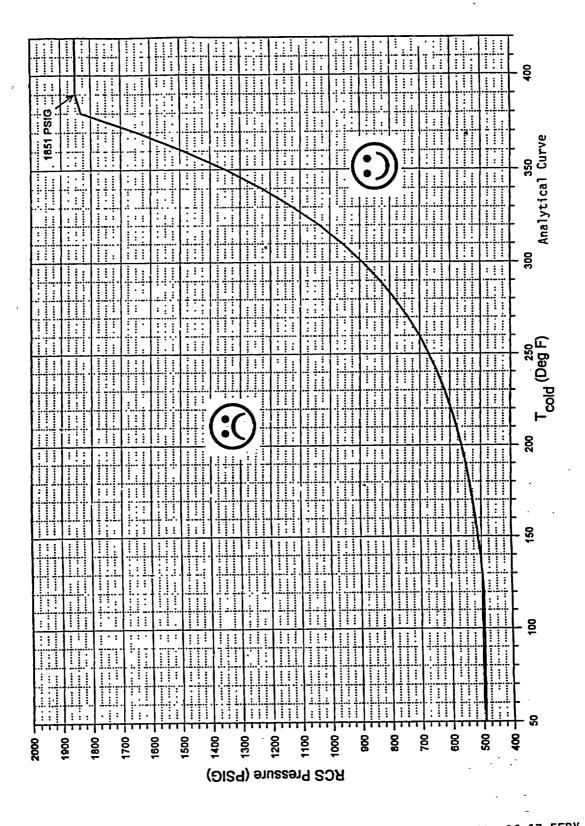
Amendment .213

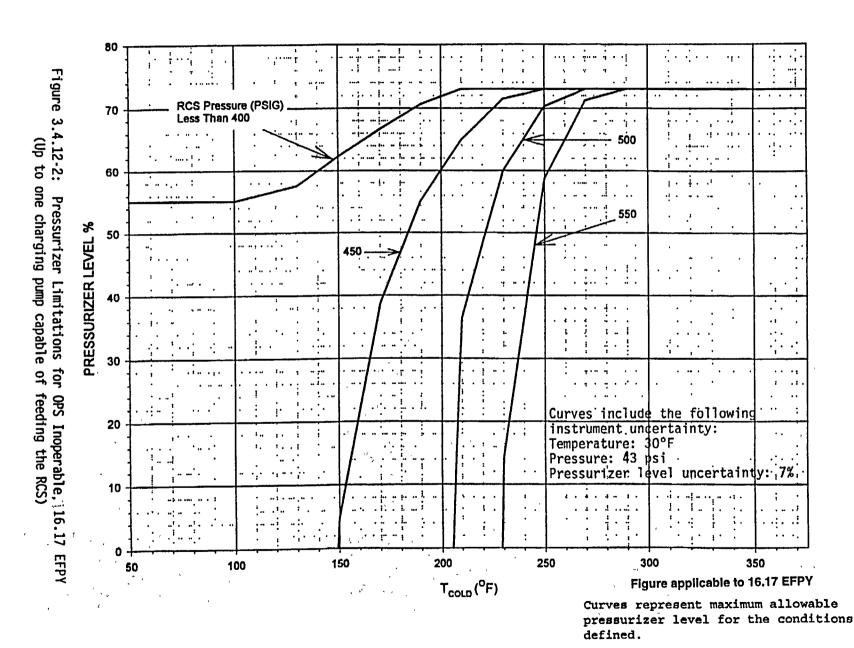
INDIAN POINT 3

RCS P/T Limits 3.4.3

3.4.3-5

400




Figure 3.4.12-1: Maximum Allowable Nominal PORV Setpoint for LTOP (OPS), 16.17 EFPY

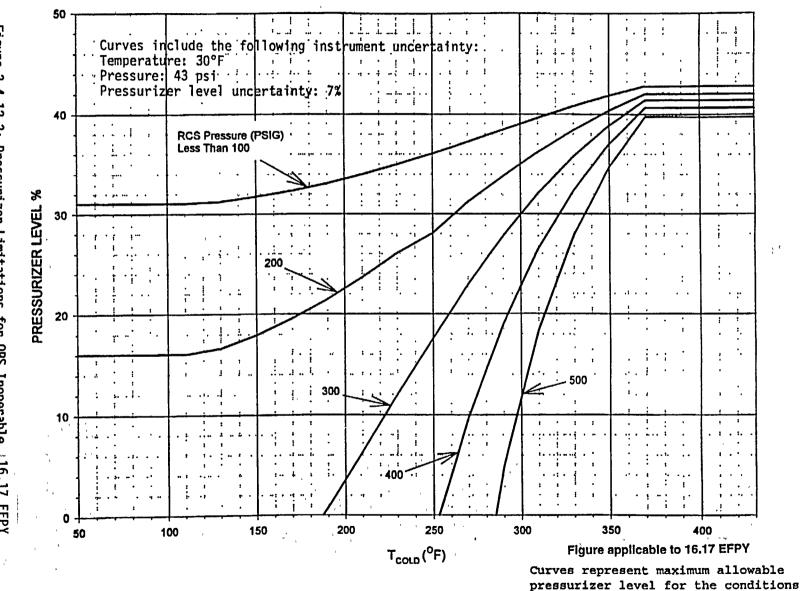
INDIAN POINT 3

3.4.12-9

Amendment 213

.

LTOP 3.4.12


1

Amendment :213

3.4.12-11

INDIAN POINT 3

defined.

LTOP 3.4.12

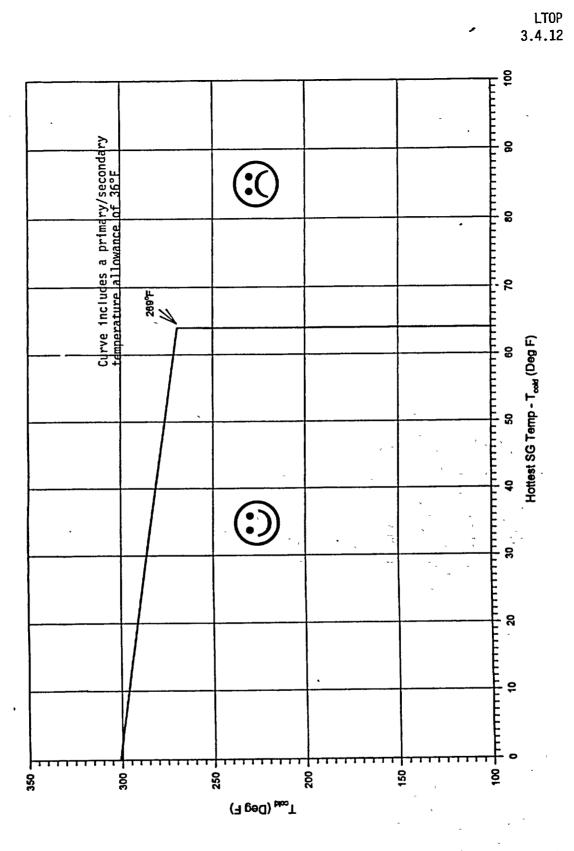


Figure 3.4.12-4: Secondary Side Limitations for RCP Start With Secondary Side Hotter than Primary Side, 16.17 EFPY

INDIAN POINT 3

3.4.12-12

MSSVs 3.7.1

1

. .

`___ *

Table 3.7.1-1 (page 1 of 1) OPERABLE Main Steam Safety Valves versus Applicable Neutron Flux Trip Setpoint in Percent of RATED THERMAL POWER

MINIMUM NUMBER OF MSSVs PER STEAM GENERATOR REQUIRED OPERABLE	APPLICABLE Neutron Flux Trip Setpoint (% RTP)
4	≤ 60
3	≤ 41
2	≤ 22