NRC FORM 618 (3-96) 10 CFR 71		ATE OF COMPLIAN TIVE MATERIALS PACI	NCE	TOULAN NEGUL	ATORY COMMISSIO
a. CERTIFICATE NUMBER 9261	b. REVISION NUMBER	c. PACKAGE IDENTIFICATION		d. PAGE NUMBER 1	e. TOTAL NUMBER PAG 7
 PREAMBLE a. This certificate is issued to certify that Code of Federal Regulations, Part 71, 			s the applicable :	safety standards set f	orth in Title 10,
 This certificate does not relieve the cor applicable regulatory agencies, including application 					portation or other
3. THIS CERTIFICATE IS ISSUED ON THE BAS: a. ISSUED TO (Name and Address)		LE AND IDENTIFICATION OF RI	EPORT OR APPLI	CATION:	
Holtec International Holtec Center 555 Lincoln Drive West		Holtec Interna October 23, 1			
Mariton, NJ 08053	c. DO	CKET NUMBER	71-9261		
4. CONDITIONS This certificate is conditional upon fulfilling	ng the requirements of 10 CF	R Part 71, as applicable, and th	e conditions spec	cified below.	<u></u>
s. 5.a. Packaging			arta Marta Britan		
(1) Model No.: HI-STAR	100 System				
(2) Description The HI-STAR 100 System overpack designed for bo HI-STAR 100 System co overpack which provides	oth storage and tran nsists of interchang the containment b	nsportation (with imp geable MPCs which h oundary, helium rete	act limiters house the s ntion bound) of irradiated pent nuclear f dary, gamma a	nuclear fuel. The fuel and an and neutron
The HI-STAR 100 System overpack designed for be HI-STAR 100 System co overpack which provides radiation shielding, and h approximately 96 inches	oth storage and tran nsists of interchang the containment b neat rejection capat at the cask body a	nsportation (with imp geable MPCs which h oundary, helium rete bility. The outer diam nd approximately 128	act limiters house the s ntion bound heter of the B inches at) of irradiated pent nuclear f dary, gamma overpack of the the impact lim	nuclear fuel. T fuel and an and neutron he HI-STAR 10 hiters. Its heigh
The HI-STAR 100 System overpack designed for be HI-STAR 100 System co overpack which provides radiation shielding, and h approximately 96 inches	oth storage and tran nsists of interchang the containment b neat rejection capat at the cask body a	nsportation (with imp geable MPCs which h oundary, helium rete bility. The outer diam nd approximately 128	act limiters house the s ntion bound heter of the B inches at) of irradiated pent nuclear f dary, gamma overpack of the the impact lim	nuclear fuel. Th fuel and an and neutron he HI-STAR 100 hiters. Its heigh
The HI-STAR 100 System overpack designed for be HI-STAR 100 System co overpack which provides radiation shielding, and h approximately 96 inches	oth storage and tran nsists of interchang the containment b neat rejection capat at the cask body a	nsportation (with imp geable MPCs which h oundary, helium rete bility. The outer diam nd approximately 128	act limiters house the s ntion bound heter of the B inches at) of irradiated pent nuclear f dary, gamma overpack of the the impact lim	nuclear fuel. Th fuel and an and neutron he HI-STAR 100 hiters. Its heigh
The HI-STAR 100 System overpack designed for be HI-STAR 100 System co overpack which provides radiation shielding, and h approximately 96 inches	oth storage and tran nsists of interchang the containment b neat rejection capat at the cask body a	nsportation (with imp geable MPCs which h oundary, helium rete bility. The outer diam nd approximately 128	act limiters house the s ntion bound heter of the B inches at) of irradiated pent nuclear f dary, gamma overpack of the the impact lim	nuclear fuel. Th fuel and an and neutron he HI-STAR 100 hiters. Its heigh

.

3-96)	o	- 6 O 11	-			Davialan
	Certificate	of Compliance No. 9261	Pa	age 2	cof 7	Revision
	Overpack					
	(closure pla The outer s shielding. function. T	ate). The inner shell of the surface of the overpack inr The overpack closure plate he containment system co	e overpack for her shell is b e incorporate onsists of the	orms uttre es a e ove	an internal cyl ssed with inter dual O-ring de rpack inner sh	led baseplate and bolted lid indrical cavity for housing the MP mediate steel shells for radiation sign to ensure its containment ell, bottom plate, top flange, top and drain port plug and seal.
	Impact Lin	niters				
	completely		austenitic s	stainl	ess steel skin.	ed of aluminum honeycomb The two impact limiters are respectively.
	Drawings				n ar seo ar attainn ar attainn	
						h the drawings listed below which afety Analysis Report (SAR, Rev.
(a)	Drawing 1395,	Sheet 1, Revision 10 Sheets 2-3, Revision 9 Sheet 4, Revision 8		(h)	Drawing 1765,	Sheet 1, Revision 12 Sheet 2, Revision 9 Sheet 3, Revision 5
(b)	Drawing 1396,	Sheet 1, Revision 12 Sheets 2-3, Revision 9 Sheets 4-5, Revision 8 Sheet 6, Revision 7				Sheet 4, Revision 10 Sheets 5 and 7, Revision 4 Sheet 6, Revision 1
(0)	Drawing 1307	Sheet 1, Revision 14		(i)	Drawing 1782,	Revision 1
	Jrawing 1991,	Sheets 2-3, Revision 10 Sheets 4, Revision 11		(i)	Drawing 1783,	Revision 1
		Sheets 5-7, Revision 8		(k)	Drawing 1784,	Revision 0
(d)	Drawing 1398,	Sheet 1, Revision 12 Sheet 2, Revision 9 Sheet 3, Revision 8		(1)	Drawing BM-1	476, Sheet 1, Revision 12 Sheet 2, Revision 13
(e)	Drawing 1399,	Sheet 1, Revision 10		(m)	Drawing BM-1	478, Sheet 1, Revision 9 Sheet 2, Revision 11
		Sheet 2, Revision 8 Sheet 3, Revision 9		(n) i	Drawing BM-14	179, Sheet 1, Revision 10 Sheet 2, Revision 13
(f)	Drawing 1401,	, Sheet 1, Revision 11 Sheets 2 and 4, Revisior Sheet 3, Revision 9	n 8	(o) [Drawing BM-18	ه 19, Revision 1
(g)	Drawing 1402,	, Sheet 1, Revision 13 Sheets 2-3, Revision 11 Sheets 4-5, Revision 9 Sheet 6, Revision 7				

عر القو

NRC FORM 618A 3-96)		CONDITIONS (continued)	U.S. NUCLEAR REGULATORY COMMISSION
	of Compliance No. 9261	Page 3 of 7	Revision 0
5.b. Conte	nts of Packaging		
(1)Type,	Form, and Quantity of Mat	erial	
(a)	Fuel assemblies meeting the Certificate of Compliance an 5.b(1)(g) below are authorize	d meeting the requirements	es provided in Appendix A to this s provided in items 5.b(1)(b) through
(b)	The following definitions app	ly:	
	determined by review of reco that are not replaced with du	ords, greater than pinhole le mmy fuel rods, or those that inability to be handled by no	nown or suspected cladding defects, as eaks or hairline cracks, missing fuel rods at cannot be handled by normal means. ormal means may be due to mechanical ge.
	Damaged Fuel Containers or fuel debris which permit g gross particulates.	are specially designed fuel aseous and liquid media to	containers for damaged fuel assemblies escape while minimizing dispersal of
			and loose fuel pellets with known or means due to fuel cladding damage.
	Incore Grid Spacers are fue not including top and bottom		cated within the active fuel region (i.e.,
	greater than pinhole leaks of fuel assemblies, that is fuel a	r hairline cracks and which assemblies from which fuel ess dummy fuel rods are us	own or suspected cladding defects can be handled by normal means. Partia rods are missing, shall not be classified sed to displace an amount of water lel rod(s).
	Minimum Enrichment is the blankets are not considered	-	age enrichment. Natural uranium nrichment.
	Planar-Average Initial Enri within a given axial plane of		age of the distributed fuel rod enrichments
(c)		nore restrictive of the two lin	assemblies, all remaining fuel assemblies nits for the stainless steel clad fuel ies.
(d)		n the MPC shall meet the m	es or fuel debris, all remaining Zircaloy nore restrictive of the two limits for the
(e)			6B, 6x6C, or 8x8A fuel assemblies, all PC shall meet the more restrictive of the

......

QĨ			∞	000000000000	(\$1(\$1(\$1(\$1(\$1(\$1(\$1(\$1(\$1(\$1(\$1(\$1(\$1(
	NRC FOR (3-96)	M 618A	L		CONDITIONS (continued)	U.S. NUCLEAR REGULATORY COMMISSION
	. ,	cate	of Co	mpliance No. 9261	Page 4 of 7	Revision 0
				limits for the 6x6A, 6x6 emblies.	B, 6x6C, and 8x8A fuel assen	U.S. NUCLEAR REGULATORY COMMISSION Revision 0 hblies or the applicable Zircaloy clad fuel able plugs, and other non-fuel hardware authorized for transportation. lear criticality control: 0 requirements of Subpart G of 10 CFR perated in accordance with detailed aration and operation shall be a the following provisions: ent verification that the fuel meets the I verify and document that each of the
		(f)		R control rods, burnab	-	ble plugs, and other non-fuel hardware
		(g)	BWF	R stainless-steel chann	els and control blades are not	authorized for transportation.
	5.c Tr	anspo	ort In	dex for Criticality Co	ntrol	
		The	minin	num transport index to	be shown on the label for nuc	lear criticality control: 0
	6.	For Part	-	ating controls and pro	ocedures, in addition to the	requirements of Subpart G of 10 CFR
		а.	writt	en operating procedure	n prepared for shipment and operation of the prepared for shipment and operation of the procedures for both prepart those procedures shall include	perated in accordance with detailed ration and operation shall be the following provisions:
			(1)		uel to be loaded and independe dition 5.b. of the CoC.	ent verification that the fuel meets the
_	e e construction de la construction		(2)		nt, the licensee or shipper shall FR 71.87 has been satisfied.	l verify and document that each of the
			(3)	The package must sa	atisfy the following leak testing	requirements:
				not greater than		be leak tested to show a leak rate of The leak test shall have a minimum d shall be performed:
				(iii) after detens	-month period prior to each su	iccessive shipment; id bolts or the vent port plug; and
				with a minimum s	ment, all containment boundar sensitivity of 1 x 10 ⁻³ std cm ³ /se replaced and leak tested per (y seals shall be leak tested using a test ec. If leakage is detected on a seal, then Condition 6.a (3)(a) above.
				(c) Each containmen	t boundary seal must be repla	ced after each use of the seal.
			(4)	The rupture discs or	the neutron shield vessel sha	Il be replaced every 5 years.
	,		(5)		(helium). The leak test shall h	to show a leak rate of no greater than have a minimum sensitivity of
		240240				

بالاستان محمد الا

the second se

NRC FORM 618A			CONDITIONS (continued)	U.S. NUCLEAR REGULATORY COMMISSIO
Certificate of	f Comp	liance No. 9261	Page 5 of 7	Revision 0
	(6) W			om the MPC in accordance with the
	(a (b	 The MPC shall be e The MPC cavity sh 30 minutes. 	evacuated to a pressure o all hold a stable pressure	of less than or equal to 3 torr. of less than or equal to 3 torr for at least
	h	ollowing vacuum-dryin elium: 0.1212 g-moles PC-68 and MPC 68F.	/I (+0,-10%) for the MPC-	filled with 99.995% minimum purity 24 and 0.1218 g-moles/l (+0,-10%) for th
(ater and residual mois accordance with the foll		om the HI-STAR 100 overpack in
	(a	a) The overpack shall	be evacuated to pressure	e of less than or equal to 3 torr.
	(t	 The overpack cavity least 30 minutes. 	y shall hold a stable press	sure of less than or equal to 3 torr for at
	• •	ollowing vacuum dryin sig.	ig, the overpack shall be l	backfilled with helium to <u>></u> 10 psig and <u><</u>
	(10) T	he following fasteners	shall be tightened to the	torque values specified below:
	C C T B T T	astener Overpack Closure Plate Overpack Vent and Dra op Impact Limiter Atta ottom Impact Limiter A ie-down Bolts ransport Frame Bolts	ain Port Plugs achment Bolts	Torque (ft-lbs) $2895 \pm 90^{**}$ 22 + 2/-0 256 + 10/-0 1500 + 45/-0 250 + 20/-0 250 + 20/-0 a crisscross pattern.
	(11) V	erify that the appropri		ssary, are used to position the fuel in the
b.	All acc procec develo	lures. Procedures for ped and shall include	fabrication, acceptance to the following provisions:	ned in accordance with detailed written esting, and maintenance shall be
	. 8	accordance with ANSI	N14.6.	300% of the maximum design lifting load
		The MPC shall be pres pressure shall be 125		ne design pressure. The minimum test

. .

NRC FORM 618A (3-96)

È

CONDITIONS (continued)

U.S. NUCLEAR REGULATORY COMMISSION

Certificate of Compliance No. 9261

Page 6 of 7

Revision 0

- (3) The overpack shall be pressure tested to 150% of the maximum normal operating pressure (MNOP). The minimum test pressure shall be 150 psig.
- (4) The MPC lid-to-shell weld shall be verified by either volumetric examination using the ultrasonic (UT) method or multi-layer liquid penetrant (PT) examination. The root and final weld layers shall be PT examined in either case. If PT alone is used, additional intermediate PT examination(s) shall be conducted after each approximately 3/8 inch of the weld depth is completed. The inspection of the weld must be performed by qualified personnel and shall meet the acceptance requirements of ASME B&PV Section III, NB-5350. The inspection process, including findings (indications), shall be made a permanent part of the licensee's records by video, photographic, or other means providing an equivalent retrievable record of weld integrity.
- (5) The radial neutron shield shall have a minimum thickness of 4.3 inches and the impact limiter neutron shields shall have a minimum thickness of 2.5 inches. Before first use, the neutron shield integrity shall be confirmed through a combination of fabrication process control and radiation measurements with either loaded contents or a check source. Measurements shall be performed over the entire exterior surface of the radial neutron shield and each impact limiter using, at a maximum, a 6 x 6 inch test grid.
- (6) Periodic verification of the neutron shield integrity shall be performed within 5 years of each shipment. The periodic verification shall be performed by radiation measurements with either loaded contents or a check source. Measurements shall be performed at a minimum of 12 locations on the radial neutron shield and at a minimum of 4 locations on each impact limiter.
- (7) Each fabricated HI-STAR 100 overpack shall be tested to confirm its heat transfer capability. The test shall be conducted after the radial channels, enclosure shell panels, and neutron shield material have been installed and all inside and outside surfaces are painted per the Design Drawings specified in Section 1.4 of the SAR, Rev 8. A test cover plate shall be used to seal the overpack cavity. Testing shall be performed in accordance with written and approved procedures. The test must demonstrate that the overpack is fabricated adequately to meet the design heat transfer capability.
- (8) For each package, a periodic thermal performance test shall be performed every 5 years or prior to next use, if the package has not been used for transport for greater than 5 years, to demonstrate that the thermal capabilities of the cask remain within its design basis.
- (9) The neutron absorber's minimum acceptable ¹⁰B loading is 0.0267 g/cm² for the MPC-24, 0.0372 g/cm² for the MPC-68, and 0.01 g/cm² for the MPC-68F. The ¹⁰B loading shall be chemistry or neutron attenuation techniques.
- (10) The minimum flux trap size for the MPC-24 is 1.09 inches.

NRC FORM 618A (3-96)

È

なくたくたくたくたくたくた

CONDITIONS (continued)

U.S. NUCLEAR REGULATORY COMMISSION

Revision 0

Certificate of Compliance No. 9261

(11) The minimum fuel cell pitch for the MPC-68 and MPC-68F is 6.43 inches.

Page 7 of 7

- (12) The package containment verification leak test shall be per ANSI 14.5.
- 7. The maximum gross weight of the package as presented for shipment shall not exceed 280,000 pounds.
- 8. The package shall be located on the transport vehicle such that the bottom surface of the bottom impact limiter is at 6 feet (along the axis of the overpack) from the edge of the vehicle.
- 9. The personnel barrier shall be installed at all times while transporting a loaded overpack.
- **10**. The package authorized by this certificate is hereby approved for use under the general license provisions of 10 CFR 71.12.
- 11. Expiration Date: March 31, 2004.

Attachment: Appendix A

REFERENCES:

The drawings specified in this certificate reference Holtec International Report No. HI-951251, Safety Analysis Report for the Holtec International Storage Transport And Repository Cask System (HI-STAR 100 Cask System), Revision 8.

FOR THE U.S. NUCLEAR REGULATORY COMMISSION

Col Mon frach

E. William Brach, Director Spent Fuel Project Office Office of Nuclear Material Safety and Safeguards

Date: March 31, 1999

ENCLOSURE 1

¢

,

-

	Table:	INDEX TO APPENDIX A Description:
Page A-1 to A-11	Table A.1	Fuel Assembly Limits
Page A-1		MPC -24: Uranium oxide, PWR intact fuel assemblies listed in Table A.2.
A-2		MPC-68: Uranium oxide, BWR intact fuel assemblies listed in Table A.3, with or without Zircaloy channels.
A-3		MPC-68: Uranium oxide, BWR damaged fuel assemblies, with or without Zircaloy channels, placed in damaged fuel containers. Uranium oxide BWR damaged fuel assemblies shall meet the criteria specified in Table A.3 for fuel assembly array/class 6x6A, 6x6C, 7x7A.
A-4		MPC-68: Mixed oxide (MOX), BWR intact fuel assemblies, with or without Zircaloy channels. MOX BWR intact fuel assemblies shall meet the criteria specified in Table A.3 for fuel assembly array/class 6x6B.
A.		MPC-68: Mixed oxide (MOX), BWR damaged fuel assemblies, with or without Zircaloy channels, placed in damaged fuel containers. MOX BWR damaged fue assemblies shall meet the criteria specified in Table A.3 for fuel assembly array/class 6x6B.
A-6		MPC-68F: Uranium oxide, BWR intact fuel assemblies, with or without Zircaloy channels. Uranium oxide BWR intact fuel assemblies shall meet the criteria in Table A.3 for fuel assembly array/class 6x6A, 6x6C, 7x7A, or 8x8A.
A-7		MPC-68F: Uranium oxide, BWR damaged fuel assemblies, with or without Zircaloy channels, placed in damaged fuel containers. Uranium oxide BWR damaged fuel assemblies shall meet the criteria specified in Table A.3 for fuel assembly array/class 6x6A, 6x6C, 7x7A, or 8x8A.

· ____

Page:	Table:	Description:
A-8	Table A.1 (Cont'd)	MPC-68F: Uranium oxide, BWR fuel debris, with or without Zircaloy channels, placed in damaged fuel containers. The original fuel assemblies for the uranium oxide BWR fuel debris shall meet the criteria specified in Table A.3 for fuel assembly array/class 6x6A, 6x6C, 7x7A, or 8x8A.
A-9		MPC-68: Mixed oxide (MOX), BWR intact fuel assemblies, with or without Zircaloy channels. MOX BWR intact fuel assemblies shall meet the criteria specified in Table A.3 for fuel assembly array/class 6x6B.
A-10		MPC-68: Mixed oxide (MOX), BWR damaged fuel assemblies, with or without Zircaloy channels, placed in damaged fuel containers. MOX BWR damaged fuel assemblies shall meet the criteria specified in Table A.3 for fuel assembly array/class 6x6B.
		MPC-68: Mixed Oxide (MOX), BWR fuel debris, with or without Zircaloy channels, placed in damaged fuel containers. The original fuel assemblies for the MOX BWR fuel debris shall meet the criteria specified in Table A.3 for fuel assembly array/class 6x6B.
A-12 to A-14	Table A.2	PWR Fuel Assembly Characteristics
A-15 to A-18	Table A.3	BWR Fuel Assembly Characteristics
A-19	Table A.4	Fuel Assembly Cooling, Average Burnup, and Minimum Enrichment MPC- 24 PWR Fuel with Zircaloy Clad and With Non-zircaloy In-Core Grid Spacer
A-20	Table A.5	Fuel Assembly Cooling, Average Burnup, and Minimum Enrichment MPC-24 PWR Fuel with Zircaloy and with Zircaloy In-core Grid Spacers
A-21	Table A.6	Fuel Assembly Cooling, Average Burnup, and Minimum Enrichment-MPC-24 PWR Fuel with Stainless Steel Clad
A-22	Table A.7	Fuel Assembly Cooling, Average Burnup, and Minimum Enrichment-MPC-68

Table A.1	
Fuel Assembly Limits	

I. MPC MODEL: MPC-24

- A. Allowable Contents
 - 1. Uranium oxide, PWR intact fuel assemblies listed in Table A.2 and meeting the following specifications:

a. Cladding type:	Zircaloy (Zr) or stainless steel (SS) as specified in Table A.2 for the applicable fuel assembly array/class
b. Initial Maximum Enrichment:	As specified in Table A.2 for the applicable fuel assembly array/class.
 Post-irradiation cooling time, average burnup, and minimum enrichment per assembly 	
i. Zr Clad:	An assembly post-irradiation cooling time, average burnup, and minimum enrichment as specified in Table A.4 or A.5, as applicable.
ii. SS Clad:	An assembly post-irradiation cooling time, average burnup, and minimum enrichment as specified in Table A.6, as applicable.
d. Fuel assembly length:	<u> 176.8 inches (nominal design) </u>
e. Fuel assembly width:	\leq 8.54 inches (nominal design)
f. Fuel assembly weight:	<u>≤</u> 1,680 lbs

B. Quantity per MPC: Up to 24 PWR fuel assemblies.

C. Fuel assemblies shall not contain control components.

D. Damaged fuel assemblies and fuel debris are not authorized for loading into the MPC-24.

Table A.1 (continued) Fuel Assembly Limits

II. MPC MODEL: MPC-68

- A. Allowable Contents
 - 1. Uranium oxide, BWR intact fuel assemblies listed in Table A.3, with or without Zircaloy channels, and meeting the following specifications:

a. Cladding type:	Zircaloy (Zr) or stainless steel (SS) as specified in Table A.3 for the applicable fuel assembly array/class.
b. Maximum planar-average initial enrichment:	As specified in Table A.3 for the applicable fuel assembly array/class.
c. Initial maximum rod enrichment:	As specified in Table A.3 for the applicable fuel assembly array/class.
 d. Post-irradiation cooling time, average burnup, and minimum enrichment per assembly: 	
i. Zr clad:	An assembly post-irradiation cooling time, average burnup, and minimum enrichment as specified in Table A.7, except for array/class 6x6A, 6x6C, and 8x8A fuel assemblies, which shall have a cooling time \geq 18 years, an average burnup \leq 30,000 MWD/MTU, and a minimum initial enrichment \geq 1.8 wt% ²³⁵ U.
ii. SS Clad:	An assembly cooling time after discharge \geq 16 years, an average burnup \leq 22,500 MWD/MTU, and a minimum initial enrichment \geq 3.5 wt% ²³⁵ U.
e. Fuel assembly length:	<u> 176.2 inches (nominal design) </u>
f. Fuel assembly width:	≤ 5.85 inches (nominal design)
g. Fuel assembly weight:	< 700 lbs, including channels

.

Table A.1 (continued) Fuel Assembly Limits

II. MPC MODEL: MPC-68 (continued)

2. Uranium oxide, BWR damaged fuel assemblies, with or without Zircaloy channels, placed in damaged fuel containers. Uranium oxide BWR damaged fuel assemblies shall meet the criteria specified in Table A.3 for fuel assembly array/class 6x6A, 6x6C, 7x7A, or 8x8A, and meet the following specifications:

a. Cladding type:	Zircaloy (Zr)
b. Maximum planar-average initial enrichment:	As specified in Table A.3 for the applicable fuel assembly array/class.
c. Initial maximum rod enrichment:	As specified in Table A.3 for the applicable fuel assembly array/class.
 d. Post-irradiation cooling time, average burnup, and minimum initial enrichment per assembly: 	An assembly post-irradiation cooling time \geq 18 years, an average burnup \leq 30,000 MWD/MTU, and a minimum initial enrichment \geq 1.8 wt% ²³⁵ U.
e. Fuel assembly length:	<u> 135.0 inches (nominal design) </u>
f. Fuel assembly width:	≤ 4.70 inches (nominal design)
g. Fuel assembly weight:	\leq 400 lbs, including channels

Table A.1 (continued) Fuel Assembly Limits

II. MPC MODEL: MPC-68 (continued)

3. Mixed oxide (MOX), BWR intact fuel assemblies, with or without Zircaloy channels. MOX BWR intact fuel assemblies shall meet the criteria specified in Table A.3 for fuel assembly array/class 6x6B and meet the following specifications:

a. Cladding type:	Zircaloy (Zr)
b. Maximum Planar-Average Initial Enrichment:	As specified in Table A.3 for fuel assembly array/class 6x6B.
c. Initial Maximum Rod Enrichment:	As specified in Table A.3 for fuel assembly array/class 6x6B.
d. Post-irradiation Cooling time, average burnup, and minimum initial enrichment per assembly:	An assembly post-irradiation cooling time \geq 18 years, an average burnup \leq 30,000 MWD/MTIHM and a minimum initial enrichment \geq 1.8 wt% ²³⁵ U for the UO ₂ rods .
e. Fuel assembly length:	<u> 135.0 inches (nominal design) </u>
f. Fuel assembly width:	4.70 inches (nominal design)
g. Fuel assembly weight:	\leq 400 lbs, including channels

<u> </u>		(continued) embly Limits
II. MF	PC MODEL: MPC-68 (continued)	
4.		blies, with or without Zircaloy channels, placed in damaged nblies shall meet the criteria specified in Table A.3 for fuel ng specifications:
	a. Cladding type:	Zircaloy (Zr)
· .	b. Maximum planar-average initial enrichment:	As specified in Table A.3 for array/class 6x6B.
	c. Initial Maximum Rod Enrichment:	As specified in Table A.3 for array/class 6x6B.
	c. Post-irradiation Cooling time, average burnup, and minimum initial enrichment per assembly:	An assembly post-irradiation cooling time \geq 18 years, an average burnup \leq 30,000 MWD/MTIHM, and a minimum initial enrichment \geq 1.8 wt% ²³⁵ U for the UO ₂ rods.
\mathcal{L}	e. Fuel assembly length:	135.0 inches (nominal design)
	f. Fuel assembly width:	4.70 inches (nominal design)
	g. Fuel assembly weight:	400 lbs, including channels

- B. Quantity per MPC: Any combination of damaged fuel assemblies in damaged fuel containers and intact fuel assemblies up to a total of 68.
- C. Fuel assemblies with stainless steel channels are not authorized for loading in the MPC-68.

Table A.1	(continued)
Fuel Asse	mbly Limits

III. MPC MODEL: MPC-68F

- A. Allowable Contents
- 1. Uranium oxide, BWR intact fuel assemblies, with or without Zircaloy channels. Uranium oxide BWR intact fuel assemblies shall meet the criteria in Table A.3 for fuel assembly array/class 6x6A, 6x6C, 7x7A, or 8x8A and meet the following specifications:

a. Cladding type:	Zircaloy (Zr)
b. Maximum planar-average initial enrichment:	As specified in Table A.3 for the applicable fuel assembly array/class.
c. Initial maximum rod enrichment:	As specified in Table A.3 for the applicable fuel assembly array/class.
d. Post-irradiation Cooling time, average burnup, and minimum initial enrichment per assembly:	An assembly post-irradiation cooling time \geq 18 years, an average burnup \leq 30,000 MWD/MTU, and a minimum initial enrichment \geq 1.8 wt% ²³⁵ U.
e. Fuel assembly length:	< 176.2 inches (nominal design)
f. Fuel assembly width:	5.85 inches (nominal design)
g. Fuel assembly weight:	400 lbs, including channels

<u>~</u>		(continued) mbly Limits
III. MPC	MODEL: MPC-68F (continued)	
2	fuel containers. Uranium oxide BWR damage	es, with or without Zircaloy channels, placed in damaged ed fuel assemblies shall meet the criteria specified in Table 7x7A, or 8x8A and meet the following specifications:
а	Cladding type:	Zircaloy (Zr)
b	. Maximum planar-average initial enrichment:	As specified in Table A.3 for the applicable fuel assembly array/class.
с	Initial Maximum Rod Enrichment:	As specified in Table A.3 for the applicable fuel assembly array/class.
d.	Post-irradiation Cooling time, average burnup, and minimum initial enrichment per assembly:	A post-irradiation cooling time after discharge \geq 18 years, an average burnup \leq 30,000 MWD/MTU and a minimum initial enrichment \geq 1.8 wt% ²³⁵ U.
e	. Fuel assembly length:	< 135.0 inches (nominal design)
f.	Fuel assembly width:	≤ 4.70 inches (nominal design)
g	. Fuel assembly weight:	400 lbs, including channels

·____

<u> </u>		(continued) mbly Limits						
III. MF	PC MODEL: MPC-68F (continued)							
	The original fuel assemblies for the uranium of	nium oxide, BWR fuel debris, with or without Zircaloy channels, placed in damaged fuel containers. original fuel assemblies for the uranium oxide BWR fuel debris shall meet the criteria specified in le A.3 for fuel assembly array/class 6x6A, 6x6C, 7x7A, or 8x8A meet the following specifications:						
	a. Cladding type:	Zircaloy (Zr)						
	b. Maximum planar-average initial enrichment:	As specified in Table A.3 for the applicable original fuel assembly array/class.						
	c. Initial Maximum Rod Enrichment:	As specified in Table A.3 for the applicable original fuel assembly array/class.						
	d. Post-irradiation Cooling time, average burnup, and minimum initial enrichment per assembly	A post-irradiation cooling time after discharge \geq 18 years, an average burnup \leq 30,000 MWD/MTU, and a minimum initial enrichment \geq 1.8 wt% ²³⁵ U for the original fuel assembly.						
	e. Original Fuel assembly length	≤ 135.0 inches (nominal design)						
	f. Original Fuel assembly width	≤ 4.70 inches (nominal design)						
	g. Fuel Debris Weight	400 lbs, including channels						

.

<u> </u>	Table A.1 (continued) Fuel Assembly Limits						
III. MF	PC MODEL: MPC-68F (continued)						
	4. Mixed oxide (MOX), BWR intact fuel assemblies, with or without Zircaloy channels. MOX BWR intact fuel assemblies shall meet the criteria specified in Table A.3 for fuel assembly array/class 6x6B, and meet the following specifications:						
	a. Cladding type:	Zircaloy (Zr)					
	b. Maximum planar-average initial enrichment:	As specified in Table A.3 for fuel assembly array/class 6x6B.					
	c. Initial maximum rod enrichment:	As specified in Table A.3 for fuel assembly array/class 6x6B.					
	d. Post-irradiation cooling time, average burnup, and minimum initial enrichment per assembly:	An assembly post-irradiation cooling time after discharge \geq 18 years, an average burnup \leq 30,000 MWD/MTIHM, and a minimum initial enrichment \geq 1.8 wt% ²³⁵ U for the UO ₂ rods.					
	e. Fuel assembly length:	≤ 135.0 inches (nominal design)					
	f. Fuel assembly width:	≤ 4.70 inches (nominal design)					
	g. Fuel assembly weight:	400 lbs, including channels					

<u> </u>	Table A.1 (continued) Fuel Assembly Limits						
III. MI	PC MODEL: MPC-68F (continued)						
		emblies, with or without Zircaloy channels, placed in ed fuel assemblies shall meet the criteria specified in and meet the following specifications:					
	a. Cladding type:	Zircaloy (Zr)					
	b. Maximum planar-average initial enrichment:	As specified in Table A.3 for fuel assembly array/class 6x6B.					
	c. Initial maximum rod enrichment:	As specified in Table A.3 for fuel assembly array/class 6x6B.					
	d. Post-irradiation cooling time, average burnup, and minimum initial enrichment per assembly:	A post-irradiation cooling time after discharge \geq 18 years, an average burnup \leq 30,000 MWD/MTIHM, and a minimum initial enrichment \geq 1.8 wt% ²³⁵ U for the UO ₂ rods.					
	e. Fuel assembly length:	<u> 135.0 inches (nominal design) </u>					
	f. Fuel assembly width:	≤ 4.70 inches (nominal design)					
	g. Fuel assembly weight:	400 lbs, including channels					

-

Table A.1 (continued) Fuel Assembly Limits

III. MPC MODEL: MPC-68F (continued)

6. Mixed Oxide (MOX), BWR fuel debris, with or without Zircaloy channels, placed in damaged fuel containers. The original fuel assemblies for the MOX BWR fuel debris shall meet the criteria specified in Table A.3 for fuel assembly array/class 6x6B and meet the following specifications:

a. Cladding type:	Zircaloy (Zr)
b. Maximum planar-average initial enrichment:	As specified in Table A.3 for original fuel assembly array/class 6x6B.
c. Initial maximum rod enrichment:	As specified in Table A.3 for original fuel assembly array/class 6x6B.
d. Post-irradiation cooling time, average burnup, and minimum initial enrichment per assembly:	A post-irradiation cooling time after discharge \geq 18 years, an average burnup \leq 30,000 MWD/MTIHM and a minimum initial enrichment \geq 1.8 wt% ²³⁵ U for the UO ₂ rods in the original fuel assembly.
e. Original fuel assembly length:	<u> 135.0 inches (nominal design) </u>
f. Original fuel assembly width:	≤ 4.70 inches (nominal design)
g. Fuel debris weight:	400 lbs, including channels

B. Quantity per MPC:

Up to four (4) damaged fuel containers containing uranium oxide or MOX BWR fuel debris. The remaining MPC-68F fuel storage locations may be filled with array/class 6x6A, 6x6B, 6x6C, 7x7A, and 8x8A fuel assemblies of the following type, as applicable:

- 1. Uranium oxide BWR intact fuel assemblies;
- 2. MOX BWR intact fuel assemblies;
- 3. Uranium oxide BWR damaged fuel assemblies placed in damaged fuel containers; or
- 4. MOX BWR damaged fuel assemblies placed in damaged fuel containers.
- C. Fuel assemblies with stainless steel channels are not authorized for loading in the MPC-68F.

		1	1		
Fuel Assembly Array/Class	14x14A	14x14B	14x14C	14x14D	15x15A
Clad Material (Note 2)	Zr	Zr	Zr	SS	Zr
Design Initial Uranium (kg/assy.) (Note 4)	<u><</u> 402	<u><</u> 402	<u>≤</u> 410	<u><</u> 400	<u><</u> 420
Initial Maximum Enrichment (wt % ²³⁵ U)	<u><</u> 4.6	<u><</u> 4.6	<u>≤</u> 4.6	<u>≤</u> 4.0	<u>≤</u> 4.1
No. of Fuel Rods	179	179	176	180	204
Clad O.D. (in.)	<u>></u> 0.400	<u>≥</u> 0.417	<u>≥</u> 0.440	<u>≥</u> 0.422	<u>≥</u> 0.418
Clad I.D. (in.)	<u><</u> 0.3514	<u>≤</u> 0.3734	<u>≤</u> 0.3840	<u>≤</u> 0.3890	<u><</u> 0.3660
Pellet Dia. (in.)	<u><</u> 0.3444	<u>≤</u> 0.3659	<u><</u> 0.3770	<u>≤</u> 0.3835	<u>≤</u> 0.3580
Fuel Rod Pitch (in.)	0.556	0.556	0.580	0.556	0.550
Active Fuel Length (in.)	<u><</u> 150	<u><</u> 150	<u><</u> 150	<u><</u> 144	<u><</u> 150
No. of Guide Tubes	17	17	5 (Note 3)	16	21
Guide Tube Thickness (in.)	<u>></u> 0.017	<u>≥</u> 0.017	<u>≥</u> 0.040	<u>≥</u> 0.0145	<u>></u> 0.0165

Table A.2 PWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Notes: 1. All dimensions are design nominal values. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.

2. Zr designates cladding material made of Zirconium or Zirconium alloys.

3. Each guide tube replaces 4 fuel rods.

4. Design initial uranium weight is the nominal weight specified for each assembly by the fuel manufacturer or reactor user. For each PWR fuel assembly, the total initial uranium weight may be up to 2.0 percent higher than the design initial uranium weight due to manufacturer tolerances.

Fuel Assembly Array/Class	15x15B	15x15C	15x15D	15x15E	15x15F
Clad Material (Note 2)	Zr	Zr	Zr	Zr	Zr
Design Initial U (kg/assy.) (Note 3)	<u><</u> 464	<u>≤</u> 464	<u>≤</u> 475	<u><</u> 475	<u><</u> 475
Initial Maximum Enrichment (wt % ²³⁵ U)	<u><</u> 4.1	<u>≤</u> 4.1	<u><</u> 4.1	<u>≤</u> 4.1	<u><</u> 4.1
No. of Fuel Rods	204	204	208	208	208
Clad O.D. (in.)	<u>></u> 0.420	<u>≥</u> 0.417	<u>≥</u> 0.430	<u>></u> 0.428	<u>≥</u> 0.428
Clad I.D. (in.)	<u><</u> 0.3736	<u><</u> 0.3640	<u><</u> 0.3800	<u>≤</u> 0.3790	<u><</u> 0.3820
Pellet Dia. (in.)	<u><</u> 0.3671	<u>≤</u> 0.3570	<u><</u> 0.3735	<u>≤</u> 0.3707	<u>≤</u> 0.3742
Fuel Rod Pitch (in.)	0.563	0.563	0.568	0.568	0.568
Active Fuel Length (in.)	<u><</u> 150	<u>≤</u> 150	<u>≤</u> 150	<u>≤</u> 150	<u>≤</u> 150
No. of Guide Tubes	21	21	17	17	17
Guide Tube Thickness (in.)	<u>≥</u> 0.015	<u>≥</u> 0.0165	<u>≥</u> 0.0150	<u>≥</u> 0.0140	<u>≥</u> 0.0140

Table A.2 (continued) PWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Notes: 1. All dimensions are design nominal values. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.

2. Zr designates cladding material made of Zirconium or Zirconium alloys.

3. Design initial uranium weight is the nominal weight specified for each assembly by the fuel manufacturer or reactor user. For each PWR fuel assembly, the total initial uranium weight may be up to 2.0 percent higher than the design initial uranium weight due to manufacturer tolerances.

Fuel Assembly Array/ Class	15x15G	16x16A	17x17A	17x17B	17x17C
Clad Material (Note 2)	SS	Zr	Zr	Zr	Zr
Design Initial U (kg/assy.) (Note 4)	Sy.)		<u><</u> 450	<u><</u> 464	<u>≤</u> 460
Initial Maximum Enrichment (wt % ²³⁵ U)	≤ 4.0	<u>≤</u> 4.6	<u>≤</u> 4.0	<u>≤</u> 4.0	<u>≤</u> 4.0
No. of Fuel Rods	204	236	264	264	264
Clad O.D. (in.)	<u>≥</u> 0.422	<u>></u> 0.382	<u>></u> 0.360	<u>></u> 0.372	<u>≥</u> 0.377
Clad I.D. (in.)	≤ 0.3890	<u>≤</u> 0.3320	<u>≤</u> 0.3150	<u><</u> 0.3310	<u>≤</u> 0.3330
Pellet Dia. (in.)	<u><</u> 0.3825	<u><</u> 0.3255	<u>≤</u> 0.3088	<u>≤</u> 0.3232	<u>≤</u> 0.3252
Fuel Rod Pitch (in.)	0.563	0.506	0.496	0.496	0.502
Active Fuel Length (in.)	<u><</u> 144	<u><</u> 150	<u><</u> 150	<u>≤</u> 150	<u><</u> 150
No. of Guide Tubes	21	5 (Note 3)	. 25	25	25
Guide Tube Thickness (in.)	≥ 0.0145	<u>≥</u> 0.0400	<u>≥</u> 0.016	<u>≥</u> 0.014	<u>≥</u> 0.020

Table A.2 (continued) PWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

- Notes: 1. All dimensions are design nominal values. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.
 - 2. Zr designates cladding material made of Zirconium or Zirconium alloys.
 - 3. Each guide tube replaces four fuel rods.
 - 4. Design Initial Uranium Weight is the nominal weight specified for each assembly by the fuel manufacturer or reactor user. For each PWR fuel assembly, the total initial uranium weight may be up to 2.0 percent higher than the design initial uranium weight due to manufacturer tolerances.

Fuel Assembly Array/Class	6x6A	6x6B	6x6C	7x7A	7x7B	8x8A
Clad Material (Note 2)	Zr	Zr	Zr	Zr	Zr	Zr
Design Initial Uranium (kg/assy.) (Note 4)	<u><</u> 108	<u>≤</u> 108	<u><</u> 108	<u><</u> 100	<u><</u> 195	<u><</u> 120
Maximum planar- average initial enrichment (wt.% ²³⁵ U)	<u>≤</u> 2.7	\leq 2.7 for the UO ₂ rods. See Note 3 for MOX rods	<u><</u> 2.7	<u>≤</u> 2.7	<u>≤</u> 4.2	<u><</u> 2.7
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	<u>≤</u> 4.0	<u>≤</u> 4.0	<u>≤</u> 4.0	<u>≤</u> 4.0	<u><</u> 5.0	<u>≤</u> 4.0
No. of Fuel Rods	36	36 (up to 9 MOX rods)	36	49	49	64
Clad O.D. (in.)	≥ 0.5550	<u>></u> 0.5625	<u>></u> 0.5630	<u>≥</u> 0.4860	<u>></u> 0.5630	<u>></u> 0.4120
Clad I.D. (in.)	<u><</u> 0.4945	<u>≤</u> 0.4945	<u>≤</u> 0.4990	<u>≤</u> 0.4200	<u><</u> 0.4990	<u><</u> 0.3620
Pellet Dia. (in.)	<u><</u> 0.4940	<u>≤</u> 0.4820	<u>≤</u> 0.4880	<u>≤</u> 0.4110	<u><</u> 0.4880	<u><</u> 0.3580
Fuel Rod Pitch (in.)	0.694	0.694	0.740	0.631	0.738	0.523
Active Fuel Length (in.)	<u><</u> 110	<u><</u> 110	<u><</u> 77.5	<u><</u> 79	<u>≤</u> 150	<u><</u> 110
No. of Water Rods	0	0	0	0	0	0
Water Rod Thickness (in.)	N/A	N/A	N/A	N/A	N/A	N/A
Channel Thickness (in.)	<u><</u> 0.060	<u>≤</u> 0.060	<u><</u> 0.060	<u>≤</u> 0.060	<u><</u> 0.120	<u>≤</u> 0.100

 Table A.3

 BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Notes: 1. All dimensions are design nominal values. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.

2. Zr designates cladding material made of Zirconium or Zirconium alloys.

3. \leq 0.612 wt. % ²³⁵U and \leq 1.578 wt. % total fissile plutonium (²³⁹Pu and ²⁴¹Pu).

4. Design initial uranium weight is the nominal uranium weight specified for each assembly by the fuel manufacturer or reactor user. For each BWR fuel assembly, the total initial uranium weight may be up to 1.5 percent higher than the design initial uranium weight due to manufacturer tolerances.

Fuel Assembly Array/Class	8x8B	8x8C	8x8D	8x8E	9x9A	9x9B
Clad Material (Note 2)	Zr	Zr	Zr	Zr	Zr	Zr
Design Initial U (kg/assy.)(Note 6)	<u><</u> 185	<u><</u> 185	<u><</u> 185	<u><</u> 180	<u><</u> 173	<u><</u> 173
Maximum planar- average initial enrichment (wt.% ²³⁵ U)	<u>≤</u> 4.2	<u>≤</u> 4.2	<u><</u> 4.2	<u>≤</u> 4.2	<u>≤</u> 4.2	<u><</u> 4.2
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	<u>≤</u> 5.0	<u><</u> 5.0	<u>≤</u> 5.0	<u>≤</u> 5.0	<u>≤</u> 5.0	<u>≤</u> 5.0
No. of Fuel Rods	63	62	60	59	74/66(Note 3)	72
Clad O.D. (in.)	<u>></u> 0.4840	<u>></u> 0.4830	<u>></u> 0.4830	<u>></u> 0.4930	<u>≥</u> 0.4400	<u>></u> 0.4330
Clad I.D. (in.)	<u><</u> 0.4250	<u><</u> 0.4250	<u><</u> 0.4190	<u><</u> 0.4250	<u><</u> 0.3840	<u><</u> 0.3810
Pellet Dia. (in.)	<u><</u> 0.4160	<u><</u> 0.4160	<u><</u> 0.4110	<u><</u> 0.4160	<u><</u> 0.3760	<u><</u> 0.3740
Fuel Rod Pitch (in.)	0.636 - 0.641	0.636 - 0.641	0.640	0.640	0.566	0.569
Design Active Fuel Length (in.)	<u><</u> 150					
No. of Water Rods	1	2	1 - 4 (Note 5)	5	2	1 (Note 4)
Water Rod Thickness (in.)	<u>≥</u> 0.034	> 0.00	> 0.00	<u>≥</u> 0.034	> 0.00	> 0.00
Channel Thickness (in.)	<u>≤</u> 0.120	<u><</u> 0.120	<u><</u> 0.120	<u>≤</u> 0.100	<u>≤</u> 0.120	<u><</u> 0.120

Table A.3 (continued) BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Notes: 1. Initial uranium weights and all dimensions are design nominal values. Actual uranium weights may be higher, within the manufacturer's tolerance. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.

2. Zr designates cladding material made of Zirconium or Zirconium alloys.

3. This assembly class contains 74 total rods, 66 full length rods, and 8 partial length rods.

4. Square, replacing nine fuel rods.

5. Variable

6. Design initial uranium weight is the nominal uranium weight specified for each assembly by the fuel manufacturer or reactor user. For each BWR fuel assembly, the total initial uranium weight may be up to 1.5 percent higher than the design initial uranium weight due to manufacturer tolerances.

Table A.3 (continued)

BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Fuel Assembly Array/Class	9x9C	9x9D	9x9E	9x9F	10x10A
Clad Material (Note 2)	Zr	Zr	Zr	Zr	Zr
Design Initial U (kg/assy.) (Note 4)	<u><</u> 173	<u><</u> 170	<u>≤</u> 170	<u><</u> 170	<u><</u> 182
Maximum planar- average initial enrichment (wt.% ²³⁵ U)	<u>≤</u> 4.2	<u>≤</u> 4.2	<u>≤</u> 4.2	<u><</u> 4.2	<u><</u> 4.2
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	<u>≤</u> 5.0	<u>≤</u> 5.0	<u><</u> 5.0	<u><</u> 5.0	<u>≤</u> 5.0
No. of Fuel Rods	80	79	76	76	92/78 (Note 3)
Clad O.D. (in.)	<u>></u> 0.4230	<u>≥</u> 0.4240	<u>></u> 0.4170	<u>≥</u> 0.4430	<u>≥</u> 0.4040
Clad I.D. (in.)	<u><</u> 0.3640	<u>≤</u> 0.3640	<u><</u> 0.3590	<u><</u> 0.3810	<u>≤</u> 0.3520
Pellet Dia. (in.)	<u><</u> 0.3565	<u><</u> 0.3565	<u><</u> 0.3525	<u>≤</u> 0.3745	<u>≤</u> 0.3455
Fuel Rod Pitch (in.)	0.572	0.572	0.572	0.572	0.510
Design Active Fuel Length (in.)	<u><</u> 150	<u>≤</u> 150	<u>≤</u> 150	<u><</u> 150	<u>≤</u> 150
No. of Water Rods	1	2	5	5	2
Water Rod Thickness (in.)	<u>≥</u> 0.020	≥ 0.0305	<u>≥</u> 0.0305	<u>≥</u> 0.0305	<u>≥</u> 0.0300
Channel Thickness (in.)	<u><</u> 0.100	≤ 0.100	≤ 0.100	<u><</u> 0.100	<u>≤</u> 0.120

Notes: I nitial uranium weights and all dimensions are design nominal values. Actual uranium weights may be higher, within the manufacturer's tolerance. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.

2. Zr designates cladding material made of Zirconium or Zirconium alloys.

3. This assembly class contains 92 total fuel rods, 78 full length rods, and 14 partial length rods.

4. Design Initial Uranium Weight is the nominal uranium weight specified for each assembly by the fuel manufacturer or reactor user. For each BWR fuel assembly, the total initial uranium weight may be up to 1.5 percent higher than the design initial uranium weight due to manufacturer tolerances.

Fuel Assembly Array/Class	10x10B	10x10C	10x10D	10x10E
Clad Material (Note 2)	Zr	Zr	SS	SS
Design Initial U (kg/assy.) (Note 6)	<u><</u> 182	<u><</u> 180	<u><</u> 125	<u><</u> 125
Maximum planar-average initial enrichment (wt.% ²³⁵ U)	<u>≤</u> 4.2	<u>≤</u> 4.2	<u>≤</u> 4.0	<u><</u> 4.0
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	<u>≤</u> 5.0	<u>≤</u> 5.0	<u>≤</u> 5.0	<u>≤</u> 5.0
No. of Fuel Rods	91/83 (Note 3)	96	100	96
Clad O.D. (in.)	<u>≥</u> 0.3957	<u>></u> 0.3790	<u>></u> 0.3960	<u>></u> 0.3940
Clad I.D. (in.)	<u>≤</u> 0.3480	<u><</u> 0.3294	<u><</u> 0.3560	<u>≤</u> 0.3500
Pellet Dia. (in.)	<u><</u> 0.3420	<u><</u> 0.3224	<u>≤</u> 0.3500	<u><</u> 0.3430
Fuel Rod Pitch (in.)	0.510	0.488	0.565	0.557
Design Active Fuel Length (in.)	<u><</u> 150	<u><</u> 150	<u><</u> 83	<u><</u> 83
No. of Water Rods	1 (Note 4)	5 (Note 5)	0	4
Water Rod Thickness (in.)	> 0.00	<u>≥</u> 0.034	N/A	<u>></u> 0.022
Channel Thickness (in.)	<u><</u> 0.120	<u><</u> 0.055	<u>≤</u> 0.080	<u><</u> 0.080

Table A.3 (continued) BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Notes: 1. Initial uranium weights and all dimensions are design nominal values. Actual uranium weights may be higher, within the manufacturer's tolerance. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.

- 2. Zr designates cladding material made of Zirconium or Zirconium alloys.
- 3. This assembly class contains 91 total fuel rod, 83 full length rods, and 8 partial length rods.
- 4. Square, replacing nine fuel rods.
- 5. One diamond-shaped water rod replacing the four center fuel rods and four rectangular water rods dividing the assembly into four quadrants.
- 6. Design Initial Uranium Weight is the nominal uranium weight specified for each assembly by the fuel manufacturer or reactor user. For each BWR fuel assembly, the total initial uranium weight may be up to 1.5 percent higher than the design initial uranium weight due to manufacturer tolerances.

Table A.4

FUEL ASSEMBLY COOLING, AVERAGE BURNUP, AND MINIMUM ENRICHMENT MPC-24 PWR FUEL WITH ZIRCALOY CLAD AND WITH NON-ZIRCALOY IN-CORE GRID SPACERS

Post-irradiation Cooling Time (years)	Assembly Burnup (MWD/MTU)	Assembly Minimum Enrichment (wt. % U-235)	Decay Heat (Watts)
<u>≥</u> 10	<u><</u> 24,500	<u>≥</u> 2.3	4 11
<u>≥</u> 12	<u><</u> 29,500	<u>></u> 2.6	473
<u>≥</u> 14	<u><</u> 34,500	<u>></u> 2.9	540
<u>≥</u> 15	<u><</u> 37,500	<u>></u> 3.2	579

Table A.5

FUEL ASSEMBLY COOLING, AVERAGE BURNUP, AND MINIMUM ENRICHMENT MPC-24 PWR FUEL WITH ZIRCALOY AND WITH ZIRCALOY IN-CORE GRID SPACERS

Post-irradiation Cooling Time (years)	Assembly Burnup (MWD/MTU)	Assembly Minimum Enrichment (wt. % U-235)	Decay Heat (Watts)
<u>></u> 7	<u><</u> 24,500	<u>></u> 2.3	496
<u>></u> 8	<u><</u> 29,500	<u>≥</u> 2.6	562
<u>≥</u> 10	<u><</u> 34,500	<u>></u> 2.9	610
<u>></u> 12	<u><</u> 39,500	<u>></u> 3.2	667
<u>≥</u> 15	<u><</u> 44,100	<u>≥</u> 3.4	704

Table A.6

FUEL ASSEMBLY COOLING, AVERAGE BURNUP, AND MINIMUM ENRICHMENT MPC-24 PWR FUEL WITH STAINLESS STEEL CLAD

Post-irradiation Cooling Time (years)	Assembly Burnup (MWD/MTU)	Assembly Minimum Enrichment (wt. % U-235)	Decay Heat (Watts)
≥ 19	≥30,000	≥ 3.1	377
≥ 24	≥ 40,000	≥ 3 .1	475
	,		

1

Table A.7

FUEL ASSEMBLY COOLING, AVERAGE BURNUP, AND MINIMUM ENRICHMENT MPC-68

Post-irradiation Cooling Time (years)	Assembly Burnup (MWD/MTU)	Assembly Minimum Enrichment (wt. % U- 235)	Decay Heat (Watts)
<u>></u> 8	<u><</u> 24,500	<u>></u> 2.1	179
<u>></u> 9	<u><</u> 29,500	<u>></u> 2.4	208
<u>></u> 12	<u><</u> 34,500	<u>></u> 2.6	222
<u>></u> 15	<u><</u> 39,100	<u>></u> 2.9	238