Final Status Survey Report for Buildings 13, 14, 28 and 34 at the Molycorp Site

Washington, PA

Revision 0 Dated 3/14/02

Final Status Survey Report for Buildings 13, 14, 28 and 34 at the Molycorp Site

Washington, PA

Revision 0 Dated 3/14/02

Reviews:

MACTEC Radiological Engineer

MACTEC Radiological Engineering/H&S Manager

MACTEC Project

3-14-02

Date

Date

Table of Contents

.

-

Section	<u>Page</u>
1.0	BACKGROUND INFORMATION 1
1.1	General Information and Operating History1
1.2	Reason for Decommissioning2
1.3	Management Approach
2.0	SITE INFORMATION
2.1	Site Location4
2.2	Building Status
2.3	Grounds7
3.0	DECOMMISSIONING ACTIVITIES
3.1	Objectives7
3.2	Results of Previous Surveys
3.3	Decontamination Procedures9
4.0	FINAL SURVEY PROCEDURES 10
4.1	Sampling Parameters
4.2	Sampling Schedule
4.3	Background Levels Identified
4.4	Major Contaminates Identified
4.5	Guidelines Established
4.6	Equipment and Procedures Selected
4.7	Instrument MDA
4.8	Instrument Selection
4.9	Instrument use techniques
4.10	Procedures Followed
4.1	Surveying Organization
5.Ũ	SURVEY FINDINGS
5.1	Techniques for Reducing/Evaluating Data
5.2	Statistical Evaluation and Comparison Tables
6.0	SUMMARY
7.0	REFERENCES

4

.

-

List of Tables and Figures

.

Tables and Figures	<u>Page</u>
Table 2.1 - Building Classification and Radiological Information	5
Figure 4.1 - Natural Thorium Decay Chain	
Table 4.2 - Surface Scan Schedule	13
Table 4.3 - Direct Surface Measurement Schedule	14
Table 4.4 - Loose Surface Measurement Schedule	16
Table 4.5 - Exposure Rate Measurement Schedule	
Table 4.6 - Instrument Selection	22

Appendices

Appendix A - Building 13 Data Package	A-1
Appendix B - Building 14 Data Package	B-1
Appendix C - Building 28 Data Package	C-1
Appendix D - Building 34 Data Package	D-1
Appendix E - Background Assessment Data	E-1
Appendix F - Instrumentation Data	F-1

- - --

.....

•

•

1.0 BACKGROUND INFORMATION

1.1 GENERAL INFORMATION AND OPERATING HISTORY

Molycorp, Inc.'s (Molycorp) predecessor, the Molybdenum Corporation of America, was formed from the Electric Reduction Company in Washington, Pennsylvania on June 16, 1920. The facility was purchased to manufacture ferroalloys.

Molybdenum manufacturing was begun in the 1920s. Processing of this material was idled in 1991. Although primarily manufacturing molybdenum products, the plant also produced ferrocolumbium (FeCb, 1964 to 1971), as well as other ferroalloys, e.g., tungsten.

In the late 1960s new federal requirements necessitated Molycorp to obtain a Source Material License from the Atomic Energy Commission for possession and use of materials containing 0.05 percent or greater by weight uranium, thorium, or a combination of both. Most of the material that was processed by the corporation for ferrocolumbium contained thorium above the 0.05 percent limit. The slag resulting from this production was in a glass/ceramic form containing an average of 1.2 percent thorium. Almost immediately upon receiving a Source Material License in December 1968, various investigations were undertaken to address the new regulatory requirements.

Applied Health Physics, Inc. was contracted by Molycorp to conduct a series of leaching studies on ferrocolumbium slag during the late 1960s. These studies indicated that radioactive materials were fixed and would not leach into the groundwater in excess of prescribed limits. During this period, Molycorp applied unsuccessfully to the Pennsylvania Department of Health's Industrial Wastes Section and AEC for an onsite burial permit. Ferrocolumbium slag cleanup was concentrated in the early to mid-1970s time frame.

In June 1971, an AEC compliance inspection revealed that thorium-bearing slag had been inadvertently buried onsite in violation of the terms and conditions of their license and AEC regulations. The AEC issued a Notice of Violation and requested Molycorp to take remedial action to excavate these materials and dispose of them in accordance with AEC regulations and guidance documents. Applied Health Physics was contracted to perform a thorough radiological survey of the site and to provide health physics and waste disposal services necessary to comply with AEC's request. Survey measurements indicated exposure levels at 1.2 mR/hr in some areas.

In 1972, thoriated material from the site was disposed of at the West Valley, New York, burial site. The disposal was terminated when New York officials decided that the volume of waste was too large and the contamination level insignificant to use up valuable burial area. Molycorp performed cleanup operations to segregate and stabilize the remaining thoriated material in a capped pile containing about 27,700 cubic yards of slag on the south property. A 1975 Applied Health Physics, Inc. report indicated the average concentration of thorium-232 in the slag pile was 1,250 pCi/g, with exposures within the 0.2 mR/hr Nuclear Regulatory Commission maximum level allowed at the time (AEC was reorganized as the NRC in 1974). This pile was eventually removed and disposed of.

In 1978, one of two molybdenum-roasting furnaces was shut down as part of a consent decree with the Pennsylvania Department of Environmental Resources (PADER) Air Quality Agency due to exceedances of SO₂ standards. All remaining processes continued until 1991.

Oak Ridge Associated Universities, an NRC contractor, conducted a radiological survey of the site in 1985. The survey identified elevated (twice background or greater) levels of thorium in the dikes that separated the surface impoundments, and indicated the potential of subsurface thoriated slags in the western portion of the site.

RSA, Inc. conducted a subsurface survey for Molycorp in 1990 to characterize the thorium contamination across the western portion of the site (i.e., the impoundment area), and the areas immediately to the north, west, and northwest. Thirty-two holes were drilled on the site and radiation measurements were logged at every six inches of depth from the surface down to bedrock, both above and below water table. Radiation levels were also logged in monitoring wells previously drilled on the site. In addition to the subsurface survey, RSA, Inc. conducted a survey of the radiation exposure rates inside the study area. This survey consisted of approximately 400 measurements of the gamma radiation field at a height of one meter above ground level. Findings reveled that; in general, the subsurface concentrations of thorium were above those in the surface soils in almost every hole drilled. A general pattern was that the underground radiation levels decreased to background at a depth of about ten feet. While a majority of the holes exhibited concentrations of greater than 0.01 percent thorium, in only a few holes did the thorium content exceed an average of 0.05 percent at some point below the surface of the ground.

The Molycorp Source Material License (SMB 1393) was renewed in 1992 and included an amendment incorporating a schedule for decommissioning the site. In November 1992, Molycorp submitted a Site Characterization Plan (SCP) to the NRC for approval.

Molycorp submitted the "Decommissioning Plan for the Washington, PA Facility" to the NRC in July 1995. In a letter dated June 1, 1999, (John C. Daniels, Molycorp Project Manager, to John W.N. Hickey, NRC Branch Chief) Molycorp informed the NRC that the Decommissioning Plan would be revised and re-submitted in two parts.

Part 1 Revision of the current Decommissioning Plan was submitted and approved June 30, 1999, and describes the activities required to remediate the site to unrestricted use levels in accordance with the SDMP Action Plan (57 FR 13389). The soil, slag or other material exceeding the SDMP Action Plan criteria will be transported to an NRC approved location for final disposition.

Part 2 Revision of the Decommissioning Plan was to provide for the disposition of the material that exceeded the SDMP Action Plan criteria to a designated on-site impound at the Washington, PA site. The Decommissioning Plan Part 2 Revision was never approved.

1.2 REASON FOR DECOMMISSIONING

Decommissioning of the Molycorp Washington, PA Facility is being performed due to the cessation of molybdenum production at the facility. Several factors, included age of equipment and the production of molybdenum elsewhere in the United States and overseas, have led to the shutdown of the

production process and closure of the facility. In December 2001, all activities were halted and a majority of the workforce was terminated.

1.3 MANAGEMENT APPROACH

This report focuses on the approach taken by management to decommission buildings located at the Molycorp Washington, PA Site. This report does not address the decommissioning activities of soils or subsurface contamination at the site.

The approach taken by management for the decommissioning of buildings includes the characterization and classification of site buildings and areas, performance of radiological surveys to identify and quantify surface radioactive material, identification of elevated dose rates, performance of remedial actions (as required), removal of materials and equipment from buildings, performance of the final surveys to release buildings from radiological controls, and the performance of any remedial action necessary to meet the release criteria of the final status survey.

Once buildings have been surveyed for final status, and the NRC has reviewed and approved the building Final Status Survey Report and completed their verification surveys, the buildings will be demolished and the rubble removed. As identified earlier, subsurface (soil) decommissioning activities are not being performed under the current work scope (decommissioning work.)

Management supported and required the use of all regulatory and approved decommissioning plans and standards for the decommissioning process at Molycorp. The final status survey was conducted in accordance with; NUREG/CR 5849, "Manual for Conducting Radiological Surveys in Support of License Termination," RSI's "Decommission Plan for the Washington, PA Facility, Part 1 Revision," and the requirements of Molycorp's "U.S. Nuclear Regulatory Commission Material License, Amendment No. 5, SMB-1393." Individual requirements of each reference were compiled in MACTEC's "Survey Plan for Determining the Final Status of Buildings at the Molycorp Site" and used as the plan for performing the final status survey.

Approved radiation protection procedures were used during the performance of radiological surveys in support of final status surveys. Qualified radiation protection staff was hired and trained to the requirements of the sampling plan. A radiological engineer (CHP) was assigned to support the project and oversee the day-to-day radiological survey operations. The MACTEC Corporate RSO was involved at all decision making levels, and communicated directly with the NRC, State of Pennsylvania, ORISE Support Personnel and MACTEC Senior Management.

Radiological survey equipment was identified and selected to provide the highest sensitivity for the existing site conditions. Radiological survey equipment selection was based partially on equipment used for earlier final status surveys performed by Radiological Services, Inc. (RSI) in 2001. Additional radiological survey equipment was selected and implemented to what RSI had used in the past. The selection and addition of a hand-held gas-filled proportional instrument and detector package provided a greater sensitivity for the detection of radioactive material, and complemented the previously used selection of instruments used by RSI. All radiological survey equipment used for final surveys was calibrated by an instrument calibration facility using radioactive sources traceable to National Institute of Science and Technology (NIST). When radiological survey instrumentation was due for calibration, or

the instrument malfunctioned, the instrument was removed from service and sent off-site for calibration or repair.

Radiation protection personnel worked closely with decommissioning and construction personnel on the project. The Project Manager interacted closely with the workforce, Radiological Engineer and the HP technicians. The Project Manager was provided weekly HP activity reports detailing the current week's activities and the coming week's goals.

2.0 SITE INFORMATION

2.1 SITE LOCATION

.

The Molycorp, Inc. project site (the site) is located in southwestern Pennsylvania on the outskirts of Washington County approximately 35 miles southwest of Pittsburgh. The site is separated from the populated City's urbanized are by the ramps and structures associated with Interstate 70 (I-70). The region is generally comprised of towns located close to transportation corridors surrounded by agricultural lands and open areas.

The site consists of approximately 20 acres, which represents the fenced portion of the 59-acre parcel owned by Molycorp Inc. that lies entirely within Canton Township at 300 Caldwell Avenue, Washington, Pennsylvania, 15301. The fenced area is situated between 1,010 and 1,045 feet above mean sea level with relatively flat topography.

Molycorp's property has frontage along two dedicated public streets in Canton Township – Caldwell Avenue and Weirich Avenue. The site is transversed by Chartiers Creek that flows south to north through the property. The property is served by the CSX operated railroad via two lines that were formerly owned by the Tylerdale Connecting Railroad Company and the Baltimore and Ohio Railroad.

Adjacent property owners can be classified into three major categories on the current use of the land – residential, industrial, and public. The residential property lies to the east of the site on Green Street and to the west along Weirich Avenue. The industrial property is located predominately north of the site and includes property under the ownership of the Findlay Refractories Company and Allegheny Ludlum Corporation. Darrt Development Company owns several scattered parcels located to the south and east of the site. Land under public ownership includes the Canton Township Volunteer Fire Company property, the right-of-way for I-70, and other public streets. The Washington Institute of Technology owns a 38-acre parcel with a commercial building adjacent to the southwestern property line. This building was used as a mining education and training facility. However, it has not been used for this purpose for some time and has fallen into a state of disrepair and, therefore, is considered a vacant parcel.

A ten-acre parcel of vacant land under the ownership of L. and C. Cox on Weirich Avenue between Comfort Lane and Point View Drive (behind Allegheny Lundlum) may be the site of future commercial development. The property owner has formally requested that the zoning be changed from R-2 Residential to General Commercial.

2.2 BUILDING STATUS

All buildings/areas did not have the same potential for residual contamination and therefore did not require the same level of survey coverage. For the purposes of establishing the degree of survey effort required, building surfaces were segregated into affected and unaffected buildings/areas. The definitions for the areas:

- Affected area: Accessible areas that have potential radioactive contamination (based on facility operating history) or known radioactive contamination (based on past or preliminary radiological surveillance).
- Unaffected area: All accessible areas not classified as affected. These areas are not expected to contain residual radioactivity, based on knowledge of site history and previous survey information.

All 21 buildings located on site had been characterized (as identified in NRC Material License, Amendment No. 5, SMB-1393) for radiological hazards and classified as either affected or unaffected. 15 buildings had been characterized and classified as unaffected; two (2) buildings had been surveyed for final status; and six (6) buildings had been characterized and classified as affected (or containing affected areas). Building classification and radiological information are described in Table 2.1

Classification	Building	Radiological Information	
A	1	Lab Area, soil samples in the lab and a small source in a lab office. Possible fixed contamination exists on the floor of one of the lab rooms.	
А	19	Building contains rad material samples in an individual office. The office has been classified as an affected area.	
A	26	Building 26 contains a temporary rad storage area (~20'x30') identified with a rad boundary and radiological postings. The building also contains an above ground 4 section tank (one section being potentially contaminated, internal) and a stainless steel filter (~3 ft. dia. by 4 ft.) that is contaminated.	
A	29	Concrete floor with sumps, floor sumps are potentially contaminated and need to be characterized. The rest of the building is identified as unaffected.	
А	31	Concrete floor with a steel liner on top. Steel walls and roof, insulated walls. Licensed material mixer was stored in building.	

TABLE 2.1 - BUILDING CLASSIFICATION AND RADIOLOGICAL INFORMATION

A	33	Concrete floor, steel walls and roof, insulated.	
Λ		Equipment/supplies were originally stored in building. The building was erected in 1979 and is otherwise radiologically clean. Categorized as affected due to the storage of sample containers (contaminated dirt) in the back corner of the building.	
U	2	Heat exchange in front of Building 2. Several stories high, mixture of solid and grating floors. Concrete and tin construction.	
U	13	Concrete floor, steel and brick walls, some insulation on walls and ceiling.	
U	14	Most of the building internals have been removed, brick structure. Roof is rusted and partially disintegrated.	
U	21	Concrete floor, steel and cinder block walls, steel ceiling. Maintenance shop in use until March, 2002.	
U	22	Concrete floor, metal walls and roof. Equipment/supply storage is the main purpose of this building.	
U	23	Concrete floor, steel walls and ceiling.	
U .	25	Concrete floor, steel walls and ceiling.	
U	28	Concrete floor, steel walls and roof, 2 walls insulated, equipment/ supplies located previously stored on shelve located in the building.	
U	32	Concrete floor, one wall insulated, steel roof, equipment/supplies previously stored on shelve located in the building, steel front door.	
U	34	Concrete floor, steel walls and roof, large conveyor system inside building. Sand pits are located in building.	
U	35	Concrete floor, insulated walls and ceiling. Equipment/supplies previously stored in the building. The building was erected in 1988.	
U	36	Concrete floor with sumps, double walled construction ¹ / ₂ way up, insulated walls and ceiling.	
U	37	Concrete floor, corrugated steel walls and roof. Smaller inside storage building, cinder block construction, roof area was used for storage of additional equipment/supplies.	
FS Surveyed	39	Building 39 previously surveyed for final status.	
FS Surveyed	42	Building 39 previously surveyed for final status.	

.

•

2.3 GROUNDS

The Molycorp Washington, PA facility produced a ferrocolumbium alloy from Brazilian ore (pyrochlore) between 1946 and 1970. While the use of pyrochlore was commonplace by that time, this particular ore contained thorium as an accessory metal. The thorium was also in concentrations which required Molycorp to acquire a Source Materials License. This operation resulted in the production of a thorium-bearing slag. A portion of this slag was ball-milled (turned into a granular powder) and used as fill over portions of the site.

While significant amounts of this slag have been removed from the site, remaining slag in soil continued to play a significant role in the survey and release of buildings on site. Building steel walls and concrete floors showed significant readings above "normal" background levels when surveyed by hand-held or portable detectors.

In two instances during the final status survey of buildings 39 and 42, performed by RSI, survey results indicated elevated levels of radioactivity on building walls (even though smears in the same locations indicated that no removable radioactivity existed.) To identify the source of elevated radioactivity, two sections (approximately 2' by 2') of the building's wall were removed from the building by RSI. These wall pieces were resurveyed in areas where background radiation levels were considered "normal" and found to be free of radioactivity (no readings greater than background).

Because this elevated background condition exists at the Molycorp site, MACTEC devised instrument detector windows for some of their instruments and used them in areas where thorium slag in soil created a background nuisance during survey activities.

3.0 DECOMMISSIONING ACTIVITIES

Decommissioning activities of the buildings on site were performed as a "first step" to release the site for unrestricted future use. The scope of work conducted at the site during this phase of work included D and D of all above surface structures and buildings.

All existing structures (buildings, tanks, dryers, bag houses, utilities, etc.) will be removed from the site. • Wastes created during the D and D activities will be identified, segregated, and processed for shipment to the appropriate waste facility. Waste will be removed from site in accordance with all applicable federal, state and local regulations and authorities.

3.1 **OBJECTIVES**

The objectives for this phase of D and D activities included:

- Removal of equipment and surplus supplies from buildings
- Characterization of hazards associated with the buildings (performance of effective radiological surveys)
- Remediation or disposal of hazards identified in the characterization process

- Completion of Final Status Survey
- Unrestricted release of buildings
- Demolition of buildings

19

3.2 **RESULTS OF PREVIOUS SURVEYS**

Numerous radiological studies and surveys have been conducted at the Molycorp Washington, PA site. Since the late 1960, regulatory requirements and pressure from local agencies have driven surveys and studies of the hazards associated with the production of various ferroalloys. Recently, RSI has completed and submitted for review the Final Status Survey for buildings 39 and 42. Listed below is a brief history of the previous surveys performed on the Molycorp site:

Applied Health Physics, Inc. was contracted by Molycorp to conduct a series of leaching studies on ferrocolumbium slag during the late 1960s. These studies indicated that radioactive materials were fixed and would not leach into the groundwater in excess of prescribed limits. During this period, Molycorp applied unsuccessfully to the Pennsylvania Department of Health's Industrial Wastes Section and AEC for an onsite burial permit. Ferrocolumbium slag cleanup was concentrated in the early to mid-1970s time frame.

In June 1971, an AEC compliance inspection revealed that thorium-bearing slag had been inadvertently buried onsite in violation of the terms and conditions of their license and AEC regulations. The AEC issued a Notice of Violation and requested Molycorp to take remedial action to excavate these materials and dispose of them in accordance with AEC regulations and guidance documents. Applied Health Physics was contracted to perform a thorough radiological survey of the site and to provide health physics and waste disposal services necessary to comply with AEC's request. Survey measurements indicated exposure levels at 1.2 mR/hr in some areas.

In 1972, thoriated material from the site was disposed of at the West Valley, New York, burial site. The disposal was terminated when New York officials decided that the volume of waste was too large and the contamination level insignificant to use up valuable burial area. Molycorp performed cleanup operations to segregate and stabilize the remaining thoriated material in a capped pile containing about 27,700 cubic yards of slag on the south property. A 1975 Applied Health Physics, Inc. report indicated the average concentration of thorium-232 in the slag pile was 1,250 pCi/g, with exposures within the 0.2 mR/hr Nuclear Regulatory Commission maximum level allowed at the time (AEC was reorganized as the NRC in 1974). This pile was eventually removed and disposed of.

In 1978, one of two molybdenum-roasting furnaces was shut down as part of a consent decree with the Pennsylvania Department of Environmental Resources (PADER) Air Quality Agency due to exceedances of SO₂ standards. All remaining processes continued until 1991.

Oak Ridge Associated Universities, an NRC contractor, conducted a radiological survey of the site in 1985. The survey identified elevated (twice background or greater) levels of thorium in the dikes that separated the surface impoundments, and indicated the potential of subsurface thoriated slags in the western portion of the site.

RSA. Inc. conducted a subsurface survey for Molycorp in 1990 to characterize the thorium contamination across the western portion of the site (i.e., the impoundment area), and the areas immediately to the north, west, and northwest. Thirty-two holes were drilled on the site and radiation measurements were logged at every six inches of depth from the surface down to bedrock, both above and below water table. Radiation levels were also logged in monitoring wells previously drilled on the site. In addition to the subsurface survey, RSA, Inc. conducted a survey of the radiation exposure rates inside the study area. This survey consisted of approximately 400 measurements of the gamma radiation field at a height of one meter above ground level. Findings reveled that; in general, the subsurface concentrations of thorium were above those in the surface soils in almost every hole drilled. A general pattern was that the underground radiation levels decreased to background at a depth of about ten feet. While a majority of the holes exhibited concentrations of greater than 0.01 percent thorium, in only a few holes did the thorium content exceed an average of 0.05 percent at some point below the surface of the ground.

Foster Wheeler Environmental Corporation conducted a site characterization of the Molycorp Washington, PA site in 1994 and published its report titles "Site Characterization Report for License Termination of the Washington, PA Facility, 1995." This three volume report was conducted to meet the Site Characterization Plan's objectives:

- To determine the extent of the distribution of thoriated residues on the site, in the structures and in the environmental media.
- To determine the rate(s) of migration, if any, of thorium or its daughters through various pathways to man.
- To assess associated non-radiological constituents and determine their affects on the radiological constituents and potential impacts on decommissioning.
- To quantify parameters that affect potential human exposure to existing site radiological materials.
- To support evaluation of alternative decommissioning actions wan detailed planning of a preferred approach for decommissioning, decontamination, and waste disposal.

3.3 DECONTAMINATION PROCEDURES

Most of the above surface buildings have been previously decontaminated and identified as unaffected buildings or areas. These classifications are noted in Molycorp's NRC License, SMB-1393 and identified in Section 2.2. Buildings classified as affected will be surveyed, and where remediation is necessary, decontamination will be performed. It has been estimated that very little radioactive waste will be generated during the entire project scope. Items found to be contaminated above the limits have and will be controlled as radioactive material, temporarily stored on site, and ultimately disposed of as radioactive waste.

MACTEC's "Survey Plan for Determining the Final Status of Buildings at the Molycorp Site" contains the procedures and requirements for the survey of the buildings on site. RSI's Radiation Protection

Procedures (currently the approved procedures used on site) contain the procedural requirements for operational radiation activities on the site.

4.0 FINAL SURVEY PROCEDURES

.

The basis of the Molycorp radiological survey design conformed to NUREG/CR 5849, "Manual for Conducting Radiological Surveys in Support of License Termination," RSI's "Decommission Plan for the Washington, PA Facility, Part 1 Revision," and the requirements of Molycorp's "U.S. Nuclear Regulatory Commission Material License, Amendment No. 5, SMB-1393." These references provide adequate information and sampling requirements to ensure a proper survey had been planned and performed. The requirements listed in these references were compiled into a sampling plan (MACTEC's "Survey Plan for Determining the Final Status of Buildings at the Molycorp Site") and used as the guidance document for sampling instructions.

4.1 SAMPLING PARAMETERS

Sampling parameters were identified from NUREG/CR 5849, "Manual for Conducting Radiological Surveys in Support of License Termination," RSI's "Decommission Plan for the Washington, PA Facility, Part 1 Revision," and the requirements of Molycorp's "U.S. Nuclear Regulatory Commission Material License, Amendment No. 5, SMB-1393." QC samples were included in the sampling requirements.

Site buildings or areas were classified by contamination potential and grouped into survey units having a common history, contamination potential, or that were naturally distinguishable from other site areas, to assure that the number of survey data points from each survey unit adequately represented the radiological environment of that survey unit. Survey units are subdivisions of the whole area of interest within the sampling plan.

Unaffected survey units identified by direct measurement that exceed 25% of the guideline levels were reclassified as affected areas, gridded as necessary, and resurveyed accordingly.

Representative surveying was accomplished for buildings by using a systematic grid approach to ensure spatial representation of the survey unit of interest. The grid system provided reference locations to aid in proper sample identification and distribution, and ensured that minimum sample surface areas were sampled.

Direct and loose surface measurement locations were identified on the actual surface being surveyed. The physical probe location was traced on the surface being surveyed. When necessary, survey readings were recorded on the physical surface at the location of the survey.

Survey results were obtained and used for comparison against the limits for unrestricted release, as defined in the site's NRC License. These limits are included in MACTEC's "Survey Plan for Determining the Final Status of Buildings at the Molycorp Site" as Appendix A.

Table 4.1 identifies the release limits of the license.

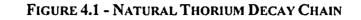
Radionuclide (1)	Average	Maximum	Removable
U-nat, U-235, U-238, and associated decay products	5,000 α	15,000α	1,000α
Transuranics, Ra-226, Ra-228, Th-230, Th-228, Pa-231, Ac-227, I-125, I-129	100	300	20
Th-nat, Th-232, Sr-90, Ra-223, Ra-224, U-232, I- 126, I-131, I-133	1,000	3,000	200
Beta-gamma emitters (nuclides with decay modes other than alpha emission or spontaneous fission) except Sr-90 and others noted above	5,000	15,000	1,000

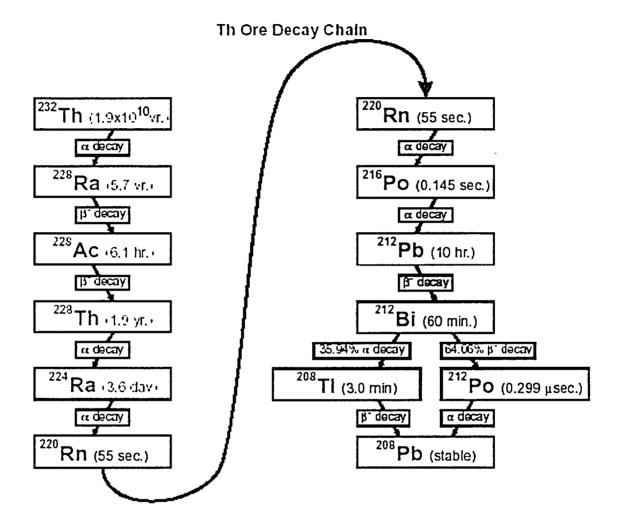
 Table 4.1 - Acceptable Surface Contamination Levels (dpm/100cm²)

(1) Where surface contamination by both alpha and beta-gamma emitting nuclides exist, the limits established for alpha and beta-gamma emitting nuclides should apply independently.

Even though limited quantities of natural uranium have been identified at the Washington, PA site, and is included as a part of the site's NRC License, the more restrictive limits for release (for surface activity) are for the natural thorium radionuclide, which is the significant radionuclide of concern.. Therefore, the limits for release are due to the natural thorium radionuclide, and the limits are 1,000 dpm/100cm² average, 3,000 dpm/100cm² maximum and 200 dpm/100cm² removable.

Because both alpha and beta radiations are a product of the decay of natural thorium (in equilibrium), the limits listed above apply independently to both alpha radiation and beta radiation.


Due to the inherent difficulty of properly quantifying the alpha radiation component during the decay of natural thorium when using a hand-held instrument, a ratio of alpha decays to beta decays was identified and beta radiation was used as a surrogate to quantify the alpha activity. This was not the case for determining removable contamination. The Ludlum 2929 was calibrated and set up for the measurement of both alpha and beta radioactivity.


The detectable ratio of alpha to beta is a 2:1 for natural thorium decay. In actuality, the decay of natural thorium produces 6 alphas and 4 betas to reach stable lead. However, one of the betas emitted during the decay process (from Ra-228) is not detectable (39 keV E-max). The other three betas emitted are detectable and are suitable as a surrogate.

The alpha readings recorded on the various data forms and record sheets were actual instrument readings, obtained from the instrument during the survey, and do not represent this ratio factoring. The use of alpha to beta ratio factoring is incorporated in the data set just prior to statistical analysis and comparison to limit values.

Figure 4.1 is a graphical representation of the decay of natural thorium.

.

4.2 SAMPLING SCHEDULE

•

Scanning of surfaces to identify locations of residual surface activity were performed according to Table 4.2.

Building/ Structure Status	Survey Location	Surface Scan (4.6)
Affected Areas	Building floor and lower walls (<2 m from floor)	100% - Floor and lower walls (<2 m from floor) and other surfaces found to have residual activity in excess of guideline values during characterization surveys.
Affected Areas	Upper surfaces (>2 m from floor) of affected areas found to be non contaminated during the characterization	Limited - Areas found to be non contaminated during the characterization survey, scans in the immediate vicinity of direct measurement.
Affected Areas . (4.10.1)	Exterior of piping, ventilation ducting, electrical boxes, conduit, or other interior surfaces that may contain residual contamination	B-G scans, biased, to determine locations that exceed 2x background. At these locations, and available access points to pipe and duct interiors, direct alpha measurements and smear sample will be obtained.
All Buildings (4.10.2)	Exterior surface of the roof	Gamma scan only - 1 measurement per 4 m ² (see Exposure Rates Table)
All Buildings (4.10.2)	Exterior walls	B-G scan, 10% of lower wall surfaces (<2 m from floor).
Unaffected Areas	Building floor and lower wall surfaces (<2 m from floor)	B-G scan, 10% of floor and lower wall surfaces (<2 m from floor)
Equipment/ Structures Located in Affected	Equipment/Structure	Free Release Survey - If equipment/structure is identified as being used for processing licensed material.
Areas/Buildings		Biased - If equipment/structure was never used for processing licensed material.

~

TABLE 4.2 - SURFACE SCAN SCHEDULE

Equipment/ Structures Located in Unaffected Areas/Buildings	Equipment/Structure	Biased - If equipment/structure is suspected of being used for processing licensed material. Not Required - If equipment/structure was never used for processing licensed material.
Result Requirements	、 、	Locations of surface activity exceeding twice background will be marked for further evaluation.

Building interior surface scans were conducted for alpha and beta-gamma radiations. Scans of exterior building surfaces were for beta and gamma radiations to identify the presence of elevated areas that might indicate residual gross activity.

For hand-held instrumentation, the detector was kept as close as possible to the surface and moved across the surface at a slow speed. Scan surveys were performed by moving the detector over the surface area at a maximum speed of 1-2 inches per second and a distance of approximately 1/2 inch for beta and 1/4 inch for alpha. When the count rate increased, the rate of movement of the detector was decreased or stopped. If the increase in count rate was real (not a random variation in the background count rate), a static 60-second measurement was performed over the area of increased count rate to quantify the activity. Audible indicators (headphones or instrument speaker) were used to identify locations having elevated activity levels. All scanning results were noted on standard survey forms as well as task-specific generated forms.

When elevated levels of surface activity were identified with the Ludlum Model 239-1F floor monitor, the surface was marked and scanned with a hand held unit with a detector size of $\sim 100 \text{ cm}^2$ and an appropriate detector efficiency.

Gamma exposure rate measurements (gamma scan) were conducted with the instrument at 1 m above the floor at systematically and randomly selected locations.

Direct measurements were performed according to Table 4.3.

Building/ Structure Status	Survey Location	Direct Measurement (4.7)
Affected Areas	Building floor and lower walls (<2 m from floor)	Floor and lower walls (<2 m from floor) and other surfaces found to have residual activity in excess of guideline values during characterization surveys. ⁽¹⁾

TABLE 4.3 - DIRECT SURFACE MEASUREMENT SCHEDULE
--

· · · · · · · · · · · · · · · · · · ·	r	
Affected Areas	Upper surfaces (>2 m from floor) of affected areas found to be non contaminated during the characterization	Measurements will be performed at a minimum of 30 locations on both vertical and horizontal surfaces and sufficient additional locations to provide coverage at a minimum of one location per 20 m ² of surface area. ⁽¹⁾
Affected Areas (4.10.1)	Exterior of piping, ventilation ducting, electrical boxes, conduit, or other interior surfaces that may contain residual contamination	Where B-G scans exceed 2x background - obtain direct alpha measurements. At available access points to pipe and duct interiors - obtain direct alpha
All Buildings (4.10.2)	Exterior and interior surfaces of air exhaust equipment and at roof drains	measurements. Biased
All Buildings (4.10.2)	Exterior walls	A minimum of 30 random direct measurements or an average of at least 1 measurement location per 50 m^2 surface area, whichever is greater, of the survey unit. (4.10.2)
All Buildings (4.10.2)	Exterior surface of the roof	Biased in areas of plausible contamination. (based on gamma scan results)
Unaffected Areas	Building floor and lower walls (<2 m from floor)	A minimum of 30 random direct measurements or an average of at least 1 measurement location per 50 m ² surface area, whichever is greater. (5849)
Equipment/ Structures Located in	Equipment/Structure	Free Release - If equipment/structure is identified as being used for processing licensed material.
Affected Areas/Buildings		Biased - If equipment/structure was never used for processing licensed material.
Equipment/ Structures Located in Unaffected	Equipment/Structure	Biased - If equipment/structure is identified as being used for processing licensed material.
Areas/Buildings		Not Required - If equipment/structure was never used for processing licensed material.
Result Requirements		If scans or measurements indicate residual activity exceeding 25% of the guideline, the area is surveyed per affected area requirements.

-

•

¹ If scanning methods are capable of detecting residual Th activity of less than 1,000 dpm/100 cm², direct surface activity measurements will be systematically performed at two meter intervals on floors and lower walls and at the same intervals on upper surfaces. If scanning methods produce an MDA that exceeds 1,000 dpm/100 cm², measurements will be performed at one meter intervals. On upper surfaces of affected areas that are not scanned for the presence of residual activity, measurements will be performed at a minimum of 30 locations on both vertical and horizontal surfaces. These locations will include surfaces where radioactive material would likely settle and sufficient additional locations to provide coverage at a minimum of one location per 20 m² of surface area.

Direct surface measurements were conducted by integrating counts over a 1-minute period.

When scans or measurement exceeds guideline levels, the location was noted for further remediation or resolution. Localized scanning and measurements were repeated after any remediation activities were performed.

Smear surveys were preformed according to Table 4.4.

Building/ Structure Status	Survey Location	Removable Surface Activity
Affected Areas	Building floor and lower walls (<2 m from floor)	Collected from each location where a direct surface activity measurement is made (alpha and beta analysis).
Affected Areas	Upper surfaces (>2 m from floor) of affected areas found to be non contaminated during the characterization.	Collected from each location where a direct surface activity measurement is made (alpha and beta analysis).
Affected Areas (4.10.1)	Exterior of piping, ventilation ducting, electrical boxes, conduit, or other interior surfaces that may contain residual contamination.	 Where B-G scans exceed 2x background obtain alpha smear sample. At available access points to pipe and duct interiors - obtain alpha smear sample.
All Buildings (4.10.2)	Exterior and interior surfaces of air exhaust equipment and at roof drains.	Biased to locations where contamination is most likely.
All Buildings (4.10.2)	Exterior walls	Collected from each location where a direct surface activity measurement is made (alpha and beta analysis).

TABLE 4.4 - LOOSE SURFACE MEASUREMENT SCHEDULE

All Buildings (4.10.2)	Exterior surface of the roof	Samples of roofing material (volumetric) will be obtained where direct measurements indicate contamination is present.
Unaffected Areas	Building and Structure Surfaces	Collected from each location where a direct surface activity measurement is made (alpha and beta analysis).
Equipment/ Structures Located in Affected Areas/Buildings	Equipment/Structure	Collected from each location where a direct surface activity measurement is made (alpha and beta analysis).
Equipment/ Structures Located in Unaffected Areas/Buildings	Equipment/Structure	Collected from each location where a direct surface activity measurement is made (alpha and beta analysis).

A smear for removable contamination was obtained at each location where a direct surface activity measurement was taken, unless otherwise stated in Table 4.3.

Smears were counted for gross alpha and beta with the appropriate instrument.

As a precaution against accidental contamination of the instrumentation used to analyze the smear samples, screening of samples that had a high potential of containing elevated levels of radioactivity was performed.

Exposure rate measurements were performed according to Table 4.5.

Building/ **Survey Location Exposure Rate Measurement (4.8)** Structure Status Affected Areas Gamma exposure rates measured 1 meter **Building Surfaces** perpendicular to building surfaces at 1 measurement per 4 m^2 . All Buildings Exterior Roof Surface (gamma Gamma exposure rates measured 1 meter perpendicular to building surfaces at 1 scan) measurement per 4 m^2 . (4.10.2)

 TABLE 4.5 - EXPOSURE RATE MEASUREMENT SCHEDULE

Unaffected Building Surfaces Areas	Gamma exposure rates measured 1 meter perpendicular to building surfaces at 1 measurement per 50 m ² (calibrated for natural thorium).
---------------------------------------	--

Gamma exposure rates were measured at 1 m above ground or floor surfaces using a gamma scintillation instrument.

Where necessary, samples of paint were obtained from 100 cm^2 areas of painted surfaces where direct and removable activity measurements suggest contamination (> surface contamination levels) may have been painted over. These samples were analyzed for beta activity. Direct measurements and smear surveys were made of the underlying surface, after removal of the paint.

Samples of roofing materials (non-metal roofs) were obtained where direct measurements indicate contamination was present in the roofing material. Roof material samples were controlled as volumetric samples and analyzed as such.

Cotton swabs were used for sampling in hard-to-reach areas such as inside wall and floor penetrations, anchor-bolt holes, and floor cracks or expansion joints.

Each piece of equipment that required monitoring was its own entity and was described by name and serial number on survey forms and/or logs. Special attention (increased sample density) was given to areas where there was a high potential for contamination. Equipment previously identified as not affected (not contaminated) was not surveyed unless there was indication that it had become contaminated.

4.3 BACKGROUND LEVELS IDENTIFIED

Material-specific background levels were established by RSI in late 2001 for each type of instrument used for total surface contamination measurements during their final status surveys of buildings 39 and 42. Similar instrumentation was selected for use by MACTEC to take advantage of this previously available information.

Background measurements were collected on surfaces of similar construction as the buildings at the site and having no possibility of being impacted by site operations. Measurements to establish background for a specific material were collected from multiple locations to provide an estimate of the variability or uncertainty. Background determination was performed using the same instrumentation that was used for final status survey data collection. An average background value was determined for each material surveyed and this value was subtracted from each measurement to determine a net count or count rate. Background determinations were required and performed for concrete and a class of material designated a generic material.

The required number of background measurements per material type is as follows:

- Concrete minimum of 20 measurements
- Cinderblock minimum of 20 measurements

• Generic Material - minimum of 10 measurements for each type of material surveyed (i.e., wood, insulation, corrugated steel, etc.)

It was previously identified in the final status survey report for buildings 39 and 42, submitted by RSI, that significant background radiation levels existed at the Molycorp site, primarily due to gamma radiation from the thorium slag in the soil. RSI had reported levels as high as 30 micro-R per hour.

During survey activities performed by MACTEC at the site, a significant component of the measured activity was indeed identified to be from the elevated gamma background coming from the slag in the soil. A method was devised to minimize the interference of this background radiation when using the hand-held detectors, and produce more accurate results of beta activity, the primary indicator used for the detection and quantification of natural thorium. A shield, or "beta window" was used to eliminate the beta component of a measurement made in areas where background levels proved to be a nuisance. A second measurement was taken without the shield in place. This measurement process produced two readings, one containing a beta-gamma interaction with the detector, and one containing only a gamma interaction with the detector. The difference between the two readings provided a beta-only component of the measurement, with the gamma background removed. This reading was then compared against the materials background that was determined at the off-site location and a net beta reading was obtained.

The material used to shield the beta radiation was a thin piece of aluminum (approximately 3/16 inch think). A test was performed to validate the aluminum's ability to shield the beta radiation. A beta source was counted without the shield, and then the shield was put in place. The source was again counted. Results of the tests indicated that in all cases, when the shield was in place , the instrument indicated background values and completely shielded out any beta radiation.

4.4 MAJOR CONTAMINATES IDENTIFIED

The major contaminate (significant radionuclide of concern) at the Molycorp Washington, PA site was identified to be natural thorium. Trace amounts of natural uranium were also identified as a contaminate. Both of these materials are identified in the site's NRC License.

No other licensed material has been brought on site, based on the site Facility Superintendent's knowledge of process and site operations.

Results of preliminary assessment and characterization survey support the conclusion and identify the significant radiological contaminant to be thorium-232, from the processing of certain types of ore concentrates in the production of ferrocolumbium. Most of the material Molycorp processed for ferrocolumbium was a pyrochlore, which contained thorium above the 0.05 percent limit. It is possible that buildings and structures involved with the processing of pyrochlore and production of ferrocolumbium may have been contaminated with thorium-232. The average activity ratio of Th-228 and Th-230 to Th-232 found in slag/soil samples are:

Th-228:Th-232	1.03%
Th-230:Th-232	0.16 %

4.5 GUIDELINES ESTABLISHED

•

All final status survey measurements were compared to the values listed in the Site's NRC License. The criteria specified in the guideline for natural thorium are more conservative than natural uranium, and were applied at the site for final status survey.

4.6 EQUIPMENT AND PROCEDURES SELECTED

Instrument and procedure selection was based on several criteria. The first criteria that was considered was the use of instruments and procedures that had been previously used on site for final status surveys. Since RSI had just completed the final status survey of two buildings at the site, prior to MACTEC's arrival, using similar procedures and instruments made sense. Because MACTEC's radiation protection operating procedures had not yet been approved for use at the site, RSI's radiation protection procedures were used. RSI's radiation protection procedures had previously been approved for use on site by the NRC. Verbal approval was given by the NRC to allow MACTEC to continue work using RSI's radiation protection procedures were approved.

4.7 INSTRUMENT MDA

The detection sensitivity of a measurement system refers to the statistically determined quantity of radioactive material or radiation that can be measured or detected at a preselected confidence level. This sensitivity is a factor of both the instrumentation and the technique or procedure being used. Typically, detection sensitivity has been defined (EPA 1980) as the level above which there is less than a 5% probability that radioactivity will be reported present when it is really absent (Type I error) or reported absent when it is really present (Type II error).

Minimum detectable activity (MDA) is an *a priori* estimate of the minimum activity level which is practically measurable with a specific instrument, and sampling and/or measurement technique. The basic equation for determining field instrument MDA (NUREG/CR-5849) is:

	Where:	
$MDA = \frac{2.71 + 4.65\sqrt{B_R * t}}{4.65\sqrt{B_R + t}}$	$B_R =$	background count rate
$MDA = \frac{A}{A}$	t =	sample count time (min)
$t * E * \frac{A}{100}$	E =	efficiency
	<i>A</i> =	area of probe

Instrument MDAs were calculated on a daily basis and recorded on the applicable survey forms. Where instrument MDAs did not meet criteria (25% of the release limit value,) instrument background count times and sample count times were increased until MDA values became acceptable.

4.8 INSTRUMENT SELECTION

Instrument and equipment selection was made based on previous use and the criteria of NUREG/CR-5849, for MDA sensitivity. In addition to the previous use criteria, instruments were selected based on the ability to detect the desired radiation and at a desired level, ease of use, availability and cost.

- For dose rate measurements, the Ludlum Micro-R meter was selected and used. It was selected due to it's relatively flat energy response curve and because it had been used on site previously for final status surveys.
- For surface scans of large areas (floor and walls), the Ludlum Floor Monitor (239-1F/2350-1) with the 582 cm² detector (43-37) was selected. The MDA for the instrument was considered acceptable until an area of elevated activity was detected by the instrument. During surveys with the floor monitor, when an area of elevated activity was detected, the probe size was theoretically reduced from 582 cm² to a size of 100 cm² (a postulated physical size of elevated activity). The MDA of the instrument with it's newly reduced probe size (100 cm² probe size) became unacceptable for scanning. For areas where the floor monitor detected elevated activity, the area was identified and resurveyed with a 100 cm² hand-held gas proportional detector. Instrument MDA was calculated and recorded at the start of the job, at the job site. If the instrument was relocated to a different location during the same day of work, the MDA was again calculated and recorded for the new location. The floor monitor was set up and calibrated to detect both alpha and beta radiations.
- For surface scans of areas with elevated readings, the Ludlum 2350-1 with the 43-68 or 43-106 ٠ was selected. Due to the detector's relative size (compared to the 43-37) the MDA for the detector was acceptable. However, using a hand-held instrument to survey large surface areas is not efficient in either cost or time. The primary duty of the large area hand-held gas-flow proportional detector was scanning areas where elevated levels of activity had been identified by the floor monitor. When required to be used, the instrument's MDA was calculated and recorded at the start of the job, at the job site. If the instrument was relocated to a different location during the same day of work, the MDA was again calculated and recorded for the new location. This instrument was not used for static measurements due to the added effort of the surveyor (moving the gas bottle around with the instrument) and the added cost to use the instrument. The instrument's lower MDA allowed for the sample population density of other sample mediums (for affected area surveys units) to be less dense. When the MDA of the scanning instrument could not reach 25% of the release limit, the sample population density increased for the other sample mediums (direct and loose surface measurements) and a greater number of samples were required to be obtained. The instrument was set up and calibrated to detect both alpha and beta radiations.
- For static (direct) surface measurements, the Ludlum 2360 with the 43-89 detector was selected. The MDA was acceptable. Instrument MDA was calculated and recorded at the start of the job, at the job site. If the instrument was relocated to a different location during the same day of work, the MDA was again calculated and recorded for the new location. When background radiation created an unacceptable MDA for this instrument, the instrument was reconfigured to count with a longer count time. Background count times were also increased to lower instrument MDA to acceptable levels. Durability, ease of use and cost were a consideration in the selection of this instrument. The instrument was set up and calibrated to detect both alpha and beta radiations.
- For counting samples (smears and air samples), the Ludlum 2929 with 43-10-1 detector was selected. Instrument MDA was calculated and recorded daily, and found to be acceptable.

Durability, ease of use, familiarity and cost were a consideration in the selection of this instrument. The instrument was set up and calibrated to detect both alpha and beta radiations.

Table 4.6 provides information on the instruments selected to be used for final status surveys at the Molycorp Washington, PA site. Information on MDA calculations can be found in "Survey Plan for Determining the Final Status of Buildings at the Molycorp Site," Appendix B.

Instruments	Probe	Radiation	MDA (dpm/100 cm ²)	Use
Ludlum, Model 2360	43-89	Alpha	67	Static Surveys
Ludlum, Model 2360	43-89	Beta	520	Static Surveys
Ludlum, Model 2929	43-10-1	Alpha	29	Counter Scaler
Ludlum, Model 2929	43-10-1	Beta	182	Counter Scaler
Ludlum, Model 2350-1	43-68/43-106	Alpha	105	Scan Surveys
Ludlum, Model 2350-1	43-68/43-106	Beta	625	Scan Surveys
Ludlum, Model 239-1F	43-37	Alpha	64	Floor Monitor
Ludlum, Model 239-1F	43-37	Beta	1186	Floor Monitor
Ludlum, Model 19	Internal	Gamma		Exposure Rates

TABLE 4.6 - INSTRUMENT SELECTION

4.9 **INSTRUMENT USE TECHNIQUES**

Instruments selected for performing final status surveys were provided by GTS Duratek, Field Engineering and Field Services group, Kingston, TN. Prior to delivery, instrument calibrations and operations were verified by the vendor, and shipped to Washington, PA. Upon arrival, the instruments were inspected and verified operational. Instrument backgrounds were preformed. QC check control limits were established and Chi-squared tests were performed.

Prior to daily use, instruments were response checked and compared against their two and three sigma warning and control limit values. For scaler instruments, daily backgrounds were determined and MDCs were calculated in addition to their response checks. After daily use, hand-held instruments were once again source response checked to ensure that the instrument did not fail during the day's work. All instrument "daily checks" data was logged in the appropriate data log record.

Qualified HP technicians were trained on the use of the instruments, and provided access to the instrument's User Manuals. Surveys were performed in accordance with approved radiological survey procedures on site. Survey results were reviewed by the Radiological Engineer for accuracy and completeness.

4.10 **PROCEDURES FOLLOWED**

•

The requirements of NUREG/CR 5849, "Manual for Conducting Radiological Surveys in Support of License Termination" were followed for most statistical methodologies used during the performance of surveys and testing of data for the final status survey. In one instance, the methodology found in "Multi-Agency Radiation Survey and Site Investigation Manual" (MARSSIM) was used for determining the scanning MDA of those instruments used for scanning. This methodology provided a more accurate MDA result than would have been calculated from the guidance found in NUREG/CR-5849.

4.11 SURVEYING ORGANIZATION

Characterization and final status surveys were performed by a team composed of qualified personnel currently employed or subcontracted by MACTEC.

The team was operated under the supervision of the Project Manager, Mr. Vern Taylor, of MACTEC, Inc who has overall authority of the project.

The day to day operations of the site were the responsibility of the Site Superintendent, Mr. John Peek of MACTEC, Inc.

Radiological field measurements and sample collection were the responsibility of Mr. Michael McDonald of MACTEC, Inc. Mike is a Board Certified Health Physicist (CHP) in comprehensive practice and a Registered Radiation Protection Technologist (RRPT).

Radiological surveys were performed by a team of HP technicians. One Senior HP Technician was assigned as the Lead Technician and was given the responsibility of the team.

5.0 SURVEY FINDINGS

Detailed data reports for each survey unit sampled are provided as an appendix to this report. Field data collection forms, survey report forms, instrumentation information (background, QC, MDA, and source response data forms), statistical test results, and comparisons to release limits are all provided as a single package. Each package also contains a summary of the final status survey for that survey unit and includes information on anomalies discovered during the survey process. Where significant differences existed between final status survey results and results of previous surveys for the survey unit, explanations are provided.

Raw survey data was compiled into survey data tables, where appropriate, and presented with calculational results and comparisons, and are presented in the appropriate appendix.

5.1 TECHNIQUES FOR REDUCING/EVALUATING DATA

Survey information was obtained from the instrument's meter face used at the time of the survey. This data was recorded on a Radiological Survey Location Indicator data sheet, in the instrument's units. For scans and static measurements, the units were in counts per minute (cpm). Smear data was recorded

after counting, subtracting background, and conversion to units of disintegrations per minute per 100 square centimeters (dpm/100cm²). Dose rate measurements were recorded in units of micro-Roentgen per hour (uR/hr) and taken directly from the instruments meter face. Information used in the conversion from cpm to dpm (instrument efficiencies) was recorded on both the Radiological Survey Location Indicator data sheet and the Radiation Protection Survey Report form. For scans, the highest reading for the given immediate scan area was recorded in cpm.

Where "hot spots" needed to be evaluated, additional readings were taken and the average hot spot activity was calculated in accordance with NUREG/CR-5849, Section 8.5.2 - Elevated Areas of Activity.

5.2 STATISTICAL EVALUATION AND COMPARISON TABLES

The statistical methodology used to provide the true representation of the data in relationship to the applicable limits is found in Sections 2.0 and 8.0 of NUREG/CR-5849. Comparison tables and tests used in the analysis are presented as part of each survey unit's data package, as an appendix to this report.

6.0 SUMMARY

.

Final status survey of the buildings located at the Molycorp Washington, PA site were performed in accordance with the requirements listed in NUREG/CR 5849, "Manual for Conducting Radiological Surveys in Support of License Termination," RSI's "Decommission Plan for the Washington, PA Facility, Part 1 Revision," Molycorp's "U.S. Nuclear Regulatory Commission Material License, Amendment No. 5, SMB-1393," and MACTEC's "Survey Plan for Determining the Final Status of Buildings at the Molycorp Site."

According to the findings of the final status surveys performed at the Molycorp Washington, PA site, all release criteria have been met. Results of the final status survey demonstrate that the residual radioactivity in Buildings 13, 14, 28 and 34 is below the unrestricted use criteria and confirm that the buildings are suitable for unrestricted use.

7.0 REFERENCES

٠

- 1) Manual for Conducting Radiological Surveys in Support of License Termination, NUREG/CR-5849, Draft, December 1993.
- 2) *Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) Revision 1*, NUREG-1575, Rev. 1, US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, Washington, DC, August 2000.
- 3) Specifications and Guidelines for Quality Systems for Environmental Data Collection and Environmental Technology Programs, American National Standard, ANSI/ASQC E4-1994.
- 4) *Quality Assurance for Radiological Monitoring Program Effluent Streams and the Environment*, NRC Regulatory Guide 4.15, 1979.
- 5) *Termination of Operating Licenses for Nuclear Reactors*, Nuclear Regulatory Commission, Regulatory Guide 1.86, 1974.
- 6) Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions, NUREG/CR-1507, Final, 1997.
- 7) Statistical Methods for Evaluating the Attainment of Cleanup Standards, Pacific Northwest Laboratory, Richland, WA, December 1992.
- 8) Radiation Detection and Measurement, Knoll, 1979.
- 9) Washing, PA Facility, Decommissioning Plan, Part 1 Revision, June 30, 1999, Radiological Services Inc.
- 10) Radiation Protection Program, Health Physics Procedures, June 1999, Radiological Services Inc.
- 11) Site Characterization Report for License Termination of the Washington, PA Facility, January 1995, Radiological Services Inc.
- 12) U.S. Nuclear Regulatory Commission Materials License, Molycorp, Inc, SMB-1393, Docket No. 040-08778, Amendment 5.

Appendix A

Building 13 Data Package Molycorp Washington, PA

Building 13 Data Package

.

This data package contains final status survey information for Building 13, Molycorp, Washington, PA site.

Field data collection forms, survey report forms, statistical test results, and comparisons to release limits are provided.

Summary

No anomalies were reported during the survey of Building 13. Elevated levels of background radiation, from soil radioactivity, continued to be a presence during survey activities.

Results from the final status survey of Building 13 provides evidence that release criteria have been met, demonstrates that residual radioactivity is below the unrestricted use criteria, and confirms that Building 13 is suitable for unrestricted use.

÷			RPP-OP-019	•
1	DDO-138 Radiation I	Protection Survey Report	Site: Molycorp / Washington, PA	7
Section 1: Survey Information	Building 13	unaffectal, 10%	o survey	
l	ime.	Location.	Survey Issue Log Number:	1
3-7-02	1100	Building 13	02-0046	
RWP Number	Purpose of Survey:	Unconditional Release (VOther	Page of	
Survey Title:			Smear Beta Alpha Number dpm/100cm ² dpm/100cm ²	
			1	7
			2]
			3	
			4	
			5	1
			6	1
			7	1
			8	4
	. /	/	9	-
			10	_
	\mathbf{x}			4
	17	9		4
	171		13 N/	4
				-
				4
:			18	-
				i
1 1 1			20	
1			21	-1
			22	-
			23	
			24	
			25 // 1	
Bkce Readings			26	
Legend				1
¹ 00 = mRem/h gamma 00 C	= mRem/h gamma contact 0	D = Smear Location $7 = Air$	Sample Location -X-X-X- = Robe. Boundary, or Barrie	-
00 β = mRem/h beta 00 β0	C = mRem/h beta contact -	- O - = Large Area Wipe = Bulk	Material Sample	
Section 2: Instrument Used				
	I Due Probe Model/SN ate		MDA Cther B	
	-02 43-37 092503	8-12-02 201 271	4.6 205 BKg 50+ 349	
:2350-1 1175612 8-6	-02 43-106 128912	8-6-02-212-2511	ele 1290 Bkg Z.Z 336	<u>, 1</u>
2929 152202 2-6	-03 42-10 156519	2-6-03 344 1651		
2224-1 129462 8-6	-02 43-89 169230			_F/00+
2224-1 1294628-6		8-6-02 ×.1548,0927	15.6x 1728 B-8x=3.7	_w41
Section 3: Review and Approval				
Survey Performed By (Sign)	marge Blancick	Area Posted and/or Barncaded.	Date and Time.	
Dintal		□ Yes □No X Not Required	3-7-0:2 1100	
Radiation Satety Officer (Print	Name & Sign)		Date and Time	
Mike Mc Douo	H Ker	the	3-14-02 9:30	

1

4

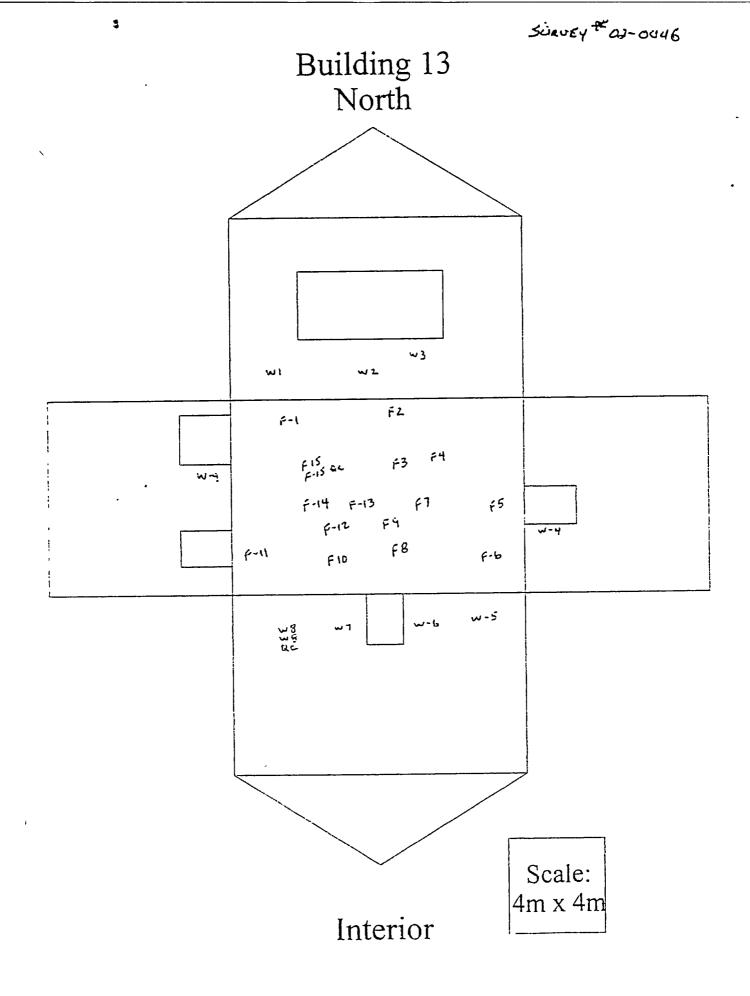
Radiological Survey Results - Survey Location Indicator Survey Area Information: β α α Cal Instrument Cal Probe ß Scan Scan Static Static Model/SN Due Model/SN Due MDA MDA MDA MDA Instrument 2350-1/95359 82.02 43-37/092503 26-02 15 Л 205 Data 8-6-02 43-106/128912 8-6-02 66 A 2350-1/117566 690 2-6-03 43-10 (156519 2-6-02 206 2929/152202 12 2224-1/129462 18-6-02 43-39/169230 8-6-02 A 64 415 NA 19/ 22526 NA NA 8-6-02 NA Signature Date **Print Name** mark Planciefl 3-7-02 MARK BLANCIAK Performed Dennis whitlock Fac 3-7-02 By: $\overline{\mathbf{O}}$ ß Smears ß Static ER α Static α Scan ß Scan Static $(dpm/100 cm^{2})$ Location (unsh) (cpm) (µrem/hr) (cpm) (cpm) (sh) (cpm) α ß (cpm) ____ -.4 F - I9 \cap 12 -24 1700 -,4 F - 2 -12 $\overline{\mathcal{A}}$ 12 ิฉ 12 F - 3 324 ____ -.4 -42 \sim 1 F-4 1 12 -,4 -18 Ц -.4 F-5 _ ____ \sim _ 12 - 55 1 12 -.4 F-4 8 ____ ~ 0 1600 12 1 -.4 115 ___ F- 7 -Я 2.5 12 91 F- 8 ~ --~ ____ ---- \wedge 12 5,4 103 F-9 4 12 -,4 18 ----_ F-10 3 12 -30 F-11 ------,4 12 -.4 -12 ____ · ___ 1 F-12 -----12 -,4 24 3 ~ F-13 Ъ 12 z.5 -12 F-14 ____ ~ \sim 12 2.5 55 F-15 6 -----~ F-15 QC 12 18 ____ 4 -.4 ~---5.6 11 ----5.4 -_ - $\alpha_i - 1$ -30 18 -.4 a 400 41-2 15 ----_ Q 12 24 2.5 $\omega - 3$ -79 -,4 2 12 400 4-4 12 -.4 \bigcirc -42 6-5 ____ 12 -,4 -67 4 4-6 12 -,4 42 こそり W-) t 12 2.5 4-9 48 12 W-8 QC -.4 36 -.4 48 ý -----____ 12 W -9 570 1 \sim

Page Z of 4

	Radiological Sulvey Results - Calculational Sheet					
				JURVEY #	02-0046	
Location	β Static (unsh) (cpm)	β Static (sh) (cpm)	Gross β	Minus Bkgd = (Net β)	Net β dpm/100 cm ²	
F-1	310	299	11	-67	-728	
<u> </u>	305	305	0	-78	-847	
<u>F-3</u>	397	305	92	14	152	
F-4	362	261	101	23	250	
<u>F-5</u>	376	268	108	30	326	
F.6	328	290	116	38	413	
F-7	347	290	57	-21	-338	
<u>F-8</u>	325	288	37	-41	-445	

Radiological Survey Results - Calculational Shoot

•


ļ	(cpm)				
F-1	310	299		-67	-728
F-2.	305	305	0	-78	-847
F-3	397	305	92		152
F-4	362	261	101	<u> </u>	250
F · 5 F · 6	376	268	108	30	उठ्द
F.6	328	290	116	38	413
F-7	347	290	57	-21	-338
F-7 F-8 F-9	325	288	37	-41	-445
<u>F-9</u>	346	303	43	-35	-380
F-10	289	269	20	-35 -58	-630
F-11	<u> </u>	294	25	-53	-576
F-12	361	251	110	32	347
F-13 F-14	332	269	63	-15	-163
F-14	334	302	32 '	-46	-500
F-15	327	306	21	-57	-619
F-15 QC	359	268	91	<u>-57</u> 13	141
W-1	. 341	285	56	48	522
w-a	293	281	12	4	43
<u>10-3</u>	314	248	66	58	630
<u>w-4</u>	304	305	-1	-9	-97
W-5	309	254	55	47	511
W-6	281	276	5	-3	-32
<u> </u>	266	244	22	-3	-32 152
W-8	310	284	26	18	195
W-E QC	330	279	51	43	467
W-9	333	261	72	.64	696
		- N			
		A			-
					· ·
		·			

Instrument Model/SN:	Probe Model/SN:	Detector Eff.: (cpm/dpm)	
2224-1/129463	13-89/169230	B=,092 x=,154	
	N		
	A		

3

Material	Bkgd
FLOOR	78
wall	8
N	
	A

Page 3 of 4

3

.

,

RPP-0P-019

:

DDO-138 Radiation Protection Survey Report	Sile: Molycorp / Washington, PA				
Section 1: Survey Information					
Date Time. Location:	Survey Issue Log Number				
3-7-02 1030 0/3 Blog 13	02-0047				
RWP Number Purpose of Survey: I RWP I Routine Survey I Unconditional Release Other.					
Survey Title:	Smear Beta Alpha Number dpm/100cm ² dpm/100cm ²				
	2				
	3				
NO KOOT JURVEY.	4				
	5				
NO ROOF SURVEY. DUE tO UNSAFE CONditions	6				
	7				
· · ·	8				
Conditions	9				
	10				
1	14 / A				
·					
	20				
:	21				
	23 /				
2360 x 3.7 B 5 model 19 10 me/Hz	24				
	25 /				
18kga Readings 2350-1 × 1 8 280 2929 × 16 3-69	26				
Legend	<u></u>				
00 = mRem/h gamma 00 C = mRem/h gamma contact $D = Smear Location$ $7 = Aura$	Sample Location -X-X-X- = Rope.				
$00 \ \beta = mRem/h \ beta = 00 \ \beta C = mRem/h \ beta \ contact = -D = Large \ Area \ Wipe = Bulk$	Material Sample Boundary, or Barrier				
Section 2: Instrument Used					
Instrument Model/SN Cal Due Probe Model/SN Cal Due Detector Eff Date. Date (cpm/dpm)	MDA Other				
2350-1/117014 8-13-02 43-106 133866 8-6-02 2-211 8.2480	45 8 6371				
12929/ 115563 6-19-02 43-10/ 127216 6-19-02 0.357.1390					
2360/ 156371 7-15-02 43-89/16-1832 8-5-02 0.1537,088 0					
19/22526 8-6-02 N					
	A				
Section 3: Review and Approval					
Survey Performed By (Sign). Area Posted and/or Barncaded: Date and Time					
hand Yes DNo & Not Required	3-7-03 1030				
Radiation Sarety Officer (Print Name & Sign)	Date and Time				
Mike Mc Oard South	3-14-02 9:30				

SURVEY # 02-0047

Radiological Survey Results - Survey Location Indicator

٩

.

Survey Area	Information	n:					-			
	Instrum Model/S		Cal Due	1	robe del/SN	Cal Due	α Scan MDA	β Sca MDA		β Static MDA
Instrument	2350-1/11	12014	8-13-02	48706	11.35866	8-5-02	45	637	I MA	NIA
				il3-10	127216				14	176
ł Г				43-89					76	180
			8-6-02		N		\sim	A		
	NIA		NA		A					A
	Print Name				Signati				Dat	e
Performed	DENNIS	Whit	Lock	·	(<u>L</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	the	2	3-	7-03
By:									•	
				<u> </u>						
Location	β Scan (cpm) [,]	α Sca (cpm)	וח . ע (נ	Static unsh)	β Static (sh)	α Stat (cpm		R m/hr)	Sme (dpm/10	00 cm²)
			''' (cpm		(cpm)				α	β
<u>iu-1</u>		-		-		0	1	0	2	-21
<u>w-2</u>	290	2			-	2	/	2	5	- 33
ω-3		-		-	-	2	/	1	5	-8
W.3 QC		-		~	-		/	\square		4
W-4	340	5		-		2		o	5	-17
ω-5	<u> </u>					3		0	2	-46
W-6	310	6		-	-		/	a	<u>a</u>	29
										$ \longrightarrow $
l	1									
		ļ	·							
								$ \rightarrow $		
·	-	1			N/					
	1		 				1	i		
		1	-							
	1	1		/				i		
				·				i		
		ſ								
	1/	1	1					i		
/	1	t t								
	İ		1					1		
		1	1		I I					1

Page <u>2</u> of <u>4</u>

	· · · · · · · · · · · · · · · · · · ·	Brdg #1	3	• •	
Location	β Static (unsh) (cpm)	β Static (sh) (cpm)	Gross β	Minus Bkgd = (Net β)	Net β dpm/100 cm ²
W-1	275	286	-11	-19	-215
<u> -2</u>	273	274	2	-10	-114
<u>w-3</u>	313	294	19	[]	125
W-3 QC	341	288	53	45	511
<u>w-4</u>	341	268	73 .	65	739
w-5	315	269	46	38	432
W-6	287	250		29	330
<u> </u>					
					:
·					
	•				
		<u> </u>			
			1		
		•			

Radiological Survey Results - Calculational Sheet

Instrument Model/SN:	Probe	Model/SN:	Detector Eff (cpm/dpm)
2360 156371	43-89	164832	B.088 01=1153
	A		
	1		

\$

Material	Bkgd
wall	3:32:37

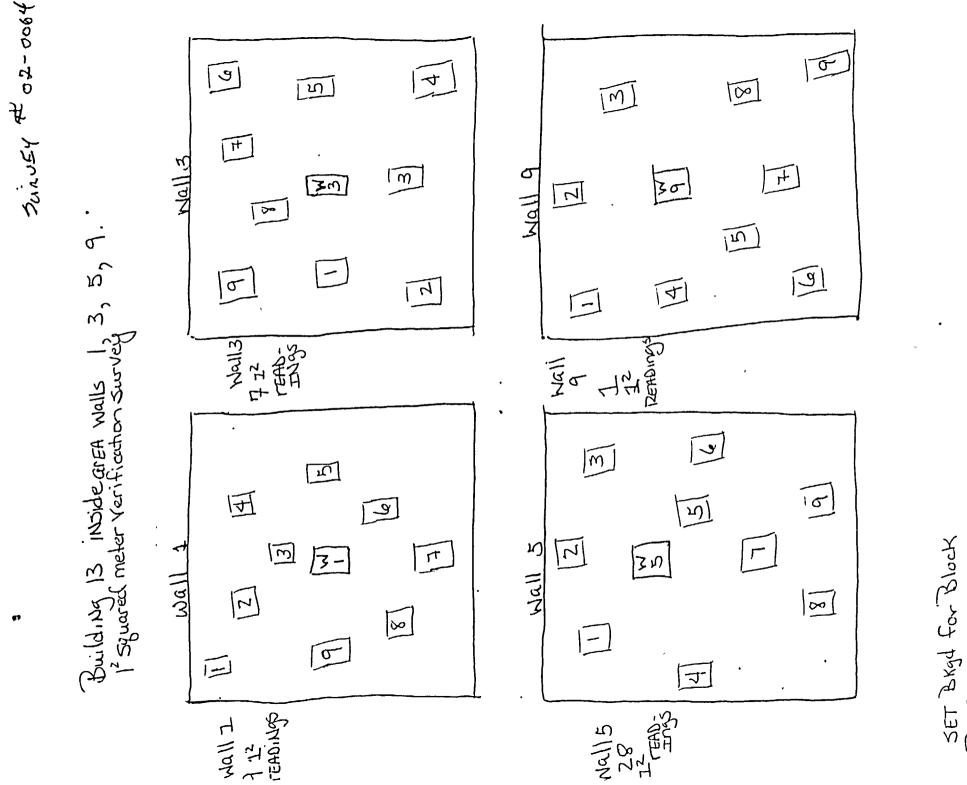
Page 3 of 4

JURVEY # 02-0047 4 Building 13 North • **い**-1 w-2. ۰. ω-3 QC 6-4 Scale: W-6 4m x 4m ω-5 Exterior .

PAGE 40F4

.

RPP-OP-019


. .

	DDO-138 Radiation	Protection S	urvey Report	Site: Molycorp / Wash	ington, PA
	DDO-138 Radiation	Fiblio Cach	ilding 13 INS	IDE outside H2	peter verificate
Section 1: Survey Information	" Verification of s	Location:	unanalia	Survey Issue Log Nun	nber:
Date: 3-12-02	1300	Build	Ng 13		
RWP Number:	Purpose of Survey:			Page of	
	Survey Title			Smear Beta Number dpm/100cm	Alpha dpm/100cm ²
				1	
Outside Area	EW			2	
building 13 Walls 3:4	h	1.91	Wall3	3	
Walls 3:4	2	_	11. 1 ²	4	
		8	Wall 3 11. 12 readings	5	
		_		7	
Each Squared area is Asiniby	3 3	11		8	
area is doiniby		_		9	
4010.	A	The		10	
יווסד	· · · ·			11	
:	5			12	
;				13 N	
1	W4			14	E
•	IT IT		Wa114	15	
,	国国	4	Wally	16	
	1 17		$ ^2$		
	16	131	(reading		
	W 4			20	
		Т		21	
	18 5		1	22	
1 1 m l - al	1 1 191	121		23	
SET For Block BKgd B-8 X 3.7				24	
BKgd B-8 023.7					
Legend.	0 C = mRem/h gamma conta	ct		All Gampic Ebecation	-X-X-X- = Rope. Boundary, or Barner
	$0 \ \beta C = mRem/h beta contact$		e Area Wipe _ <u> </u>	luik Matenal Sample	
Section 2: Instrument U					MDA.
Instrument Name	Model Number:	Serial/ID Nu	mber Calibr	ation Due Date	177 cx 76
	129463/169230	<u> </u>	8-6-6	52/8-4-02 15-	116
LLC					
		A			
Section 3: Review and	Approval			d. Date and Time:	
Survey Performed By (Si		Area Pos	nted and/or Barricade		300
Amere Altule	y. Della	Yes (Date and Time	
Radiation Safety Officer	(Pnnt Name & Sign).	1	//	3-14-02	9:30
Mike Mc No	mall -	- Stuf	/		

•

••

ſ

2 sut

TRIM

9. T

8 - 8 F:

Yu X

HQH

1-1-272

r				J4X	UEY : 02-00	104
Location	β Static (unsh) (cpm)	β Static (sh) (cpm)	Gross β	Minus Bkgd = (Net β)	Net β dpm/100 cm ²	
Blog 13WI I/S	362	314	48	40	434	4-
<u> </u>	355	333	22	14	152	-
	368	344	24	16	174	1
	346	348	-2	-10	-109	1
	360	306	54	46	500	1
	362	316	46	38	413	1
	388	320	18	/8	108	1
	325	330	-5	-13	-141	1
	352	318	.34	26	283	1
					1814/9	202
w37/5	330	310	20	12	130	1 -
	334	376	-42	-50	-543	1
	300	264	36 '	38	304	1 .
	. 310	320	~10	-18	-196	1
	326	349	-23	-31	- 337	1
	336	336	-6	-14	-152	1
	274	268	6	-2	- 22	1
	310	304	6	- ż	-22	1
	348	320	23	70	217	1
					-62179	1-69
W5 I/3	348 .	310	38	30	326	
	312	282	30	22	239	
	370	326	54	46	500	
	390	314	66	58	630	
		314	20	12	130	
	402	332	- 70	62	674	
		290	42	34	370	
	318	264	54	46	500	
	292	290	2	~6	-65	
					3304/9	367
			-			•

t

:

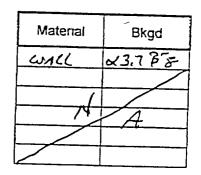
JUXUEY # 02-0464

Instrument Model/SN:	Probe Model/SN:	Detector Eff.: (cpm/dpm)
2224/129463	43-89 169230	X.1543.092
	N	
	A	

1

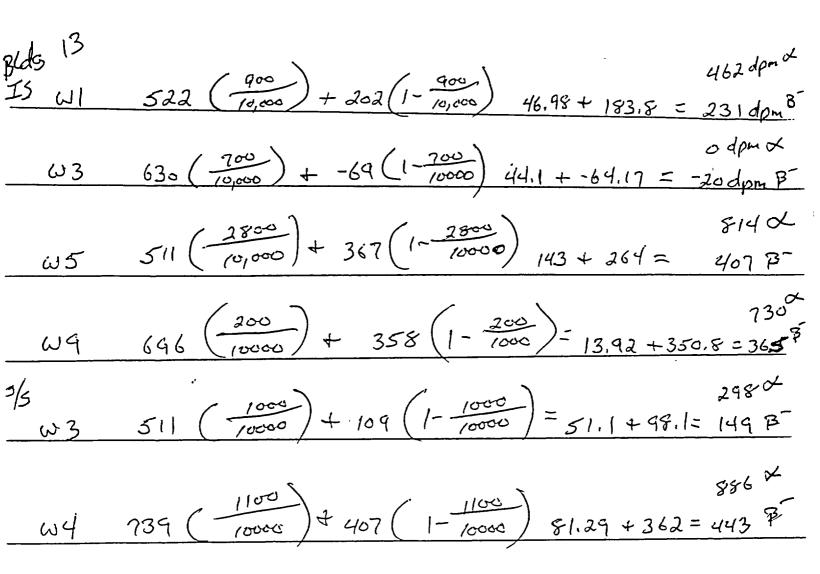
Material	Bkgd
WALL	X3,7BF
N	A

Page <u>3</u> of <u>5</u>


\$

	β Static	1		50	LAUFY # 02-0	०८५
Location	(unsh) (cpm)	β Static (sh) (cpm)	Gross β	Minus Bkgd = (Net β)		7
Blog 13 619 7/3	371	307	64	56	1.0	-ļ .
	307	313	~6	-14	609	-
		315	16	8	-152	
	361	350	11	3	<u>87</u> 33	
	442	366	76	68	740	
	358	283	75	67		-
	33a	250	50	42	728	-
		286	57	49	<u>457</u> <u>533</u>	-1
	341	316	25	17	185	-
811					3220 9	355
Blog 13 W3 %	232	271	- 39	-47	-511	1000
	300	298	2	~ 6	- 65	-
	338	290	48 !	40		1.
		330	6		<u>435</u> 22	{
	360	301	_59	51	554	}
	320	286	34	26	283	ł
	180	242	38	30	326	
	340	316	24	16	174	
	264	278	-14	-22	-239	
					479/9	109
W4 9/3	300	252	48	40	435	104
	282	265	17	9	98	
	326	257	69	61	48	
	341	265	76	68	739	
	313	263	50	42	457	
	304	272	32	24	261	
	295	287	8	6	0	
	319	357	62	54	587	
	300	253	47	39	424	
					3664/9	407
					evel/-1	771

ŧ


Instrument Model/SN:	Probe Model/SN:	Detector Eff.: (cpm/dpm)
2324/129463	43-89/169230	X.154B.092
	N	
\sim		

4

Page $\underline{4}$ of $\underline{5}$

SURVEY # 02-0064

PAGE 500 5

Results of Surface Scans Molycorp - Building 13 Survey Unit (Unaffected Area)

Building Interior

.

.

•

Location (see map)	Beta Scan gross cpm	Beta Scan net cpm	Alpha Scan gross cpm	Alpha Scan net cpm	
F1	1700	1351	9	8	All floor scans performed with Ludium 239-1F (2350-1 No 95359 with 43-37 No 92503) Floor Monitor Info
F2 F3 F4	324	-25	1	0	Scan MDA Beta - 205 dpm/detector area Scan MDA Alpha - 14 6 dpm/detector area
F5 F6	1600	1251	8	7	Scan background Beta - 349 cpm Scan background Alpha - 1 cpm
F7 F8					10% scan of floor and 2 meters up walls
F9 F10 F11					
F12 F13					
F14 F15					•
W1 W2	400	64	15	12.8	All interior wall scans performed with Ludium 2350-1 No.117566 with 43-106 No 128921
W3 W4	400	64	2	-0 2	43-106 Info Scan MDA Beta - 690 dpm/detector area Scan MDA Alpha - 66 dpm/detector area
W5 W6	200	44	1	-12	Scan background Beta - 336 cpm Scan background Alpha - 2 2 cpm
W7 W8 W9	380 520	44 184	2	-0 2	
**5	520	,04	-		

.

.

,

.

.

Building Exterior

Location (see map)	Beta Scan gross cpm	Beta Scan net cpm	Alpha Scan gross cpm	Alpha Scan net cpm	
W1					All external wall scans performed with Ludium 2350-1 No 117014 with 43-106 No 133866
W2	290	10	2	1	43-106 Info.
W3 W4	340	60	5	4	Scan MDA Beta - 637 dpm/detector area Scan MDA Alpha - 45 dpm/detector area Scan background Beta - 280 cpm
W5 W6	310	30	6		Scan background Alpha - 1 cpm

F = floor, W = wall, C = ceiling

Elevated Scan Readings Molycorp - Building 13 Survey Unit (Unaffected Area)

Building Interior

Locations F1 and F6 indicated elevated readings by scan with floor monitor as shown below.

Beta Scan
net cpm
1351
1251

Locations F1 and F6 were re-scanned with hand-held 43-106, results indicated background levels. Direct measurements in locations F1 and F6 indicate background values.

Building Exterior

No elevated scan results were reported during exterior scans.

Direct Measurements (Total Activity) Molycorp - Building 13 Survey Unit (Unaffected Area)

Building Interior

•

Location	Unshield Beta	Shield Beta	Gross Beta	Bkgd	Net	Direct Beta	Uncertainty	MDA	Direct Alpha ⁽¹⁾
	cpm	cpm	cpm	cpm	cpm	(dpm/100cm ²)	95% CL	(dpm/100cm ²)	(dpm/100cm ²)
			-	•	•	• · · ·			
F1	310	299	11	78	-67	-728	201	475	-1457
F2	305	305	0	78	-78	-848	188	475	-1696
F3	397	305	92	78	14	152	278	475	304
F4	362	261	101	78	23	250	285	475	500
F5	376	268	108	78	30	326	291	475	652
F6	328	290	38	78	-40	-435	229	475	-870
F7	347	290	57	78	-21	-228	248	475	-457
F8	325	288	37	78	-41	-446	228	475	-891
F9	346	303	43	78	-35	-380	234	475	-761
F10	389	269	120	78	42	457	300	475	913
F11	319	294	25	78	-53	-576	216	475	-1152
F12	361	251	110	78	32	348	292	475	696
F13	332	269	63	78	-15	-163	253	475	-326
• F14	334	302	32	78	-46	-500	223	475	-1000
F15	327	306	21	78	-57	-620	212	475	-1239
Wi	341	285	56	8	48	522	170	172	1043
W2	293	281	12	8	4	43	95	172	87
W3	314	248	66	8	58	630	183	172	1261
W4	304	305	-1	8	-9	-98	56	172	-196
W5	309	254	55	8	47	511	169	172	1022
W6	281	276	5	8	-3	-33	77	172	-65
W7	266	244	22	8	14	152	117	172	304
W8	310	284	26	8	18	196	124	172	391
W9	333	261	72	8	64	696	191	172	1391
**5		201	12	Ŭ		000			
All building	intenor direct n	neasurements	swere						
•	with 43-89 No				Beta	Alpha			
Efficiency					0 092	0 154			
	(ground (cpm)				78	.24			
	ground (cpm)				8	37			
	(dpm/100 cm ²)				475	64 3			
	•••				172	756			
Wall MDA	(dpm/100 cm ²)				172	750			
Building E	- Exterior								
Location	Unshield Beta	Shield Beta	Gross Beta	Bkgd	Net	Direct Beta	Uncertainty	MDA	Direct Alpha (1)
20020011	cpm	cpm	cpm	cpm	cpm	(dpm/100cm ²)	95% CL	(dpm/100cm ²)	
	cpm	cpm	Cpin	Cpin	çpin	(uping recoil)	00/002	(0)	(
W1	275	276	-1	8	-9	-102	59	180	-205
W2	275	276	-1	8	-9	-102	59	180	-205
W3	313	294	19	8	-5	125	116	- 180	250
W4	341	268	73	8	65	739	200	180	1477
W5		269	46	8	38	432	164	180	864
	315	_		8		330	149	180	659
W6	287	250	37	8	29	330	149	100	009
All building	g exterior direct i	neasurement	s were						
	with 43-89 No				Beta	Alpha			
Efficiency					0 088	0 153			
Backgrour	nd (cpm)				8	37			
-	$1/100 \text{ cm}^2$				180	76			

•

•

(1) - A beta to alpha ratio factoring (1 2, beta to alpha) was used to provide a more accurate alpha activity determination then sampling

• 、

Elevated Direct Readings (Total Activity) and Averaging Results Molycorp - Building 13 Survey Unit (Unaffected Area)

.

Building Interior

•

.

Location	Direct Alpha	Over Area	Exceeds	s Limits
	(dpm/100cm ²)	(cm²)	Maximum	Average
W1	1044	900	No	Yes
W3	1261	700	No	Yes
W5	1022	2800	No	Yes
W9	1391	200	No	Yes

Averaged V (over 1 m ²)		Within Limit?
W1	462	Yes
W3	0	Yes
W5	814	Yes
W9	730	Yes
***	, 50	105

Building Exterior

.

.

Location	Direct Alpha	Over Area	Exceeds	s Limits
	(dpm/100cm ²)	(cm²)	Maximum	Average
W4	1447	1100	No	Yes
Averaged		Within Limit?		
(over 1 m ²	²)	,		-
W4	886	Yes		

Removable Surface Activity Measurements Molycorp - Building 13 Survey Unit (Unaffected Area)

Building Interior

•

Location (see map)	Removable Beta (dpm/100cm ²)	Uncertainty 95% CL	MDA	Removable Alpha (dpm/100cm²)	Uncertainty 95% CL	MDA
F1	-24	26 2	206	-0 4	2.1	116
F2	-12	20 2	206	-04	2.1	116
F3	-42	33 2	206	-04	21	116
F4	-18	23 4	206	-0 4	21	11 6
F5	-55	37.5	206	-0 4	2.1	116
F6	0	11 3	206	-0 4	21	11.6
F7	115	53 0	206	-0 4	21	11.6
FB	91	47 4	206	25	53	116
F9	103	50 3	206	54	78	11.6
F10	18	23 4	206	-0 4	21	116
F11	-30	28 7	206	-0.4	2.1	11.6
F12	-12	20 2	206	-0.4	2.1	11.6
F13	24	26 2	206	-0 4	21	11.6
F14	-12	20 2	206	2.5	53	11.6
F15	55	37 5	206	2.5	53	11.6
W1	56	16.0	206	5.4	7.8	11.6
W2	-30	28.7	206	-0 4	2.1	11.6
W3	24	26 2	206	2.5	5.3	116
W4	-79	44 3	206	-0 4	2.1	11 6
W5	-42	33 2	206	-0 4	2.1	11 6
W6	- 67	41.1	206	-0 4	2.1	11 6
W7	42	33 2	206	-0 4	2.1	11.6
W8	48	35 3	206	2.5	53	11 6
W9	48	35 3	206	-0 4	21	11.6

-

Ludium 2929 No. 152202 with 43-10 No 156519 Info Beta Alpha 45 50 Background (cpm) 0.14 Bkgd ct time 50 Sample ct time 1 1 Efficiency 0 165 0 344 MDA

Building Exterior

Location (see map)	Removable Beta (dpm/100cm ²)	Uncertainty 95% CL	MDA	Removable Alpha (dpm/100cm ²)	Uncertainty 95% CL	MDA
W1	-21	20 7	176	2	4.7	14
W2	-33	25 0	176	-0 5	24	14
W3	-8	14 9	176	-0 5	24	14
W4	-17	19 1	176	-0 5	24	14
W5	-46	28 8	176	2	4.7	14
W6	29	23 6	176	2	47	14

206

116

Ludlum 2929 No 115563 with 43-10 No 127216 Info

		Beta	Alpha
	Background (cpm)	69	0 16
	Bkgd ct time	50	50
•	Sample ct time	1	1
	Efficiency	0 239	0 35
	MDA	176	14

F = floor, W = wall, C = ceiling

Removable Surface Activity Measurements Molycorp - Building 13 Survey Unit (Unaffected Area)

No elevated removable surface activity was reported.

Exposure Rate Measurements Molycorp - Building 13 Survey Unit (Unaffected Area)

۰.

Building Interior

Location		Exposure Rate uR/hr
F1		12
F2		12
F3		12
F4		12
F5		12
F6		12
F7		12
F8		12
F9		12
F10		12
F11		12
F12		12
F13		12
F14		12
F15	•	12
W1		11
W2		10
W3		12
W4		12
W5		12
W6		12
W7		12
W8		12
W9		12

Background dose rate: 11-12 uR/hr with Model 19, No.22526

Building Exterior

Location	Exposure Rate uR/hr
W1	10
W2	12
W3	11
W4	10
W5	10
W6	10

Background dose rate: 10 uR/hr with Model 19, No 22526

Summary of Building Surface Direct Reading (Total Activity) Results Molycorp - Building 13 Survey Unit (Unaffected Area)

Building Interior

.

.

	(dpm/100cm ²)	(dpm/100cm ²)			Beta			Alp	ha	
			n	\overline{x}	s	μ_{α}	n	\overline{x}	S	μ_{α}
F1	-728	-1456 5	30	-34	383 6	84.8	30	-68 2	767 2	169 5
F2	-848	-1695 7								
F3	152	304 3		t₁-a	1.697					
F4	250	500.0								
F5	326	652 2								
F6	-435	-869 6				Guideline	s/Conditions			
F7	-228	-456 5				Sat	Isfied			
F8	-446	-891 3				Beta	Alpha			
F9	-380	-760.9				Yes	Yes			
F10	457	913 0								
F11	-576	-1152 2								
F12	348	695.7								
F13	-163	-326 1								
F14	-500	-1000.0								
F15	-620	-1239 1								
W1	231	462 0								
W2	43	87.0								
W3	-20	-40 0								
W4	-98	-195 7								
W5	407	814.0								
W6	-33	-65 2								
W7	152	304.3								
W8	196	391 3								
W9	365	730 0								
Building I	Exterior									

.

•

.

Location	Direct Beta (dpm/100cm ²)	Correlated Alpha (dpm/100cm ²)
W1	-102	-205
W2	-102	-205
W3	125	250
W4	443	886
W5	432	864
W6	330	659

Summary of Exposure Rate Measurements Molycorp - Building 13 Survey Unit (Unaffected Area)

-

Building Interior

•

Location	Exposure Rate uR/hr	Exposure Rate Background	Exposure Rate Net		Exposure	Rate (uR/hr)	
				n	x	S	μ_{α}
F1	12	11	1	30	08	0 5508614	1.0
F2	12	11	1				
F3	12	11	1	t _{1−α}	1.697		
F4	12	11	1				
F5	12	11	1				
F6	12	11	1				Vee
F7	12	11	1			s/Conditions	Yes
F8	12	11	1		Sa	tisfied	
F9	12	11	1				
F10	12	11	1				
F11	12	11	1				
F12	12	11	1				
F13	12	11	1				
F14	12	11	1				
F15	12	11	1				
W1	. 11	11	0				
W2	10	11	-1				
W3	12	11	1				
W4	12	11	1				
W5	12	11	1				
W6	12	11	1				
W7	12	11	1				
W8	12	11	1				
W9	12	11	1				

.

Building Exterior

-

Location .	Exposure Rate uR/hr	Exposure Rate Background	Exposure Rate Net
W1	10	10	0
W2	12	10	2
W3	11	10	1
W4	10	10	0
W5	10	10	0
W6	10	10	0

Appendix B

.

Building 14 Data Package Molycorp Washington, PA

.

Building 14 Data Package

This data package contains final status survey information for Building 14, Molycorp, Washington, PA site.

Field data collection forms, survey report forms, statistical test results, and comparisons to release limits are provided.

Summary

No anomalies were reported during the survey of Building 14. Elevated levels of background radiation, from soil radioactivity, continued to be a presence during survey activities.

Results from the final status survey of Building 14 provides evidence that release criteria have been met, demonstrates that residual radioactivity is below the unrestricted use criteria, and confirms that Building 14 is suitable for unrestricted use.

RPP-OP-019

:

	DDO-138 Radiation	Protection S	urvev Report	Site: Mol	ycorp / Washin	aton, PA	,]
Section 1: Survey Informatic				Surve			{
	Time:			Survey	sue Log Numb		-
3-7-0a	ంశింల	Location:	dina 14		0048		
RWP Number	Purpose of Survey:		U U	Page		넉	1
Survey Title:				Smear Number	Beta dpm/100cm ²	Alpha dpm/100cm ²	
			/	1		1 /	1
				2		1 /]
				3		/]
!				4]
				5		1 /]
				6]
		/		7			
	/	/		8		1 /	1
i 	/			9		/	1
	/			10		/	1
	r			11		/	1
				12		17	4
	NIA			13	<u></u>	<u> </u>	-
				14	1	I A	-
				15		i	-
				16	/	[-
•				17	, ,	l	-
ı				18 19		· · · · · ·	ļ
				20		 	-
. /	<i>r</i>			20	/		-
				21	_/		-
				23			-
				23		i	÷
				25	1		i
BKcc Readings				26	/	!	4
Legend	, <u></u> ,			<u> </u>			-
-	: = mRem/h gamma contact ୀ) = Smear Locati	ion フ=Air	Sample Loc	ation -X-X-X	(- = Rope	ł
-	C = mRem/h beta contact –	-D- = Large Are		k Material Sa	Bound	tary, or Barner	
Section 2: Instrument Used			·				1
, }	I Due Probe Model/SN	Cal Due	Detector Eff	MDA-		Other	-
	Jate	Date:	(mab/maa)		βκ	·G-	4
2350-195359 8-6	2-02 43-37 09250	3 8-6-02	207.24	4.600-205	B- BKgrou	25.2 × B-	-
2300-1 117566 8-6	-02 43-100 128912	8-6-02	aia así	deck (690'	B-BKg. 2.	2 336B-	
2929 152202 2-1	03 43-10 1575519	2-6-03	344 .165	11.62200	813-45	×=.14	
	6-02 43-89 169230		154 a: . 012				fr
2224-1 129462 8-1	-02 4349 169230	8-6-02	3.	75.60 17		×:3,7	່ມເ
Section 3: Review and Appr					1 ,54, <u>4</u> ,		1
Survey Performed By (Sign)		Area Posted ar	d/cr Barncaded	Date and Ti	me.		1
1 mm other			Not Required	3-7-02	0800		1
Radiation Sarety anicur (Print	Name & Sign)	I	-	Date and Ti			-
M. K. M. Dave (In macter			3-14.	02 9:3	J	
							فسر

JURVEY #02-0048

Radiological Survey Results - Survey Location Indicator

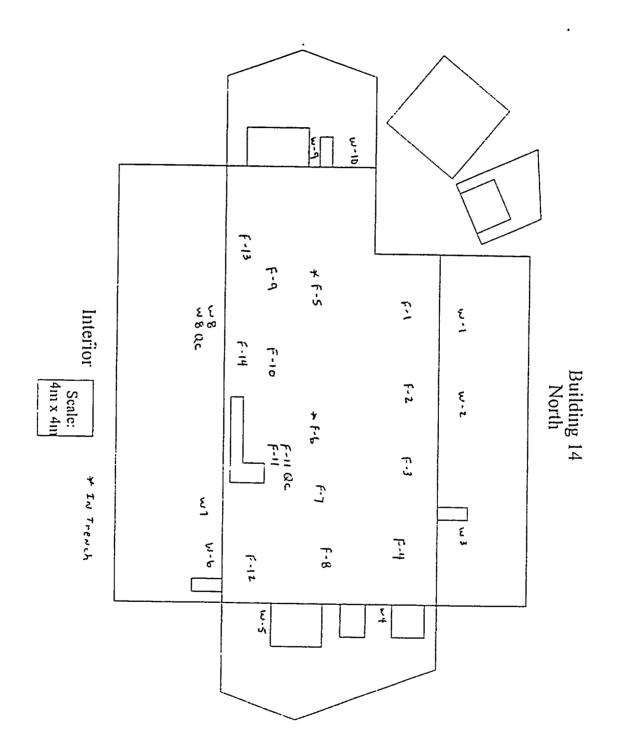
4

Survey Area	a Information	n:	·						
	Instrum Model/S			robe del/SN	Cal Due	α Scan MDA	β Sca MDA		β Static MDA
Instrument	2350-1/9	5359 8-6	-02 43.37	1092503	8-6-02	15	205		
Data			6-02 43-106			66	690		A
			-03 43-10				\sim	12	206
			5-02 43-94		8-6-02	\sim	A	64	475
	19/225			NA	NA1	\leq		NI	4/14
•	Print Name			Signat	ure			Dat	e
Performed	MARKE			hrow		nciell			-7-02
By:	DENNIS	Whit Lo	ck_	(in the second	inste	ZO		· <u>3</u> ·	2-0-2
	·								}
Location	β Scan (cpm)	α Scan (cpm)	β Static (unsh) (cpm)	β Static (sh)	α Stat (cpm		R n/hr)		ears 00 cm²) β
				(cpm)	~		2		
<u>F - 1</u>	1600	2			<u>0</u> ス		7	-,4	-z4
F = 2			~				7	<u>z.5</u> 4	36 48
F - 4					<u></u>		$\frac{1}{3}$		6
F - 5	1600				स्		12	4 4	-6
F - 6				-	<u>~ / ~</u>		0	2.5	-30
r = 7					2		0	-,4	48
F - 8			~	~	 చ		0	-,4	0
F-9	- ~	~		~	ົ ົ		0	2.5	55
F - 10			_	~	8		0	-, +	67
F - 11	1900	12				$\overline{)}$	1	- 4	- 6
F-11QC	1900	12	_	-	4	1	5	-,4	12
F-12	1700	10	<u> </u>	~	J	//		2.5	6
F-12 F-13	1 -	-			2	/ ()	4	-12
F-14	2100	14		-	3,27	9		2.5	- 42
W-i	330	1		-	, î L		>	4	0
41-2	350				ړ ک	8		-,4	- 24
Wi-3	300	<u> </u>	<u> </u>	-		8		4 4	-12
<u>w - 4</u>	410	4		$ \sim $	4	9		4	-18
w-5	320			-	A			4	67
W = 1 $W = 2$ $W = 3$ $W = 4$ $W = 5$ $W = 5$ $W = 6$ $W = 7$ $W = 4$					م ک ک	6		-,4	30
10-7	350	ス			ک			4	0
$\frac{\omega - 4}{\omega - 4}$	350	2	<u> </u>	<u> </u>	7533	/	2	4	-55
W-9 Q6		· · · · · · · · · · · · · · · · · · ·			5	10		4	-30
W-9	-	-		~	3	10		- 4	-61
W-9 W-10	<u> </u>	-		-		10		-,4	-36
-		<u> </u>	<u> </u>			<u> </u>	-		

: SURVEY # 02-0048

Location	β Static (unsh) (cpm)	β Static (sh) (cpm)	Gross β	Minus Bkgd = (Net β)	Net β dpm/100 cm ²
F-1	349	279	70	-8	-86
F-2	338	272	66	-12	-130
F-3	308	255	53	-25	-271
F-4	306	279	27	-51	-554
F-5	418	318	100	22	239
F-6	390	290	100	22	239
F-7		300	44	-34	-369
F-8	354	287	67	-11	-119
F.9	398	304	94	16	/73
F-10	341	290	51	-27	-293
F-11	38B	274	114	36	391
F-11QC	374	374	0	-78	-847
E-12	352	281	71	-7	-76
F-13	358	274	84	6	65
F-14	420	326	94	16	/ 73
W - I	272	237	35	27	293
<u>w-2</u>	293	267	26	18	196
<u>w-3</u>	230	209	21	13	141
10-4	307	1:6	36	28	304
W-5	282	254	28	20	217
W-6	262	226	36	28	304
<u>w-7</u>	280	247	33	25	
w.8	289	223	66	58	271 630
W-SQC	290	233	57	49	533
<u></u>	241	205	36	28	304
W-10	258	240	18	10	
			/		108
		.)			
		N			
			A		

Radiological Survey Results - Calculational Sheet


Instrument Model/SN: *	Probe Model/SN:	Detector Eff.: (cpm/dpm)
2224-1/129463	43-89/169230	B=,092/==.154
	A	
	A	

\$

Material	Bkgd
Floor Wall	78
Wall	В
	4

Page <u>3</u> of <u>4</u>

SURVEY # 02- 0048

•

PAGE 4 OF 4

٠

4

.

RPP-OP-019

:

	DDO-138 Radiatio	on Protection	Survey Repor	t Sile: Moly	corp / Washin	gton, PA
Section 1: Survey Informa	ition					
Date 3-7-02	Time. 0400	Location. Js B	idg 14		ue Log Numb ひらイタ	er
RWP Number:	Purpose of Survey.			0	of	4
Survey Title:	······································			Smear Number	Beta dpm/100cm ²	Alpha - dpm/100cm ²
				1		
a la	Prof Same	Dur	40	2		/
. /vo	HOOI JUNUL	7 902		3		/_
	ROOF SURVE	-		4		/
UND.41	the Condition	0.2		5		/
				6		/
				7		/
				9		
			•	10	·	-/
				11		
	•			12		
				13	N	/
				14	^	A
				15	/	
				16	/	
		,		17		
				18		
,				19	/!	
				20		<u></u>
				21		
,				22	-/	
731	0 x 3,7 B &		a. 1	23	-/	
a le		MODEL)	SurfHR	24	/;	
Bkcg Readings, 22 500	·1 x 1.2 B 250		1 1 3710	. 26		
Legend	<u> </u>	24240	<u>x./6 / 04</u>			
00 = mRem/h gamma 00	C = mRem/h gamma contact	① = Smear Locat	10n 7 = A1	r Sample Locat	ion -X-X-X-	= Rope
00 3 = mRem/h beta 00	$\beta C = m Rem/h$ beta contact			ik Matenal Sam	Pound	ary, or Barrier
Section 2: Instrument Use	əd				·	
Instrument Model/SN C	Cal Due Prope Model/SN Date	Cal Due Date	Detector Eff (cpm/dpm)	MDA.	C	ither
2350-1/117014 8-1	13-02 43-106 13381	6 8-6-02	x.28\$ 3.20	x 42 \$ 707		
· · · ·	19-02 43-10/12721		x. 35 7, 239			
	15-02 43-84/16483					A
	6-02 N	1	N		\top	
	x/4	A		A	V	<u> </u>
Section 3: Review and Ap						
Survey Performed By (Sign)	······································	Area Posted ar	nd/or Barncaded	Date and Tim	e	
1 all	So A	□ Yes □No	XNot Required	3-7-02	0900	
Radiation Safety Officer (Pri	nt Namere Sign) M, Ke Me Demale	4		Date and Tim $3 - 14 - 0$		\ \
	- I'llice What			1/17-0	5 1.50	

•

· SURVEY # 02-00:49

Radiological Survey Results - Survey Location Indicator

ð

.

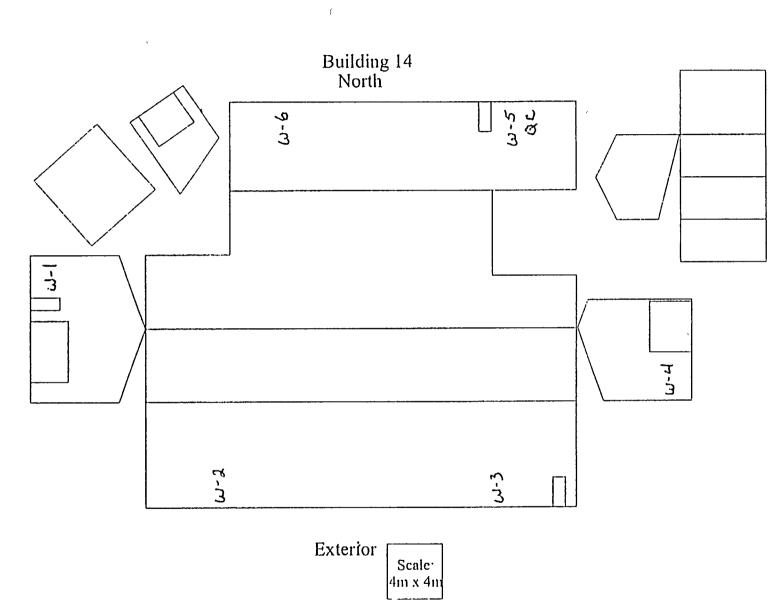
Survey Area	a Information	n:							
	Instrum Model/S		1	robe del/SN	Cal Due	α Scan MDA	β Scan MDA	α Static MDA	β Static MDA
Instrument	2350-1/11	7014 83	-02 43-106	1133866	8-6-02	42	707	NIA	NA
Data	1 /		1-02 43-10/					14	176
	2360/156		1-02 -13-89		- T			76	180
	19 / 225	26 8-6	52	N	+		A	N	1
	NA	<u></u>	14	A			1		4
	Print Name			Signat	ure		•	Date	
Performed By:	DENNES	white	<u>sek</u>	(<u>F</u>)-				<u>3-7</u>	- ల <i>2</i>
·	1					<u> </u>			
Location	β Scan (cpm)	α Scan (cpm)	β Static (unsh) (cpm)	β Static (sh)	α Stat (cpm		R m/hr)	Sme (dpm/10 α	_
				(cpm)	2	,			
<u>ا - لم</u>	270_	4	-	-			i	5	29
<u>w-2</u>	300	6	~		6		0	-,5	-29 8
<u> 2-3</u>	315	·	1		3	'	1	25	-4
<u>ట-4</u> ట- <i>క</i>	270	5			3				17
<u></u>	290	5		_	3		x	5	-33
6-5-90 6-6	310	4		-	6		1	5	-69
<u></u>									
<u></u>		<u> </u>							<u></u>
								-	
					<u> </u>				
		1			4				
<u> </u>				{					
		1			1				
			[1				
<u> </u>									•
		1							
									· · · <u> </u>
/									

JURVEY # 02-0049

Radiological Survey Results - Calculational Sheet

		Ĩ	3629 # 14			
	Location	β Static (unsh) (cpm)	β Static (sh) (cpm)	Gross β	Minus Bkgd = (Net β)	Net β dpm/100 cm ²
ļ	W-1	255	255	0	-8	-91
*	w-2.	260	209	51	43	489
*	<u>w-3</u>	a 48	244	4	-4	- 45
*	<u>w·4</u>	247	221	26	18	205
ļ	W-5	208	222	-14	-22	-250
ļ	W.5 QC		214	-6 1	-14	
┝	_W-6	228	173	55	47	534
-						
-			·,			
-						
+						
┝						
4						
┝						
F						
-						
-	······					
-						
-			N			
+				A		
-		ļ [, 			
1	· _ ·		/			
-						
				1		
\vdash						
	/					

 Instrument Model/SN:
 Probe Model/SN:
 Detector Eff.: (cpm/dpm)


 2.360/15637/
 43-89/164832
 6=.088/01=.153

9

	Material	Bkgd
	Wall	8=8/2=3.7
*	Concrete	B= 8/0 = 3.7 B= 78/04= 2.7
	<u> </u>	
l		

1

Page <u>3</u> of <u>4</u>

Page dord

.

ŧ.

50RUEY # 02-00 49

.

•

		Site Mol	Sile Molycorp / Washington, PA					
	Section 1: Survey Info	Section 1: Survey Information						
	Date 3-12-02	Time: 1400		Location. I/s q. 1/s	36dg 14	Survey Is	sue Log Numb	er
	RWP Number.	Purpose of Surve	y.			Page	of	2
	Survey Title: 1m	2 VERIFICAY	102 -	JURVEY		Smear Number	Beta dpm/100cm ²	Alpha dpm/100cm ²
		[2] [রা	(-)		1		/
BLdg			<u>.63</u>	$\left(\frac{700}{iq.040}\right)+$	417 (1-704) 3		/_
βLdg 14			-	44.1 +	387.8	4		/
ω 8 ⁻ /s		5 8 6	436			6 7		/
-			86	ldpm//ccc.n 4 dpm//ccc	cm2 x	8 9		
				-7)		1 <u>0</u> 11		-/
	1	8		· · · !'.	17.11	12		/
	· · · · · · · · · · · · · · · · · · ·		<u></u>	r REAding	63cdpm/100	14		A
		2 3	534	(ICC +	139 (1- 100	15	/	
BLdg 14				5,34+		17	/	
14						19		l
w6 %	4	6 7 6	143	dpm/100	$cm^2 B^-$	20		
			28	6 dpm/rec	cm ² X	22		1
		E G		• /		23	/	l
				, •		25	1	i
	i Bkgg Readings		<u></u> 616	EAclug I	<u>Aprilicocni</u>	2 25	1/	1
	, Legend ¹ 00 = mRem/h gamma	00 C = mRem/h gamma				r Sample Loc		(- = Roce lary, or Barrier
	00 ß = mRem/h beta	00 βC = mRem/h beta c	ontact -	D— = Large Area	a Wipe = Bul	k Matenal Sa	imple	
	Instrument Model/SN	· · · · · · · · · · · · · · · · · · ·	lodel/SN	Cai Due Date	Detector Eff (cpm/dpm)	MDA		Other
	2360/164680	• • • • • • • • • • • • • • • • • • •	16544		X. 164 8.113	x,7181	40 53.7	BF
	· · · · · · · · · · · · · · · · · · ·		/	1				
		A			N	A	<u> </u>	
			· · · · · · · · · · · · · · · · · · ·					
	Section 3: Review and							
	Survey Performed By (S	bign).			d/or Barricaded.	Date and T		70
	Radiation Satety Officer			1	<u> </u>	Date and T		
	Mike McLon	3-14-0	3-14-02 9:30					

4

	β Static				# 02-0061	
Location	(unsh)	β Static (sh) (cpm)	Gross β	Minus Bkgd		
	(cpm)	(opiii)	•	= (Net β)	dpm/100 cm ²	
Blog 14 W& 7/3		287	89	81	717	
	258	204	54	46	407	
	224	188	.36	28	248	
	27.2	204	68-	60	531	
		187	- 75	67		
	253	206	47	39	593	
	272	239	33	25	345	
	273	215	58	50	221	
	_253	217	36	28	442	
				- 23	248-	
	•				3752 9	_
					417 Dpm/Yoc	cn 2
36914 W6 %	207	198	ġ ı			
	200	180	20	12		
	183	191	-8	-16	-142	
	192	207	-15	-23		
	176	178	-2	-10	-204	
·	211	153	58	50	- 88	
	267	215	52	44	442	
	316	224	92	97 94	389	
	191	183	8.	0	743	
					0	
					1255 9	
					139'dpm/100cm2	

Radiological Survey Results - Calculational Sheet

ŧ

Instrument	1	
Instrument Model/SN:	Probe Model/SN:	Detector Eff.: (cpm/dpm)
2360/164860	43-89/119-5:44	X.164 8.113
	H	
	A	

•

4		
	Matenal	Bkgd
	GALL	3-8×3.7
ł		
	l	
		A
		·····
Į		

Page <u>2</u> of <u>2</u>

Results of Surface Scans Molycorp - Building 14 Survey Unit (Unaffected Area) •

Building Interior

.

۰

Location (see map)	Beta Scan gross cpm	Beta Scan net cpm	Alpha Scan gross cpm	Alpha Scan net cpm	
F1 F2 F3	1600	-144	2	-3	All floor scans performed with Ludium 239-1F (2350-1 No 95359 with 43-37 No 92503) Floor Monitor Info. Scan MDA Beta - 205 dpm/detector area
F4 F5 F6 F7 F8 F9	1600	-144	7	2	Scan MDA Alpha - 15 dpm/detector area Scan background Beta - 1744 cpm Scan background Alpha - 5 cpm 10% scan of floor and 2 meters up walls
F10					
F11 ,	1900	156	12	7	
F12	1700	-44	10	5	
F13					,
F14	2100		14		
W1	320	-46	1	-1 2	· · · ·
W2	350	-16	7	48	All interior wall scans performed with Ludium 2350-1 No.128912 with 43-106 No 128921
W3	300	-66	1	-1.2	43-106 Info
W4	410	44	4	18	Scan MDA Beta - 690 dpm/detector area
W5	320	-46	1	-12	Scan MDA Alpha - 66 dpm/detector area
W6					Scan background Beta - 336 cpm
W7	350	-16	2	-0 2	Scan background Alpha - 2 2 cpm
W8	350	-16	2	-0 2	
W9 W10					

×

.

Building Exterior

Location (see map)	Beta Scan gross cpm	Beta Scan net cpm	Alpha Scan gross cpm	Alpha Scan net cpm	
W1	270	20	4	3	All external wall scans performed with Ludium 2350-1 No 117014 with 43-106 No. 133866
W2	300	50	6	5	43-106 Info
W3	315	65	6	5	Scan MDA Beta - 707 dpm/detector area
W4	270	20	1	0	Scan MDA Alpha - 42 dpm/detector area
W5	290	40	5	4	Scan background Beta - 250 cpm
W6	310	60	4	3	Scan background Alpha - 1 cpm

F = floor, W = wall

,

Elevated Scan Readings Molycorp - Building 14 Survey Unit (Unaffected Area)

-

.

No elevated scan results were reported during interior or exterior scans.

Direct Measurements (Total Activity) Molycorp - Building 14 Survey Unit (Unaffected Area)

•

Building Interior

•

Location	Unshield Beta cpm	Shield Beta cpm	Gross Beta cpm	Bkgd cpm	Net cpm	Direct Beta (dpm/100cm ²)	Uncertainty 95% CL	MDA (dpm/100cm ²)	Direct Alpha ⁽¹⁾ (dpm/100cm ²)
	opin	opini	opin	opin	opin	(0)		(apin rooan)	(upin/100cm)
F1	349	279	70	78	-8	-87	259	475	-174
F2	338	272	66	78	-12	-130	256	475	-261
F3	308	255	53	78	-25	-272	244	475	-543
F4	306	279	27	78	-51	-554	218	475	-1109
F5	418	318	100	78	22	239	284	475	478
F6	390	290	100	78	22	239	284	475	478
F7	344	300	44	78	-34	-370	235	475	-739
F8	354	287	67	78	-11	-120	257	475	-239
F9	398	304	94	78	16	. 174	279	475	348
F10	341	290	51	78	-27	-293	242	475	-587
F11	388	274	114	78	36	391	295	475	783
F12	352	281	71	78	-7	-76	260	475	-152
F13	358	274	84	78	6	65	271	475	130
F14	420	326	94	78	16	174	279	475	348
W1	272	237	35	8	27	293	140	172	587
W2	293	267	26	8	18	196	124	172	391
W3	230	209	21	8	13	141	115	172	283
W4	307	271	36	8	28	304	141	172	609
W5	282	254	28	8	20	217	128	172	435
W6	262	226	36	8	28	304	141	172	609
W7	280	247	33	8	25	272	136	172	543
W8	289	223	66	8	58	630	183	172	1261
W9	241	, 205	36	8	28	304	141	172	609
W10	258	240	18	8	10	109	109	172	217
All building	interior direct m	neasurements	were						
	with 43-89 No				Beta	Alpha			
Floor Effici					0 092	0 154			
Wall Efficie	•				0 092	0 154			
	ground (cpm)				78	24			
	round (cpm)				8	37			
-	$(dpm/100 cm^{2})$				475	64 3			
	$(dpm/100 cm^2)$				172	756			
					172	756			
Building E	xterior					-			
Location	Unshield Beta	Shield Beta	Gross Beta	Bkgđ	Net	Direct Beta	Uncertainty	MDA	Direct Alpha (1)
	cpm	cpm	cpm	cpm	cpm	(dpm/100cm ²)	95% CL	(dpm/100cm ²)	(dpm/100cm ²)
W1	255	255	0	8	-8	-91	63	180	-182
W2	260	209	51	8	43	489	171	180	977
W3	248	244	4	8	-4	-45	77	180	-91
W4	247	221	26	8	18	205	130	180	409
W5	208	222	-14	8	-22	-250	55	180	-500
W6	228	173	55	8	47	534	177	180	1068
All building	exterior direct n	neasurement	s were						
-	with 43-89 No. 1				Beta	Alpha			
Efficiency					0 088	0.153			
Backgroun	d (cpm)				8	3.7			
MDA (dpm/					180	76			
	,								

.

(1) - A beta to alpha ratio factoring (1 2, beta to alpha) was used to provide a more accurate alpha activity determination then sampling

•

Elevated Direct Readings (Total Activity) and Averaging Results Molycorp - Building 14 Survey Unit (Unaffected Area)

•

Building Interior

.

Location	Dırect Alpha (dpm/100cm ²)	Over Area (cm ²)	Exceed: Maximum	s Limits Average
W8	1261	700	No	Yes
Averaged Value (over 1 m ²)		Within Limit?		
W1	864	Yes		

Building Exterior

Location	Direct Alpha	Over Area	Exceeds Limits			
	(dpm/100cm ²)	(cm²)	Maximum	Average		
W6	1068 '	100	No	Yes		

Averaged Va	Within Limit?		
(over 1 m ²)			
W4	286	Yes	

Removable Surface Activity Measurements Molycorp - Building 14 Survey Unit (Unaffected Area)

4

Building Interior

Location (see map)	Removable Beta (dpm/100cm ²)	Uncertainty 95% CL	MDA	Removable Alpha (dpm/100cm ²)	Uncertainty 95% CL	MDA
F1	-24	26 2	206	-0 4	21	11.6
F2	36	31 1	206	25	5.3	116
F3	48	35 3	206	-04	21	116
F4	6	16 3	206	-0 4	2.1	116
F5	-6	16 3	206	-0.4	2.1	116
F6	-30	28 7	206	2.5	53	116
F7	48	35 3	206	-0.4	2.1	116
F8	0	11.3	206	-0 4	2.1	116
F9	55	37.5	206	2.5	53	116
F10	67	41.1	206	-0 4	21	11.6
F11	-6	16 3	206	-0.4	2.1	116
F12	6	16 3	206	2 5	53	11 6
F13	-12	20 2	206	-0 4	2.1	116
F14	-42	33 2	206	2.5	53	11 6
W1	0	11.3	206	-0 4	2.1	11 6
W2	-24	26 2	206	-0 4	2.1	11.6
W3	-12	20.2	206	-0 4	2 1	116
W4	-18	23 4	206	-0 4	21	116
W5	67	41.1	206	-0 4	21	116
W6	30	28 7	206	-0 4	21	11 6
W7	ο.	11.3	206	-0 4	2 1	116
W8	-55	37.5	206	-0 4	21	11 6
W9	-61	39 3	206	-0 4	21	116
W10	-36	31 1	206	-0 4	2 1	11.6

•

Ludium 2929 No 152202 with 43-10 No. 156519 Info Beta Alpha

45	0 14
50	50
1	1
0 165	0 344
206	116
	50 1 0 165

Building Exterior

Location (see map)	Removable Beta (dpm/100cm ²)	Uncertainty 95% CL	MDA	Removable Alpha (dpm/100cm²)	Uncertainty 95% CL	MDA
W1	29	23 6	176	-0 5	2.4	14
W2	-29	23 6	176	-0 5	24	14
W3	8	14 9	176	2	47	14
W4	-4	12.5	176	-0 5	24	14
W5	17	19 1	176	5	74	14
W6	-67	34.2	176	5	74	14

.

Ludium 2929 No. 115563 with 43-10 No 127216 Info

	Beta	Alpha
Background (cpm)	69	0.16
Bkgd ct_time	50	50
Sample ct time	1	1
Efficiency	0 239	0.35
MDA	176	14

F = floor, W = wall

Removable Surface Activity Measurements Molycorp - Building 14 Survey Unit (Unaffected Area)

-

.

No elevated removable surface activity was reported.

.

Exposure Rate Measurements Molycorp - Building 14 Survey Unit (Unaffected Area)

•

Building Interior

.

Location	Exposure Rate uR/hr
F1	9
F2	9
F3	9
F4	9
F5	10
F6	10
F7	10
F8	10
F9	10
F10	10
F11	11
F12	10
F13	10
F14	9
W1	. 8
W2	8
W3	8
W4	9
W5	9
W6	9
W7	10
W8	10
W9	10
W10	10

Background dose rate 8-10 uR/hr with Model 19, No 22526

Building Exterior

Location	Exposure Rate uR/hr
W1	9
W2	10
W3	11
W4	10
W5	9
W6	11

Background dose rate: 8 uR/hr with Model 19, No 22526

Gamma scans of roof not performed The roof is rusting away and is not safe to access

Summary of Building Surface Direct Reading (Total Activity) Results Molycorp - Building 14 Survey Unit (Unaffected Area)

Building Interior

-

.

٠

							otal Activity			•					
Location	Unshield Beta	Shield Beta	Gross Beta	Bkgd	Net	Direct Beta	Correlated Alpha			•					
	cpm	cpm	cpm	cpm	cpm	(dpm/100cm ²)	(dpm/100cm ²)			Beta			Alp	ha	
								n	\overline{x}	S	μ_{α}	n		S	μ_{α}
F1	349	279	70	78	-8	-87	-174	30	108	286 4	196 4	30	176 1	527.6	339 6
F2	338	272	66	78	-12	-130	-261								
F3	308	255	53	78	-25	-272	-543		t _{1-a}	1 697					
F4	306	279	27	78	-51	-554	-1109								
F5	418	318	100	78	22	239	478								
F6	390	290	100	78	22	239	478					/Conditions			
F7	344	300	44	78	-34	-370	-739					sfied			
F8	354	287	67	78	-11	-120	-239				Beta	Alpha			
F9	398	304	94	78	16	174	348				Yes	Yes			
F10	341	290	51	78	-27	-293	-587								
F11	388	274	114	78	36	391	783								
F12	352	281	71	78	-7	-76	-152								
F13	358	274	84	78	6	65	130								
F14	420	326	94	78	16	174	348								
W1	272	237	35	8	27	293	587								
W2	293	267	26	8	18	196	391								
W3	230	209	21	8	13	141	283								
W4	307	271	36	8	28	304	609								
W5	282	254	28	8	20	217	435								
W6	262	226	36	8	28	304	609								
W7	280	247	33	8	25	272	543								
W8	289	223	66	8	58	630	864								
W9	241	205	36	8	28	304	609								
W10	258	240	18	8	10	109	217								

.

۲.,

,

.

Building Exterior

Location	Unshield Beta cpm	Shield Beta cpm	Gross Beta cpm	Bkgđ cpm	Net cpm	Direct Beta (dpm/100cm ²)	Correlated Alpha (dpm/100cm ²)
W1	255	255	0	8	-8	-91	-182
W2	260	209	51	8	43	489	977
W3	248	244	4	8	-4	-45	-91
W4	247	221	26	8	18	443	886
W5	208	222	-14	8	-22	-250	-500
W6	228	173	55	8	47	534	286

Summary of Exposure Rate Measurements Molycorp - Building 14 Survey Unit (Unaffected Area)

Building Interior

.

•

Location	Exposure Rate uR/hr	Exposure Rate Background	Exposure Rate Net		Exposure F	Rate (uR/hr)	
				n	x	S	μ_{α}
F1	9	8	1	30	1.6	0.8	1.8
F2	9	8	1				
F3	9	8	1	t _{1-α}	1.697		
F4	9	8	1				
F5	10	8	2				
F6	10	8	2				
F7	10	8	2			Conditions	Yes
F8	10	8	2		Sati	sfied	
F9	10	8	2 2				
F10	10	8	2				
F11	11	8	3				
F12	10	8	2				
F13	10	8	2				
F14	9	8	1				
W1	8	8	0				
W2	8	8	0				
W3	8	8	0				
W4	9	8	1				
W5	9	8	1				
W6	9	8	1				
W7	10	8	2				
W8	10	8	2				
W9	10	8	· 2 2				
W10	10	8	2				

•

.

Building Exterior

Location	Exposure Rate uR/hr	Exposure Rate Background	Exposure Rate Net
W1	9	8	1
W2	10	8	2
W3	11	8	3
W4	10	8	2
W5	9	8	1
W6	11	8	3

Appendix C

Building 28 Data Package Molycorp Washington, PA

Building 28 Data Package

• •

This data package contains final status survey information for Building 28, Molycorp, Washington, PA site.

Field data collection forms, survey report forms, statistical test results, and comparisons to release limits are provided.

Summary

No anomalies were reported during the survey of Building 28. Elevated levels of background radiation, from soil radioactivity, continued to be a presence during survey activities.

Results from the final status survey of Building 28 provides evidence that release criteria have been met, demonstrates that residual radioactivity is below the unrestricted use criteria, and confirms that Building 28 is suitable for unrestricted use.

÷.

RPP-0P-019

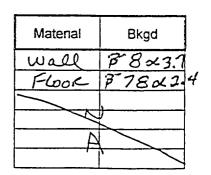
:

DDO-138 Radiation Protection Surv	ey Report	Site: Moly	ycorp / Washing	gton, PA
Section 1: Survey Information DLdy 28				
Date Time: Location:	7.8		sue Log Numbe	er.
3-1-07 1000 3Lay RWP Number: N/A Purpose of Survey Unconditional Reli			_/of4	4
Survey Title: BLL # 28 UNAFFECTED	7	Smear Number	Beta dpm/100cm ²	Alpha dpm/100cm ²
-		1		
		2		
		3		
l ,		4		
		5		
		6		
		7		
· · · · · · · · · · · · · · · · · · ·		8		
<u>JUALL 3 162 x 75</u>	<u> </u>	9		
WALL 3 162 x 75		10		
		11	!/	[
1		12	<u> </u>	
1		13	<u> </u>	
i		14	<u> </u>	<u></u>
1		15	┼─┼┼──	A
1 1		16	┼╓╌┤┤───	#F
		17	<u>+/₩_\</u>	/
		18	<u> ′ </u>	
		19	┼	
		20	<u> </u>	
1		21	<u> </u>)	<u></u>
		22		<u>}</u>
		24		-
,		25		+
3	1.344 7.163			
	19 F. 10	<u> </u>	<u></u>	<u> </u>
Legend ' 00 = mRem/h gamma 00 C = mRem/h gamma contact D = Smear Location	n 7 = Air S	Sample Lo	cation -X-X-	-X- = Rope.
		Material S	Sample Bour	ndary, or Barrier
00 3 = mRem/h beta 00 βC = mRem/h beta contactD- = Large Area Section 2: Instrument Used				
Instrument Model/SN Cal Due Probe Model/SN Cal Due	Detector Eff (cpm/dpm)	MDA		Other BKG
Date Date Date Date	3 = ,098	5447 2	6-1 FLOOR	- 78 Wich : 5
2350-1/117566 8-10-02 43-106/128912 8-10-02		2 56	BKG	R 320
<u>A 350-1/11/500 51000 12 07/0020 702/0020</u>	207 0	× 19 R 179	175-	1730 - 9
2350-1/95359 8-6-02 43-31/04203 8-6-02	·····			
Section 3 ⁻ Review and Approval				
Supray Reformed By (Sign) Area Posted and	Vor Barncaded.	Date and		
Mark Blanciak store Fill I Yes INO	Not Required	3-1- Date and		00
Radiation Sarety Officer (Print Name & Sign			000	γ
Mike Mcknold and		3.14-	UC 4.16	

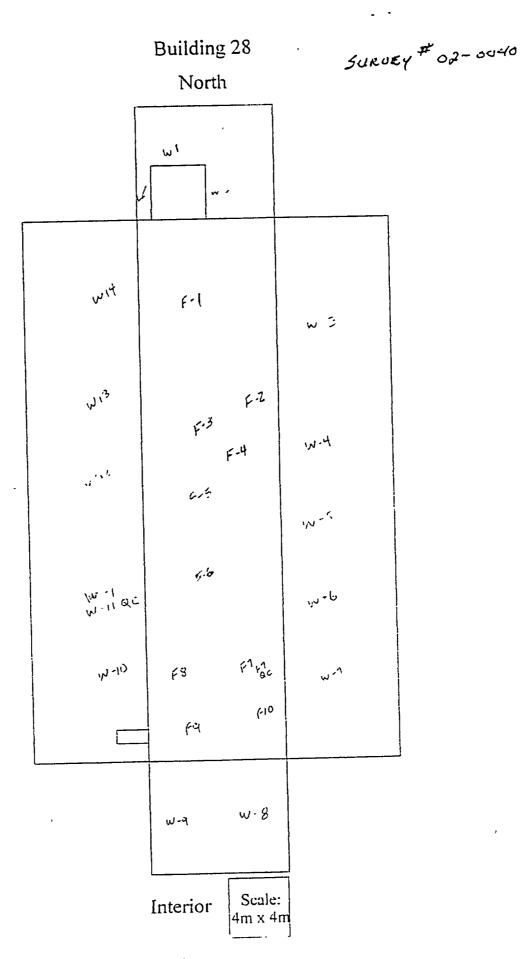
Radiological Survey Results - Survey Location Indicator

:

Survey Area	Information:	BLa	19 #2	8 UN	I A F F	ecte	٥ .	ttan	
Jui 107 / 104		-	<u> </u>				SURU	64#0.2-	
					1	α		α	β
	Instrume	nt Ca	l Pr	obe	Cal		β Scar	¹ Static	Static
				el/SN	Due	Scan	MDA		
1	Model/SI	N Due		ersi	Duc	MDA		MDA	MDA
1				2/145701	1-11-01		1-	64	447
nstrument [2360/145	469 1-10-	01 73 - 89	14351	/	1-1	673		
Data	2350-1/117	7566 8-10.	02 43-10	6/128912	8-10-27	56	1015		
				•					
				1.0. 210	7-4.05		+ -	- +5	1206
	2929/1522		03 43-10	5/15 631 /					
	19 / 11582		- 4				<u> </u>	Dete	<u></u>
	Print Name			Şignati	lre,	<u> </u>	• 0	Date	
'	Plint Name		1- iV	M.L.a	,D	BD	meral	K 3-1-	-02
Performed	MARK STEVE	DLAN	JCIAV	10,00	<u></u>	1.1			1-02
	512,00	Filo		_ tiv	<u>ــــــــــــــــــــــــــــــــــــ</u>	7110		بتد	
By:									
			0.01-1-	β				Sme	
	0.0000	α Scan	β Static	Static	α Sta		ER	(dpm/10	0 cm^2
Location	β Scan	1	(unsh)		(cpr		em/hr)	(4011010	
LUCATION	(cpm)	(cpm)	(cpm)	(sh)		··/ [(µ		α	β
				(cpm)	<u> </u>			-5	-12
W-1	270	1.6	NIA	N/4_	2		6	-5	12
W-2	240	1.0		<u>}</u>			9 9	-5	6
w-3	NA	N/A	/	-/	2				0
W-4	V				2		10	5	-6
w - 5	N/A	VN/A		<u> </u>	1 2		10	-5-	- 42
w-6	1290	1.2		1	1_1			-5	
w = 7	NIA	NA			12			-5	- 36
	310	0	ľ (1 2			-5	
w-8	NIA	NIA		Τ	2			-5	60
w-9		NA			3			-5	6
w-10	NIA	1.0			3		11	-5	36
w-11	280 NIA	N/A			1		11	-5	36
w-11 QC		1		1	12		11	-5	1 12
W-12_		NIA	+	+ +	2		1/	-5	1 - 18
W-13	NIA		+	1-1-	12		11	-5	1 18
w-14 F-1 F-2 F-3 F-4	290	1.2	┽╾╾┼╼		Î		10	-5	-6
<u>F-1</u>	NIA	NIA			1 1		11	-5-	42
F-2	NA	NIA	+		12		11	-5	-18
F-3	1550	22	++-		4		10	- 5	18
F-4	NIA	NIA			5	_ ,		-5	-12
F-5	1630	17					<u> </u> 9	-5	- 12
F-6	14 80	0 8			6		10	-5	- 47
F-7	1700					Z	10	- 5	- 13
F-7Q		NA				5		-5	60
F-8		1				7 3			24
F-0				V		3	11	-5	7/
F-9 F-10	NI:	A NIA	- NA	NIA		9	10	-5	36
								1	AL


Page <u>2</u> of <u>4</u>

BLdg "ZB UNAFFILTED									
·	r	Lug - 28 un	AFFELTED	SULVEY	1#02-0040				
Location	β Static	β Static (sh)		Minus Bkgd	Net β				
Location	(unsh)	(cpm)	Gross β	= (Net β)	dpm/100 cm ²				
W-1	(cpm)				· · · · ·				
	233	196	37	29	296				
w-2	207	201	. 6	- 2	-20				
<u>w-3</u>	227	212	15	7	71				
W-4	205	240	-35	-43	-438				
W-5 W-6	251	211	40	32	327				
W-7	218	229	200-fq-11	-19	-194				
	224	228	-4	-12	-122				
W-8 W-9	238 238	234	4	- 4	- 41				
	238	215	23	15	153				
W-10	283	266		9	92				
W-11	279	269	10	2	20				
W-11 QC	266	- 279	-13	-21	-214				
<u>w-12</u>	267	263	4	-4	-41				
<u>w-13</u>	245	237	8	0					
W-14	230	244	-14	-22	-224				
-W-15 WA		<u> </u>							
F-1 .	268	234	34	-44	-449				
F-2	386 .	343	43	-35	-357				
F-3	296	253	43	-35	-357				
F-4	288	281	7	-7/	-724				
F-5	288_	214	74	- 4	-41				
F-6	257	232	25	-53	-541				
F-7	317	235	82	4	- 4/				
F-7 QC	322	249	73	-5	-51				
F-8	296	235	61	-17	-173				
F-9	Z89	<u>z32</u>	57	-2/	-214				
F-10	350	289	61	-17	-173				


•.

3

Instrument Model/SN:	Probe Model/SN:	Detector Eff.: (cpm/dpm)	
2360/145469	43-89/145391	3098 X.	155
	2		
	$A \sim$		

Page <u>3</u> of <u>4</u>

mark Blancick 3-1-02 /1000

PASE 40F4

ł

RPP OP-019

•

۰.

DDO-138 Radiation Protection Survey Report	Site: Molycorp / Washington, PA
Section 1: Survey Information, Puildinic, 28 Survey	
Date, J-1-02 Time: Location Date J-1-02 Deco Location	Survey Issue Log Number 62-0036
RWP Number: Purpose of Survey. D/A RWP I Routine Survey I Unconditional Release II Other	Page of
survey Title: Lungfected, exterior.	Smear Beta Alpha Number dpm/100cm ² dpm/100cm ²
Backgraundreading, for 2350-1	
	5
$\int -294$	6
	7
a le	8
	9
Dack Group reading for 7 3400	10 /
Background reading for 2360	11
B8 x 3.7	12
D $X $ $X $ X	13 N/A
Whick accurdition 19 in MinisPlaz	
Sund. and I I II I I I I I I I I I I I I I I I	
Backgroundfor 19 in HicroR/hr 15-20	
	20
1	21
	22
	23
	24
	25
18kqa Readings 2929 × 18 3 69	26
; Legend $00 = mRem/h$ gamma 00 C = mRem/h gamma contact \mathcal{D} = Smear Location \mathcal{T} = Air S	ample Location -X-X-X- = Robe
	Material Sample
Section 2: Instrument Used	
Instrument Model/SN Cal Due Prope Model/SN Cal Due Detector Eff Date Com/dpm)	MDA ⁺ Other
1350-195356 8-6-02 43-106 B38626 5-6-02 .48 ~, 2119	532-34
12360 156371 18-15-02 43-59 164832 8-5-02 B,092, 153 P1	
29129 115563 10-19-02 43-10 12 1246 16-9-02 3.239-2.3513	
19 22524. 5-10-02 < NA	
K	>
Section 3: Review and Approval	
	Date and Time
Firme 1 A though function I Yes INo What Required	3-1-02 6400
	Date and Time
Mike Milbrold Chitcher	3-14-02 9:30

•

Radiological Survey Results - Survey Location Indicator

۰.

-\$

Survey Area	a Information	1: RLcka	28 E	X + ERIO	<u>ج</u>		Sun	VEY to	2-0056
	Instrume Model/S	ent C SN D	al I	Probe odel/SN	Cal	α Scan MDA	β Scan MDA	~	β Static MDA
Instrument Data	Ludiun 95 Ludiun 156 Ludiun 1155 Ludiun 1155 Ludiun 19 225	37-1 8-15 763 16-15 Zle 8-16	5-02 43-59	1335'66 1124832	8-5-02 4 12-6-02	34 	1762	76	
Performed By:	Print Name Dennie Dennis	DARKU	c/	Signat		R. R.		Date 3-1 <u>3-4</u>	
Location	β Scan (cpm)	α Scan (cpm)	β Static (unsh) (cpm)	(sh) (cpm)	α Static (cpm)	(μre	R m/hr)	Sme (dpm/10 α	0 cm²) β
W 1 W 7_ W 3 W 4	3.11	3.76 1.97 A	258 347 336 255	217 302 307 241	1 1 1 1 1 1 1 1 1 1	1-	+ + +	7-5-	38 0 -13 -39
W 4 Q W 5 W 6	2 + N	A	271 275 271	2169 250 222	4 (o (o		7 7 1	5 5 5	96 - 4 -33
				A					
								· • • •	

Page Z of 4

,

Radiological Survey Results - Calculational Sheet

4

	········	•		5	UEY #02-0031
Location	β Static (unsh) (cpm)	β Static (sh) (cpm)	Gross β	Minus Bkgd = (Net β)	Net β dpm/100 cm ²
W I	258	217	41	33	375
W Z W Z W Z W Z W Z W Z W Z C	347	30Z	45	37	420
W3.	336	307	Z9	· 21	238
W 4	255	74	14 Z 75	6	63
W 4 QC	<u>Z:+1</u>	269	 7	-6	-68
W 5	275	250	 		145
W C	<u></u>	C.L.C.	<u> </u>		<u> </u>
<u> </u>					
		[
		<u> </u>			
		$\overline{)}$		1	
		`			
			A		
		<u>و</u>			
				X	
				\downarrow	
		<u> </u>		<u> </u>	<u> </u>
		<u> </u>	ļ	ļ	
ļ					<u>+</u>
				· · · · · · · · · · · · · · · · · · ·	<u> </u>
L		<u> </u>	<u> </u>		<u> </u>

Instrument Model/SN.	Probe Model/SN:	Detector Eff.: (cpm/dpm)
23LaC 1JG371	43-89 164832	B. OP3 ~ .153
	5-	
	A	

Bkgd
B 8×3.7
\A
$ \rightarrow $

:

Page 3 of 4

SURVEY #02-0036

Building 28

4

	North
	10 10 10
	10 10 10
	101212
	10 12 10
WZ	12 14 12
мЗ	13 15 15
26 26	121212
	131212
	10 13 13
	Wle
	Exterior Scale: 4m x 4m

Blased For model 19 10-12 m/rts

Doserates on roof all Hicro R/hR.

PAGE 40.54

Results of Surface Scans Molycorp - Building 28 Survey Unit (Unaffected Building)

- ,

Building Interior

.

.

Location	Beta Scan	Beta Scan	Alpha Scan	Alpha Scan	
(see map)	gross cpm	net cpm	gross cpm	net cpm	All floor scans performed with Ludium 239-1F (2350-1 No 95359 with 43-37 No 92503)
					Floor Monitor Info
F1					Scan MDA Beta - 179 dpm/detector area
F2					Scan MDA Alpha - 19 dpm/detector area
F3	1550	220	22	13	Scan background Beta - 1330 cpm
F4					Scan background Alpha - 9 cpm
F5	1630	300	12	3	100% scan of floor and 2 meters up walls
F6	1480	150	'8	-1	
F7	1700	370	10	1	
F8					All wall and ceiling scans performed with Ludium 2350-1 No 117566 with 43-106 No 128921
F9					43-106 Info
F10					Scan MDA Beta - 673 dpm/detector area
W1	270	-50	16	0	Scan MDA Alpha - 56 dpm/detector area
W2	240	-80	1	-06	Scan background Beta - 320 cpm
W3					Scan background Alpha - 1 6 cpm
W4					
W5					
W6	290	-30	1.2	-0 4	
W7					,
W8	310	-10	0	-16	
W9					
W10	320	0	1	-0.6	
W11	280	-40			
W12					
W13					
W14	290	-30	12	-0.4	

٠

,

,

Building Exterior

Location (see map)	Beta Scan gross cpm	Beta Scan net cpm	Alpha Scan gross cpm	Alpha Scan • net cpm	All external wall scans performed with Ludlum 2350-1 No 195356 with 43-106 No. 133866 43-106 Info. Scan MDA Beta - 653 dpm/detector area
W1	224	-72	3.8	32	Scan MDA Alpha - 34 dpm/detector area
W2	283	-13	2	1.4	Scan background Beta - 296 cpm
W3					Scan background Alpha6 cpm
W4	311	15	1	04	
W5					
W6	320	24	09	03	

Elevated Scan Readings Molycorp - Building 28 Survey Unit (Unaffected Building)

.

Three locations (F3, F5, and F7) were identified with scans results greater than MDA values. All other measurement techniques (direct and removable) results indicated levels at or below background values

Direct Measurements (Total Activity) Molycorp - Building 28 Survey Unit (Unaffected Building)

Building Interior

.

Location	Gross Beta cpm	Bkgd cpm	Net cpm	Direct Beta (dpm/100cm ²)	Uncertainty 95% CL	MDA (dpm/100cm ²)	Direct Alpha ⁽¹⁾ (dpm/100cm ²)
	cpm	cµm	Cpm	(apini rooan)	33 /	(uping roucin y	(aprill 100011)
F1	34	78	-44	-449	212	447	-898
F2	43	78	-35	-357	220	447	-714
F3	43	78	-35	-357	220	447	-714
F4	7	78	-71	-724	184	447	-1449
F5	74	78	-4	-41	247	447	-82
F6	25	78	-53	-541	203	447	-1082
F7	82	78	4	41	253	447	82
F8	61	78	-17	-173	236	447 .	-347
F9	57	78	-21	-214	232	447	-429
F10	61	78	-17	-173	236	447	-347
W1	37	8	29	296	134	447	592
W2	6	8	-2	-20	75	447	-41
W3	15	8	7	71	96	447	143
W4	-35	8	-43	-439	104	447	-878
W5	40	8	32	327	139	447	653
W6	-11	8	-19	-194	35	447	-388
W7	-4	8	-12	-122	40	447	-245
W8	4	8	-4	-41	69	447	-82
W9	23	8	15	153	111	447	306
W10	17	8	9	92	100	447	184
W11	10 4	8	2	20	85	447	41
W12	4	8	-4	-41	69	447	-82
W13	8	8	0	0	80	447	0
W14	-14	8	-22	-224	49	447	-449

	43-89 Info
Beta Efficiency	0 098
Beta Background - Concrete Floor (cpm)	78
Beta Background - Steel Wall (cpm)	8
Beta MDA (dpm/100 cm ²)	447

Building Exterior

Location	Gross Beta	Bkgd	Net	Direct Beta	Uncertainty	MDA	Direct Alpha ⁽¹⁾
	cpm	cpm	срт	(dpm/100cm ²)	95% CL	(dpm/100cm ²)	(dpm/100cm ²)
W1	41	8	33	375	156	180	750
W2	45	8	37	420	162	180	841
W3	29	8	21	239	135	180	477
W4	14	8	6	68	104	180	136
W5	25	8	17	193	128	180	386
W6	49	8	17	193	168	180	386
				43-89 Info			
Beta Efficie	ency			0.088			
Beta Back	ground - Conc	rete Floor	(cpm)	78			
Beta Back	ground - Steel	Wall (cpm	1)	8			
	_ (dpm/100 cm ²			180			

(1) - Alpha measurements (direct) were obtained with the 43-89 operated in the alpha mode and were recorded on the Radiation Protection Survey Report form However, actual results were not used as part of the comparison process A beta to alpha ratio factoring (1·2, beta to alpha) was used to provide a more accurate alpha activity determination

Elevated Direct Readings and Remediation Results Molycorp - Building 28 Survey Unit (Unaffected Building)

.

No elevated direct measurements were reported.

.

.

Removable Surface Activity Measurements Molycorp - Building 28 Survey Unit (Unaffected Building)

Building Interior

•

Location (see map)	Removable Beta (dpm/100cm ²)	Uncertainty 95% CL	MDA	Removable Alpha (dpm/100cm ²)	Uncertainty 95% CL	MDA
F1	-6	16	206	-5	7	0 18
F2	42	33	206	-5	7	0.18
F3	-18	23	206	-5	7	0 18
F4	18	23	206	-5	7	0 18
F5	-12	20	206	-5	7	0.18
F6	-12	20	206	-5	7	0 18
F7	-42	33	206	-5	7	0 18
F8	60	39	206	-5	7	0 18
F9	24	26	206	-5	7	0 18
F10	36	31	206	-5	7	0 18
W1	-12	20	206	-5	7	0 18
W2	12	20	206	-5	7	0 18
W3	6	16	206	-5	7	0 18
W4	0	11	206	-5	7	0 18
W5	-6	16	206	-5	7	0 18
W6	-42	33	206	-5	7	0.18
W7	6	16	206	-5	7	0.18
W8	-36	31	206	-5	7	0.18
W9	60	39	206	-5	7	0.18
W10	6	16	206	-5	7	0.18
W11	• 36	31	206	-5	7	0.18
W12	12	20	206	-5	7	0.18
W13	-18	23	206	-5	7	0.18
W14	18	23	206	-5	7	0 18

•

Ludlum 2929 No 152202 with 43-10 No. 156519 Info						
	Beta	Alpha				
Background (cpm	45	0 18				
Bkgd ct time	50	50				
Sample ct time	1	1				
Efficiency	0 165	0 344				
MDA	206	15				

Building Exterior

Location (see map)	Removable Beta (dpm/100cm ²)	Uncertainty 95% CL	MDA	Removable Alpha (dpm/100cm²)	Uncertainty 95% CL	MDA
W1	38	26	176	2	5	14
W2	0	8	176	-0 5	2	14
W3	13	16	176	2	5	14
W4	-29	23	176	-0 5	2	14
W5	-4	11	176	-0 5	2	14
W6	-33	24	176	-0 5	2	14

Ludium 2929 No. 152202 with 43-10 No 156519 Info.

Beta	Alpha
45	0 18
50	50
1	1
0.239	0 35
176	14
	45 50 1 0.239

F = floor, W = wall

Removable Surface Activity Measurements Molycorp - Building 28 Survey Unit (Unaffected Building)

•

.

٠.

No elevated removable surface activity was reported.

•

Exposure Rate Measurements Molycorp - Building 28 Survey Unit (Unaffected Building)

Building Interior		Building Roof G	Building Roof Gamma Scan				
Location	Exposure Rate uR/hr	Location (See map)	Exposure Rate uR/hr	Exposure Rate Background	Exposure Rate Net		
F1	10	R1	10	10	0		
F2	11	R2	10	10	0		
F3	11	R3	10	10	0		
F4	10	R4	10	10	0		
F5	11	R5	10	10	0		
F6	9	R6	10	10	0		
, F7	10	R7	10	10	0		
F8	11	R8	12	12	0		
F9	11	R9	12	12	0		
F10	10	R10	10	10	0		
W1	6	R11	12	10	2		
W2	9	R12	10	10	0		
W3	9	R13	12	12	0		
W4	10	R14	14	12	2		
W5	10	R15	12	12	0		
W6	11	R16	13	12	1		
W7	11	R17	15	12	3		
W8	11	R18	15	12	3		
W9	11	R19	12	12	0		
W10	11	R20	12	12	0		
W11	11	R21	12	12	0		
W12	11	R22	13	12	1		
W13	11	R23	12	12	0		
W14	11	R24	12	12	0		
		R25	10	12	-2		
Interior ba	ckground dose rate 9-10 uR/hr with Model 19, No 115870	R26	13	12	1		
	• • • • • • • • • • • • • • • • • • • •	R27	13	12	1		

Building Exterior

W5 W6

.

 Location
 Exposure Rate uR/hr

 W1
 7

 W2
 17

 W3
 17

 W4
 17

17

9

Building roof background gamma exposure rates varied based on reading locations Background levels were reported as 10-12 uR/hr when held away from the roof surface (over the side)

•

;

Exterior background dose rates varied widely (7-20 uR/hr) based on soil activity for building area surveyed (instrument location) Based on direct and loose surface surveys results, elevated dose rates are due to background gamma rates and not building surface activity

Summary of Building Surface Direct Reading (Total Activity) Results Molycorp - Building 28 Survey Unit (Unaffected Building)

.

Building Interior

٠

•

Building In	iterior									
Location	Direct Beta	Correlated Alpha			Average Tot	al Activity (d	pm/100cm	1 ²)		
	(dpm/100cm ²)	(dpm/100cm ²)		Beta				Alpha		
			n	\bar{x}	s	μ_{a}	n	\bar{x}	s	μ
F1	-449	-898	30	-45	292 8	45 7	30	-90 1	585 7	91.4
F2	-357	-714	••							- · ·
F3	-357	-714		t1-4	1 697					
F4	-724			41-a	1037					
		-1449								
F5	-41	-82			O undalina a	Cardhana				
F6	-541	-1082				Conditions				
F7	41	82				sfied				
F8	-173	-347			Beta	Alpha				
F9	-214	-429			Yes	Yes				
F10	-173	-347								•
W1	296	592								
W2	-20	-41								
W3	••	143								
W4	-439	-878								
W5	327	653								
W6	-194	-388								
W7	-122	-245								
W8	-41	-82								
W9	153	306						•		
W10	92	184			•					
W11	20	41								
W12	-41	-82								
W13	0	0								
W14	-224	-449								
			43-89 Info							
Beta Efficie	000		0 098							
	ground - Concrete	Eloor (com)	78							
	pround - Steel Wa		8							
	$(dpm/100 \text{ cm}^2)$		447							
Deta MDA	(dpm/100 cm)		447							
Building E	xtenor									
Location	Direct Beta	Correlated Alpha								
	(dpm/100cm ²)	(dpm/100cm ²)								
W1	375	750								
W2	420	841								
W3	239	477								
W4	68	136							,	
W5	193	386								
W6	466	932								
			43-89 Info							
Beta Efficie			0 088							
	ground - Concrete	e Floor (com)	78							
Beta Backg	ground - Steel Wa (dpm/100 cm ²)		8							

٠

•

•

Summary of Exposure Rate Measurements Molycorp - Building 28 Survey Unit (Unaffected Building)

,

.

Building Interior

•

Location	Exposure Rate	Exposure Rate	Exposure Rate	
	uR/hr	Background	Net	
				n
F1	10	9	1	30
F2	11	9	2	
F3	11	9	2	$t_{1-\alpha}$
F4	10	9	1	
F5	11	9	2	
F6	9	9	0	
F7	10	9	1	
F8	11	9	2 2 1	
F9	11	9	2	
F10	10	9		
W1	6	9	-3	
W2	9	9	0	
W3	9	9	0	-
W4	10	9	1	
W5	10	9	1	
W6	11 '	9	2 .	
W7	11	9	2	
W8	11	9	2	
W9	11	9	2	
W10	11	9	2	
W11	11	9	2	
W12	11	9	2	
W13	11	9	2 2 2 2 2 2 2 2 2	
W14	11	9		
			•	

Guidelines/Conditions Yes Satisfied

.

s

1.1357817

 μ_{α}

1.5

.

Exposure Rate (uR/hr)

x

1.697

1.1

Building Exterior

Location	Exposure Rate uR/hr	Exposure Rate Background	Exposure Rate Net
W1	7	7	0
W2 •	17	17	0
W3	17	17	0
W4	17	17	0
W5	17	17	0
W6	9	7	2

Appendix D

Building 34 Data Package Molycorp Washington, PA

.

Building 34 Data Package

This data package contains final status survey information for Building 34, Molycorp, Washington, PA site.

Field data collection forms, survey report forms, statistical test results, and comparisons to release limits are provided.

1

Summary

No anomalies were reported during the survey of Building 34. Elevated levels of background radiation, from soil radioactivity, continued to be a presence during survey activities.

Results from the final status survey of Building 34 provides evidence that release criteria have been met, demonstrates that residual radioactivity is below the unrestricted use criteria, and confirms that Building 34 is suitable for unrestricted use.

٠
3

RPP-OP-019

•

	DDO-138 Radiation Pr	rotection Sur	Site: Molycorp	/ Washington, PA	
Section 1: Survey Information	,				
Date 3-8-07	Time: 1430	Blog	34	Survey Issue L C 2 -	og Number:
RWP Number	Pumose of Survey	v	,	Page	
					Beta Alpha h/100cm ² dpm/100cm ²
Survey Title: (INAFFECTED D	<u>Ldg</u>		Number dpm	n/100cm ² dpm/100cm ²
				2	/1
				3	
				4	
1 1				5	/
				6	//
				7	
				8	
				10	
				11	
				12	1/
				13	N/
1				14	/A
				15	
				16	
· ·				18	
				19	
{				20	7
1				21	
				22	/
11/2/2/19 11	5870 3-6-02	Ekgd	1 map HR	23	
piblee it it		. –	,	24	
•				26	
Bkgg Readings		<u> </u>			· ·
; Legend 00 = mRem/h gamma 00 (C = mRem/h gamma contact 0) = Smear Locatio	on 7 = Air	Sample Locatio	n -X-X-X- = Rope. Boundary, or Barrier
		ூ– = Large Area	Wipe = Buik	Matenal Samp	le
Section 2: Instrument Use	d				
Instrument Model/SN C	al Due Prope Model/SN Date.	Cal Due Date	Detector Eff (cpm/dpm)	MDA:	B BKG ×
	6/03 43-10/156519	2-6.03	13=,165=,344	5= 212 - = = 14,5	1 2
2350-1/117017 8-1	13-02 43-106/13396	8-4-02	141	8600/49	B-248/1.2
2350-1/117566 8-	6-0243-106/128912	8-6-02	13-, 2511.212	<u>B-643/45</u>	B-292/ 1
	6-02 43-37/09250		B-,271,207	B-185/14 B-948/94	13-1430 4.8 15-5000 West / Flow for the start 13-74 5 (2.4 / 3.7
	9-02 43-89 / 118544	18-6-02	B-113/ 14	110	B 74 4/2.4/3.7
Section 3: Review and Ap		1. 0	dias Parmendad:	Date and Time	9
Survey Performed By (Sign)	./		Mot Required	3-8-0	
MARK BLHSices Radiation Satety Officer (Pr		1.0.00	(Date and Time	e
				3-14-0	2 19:30
Mike Mc Donak	- xorean				

3

Radiological Survey Results - Survey Location Indicator Survey Area Information: α β α Cal Probe Cal β Scan Instrúment Scan Static Static Model/SN Due MDA Model/SN Due MDA MDA MDA Instrument Data Signature Print Name Date Mark Blancik MARK BLANCIAK 3-8-02 Performed Steve Film Trenidad Justin 3-8-02 By: Filo STeve Steve 3-8-02 β Smears β Static ER α Static ß Scan α Scan Static $(dpm/100 cm^{2})$ Location (unsh) $(\mu rem/hr)$ (cpm) (cpm) (sh) (cpm) 115 (cpm) α β (cpm) 16 6410 2 498 5 -.46 -287 W-1 477 2.4 2 253 237 Г 10 -55 450 iu - 2 -18 5 15 -.46 325 340 W-3 Я -18 15 -.46 W - 4277 238 -42 450 1.2 276 2761 ハ 2.4 (p 1.11-5 4 0 12 -,46 219 228 1/1 - 6 \mathcal{O} -12 -,46 290 ſ 196 71 213 10-7 -,46 36 270 -5 187 10 CV-4 205 -,46 48 W-8 QC 192 215 10 - 36 580 -,46 12 *a!* - 9 418 379 3 -.HG -85 F - 1 342 10 288 -,46 -48 F - 2 16 244 9 1600 317 6 12 -,46 30 1700 15 360 277 5 F-3 \mathcal{A} 22 -.46 12 F-4 3400 646 Я 707 310 -,46 6 1500 396 12 F - 5 3 - .46 -18 1600 10 3101 11 F - 6 360 14 2.4 F-7 1800 12 433 335 4 i 8 18 -48 -.46 F-Ý 2000 10 476 384 Э 22 -,46 12 \bigcirc E-9 14 2600 553 569 -,46 -18 276 a F-10 264]] 5 -,46 -18 F-11 1700 11 387 354 14 55 F-12 2800 10 589 534 4 20 -.46 - 74 2.4 353 12 286 F13 -,46 -18 12 12 777 F-13 ac 1700 292 N A

Page \mathcal{A} of \mathcal{T}

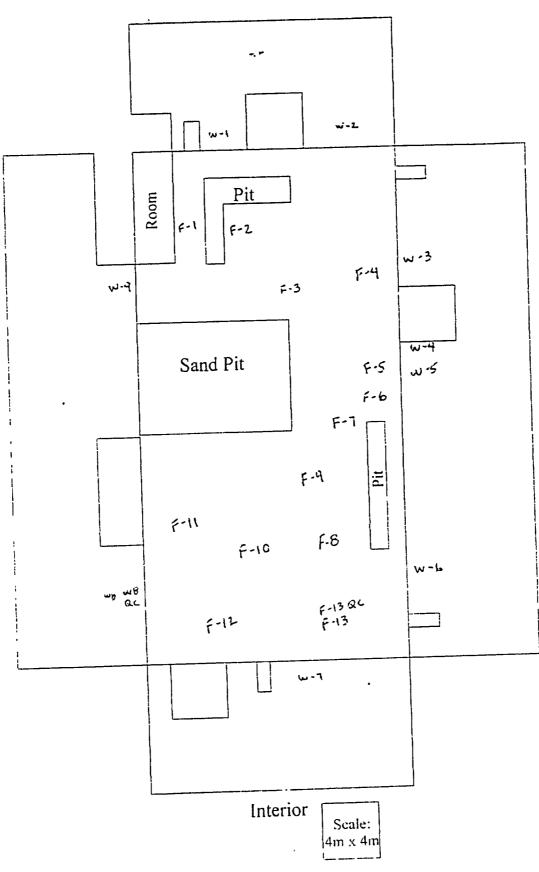
Radiological Survey Results - Calculational Sheet

:

	0.0: ::		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Location	β Static (unsh) (cpm)	β Static (sh) (cpm)	Gross β	Minus Bkgd = (Net β)	Net β dpm/100 cm ²
CU-1	498	477	21	13	115
64-2	253	6.25	16	13 B	71
60-3	325	340	- 15	-23	-204
00-4	277	238	39	31	274
tu-5	276	276	0	-8	-71
41-6	a19	228	-9	-17	-150
1-1	196	213	-17	-25	-221
LV-8	187	305	-181	-26	-230
W-B QC	142	215	-23	-31	-274
w-9	418	379	<u> </u>	31	274
F-1	342	249	54	-24	-212
F-2		244	73	-5	- 44
F-3	360	277	83	5	44
F-H	707	646	61	-17	- 150
F-5	396	310	86	8	71
F-6	360	3/0	50	- 28	-248
F-7.	433	335	48	20	177
E-8	476	354	92	14	124
F - 9		569	-16	-94	-832
F-10	3.76	264	12	- 66	- 584
F-11	387	354	33	- 45	- 398
F-12	589	534	55	-23	-2.04
F-13	353	286	67	-/1	-97
F-13 ac	377	292	85	7	62
			A		
			<i>r</i> t		

Instrument Model/SN ⁻¹	Probe Model/SN:	Detector Eff.: (cpm/dpm)
2. (1) / 164680	43-89/118544	₽-113 × .164
	N	
	A-	

\$


Contraction of the local division of the loc	
Material	Bkgd
Wall	B
FLOOR	78
N	
	A

Page _}_ of _7_

JURVEY # 02-0051

Building 34 North

8

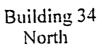
PAGE 40F7

\$

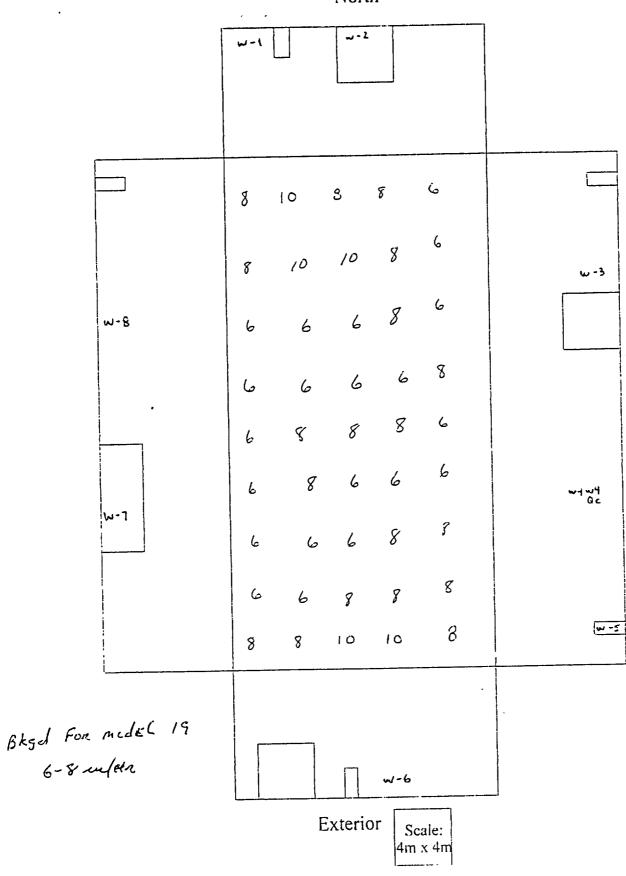
Radiological Survey Results - Survey Location Indicator திலைக்கு கிலைக்கு கிலைக்கு கிலைக்கு கிலைக்கு கிலைக்கு Survey Area Information: β α α Instrument Cal Probe Cal β Scan Scan Static Static Model/SN Due Model/SN Due MDA MDA MDA MDA Instrument Data N A Print Name Signature Date mark Blancisk MARK BLANCIAK 3-8-02 Performed Justin Trenidad Austin Trenghed .3-8-02 By: File STEVE Filo Steve 3-8-02 β β Static Smears ER α Scan α Static β Scan Static $(dpm/100 cm^{2})$ Location (unsh) (µrem/hr) (cpm) (cpm) (cpm) (sh) (cpm) β α (cpm) W-1 0 2 449 22 -,46 650 529 10-2 353-2-24 3241 5 -,46 -6 22 Lu-3 320 1 14 4 -,46 -67 300 277 W-4 2 353 16 313 269 1 -,46 -12 w-4 ac 3 30 280 16 -,46 797 6 -18 w-5 217 13 277 1D (1' - G 5,3 300 3 4 10 -36 188 228 w-7 4.9 2,4 240 197 5 9 0 208 4-5 ત્ર D 12 -.46 377 6 299 276

Page 5 of 7

:


Location	β Static (unsh) (cpm)	β Static (sh) (cpm)	Gross β	Minus Bkgd = (Net β)	Net β dpm/100 cm ²
11-1	529	449	80	72	637
(v - 2 (v - 3	353	324	29	21	86 33 363
64-3	300	377	23	15	133
41-4	318	269	49	4/	363
41-4 ac	297	280	17	9	80
1:1-5	222	217	5	- 3	-27
w-6	148	228	-40	-48	-424
10-7	197	208		-19	- 168
60-8	299	276	-11 23	15	132
	~				
			· · · · · · · · · · · · · · · · · · ·		
			<u></u>		
L					
			/		
		•			
••					
		f			
			<u>A</u>		
					•
					````
			1		
	· · · · · · · · · · · · · · · · · · ·				

# Radiological Survey Results - Calculational Sheet


Duan 200 7-9-02	Instrument Model/SN:	Probe Model/SN:	Detector Eff.: (cpm/dpm)
8-6 02	2360/164680	43-89/118544	13-,11305-,164
		A	
		Ţ	
l		1	

Matenal	Bkgd
WALL	B=8 x=3.7
FLOOR	13:78 2:2.4
N	
	A

Page <u>6</u> of <u>7</u>



5



RPP-0P-019

I.

.

:

1	DDO-138 Radiation Protection Survey Report					
Section 1: Survey Informatio	n					
Date 3-12-02	Survey Issue	Survey Issue Log Number 02-0060				
RWP Number.	Purpose of Survey:	Location: <u> <u> <u> </u> /u></u>		1of		
Survey Title:		i	Smear Number dp	Beta Alpha m/100cm ² dpm/100cm ²		
	0/ 7	<b>*</b> • • • •	1	/		
Im JURUEY	one 13 WALL	FI REading 637	2	/		
	8-			/_		
opm/rocem		······································	5	/		
			6			
•		Loc sh, wash, NB.	Dem 7			
		i 483 483 -8 -				
· · · · · · · · · · · · · · · · · · ·	2 3	2 346 402 -14 -	124 9			
	a l	3 422 431 -17-				
			88 11	/		
	ω-1		106 12			
		6 457 466 -17 -		N/		
4 5	+   6 -		9 14 9 15	A		
. [] [-]		<u>8 525 516 1</u> 9 464 464 -8 -		/!		
		-3		/		
	8 9	- <u>345</u> = -38	18			
·		9	19			
			20			
$637 \left(\frac{100}{10,000}\right) + -$	-38 (1- 100)	r	21	_/		
······································		-	22			
6.37 + -31.2 dpm//cccort	2- 1	-	23	/		
-31.2 dpm/10000	2 P a dpm/iacan	<u>z</u> X	24	/		
•	• /		25			
Bkgg Readings		· · · · · · · · · · · · · · · · · · ·				
-	= mRem/h gamma contact	D = Smear Location 7 =	Air Sample Locatio	n -X-X-X- = Rope		
-	C = mRem/h beta contact		Buik Material Samp	le Boundary, or Barrier		
Section 2: Instrument Used						
	I Due Probe Model/SN late.	Cal Due Detector Eff Date (cpm/dpm)	MDA	Other Bkgcl		
2360/164680 17-9	1-02 43-89/11854	4 8-6-02 ×.164 8.11	3× 71 3-140	B-8 x 3,7		
N		N	1			
	A		T A	<u> </u>		
				<u> </u>		
Section 3: Review and App	roval					
Survey Performed By (Sign)		Area Posted and/or Barricade				
Jun tok	Anno	☐ Yes ☐No 🕱 Not Require		113c		
Radiation Sarety Officer (Print			Oate and Time	- ( - )		
· Mike Millow	CX Sta	24/	3-14-02	9:30		

#### Results of Surface Scans Molycorp - Building 34 Survey Unit (Unaffected Area)

- -

#### Building Interior

.

٠

Location (see map)	Beta Scan gross cpm	Beta Scan net cpm	Alpha Scan gross cpm	Alpha Scan net cpm	
(0000))	groop opin	not opin	3.000 00.00		
F1					All floor scans performed with Ludium 239-1F (2350-1 No 95359 with 43-37 No 92503)
F2	1600	170	16	11	Floor Monitor Info
F3	1700	270	15	10	Scan MDA Beta - 185 dpm/detector area
F4	3400	1970	2	-3	Scan MDA Alpha - 14 dpm/detector area
F5	1800	370	9	4	Scan background Beta - 1430 cpm
F6	1600	170	10	5	Scan background Alpha - 5 cpm
F7	1800	370	12	7	10% scan of floor and 2 meters up walls
F8	2000	570	10	5	
F9	2600	1170	14	9	
F10					
F11	1700	270	11	6	
F12	2800	1370	10	5	
F13					
W1	640	-3	2	1	
W2	480	-163	2	1	All interior wall scans performed with Ludlum 2350-1 No.117566 with 43-106 No 128921
W3					43-106 Info:
W4			_		Scan MDA Beta - 643 dpm/detector area
W5	450	-193	2	1	Scan MDA Alpha - 45 dpm/detector area
W6				_	Scan background Beta - 292 cpm
W7	280	-363	1	0	Scan background Alpha -1 cpm
W8	270	-373	1	0	
W9					

- - - - - - - -

#### Building Exterior

Location (see map)	Beta Scan gross cpm	Beta Scan net cpm	Alpha Scan gross cpm	Alpha Scan net cpm	
W1 W2	650	402	2	1	All external wall scans performed with Ludium 2350-1 No.117014 with 43-106 No 133866 43-106 Info
W3	320	72	4	3	Scan MDA Beta - 600 dpm/detector area
W4	353	105	2	1	Scan MDA Alpha - 49 dpm/detector area
W5					Scan background Beta - 248 cpm
W6	300	52	3	2	Scan background Alpha - 1 cpm
W7	240	-8	5	4	
W8	377	129	6	5	

F = floor, W = wall

## Elevated Scan Readings Molycorp - Building 34 Survey Unit (Unaffected Area)

#### **Building Interior**

Locations F4, F9 and F12 indicated elevated readings by scan with floor monitor as shown below.

Location	Beta Scan net cpm
F4	1970
F9	1170
F12	1370

Elevated locations were re-scanned with hand-held 43-106, results indicated background levels Direct and removable measurement results in locations F4, F9 and F12 indicate background values.

#### **Building Exterior**

Location W1 indicated elevated reading by scan with floor monitor as shown below.

Location	Beta Scan net cpm
W1	402

Direct measurement in locationW1 indicate background values

Direct Measurements (Total Activity) Molycorp - Building 34 Survey Unit (Unaffected Area)

.

**Building Interior** 

Location	Unshield Beta cpm	Shield Beta cpm	Gross Beta cpm	Bkgd cpm	Net cpm	Direct Beta (dpm/100cm ² )	Uncertainty 95% CL	MDA (dpm/100cm ² )	Direct Alpha ⁽¹⁾ (dpm/100cm ² )
F1	342	288	54	78	-24	-261	199	387	-522
F2	317	244	73	78	-5	-54	213	387	-109
F3	360	277	83	78	5	54	220	387	109
F4	707	646	61	78	-17	-185	204	387	-370
F5	396	310	86	78	8	87	222	387	174
F6	360	310	50	78	-28	-304	196	387	-609
F7	433	335	98	78	20	217	230	387	435
F8	476	384	92	78	14	152	226	387	304
F9	553	569	-16	78	-94	-1022	137	387	-2043
F10	276	264	12	78	-66	-717	165	387	-1435
F11	387	354	33	78	-45	-489	183	387	-978
F12	589	534	55	78	-23	-250	200	387	-500
F13	353	286	67	78	-11	-120	209	387	-239
W1	498	477	21	8	13	141	93	140	283
W2	253	237	16	8	8	87	85	140	174
W3	325	340	-15	8	-23	-250	46	140	-500
W4	277	238	39	8	31	337	119	140	674
W5	276	276	0	8	-8	-87	49	140	-174
W6	219	228	-9	8	-17	-185	17	140	-370
W7	196	213	-17	8	-25	-272	52	140	-543
W8	187	205	-18	8	-26	-283	55	140	-565
W9	418	379	39	8	31	337	119	140	674
All building	interior direct n	neasurements	s were						
	with 43-89 No				Beta	Alpha			
Floor Effic		•			0 113	0 164			
Wall Efficie	•				0.113	0 164			
	ground (cpm)				78	2.4			
	ground (cpm)				8	37			
	(dpm/100 cm ² )				387	60			
	(dpm/100 cm ² )				140	71			
Building I	Exterior								
Location	Unshield Beta cpm	Shield Beta cpm	Gross Beta cpm	Bkgd cpm	Net cpm	Direct Beta (dpm/100cm ² )	Uncertainty 95% CL	MDA (dpm/100cm ² )	Direct Alpha ⁽¹⁾ (dpm/100cm ² )

.

W1 W2 W3 W4 -53 W5 -3 -27 -850 -48 -425 -40 W6 -336 -168 -11 -19 W7 W8 All building exterior direct measurements were performed with 43-89 No 118544 Efficiency Alpha Beta 0 164 0 1 1 3 Background (cpm) MDA (dpm/100 cm²) 

(1) - A beta to alpha ratio factoring (1 2, beta to alpha) was used to provide a more accurate alpha activity determination then sampling

# Elevated Direct Readings (Total Activity) and Averaging Results Molycorp - Building 34 Survey Unit (Unaffected Area)

-

# **Building Interior**

.

.

No interior elevated direct measurements were reported

# **Building Exterior**

Location	Direct Alpha (dpm/100cm ² )	Over Area (cm ² )	Exceed: Maximum	eeds Limits n Average	
W1	1274	100	No	Yes	
Averaged (over 1 m ²		Within Limit?			
W1	0	Yes			

# Removable Surface Activity Measurements Molycorp - Building 34 Survey Unit (Unaffected Area)

.

#### **Building Interior**

•

Location (see map)	Removable Beta (dpm/100cm ² )	Uncertainty 95% CL	MDA	Removable Alpha (dpm/100cm²)	Uncertainty 95% CL	MDA
F1	-85	45 9	212	-0 46	2.3	14 5
F2	-48	35 3	212	-0 46	2.3	14 5
F3	30	28 8	212	-0.46	2.3	14 5
F4	12	20 2	212	-0 46	23	14 5
F5	6	16 4	212	-0 46	2.3	14 5
F6	-18	23 4	212	-0 46	2.3	14 5
F7	18	23 4	212	24	52	14 5
F8	-48	35 3	212	-0 46	2.3	14 5
F9	12	20 2	212	-0 46	2.3	14 5
F10	-18	23 4	212	-0 46	23	14 5
F11	-18	23 4	212	-0 46	2.3	14 5
F12	55	37.6	212	-0 46	23	14 5
F13	-24	26 2	212	24	5.2	14 5
W1	-29	28 4	212	-0 46	2.3	14 5
W2	-55	37.6	212	24	52	14 5
W3	-18	23 4	212	-0 46	2.3	14 5
W4	-18	23 4	212	-0 46	2.3	14 5
W5	-42	33 3	212	24	5.2	14 5
W6	0	11 4	212	-0 46	2.3	14 5
W7	-12	20 2 *	212	-0 46	2.3	14 5
W8	36 .	31 1	212	-0 46	2.3	14 5
W9	-39	32.2	212	-0 46	2.3	14 5

•

#### Ludium 2929 No 152202 with 43-10 No 156519 Info:

	Beta	Alpha
Background (cpm)	46	016
Bkgd ct. time	50	50
Sample ct. time	1	1
Efficiency	0.165	0 344
MDA	212	14.5

#### **Building Exterior**

Location (see map)	Removable Beta (dpm/100cm ² )	Uncertainty 95% CL	MDA	Removable Alpha (dpm/100cm ² )	Uncertainty 95% CL	MDA
W1	0	11.4	176	-0 46	2.3	14 5
W2	-6	16 4	176	-0 46	2.3	14 5
W3	-67	41.1	176	-0 46	2.3	14 5
W4	-12	20 2	176	-0 46	2.3	14 5
W5	-18	23 4	176	10	10 6	14 5
W6	-36	31.1	176	53	7.7	14 5
W7	0	11 4	176	2.4	5.2	14 5
W8	0	11.4	176	-0 46	23	14 5

.

	Beta	Alpha
Background (cpm)	46	0 16
Bkgd ct. time	50	50
Sample ct time	1	1
Efficiency	0.165	0 344
MDA	212	14.5

F = floor, W = wall

## Removable Surface Activity Measurements Molycorp - Building 34 Survey Unit (Unaffected Area)

.

No elevated removable surface activity was reported.

٠

#### Exposure Rate Measurements

.

#### Molycorp - Building 34 Survey Unit (Unaffected Area)

#### **Building Interior**

#### **Building Roof Gamma Scan**

Location	Exposure Rate uR/hr	Location (see map)	Exposure Rate uR/hr	Location (see map)	Exposure Rate uR/hr
F1	10	R1	8	R24	8
F2	9	R2	10	R25	6
F3	12	R3	8	R26	6
F4	22	R4	8	R27	8
F5	12	R5	6	R28	6
F6	10	R6	8	R29	6
F7	14	R7	10	R30	6
F8	18	R8	10	R31	6
F9	22	R9	8	R32	6
F10	11	R10	6	R33	6
F11	14	R11	6	R34	8
F12	20	R12	6	R35	8
F13	12	R13	6	R36	6
W1	16	R14	8	R37	6
W2	10	R15	- 6	R38	8
W3	15	R16	6	R39	8
W4	15	R17	6	R40	8
W5	17	R18	6	R41	8
W6	12 •	R19	6	R42	8
W7	11	R20	8	R43	10
W8	10	R21	6	R44	10
W9	12	R22	8	R45	8
		R23	8		

#### Building Exterior

Location	Exposure Rate uR/hr
W1	22
W2	22
W3	14
W4	16
W5	13
W6	10
W7	9
W8	12

Building roof background gamma exposure rates varied based on reading locations. Background levels were reported as 6-8 uR/hr when held away from the roof surface (over the side).

Exterior and interior background dose rates varied widely (9-22 uR/hr) based on soil activity for building area surveyed (instrument location) Based on direct and loose surface surveys results, elevated dose rates are due to background gamma rates and not building surface activity

### Summary of Building Surface Direct Reading (Total Activity) Results Molycorp - Building 34 Survey Unit (Unaffected Area)

#### **Building Interior**

.

.

						Average Total A	Activity (dpm/100cm	n²)							
Location	Unshield Beta	Shield Beta	Gross Beta	Bkgd	Net		Correlated Alpha								
	cpm	cpm	cpm	cpm	cpm	(dpm/100cm ² )	(dpm/100cm ² )			Beta			Alpl	na	
		-						n	$\bar{x}$	s	μα	n	$\bar{x}$	S	$\mu_{\alpha}$
F1	342	288	54	78	-24	-212	-424.8	30	-97	313 0	02	30	-236 0	562 9	-616
F2	317	244	73	78	-5	-44	-88 5								
F3	360	277	83	78	5	44	88 5		t _{1-α}	1 697					
F4	707	646	61	78	-17	-150	-300 9								
F5	396	310	86	78	8	71	141.6								
F6	360	310	50	78	-28	-248	-495 6					s/Conditions			
F7	433	335	98	78	20	177	354 0					sfied			
F8	476	384	92	78	14	124	247.8				Beta	Alpha			
F9	553	569	-16	78	-94	-832	-1663 7				Yes	Yes			
F10	276	264	12	78	-66	-584	-1168.1								
F11	387	354	33	78	-45	-398	-796 5								
F12	589	534	55	78	-23	-204	-407 1								
F13	353	286	67	78	-11	-97	-194 7								
W1	498	477	21	78	-57	-504	-1008 8								
W2	253	237	16	78	-62	-549	-1097.3								
W3	325	340	-15	8	-23	-204	-407,1								
W4	277	238	39	8	31	274	548 7								
W5	276	276	0	8	-8	-71	-141.6								
W6	219	228	-9	8	-17	-150	-300 9								
W7	196	213	-17	8	-25	-221	-442 5								
W8	187	205	-18	8	-26	-230	-460 2								
W9	418	379	39	8	31	274	548 7								

.

#### **Building Exterior**

Location	Unshield Beta	Shield Beta	Gross Beta	Bkgd	Net	Direct Beta	Correlated Alpha
	cpm	срт	cpm 💉	срт	cpm	(dpm/100cm ² )	(dpm/100cm ² )
W1	529	449	80	8	72	637	• 0
W2	353	324	29	8	21	186	372
W3	300	277	23	8	15	133	265
W4	318	269	49	8	41	363	726
W5	222	217	5	8	-3	-27	-53
W6	188	228	-40	8	-48	-425	-850
W7	197	208	-11	8	-19	-168	-336
W8	299	276	23	8	15	133	265

## Summary of Exposure Rate Measurements Molycorp - Building 34 Survey Unit (Unaffected Area)

#### **Building Interior**

4

Location	Exposure Rate uR/hr	Exposure Rate Background	Exposure Rate Net		Exposure F	Rate (uR/hr)	
				n	$\overline{x}$	s	$\mu_{\alpha}$
F1	10	10	0	30	1.3	1.7	1.8
F2	9	10	-1				
F3	12	10	2	t _{1-a}	1.697		
F4	22	20	2				
F5	12	10	2				
F6	10	10	0				
F7	14	10	4		Guidelines	Conditions	Yes
F8	18	20	-2		Satis	fied	
F9	22	20	2				
F10	11	10	1				
F11	14	10	4				
F12	20	20	0				
F13	12	10	2				
W1	16	10	6				
W2	10	10	0				
W3	• 15	15	0				
W4	15	15	0				
W5	17	15	2				
W6	12	10	2				
W7	11	10	1				
W8	10	10	0				
W9	12	10	2				

.

•

#### **Building Exterior**

.

Location	Exposure Rate uR/hr	Exposure Rate Background	Exposure Rate Net
W1	22	20	2
W2	22	20	2
W3	14	13	1
W4	16	13	3
W5	13	13	0
W6	10	10	0
W7	9	10	-1
W8	12	10	2

-

_

Appendix E

-

# Background Assessment Data Molycorp Washington, PA

٠

•

## **Background Assessment**

Material-specific background levels were established by RSI in late 2001 for each type of instrument used for total surface contamination measurements during their final status surveys of buildings 39 and 42. Similar instrumentation was selected for use by MACTEC to take advantage of this previously available information.

Background measurements were collected by RSI on surfaces of similar construction as the buildings at the site and having no possibility of being impacted by site operations. Measurements to establish background for a specific material were collected from multiple locations to provide an estimate of the variability or uncertainty. Background determination was performed using the same instrumentation that was used for final status survey data collection. An average background value was determined for each material surveyed. Background determinations were required and performed for concrete and a class of material designated a generic material.

The number of background measurements obtained per material type:

- Concrete minimum of 20 measurements
- Cinderblock minimum of 20 measurements
- Generic Material minimum of 10 measurements for each type of material surveyed (i.e., wood, insulation, corrugated steel, etc.)

MACTEC performed material-specific backgrounds for poured concrete with it's four large-area scintillator instruments. Results of the backgrounds matched those of RSI, and gave confidence that other material-specific background information established by RSI was valid for use. The most conservative backgrounds values were selected and used for all background subtracts for direct (static) type surveys performed.

Background measurements for poured concrete were calculated from surveys obtained at the Canton Volunteer Fire Department Station 52-1, Canton Township, PA on their poured concrete surfaces. A mean value for each instrument was calculated. The most conservative background value was selected and used by the Health Physics technicians for all instrument background subtractions.

Included in this appendix are the results of MACTEC's background assessment data.

٠

Poured Concrete Surfaces

Ludlum Model 2224-1 (129463) with 43-89 (169230)

Beta - Direct Measurements (cpm)

Unshield 360 318 379 344 342 396 336 328 358 351 347 405 350 388 354 349 395	Shield 301 267 287 269 290 266 273 272 314 256 272 276 284 299 292 257 277	Net 59 51 92 75 52 130 63 56 44 95 75 129 66 89 62 92
349 395	257 277	92 118
359	302	57
326 393	287 270	39 123
78		

Stand	28.8
Deviation	

10

•

Mean (cpm)

n_b

Readings taken at the Canton Volunteer Fire Department Station 52-1, Canton Township, PA on their poured concrete surfaces

.

Poured Concrete Surfaces

.

.

Ludlum Model 2360 (156371) with 43-89 (164832)

#### Beta - Direct Measurements (cpm)

• .

.

	Unshield 349 329 368 326 338 289 324 345 353 369 418 364 377 317 350 366 343 368 362 356	Shield 273 268 248 293 289 257 254 310 281 261 269 280 266 249 294 273 251 260 294 294 294	Net 76 61 120 33 49 32 70 35 72 108 149 84 111 68 56 93 92 108 68 89
· · · ·		207	00
Mean (cpm)	79		
Stand Deviation	30.9		
n _b	11		

Readings taken at the Canton Volunteer Fire Department Station 52-1, Canton Township, PA on their poured concrete surfaces.

.

Poured Concrete Surfaces

Ludlum Model 2360 (164680) with 43-89 (118544)

Beta - Direct Measurements (cpm)

.

ر

	Unshield 308 309 349 356 360 370 343 354 354 345 329 345 363 330 319 310 343 338 322 358	Shield 255 264 239 254 281 245 242 243 256 252 254 232 241 236 232 241 236 230 262 255 260 263	Net 53 45 110 102 79 125 101 111 98 93 75 113 131 89 83 80 81 83 62 95
Mean (cpm)	90		
Stand Deviation	22.3		

n_b

5

Readings taken at the Canton Volunteer Fire Department Station 52-1, Canton Township, PA on their poured concrete surfaces

٠

Poured Concrete Surfaces

Ludlum Model 2360 (145465) with 43-89 (145391)

Beta - Direct Measurements (cpm)

•

.

.

Unshield 348 321 345 418 377 361 318 359 405 354 310 390 308 360 340 359 359 356	Shield 272 260 282 271 269 273 266 302 281 263 231 263 231 299 256 261 253 292 266	<u>Net</u> 76 61 63 147 108 88 52 57 124 91 79 91 52 99 87 67 90
356	266	90
352 336 390	280 282 275	72 54 115
84		

Stand 25.8 Deviation

7

n_b

Mean (cpm)

Readings taken at the Canton Volunteer Fire Department Station 52-1, Canton Township, PA on their poured concrete surfaces

Appendix F

# **Instrumentation Data**

Molycorp Washington, PA

.

•

## Instrumentation Data

4

This data package contains instrumentation information (background, QC, and source response data forms) for the instruments used during the final status survey of Buildings 13, 14, 28, and 34.

•

## Routine Performance and Background Data Form

Instrument ID #: 115870	Cal. Due: 8-6-02	Source ID #: CS 137 7 1610
Mean Source Value: 204	Mean plus + 20% Value: 345	Mean plus - 20% Value: 163

.

			Meter	Scale		Background	
Date	Time	25 μrem (sat/unsat)	50 μrem (sat/unsat)	250 µrem +/-20% value	500 μrem +/-20% value	Reading	Sat/Unsat
3-12-02	0615			220	/	13	34+
3-13-02	0615			220	/	13	in
3-14-62	0618			220	/_	13	- Guirt-
					/		
			/				
					N_/		
		<u> </u>	/		/A	<u></u>	
		/					
		/					
	•	/			/·		
						<u></u>	
			·		/		
					/		
					<i>_</i> /		
				· · · · · · · · · · · · · · · · · · ·	/		
		V			<u>у</u>	1	

1

.____ t ____

## Routine Performance and Background Data Form

Instrument ID #: 115 8 70	Cal. Due: 8-6-02	Source ID #: (3 137 # 1610
Mean Source Value: 204	Mean plus + 20% Value: 245	Mean plus - 20% Value: 163

			Meter	Scale		Background	, ·
Date	Time	25 µrem	50 µrem	250 μrem	500 µrem	Reading	Sat/Unsat
		(sat/unsat)	(sat/unsat)	+/-20% value	+/-20% value		
2-13-42	0700		/	210	//	<u> </u>	55
2-19-02				200	/	12	S
2-15-02	0600			240	/_		4
2-18-01	0605		/	220		10	5
2-19-02	0605		/	200	/	10	<u> </u>
2-20-02	0620		/	190	/	12	5
2-21-02	0610			220	/	12	S
2-22-02	0615		_/	220	/	13	
. 2-25-02	0670	N_		210	N/	1.3	ک
2-26-02	0607	/		220	<u> </u>	13	
2-27-07	0612	/		720		12	5
2-28-22	0610			220		13	5
3-1-02	c615	/		220		12	_5
3-4-02	3603			240		1.3	5
3-5-02	0603	/		240		13	5
3.6-07	0625			220	_/	13	ح
3-2-07	0603			,200	<i> </i>	13	<u> </u>
3-8-07	0625			220	/	12	5
3-11-02	0619	/		220	YI	12	<b>う</b>

- 64

..

## QC Check Control Limits

Instrument: Medel-19 Micno. R ID: 115870 Date: 2-12-02

	20 Source-C	ount: Gam	ma	20 Source-Count: Background					
Source ID	D: <u>C3 137 1610</u>	Scale: 150		Scale:					
Count	Reading (x _i )	(x _i )-( $\overline{x}$ )	$[(x_i)-(\bar{x})]^2$	Count	Reading (x _i )	$(x_i)$ - $(\overline{x})$	$\left[(\mathbf{x}_{i})-(\overline{\mathbf{x}}_{i})\right]^{2}$		
1	200			1					
2	200			2					
23	320	<u> </u>		2 3					
4	310			4					
5	200			5					
6	210			6					
7	190			7					
8	205		1	8					
9	210			9					
10	200			10					
11	700			11					
12	200			12					
13	310			13	•				
14	220			14					
15	190			15					
16	740	····		16					
17	200			17					
18	200			18	1				
19	310		1	19	1				
20	205		1	20					
Total	4070	÷	1	Total					

 $\bar{x} = \frac{\sum x_i}{\sum x_i}$ 

Mean

20

•

Where:

 $\overline{x}$  = mean

 $x_1$  = each individual measurement

	Gamm	Back	grou		
$\overline{x} = 1$	204	20% =	41	$\overline{x} =$	
+20% =!	245	-20% =	163	+20% =	

Background Values									
$\overline{x} =$	20% = .								
+20% =	-20% =								

٠.

Reviewed: 1/1

____ Date: <u>3-14-02</u>

## Routine Performance and Background Data Form

Instrument ID	#: 22521	6 Ca	1. Due: 8-6-	02	Source II	D#: CJ 137	# 1610
Mean Source V	/alue: 30	58 Me	ean plus + 20% Val	ue: 250	Mean plu	ıs - 20% Value:	167
L				•			·
			Meter		Background		
Date	Time	25 µrem (sat/unsat)	50 µrem (sat/unsat)	250 µrem +/-20% value	500 µrem +/-20% value	Reading	Sat/Unsat
3-11-02	0618			ک ن <i>د</i> ے	/	12	<u> </u>
5-12-02	0715			210	/_	12	.5
3-13-02	0615			190	/_	13	5A4
3-14-02	0619			200	/	12	- cfot-
			/	. <u></u>	/		
			/		/		
					/		
		N	_/		N/A		
			/_A	· · · · · · · · · · · · · · · · · · ·			
		/		· · · · · · · · · · · · · · · · · · ·	/		
					/		
					/		
			_		/	·	
					/		
			-		-/		· · · · · · · · · · · · · · · · · · ·
		-/	-		-/		
		/			V		

43

## Routine Performance and Background Data Form

Instrument ID	#: 22526	Cal	. Due: 8/6/0.	r.	5	Source II	)#:C5 137	1610	
Mean Source	Value: 208	y Me	an plus + 20% Val	ue: 250	N	Mean plu	lus - 20% Value: 167		
				٠.					
			Meter	Scale			Background		
Date	Time	25 μrem (sat/unsat)	50 µrem (sat/unsat)	•		rem value	Reading	Sat/Unsat	
2.12.02	08 00			200			10	Sat.	
2-13-02	0700			180		/_	4	KAR-	
2-14-62	0606			.200		/	12	<u>\$4.8-</u>	
2-15-02	0600			200		_/		c4.4	
2-18-02	0605			140		_/	/0	C4+	
2-19-02	0605			200		_/	10	sat	
2-20-02	0620		_/	200		./	12	care	
2-21-02	0610	N	/	२०७	A_/	A	12	545	
2-22-02	c615		A	270	<i> </i>		13	Core	
2-25-02	0620	/		200			12	EAR	
2-26-02	0607			200	/		12	CAST-	
2-27-02	0612			200	/			144	
2-88-02	0610	/		_180	/		1:3	sis-t-	
3-1-02	0615	/		200			12	TAS-	
3-4-02	0603		•	200				cart.	
3-5-02.	0608			200	_/		j3	CHF	
3-6-02	0676			300	/		13	4AK	
3.7- 02	0603			180 <u> </u>	/		13	apr -	
3-8-02	0625	/		200	γ		13	544	

- ----

. .

••

QC Check Control Limits

Instrument: <u>Model 19 Micro R</u> ID: 22526 Date: 2-12-02

	20 Source-C	ount: Gam	ma	20	Source-Cour	it: Backgr	ound		
Source IE	): <u>(\$ 137[#]1610</u>	Scale: 250		Scale:					
Count	Reading (x _i )	(x,)-(x)	$[(x_i)-(\bar{x})]^2$	Count	Reading (x _i )	$(x_i)$ - $(\overline{x})$	$\left[(X_i)-(\overline{x})\right]^2$		
1	200			1			1		
2	300		1	2					
2 3	220			3		· · · · · · · · · · · · · · · · · · ·			
4	210			4					
5	210			5					
6 7	200			6			-		
7	220			7					
8	220			8					
9	200			9					
10	210			10					
11	310			11					
12	200			12					
13	2.20			13					
14	2,20			14					
15	200			15					
16	210			16					
17	200			17			<u> </u>		
18	200			18			1		
19	210			19	•		1		
20	210			20					
Total	4170			Total					

3

Where:

 $\overline{x}$  = mean  $x_i$  = each individual measurement

**Gamma Values** 208.5 20% = 41.7  $\overline{x} = |$ -20% = +20% = 166.8 250.2

Mean

Ŧ:

 $\sum x_i$ 

20

Background Values							
x =	20% =						
+20% =	-20% =						

1

Reviewed:

Date: 3-14-02

EFF. 251

Daily Instrumentation Operational Check Sheet

Instrument	2350	2.1	# 11756	<i>ь</i>	F	Probe: <u>4</u>	3-106	# 12	8912	
Cal Due: _		8-6.	02			Cal Due:	8	-6-02		
Source	1D. Te 49	N 3935	/lean Source Count Rate	1	4 N	lean +2 σ Value:	5282		n -2 σ /alue: 5 C	006
Radial Ty	lion pe:	B~5	Sigma Value	$\begin{array}{c c} & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \\$				137		
		Background				Source	Check		Res	ults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
3.7.02	1729				1	5146				Sat
3-8-02	0635	5	1679	1361679	l	5028			46	car
3-8-02	1400				1	5053				Sat.
3-11-02	0642	5	1884	378	1	5029			102	<4 <del>*</del>
3-12-02	_0630	5	1844	379	l	5014		/	102	<u>\$40</u>
						·				
				<b></b>				<u> </u>		
						·				
									•	

63

EFF . 212

Daily Instrumentation Operational Check Sheet

.

Instrument	:_ <u>2350</u>	-1 # //	1366		[	Probe 4	13-106	<del>#</del> 128	12	
Cal Due: _		5-6-	02			Cal Due:		8-6-02	<u></u>	
Source	Source ID: Mean Source Count Rate: $735$ Mean $+2\sigma$ Mean $-2\sigma$ Mean $-2\sigma$ Value: $785$ Value: $685$									
Radia Ty	lion /pe: C	×	Sigma Value	25	Mean +3 $\sigma$ Mean -3 $\sigma$ 660 Value: 810 Value:					60
Background						Source	Check		Res	sults ·
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
3-7-02	1726				1	762	$\frown$			Sat
3-8-62	0635	5	7	1,4		741	/	·/	9	4307
3-8-02	1400		<u> </u>			745				Saili
3-11-02	0642	5~	&	1,6	l	748			4	544
3-12-02	0630	5	7	1.4	(	_776			<u> </u>	415
	,									· · · · · · · · · · · · · · · · · · ·
									· · · · · · · · · · · · · · · · · · ·	
			, <u>,</u>							
				·						
			l	l						

-

.

EFF 251 Daily Instrumentation Operational Check Sheet										
Instrument	:_2350	-1 7	# 1175	66		Probe: <u> </u>	13-106	# 138	912	
Cal Due: _		8-	6-02			Cal Due:		8-6-02		
Source		3935 N	Mean Source Count Rate		4	Vean +2 σ Value:	5282		n -2 σ /alue: 🛃	006
Radia Ty	tion ype: 7	3 - 3	Sigma Value	: 69	, <b>I</b>	Mean +3 σ Value:	5351		n -3 σ /alue: 4	937
		Background	l			Source	Check		Re	sults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
2-23-02	1430	5	1547	369	1	5013	~		101	544
2-25-02	0640	5	1678	336	<u> </u>	5140			96	-East
2-25-02	17.10	5	-1484		/	5026				Sit
2-26-02	5610	5	1987	347		5012			104	4400
2-26-07	1725					5270				Sot
12-27-02	0659	_ 5_	:172	354	1	5168			99	54+
2-24-02	0607	5	1643	334	<u> </u>	5149			96	-344-
3-1-02	0630	.5	i760	35.7	<u> </u>	5022			99	544
3-1-02	2011					5242				pat.
3-4- 12	6676	5	_1748_	350		5096			48	341-
	1720	<u> </u>	1110		<u> </u>	5130				pat.
3-5-02	0630	5			<u> </u>	5018			96	6+-
3-5-02	001				<u>`</u>	523(e				Sat.
3-6.02	1730	5		-727		5092			95	sot
3-4-02	4630	5	1712	3:12	1	5105	~		92	47

**

...

E.F.F . 212

Instrument	: 235	0 - 1	* I	17566		Probe:	13-106	# 1289	12	
Cal Due: _		8-0	6-02			Cal Due:		8-6-0	). 2	
Source		0 3937 N	/lean Source Count Rate	لاحمسما	5 N	/lean +2 σ Value: [	785		n -2 σ /alue: 6	85
Radia Ty	lion pe: C	× ^s	Sigma Value	: 25	- N	/lean +3 σ Value: [	810		n -3 σ /alue: 6	60
Background Source Check Results						sults				
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
2-23-02	1430	5	.5	1	1	740	~	1	8	
-75.02	0640	5	10	2	1	638		/	10	44.4
2-25-02	1715				1			·		Soft
2-26-02	0610	5	<u> </u>	1.8	1	715			;o	SAK
2-26.02	1715					_779_				Sat
2-27-02	0609	5	4	.8	i	776			7	64+
2-28-02	0601	5		2:6	I	-769			/	44-t
3-1-02	063N				<u>`</u> l	750			10	50m
3.1.02	1700					762			<u> </u>	-set.
3-4-02	0626	5	16	3.2	11	- <u>753</u> 707			17	_st.
5-4-02	_1730				<i> </i>	_707				Dat.
3-5-62	0630	_5	12	2.4		718				SAT.
3-5-02	1700				1	<u>    733     </u>				SAT.
3-6-02	0610	5	<u> </u>		ll	704				
3.12-02	1730				<u> </u>	733				int
3-7-02	0630	5		2.2	l}	-738			10	EAR

Instrument: <u>2350~1</u> ID: <u>117566</u> Date: <u>2-22-02</u> Detector: <u>43-106</u> ID: <u>128412</u> Operating Voltage: <u> $\frac{1469 \times 1550}{1550}$ </u>

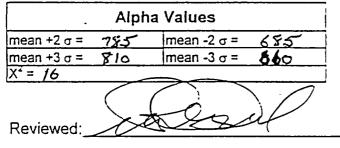
DETERMINATION OF SOURCE QC LIMITS

	20 Source-Count: Alpha							
Source ID	76.230 39	37						
Count	Gross Cts (x _i )	$(x_i)-(\overline{x})$	$\left[(X_i)-(\overline{X})\right]^2$					
1	724	-11	121					
2	749	14	196					
3	702	-33	1089					
4	731-	-4	16					
5	717	-18	324					
6	774 .	39	1521					
7	719.	-16	256					
8	765	30	400					
9	721	-14	196					
10		-21	441					
11	739-1	4	16					
12	726	-4	81					
13	680	- 55	3025					
14	736	1	i					
15	765	<u>3e</u>	900					
16	7.55	20	409					
17	720	-15	225					
18	758	23	529					
19	772	37	1369					
20	742	7	49					

Count	Gross Cts (x _i )	$(x_{i}) - (\bar{x})$	$[(x_i)-(\bar{x})]^2$
1	5154	10	100
2	5084	-60	3600
3	5097	-47	3209
4	5064	-47 -80	6400
5	5203	59	3481
6	5127	-17	289
7	5038	-106	11236
8	5290	146	21316
9	3060:	- 84	7056
10	5096	-48	1304
11	5189	45	2025
12	·-5131	13	/69
13	5102	- 42	1764
14	5237 .:	93	8649
15	5221	77	5929
16	5182	38	1444
17	5154	10	100
18	5-232	- 88	7744
19	5141	-3	9
20	5080	-64	4096

•

20 Source-Count: Beta


Source ID: 7299 3935

$\overline{x} =$	735	a =	25
2σ =	50	3σ =	75

	Mean	Sigma
!	$=\sum x_i$	$\overline{\Sigma(x_i-\overline{\tau})^2}$
I.	$x = \frac{1}{20}$	$\sqrt{(n-1)}$

: Where:

- $\sigma$  = standard deviation
- $x \overline{x} = \text{mean count}$
- $x_{t}$  = each individual measurement
- in = number of measurements



2σ =	138	3σ =	207	
				-
	Chi-sq	uared		
	$\chi^2 = \sum_{i=1}^{n} ($	$\left(\frac{n-n}{n}\right)^2$		

σ=

69

Where:

ī

n = data for individual counts

র্ত। 44

n = average of the twenty data points

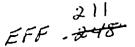
Beta Values						
mean +3 $\sigma = 5351$	mean -2 o = 5006					
mean +2 $\sigma$ = 5282	mean $-3\sigma = 4937$					
$X^2 = 17$						

Date: 3-14-02

3

EFF . 248

----


- -

.

Instrument: 2350-1 # 117014 Probe: -43-106 # 133866 Cal Due: _______ &-13-02 Cal Due: ______ &-6-02 Mean -2 σ Mean Source Mean +2 σ Source ID: 4832 4608 Value: Tegg 3935 4720 Value: Count Rate: Mean -3 o Mean +3 σ Sigma Value: Radiation 4888  $\mathcal{B}^-$ 56 4552 Value: Value: Type: Results Source Check Background W/I3σ LLD SAT/ BKGD Count Gross W/I 2 σ Count Gross Date Time UNSAT Counts Value Value CPM Time (min) Time (min) Counts / 93 244 4773  $\checkmark$ 1587 317 3-1-02 5 0627 Sat 4659 ____ 1720 3-7-02 ...... 4831 13 cat-1 / 316 5 0638 1582 3-8-02 50 7 4672 -----____ ____ -----1415 3-8-02 -----92 4708 544-/ / 311 1556 5 3-11-02 0637 94 Sart 321 4723  $\checkmark$ / 1604 0625 3-12-02 5 Ţ .

44

••



٩.

Instrument: $2350 - 1 + 117014$				f	Probe: <u>4</u>	3-106	<del>™</del> 1 <u>338</u>	66		
Cal Due: _		8-13	3-02		(	Cal Due:		8-6-0	2	
Source ID: Mean Source $723$ Mean +2 $\sigma$ Mean -2 $\sigma$ Mean -2 $\sigma$ Count Rate: 723 Value: 775 Value: 671						71				
Radia Ty	lion /pe: C	×	Sigma Value	: 26	N	/lean +3 σ Value:	801		n -3 σ /alue: 6	45
Background Source Check Results						sults				
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 ơ Value	LLD	SAT/ UNSAT
3-7-02	0627	5	12	2.4	1	743		/	11	544
3.7-02	1719	_	-		1	677				Sat
3-8-02	0638	5	4	.8	l	747			1	Saft
3-8-02	1415				1	723				
3-11-02	0637	5	7			712	<u>/</u>			<4+
3-12-02	0625	5		2.2	l	757	V		0	5217-
							· <u></u>	·		
	<del></del>			. <u> </u>			·			
		·								
··								-		
					,			یرج با فانگریسی می بیش اور ا		
					. <u></u>				·	
								•	l	l

- - -

DETERMINATION OF SOURCE QC LIMITS

Instrument: <u>2350-1</u> ID: <u>//70/4</u> Date: <u>3-6-02</u>

3

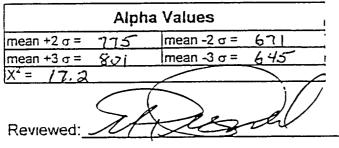
20 Source-Count: Beta

Source ID: 76 99 3935

Detector: <u>43-106</u> ID: <u>133866</u> Operating Voltage: <u>x1350 P</u> 1800

	20 Source-Count: Alpha							
Source ID	: Th-2.30 3	937_						
Count	Gross Cts (X _i )	(Xi)-( x̄ )	$[(X_i)-(\bar{x})]^2$					
1	-710-	-13	169					
2		·-4	16					
3		13	169					
4	· 696 ····	-17	289					
5	-783	60	3600					
6	· 744 ·	~ 21	441					
7	1.687 .	-36	1296					
8	1 741	118	324					
9	1 7:32:	4	81					
10	~728	5	25					
11	733:	10	100					
12	742	19	361					
13	656 :: '	-67	4489					
14	1 .737	14	196					
15	1 721-	-2	4					
16	1717	-6	36					
17	736	13	169					
18	707	-16	256					
19	137		196					
20	707	-16	256					

$\overline{x} =$	723	σ=	26	
2σ =	· 52	3σ =	78	


	the second s	and the second	
Count	Gross Cts (x,)	(x,)-(x)	$[(x_i)-(\bar{x}_i)]^2$
1	4683	-37	1369
2	4741	21	441
3	4826	106	11236
4	4718	106	4
5	4775	55	3025
6	4751	31	961
7	4661	-59	3481
8	4677	-43	1849
9	4809	89	7921
10	4741	21	441
11	4736	16	256
12	1 4701	-19	361
13	4121	1	1
14	-1686	-34	1156
15	4700	-20	+ 400
16	4612	-108	11664
17	4767	47	2209
18	4623	-97	9409
19	1 4700	-70	400
20	4170	50	2500

<del>.</del>	4720	σ =	56
2 <del>0</del> =	112	3σ =	168

Mean	Sigma
$\sum x_i$	$\sigma = \left[ \frac{\Sigma f_{x_i} - \overline{x} f^2}{2} \right]$
$x = \frac{1}{20}$	0 - V (n-1)

Where:

- $\sigma$  = standard deviation
- $\overline{x}$  = mean count
- $x_{i}$  = each individual measurement
- n = number of measurements



Chi-squared
$\chi^2 = \frac{\sum (n-\overline{n})^2}{2}$
n

Where

- n = data for individual counts
- n = average of the twenty data points

Beta Values						
mean +3 σ =	4888	mean -2 c = 4608				
mean +2 σ =						
$X^{2} = 12.$	5					

Date: 3-14-02

44

٠

Instrument	:350	<u>) - I</u>	# 953	54	I	Probe: <u>4</u>	3-37 7	<u>ั 04350</u>	.3	
Cal Due: _		8-	<u>لون سئ</u>			Cal Due:	,,	8-6-0;	ι	<u></u>
Source			lean Source Count Rate			/lean +2 σ Value:	5464		n -2 σ /alue: 5	152
Radia Ty	tion /pe: <i>F</i>	3- 5	Sigma Value	78		/lean +3 σ Value:	5542		n -3 σ /alue: <u></u>	0.76
		Background	· · · · · · · · · · · · · · · · · · ·			Source	Check		Res	ults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
3.7-02	1724			<u> </u>		5266				Sat.
3-8.02	1724 1405					5292				Sat
3-11-02	0635	5	6-137	1245	!	5346		$\overline{}$	186	50+ 50+
3-12-02	0625		6303	1261	l	-5282			184	741
										. <u> </u>
							·			
ļ							·			
		<u> </u>								
		-	•					·		
								L		

EFF.27

EFF.207

Daily Instrumentation Operational Check Sheet

Instrument	:350	<u>v-1</u> 74	95359	)		Probe: <u>4</u>	13-31	# 09250	3	
Cal Due: _		8-6	-02			Cal Due:		8-6-02		
Source Radia	$Th_{23}$	3437	Aean Source Count Rate Sigma Value	729		/lean +2 σ Value: [ /lean +3 σ [	783	\ 		15
Ту	vpe: C	×		27		Value:	810	\	alue: 6	48
		Background				Source	Check		Res	sults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
3-7-02	17 22				1	7.59				Sat.
3.8.02	1400		-		/				-	Sat
3-11-02	0635	5	\$2	16	1	749			23	244-
3-12-02	0625	5	49	10	<u> </u>	776		<u> </u>	19	Sat
						·				
					· · · · · · · · · · · · · · · · · · ·					
							· <u></u>			
				·····						
	·									
			II							

H4

EFF . 27

Instrument	233	50-1	·**	15359		Probe:	13-37	# 093	2503		
Cal Due: _		8	-6-02			Cal Due:	8	-6-02			
Source		39.3.5	/lean Source Count Rate			Mean +2 σ Value:	5464	Mear	n -2 σ 5 /alue:	-152 -152 	02
Radia Ty	lion pe: <i>F</i>	3- 5	Sigma Value		N	Mean +3 σ Value:	5542		n -3 σ /alue: <u></u>	-076	
[		Background				Source	Check		Res	sults	
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT	
2-25-02	0638	5	6317	1263	1	5328	/	/	184	LAX	
2-25-02	1725			5		5342				Sut	
2-26-02	0606		6433	1287		5306		<u> </u>	185	444	
2-26-02	1715				<u> </u>	5404		-		MB	
2-27-02	0605	5	6614	1323	ii	5400			188	esa	
2-27-02	1700				l	5403		<u> </u>		Sat	
2-28-03	06:3	5	6404	1282	11	5313			185	547	
3-1-02	366.5	5	6586	_1317_	(	5396			188	EAK	
3-1-02	1)15				\\	5307				sat.	
3-4-02	2620	.5	6454	1292	l1	5316			186	Side Yes	
3-4-02	1715	-	<u> </u>	<b>&gt;</b>	1	5401				vat:	
3-5-07	0620	.5	6483	1297	1	5360			186	C	
3-6-62	0608	- 5	6249	1250	l	5361			183	CAT-	
3-6-02	1730				<b>\</b>	5243				Sat.	
3-7-02	0625	5	6470	1294	ll	5224			156	5Ar	
3-8-02	0644	5	6232	1246	<u> </u>	5418			183	44×t	

EFF . 207

Instrument	:23:	50-1	₩ 953;	54		erobe: <u></u>	3-37	× 042.	503	
Cal Due: _		8-6	-02			Cal Due:	S	-6-02		
Source		0 <u>3937</u>	Aean Source Count Rate			Vean +2 σ Value:	783		n -2 σ /alue:	15
Radia Ty	tion /pe: C	×	Sigma Value	: 27		Vlean +3 σ Value: [	810		n -3 σ /alue: ິ໒	48
		Background				Source	Check		Res	sults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
7-25-02	0630	5	41	8		684			17	tool
2.25-01	1729		}	)	1	685	·	<u> </u>		Sut
2-26-02	0006	_5	52_	0		720			19	94#
2-26-02	1720					-6716				_Sat_
2-27-02	0605	5	41	8	i	178				SAC
2-27-02	1705				I	752				Gat
2-28-02	0603	5	55	1/	11	714			20	ciget
3-1-02	0605	5	.50		<u>(</u>					stre _
3-1-02	1715				(	<u>777</u>				Aact.
3-4-02	3620	_ 5	73	15	1	769,			22	445
3-4-02	_1710_				ll	744				sat.
3-5-02	0620		_54	12	<u>     l                               </u>	.762		/	20	
3.6-02	2008		_53_		·				20	CAT
3-6-0.2	17.20	<u> </u>			l1	141	<u> </u>			yat.
3-7-02	2625		46	4.2	!	712			18	eq-t-
3-5-07	0644	5	46	4.2		747_	~		18	45

DETERMINATION OF SOURCE QC LIMITS

\$

Instrument: <u>2350-1</u> ID: <u>95354</u> Date: <u>2-23-02</u>

Detector: <u>43-37</u> ID: <u>092503</u> Operating Voltage: <u>13500/1800</u> /3-

:

20 Source-Count: Alpha							
Source ID: 76230 3937							
Count	Gross Cts (x _i )	(x,)-(x)	$[(x_i)-(\bar{x})]^2$				
1	722 :	-7	44				
2	745	16	256				
3	:	10	100				
4	- 800-	71	5041				
5	. 722 .	- 7	49				
6	-689	- 40	1600				
7	768	· 39	1 1521				
8	735	6	36				
9	752	3	524				
10	754	25	625				
11	693-	-36	1296				
12	640	-34	1521				
13	721	- 8	64				
14	711	-18	324				
15	723	-6	36				
16	729	0	0				
17	723.	-6	36				
18	697	-32	1024				
19	736	7	49				
20	722	~7	49				
$\overline{x} = 1$	729	σ=	27				

20 Source-Count: Beta							
Source ID: 7E 99 39.3.5							
Count	Gross Cts (x _i )	(x,)-(x)	$\left[\left(X_{i}\right)-\left(\overline{X}\right)\right]^{2}$				
1	5383	75	5675				
2	5330	22	484				
3	5376	68	4624				
4	5370	62	3844				
5	5400	92	8-16-1				
6	5292	-16	256				
7	5421	113	12769				
8	5293	-15	225				
9	5280	-25	754				
10	5243	-65	4225				
11	5385	77	5929				
12	. 5270	-38	1444				
13	5268	-40	1600				
14	5307	- 1	<u> </u>				
15	5151	- 157	24644				
16	5299	- 4	81				
17	5291	-17	289				
18	5122	-186	34596				
19	5293	-15	225				
20	5378	70	4900				

$\overline{x} =$	5308	σ=	78	
2σ =	156	3σ =	234	

Mean	Sigma		
$\sum x_i$	$T = \left[ \sum_{i=1}^{n} r_i - \overline{x} \right]^2$		
$x = \frac{1}{20}$	0 - V in-11		

3σ =

84

; Where.

2<del>0</del> =|

 $\sigma = standard deviation$ 

54

- $\overline{x}$  = mean count
- x, = each individual measurement
- n = number of measurements

	Alph	a Values	:
mean +2 σ =	783	mean -2 $\sigma$ =	67.5
mean +3 σ =	810	mean -3 σ =	6-18 .
$X^2 = 19$			
Reviewed:	A		Der/

Chi-squared	
$\chi^2 = \frac{\sum (n-\overline{n})^2}{2}$	

#### Where.

- n = data for individual counts
- n = average of the twenty data points

	Beta	Values	5152	1
mean +3 $\sigma$ =	5542	mean -2 σ =	5-76-12	د- <del>ور</del> م
mean +2 $\sigma$ =	5464	mean -3 σ =	5+52 2	َنِ
$X^2 = 22$			5076	-

-/____ Date: <u>3.14-0</u>2

- -

EFF. 165

Instrument:	2929	<u></u>	5,220,2			Probe:	43-10	## 1565	79	
Cal Due:		2-6-0	3			Cal Due:	2	-6-03		
Source	ID: Tequ		lean Source Count Rate:			Vlean +2 σ Value:	2720		n -2 σ /alue: _2.	540
Radiat Ty	ion pe: 7	3 - 5	Sigma Value:	45		Mean +3 σ Value:	2765		n -3 σ /alue: _2·	495
		Background				Source	Check		Res	ults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
2-23-42	1310	50	2266	45	1	2656	/	1		LOR
2.25-02	0600	4	2331	47	4	2660				
2-76-0%	0603		2388	48		3621	~		3.5	<u></u>
2-27-62	0600		3212	44		_2636	<u> </u>		34	54.4
1-28-02	0600		2794	46		2562				42.00
3-1-02	6600		2251	45		2592			34	545-
3-4-02	1600		7288	<u> </u>		2652	~		35	54.54
3-5-02	0605		2143			2571			34	RANT LAT
3-6-02	0605		2207	44		2581			34	
3-2-02	0600		2247	45		2577			35	cart-
3-8-02	06:5		2279	<u>    46    </u>		2564	v		34	400
3-11-02	0615		1245	<u> </u>		2559			34	CAT
3-12-02	0812		2166	<u> </u>		2548	V		35	4pt
3-13-02	0610		2250	-10		2650	1	/	34	54 <del>-1</del>
3-14-07	0615	50	<u> </u>		1					

44

EFF - 344

Instrument	2929	^{##} 15	2202		I	^o robe:	43-10	-# 150	519	
Cal Due: _			2-6-03			Cal Due:		2-6-03		
Source	ID: Thase	1	lean Source Count Rate	1 1		lean +2 σ Value:	1304	1	n -2 σ /alue:   / /	36
Radial Ty	lion	×	igma Value	42		lean +3 σ Value:	1346		n -3 σ /alue: / σ	094
		Background			•	Source	Check		Res	ults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	, W/i 3 σ Value	LLD	SAT/ UNSAT
2.23-67	(310	50	7	.14	1	1224		~	- 4	- 4A K
2-25-02	0600	A	8	.16	ŕ.	1273		/	5	444
2-26-62	0603		7	.14		1193			<u> </u>	3,200
2-27-02	0600		9	.18		1202	~		5	- Chr
1-24-02	06:50		16	. 32		1217	~~~	<u> </u>		49.2
3-1-02	0600		9	.18		1195			_5	fort
3-4-02	0600		8	,16		1232				52.00
3-5-02.	0605		<u> </u>	.14		1206				540
3-6-02	0605		13	. 26		1212	V		5	1000
3-7-02	0600			14					4	24.V
3-8-02	d15_		- 8	.16		1247			<u> </u>	.245
3-11-02	0615		6	.12		1282				- SAA
3-12-02	0612					1196	<u> </u>	· /	<u> </u>	Str.
3-13-02	0610		14	-25-		1224	<i>S</i>		<u> </u>	545
3-14-02	0615	¥	- Ý	,16	<b>Y</b>	/233			<u>_</u>	-244
		50				L			I	L

- 64

EFF . 165

•

••

Instrument:	2929		152202	2	٩٩	Probe: <u>43</u>	8-10-1	# 156	519	. <u></u>
Cal Due:	2-6	5-03		. <u></u>	(	Cal Due:	2-6-	٥3		
Source	ID: <i>Tc 99</i>		lean Source Count Rate			lean +2 σ Value: _	2810.6		n -2 σ /alue: کھ	65.4
Radiat Ty	ion pe: 7	- 8	Sigma Value	61.3	3 N	lean +3 σ Value:	2871.9	Mear ∨	n -3 σ /alue: 25	64,1
[		Background	<u> </u>			Source	Check		Res	sults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
2-13-02	06:50	ۍ <del>ت</del> د	3203	44	i	2605	V		33	SAT
Q-14-62	0604	50	2349	-18	1	2668			35	525
2-15-02	0607	50_	2345	-18_	<i>l</i>	_2674_				- SAY
2~18-02	0600	50	2313	- 46	l	2568			35	1404
2-19-02	0602	50	_2311	47		2576				247
2-20-42	0610	50	2388	- 48_		2728				594
2-21-02	0605	50	1404	<u> </u>	/	2718			35	- Capet
2-22-02	0600	50	1306_	16	l	2579_				- 4++
				. <u> </u>						
				······································						
	·									
		-		· · · · · · · · · · · · · · · · · · ·						

EFF. 344

# Daily Instrumentation Operational Check Sheet

4.

..

Instrument	2929	#	52202		{	Probe: <u>43</u>	-10-1	# 15	6519	
Cal Due: _	2-6	-03			(	Cal Due:	2-6	- 03	,,,	
Source		1	lean Source Count Rate	1 10/	8 8	lean +2 σ Value:	1348		n -2 σ /alue:   //	68
Radial Ty	ion pe: 🗢	c s	igma Value	45	- N	lean +3 σ Value:	1343		n -3 σ    // /alue:    //	23
	• • • • • • • • • • • • • • • • •	Background				Source	Check		Res	ults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
2-13-02	6650	50	3	.06	1	1275	$\checkmark$		4	Sut
2-14-02	0604	50	<u> </u>	.18		1255			4.7	- 545-
2-15-02	0607	50	<u> </u>	.18	l	1202				
2-18-02	otos	50	8	-16	1	1187_			5	- 147-
2-19-02	0602	.50				1231			6	<u> </u>
2-20-02	0610	50		.12		1205				rat .
2-21-02	0605	50		.12	· · · · · · · · · · · · · · · · · · ·	1252				Set -
1-71-67	0600	50		<u> </u>	II	A				
									·	•
	•••••			,,,,,,,,,,,						
			· · · · · · · · · · · · · · · · · · ·							
										· · · · · · · · · · · · · · · · · · ·
			<b></b>					<u></u>		·
									·	
					l					

DETERMINATION	OF	SOURCE	QC	LIMITS
---------------	----	--------	----	--------

ð

Instrument: <u>2929</u> ID: <u>152202</u> Date: <u>2-22-02</u>

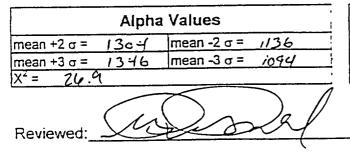
2

20 Source-Count: Beta

Detector: <u>43-10</u> ID: <u>156519</u> Operating Voltage: <u>750</u>

	20 Source-Count: Alpha						
Source ID	Source ID: Th 230 3437						
Count	Gross Cts (Xi)	(x _i )-(x̄)	$\left[\left(X_{i}\right)-\left(\overline{X}\right)\right]^{2}$				
1	17187	- 33	1089				
2	1706	-14	196				
3	1296:	76	5176				
4	1 1244	27	-729				
5	-1246.	26	676				
6	-1212-	- 8	64				
7	1175	-45	1 2025				
8		-23	529				
9	1275	56	3136				
10	1. 117 Jul	- 48	2304				
11	1308 1	88	7744				
12		-23	529				
13	1219 :	-1	1				
14	1217 :	-3	9				
15	1205	-15	225				
16	1196	- 24	576				
17	1267	47	2209				
18	1225	5	25				
19	1157	-63	3969_				
20	1188	-32	1024				

$\overline{x} =$	1220	σ =	42
2σ =	84	3σ =	126


	20 000100 0	ound 200	
Source ID:	TC 99 393	3.5	
Count	Gross Cts (x,)	(x,)-(x)	$[(x_i)-(\bar{x}_i)]^2$
1	2627	- 3	ч
2	2614	-16	256
3	7660	30	900
4	2673	-43	1849
5	7608	-22	484
6	2723	43	8649
7	2577	-53	2809
8	2616	-14	196
9	2610	-20	400
10	2680	50	2500
11	2542	- 88	1744
12	- 2616 -	-14	196
13	2562	- 68	4624
14	2627 -	- 3	9
15	2595	-35	1225
16	2682	52	2704
17	2684	51	2916
18	7623	-7	49
19	2657	27	1 729
20	763:5	5	25

7 =	2630	σ=	45	
2σ =	40	<u>3σ</u> =	135	

Mean		Sigma
$\sum x_i$	1	$\sum (x_i - \overline{x}_i)^{-1}$
$x = \frac{1}{20}$		$\sigma = \sqrt{\frac{(n-1)}{(n-1)}}$

Where

- $\sigma$  = standard deviation
- $\overline{x}$  = mean count
- $x_1$  = each individual measurement
- n = number of measurements



Beta Values		
mean +3 $\sigma$ =	2765	mean $-2\sigma = 2540$
mean +2 σ =		mean $-3\sigma = 3495$

Date: 3-14-02

#### Where.

- n = data for individual counts
- $\overline{n}$  = average of the twenty data points
- Chi-squared  $\chi^2 = \underline{\sum (n-\bar{n})^2}$

4

, 134

Instrument:	29	29	# 11556	3	F	Probe: <u>4</u> .	3~10	# 1272	6	
Cal Due: 6-19-02				(	Cal Due:		5-19-02			
Source		3435 N	Aean Source Count Rate		N2 N	lean +2 σ Value:	3994	Mear	-2 σ alue: <u>3</u> *	150
Radiation Sigma Value:					N	lean +3 σ Value:	4055		n -3 σ /alue: 3	689
ſ		Background		. <u> </u>		Source	Check		Res	ults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
		50	3503	70	1	3855	~	/	42	sar
1-23-02	1310		3542	71	4	3750	V	<u> </u>	42	540~
2-25-62	<u>0603</u>		3705	10		3785	~	<u> </u>	42	11th
1-26-02	<u> </u>		3:46.5	64		3.754			47_	445-
2-27-02	0600		3560	70		3823			42	614
2-28-02 3-1-02	06:00		3-17-1	64		3774			42	
3-4-03	0500		3433	69		3886	<u> </u>		4.2	547
3-5-02	0405		3-174	าง		3815				- Gost-
3-6-02	0605		1533						42	int
3-7-02	0600		3463	69		3780			42	544
3-8-02	0615		3534			3839		1	42	C+7-
3-11-02	3615		1411	69		3783			42 42	545 54T
3-12-02	0610		3433_	69	·	3766			42	Ser .
3-13-02	0610		3468	69		3794			42	
·. 14 ·02	0615	↓ ↓	3504	70	<b>↓ ↓</b> −	3794			<u> </u>	"AT
		50			<u> </u>		l	l	l	L

ş

.

.35

Instrument:  $3929 \frac{517}{15563}$  Probe:  $43-10 \frac{47}{127216}$ 6-19-02 Cal Due: 6-19-02 Cal Due: _____ Mean -2 σ Mean +2 σ Mean Source Source ID: 1485 1337 Value: Value: 1411 Count Rate: 76 230 3935 Mean -3 σ Mean +3 σ Sigma Value: Radiation 1522 1300 37 Value:  $\propto$ Value: Type: Results Source Check Background SAT/ LLD W/13 σ Gross W/I 2 σ Count BKGD Gross Count Time Date UNSAT Value Value Time (min) Counts CPM Time (mln) Counts / 5 1377 spe 8 -16 50 1310 2-23-02 .5  $\checkmark$ / 40.5 1399 CI .18 4 0600 1-25-02 سعوجه 4 ~ 1457 5 -1 ير 0603 2-26-02 1 5 51+ 1 1451 Ġ .18 0600 1-21-07 4 4++ / 1435 / .14 .7 0600 2-28-02 EAR 1423 1 / / ÿ .18 3-1-02 0600 5 EARC 1 1395 . 22 11 3-4-02 Oérro 4 Stort ~ / 1472 7 ,14 0505 3-5-02  $\checkmark$ 5 GAT 1 1408 122 3605 3-6-02 11 40 1399 1  $\checkmark$ 5 Ц .16 0600 3-7-03 com-/ 4 1365 / .14 7 3-8-02 0615 4 / 44 / 1409 112 3-11-02 0615 6 5 Sam / .18 1407 / ч 3-17-02 0610 aque  $\checkmark$ 6 1446 ~ ,2 10 3-13-02 0610 Test  $\checkmark$ 5 1453 / 0615 11 ,22 ≁ 3-14-02 . 50

ć.

..

EFF . 239

Instrument	242	9 71	11556	3	F	Probe:	43-10-	1 77	127216	
Cal Due:6/19/32					(	Cal Due:	· · · · · · · · · · · · · · · · · · ·	6/14/0	2	
Source	ID: Te go	N 1 3935	lean Source Count Rate		/	lean +2 σ Value:	3826		n -2 σ alue: <u>3</u> 5	96
Radiation Type: $\beta$ Sigma Value: $57.5$						lean +3 σ Value:	3883.5	Mear	n -3 σ /alue: <u>35</u>	38,5
	<u></u>	Background				Source	Check		Res	ults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 ơ Value	W/I 3 σ Value	-++0- 0- 	SAT/ UNSAT
2-13-62	0650	50	3370	6.7	1	3815			11- 222-41	ح
2-14-02	0602	50	3:591	7.2		3646			43	
2-15-07	0805	50	3570	<u> </u>	<u> </u>	3678			42	
2-18-02	0600	50	3502	.10		_3637_		/	42	5
2-19-02	0600	50	3519		(	3721			42	5
2-20-02	_0610	50	3477	10		3758			42	
2-21-07	0605	50	-3463_	69	/	-3814			42	
			···							

..

EFF ,3508

•

**Daily Instrumentation Operational Check Sheet** 

**63** 

•

# 115563 Probe: <u>43-10-1</u> # 127216 Instrument: <u>2929</u> Cal Due: ______ 6/14/02 Cal Due: _____ 6-14-02Mean -2 σ Mean +2 o Mean Source Source ID: 1562 1372 1467 Value: Count Rate: Value: Th 230 3937 Mean -3 σ Sigma Value: Mean +3 σ Radiation 1609 1325  $\propto$ 47 Value: Value: Type: Source Check Results Background - ELED V W/I 2 σ W/I 3 σ SAT/ BKGD Count Gross Time Count Gross Date UNSAT Time (min) Counts Value Value CPM MDAN Time (min) Counts 5 / 13 1492 5 .26 50 2-13-62 0650 5 ~ 4 1415 .2 50 2-14-02 10202 10 5 / ۶ 1415 .2 ____ 0605 2-15-02 50 11 5 5 ~ 1505  $\checkmark$ -1.8 0600 4 2-15-02 50 5 1433 5 13 , 26 2-19-02 0600 50 1490 5 / 5 0610 ,24 50 12 2-20-02 5 5 1383 1 0605 10 55 2-21-02 .

•

١.

DETERMINATION OF SOURCE QC LIMITS

\$

Instrument: <u>2929</u> ID: <u>115563</u> Date: <u>2-22-02</u>

Detector: <u>43-10</u> ID: <u>127216</u> Operating Voltage: <u>1045</u>

£.

1	23c 3 oss Cts (x) 7351 7424	9 <u>37</u> (x ₁ )-(x̄) 1 <u>3</u> ~60	$\frac{[(x_{i})-(\bar{x})]^{2}}{769}$
1	7-351	13	
2 77 3 72 4 ~4 5 77	7:35"	13	110
3 74 4	7351	-60	1 /07
4 5	-1426	YY	3600
4 5		15	225
	×*****	-26	676
<b>C</b>	1419	30	64
6 -	1423	12	144
7	442	31	961
8	1420.	٩	81
די פ	-1402	- 9	81
10 10	1345	-66	4356
11 🖙	7447	36	1296
12	1367_	- 44	1936
13	-1414	3	9
14 124	1439	25	784
15 :-	1452	41	1681
16	1340	-71	5041
17 -	.1438	27	729
18	-1389	-22	484
19 '	1419	8	64
20 ·		65	

20 Source-Count: Beta										
Source ID: 7 - 49 3935										
Count	Gross Cts (x _i )	$(x_i)$ - $(\overline{x})$	$\left[\left(X_{i}\right)-\left(\overline{X}\right)\right]^{2}$							
1	4045	173	29929							
2	3853	-19	361							
3	3909:	37	1369							
4	-3900 .	28	784							
5	.38.38	- 34	1156							
6	3870.	- 2	4							
7	-3862 -	-10	100							
8	3904	32	1024							
9	379.6	-76	5276							
10		90	8/00							
11	\$3905	33	1089							
12		-21	441							
13		-2	4							
14		~10	100							
15	3804	-68	4624							
16	3850	-22	484							
17	3910 :-	38	1444							
18	3835	-37	1369							
19	3881	<u> </u>	81							
20	3258	-114	12996							

$\overline{x} =$	1411 .	σ=	37
2σ =	74	3σ =	111

	Mean	i	Sigma	
1	$\sum x_i$	4	$\sum \left(\sum (x_i - \overline{x}_i)^2\right)$	,
;	$\overline{x} = \frac{1}{20}$		$\sigma = \sqrt{(n-1)}$	

Where.

- ι σ = standard deviation
- $\pm \overline{x} = \text{mean count}$
- $x_1$  = each individual measurement
- n = number of measurements

Alpha Values								
mean +2 $\sigma = 1485$	mean $-2\sigma = 1337$							
mean +3 $\sigma = 1522$	mean $-3\sigma = /3\sigma - 0$							
$X^2 = 18.8$								
Reviewed: Ulan								

Chi-squared	
$\chi^2 = \frac{\sum (n-\overline{n})^2}{2}$	

n

σ=

3σ =|

6 i

183

Where.

 $\overline{x} =$ 

2o =|

n = data for individual counts

n = average of the twenty data points

3872

Beta Values									
mean +3 o =	4055	mean $-2\sigma = 3750$							
mean +2 σ =									
$X^2 = 18.3$									

_____ Date: <u>3-14.02</u>____

•

EFF. . 248

Instrument	: _2350	-1 -	# 95356	,	F	Probe: <u>4</u>	3-106	#13386	6	
Cal Due: _		8-6-	02	<u></u>	(	Cal Due:	8-	6-02		
Source	ID: Tege		lean Source Count Rate			/lean +2 σ Value:	5124		n -2 σ /alue: 4	820
Radia Ty	ition ype:	3- 5	Sigma Value	76	N	/lean +3 σ Value:	5200		n -3 σ /alue: 4	ગ્યર્ધ
[		Background		· · · · · · · · · · · · · · · · · · ·		Source	Check		Res	sults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT UNS/
1-23.02	1430	5	1822	364	1	4897	/	/	100	-4×
2-25-02	0635	.5	1535	3:7	1	4832			92	217
2-26-02	0608	5	1636		1	4824			95	54
2 27-62	<u>c607</u>			309	11	-1830-			42	50
2.27.02	1655				!	4911			93	20
2-28-02	0605		1582	316		-1873 -4502			- 13- 	i i
3-1-02	1715	5		<u></u>		4846				24 Da
3-4-07	0624	5	1517	303		4832		-/	91	545
3-4-02	17/0				1	5090				Si
3-5-07			-1494		·					
			1695		· · · ·				 	<u> </u>
				- <u></u>						
		·							.	

Instrument	3350	- (	₹ ⁴ 9535	6	I	Probe: <u>4</u>	3-106	[#] 1338	66	<u> </u>
Cal Due: _		8-6	-02			Cal Due:	8	7-6-02		
Source			/lean Source Count Rate			/lean +2 σ Value:	୫ନ୍ନ		n -2 σ /alue: 7	39
Radia Ty	tion /pe: C	× 8	Sigma Value	: 30	N	/lean +3 σ Value:	<i>§5</i> 4		n -3 σ /alue: 7	909
		Background				Source	Check		Re	sults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SA UNS
2-23-02	1430	5	4	1.8		760			16	5.4
2-25-02	0635	5	1	2.2	l	760				40
2-26- cK	0608	_5	9	1.8		741			10	- 4
2-27-01	0607		ت	I		<u> </u>			8	<u>44</u> 54
2-27-02 2-24-02	1645 0655			.2		.740			5	545
3-1-07	0607	5	7	1.4	1				9	
3-1-02	1710	-				- <u>794</u> - <u>759</u>				<u>- 54</u> -
3-4-02	06.24	5	12	2,4		752		/	10	ea Se
3-4-02	1725				/	7.65				<u>  51</u>
<del>3-5-62</del> 3-6-02	<u> </u>	<u>5</u>	<del>2</del> 14			<del>944</del>				· · · · · · · · · · · · · · · · · · ·

1

DETERMINATION OF SOURCE QC LIMITS

.

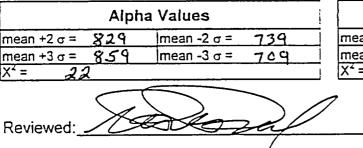
3

Instrument: <u>2350 - 1</u> ID: <u>95356</u> Date: <u>2-22-02</u> 1800 B⁻ Detector: <u>43-106</u> ID: <u>133866</u> Operating Voltage: <u>135</u>00

٩

20 Source-Count: Beta

20 Source-Count: Alpha										
Source ID: 7/1230_3937_										
Count	Gross Cts (x _i )	(x1)-(x)	$[(X_i)-(\bar{x})]^2$							
1	799	30	900							
2	773	4	16							
3	166	-3	9							
4	1.747	-22	484							
5	779	10	100							
6	794	25-	625							
7	719	19	100							
8	725.	-48	2304							
9	788		361							
10	- = 780		121							
11	1 712	- 57	3249							
12	- 800	31	961							
13	- 721 - 1	-48	2304							
14	157	- 12	144							
15	795	26	676							
16	803	34	1156							
17	192.	23	529							
18	767	-2	4							
19	782	13	169							
20	716	- 53	2809							


Source ID:	7.99 393.	٢	
Count	Gross Cts (x _i )	$(\mathbf{x}_i)$ - $(\overline{\mathbf{x}})$	$\left[(X_i)-(\overline{x})\right]^2$
1	4902	-70	4900
2	5006	34	1156
3	5033	61	3721
4	4982	10	100
5	. 4901 .	- 71	5041
6	5065	93	8649
7	4995."	23	529
8	-4954 "	-18	324
9		-61	3721
10	<b>5/6</b> 6*#	188	35344
11	· 4832.	-140	19600
12		-82	6724
13	4948	-24	576
14	4966	-6	36
15	4934-	-38	1444
16	4966	-6	36
17	4929	-43	1849
18	5094-	122	14884
19	4961	-11	121
20	5019	47	2209

$\overline{x} =$	.769	σ=	30
2σ =	60	3σ =	90

[	Mean	Sigma
!	$=\sum x_i$	$\sigma = \sqrt{\frac{\Sigma(x_i - \overline{x})^2}{2}}$
ł	$x = \frac{1}{20}$	$\sqrt{(n-1)}$

Where.

- $\sigma$  = standard deviation
- $\overline{x}$  = mean count
- x, = each individual measurement
- n = number of measurements



 Chi-squared	
$X^{2} = \frac{\sum (n-\overline{n})^{2}}{\sum (n-\overline{n})^{2}}$	
$\chi^2 = \underline{\sum (n-n)}$	

n

 $\sigma = i$ 

3<del>0</del> =|

76

228

Where.

 $\overline{x} =$ 

 $2\sigma =$ 

n = data for individual counts

 $\overline{n}$  = average of the twenty data points

4972

Beta Values								
mean +3 $\sigma = 5200$	mean $-2\sigma = -45.2c$							
mean +2 $\sigma = 5134$	mean $-3\sigma = 4744$							
$X^2 = 22.3$								

Date: 3-14-02

1CF	EFF - ひらち Daily Instrumentation Operational Check Sheet										
EL			•			Probe:	43-89	·			
Instrument:	236	50 -71	145-46	9	F	Probe:	<del>43-10-</del> '	' 745 SC	?.(		
Cal Due: _	<b></b>	7-1	10-02		(	Cal Due:	?	-10-32			
Source	1D: TC 49		lean Source Count Rate			lean +2 σ Value:	2104	Mean   V	alue: /8	42	
Radial Ty	ion pe:	3 - 5	igma Value	: 53	N	lean +3 ơ Value:	2157	Mear   V	n -3 σ /alue: / {	539	
[		Background				Source	Check		Res	sults	
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT	
12 2 4 12	0611	5	1268	254	1	1962	/		84	540 Sati	
1-25-02 1-25-02	1705		~			.2031					
7-26-42	0626	5	1133	227	11	2080			- 79	LAK- Set	
2-26-02	1655	5			/	1932					
2-27-02	0635	5	1104	222	<u>`</u>	2033			- 74	itt Sat	
2-27-02	17/5					2030			79	SAT	
2-24-01	0630	5	1118/	224		2024				iset	
2-28-07.	1700					1994	 	/	78	SAT	
3-1-02	0626	5	10:5	219	 	1926				Sat	
3.1-02	1700		1202	2.40	1	2066	/	/	52	5454	
3-4-02	0614	5	1224	246	1	2043	V		83		
3-5-02	0616		1378092								
3.6002	0622		1281			1968					
		•									
										l	

RU 3.6-02

f.	FF.155	Da	ily Instr		ion Oper					
Instrument:		\$0 <del>7</del>	14546	9	F	4 Probe: <u>P+</u> 273 Cal Due:		## <u>145391</u> 7-10-02		·
Cal Due:		7-10	-02		(					
Source			lean Source Count Rate	هد د	4 N	י. Iean +2 σ Value: [	740	_	aiue. [	28
Radiat Ty	ion pe: C	×	igma Value	28		lean +3 σ Value:	768		alue:	.00
ſ		Background			[	Source	Check		Re	sults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 o Value	LLD	SAT/ UNSAT
		5	9	1,8	1	734	/		10	ser.
2-25-02	0611					656				Sat
2-26-02	0676	- 5	12	3.4	1	652				460
2-26-02	1700			-	<u> </u>	707				Set
2-27-02	0635	5	10	2	1	637				SAX
2.27-02	1725					661				Sat
2-28-02	0630	5	7	1.4	1	6.14			<u> </u>	Sect.
2.28.22	1700					675				448
	0626	5	12	3.4	l!	<u> </u>			12	gat
3-1-02	1210					1059			14	207 207
3-4-02	0614	5	24	4.8	·	661			-14	544
3-5-07	0616	5			.	632				
3-6-52	0632	5	2				· [			
			- 8				<u> </u>			
							·	· · · ·		
	1					I	.L	L		

...

••

Detector: <u>43-89</u> ID: <u>145391</u> Operating Voltage: <u>675</u> 20 Source-Count: Beta 20 Source-Count: Alpha Source ID: Th 230 3937 Source ID: 7: 99 3935 Gross Cts (x_i)  $[(x_i)-(\bar{x}_i)]^2$ Count Gross Cts (x_i)  $[(x_i) - (\bar{x})]^2$ Count (x_i)-( x )  $(x_{i}) - (\bar{x})$ -29 71.3 ~68 -46 -1 -16 ··668 -13 -46 <u>638</u> -27 <u>651</u> -67 10_ -25 · .-- | -13 -706 -27 ধ -723 -19 צ'ודי -36 -31 -10 -14 -12  $\sigma = 1$  $\overline{x} =$  $\overline{x} = |$ σ= 3σ = 3σ = 2σ =|  $2\sigma = 1$ Chi-squared Sigma Mean  $\chi^2 = \underline{\sum (n-\overline{n})}^2$  $\bar{x} = \frac{\sum x_i}{\sum x_i}$  $\sigma = \sqrt{\frac{\Sigma(\tau_i - \overline{\tau})^2}{(n - 1)}}$ Where. Where  $\sigma$  = standard deviation n = data for individual counts  $\overline{x}$  = mean count n = average of the twenty data points  $x_1$  = each individual measurement in = number of measurements **Beta Values** Alpha Values mean  $-2\sigma = 1592$ mean +3  $\sigma = 2157$ mean +2  $\sigma = 740$ mean  $-2\sigma = 628$ mean +2 $\sigma$  = 2104 mean -3 $\sigma$  = 1839 mean  $+3\sigma = 768$  $lmean - 3\sigma = 60c$  $X^{2} = 26.4$  $X^{2} = 21.8$ 

DETERMINATION OF SOURCE QC LIMITS

Reviewed:

Date 3-14-07

۰.

Instrument	:	4-1 #	29463			Probe: <u></u>	13-89	#16923	0			
Cal Due: _	<u></u>	5-0	5-02		(	Cal Due:	5	- <u>6-02</u>				
Source	Source ID: Mean Source Mean Source Mean $+2\sigma$ Mean $-2\sigma$ Mean $-2\sigma$ Value: 1958 Value: 1766											
Radia Ty	tion vpe:	3 - S	igma Value	: 48	Mean +3 σ         Mean -3 σ           Value:         2006         Value:         1715-					718-		
		Background			Source Check Result				sults			
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT		
3-7-02	1710	-				1884				Signe		
3-4-02	0622	5	1356		<b> </b>	_1881_	/		87	Care-		
3-11-02	_0634_		1387	<u> </u>	L	_1963			\$7	Ebet		
3-11-0:2	171C				/	1945				<u>- ブィナ</u>		
3-12-02	0618.		13.50	270	!	_1910_			- 87	54.4		
5-12-13	1700					1905				Sc 7		
3-13-62	0624	5	1328	266		1869_			<u> </u>	54+		
3-14.02	2674		1365	273	{	_19.26_			- \$1	<u>- 141</u>		
								·				
				··								
								<u>.</u>				
	1									l		

•

۹.

EFF. 154

Instrument		4-1 ^{##} /	29463		F	Probe:	3-59 #	169230		
Cal Due: _		5-6-	-02		(	Cal Due [.]	Ş	-6-42		
Source		3937 N	Aean Source Count Rate	1		lean +2 σ Value:	751	Mear V	n -2 σ alue: 0	559
Radia Ty	lion pe: C	×	Sigma Value:	23	N	lean +3 σ Value:	774	Mear V	n -3 σ /alue· 6	636
[		Background		Source Check				Re	sults	
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
3-7-02	1708				1	687		<u> </u>	~~	Sat
3-8-02	0622	5	2	,4		694			6	april
3-11-02	0534	5	12	2.4		650			11	eve
11-62	1210	· ·				695				2.1 54.1-
3-12-02	0618	5	<u> </u>			616 688				54 /
3-12-02	1700	5		.8	<u>,</u>	645	~	1	7	
3-13-02	0624	<u> </u>		io	<u></u>	203			4	2.50-
3-14-02	06:14		2	[1.92		<u>.</u>				
		-								
										-
								,		
		-								

.

EFF .092

Daily Instrumentation Operational Check Sheet

۰.

Instrument:	222	4-1	#	29463	F	Probe:	43-50	3 <u> </u>	9230	
Cal Due:		\$/0	6/02		(	Cal Due:		16/02		
Source	ID: Te 99		lean Source Count Rate:	. در		lean +2 σ Value: _	1457.2	Mean V	alue: 17	66.8
Radiat Ty	ion pe: <del>/</del>	3 8	Sigma Value:	47.	6 N	lean +3 σ Value:	2004.8	Mear V	n -3 σ /alue: 17	19.2
		Background				Source	Check		Results	
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 ơ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
1-14-02	0620	5-	1340	178	1	1821	V		87	5
2-15-02	 	.5		265	1	1846			86	5
2-15-62	1710					1916				Sat
2-18-03	0615	5	1350	270		1880			86	- For
1-18-02	1710	-				1868				Jati
2-15-02	0614		1247	244		18-13				-:4+
2-22-62	0100		1563		l	1837			70	5.44
2.75-02	06001	5	1346	269	<u></u>	1947			86	Silvi-
2-26 07	06.24	5	1334			1912			<u> </u>	C+T_
1-21-02	2631_		1405	283	<u> </u>	1400 186:1			45	int
2-28-03	56:17	5		263	·	1744			84	547-
3-1-22	0ć24	5	1.268			<u>1199</u> 19517			87	544
3-4-07	6612	5	1384	261	<u> </u>	1833			85	Cit
3-5-02	<u>de14</u>		1305	278	(	1946		/	\$1	Contact
3-6-22	0670	5	1367	273		1598		• /	\$7	Sart

			·							
ÉFF - 15	4	Da	aily Instru	umentat	ion Oper	ational (	Check Sh	neet	•	
		1-1	¥1	24463	F	Probe:	13-89	1692	30	
mənument			•			-				•
Cal Due [.] _			6/02		(	Cal Due:	8/6	102		
Source	ID: <u>Th 23</u> 0	3437 N	Mean Source Count Rate		- N	iean +2 σ Value:	750 - 6	Mear V	n -2 ຫ /alue: 63	-9.4
Radia Ty	lion /pe: C	×	Sigma Value	22,	8 N	lean +3 σ Value:	773.4		n -3 σ /alue: 63	36,6
		Background	1			Source	Check		Res	sults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Vatue	LLD	SAT/ UNSAT
		5	18'.134000	3.6	·	.701	V	/	12	5
2-14-02	061C	<u>.</u>	2		1	684	/		6	
2-15-02	1715		·	i	1	727	~	~	-	Sat
2-18-02	c615	5		1.8	1	662	<u> </u>	/	10	Sat
2-18-27	1705					714		~		Sat
2-14-02	0614	5	3	. E	1	667	~	/	1	ith
1-22-62	0012	5	16	3,2	1	700	/	-	_18	24t
2-25-02	0664	5		- 6	,	73:4		<u> </u>	?	- Sort-
2-26-52	0:24	5	l.	. 2	1	729				Strt
2-27-02	0631	5		1.6	1	701			9	Cret .
2-25-07	00.20	5		1,6	1	677	1			Stat
3-1-22	26.24	5	6	1.2	1	696				544
34-07	5612		21	4,2	1	667				54.4
3-5-02	3614	5	3	1,6	1	692			9	SAT_
3-6- 07	02 20	5	17	3.4	1	664			12	est_
3-7-02	10614	5	7	1.4		671			<u> </u>	Spi
I	, I		·							

.

DETERMINATION OF SOURCE QC LIMITS

Instrument: _	2224-1		ID: <u>/2940</u>	<u> 3</u> Date: <u> ジー/ シー 0 え</u>
Detector:	43-89	ID:	169.2.30	Operating Voltage: <u> </u>

20 Source-Count: Alpha								
Source IC	· Th 230	3937						
Count	Gross Cts (x _i )	(x1)-(x)	$\left[(\mathbf{x}_{i})-(\bar{x}_{i})\right]^{2}$					
1	714	9	81					
2	1.737	32	1024					
3,	710	5	25					
4	. 684.	-21	441					
5		12	144					
6	705	0	0					
7	725	20	400					
8	677	-28	784					
9	729	24	576					
10	1 . 724-	19	361					
11	736	31	461					
12	· 688 -	- 17	289					
13	650	- 55	3025					
14	723	18	324					
15	685	- 30	100					
16	1 7/2		49					
17	687.	- 18	324					
18	713	8	64					
19	1 701	-4	16					
20	681	- 24	576					

20 Source-Count: Beta									
Source ID: <u>76.44 3935</u>									
Count	Gross Cts (x _i )	(x _i )-(. <del>.</del>	$[(x_i)-(\bar{x})]^2$						
1	1849	- 13	169						
2	1920	53	3364						
3	1862	0	0						
4	1869	7	44						
5	19:31	69	4761						
6	1889	18	324						
7	1818	- 44	1936						
8	1439	.17	5424						
9	1914	52	2704						
10	1845 -	-17	289						
11	1954	42	8464						
12	· · 1865 · ·	3	9						
13	1812	-50	2500						
14	1855	- 7	49						
15	1839	-73	524						
16	1819	-43	1849						
17	1829	- 33	1089						
18	1800	- 63	3844						
19	1846	- 16	256						
20	1 1792	- 70	4900						

$\overline{x} =$	705	σ=	22.8
2 <del>0</del> =	45.6	3σ =	65.4

201		1 - 70	1 7 9 60
<u>x</u> =	1862	σ=	47.6
2σ =	45.2	3σ =	142.8
	Chi-so	uared	
	$x^2 - \sum$	$(n-\overline{n})^2$	
ł	X-= <u>—</u>		

Mean		Sigma
$\overline{x} = \frac{\sum x_i}{22}$	1	$\sigma = \sqrt{\frac{\sum(x_i - \bar{x})^2}{(n - 1)}}$
20	,	γ <i>(n=1)</i>

Where

- $\sigma$  = standard deviation
- $\overline{x}$  = mean count

2

- x. = each individual measurement
- n = number of measurements

Alpha Values					
mean +2 σ =	750.6	mean -2 σ =	659.4		
mean +3 σ =	773,4	mean -3 σ =	636.6		

Reviewed: Minh Actor

1	п
	Where
	n = data for individual counts

 $\frac{1}{n}$  = average of the twenty data points

Beta Values							
mean +3 $\sigma$ =							
mean +2 σ =	1957.2	mean -3 σ =	1719.2				
X'= 23.1							

Date. <u>3-14-02</u>

EFF . 113

#118544 #£ Probe. 43-59 164680 Instrument 3-60Cal Due: _____ 🔗 - ৫ - ০ 2 7-9-02 Cal Due Mean -2 σ Mean +2 σ Mean Source Source ID: 2359 2535 Value: Count Rate Value 2447 Te 49 3935 Mean -3 o Mean +3  $\sigma$ Sigma Value[.] Radiation ;3--44 2315 Value: Value: 2579 Type: Results Source Check Background SAT/ LLD W/I 3 σ Gross W/I 2 σ Count BKGD Count Gross Time Date UNSAT Value Counts CPM Time (min) Value Time (min) Counts /  $\checkmark$ 86 2518 200 1337 267 0613 5 3-7-02 Sit 2489 17 15 3-7-02 / / 87 200 <u>۔</u> خ 2504 1354 272 0620 3-5-02 Sat-2525 142.5 •----*____* 3-802 87 244-2528 276 1379 0630 5 3-11-62 87 48F 2482  $\checkmark$ / 1354 ふい 0670 5 3-12-02 Se f 2452 ----1706 5-12-62 ----حتري 2499 87 V 175 5 1317 0622 3-13-02 1 52+ 5=7 2464 1386 271 5 0622 3-14-02

EFF. 164

Instrument $2360$ $\pm$ 164680 Probe: 43-89								# 11854	4	
Cal Due [.] _			7-9-02		(	Cal Due [.]	8	-6-02		
Source ID: Mean Source Mean +2 $\sigma$ Mean -2 $\sigma$ Mean -2 $\sigma$ Value: 731 Value: 789 Value: 673									13	
Radiation Sigma Value:					N	lean +3 σ Value: [	818		n -3 σ /alue: 6	44
[		Background				Source	Check		Res	sults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
3-2-02	0612	5	11	2.2	1	121			10	Stor-
3.7-02	17 18			-	1	693	·			Sat.
3-8-07	0620	5	7	1.4	1	706			<u> </u>	COT
3-8-02	1425	5	ļ			260				Jax
3-11-02	0630	5		1.4		733	<u> </u>		<u> </u>	-4
3-12-02	0620	5	9	1.8	L	7.25	<u> </u>		10	574
3-17.2	1700				l	74/4			· · · ·	547
3-13-02	0632			3.7	l	774			12	544
3-14-02	6622		10	<u> </u>		_693				- abort -
				·						
			·							
		<u></u>								

: .

EFF .113

Daily Instrumentation Operational Check Sheet

2

Instrument	23-60	- LJ *	64680		F	Probe: <u>4</u>	3-89	# 115	-5-44	
Cal Due		7-9-	03		(	Cal Due:		8-6-02		
Source	N 1 3935	· 7	lean +2 σ Value: [	2535		a -2 σ alue: 23	59			
Radiation $3^{-}$ Sigma Value: $44$ Mean +3 $\sigma$ Mean -3 $\sigma$ Mean -3 $\sigma$ 2315Type: $3^{-}$ Value: $2315$ Value: $2315$							315			
		Background				Source	Check		Res	ults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
1-14-02	1145	5	1401	180		2423	$\sim$		- 89	54+
2-20-62	c 615	5	1294	254		2454			85	hat -
2-21-02	0615	5	1305	261		2465			- 85	sart-
2-27-62	5608	- 5	i40:3	281	<u>t</u>	2432				- Cort
2.27.2	1700				l	<u> در در</u>				
2-25-02	0601		1405	281		2454			- 89_	- 54°t
2-26-02	2620	.5	1447	285	<u> </u>	2470				<7. ÷
2-26-02	1645					2474		<u> </u>		sat_
2-27.02	0627			<u></u>	·	2517			84	SAK
1.28.02			_1358_	272		2436				Sit
2-28-02	1700_				\	2486				
3-1-07	26:21	5		213		2429			<u> </u>	- citres
3.4-02	0610	5	1476	245	{	2497			<u> </u>	CAT GAS
3-5-02	0612		1328	266	1	24781				
3-5-02	1715		1375	<u></u> کارچ	1				3.1	4200
3-6-02	06,7	5	1213		l (	2393			<u>0</u>	IJ

EFF - 164

Instrument	23-6	۵CI	# 16	1680	I	Probe: <u>43</u>	-89	7 118.54	4	
Cal Due:		7	1-9-02		(	Cal Due:		8~6+02	·	
Source ID: Mean Source Th :2.3: 3(137) Count Rate: 7:3					] N	lean +2 σ Value:	789		n -2 σ /alue: 6	73
Radiation Sigma Value: A Mean +3 o Type: X Value:						/lean +3 σ ,   Value: [	818	1	n -3 σ /alue: 6	44
[		Background				Source	Check		Res	ults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
2-19-32	1145		3	. 6	1	772		/	7	564
2-20-02	0615	5	7	1.4	1	707			्य	545
2-21-02	0615	5	6		(	706			- 5-	47
2-22-62	دفدج.		20	<u> </u>		694			13	54+
2.27.62	1700			~	1	706				<u>597</u>
2-25-02	7 200		5	.1		730			8	:AR
2-26-62	0620	5			l	-703			9	ear-
2.2602	16-49					_691_				_Sat_
2-17-22	06.77		14	2.8	1	.706				<u>- 4+</u>
2-28-02	26.72		1'3	2.6	<i> </i>	170			1_!	- lat
2-28-02	1700		· · · · · · · · · · · · · · · · · · ·		}	1.93	<u>/</u>			Scal
3-1-07	0621	5	<u> </u>	2		734			<i>lo</i> _	CAT EAT
3-4-07	2610		14	<u> </u>		- 680- 214				Last .
3-5-07	1715		16	<u> </u>	l	684	<u> </u>		1.2	Set
3-5-02	0617		11	J.Z		710		V	/c	e, for

#### DETERMINATION OF SOURCE QC LIMITS

\$

Instrument: <u>23-60</u> ID: <u>164680</u> Date: <u>2-19-02</u>

Detector: <u>43-89</u> ID: <u>118544</u> Operating Voltage: <u>400</u>

	20 Source-Count: Alpha								
Source ID. Th 2:30 3937									
Count	Gross Cts (Xi)	$(x_i)$ - $(\overline{x})$	$\left[\left(X_{i}\right)-\left(\overline{X}\right)\right]^{2}$						
1	746	15	225						
2	7.2	~10	100						
3	681:	- 50	1500						
4	727	- 4	16						
5	718	41	2204						
6	726	<u> </u>	25						
7	14-	-17	289						
8	685	-46	2116						
9	678	- 53	7509						
10	723	- %	64						
11	164	33	1039						
12	- 753 -	22	494						
13	159	.28	1784						
14	700	-31	461						
15	1. 745	14	19.6						
16	1 755	.74	576						
17	- 749	18	324						
18	- 717	-14	196						
19	770	39	15.21						
20	1.727	<u>~~4</u>	16						

$\overline{x} =$	731	σ=	29	
2σ =	58	3σ =	87	

Sigma  $\sum (x_1 - \overline{\tau})^2$ 

(n - 1)

 $\sigma$ 

Mean
$\overline{\mathbf{x}} = \frac{\sum \mathbf{x}_i}{\sum \mathbf{x}_i}$
$x = \frac{1}{70}$

Where

- $\sigma$  = standard deviation
- $\overline{x}$  = mean count
- = each individual measurement х,
- = number of measurements n

Alpha Values									
mean +2 σ =	789	mean -2 $\sigma$ =	673						
mean +3 σ =	818	mean -3 σ =	હંનલ						
$X^2 = 2.3$									
Reviewed _	Ala	Ang	$2\rho$						
			- 1						

20 Source-Count: Beta										
Source ID: <u>Tc 99 3935</u>										
Count	Gross Cts (x,)	(x1)-(x)	$\left[\left(X_{i}\right)-\left(\overline{X}\right)\right]^{2}$							
1	2416	-31	961							
2	2507	60	3600							
3	2476	રવ	841							
4	2424	-23	529							
5 6 7	2481	34	1156							
6	2496	49	2401							
7	2502	55	3025							
8	2440	- 7	49							
9	2462	15	225							
10	2435	-12	144							
11	2447	<u> </u>	0							
12	2460	13	169							
13	2404	-43	1849							
14	2375	- 7.2	5184							
15	2436		121							
16	2481	34	1156							
17	2465	18	324							
18	2499	52	2704							
19	2392	- 55	3025							
20	348	- 49	9801							

<i>x</i> =	2447	σ=	44
2σ =	55	3σ =	132

Chi-squared	
$\chi^2 = \frac{\sum (n-\overline{n})^2}{2}$	
X = <u></u>	
n	
	_

#### Where

n = data for individual counts

 $\frac{1}{n}$  = average of the twenty data points

Beta Values									
mean +3 $\sigma = 25$	-79	mean -2 o = .23.54							
mean +2 $\sigma = 25$	35	mean $-3\sigma = 2315$							
$X^{2} = 15$									

Date. 3-14-02

## EFF. 084

## Daily Instrumentation Operational Check Sheet

Instrument: $2360 + 15(32)$					Probe. <u>43</u>	-84 7	164832	·		
Cal Due <u>8 - 15 - 02</u>						Cal Due:	8-5-02			
Source ID: Mean Source $\overline{\mathcal{I}_{c} 99 3935}$ Count Rate: $210$						/lean +2 σ Value:	2171		n -2 σ /alue:	31
Radiation Sigma Value: Type: B					/lean +3 σ Value:	2206		n -3 σ /alue:   / ·	196	
		Background				Source	Check		Res	sults .
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
3-12-02	1700					2038_			<u> </u>	5
3-13-62	2620	- 5	1486	197		2051			91	300
3-13-02	1720				1	2073	L	<u> </u>		-Sat
3-14-03	0610	5	1-15-1	190	ll	2088	<i>V</i>		- 89	- chr
			· · · · · · · · · · · · · · · · · · ·							
L	l			<u> </u>					l	l

.

EFF. 153

Daily Instrumentation Operational Check Sheet

Instrument:						⊃robe. <u>≁⊰</u>	-89 #	164832		
Cal Due: _	8-15	-07	<u> </u>	<u></u>	(	Cal Due:	8-5-0	2		
Source ID: Mean Source Mean +2 $\sigma$ Mean -2 $\sigma$ Mean -2 $\sigma$ Jalue: $753$ Value: $637$									37	
Radiation Sigma Value [.]				29	4	lean +3 σ Value:	782		n -3 σ /alue: <u>6 d</u>	08
		Background		• • • • • • • • • • • • • • • • • • •		Source	Check	, <u> </u>	Res	sults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 ơ Value	LLD	SAT/ UNSAT
ヨーノシーシス	1700		-		1	682				-spt-
3-13-02	0620	5	5	1		698	~		- 8	45K
3-13.02.	1720				1	735			<u> </u>	Jot Sot
3-14-02	2620	5	1	. 2	(	730		<u> </u>	- 5	<u>e</u> tt
				\ <u>`</u>			<u></u>		<u></u>	
		1		I		/		. <u></u>	l	

# EFF ., 153

## Daily Instrumentation Operational Check Sheet

ŧ.

Instrument $2360$ $\#$ 156371 Probe: 4								± 1648.34	2	
Cal Due: &- ມີ- ປາຊ						Cal Due:		8-5-02		
Source ID: Mean Source $695$ Mean +2 $\sigma$ Mean -2 $\sigma$ Mean -2 $\sigma$ Count Rate. $695$ Value: 753 Value: 637									37	
Radia Ty	lion pe: C	× °	Sigma Value	20	N	/lean +3 σ Value: [	78,2		n -3 σ /alue: 6	98- 1
[		Background				Source	Check		Res	ults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ · UNSAT
2.26 22	0930	2	1	.۲	1	647	1	/	5	-the
2-27-02	0625	- 5	- 8	1.6		708	~	/		- At
2-24-02	0625	5	<u></u> 20	4	L				P. 14 13	<4×-
3-1-02	061c	5		1.4	<u> </u>	6.10			5	i Aca-
3-1-02		-	<u> </u>		I	628	··			sat:
3-4-02	2604		14	2.8	l1	714				5417
3-5-01	0610		15	3		731				- <u>41</u> -
3-5-02	1700				<b>\</b>	739				set.
3-6-02	06.5	5	8	1.6	(	692	<u>/</u>		5	Es+
3-6-0-)	1730	<u> </u>			ll	LAD				jort.
3-7-07	_0610_	5	11	2,2	ll	708			10	e:Acr
3-7-02	1705		<u> </u>		/	675			<u>_</u>	sat.
3-8-02	0618				<i>_</i>	681_			8	- ite
5.02	-1500				<u>\</u>	<u>_48</u>	<u>ب</u>			Dat.
3-11-02	0630	- 5 - 5		2.4		<u>720</u> (39.			<u> </u>	GAT SAT
3-17-02	0617	<u> </u>	<u> </u>	l(		627	V	-	3	- Just

.FF.088

## Daily Instrumentation Operational Check Sheet

Instrument	:360	<u>** 15</u>	6371		[	Probe: <u>4</u>	3-89 7	E164832		
Cal Due: _	~	<u> </u>	15-02		(	Cal Due:	8	20-7:-		
Source ID:Mean SourceMean +2 $\sigma$ Mean -2 $\sigma$ $\overline{I_{5}: qq} 3q_{35}^{-}$ Count Rate $2 0 $ Value: $2 7 $ Value: $2:71$ Value: $2:31$									031	
Radiation Sigma Value.					N	lean +3 σ Value:	2206		n -3 σ /alue:   /	996
		Background				Source	Check		Res	sults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
2-26-02	0430	<u>5</u>	1482	_346		2150			40	54.4
2.21-02	2625	- 5	1.190	248	1	2108			<u> </u>	apt
2-24-02	0620		1426	2.85		2087			<u> </u>	4.A.c
3-1-02	<u> </u>	5	1418	284	(	2116			89	24+-
3-4-02	0605	5	_1458_	242	1	2057	V	/·	90	c:Ar-
3-5-02	06:0	5	1477	195	l	2085			90_	C. 450
3-5-02	_17.00_				I	_2112_				pat.
3.6.02	0615		1436	<u>_</u> _ <u>_</u>	((	205-(			- 59	5.2.7-
3-li-i-j	17.30		<u> </u>		<b>I</b>	2159	<u> </u>		•	yait.
3-7-07	_0610_	5	<u> </u>	740		2071	<ul> <li>✓</li> </ul>		- 574	Sit.
37.02	1700				l	2051				Sat-
3-8-02	0615		1451	240		2<56		<u> </u>	<u> </u>	SRF-
3-3-0-2-	1570		<u> </u>			20.35				with ,
3-11-02	0630		1473	145		2107			40	-ist
3-12-02	0617	5	1484	247	l	1505			<u> </u>	540
l		l			l					[]

#### DETERMINATION OF SOURCE QC LIMITS

Instrument: <u>2360</u> ID: <u>156371</u> Date: <u>2-26-02</u>

Detector: <u>43-89</u> ID: <u>16483</u> Operating Voltage: <u>835</u>

20 Source-Count: Alpha										
Source ID. 7 h 230 3437										
Count	Gross Cts (x _i )	$\left[\left(X_{i}\right)-\left(\overline{X}\right)\right]^{2}$								
1	719	24	576							
2	743"	48	2304							
3	643	-52	2704							
1	716	21	441							
5	713	18	324							
6	689	-6	36							
7	709	14	196							
8	722	27	724							
9	721	26	676							
10	692	-3	9							
11	672	-23	529							
12	706 .	11	121							
13	630	-65	4225							
14	734	29	8-11							
15	673	- 22	494							
16	652	-43	1819							
17	699	4	16							
18	689	<u>^</u> 7	49							
19	687	-13	167							
20	700	5	25							
	1 /00 1		1							

<u></u>	695	σ=	24	
2σ =	58	3σ =	87	

Mean	Sigma
$\overline{x} = \sum x_i$	- [II x1 - 7 /
$x = \frac{1}{20}$	$\sigma = \sqrt{\frac{(n-1)}{(n-1)}}$

Where

- $\sigma$  = standard deviation
- $\overline{x}$  = mean count
- $x_1 =$  each individual measurement
- n = number of measurements

	Alph	a Values
mean +2 σ =	753	mean -2-5 = 6.3.7
теап +3 σ =	782	mean -3 σ = 6 c 8 ·
X ² = 23		
Reviewed _	S	Ponel

	20 Source-C	ount: Bet	a
Source ID	TC 44 343	5	
Counț	Gross Cts (x _i )	-(×1)-(x)	$[(x_i)-(\bar{x}_i)]^2$
1	2111	10	100
2	2084	-17	289
3	2057	-44	1936
4	2076	- 75	625
5	2116	15	235
6	7101		0
7	7053	- 48	2304
8	2068	- 3.3	1089
9	3118	i7	284
10	2126	25	625
11	-2172	71	5041
12	3115	14	196
13	2138	37	1369
14	2078	38	194
15	2078	-23	529
16	2089	-12	144
17	2144	43	1849
18	2264	37	1364
19	2024	- 17	5429
20	2153	52	2704

$\bar{x} =$	2101	σ=	35
2σ =	70	<u>3</u> - =	105

Chi-squared	
$\chi^2 = \frac{\sum (n-\overline{n})^2}{2}$	,
<u> </u>	!
Where	
n = data for individual counts	1
$\vec{n}$ = average of the twenty data points	1

Beta Values		
mean +3 σ =	2206	mean $-2\sigma = 2c3$
mean +2 σ =	2171	mean $-3\sigma = 1996$
$\frac{\text{mean } + 2\sigma}{X^2} = 13$	2171	mean -3 σ = 199

Date 3-14-02