Final Status Survey Report for Building Foundations At the Molycorp Site

Washington, PA

Revision - 0 Dated 8/30/02

Final Status Survey Report for Building Foundations at the Molycorp Site

Washington, PA

Revision - 0 Dated 8/30/02

Reviews: uh

8-30-02

MACTEC Radiological Engineer

MACTEC Radiological Engineering/H&S Manager

Date

E

MACTEC Project Manager

Date

-

Table of Contents

.

<u>Sectio</u>	n Page
10	BACKGROUND INFORMATION
20	SITE INFORMATION.
2 1 2 2 2 3 2 4 2 5	Site Description
30	DECOMMISSIONING ACTIVITIES
3 1 3 2 3 3	Objectives
40	FINAL SURVEY PROCEDURES
41	Sampling Parameters
5.0	SURVEY PROCEDURE
51 52 53 54 55 56 57	General
60	INSTRUMENTATION 13
61 62 63 64	Instrument Operation and Calibration
7.0	SURVEY FINDINGS
7.1 7 2	Techniques for Reducing/Evaluating Data.
80	SUMMARY
9.0	REFERENCES 17

-

List of Tables and Figures

Tables and Figures	<u>Page</u>
Table 1 - Classification of Building Foundation	2
Table 2 - Acceptable Surface Contamination Levels (dpm/100cm ²)	7
Figure 1 - Natural Thorium Decay Chain	9
Table 3 - Surface Scan Schedule	10
Table 4 - Direct Surface Measurement Schedule	11
Table 5 - Loose Surface Measurement Schedule	12
Table 6 - Exposure Rate Measurement Schedule	12
Table 7 - Instrumentation Guide	15

Appendices

Appendix A - Building 42 Foundation Data Package	A
Appendix B - Building 21 Foundation Data Package	B
Appendix C - Building 19 Foundation Data Package	C
Appendix D - Instrumentation Data	D
Appendix E – Background Assessment Data	E

•••

1.0 BACKGROUND INFORMATION

Molycorp, Inc.'s (Molycorp) predecessor, the Molybdenum Corporation of America, was formed from the Electric Reduction Company in Washington, Pennsylvania on June 16, 1920. The facility was purchased to manufacture ferroalloys.

Molybdenum manufacturing began in the 1920s Processing of this material was idled in 1991 Although primarily manufacturing molybdenum products, the plant also produced ferrocolumbium (FeCb, 1964 to 1971), as well as other ferroalloys, e.g., tungsten

In February 2002, site decommissioning and demolition was initiated for aboveground structures and buildings Building final status surveys (FSS) were initiated in mid February, building demolition started in May 2002. Initially, each building or area located in a building was a single survey unit that included the foundation and shell/structure. After completing the FSS for the first set of buildings, it was realized that by combining the foundation and structure into a single survey unit, the completion of the NRC independent verification (IV) survey and release from radiological controls was delayed. In order to facilitate and expedite NRC IV surveys and the release of radiological controls, all subsequent building FSS consisted of independent surveys for the building's foundation and the shell/structure.

During subsequent visits by the NRC, IV surveys were performed of the building's shell and structural materials but not the foundations of the buildings

Building shells/structures were demolished and the construction debris was removed from site or controlled as radioactive material

2.0 SITE INFORMATION

2.1 SITE DESCRIPTION

The Molycorp, Inc. project site (the site) is located in southwestern Pennsylvania on the outskirts of Washington County approximately 35 miles southwest of Pittsburgh The site is separated from the populated City's urbanized area by the ramps and structures associated with Interstate 70 (I-70) The region is generally comprised of towns located close to transportation corridors surrounded by agricultural lands and open areas

The current work site consists of approximately 8 acres that is located inside a 20 acre fenced portion of the 59-acre parcel owned by Molycorp that lies entirely within Canton Township at 300 Caldwell Avenue, Washington, Pennsylvania, 15301 The fenced area is situated between 1,010 and 1,045 feet above mean sea level with relatively flat topography.

Molycorp's property has frontage along two dedicated public streets in Canton Township – Caldwell Avenue and Weirich Avenue The site is transversed by Chartiers Creek that flows south to north through the property The property is served by the CSX operated railroad via two lines that were formerly owned by the Tylerdale Connecting Railroad Company and the Baltimore and Ohio Railroad Adjacent property owners can be classified into three major categories on the current use of the land residential, industrial, and public. The residential property lies to the east of the site on Green Street and to the west along Weirich Avenue. The industrial property is located predominately north of the site and includes property under the ownership of the Findlay Refractories Company and Allegheny Ludlum Corporation Darrt Development Company owns several scattered parcels located to the south and east of the site Land under public ownership includes the Canton Township Volunteer Fire Company property, the right-of-way for I-70, and other public streets The Washington Institute of Technology owns a vacant 38acre parcel adjacent to the southwestern property line.

2.2 SITE CONDITIONS AT TIME OF FOUNDATION SURVEY

As part of the past decommissioning activities, process equipment and supporting fixtures were removed, cleaned, and released or disposed of as low-level radioactive waste Contaminated structural surfaces identified during building surveys have been either decontaminated in-place by dry decontamination methods or have been marked as contaminated for later removal from buildings

2.3 GROUNDS

The Molycorp Washington, PA facility produced a ferrocolumbium alloy from Brazilian ore (pyrochlore) between 1946 and 1970. While the use of pyrochlore was commonplace by that time, this particular ore contained thorium as an accessory metal. The thorium was also in concentrations that required Molycorp to acquire a Source Materials License This operation resulted in the production of a thorium-bearing slag A portion of this slag was ball-milled (turned into a granular powder) and used as fill over portions of the site

While significant amounts of this slag have been removed from the site, remaining slag in soil continued to play a significant role in the survey and release of buildings on-site. Building steel walls and concrete floors showed significant readings above "normal" background levels when surveyed by hand-held or portable detectors

Because this elevated background condition exists at the Molycorp site, MACTEC devised instrument detector windows for some of their instruments and used them in areas where thorium slag in soil created a background nuisance during survey activities

2.4 FOUNDATION CLASSIFICATION

All foundations do not have the same potential for residual contamination and therefore do not require the same level of survey coverage For purposes of establishing the degree of survey effort required, building foundations have been segregated into affected and unaffected foundations.

- Affected foundation. Foundations that have a potential for surface residual contamination from contact with underlying soils
- Unaffected foundation Foundations not classified as affected.

TABLE 1 - CLASSIFICATION OF BUILDING FOUNDATION

)

-

Foundation Classification ⁽¹⁾	Building Number	Radiological Information		
U	1	Concrete floor. Top surface of foundation not yet surveyed for final status. Building foundation is not located on contaminated fill		
U	2	Concrete floor. Top surface of foundation final status surveyed Not yet released by NRC Building foundation is not located on contaminated fill		
U	2W	Concrete floor. Top surface of foundation final status surveyed Not yet released by NRC. Building foundation is not located on contaminated fill		
U	2 Train Bay	Concrete floor. Top surface of foundation final status surveyed Not yet released by NRC. Building foundation is not located on contaminated fill.		
U	13	Concrete floor. Top surface of foundation final status surveyed and released by NRC Building foundation is not located on contaminated fill.		
U	14	Concrete floor Top surface of foundation final status surveyed and released by NRC Building foundation is not located on contaminated fill		
U	19	Concrete floor. Top surface of foundation final status surveyed. Not yet released by NRC Building foundation is not located on contaminated fill.		
U	21	Concrete floor. Top surface of foundation final status surveyed Not yet released by NRC. Building foundation is not located on contaminated fill		
U	22	Concrete floor. Top surface of foundation final status surveyed. Not yet released by NRC. Building foundation is not located on contaminated fill		
U	23	Concrete floor Top surface of foundation final status surveyed. Not yet released by NRC. Building foundation is not located on contaminated fill.		
U	25	Concrete floor. Top surface of foundation final status surveyed Not yet released by NRC. Building foundation is not located on contaminated fill		
U	26	Building is currently being used as a rad storage/management area Concrete floor. Top surface of foundation not yet surveyed for final status Building foundation is not located on contaminated fill		

.

.

A	28	Concrete floor. Top surface of foundation final status surveyed and released by NRC. Building foundation is located on contaminated fill.		
U	29	Concrete floor. Top surface of foundation final status surveyed. Not yet released by NRC. Building foundation is not located on contaminated fill.		
U	31	Concrete floor. Top surface of foundation final status surveyed. Not yet released by NRC Building foundation is not located on contaminated fill.		
A	32	Concrete floor. Top surface of foundation final status surveyed Not yet released by NRC. Building foundation is located on contaminated fill		
A	33	Concrete floor. Top surface of foundation final status surveyed. Not yet released by NRC Building foundation is located on contaminated fill.		
A	34	Concrete floor. Top surface of foundation final status surveyed. Not yet released by NRC Building foundation is located on contaminated fill.		
A	35	Concrete floor. Top surface of foundation final status surveyed and released by NRC Building foundation is located on contaminated fill.		
A	36	Concrete floor. Top surface of foundation final status surveyed and released by NRC. Building foundation is located on contaminated fill		
U	37	Concrete floor. Top surface of foundation final status surveyed Not yet released by NRC Building foundation is not located on contaminated fill		
А	38	Concrete floor Top surface of foundation not yet surveyed for final status Building foundation is located on contaminated fill		
A	39	Concrete floor. Top surface of foundation final status surveyed and released by NRC. Building foundation is located on contaminated fill.		
А	42	Concrete floor. Top surface of foundation final status surveyed and released by NRC Building foundation is located on contaminated fill.		

(1) Building foundation classification is derived from building location, obtained from Molycorp's Material License, Amendment No 5, SMB-1393

٠.

2.5 SURVEY UNITS

Each building foundation was considered an individual survey unit for final status survey purposes Determination of compliance with the average unrestricted use limits was evaluated on a survey unit basis Each survey unit must be shown to meet the average surface contamination and exposure rate limits at a 95% confidence

3.0 DECOMMISSIONING ACTIVITIES

Decommissioning activities of the buildings on site were performed as a "first step" to release the site for unrestricted future use. The scope of work during this phase includes D and D of all above surface structures.

3.1 **OBJECTIVES**

The objectives for this phase of D and D activities included:

- Removal of equipment and surplus supplies from buildings
- Characterization of hazards associated with the buildings (performance of effective radiological surveys)
- Remediation or disposal of hazards identified in the characterization process
- Completion of Final Status Survey
- Unrestricted release of buildings
- Demolition of buildings

3.2 RESULTS OF PREVIOUS SURVEYS

Numerous radiological studies and surveys have been conducted at the Molycorp Washington, PA site. Since the late 1960s, regulatory requirements and pressure from local agencies have driven surveys and studies of the hazards associated with the production of various ferroalloys. Listed below is a brief history of the previous surveys performed on the Molycorp site

Applied Health Physics, Inc was contracted by Molycorp to conduct a series of leaching studies on ferrocolumbium slag during the late 1960s These studies indicated that radioactive materials were fixed and would not leach into the groundwater in excess of prescribed limits. During this period, Molycorp applied unsuccessfully to the Pennsylvania Department of Health's Industrial Wastes Section and AEC for an onsite burial permit Ferrocolumbium slag cleanup was concentrated in the early to mid-1970s time frame

In June 1971, an AEC compliance inspection revealed that thorium-bearing slag had been inadvertently buried onsite in violation of the terms and conditions of their license and AEC regulations. The AEC issued a Notice of Violation and requested Molycorp to take remedial action to excavate these materials and

dispose of them in accordance with AEC regulations and guidance documents. Applied Health Physics was contracted to perform a thorough radiological survey of the site and to provide health physics and waste disposal services necessary to comply with AEC's request. Survey measurements indicated exposure levels at 1 2 mR/hr in some areas

In 1972, thoriated material from the site was disposed of at the West Valley, New York, burial site. The disposal was terminated when New York officials decided that the volume of waste was too large and the contamination level insignificant to use up valuable burial area Molycorp performed cleanup operations to segregate and stabilize the remaining thoriated material in a capped pile containing about 27,700 cubic yards of slag on the south property A 1975 Applied Health Physics, Inc. report indicated the average concentration of thorium-232 in the slag pile was 1,250 pCi/g, with exposures within the 0.2 mR/hr Nuclear Regulatory Commission maximum level allowed at the time (AEC was reorganized as the NRC in 1974) This pile was eventually removed and disposed of.

In 1978, one of two molybdenum-roasting furnaces was shut down as part of a consent decree with the Pennsylvania Department of Environmental Resources (PADER) Air Quality Agency due to exceedances of SO_2 standards. All remaining processes continued until 1991.

Oak Ridge Associated Universities, an NRC contractor, conducted a radiological survey of the site in 1985. The survey identified elevated (twice background or greater) levels of thorium in the dikes that separated the surface impoundments, and indicated the potential of subsurface thoriated slags in the western portion of the site

RSA, Inc conducted a subsurface survey for Molycorp in 1990 to characterize the thorium contamination across the western portion of the site (i.e., the impoundment area), and the areas immediately to the north, west, and northwest Thirty-two holes were drilled on the site and radiation measurements were logged at every six inches of depth from the surface down to bedrock, both above and below water table Radiation levels were also logged in monitoring wells previously drilled on the site In addition to the subsurface survey, RSA, Inc. conducted a survey of the radiation exposure rates inside the study area This survey consisted of approximately 400 measurements of the gamma radiation field at a height of one meter above ground level Findings reveled that, in general, the subsurface concentrations of thorium were above those in the surface soils in almost every hole drilled A general pattern was that the underground radiation levels decreased to background at a depth of about ten feet While a majority of the holes exhibited concentrations of greater than 0 01 percent thorium, in only a few holes did the thorium content exceed an average of 0 05 percent at some point below the surface of the ground

Foster Wheeler Environmental Corporation conducted a site characterization of the Molycorp Washington, PA site in 1994 and published its report titles "Site Characterization Report for License Termination of the Washington, PA Facility, 1995." This three-volume report was conducted to meet the Site Characterization Plan's objectives

- To determine the extent of the distribution of thoriated residues on the site, in the structures and in the environmental media
- To determine the rate(s) of migration, if any, of thorium or its daughters through various pathways . to man

- To assess associated non-radiological constituents and determine their affects on the radiological constituents and potential impacts on decommissioning.
- To quantify parameters that affect potential human exposure to existing site radiological materials
- To support evaluation of alternative decommissioning actions and detailed planning of a preferred approach for decommissioning, decontamination, and waste disposal

3.3 DECONTAMINATION PROCEDURES

Building foundations and equipment footings found to contain radioactivity above the release limits were not normally decontaminated. Concrete and foundation materials found to have elevated levels of radioactivity were controlled as radioactive material, are temporarily stored on site, and will ultimately be disposed of as radioactive waste

4.0 FINAL SURVEY PROCEDURES

The basis of the Molycorp radiological survey design conformed to NUREG/CR 5849, "Manual for Conducting Radiological Surveys in Support of License Termination," RSI's "Decommission Plan for the Washington, PA Facility, Part 1 Revision," and the requirements of Molycorp's "U.S. Nuclear Regulatory Commission Material License, Amendment No. 5, SMB-1393." These references provide adequate information and sampling requirements to ensure a proper survey had been planned and performed. The requirements listed in these references were compiled into a sampling plan (MACTEC's "Concrete Sample and Management Plan") and used as the guidance document for sampling instructions

4.1 SAMPLING PARAMETERS

Sampling parameters were identified from NUREG/CR 5849, "Manual for Conducting Radiological Surveys in Support of License Termination," RSI's "Decommission Plan for the Washington, PA Facility, Part 1 Revision," and the requirements of Molycorp's "U.S Nuclear Regulatory Commission Material License, Amendment No 5, SMB-1393."

Survey results were obtained and used for comparison against the limits for unrestricted release, as defined in the site's NRC License

Table 2 identifies the release limits of the license.

Radionuclide ⁽¹⁾	Average	Maximum	Removable
U-nat, U-235, U-238, and associated decay products	5,000 α	15,000a	1,000a
Transuranics, Ra-226, Ra-228, Th-230,	100	300	20
Th-228, Pa-231, Ac-227, I-125, I-129			

TABLE 2 - ACCEPTABLE SURFACE CONTAMINATION LEVELS (DPM/100CM²)

Th-nat, Th-232, Sr-90, Ra-223, Ra-224, U-232, I- 126, I-131, I-133	1,000	3,000	200
Beta-gamma emitters (nuclides with decay modes other than alpha emission or spontaneous fission) except Sr-90 and others noted above	5,000	15,000	1,000

(1) Where surface contamination by both alpha and beta-gamma emitting nuclides exist, the limits established for alpha and beta-gamma emitting nuclides should apply independently.

Even though limited quantities of natural uranium has been identified at the Washington, PA site, and is included as a part of the site's NRC License, the more restrictive limits for release (for surface activity) are for the natural thorium radionuclide, which is the significant radionuclide of concern. Therefore, the limits for release are due to the natural thorium radionuclide, and the limits are 1,000 dpm/100cm² average, 3,000 dpm/100cm² maximum and 200 dpm/100cm² removable.

Because both alpha and beta radiations are a product of the decay of natural thorium (in equilibrium), the limits listed above apply independently to both alpha radiation and beta radiation

Due to the inherent difficulty of properly quantifying the alpha radiation component during the decay of natural thorium when using a hand-held instrument, a ratio of alpha decays to beta decays was identified and beta radiation was used as a surrogate to quantify the alpha activity This was not the case for determining removable contamination The Ludlum 2929 was calibrated and set up for the measurement of both alpha and beta radioactivity

The detectable ratio of alpha to beta is a 2:1 for natural thorium decay In actuality, the decay of natural thorium produces 6 alphas and 4 betas to reach stable lead However, one of the betas emitted during the decay process (from Ra-228) is not detectable (39 keV E-max) The other three betas emitted are detectable and are suitable as a surrogate

The alpha readings recorded on the various data forms and record sheets were actual instrument readings, obtained from the instrument during the survey, and do not represent this ratio factoring. The use of alpha to beta ratio factoring is incorporated in the data set just prior to statistical analysis and comparison to limit values

Figure 1 is a graphical representation of the decay of natural thorium

.

FIGURE 1 - NATURAL THORIUM DECAY CHAIN

٠.

5.0 SURVEY PROCEDURE

5.1 GENERAL

Approved SOPs and/or field procedures were followed for activities described in this plan.

5.2 SURFACE SCANS

Scanning of surfaces to identify locations of elevated residual surface activity were performed according to Table 3

Foundation Classification	Survey Location	Surface Scan
All Previously Surveyed Foundation Tops	Top surface of foundation.	5 - 10% cursory beta-gamma scan (at random locations) on top surface of previously surveyed foundations prior to lifting foundation.
Affected Foundations	Underside surface of foundation	100 % beta-gamma scan of underside of foundation when foundation is lifted.
Unaffected Foundations	Underside surface of foundation.	10 % beta-gamma scan of underside of foundation when foundation is lifted.
Result Requirements		Locations of surface activity exceeding twice background will be marked for further evaluation by direct measurement

TABLE 3 - SURFACE SCAN SCHEDULE

The instruments that were used for scanning are listed in Table 7 For hand-held instrumentation, the detector was kept as close as possible to the surface and moved across the surface at a slow speed. Scan surveys were performed by moving the detector over the surface area at a maximum speed of 1-2 inches per second and a distance of approximately 1/2 inch for beta If the count rate increased, the rate of movement of the detector was decreased or stopped If the increase in count rate was real (approximately twice background and not a random variation in the background count rate), a static 60-second measurement was performed over the area to quantify the activity. Audible indicators (headphones or instrument speaker) were used to identify locations having elevated activity levels All scanning results were noted on standard survey forms and locations of elevated radiation were identified for later investigation

Document No

5.3 DIRECT SURFACE MEASUREMENTS

Direct measurements were performed according to Table 4.

Foundation Classification	Survey Location	Direct Measurement
All Previously Surveyed Foundations	Top surface of foundation.	Measurements will be performed at each location of elevated activity identified by surface scan measurements.
Affected Foundations	Underside surface of foundation	Measurements will be performed at a minimum of 30 locations for the entire foundation (survey unit) and sufficient additional locations to provide coverage at a minimum of approximately one location per 20 m^2 of the underside surface of the foundation.
Unaffected Foundations	Underside surface of foundation.	Measurements will be performed at a minimum of 30 locations for the entire foundation (survey unit) and sufficient additional locations to provide coverage at a minimum of approximately one location per 50 m^2 of the underside surface of the foundation.
Result Requirements		If measurement indicates residual activity above guideline limits, the affected area is identified and controlled as radioactive material

TABLE 4 - DIRECT SURFACE MEASUREMENT SCHEDULE

Direct surface measurements were performed at the identified locations using the instruments described in Table 7. Direct surface measurements were conducted by integrating counts over a 1-minute period

Due to the inherent difficulty of properly quantifying the alpha radiation component of the decay of natural thorium when using a hand-held instrument, a derived ratio of alpha decays to beta decays was used The detectable ratio of alpha to beta is 2.1 for natural thorium decay In actuality, the decay of natural thorium produces 6 alphas and 4 betas to reach stable lead. However, one of the betas emitted during the decay process (from Ra-228) is not detectable (39 keV E-max) The other three betas emitted are detectable and are suitable as a surrogate. Beta radiation was used as a surrogate to quantify alpha activity when performing direct measurements

Alpha readings obtained during the surveying process were recorded on the proper data form(s) and/or record sheet(s) but were not be used to quantify the alpha activity component for direct measurements

Alpha to beta ratio factoring was incorporated in the data set just prior to statistical analysis and comparison to limit values.

5.4 SMEAR SURVEYS

Smear surveys were conducted according to Table 5

Foundation Classification	Survey Location	Removable Surface Activity
All Previously Surveyed Foundations	Top surface of foundation	Collected from each location where a direct surface activity measurement is made (alpha and beta analysis).
Affected Foundations	Underside surface of foundation	Collected from each location where a direct surface activity measurement is made (alpha and beta analysis)
Unaffected Foundations	Underside surface of foundation	Collected from each location where a direct surface activity measurement is made (alpha and beta analysis)

TABLE 5 - LOOSE SURFACE MEASUREMENT SCHEDULE

Smear sampling was performed in accordance with applicable procedures Smears were counted for gross alpha and beta with the appropriate instrument described in Table 7.

5.5 EXPOSURE RATE MEASUREMENTS

Exposure rate measurements were performed according to Table 6

Foundation Classification	Survey Location	Exposure Rate Measurement
NA	Eternal surface of "clean" concrete waste pile.	Gamma exposure rates measured 1 meter perpendicular to the piled concrete surface at 1 measurement per 50 m ² of surface area

TABLE 6 - EXPOSURE RATE MEASUREMENT SCHEDULE

Exposure rate measurements were performed at the identified locations using the instruments described in Table 7 Pile exposure rate measurements were not be taken at locations greater than seven feet above ground level

5.6 BACKGROUND LEVEL DETERMINATION

Background levels were determined for concrete surfaces by taking a minimum of 10 measurements at locations of similar construction, but without a history of radioactive materials use (off-site locations).

5.7 DOCUMENTATION

All survey and sampling efforts were documented by sampling personnel. One member of the sampling team was assigned as a document coordinator and was responsible for recording all required information during survey and sampling activities, other than the normal sampling information commonly performed by the individual obtaining the sample Samples that were sent to an off-site processing facility were transferred from sample collection personnel to the designated counting technician for handling and custody control. This technician was responsible for documentation, sample identification, packaging, and shipping of samples, as required A standard chain-of-custody record was used to record sample transfers to offsite facilities Samples were held in the custody of the document coordinator until being shipped to the laboratory.

All survey data was documented on the appropriate radiological survey form, map, and/or data sheet. Information included, but was not limited to

- Date, time and purpose of the survey
- · General and specific location of the survey
- Name and signature of the surveyor
- Instrument model, serial number, and calibration due date
- Survey results for radiological contamination (recorded in dpm/100 cm²)

Survey documentation was completed and reviewed in a timely manner. Errors identified during the review process were brought to the Health Physics Technician (HPT) for correction.

6.0 INSTRUMENTATION

6.1 INSTRUMENT OPERATION AND CALIBRATION

All instruments were operated, maintained, and calibrated according to the manufacturer's recommendations and/or the specifications of ANSI N323-1978

- Survey instruments were calibrated before initial use, at least semi-annually and following maintenance or repair that could affect calibration Calibration sources were National Institute of Science and Technology (NIST) traceable.
- Meters need not be calibrated for readings above 1,000 mR/hr
- Daily functional checks were conducted on each instrument to verify that the equipment is functioning properly
- When not in use, instruments were stored at a central location and protected from harsh environments
- Records of instrument calibration and daily functional checks are maintained for inspection

• Calibration stickers which include, sources used to calibrate, correction factors or efficiencies for each scale or decade calibrated, the date calibrated and due date, were attached to each instrument.

6.2 MINIMUM DETECTABLE ACTIVITY

The detection sensitivity of a measurement system refers to the statistically determined quantity of radioactive material or radiation that can be measured or detected at a pre-selected confidence level This sensitivity is a factor of both the instrumentation and the technique or procedure being used. Typically, detection sensitivity has been defined (EPA 1980) as the level above which there is less than a 5% probability that radioactivity will be reported present when it is really absent (Type I error) or reported absent when it is really present (Type II error).

Minimum detectable activity (MDA) is an *a priori* estimate of the minimum activity level which is practically measurable with a specific instrument and sampling and/or measurement technique The basic equation for determining field instrument MDA (NUREG/CR-5849) is

FIGURE 1 - BASIC MDA EQUATION

$$MDA = \frac{2\ 71 + 4\ 65\sqrt{B_R * t}}{E * \frac{A}{100}}$$

Where

 $\begin{array}{rcl}B_{R}&=&background \ count \ rate\\t&=&background \ count \ time \ (min)\\E&=&efficiency\\A&=&area \ of \ probe\end{array}$

6.3 INSTRUMENT SELECTION

During the final status survey of building foundations at the Molycorp site, several radiological instruments were used to identify and quantify the radioactivity of building surfaces. The instruments identified in Table 7 are commonly used for measuring surface deposited radioactive levels from thorium series source of radioactivity. These instruments are reliable, readily available, and reasonably easy to use by trained personal. As necessary, instruments were substituted with an equivalent, or better, instrument. Prior to instrument substitution, the site radiological engineer was notified and approved of the substitution.

Instruments	Probe	Radiation	MDA (dpm/100 cm ²)	Use
Ludlum, Model 2360	43-89 .	Alpha	67	Static Surveys
Ludlum, Model 2360	43-89	Beta	520	Static Surveys
Ludlum, Model 2350-1	43-68	Alpha	66	Static Surveys
Ludlum, Model 2350-1	43-68	Beta	319	Static Surveys
Ludlum, Model 2929	43-10-1	Alpha	29	Counter Scaler
Ludlum, Model 2929	43-10-1	Beta	182	Counter Scaler
Ludlum, Model 2350-1	43-68	Alpha	105	Scan Surveys
Ludlum, Model 2350-1	43-68	Beta	625	Scan Surveys
Ludlum, Model 239-1F	43-37	Alpha	64	Floor Monitor
Ludlum, Model 239-1F	43-37	Beta	1186	Floor Monitor
Ludlum, Model 19	Internal	Gamma	NA	Exposure Rates

TABLE 7 - INSTRUMENTATION GUIDE

6.4 INSTRUMENT USE TECHNIQUES

Instruments selected for performing final status surveys were provided by GTS Duratek, Field Engineering and Field Services group, Kingston, TN Prior to delivery, instrument calibrations and operations were verified by the vendor, and shipped to Washington, PA Upon arrival, the instruments were inspected and verified operational Instrument backgrounds were preformed. QC check control limits were established and Chi-squared tests were performed, as necessary

Prior to daily use, instruments were response checked and compared against their two and three sigma warning and control limit values For scaler instruments, daily backgrounds were determined and MDCs were calculated in addition to their response checks After daily use, hand-held instruments were once again source response checked to ensure that the instrument did not fail during the day's work. All instrument "daily checks" data was logged in the appropriate data log record

Qualified HP technicians were trained on the use of the instruments, and provided access to the instrument's User Manuals. Surveys were performed in accordance with approved radiological survey procedures on site Survey results were reviewed by the Radiological Engineer for accuracy and completeness

7.0 SURVEY FINDINGS

Detailed data reports (Survey Findings Report) for each survey unit sampled are provided as an appendix to this report Field data collection forms, survey report forms, instrumentation information (background, QC, MDA, and source response data forms), statistical test results, and comparisons to release limits are all provided as a single package Each package also contains a summary of the final status survey for that survey unit and includes information on anomalies discovered during the survey process Where significant differences existed between final status survey results and results of previous surveys for the survey unit, explanations are provided

Raw survey data was compiled into survey data tables, where appropriate, and presented with calculational results and comparisons

7.1 TECHNIQUES FOR REDUCING/EVALUATING DATA

Survey information was obtained from the instrument's meter face used at the time of the survey. This data was recorded on a Radiological Survey Location Indicator data sheet, in the instrument's units For scans and static measurements, the units were in counts per minute (cpm) Smear data was recorded after counting, subtracting background, and converted to units of disintegrations per minute per 100 square centimeters (dpm/100cm²) Dose rate measurements were recorded in units of micro-Roentgen per hour (uR/hr) and taken directly from the instruments meter face Information used in the conversion from cpm to dpm (instrument efficiencies) was recorded on the Radiation Protection Survey Report form For scans, the highest reading for the given immediate scan area was recorded in cpm.

Where "hot spots" needed to be evaluated, additional readings were taken and the average hot spot activity was calculated in accordance with NUREG/CR-5849, Section 8 5 2 - Elevated Areas of Activity.

7.2 STATISTICAL EVALUATION AND COMPARISON TABLES

The statistical methodology used to provide the true representation of the data in relationship to the applicable limits is found in Sections 2 0 and 8 0 of NUREG/CR-5849 Comparison tables and tests used in the analysis are presented as part of each survey unit's Survey Findings Report package, as an appendix to this report

8.0 SUMMARY

Final status survey of the building foundations located at the Molycorp Washington, PA site were performed in accordance with the requirements listed in NUREG/CR 5849, "Manual for Conducting Radiological Surveys in Support of License Termination," RSI's "Decommission Plan for the Washington, PA Facility, Part 1 Revision," Molycorp's "US Nuclear Regulatory Commission Material License, Amendment No 5, SMB-1393," and MACTEC's "Concrete Sample and Management Plan"

According to the findings of the final status surveys performed at the Molycorp Washington, PA site, all release criteria have been met Results of the final status survey demonstrate that the residual radioactivity is below the unrestricted use criteria and confirm that the building foundations are suitable for unrestricted use

9.0 **REFERENCES**

- 1) Manual for Conducting Radiological Surveys in Support of License Termination, NUREG/CR-5849, Draft, December 1993
- Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) Revision 1, NUREG-1575, Rev 1, US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, Washington, DC, August 2000
- 3) Specifications and Guidelines for Quality Systems for Environmental Data Collection and Environmental Technology Programs, American National Standard, ANSI/ASQC E4-1994
- 4) *Quality Assurance for Radiological Monitoring Program Effluent Streams and the Environment*, NRC Regulatory Guide 4 15, 1979.
- 5) Termination of Operating Licenses for Nuclear Reactors, Nuclear Regulatory Commission, Regulatory Guide 1.86, 1974
- 6) Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions, NUREG/CR-1507, Final, 1997.
- 7) Statistical Methods for Evaluating the Attainment of Cleanup Standards, Pacific Northwest Laboratory, Richland, WA, December 1992
- 8) Radiation Detection and Measurement, Knoll, 1979.
- 9) Washing, PA Facility, Decommissioning Plan, Part 1 Revision, June 30, 1999, Radiological Services Inc.
- 10) Radiation Protection Program, Health Physics Procedures, June 1999, Radiological Services Inc.
- 11) Site Characterization Report for License Termination of the Washington, PA Facility, January 1995, Radiological Services Inc
- 12) U.S. Nuclear Regulatory Commission Materials License, Molycorp, Inc, SMB-1393, Docket No 040-08778, Amendment 5.
- 13) Antech Ltd Waltz Mill, Project No 02-0284W, Analytical Survey Results for Composite Tile Sample at Molycorp, Washington, PA, May 13, 2002

Appendix A

Building 42 Foundation Data Package Molycorp Washington, PA

August, 2002

•

Building 42 Foundation Data Package

This data package contains final status survey information for Building 42, Molycorp, Washington, PA site. The underside of the building's foundation/slab was surveyed as an affected foundation. The building's footer was not excavated as a part of the slab removal, and is not included in this report. The footer will be removed in the future and surveyed for final status at that time.

Field data collection forms, survey report forms, statistical test results, and comparisons to release limits are provided

.

Summary

Results from the final status survey of Building 42 foundation provides evidence that all release criteria have been met, demonstrates that residual radioactivity is below the unrestricted use criteria, and confirms that the foundation (slab portion only) of Building 42 is suitable for unrestricted use and release.

RPP-0P-019

	DDO-138	Radiation P	rotection Su	irvey Report	Site Molyc	corp / Washin	gton, PA
Section 1. Survey Informati	on						
Date 8-19-02	Time // 0	8	Location Building	# 42	Survey Issu	ue Log Number	ar 7
RWP Number	Purpose of Su	irvev FSS outine Survey []	V Unconditional I	Release XOther	Page _	of	4
Survey Title FSS	FOUNDA	tion #	42 und	erside	Smear Number c	Beta dpm/100cm ²	Alpha dpm/100cm ²
•					3		/
	1	Minute	Static	:' 5	4		/
C cc	• + •	RVI	Мал		5		/
	218	DKG	FLUA	-	7		/
-	n -		238		8		
<i>#</i> 1	D	149 -	. 200		9		
	2	8 -	78		10	See	2 8
		6			12	<u>Atta</u> <	Loeta
-					13	0	1
					14	/	
	-		2.10		15	/	
#2	B-	144	243		17		
	2	~			18	/	
	- (8	81		, 19		
			Minute	static	20	/	
I MINUTE ST	ATIC V G NO	م	Hotel RK	L MDA	21	_/	
Metal Dr	- 46	·· •		- 48	23	-/	
β _j	- 7 - 109	#よ	B 27	- 112	24	/	
	, Mr/,			1.00	25	/	
Bkgd Readings 8-	-10 /h	<u>(</u>	. <u></u>				1
00 = mRem/h gamma 00 (C = mRem/h gam	ma contact 🔿	= Smear Locati	on 7 = Air	Sample Loca	tion -X-X-X	(- = Rope
00 () = mRem/h beta 00 (3C = mRem/h bel	a contact1)– = Large Area	Wipe = Bulk	Material San	nple Bound	lary, or Barrie
Section 2 Instrument Use	d						
Instrument Model/SN C	al Due Prob Date	e Model/SN	Cal Due Date	Detector Eff B ⁻ (cpm/dpm) イ	мда <u>8- ррн «</u>	X B=	0ther BKG अ
2350-1 /95356 1-	29-03 43-10	6/133866	1-29-03	. 246 /. 204	643/63	2 280	/1.8
2350-1 / 129414 8-	2-03 43-10	06/128914	2-2-03	.240/.195	663/5	3 284	1-1.2
2929/115563 6-	14-03 43-1	0/127216	6-14-03	.231/.347	134/12	11	<u>/ . / 7</u>
19 / 22526 1-	29-03 <u>–</u>			.//			10
Section 3: Review and An	U/A	JA			NA		//
Sucies Performed By (Sinn)	/ 4		Area Posted ar	d/or Barricaded	Date and Tir	me	
Hoe Bule	Mart Bl	maint	T 'es XNO	C Not Required	8-19-0	Da /1500)
Rabation Safety Officer (Pri	nt Name & Sign)	Λ	·		Date and Tir	me An //A	
Steve Kowalski /	stare Lowala	the			8-20-2	0, 1 <u>0</u> 40	0

\$

Survey Area		FSS	Founda	TION L	3664	r Y	2	unde	rsid	,)	
i	<u>م ہو</u> Instrume Model/S	nt C N D	al P ue Moo	robe Jel/SN	Cal Due	sc M	ix can DA	β Sca MDA	n Sta Mi	x atic DA	β Static MEA
nstrument Data						 					
	Print Name			Signat	ure	<u> </u>		<u> </u>		Date	
Performed By		,				. <u> </u>					
	β Scan (cpm)	α Scąn (cpm)	β Static (unsn) (cpm)	β Static (sn)	α Sta (cpn	itic n)	f (µre	ER m/hr)	(apr a	Sme n/10	ais 0 cm ⁻) β
/	400		386	321				10	3		0
2_	420		395	318				10	Z. 4		- 17
3	1 400		362	303	!			12	-,5		
У	440		395	310	ļ			0	-, 5	<u></u>	- 30
5	430	l	396	299	!			//	>		- 7 7
6	390	l	381	334	<u> </u>			10		2	-40
7	380	1 	371	- 335	<u>.</u> 1		1	//	<	5	4,3
8	390	 	>/8	378			<u> </u> '	//	- ,	51	39
7	. 380		373	- <u> </u>			<u></u> -	10	-, -	5	30
	470	<u> </u>	376	290	ł		1	10	1 2.	41	43
/	450	· · · · · · · · · · · · · · · · · · ·	410	. 318			1	2	′	5	8.7
	460	1	420	: 302			1 /	'/	-,:	5	-13
14	390		372	300			1	1		5	-4,3
15	400		369	291	 		<u> /</u>	0	<u> </u>	5	8.1
				1	 				1		
<u> </u>		1	···· · ·······························	1			1				<u> </u>
		1					<u> </u>				
											· · · · · · · · · · · · · · · · · · ·
							1.		<u> </u>		
		1									
		 						<u> </u>			· · · · · · · · · · · · · · · · · · ·

INST # 2

Page Z alt

Radiological Survey Results - Survey Loca	tion Indicator	sudvey \$ 02-0787

Survey Area	Intormation	G	FS 1750	55 784	ON FO	unda	Tio	л E	Bldg#4	12 (UNJER	side)
. 1	Instrume Model/S	ent SN	M.B. Cal Due	Pr Moc	obe Iel/SN	Cal Due	So M	α can DA	β Scar MDA	n α Static MDA	β Static MDA
Instrument ′Data											
	Print Name			<u> </u>	Signati	Jre	!			Date	
Ву									<u> </u>		
Location	β Scan (cpm)	α Scar (cpm)	η β (ι	Static Jnsh) cpm)	β Static (sh) (cpm)	α Sta (cpn	itic n)	E (µre	R m/hr)	Sme (dpm/10 α	ars 0 cm²) β
16	420	[13	396	281				1	-,5	-26
17	400		Ë	392	301			/	0	5	-/3
18	390	}		378	272			/	0	2.4	0
19	1 390			372	292			1/	/	<u>Z, 4</u>	35
20	410			<u>388</u>	317.				1	2.9	8,1
21	440			411	273			<u> </u> /	2		-35
22	370	<u> </u>		315	292			/	0	-15	-0./
23	360	<u> </u>		<u>347</u>	254			<u> </u>		-, 5	-7/2
24	420	<u> </u>		389	252					- 5	- 30
25	460	<u> </u>		422	201	<u> </u>		<u> </u>	17- 1	~ <	17
26	420	<u></u>		301	1 202				$\frac{1}{11}$	5	-171
21	380	 		<u>360</u> 201	1 225	1		<u></u>		2.4	-4.3
28	910			201	177			1	10	5	17
27	390	1	-+-	257	1 286	<u> </u>			10	2.4	- 4.3
		1		222	1000	1		1			
		_ <u>_</u>	i		1						
				<u> </u>	1						1
		1		<u> </u>	1						
											ļ
		-							. <u></u>		
		1				<u> </u>					
		1				1		<u>].</u>		!	
									<u> </u>		
	-										
<u>├</u>		1						ļ			

INIT # 1

.

Page 3 of 4

uivey Area	a Intormation	1 STATIC	נ' ,	MA Ker	ار له ه ل	Vis-	I-Bea,	us/Me	tal PAW	els 42
	Instrume Model/S	ent C SN D	al ue	Pi Mod	obe Iel/SN	Cal Due	ia Scan MDA	β Scan MDA	a Static MDA	Sente MDA
nstrument Data				<u></u>						
	Print Name	e			Signat	ure		1	Date	2
Performed By										
	, β Scan (cpm)	u Scan (cpm)	βS (ui (c	Static nsn) pm)	3 Static (sn) (com)	α Sta (cpn	tic n) _i (µre	ER em/hr;	Sme (apm/10 a	ears . 10 cm ⁻
1	1340	 	3	17 '	273	•	1	0	2.4	-17
2	1320	<u> </u>	3	0/	294			· · · ·	-,5	-26
	580	:	5	401	742	<u> </u>	/	0 1	5	30
<u> </u>	<u> </u>	1	4	86	423		/	0	- ,5	22
	340	•	1	330	251	-		9	-,5	-/3
^ 7	320	1		308	282			0	2.4	- 8.7
8	300	1	z	.59	247	!		/	5	-/7
9	320	1 }		3//	275	1		0	2.7	-87
10	: 340			3/6	297			0		
	·				• • • • • • • • • • • • • • • • • • • •	1				
						1 				
]					
	1	1			1		1	1		
					1 1			1		
·····					1	_ <u>+</u>				
				<u></u>					·	
		1			· · · · · · · · · · · · · · · · · · ·					

INSTOUMENT # 1

Results of Surface Scans Molycorp - Building 42 Survey Unit

Underside of Foundation

-

Location	Beta Scan	Beta Scan	Instrument
	gross cpm	net cpm	Number
F1	400	116	2
F2	420	136	2
F3	400	116	2
F4	440	156	2
F5	430	146	2
F6	390	106	2
F7	380	96	2
F8	390	106	2
F9	380	96	2
F10	410	126	2
F11	420	136	2
F12	450	166	2
F13	460	176	2
F14	390	106	2
F15	400	116	2
F16	420	140	1
F17	400	120	1
F18	390	110	1
F19	390	110	1
F20	410	130	1
F21	440	160	1
F22	340	60	1
F23	360	80	1
F24	420	140	1
F25	460	180	1
F26	420	140	1
F27	380	100	1
F28	410	130	1
F29	390	110	1
F30	380	100	1

All foundation underside scans performed with either: #1 - Ludium Model 2350-1 No 95356 with 43-106 No. 133866

Monitor Info: Scan MDA Beta - 643 dpm/100cm² Scan background Beta - 280 cpm Detector Eff. Beta - .246

or

2 - Ludlum Model 2350-1 No. 129414 with 43-106 No. 128914

-

Scan MDA Beta - 663 dpm/100cm² Scan background Beta - 284 cpm Detector Eff. Beta - .240

Results of Surface Scans Molycorp - Building 42 Survey Unit

-

Foundation Support I-Beams and Metal Panels

Location	Beta Scan	Beta Scan
	gross cpm	net cpm
M1	340	60
M2	320	40
M3	580	300
M4	480	200
M5	520	240
M6	340	60
M7	320	40
M8	300	20
M9	320	40
M10	340	60

All foundation underside metal scans performed with Ludium Model 2350-1 No. 95356 with 43-106 No. 133866

Monitor Info: Scan MDA Beta - 643 dpm/100cm² Scan background Beta - 280 cpm Detector Eff. Beta - .246

Elevated Results of Surface Scans Molycorp - Building 42 Survey Unit

Underside of Foundation (including metal support r

No elevated scan results were reported

.

Direct Measurements (Total Activity)

Molycorp - Building 42 Survey Unit

Underside of Foundation

Location	Unshield Beta	Shield Beta	Gross Beta	Bkgd	Net	Direct Beta	Uncertainty	MDA	Direct Alpha ⁽¹⁾	Instrument
	cpm	cpm	cpm	cpm	cpm	(dpm/100cm ²)	95% CL	(dpm/100cm ²)	(dpm/100cm ²)	Number
F1	386	321	65	144	-79	-329	118	243	-658	2
F2	395	318	77	144	-67	-279	121	243	-558	2
F3	362	303	59	144	-85	-354	116	243	-708	2
F4	395	310	85	144	-59	-246	124	243	-492	2
F5	396	299	97	144	-47	-196	127	243	-392	2
F6	381	334	47	144	-97	-404	113	243	-808	2
F7	371	335	36	144	-108	-450	110	243	-900	2
F8	378	298	80	144	-64	-267	122	243	-533	2
F9	367	335	32	144	-112	-467	108	243	-933	2
F10	373	313	60	144	-84	-350	117	243	-700	2
F11	376	290	86	144	-58	-242	124	243	-483	2
F12	410	318	92	144	-52	-217	125	243	-433	2
F13	420	302	118	144	-26	-108	132	243	-217	2
F14	372	300	72	144	-72	-300	120	243	-600	2
F15	369	291	78	144	-66	-275	122	243	-550	2
F16	396	281	115	144	-29	-118	128	238	-236	1
F17	392	301	91	144	-53	-215	122	238	-431	1
F18	378	272	106	144	-38	-154	126	238	-309	1
F19	372	292	80	144	-64	-260	119	238	-520	1
F20	388	317	71	144	-73	-297	117	238	-593	1
F21	411	273	138	144	-6	-24	134	238	-49	1
F22	315	292	23	144	-121	-492	103	238	-984	1
F23	347	259	88	144	-56	-228	121	238	-455	1
F24	389	252	137	144	-7	-28	134	238	-57	1
F25	422	281	141	144	-3	-12	135	238	-24	1
F26	387	312	75	144	-69	-280	118	238	-561	1
F27	360	293	67	144	-77	-313	116	238	-626	1
F28	381	285	96	144	-48	-195	123	238	-390	1
F29	375	272	103	144	-41	-167	125	238	-333	1
F30	353	286	67	144	-77	-313	116	238	-626	1

•

4

,

All foundation underside direct measurements performed with either #1 - Ludlum Model 2350-1 No. 95356 with 43-106 No 133866

Monitor Info: Direct MDA Beta - 238 dpm/100cm² Direct background Beta - 144 cpm Detector Eff Beta - .246

or

,

٦

2 - Ludium Model 2350-1 No. 129414 with 43-106 No. 128914

Direct MDA Beta - 243 dpm/100cm² Direct background Beta - 144 cpm Detector Eff. Beta - .240

(1) - A beta to alpha ratio factoring (1:2, beta to alpha) was used to provide alpha activity.

•

.

4

Direct Measurements (Total Activity) Molycorp - Building 42 Survey Unit

Foundation Support I-Beams and Metal Panels

Location	Unshield Beta	Shield Beta	Gross Beta	Bkgd	Net	Direct Beta	Uncertainty	MDA	Direct Alpha (1)
	cpm	cpm	cpm	cpm	cpm	(dpm/100cm ²)	95% CL	(dpm/100cm ²)	(dpm/100cm ²)
M1	317	273	44	27	17	69	67	109	138
M2	301	294	7	27	-20	-81	46	109	-163
M3	540	492	48	27	21	85	69	109	171
M4	447	441	6	27	-21	-85	46	109	-171
M5	486	423	63	27	36	146	76	109	293
M6	330	251	79	27	52	211	82	109	423
M7	308	282	26	27	-1	-4	58	109	-8
M8	259	247	12	27	-15	-61	50	109	-122
M9	311	275	36	27	9	37	63	109	73
M10	316	297	19	27	-8	-33	54	109	-65

4

All foundation underside metal direct measurements performed with Ludlum Model 2350-1 No. 95356 with 43-106 No. 133866

.

Monitor Info: Direct MDA Beta - 109 dpm/100cm² Direct background Beta - 27 cpm Detector Eff. Beta - 246

(1) - A beta to alpha ratio factoring (1.2, beta to alpha) was used to provide alpha activity.

•

Elevated Direct Measurements (Total Activity) Molycorp - Building 42 Survey Unit

Underside of Foundation (including metal support materials)

No elevated direct measurements were reported.

Removable Surface Activity Measurements Molycorp - Building 42 Survey Unit

Underside of Foundation

ì

Removable Beta	Uncertainty	MDA	Removable Alpha	Uncertainty	MDA
(dpm/100cm ²)	95% CL		(dpm/100cm ²)	95% CL	
0	0.2	124	0.5	2.4	40
17	92	134	-05	2.4	12
-17	19.2	134	24	5.2	12
13	174	134	-0.5	24	12
-30	24.2	134	-0.5	24	12
0	9.2	134	-05	2.4	12
-22	21.2	134	5.3	77	12
-48	29.7	134	-0.5	2.4	12
4.3	12 5	134	- 0.5	24	12
39	27 1	134	-0 5	2.4	12
30	24 2	134	-0.5	2.4	12
43	28.3	134	2.4	5.2	12
8.7	15 2	134	-0.5	2.4	12
-13	17 4	134	-0.5	2.4	12
-4.3	12.5	134	-0.5	2.4	12
8.7	15 2	134	-0.5	2.4	12
-26	22 8	134	-0,5	24	12
-13	17.4	134	-0,5	2.4	12
0	9.2	134	24	52	12
35	25.8	134	2.4	5.2	12
87	15.2	134	24	52	12
-35	25.8	134	-0.5	2.4	12
-8.7	15.2	134	-0.5	2.4	12
22	21 2	134	-0 5	24	12
-26	22.8	134	2.4	5.2	12
-30	24.2	134	-0 5	2,4	12
17	19.2	134	-0.5	2.4	12
-17	19 2	134	-0.5	24	12
-4.3	12 5	134	2.4	5 2	12
17	19.2	134	-0 5	2.4	12
-4.3	12 5	134	2.4	5.2	12
	Removable Beta (dpm/100cm ²) 0 -17 13 -30 0 -22 -48 4.3 39 30 43 8.7 -13 -4.3 8.7 -13 -4.3 8.7 -26 -13 0 35 8.7 -26 -13 -13 -4.3 8.7 -26 -13 0 -35 -8.7 -26 -13 0 35 8.7 -26 -13 0 35 8.7 -26 -13 0 35 8.7 -26 -13 0 35 8.7 -26 -13 -13 -4.3 8.7 -26 -13 -13 -4.3 8.7 -26 -13 -13 -4.3 8.7 -26 -13 -7 -26 -13 -7 -26 -13 -7 -26 -30 -17 -27 -26 -30 -17 -27 -26 -30 -17 -27 -26 -30 -17 -27 -26 -30 -17 -27 -26 -30 -17 -27 -26 -30 -17 -27 -26 -30 -17 -27 -26 -30 -17 -27 -26 -30 -17 -27 -26 -30 -17 -27 -26 -30 -17 -27 -26 -30 -17 -27 -26 -30 -17 -27 -26 -30 -17 -27 -26 -30 -17 -27 -26 -30 -17 -27 -26 -30 -17 -27 -26 -30 -17 -27 -26 -30 -27 -27 -27 -27 -27 -27 -27 -27 -27 -27	Removable Beta (dpm/100cm2)Uncertainty 95% CL092-1719.21317 4-3024 209.2-2221.2-4829.74.312 53927 13024 24328.38.715 2-1317 4-4.312.58.715 2-2622 8-1317.409.23525.88715.2-2622 8-1317.409.23525.88.715.2-2622.8-3024.21719.2-1719.2-1719.2-4.312 5	Removable Beta (dpm/100cm²)Uncertainty 95% CLMDA09 2134-1719.21341317 4134-3024 213409.2134-2221.2134-4829.71343024 21344.312 51343927 11343024 21344328.31343024 21344328.3134622 8134-1317 4134-4.312.5134622 8134-1317.4134-2622 8134-3525.8134-3525.8134-3525.8134-3024.2134-2622.8134-3024.2134-1719.2134-1719.2134-1719.2134-1719.2134-4.312 5134	Removable Beta (dpm/100cm2)Uncertainty 95% CLMDARemovable Alpha (dpm/100cm2)092134 -0.5 -17 19.21342.41317.4134 -0.5 -30 24.2134 -0.5 0 9.2134 -0.5 -22 21.2134 5.3 -48 29.7134 -0.5 4.3 12.5134 -0.5 30 24.2134 -0.5 4.3 12.5134 -0.5 43 28.31342.4 8.7 15.2134 -0.5 -13 17.4134 -0.5 -4.3 12.5134 -0.5 -13 17.4134 -0.5 -13 17.4134 -0.5 -26 22.8134 -0.5 -13 17.4134 -0.5 -13 17.4134 -0.5 -26 22.8134 2.4 -35 25.8134 2.4 -30 24.2134 -0.5 -26 22.8134 2.4 -30 24.2134 -0.5 -17 19.2134 -0.5 -17 19.2134 -0.5 -17 19.2134 -0.5 -17 19.2134 -0.5 -4.3 12.5134 2.4	Removable Beta (dpm/100cm2)Uncertainty 95% CLMDARemovable Alpha (dpm/100cm2)Uncertainty 95% CL09 2134-0.52.4-1719.21342.45.21317.4134-0.52.4-3024.2134-0.52.409.2134-0.52.4-3024.2134-0.52.4-2221.21345.37.7-4829.7134-0.52.43927.1134-0.52.43024.2134-0.52.44328.31342.45.28.715.2134-0.52.4-1317.4134-0.52.4-4.312.5134-0.52.4-2622.8134-0.52.4-3525.81342.45.23525.8134-0.52.4-3024.2134-0.52.4-1317.4134-0.52.4-2622.8134-0.52.4-3525.81342.45.2-3024.2134-0.52.4-2622.8134-0.52.4-2715.2134-0.52.4-3024.2134-0.52.4-3024.2134-0.52.4-2622.8134<

,

4

1
Smears counted with Ludium 2929 No. 115563 with 43-10 No. 127216

.

4

.

.

	Beta	Alpha
Background (cpm)	71	0.17
Bkgd ct. time	60	60
Sample ct time	1	1
Efficiency	0.231	0.347
MDA	134	12.0

•

Removable Surface Activity Measurements Molycorp - Building 42 Survey Unit

Underside of Foundation

Location	Removable Beta (dpm/100cm ²)	Uncertainty 95% CL	MDA	Removable Alpha (dpm/100cm ²)	Uncertainty 95% CL	MDA
F1	0	92	134	-0 5	2.4	12
F2	-17	19 2	134	2.4	5.2	12
F3	13	17.4	134	-0 5	24	12
F4	-30	24.2	134	-0.5	2.4	12
F5	0	92	134	-0.5	2.4	12
F6	-22	21.2	134	53	7.7	12
F7	-48	29.7	134	-0.5	2.4	12
F8	4.3	12.5	134	-0.5	2.4	12
F9	39	27.1	134	-0 5	2.4	12
F10	30	24.2	134	-0.5	2.4	12
F11	43	28.3	134	2.4	52	12
F12	8.7	15 2	134	-0 5	2.4	12
F13	-13	17.4	134	-0.5	2.4	12
F14	-4.3	12.5	134	-0.5	2.4	12
F15	87	15.2	134	-0.5	2.4	12
F16	-26	22.8	134	-0.5	2.4	12
F17	-13	17.4	134	-0.5	2.4	12
F18	0	92	134	24	5.2	12
F19	35	25.8	134	2.4	52	12
F20	8.7	15.2	134	2.4	5.2	12
F21	-35	25 8	134	-0.5	2.4	12
F22	-8.7	15 2	134	-0.5	2.4	12
F23	22	21.2	134	-0.5	24	12
F24	-26	22.8	134	2.4	5.2	12
F25	-30	24.2	134	-0.5	24	12
F26	17	19 2	134	-0.5	24	12
F27	-17	19.2	134	-0.5	24	12
F28	-4.3	12.5	134	24	5.2	12
- F29	17	19.2	134	-0.5	2.4	12
F30	-4.3	12.5	134	24	5.2	12

Smears counted with Ludlum 2929 No. 115563 with 43-10 No 127216

	Beta	Alpha
Background (cpm)	71	0 17
Bkgd ct. time	60	60
Sample ct_time	1	1
Efficiency	0 231	0.347
MDA	134	12 0

Elevated Removable Surface Activity Measurements Molycorp - Building 42 Survey Unit

Underside of Foundation (including metal support materials)

No elevated removable surface activity was reported above limits

••

Exposure Rate Measurements Molycorp - Building 42 Survey Unit

Underside of Foundation

.

Location	Exposure Rate	Net Exp Rate
	(uR/hr)	(uR/hr)
F1	10	1
F2	10	1
F3	12	3
F4	10	1
F5	11	2
F6	10	1
F7	11	2
F8	12	3
F9	11	2
F10	10	1
F11	10	1
F12	12	3
F13	11	2
F14	11	2
F15	10	1
F16	11	2
F17	10	1
F18	10	1
F19	11	2
F20	11	2
F21	12	3
F22	10	1
F23	10	1
F24	10	1
F25	11	2
F26	12	3
F27	11	2
F28	11	2
F29	10	1
F30	10	1

Background dose rate: 8-10 uR/hr with Model 19, No 22526

Exposure Rate Measurements Molycorp - Building 42 Survey Unit

Foundation Support I-Beams and Metal Panels

Location	Exposure Rate (uR/hr)	Net Exp Rate (uR/hr)
M1	10	1
M2	11	2
M3	10	1
M4	10	1
M5	. 10	1
M6	9	0
M7	10	1
M8	11	2
M9	10	1
M10	10	1

Background dose rate: 8-10 uR/hr with Model 19, No. 22526

Summary of Building Surface Direct Reading (Total Activity) Results Molycorp - Building 42 Survey Unit

Underside of Foundation (including metal support materials)

	В	eta -				Alpha	
n	\bar{x}	S	μ_{lpha}	n	\bar{x}	S	μ_{α}
40	25	192 1	76.0	40	50	384.3	152.1

t_{1-α} 1.684

Guidelines/Conditions Satisfied?

Beta	Alpha
Yes	Yes

Summary of Exposure Rate Measurements Molycorp - Building 42 Survey Unit

Underside of Foundation (including metal support materials)

n	x	s	μ_{α}
40	16	0.7	1.7

t_{1-α} 1 684

٣

Guidelines/Conditions Satisfied?

Yes

Appendix B

Building 21 Foundation Data Package Molycorp Washington, PA

August, 2002

Building 21 Foundation Data Package

This data package contains final status survey information for Building 21, Molycorp, Washington, PA site. The underside of the building's foundation/slab was surveyed as an affected foundation. The building's footer was not excavated as a part of the slab removal, and is not included in this report. The footer will be removed in the future and surveyed for final status at that time

Field data collection forms, survey report forms, statistical test results, and comparisons to release limits are provided.

Several sections of concrete were identified with elevated levels of activity and were segregated from the pile. Clean concrete, surveyed and found to be below release limits, was moved to a clean area of the site and awaits verification surveys Concrete with elevated readings remain in the footprint of the building and will be treated and processed as rad waste

Summary

Results from the final status survey of Building 21 foundation provides evidence that all release criteria have been met, demonstrates that residual radioactivity is below the unrestricted use criteria, and confirms that the foundation (slab portion only) of Building 21 is suitable for unrestricted use and release

RPP-OP-019

]	DDO-1	38 Radiation I	Protection S	urvey Report	Site Moly	corp / Washin	igton, PA
Section 1 Survey Info	rmation	<u> </u>	<u> </u>	· <u> </u>	k		
Date 8-2/-02	Time ///	15	Lucation Ruilding	tt 21 (PAd)	Survey Iss	ue Log Numb	gr
RWP Number	Purpose of RWP	Survey FSS Routine Survey (Release (XOther	Page _		3
Survey Title: FS	Sw Founda	tion Build	ling # 21	(UNdecside) Smear Number	Beta dpm/100cm²	Alpha dpm/100cm ⁻
► 			V			<u> </u>	
					2		<i>[</i> /
		/ Minute	? Static	5			/
		R.I.C		4	5		/
	oncrete	BKG	MD	# _	6		/
		<u></u>			7		
»	B -	144 -	23	8	8		
# 1	,	•			9		/
	2	8 -	- 78		10		
-					11 -		1
	•				12	<u>See</u>	
					13	A++	sched
					14	5	heets
# 2	p-	144 -	242		15	/-	
	D	/ / 7	242		17		
	,	0	<i>a</i> 1		18	/	
	6	0 -	Χ /		19	/	
					20		
					21		
					22		
					23		
					24	·/	
Plyad Qoodyoon J A	Hely				25		
Legend -)-12 /hi	<u> </u>			25 1		
00 = mRem/h gamma	$00 \text{ C} = \text{mRem/h} \text{ g}_{2}$	amma contact (D	= Smear Locati	on 7 = Air	Sample Locat	ion -X-X-X	- = Rope,
$00 \beta = mRem/h beta$	00 βC = mRem/h t	beta contact -0	0– = Large Area	Wipe = Bull	Material Sam	ple Bound	ary, or Barrier
Section 2: Instrument	Used						
Instrument Model/SN	Cal Due Pr Date	obe Model/SN	Cal Due Date	Detector Eff B (cpm/dom)	MDA B- OPM d	B	Dther KG K
2350-1/95356	1-29-03 43-	106 / 133866	1-29-03	.2461.204	687/62	320	/1.8
2350-1/129414	8-2-03 43-	106 / 128914	2-2-03	.240/.195	682/ 87	300	13.2
2929/115563	6-14-03 43-	10/127216	6-14-03	.231/.347	134/12	69	1.1
19/22526	1-29-03						
N/A	~/A	~/A	NA	NA	_N/A_	N	A
Section 3: Review and	Approval			· · · · ·			
Survey Performed By (S	ign)	5	Area Posted an	d/or Barricaded	Date and Tim	ie /	
Joe Hul	/ Mark 13 la	meall	1) res XNO	□ Not Required	8-21-0	sa / 11"	15
Rediation Safety Officer	(Print Name & Sigr	۱) م (۱			Uate and Tim	le 1	
Steve Kowalski	/ Store Ko	walsh			18-24-6	22/17	00

. . Radiological Survey Results - Survey Location Indicator Survey 402-0817

Survey Area Information: F55 Gunsson Bldg 27 Foundation (underside)												
	Instrume Model/S	ent (SN [H Cal Due	Pr Moc	obe Iel/SN	Cal Due	So M	n can DA	β Sca MDA	an N	α Static MDA	β Static MDA
											·	
Uala												+
										-		+
				l							{	
	Print Name			<u> </u>	Signati	ire	<u> </u>		<u>.</u>		Date	÷
		-			eignai							
Performed									······			
бу		<u> </u>										
			<u> </u>	<u> </u>	R						C	
	ß Scan		β	Static	Static	α Sta	tic	E	R		Sme (dom/10	ars
Location	p Ocan		(1	unsh)	(sh)	nao)	ר)	(µre	m/hr)		(upin/it	
	(0,0,0,0)		(cpm)	(cpm)	•••					α	β
	580			547	346			1	2		3	-22
2	900			852	300			1	١		2.6	39
3	910			875	346				(-,3	-8.7
Y	590			564	341		•		1		-,3	/3
5	620	1		599	339.				1		-,3	4,3
6	560	1		536	333		11		11		-,3	-30
7	1 590			567	323			<u> </u>	11	1	3	43
8	520			490	362			1	12	<u> </u>	3	- 8.7
9	550			520	341				11	<u> </u>		- 69
10	540	<u> </u>		501	313			1	10	\vdash	2.6	13
11	520			517	330			<u> </u>	10	 ,	2.6	
12	640	<u> </u>		609	349			1	10	+	<u>~, 3.</u>	15
13	150	<u></u>		705	335				<u>10</u>		<u>-, ,</u>	- 2.2
- 14	630			590	360		<u> </u>	┼──	11	+	-,3	22
15	780	<u> </u>		150	1 700					1		
16				;	<u> </u>	<u> </u>		+		1		
	\rightarrow	+			<u> </u>	<u> </u>		+		1		
18		+		- <u>A</u>	/			†		\top		
19	<u>`</u>	+		\leftarrow	<u>+</u>			1		1		
20				$\overline{\Lambda}$	\leftarrow			1		\uparrow		
21			-+7	/	\rightarrow			1		T		1
			-+//	/	<u> </u>			$\overline{\mathbf{k}}$				<u> </u>
22			-#					1	\leq			<u> </u>
<u> </u>			-#-					1		\sum	\geq	<u> </u>
, <u> </u>					-	+						<u> </u>
26												

Page Z or 3

Radiological Survey Results - Survey Location Indicator Survey 202-0817

Survey Area	Information	Ears	55 0A	y B	ldg #	21,	Fou	in d	4710	i~ (and	er side)
	Instrume Model/S	プH ent SN	Cal Due	P Mod	robe tel/SN	Cal Due	Sc M	x :an DA	β Sca MDA	an A	α Static MDA	β Static MDA
Instrument Data						·	<u> </u>					
											•	
·	Print Name	;		[Signati	ure	<u> </u>		<u> </u>		Date	
Performed By												
·	ß Scan	α Scar	β	Static	β Static	ά Sta	tic	E	R	(Sme	ars
	(cpm)	(cpm)	(1	unsn) cpm)	(sh) (cpm)	(cpn	י)	(µre	m/hr)	``		β
16	1200			100	500				9		.3	8,7
17	690			660	300			1	1		,3	43
19	700			690	350		<u> ı</u>		2	-	,3	-22
19	1.60			650	411		1		2	-	.3	- 4, 3
	880			832	407			١	2	á	1,6	- 35
21	563			542	318			12			.3	_/3
22	605			580	326			1	1	6	2.6	8.7
23	1 735			690	700	L		1	0		3	-26
24	862			821	431	ļ			0			-/
25	1 844	<u> </u>		810	353.	ļ			11		-,)	- / 3
26	980			917	647				12	+	·, <u>></u>	-13
27	1038	ļ		720	444	<u> </u>			14		2.6	-//
28	683	<u> </u>		458	396				19	+	-, -	- 22
29	576-	<u> </u>		526	330	1			$\frac{75}{12}$			17
30	437	<u> </u>		414	1 312				13		<u>, </u>	
				······	1				. <u> </u>	1		
1								<u> </u>	<u>.</u>	+		
		$ \rightarrow $	\downarrow	·····	<u> </u>	1	<u> </u>			+		
		<u> </u>	\rightarrow	<u> </u>	<u> </u>			<u> </u>				
 		·			\geq			<u> </u>		+		
l l		ļ			<u> </u>	\rightarrow		+				
							\geq	\leftarrow				
1								+	\geq			
										7		
•								+		+	$\overline{}$	
ļ							. <u></u> ,	+				+
1		1										·

INSt. #2

Page $\frac{3}{100}$ or $\frac{3}{100}$

Results of Surface Scans

Molycorp - Building 21 Survey Unit

Underside of Foundation

.

Location	Beta Scan	Beta Scan	Instrument
	gross cpm	net cpm	Number
F1	580	260	1
F2	900	580	1
F3	910	590	1
F4	590	270	1
F5	620	300	1
F6	560	240	1
F7	590	270	1
F8	520	200	1
F9	550	230	1
F10	540	220	1
F11	520	200	1
F12	640	320	1
F13	750	430	1
F14	630	310	1
F15	780	460	1
F16	1200	900	2
F17	690	390	2
F18	700	400	2
F19	660	360	2
F20	880	580	2
F21	563	263	2
F22	605	305	2
F23	735	435	2
F24	862	562	2
F25	844	544	2
F26	980	680	2
F27	1038	738	2
F28	683	383	2
F29	576	, 276	2
F30	437	137	2

All foundation underside scans performed with either: #1 - Ludlum Model 2350-1 No 95356 with 43-106 No. 133866

•

Monitor Info. Scan MDA Beta - 687 dpm/100cm² Scan background Beta - 320 cpm Detector Eff Beta - 246

٥r

-

2 - Ludium Model 2350-1 No. 129414 with 43-106 No. 128914

Scan MDA Beta - 682 dpm/100cm² Scan background Beta - 300 cpm Detector Eff. Beta - 240

14

.

Elevated Results of Surface Scans Molycorp - Building 21 Survey Unit

Underside of Foundation

Location	Beta Scan
	net cpm
F16	900
F26	680
F27	738

.

-

- --

Direct Measurements (Total Activity) Molycorp - Building 21 Survey Unit

Underside of Foundation

Location	Unshield Beta	Shield Beta	Gross Beta	Bkgd	Net	Direct Beta	Uncertainty	MDA	Direct Alpha ⁽¹⁾	Instrument
	cpm	cpm	cpm	cpm	cpm	(dpm/100cm ²)	95% CL	(dpm/100cm ²)	(dpm/100cm ²)	Number
F1	547	346	201	144	57	232	148	238	463	1
F2	852	300	552	144	408	1659	210	238	3317	1
F3	875	346	529	144	385	1565	- 207	238	3130	1
F4	564	341	223	144	79	321	153	238	642	1
F5	599	339	260	144	116	472	160	238	943	1
F6	536	333	203	144	59	240	148	238	[.] 480	1
F7	562	323	239	144	95	386	156	238	772	1
F8 .	490	362	128	144	-16	-65	131	238	-130	1
F9	520	341	179	144	35	142	143	238	285	1
F10	501	313	188	144	44	179	145	238	358	1
F11	517	330	187	144	43	175	145	238	350	1
F12	609	349	260	144	116	472	160	238	943	1
F13	705	335	370	144	226	919	181	238	1837	1
F14	590	360	230	144	86	350	154	238	699	1
F15	758	408	350	144	206	837	177	238	1675	1
F16	1100	500	600	144	456	1900	223	243	3800	2
F17	660	300	360	144	216	900	183	243	1800	2
F18	690	350	340	144	196	817	180	243	1633	2
F19	650	411	239	144	95	396	160	243	792	2
F20	832	407	425	144	281	1171	195	243	2342	2
F21	542	318	224	144	80	333	157	243	667	2
F22	580	326	254	144	110	458	163	243	917	2
F23	690	400	290	144	146	608	170	[,] 243	1217	2
F24	831	431	400	144	256	1067	190	243	2133	2
F25	810	353	457	144	313	1304	200	243	2608	2
F26	917	647	270	144	126	52 5	166	243	1050	2
F27	1027	444	583	144	439	1829	220	243	3658	2
F28	658	396	262	144	118	492	165	243	983	2
F29	526	330	196	144	52	217	151	243	433	2
F30	419	312	107	144	-37	-154	129	243	-308	2

4

.

All foundation underside direct measurements performed with either: #1 - Ludium Model 2350-1 No. 95356 with 43-106 No. 133866

4

. È

.

Monitor Info: Direct MDA Beta - 238 dpm/100cm² Direct background Beta - 144 cpm Detector Eff. Beta - .246

or

2 - Ludium Model 2350-1 No 129414 with 43-106 No 128914

Direct MDA Beta - 243 dpm/100cm² Direct background Beta - 144 cpm Detector Eff Beta - 240

(1) - A beta to alpha ratio factoring (1:2, beta to alpha) was used to provide alpha activity.

.

4

Elevated Direct Measurements (Total Activity) Molycorp - Building 21 Survey Unit

Underside of Foundation

?

Location	Direct Beta	Direct Alpha
	(dpm/100cm²)	(dpm/100cm ²)
F2	1659	3317
F3	1565	3130
F13		1873
F15		1675
F16	1900	3800
F17		1800
F18		1633
F20	1171	2342
F23		1217
F24	1067	2133
F25	1304	2608
F26		1050
F27	1829	3658

Concrete pieces with elevated readings and those pieces that are surveyed radiologically clean have been segregated. Radiologically clean concrete has been removed from the footprint of the building and placed in a designated storage location in the north-east portion of the site, awaiting release authorization. Contaminated concrete will remain within the footprint of the building's foundation until it is removed as radiological waste.

Removable Surface Activity Measurements Molycorp - Building 21 Survey Unit

Underside of Foundation

.

Location	Removable Beta	Uncertainty	MDA	Removable Alpha	Uncertainty	MDA
	(dpm/100cm ²)	95% CL		(dpm/100cm ²)	95% CL	
F1	-22	21.2	134	-0 3	18	12
F2	39	27.0	134	26	54	12
F3	-8.7	15.1	134	-0 3	18	12
F4	13	17.3	134	-0.3	18	12
F5	4.3	12 4	134	-0.3	1.8	12
F6	-30	24 1	134	-0 3	1.8	12
F7	4 3	12.4	134	-0 3	18	12
F8	-8.7	15.1	134	-0.3	18	12
F9	-69	35.1	134	-0.3	1.8	12
F10	22	21.2	134	2.6	5.4	12
F11	13	17.3	134	2.6	5.4	12
F12	74	36 2	134	-0,3	1.8	12
F13	65	34.1	134	-0.3	1.8	12
F14	-22	21.2	134	-0 3	1.8	12
F15	22	21.2	134	-0.3	1.8	12
F16	8.7	15.1	134	-0.3	18	12
F17	43	28 2	134	-0.3	1.8	12
F18	-22	21.2	134	-0.3	18	12
F19	-4.3	12.4	134	-0 3	1.8	12
F20	-35	25.8	134	2.6	54	12
F21	13	17.3	134	-0.3	1.8	12
F22	87	15.1	134	-0.3	1.8	12
F23	-26	22.7	134	-0 3	18	12
F24	17	19.1	134	-0.3	18	12
F25	-13	17.3	134	-0.3	1.8	12
F26	13	17.3	134	-0.3	1.8	12
F27	17	19.1	134	26	54	12
F28	22	21 2	134	-0.3	1.8	12
F29	61	33.1	134	-0.3	18	12
F30	17	19 1	134	-0.3 *	1.8	12

Ą

.

Smears counted with Ludlum 2929 No. 115563 with 43-10 No 127216

•

•

.

4

,

	Beta	Alpha	
Background (cpm)	69	0.1	
Bkgd ct. time	60	60	
Sample ct. time	1	1	
Efficiency	0.231	0.347	
MDA	134	12	

,

Å ,

1

Elevated Removable Surface Activity Measurements Molycorp - Building 21 Survey Unit

- Underside of Foundation

No elevated removable surface activity was reported above limits.

.

-

Exposure Rate Measurements Molycorp - Building 21 Survey Unit

Underside of Foundation

Location	Exposure Rate	Net Exp Rate
	(uR/hr)	(uR/hr)
F1	12	1
F2	11	0
F3	11	0
F4	11	0
F5	11	0
F6	11	0
F7	11	0
F8	12	1
F9	11	0
F10	10	-1
F11	10	-1
F12	10	-1
F13	10	-1
F14	11	0
F15	11	0
F16	9	-2
F17	11	0
F18	12	1
F19	12	1
F20	12	1
F21	12	1
F22	11	0
F23	10	-1
F24	10	-1
F25	11	0
F26	12	1
F27	14	3
F28	14	3
F29	15 -	4
F30	13	2

Background dose rate 10-12 uR/hr with Model 19, No. 22526

.

• •

Summary of Building Surface Direct Reading (Total Activity) Results Molycorp - Building 21 Survey Unit

Underside of Foundation

.

	В	eta				Alpha	
n	$\frac{-}{x}$	s	μ_{α}	n	\bar{x}	S	$-\mu_{\alpha}$
17	273	183.5	350 6	17	546	367.1	701 3
	t _{1-a}	1.74					

Guidelines/Conditions Satisfied?

Beta	Alpha
Yes	Yes

Summary of Exposure Rate Measurements Molycorp - Building 21 Survey Unit

Underside of Foundation

n	\overline{x}	s	μ_{α}
30	0.4	1.3	0.8

t_{1-α} 1.697

-

Guidelines/Conditions Satisfied?

Yes

.

Appendix C

Building 19 Foundation Data Package Molycorp Washington, PA

August, 2002

Building 19 Foundation Data Package

This data package contains final status survey information for Building 19, Molycorp, Washington, PA site The underside of the building's foundation/slab was surveyed as an affected foundation. The building's footer was not excavated as a part of the slab removal, and is not included in this report. The footer will be removed in the future and surveyed for final status at that time.

Field data collection forms, survey report forms, statistical test results, and comparisons to release limits are provided

All the concrete within the footprint of Building 19 was surveyed and found to be below release limits.

Summary

Results from the final status survey of Building 19 foundation provides evidence that all release criteria have been met, demonstrates that residual radioactivity is below the unrestricted use criteria, and confirms that the foundation (slab portion only) of Building 19 is suitable for unrestricted use and release.

RPP-0P-019

•

Section 1 Survey Information Date $ \begin{array}{c c c c c c c c c c c c c c c c c c c $		DDO-138 Radiation P	rotection Su	urvey Report	Site Moly	corp / Washing	ton PA
Date $g-19-02$ Time 1500 Location Building #19 Survey tissue Log Number $OA - O789$ RWP Number A/A Purpose of Survey F555 Survey Title: F55 on FoundAtion (Unclesside) #19 Number dom/100cm dpm/100cm dpm/10cm dpm	Section 1 Survey Information	<u> </u>					
RWP Number NumberPurpose of Survey F35 I RWP II Routine Survey II Unconditional Release $g(OtherPageI and Inconditional Release g(OtherPageI and Inconditional Release g(OtherPageI and Inconditional ApplicationDetaI and Inconditional Release g(OtherPageI and Inconditional Release g(OtherDetaI and Inconditional Release g(OtherRelease g($	Date 8-19-02	ne /500	Location Building	#19	Survey Iss	sue Log Numbe	r
Survey Title: $FSS = a + b + b + b + b + b + b + b + b + b +$	RWP Number	Purpose of Survey F55	Unconditional F	Release 🛪 Other	Page _	/ of	<u> </u>
$H'_{i} w_{i} te static's$ $I = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ $C_{owcrete} BKG MOA$ $f = \begin{bmatrix} BKG MOA \\ 6 \\ 7 \\ 4 \end{bmatrix}$ $B^{-} 144 - 238$ $g = \begin{bmatrix} 7 \\ 7 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	Survey Title FSS ON	FoundAtion (U	Nderside	o) #19	Smear Number	Beta dpm/100cm [*]	Alpha dpm/100cm ⁻
$H'_{i} w_{i} te Static's$ $C_{o} w_{cre} te BKG MOA$ $\# I B^{-} 144 - 238$ $\# I B^{-} 144 - 243$ $H Achee$ $II See$		C					
$A''_{iNu} te Static's$ $Cowcrete BKG MOA$ $= BKG MOA$ $= B''_{iNu} te Static's$ $Cowcrete BKG MOA$ $= BKG MOA$ $= Cowcrete BKG MOA$							/
Concrete <u>BKG</u> <u>MOA</u> B = 144 - 238 # 1 a = 78 # 1 a = 78 # 2 B = 144 - 238 g = 78 10 11 See 12 A + H Ache 13 Sheet 14 2 = 78 10 11 Sheet 13 Sheet 14 2 = 8 - 78 11 Sheet 14 2 = 8 - 81 15 16 17 18 16 17 18 16 20 21 20 21 20 21 20 21 22 23 20 21 25		1 Minute 3	static's		4		/-
Concrete <u>BKG</u> <u>MDA</u> $= B^{-} 144 - 238$ = g + 1 - 238 = g + 1 - 238		,			5		/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Concret	e BKG	MDA		6	·	/
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	7		/
$\frac{\#}{2} \qquad \qquad$		B- 144 -	238		3		
	#/	, , ,			g		
$\frac{11}{3} = \frac{5e}{12}$ $\frac{11}{3} = \frac{5e}{12}$ $\frac{11}{3} = \frac{5e}{12}$ $\frac{11}{3} = \frac{5e}{14}$		× 8 -	78		10		_/
$\frac{12}{3} + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + $					11	See	
$\#_{2} = \frac{H^{2}}{H^{2}} = $					12	<u>A++</u>	<u>Ached</u>
$# 2 B^{-} 144 - 243$ $= 15$					11	5/	heets
$# 2 B^{-} 144 - 243$ $R - 8/3$ $R - 8/3$ $B $					15	A	
$\mathcal{A} = \mathcal{B} = \mathcal{B} $ $\mathcal{A} = \mathcal{B} $ $\mathcal{B} = \mathcal{B} $	# 2	B- 144 -	243		16	/	<u> </u>
$\mathcal{A} = \frac{8}{8} - \frac{8}{4}$ $\frac{18}{19}$ $\frac{19}{20}$ $\frac{20}{21}$ $\frac{21}{22}$ $\frac{21}{23}$ $\frac{22}{23}$ $\frac{24}{25}$ $\frac{24}{25}$ $\frac{24}{25}$ $\frac{24}{25}$ $\frac{24}{25}$ $\frac{24}{25}$ $\frac{24}{25}$ $\frac{26}{26}$ $\frac{26}{26}$ $\frac{10}{25}$ $\frac{10}{25}$ $\frac{26}{26}$ $\frac{10}{25}$ \frac					17	/ †	
$B_{kqd} Readings \frac{Mr}{hr}$ $B_{kqd} Readin$		x 8 -	Ø1		18		
$ \begin{array}{c} 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 23 \\ 24 \\ 25 \\ 25 \\ 25 \\ 25 \\ 26 \\ 25 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26$		U	0 /		19		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					20		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					21		
0 = 23 24 24 25 25 25 25 25 26 26 26 $00 = mRem/h gamma 00 C = mRem/h gamma contact D = Smear Location7 = Air Sample Location-X-X-X- = Rope00 s = mRem/h beta 00 sC = mRem/h beta contactD = Large Area Wipe= Bulk Material Sample-X-X-X- = Rope8ction 2: Instrument UsedD = Large Area Wipe= Bulk Material SampleBoundary, or Ba1nstrument Model/SNCal DueDetector EffMDAOther2350-1/953561-29-0343-106//338661-29-03.246./25444/262/.82350-1/953561-29-0343-106//338661-29-03.246./25444/262/.82350-1/953561-29-0343-106//338661-29-03.246./254250/22350-1/953561-29-0343-106//338661-29-03.246./254250/2280/2$					22		
Bkqd Readings Ar/hr Bkqd Readings $8 - 16$ Mr/hr 25 Legend $00 = mRem/h gamma \ 00 \ C = mRem/h gamma \ contact \ D = Smear \ Location \ 7 = Air Sample \ Location \ -X-X-X- = Rope \ Boundary, or Ba00 = mRem/h beta \ 00 \ BC = mRem/h beta \ contact \D = Large \ Area \ Wipe \ = Bulk \ Material \ Sample \ Location \ -X-X-X- = Rope \ Boundary, or Ba00 = mRem/h beta \ 00 \ BC = mRem/h beta \ contact \D = Large \ Area \ Wipe \ = Bulk \ Material \ Sample \ Location \ -X-X-X- = Rope \ Boundary, or BaSection 2: Instrument UsedInstrument Model/SNCal Due \ Date \ Date \ B^{-} \ DPH \ A \ B^{-} \ BKG \ A \ Date \ Date \ B^{-} \ DPH \ A \ B^{-} \ BKG \ A \ DA \ DA \ B^{-} \ BKG \ A \ DA \ DA \ B^{-} \ BKG \ A \ A \ A \ B^{-} \ BKG \ A \ A \ A \ A \ A \ A \ A \ A \ A \ $	0==				23	_/	
Bkgd Readings $g - 10^{-1} hr$ $23^{-1} hr$ Legend $00 = mRem/h gamma$ $00 C = mRem/h gamma contact$ $0 = Smear Location$ $7 = Air Sample Location$ $-X-X-X- = Rope$ $00 s = mRem/h beta$ $00 s = mRem/h beta$ $00 s = mRem/h beta contact$ $-v = -v = -Large Area Wipe$ $= Bulk Material Sample$ $Boundary, or Ba$ Section 2: Instrument Used Instrument Model/SN Cal Due Detector Eff MDA Other Date Date Date $B^{-} DPH \neq B^{-} = BK6 \neq C$ $B = BK6 \neq C$ $A = BK6 \neq C$ D350 - 1 / 9535C $1-29-03$ $43-106$ $/133866$ $1-29-03$ $246./2s4/622$ $44/2$ $262/2$ -8 D350 - 1 / 9535C $1-29-03$ $43-106$ $1-29-03$ $246./2s4/62$ $262/2$ -8					24		
Legend $00 = mRem/h gamma 00 C = mRem/h gamma contact \mathfrak{D} = Smear Location \mathcal{T} = Air Sample Location \mathcal{X} = Air Sample Location -X-X-X- = Rope Boundary, or Ba 00 = mRem/h beta 00 = mRem/h beta contact \mathfrak{D} = Large Area Wipe = Bulk Material Sample Boundary, or Ba Section 2: Instrument Used Instrument Model/SN Cal Due Probe Model/SN Cal Due Detector Eff MDA Other Date \mathcal{B} Com/dom \mathcal{B} - \mathcal{DPH} \neq \mathcal{B} - \mathcal{BKG} \neq \mathcal{A}\mathcal{A} = \mathcal{BKG} = \mathcal{A}\mathcal{A} = \mathcal{A} = \mathcal{A}$	Rhad Readings Q . 16	Mr/1			25	-/	
$00 = mRem/h gamma$ $00 C = mRem/h gamma contact$ $D = Smear Location$ $7 = Air Sample Location$ $-X-X-X- = Rope$ Boundary, or Ba $00 J C = mRem/h beta$ $00 J C = mRem/h beta contact$ $D = Large Area Wipe$ $= Bulk Material Sample$ Boundary, or BaSection 2:Instrument UsedInstrument Model/SNCal DueDetector EffMDAOtherDateDateDateB^2 DPH d $B^2 - BKG - d$ $2350-1 / 95356 / -29 - 03 / 43 - 106 / /33866 / -29 - 03 - 276 / 28 / 41 / 262 / .8DateDateDate / 200 / 28 / 41 / 262 / .8DateDateDate / 200 / 28 / 41 / 262 / .8DateDateDate / 200 / 28 / 41 / 262 / .8DateDateDate / 200 / 28 / 41 / 262 / .8$	Legend	<u>' // / / / / / / / / / / / / / / / / / </u>			_!	/	
00 ji = mRem/h beta00 jiC = mRem/h beta contact $\dots D$ = Large Area Wipe= Bulk Material SampleBoundary, or BaSection 2: Instrument UsedInstrument Model/SNCal DueProbe Model/SNCal DueDetector EffMDAOtherDateDate B^{-} DPH \rightarrow B^{-} DFH \rightarrow B^{-} BKG \rightarrow B^{-} DFH \rightarrow B^{-} DFH \rightarrow B^{-} BKG \rightarrow 2350-1 / 95356 $1-29-03$ $43-106$ $//33866$ $1-29-03$ $.246./.204$ 622 $/41$ 262 $.862$ 2350-1 / 95356 $1-29-03$ $43-106$ $//33866$ $1-29-03$ $.246./.204$ 622 $/41$ 262 $.862$ 2350-1 / 95356 $1-29-03$ $43-106$ $//33866$ $1-29-03$ $.246./.204$ 622 $/41$ 262 $/.862$	00 = mRem/h gamma 00 C =	mRem/h gamma contact D -	= Smear Locatio		Sample Loca	ation -X-X-X-	= Rope
Section 2: Instrument Used Instrument Model/SN Cal Due Probe Model/SN Cal Due Detector Eff MDA Other Date Date Date Date BTcpm/dpm & BT DPM & BT BKG AT BKG	00] = mRem/h beta 00]C =	= mRem/h beta contact0)– = Large Area	Wipe = Bull	Material Sar	mple Bounda	iry, or Barrier
Instrument Model/SN Cal Due Date Probe Model/SN Cal Due Date Detector Eff MDA Other 2350-1 95356 1-29-03 43-106 //33866 1-29-03 .246./.204 622 41 262 .8 2350-1 95356 1-29-03 43-106 //33866 1-29-03 .246./.204 622 41 262 .8	Section 2: Instrument Used		······································				
2350-1/95356 1-29-03 43-106 /133866 1-29-03 .246./204 622/4/ 262/.8	Instrument Model/SN Cal Dat	lue Probe Model/SN	Cal Due Date	Detector Eff	MDA R- DPH	2 2 B	ther KG K
2350 1 / DOUM R 1 = 03 1/3 100 / D ROM 2 = - 03 21/1 / CC (CO / W/ 200 / 2	2350-1/95356 1-29	-03 43-106 /133866	1-29-03	.246./2041	622 / 41	1 262	1.8
(-7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,	2350-1/129414 8-2.	-03 43-106/128914	2-2-03	.240/195	669/89	1 289	/ 3
2929/115563 6-14-03 43-10/127216 6-14-03 .231/.347 134/13 71/.17	2929/115563 6-14-	03 43-10/127216	6-14-03	. 231/.347	134/13	1 71 /	.17
19/22526 1-29-03	19/22526 1-20	7-03					-
NIA NIA NIA NIA NIA NIA	NIA NIA	A NIA	NIA	NIA	NIA		IA
Section 3 Review and Approval	Section 3 Review and Appro	val	·/···				
Survey Performed By (Sign) Area Posted and/or Barricaded Date and Time	Survey Performed By (Sign)	<u> </u>	Area Posted an	d/or Barricaded	Date and Ti	me ,	
HoetHul Mark Blancial I 195 XINO I Not Required 8-19-02/1500	yverthin / n	land Blancial	1 res XNo 1	Not Required	8-19-0	02/15C	0
Radiation Safety Officer (Print Name & Sign)	Radiation Safety Officer (Print N	lame & Sign)	α <u>Λ</u> .		Date and Ti	^{me} /	
Steve Kowalski / Stre Kowalski 8-20-02 /0900	Steve Kowalski	1. Store Kowah	the .	<u></u>	8-20	0-02 10	900

•

•

*

Radiological Survey Results - Survey Location Indicator Survey #

Survey Area		1: FJS	50~	FOUN	dATION.	J BC	dq	#1	9 (u	Ndersi	ie)
Instrument	ہم Instrume Model/S	s. ent SN	Cal Due	Pi Moc	robe 1el/SN	Cal Due	Sa M	a can DA	β Sca MDA	n x Static MDA	β Static MDA
Data											
Performed By	Print Name	;			Signati	Jre				Date	·
Location	β Scan (cpm)	α Sca (cpm	in f	3 Static (unsh) (cpm)	β Static (sh) (cpm)	α Sta (cpn	tic 1)	E (µre	R m/hr)	Sme (dpm/10	β ars β β β
16	490			476	370			ļ	8	5.	8.7
17	390			370	321				9	5	0
18	440			409	347			<u> </u>	9	2,4	-48
19	400			380	370			<u> </u>	9	2.4	48
20	420	l	İ	407	375				9	5	/3
21	440			419	309				9	<u>z, 4</u>	0
7-2	1 420			393	327				1	5	37
23	430			406	374				8	<u>, 5</u>	-30
24	480			447	368			<u> </u>	7	-,5	6
25	500			474	370			1	3	-,5	4.3
26	460			433	1349				7	2.4	-48
2.7	420			390	314	<u> </u>			8	5	-26
28	430			412	342				1	-,5	4.3
2.9	420-	<u> </u>		407	363	ļ			<u> </u>	2.9	8./
30	480			440	: 362	 		<u> </u>	1	-,5	22
		ļ			i			<u> </u>			
		<u> </u>			<u> </u>			<u> </u>			
						ļ		I			<u> </u>
					ļ	ļ				 	
		ļ			<u> </u>	<u> </u>				!	
										l	
		<u> </u>				<u> </u>					
								<u> -</u>			
						<u> </u>					
·						+				1	
	i i	1	1		1	1		- +		1	1

Inst #1

Page 2 of 3

Radiological Survey Results - Survey Location Indicator Survey #02.0789

Survey Area	Information	1: F 55	7 U	FF	ounda	t ,	Þ,	9 (ung un	5	id-e	
	Instrume Model/S	1-8 ent SN	Cal Due	P Mod	robe 1el/SN	Cal Due	So M	α can DA	β Sca MDA	an A	α Static MDA	β Static MDA
- Uala				<u> </u>								
-						1						
						+						
	Print Name	<u> </u>		·	Signat	ure					Date	•
Performed					- <u></u>							
By					<u> </u>			<u></u>				
				<u> </u>								
		0	β	Static	β Statia	a Sta	tic	F	R		Sme	ars
Location _	β Scan		<u>ה</u> (ו	unsh)	Static (sh)		n)	ure.	m/hr)		(dpm/10	10 cm²)
	(cpm)	(cpm	' (cpm)	(com)	(Cpri	''	(μ.ο			α	β
·····	455			135	353			C	i		2.4	45
2	445			-119	332			(7		-15	- 61
3	419		1.	105	348				3		5	
4	1 422			401	333				8		5	-48
5	454			425	335.	•		·	9		5	-42
6	406			379	319	<u> </u>			8	·	5-+	-26
7	413			395	1367	[<u> </u>	8		-15	-48
8	414			379	333				Ч с		<u></u>	- 4 A
9	431			394	1361			<u> </u>	<u>-</u>		5	8.7
10				<u>117</u>	1 224			<u> </u>	<u> </u>		5	26
	102			462	31			<u> </u>	9	1	5	4.3
13	425	<u> </u>		296	1361	1		1	9		5	-30
14	426			414	343	1		1	0	Ļ	2.4	30
15	421			400	1358			$\frac{1}{1}$	D	<u> </u>	5	4.3
					<u> </u>	1		<u> </u>			· · · · · · · · · · · · · · · · · · ·	
					<u> </u>	+		<u> </u>				
L		_						<u> </u>		+	<u>. </u>	
		.								+		
		·								+		
					<u> </u>	+		+		+		
								1-		\uparrow		
								1		1		
}								1				ļ

IDJt#2.

Page 3 of 3

Results of Surface Scans

Molycorp - Building 19 Survey Unit

Underside of Foundation

Location	Beta Scan	Beta Scan	Instrument		
	gross cpm	net cpm	Number		
F1	455	166	2		
F2	465	176	2		
F3	419	130	2		
F4	422	133	2		
F5	454	165	2		
F6	406	117	2		
F7	413	124	2		
F8	414	125	2		
F9	431	142	2		
F10	474	185	2		
F11	482	193	2		
F12	495	206	2		
F13	425	136	2		
F14	426	137	2		
F15	421	132	[′] 2		
F16	490	228	1		
F17	390	128	1		
F18	440	178	1		
F19	400	138	1		
F20	420	158	1		
F21	440	178	1		
F22	420	158	1		
F23	430	168	1		
F24	480	218	1		
F25	500	238	1		
F26	460	198	1		
F27	420	158	1		
F28	430	168	1		
F29	420	158	1		
F30	480	218	1		

All foundation underside scans performed with either: #1 - Ludlum Model 2350-1 No 95356 with 43-106 No 133866

Monitor Info. Scan MDA Beta - 622 dpm/100cm² Scan background Beta - 262 cpm Detector Eff Beta - .246

or

. .

2 - Ludlum Model 2350-1 No. 129414 with 43-106 No. 128914

Scan MDA Beta - 669 dpm/100cm² Scan background Beta - 289 cpm Detector Eff. Beta - .240

Elevated Results of Surface Scans Molycorp - Building 19 Survey Unit

Underside of Foundation

No elevated scan results were reported

Direct Measurements (Total Activity) Molycorp - Building 19 Survey Unit

,

Underside of Foundation

,

.

Location	Unshield Beta	Shield Beta	Gross Beta	Bkgd	Net	Direct Beta	Uncertainty	MDA	Direct Alpha ⁽¹⁾	Instrument
	cpm*	cpm	cpm	cpm	cpm	(dpm/100cm ²)	95% CL	(dpm/100cm ²)	(dpm/100cm ²)	Number
F1	435	353	82	144	-62	-258	123	243	-517	2
F2	419	333	86	144	-58	-242	124	243	-483	2
F3	405	348	57	144	-87	-363	116	243	-725	2
F4	401	333	68	144	-76	-317	119	243	-633	2
F5	435	335	100	144	-44	-183	128	243	-367	2
F6۱	379	319	60	144	-84	-350	117	243	-700	2
F7	395	367	28	144	-116	-483	107	243	-967	2
F8	379	333	46	144	-98	-408	113	243	-817	2
F9	394	367	27	144	-117	-488	107	243	-975	2
F10	419	365	54	144	-90	-375	115	243 ·	-750	2
F11	423	334	89	144	-55	-229	125	243	-458	2
F12	462	331	131	144	-13	-54	135	243	-108	2
F13	396	361	35	144	-109	-454	109	243	-908	2
F14	414	343	71	144	-73	-304	120	243	-608	2
F15	400	358	42	144	-102	-425	111	243	-850	2
F16	476	370	106	144	-38	-154	126	238	-309	1
F17	370	321	49	144	-95	-386	111	238	-772	1
F18	409	347	62	144	-82	-333	114	238	-667	1
F19	380	370	10	144	-134	-545	99	238	-1089	1
F20	407	375	32	144	-112	-455	106	238	-911	•
F21	419	309	110	144	-34	-138	127	238	-276	1
F22	393	327	66	144	-78	-317	115	238	-634	1
F23	406	374	32	144	-112	-455	106	238	-911	1
F24	447	368	79	144	-65	-264	119	238	-528	1
F25	474	370	104	144	-40	-163	125	238	-325	1
F26	433	349	84	144	-60	-244	120	238	-488	1
F27	390 '	314	76	144	-68 [°]	-276	118	238	-553	1
F28	412	342	70	144	-74	-301	117	238	-602	1
F29	407	363	44	144	-100	-407	109	238	-813	1
F30	440	362	78	144	-66	-268	119	238	-537	1

4

All foundation underside direct measurements performed with either: #1 - Ludium Model 2350-1 No. 95356 with 43-106 No 133866

:

۹.

Monitor Info: Direct MDA Beta - 238 dpm/100cm² Direct background Beta - 144 cpm Detector Eff. Beta - 246

or

2 - Ludlum Model 2350-1 No 129414 with 43-106 No 128914

Direct MDA Beta - 243 dpm/100cm² Direct background Beta - 144 cpm Detector Eff Beta - .240

(1) - A beta to alpha ratio factoring (1:2, beta to alpha) was used to provide alpha activity.

۰

Elevated Direct Measurements (Total Activity) Molycorp - Building 19 Survey Unit

Underside of Foundation

No elevated direct measurements were reported

Removable Surface Activity Measurements Molycorp - Building 19 Survey Unit

Underside of Foundation

Location	Removable Beta	Uncertainty	'MDA	Removable Alpha	Uncertainty	MDA
	(dpm/100cm ²)	95% CL		(dpm/100cm ²)	95% CL	
F1	65	34 1	134	24	5.2	13
F2	-61	33 2	134	-0,5	2.4	13
F3	0	92	134	-0.5	2.4	13
F4	-48	29.7	134	-0 5	2.4	13
F5	-43	28 3	134	-0.5	2.4	13
F6	-26	22.8	134	-0 5	24	13
F7	-48	29 7	134	-0.5	2.4	13
F8	4.3	12.5	134	-0 5	2.4	13
F9	-48	29 7	134	2.4	5.2	13
F10	8.7	15.2	134	-0.5	2.4	13
F11	26	22 8	134	-0.5	2.4	13
F12	4.3	12 5	134	-0.5	2.4	13
F13	-30	24.2	134	-0.5	24	13
F14 `	30	24.2	134	2.4	52	13
F15	4.3	12.5	134	-0.5	24	13
F16	8.7	15.2	134	-05	2.4	13
F17	0	92	134	-0.5	2.4	13
F18	-48	29.7	134	2.4	52	13
F19	48	29 7	134	2.4	5.2	13
F20	13	17.4	134	-05	24	13
F21	0	9.2	134	2.4	5.2	13
F22	39	27.1	134	-0.5	2.4	13
F23	-30	24 2	134	-0.5	2.4	13
F24	61	33 2	134	-0 5	2.4	13
F25	4.3	12.5	134	-0.5	24	13
F26	-48	29.7	134	2.4	5.2	13
F27	-26	22.8	134	-0.5	2.4	13
F28	4 3	12.5	134	-0.5	2.4	13
F29	8.7	15.2	134	24	52	13
F30	22	21 2	134	-0.5	2.4	13

4

,

.
Smears counted with Ludlum 2929 No 115563 with 43-10 No. 127216

٠,

	Beta	Alpha	1.	
Background (cpm)	71	0.17	•	,
Bkgd ct. time	60	60		
Sample ct_time	1	1		
Efficiency	0 231	0.347		
MDA	134	13		

.

ţ

,

Υ.

Elevated Removable Surface Activity Measurements Molycorp - Building 19 Survey Unit

Underside of Foundation

.

-

No elevated removable surface activity was reported above limits.

Exposure Rate Measurements Molycorp - Building 19 Survey Unit

Underside of Foundation

Location	Exposure Rate	Net Exp Rate
	(uR/hr)	(uR/hr)
		. ,
F1	9	0
F2 ⁻	9	0
F3	8	-1
F4	8	-1
F5	9	0
F6	8	-1
F7	8	-1
F8	9	0
F9	9	0
F10	10	1
F11	10	1
F12	9	0
F13	9	0
F14	10	1
F15	10	1
F16	8	-1
F17	9	0
F18	9	0
F19	9	0
F20	9	0
F21	9	0
F22	9	0
F23	8	-1
F24	9	0
F25	8	-1
F26	9	0
F27	8	-1
F28	9 -	0
F29	8	-1
F30	9	0

Background dose rate 8-10 uR/hr with Model 19, No. 22526

Summary of Building Surface Direct Reading (Total Activity) Results Molycorp - Building 19 Survey Unit

Underside of Foundation

-

Guidelines/Conditions Satisfied?

Beta	Alpha
Yes	Yes

•

_

Summary of Exposure Rate Measurements Molycorp - Building 19 Survey Unit

Underside of Foundation

n	x	S	μ_{α}
30	-0.2	0.6	0 0

t_{1-α} 1.697

Guidelines/Conditions Satisfied?

Yes

Appendix D

Instrumentation Data

Molycorp Washington, PA

Instrumentation Data

-

This data package contains instrumentation information (background, QC, and source response data forms) for the instruments used during the final status survey of building foundations.

١

Daily Instrumentation Operational Check Sheet

Instrument	235	2-1 "II	7563		F	Probe:	13.106	4138	912	
Cal Due	В	-6-02			(Cal Due:		8-6-	· O 2_	
Source	ID. Te 99	- 3935	lean Source Count Rate	e : 485	7/ N	lean +2 σ Value:	4974	Mear V	n -2 σ /alue:	1730
Radia [.] Ty	lion vpe.	B	igma Value	. 61	. Ν	lean +3 σ Value.	5035	Mear ∨	n -3 σ /alue: 4	669
		Background				Source	e Check		Re	sults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
7.29.02	0619	. 5	1587	317	(4968	1	/	67	64+
7-21102	1700				1	4942	-	<u> </u>		Sat
7-30-02	_0620_	5	1726	345	/	4954	<u> </u>	<u>``</u>	20	144
1-30-02	1640					4872				sat
7-31-02	0613		16.56	331	l	_4933_	- ir	~	<u> </u>	<u> </u>
7-31-02	1610	~				//				<u></u>
		·								
							, , ,			
						·····				
										-
		·								
		,								

4

Instrument $2350 l$ $\# / 17563$ Probe $\# 3 - loc$ $\# 1 289 l.3$ Cal Due $8 - 6 - o.2$ Cal Due: $\theta - 6 - o.3$ Cal Due $1 - 2 \sigma$ $\theta - 6 - o.3$ Source ID. $\pi / 1 230 - 393 l$ Mean Source 735 Mean $+ 2 \sigma$ 785 Mean -2σ Radiation $\pi / 1 230 - 393 l$ Sigma Value: 25 Mean $+ 3 \sigma$ 810 Mean -3σ 660 Radiation ω Sigma Value: 25 Mean $+ 3 \sigma$ 810 Mean -3σ 660 BackgroundSource CheckResultsDateTimeCountGross $W/ 1 2 \sigma$ $W/ 1 3 \sigma$ LLDSAT/		EFF = .2	.12 D	ally Instr	umentat	ion Oper	rational C	Sneck Sr	ieet		
Cal Due $8-6-0.2$ Cal Due: $8-6-0.2$ Source ID. T_{h} 230 * 3931Mean Source Count Rate735Mean +2 σ Value785Mean -2 σ Value:685Radiation Type. ω Sigma Value:2.5Mean +3 σ Value.810Mean -3 σ Value:660BackgroundSource CheckResultsDateTimeCountGrossBKGDCountGrossW/I 2 σ W/I 3 σ LLDSAT/	Instrument	2350	1 [#] 1	17563		I	Probe	43-106	# 1.2891	· ,2	
Source ID. T_{h} 230 *3937 Mean Source Count Rate 735 Mean $+2\sigma$ ValueMean -2σ Value: 685 Radiation Type. \checkmark Sigma Value' 25 25 Mean $+3\sigma$ Value. 810 Mean -3σ Value: 660 Background 25 Source CheckResultsDateTimeCountGrossBKGDCountGross $W/12\sigma$ $W/13\sigma$ LLDSAT/	Cal Due	8-6-02	<u>_</u>			(Cal Due:	8-0	6.0.2		
Radiation Type. Sigma Value. 2.5 Mean +3 σ Value. 810 Mean -3 σ Value. 660 Background Source Check Results Date Time Count Gross BKGD Count Gross W/l 2 σ W/l 3 σ LLD SAT/	Source	1D. Th 23	o *3931	Mean Source Count Rate	e 73	5 N	/lean +2 σ Value	785	Mear	1 -2 σ /alue:	685
Background Source Check Results Date Time Count Gross BKGD Count Gross W/I 2 σ W/I 3 σ LLD SAT/	Radia Ty	tion /pe.	<u>ج</u>	Sigma Value	25	. N	/lean +3 σ Value.	810	Mear V	n -3 σ /alue:	560
Date Time Count Gross BKGD Count Gross W/I 2 o W/I 3 o LLD SAT/			Background	1			Source	Check		Re	sults
Time (min) Counts CPM Time (min) Counts Value Value UNSAT	Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
7-29-02 0619 5 7 114 1 698 5 7 7 500	2-29-02	0619	5	7	1,4	1	698	v	J	7	1.000
7-29-02 1600 1 759 V V - Sit	7-29-02	1600	~	<u> </u>		<u> </u>	759				<u>s.x</u>
7-30-02 0620 5 12 24 1 726 - 4 9 6200	7-30-02	0620			24	((726			<u> </u>	Consi
7.30.02 1642	7.30.02	1642				<u> l</u>	6.87				- Sist
$\frac{7-31-02}{1}$ $\frac{2613}{5}$ $\frac{5}{8}$ $\frac{1.6}{1}$ $\frac{136}{136}$ F F $\frac{3}{5}$ $\frac{3}{5}$ $\frac{1}{5}$ \frac	7-31-02	0613		8	1.6	l (8	C Th
7-31-02 1610 Jan	7-31-02	1610	<u> </u>			· · · · · · · · · · · · · · · · · · ·					- Jan
							·		<u></u>	·	

.

¥

Daily Instrumentation Operational Check Sheet

Instrument	23	50.1	129	414	F	^{>} robe	43.106	128	914	
Cal Due [.] _	୍ ଅ	<u>ג</u>			(Cal Due:	<u> </u>	03		·
Source	ID: Tn 2	N 3937	Aean Source Count Rate	73	9 N	lean +2 σ Value:	799	Mear	r-2 σ (alue: (79
Radial Ty	Radiation Type: A Sigma Value.					lean +3 σ Value.	829	Mear ∨	n-3σ /alue. (49
		Background	· · · · · · · · · · · · · · · · · · ·			Source	Check		Res	ults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
87.02	0615	5	8	1.6	1	736	_		8	Set
8.7.02	1721				1	720	\checkmark	~		Sat
8-8-02	0615	5	5	/	/	765			7	Sat
8 8-02	1605)				737		-	-	Sect
8-12-02	0615		10	2.0	1	.736			8	5.5
8.12.02	1620			~	1	731		<u> </u>		Sent
8.13.02	0705	5	18	3.6	<u> </u>	709			10	sut.
B 13-02	1645	<u> </u>		-		731	<u>د</u>		<u> </u>	Sat
8-14-02	0615	5	10	2	<u> </u>	712		·····	8	Sat
8-14-02	1630				1	121				Sat
8-15-02	0625	5	.7	1.4	/	751			7	Sat
8-15-02	1645			<u> </u>	1	707		<u> </u>		Sat
8-19-02	0635	5	5	<u> </u>	<u>_</u>	753				5at
8-19.02	1625	<u> </u>			l	702	-			Sout
8-20-02	0625	5	4	. 8	L	711			7	Sat
8 70-05	1640	<u> </u>		<u> </u>	L L.	746_				Sat

I	EFF = .2	Da	aily Instru	umentat	ion Oper	ational C	Check Sh	neet	·		
Instrument	23	50 - 1	#129	414		Probe:	43.	-106 H	128914		
Cal Due: _		8-2-03)		(Cal Due:		2-2.0	3		
Source	Source ID: $Te 99 \frac{r_{3935}}{7e 99 \frac{r_{3935}}{3935}}$ Mean Source Count Rate: 4643 Mean +2 σ Value: 4791 Mean -2 σ Value: 4791 Value: 4495										
Radial Ty	Radiation B - Sigma Value: 74 Mean +3 σ Hean -3 σ Type: B - Value: 4864 Value: 442/										
Background Source Check Results											
Date	Time	Count Time (min)	Gross . Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT	
5-21-02	0610	. 5	1625	325	1	4612	-	/	68	Sat	
8-21.02	1700	~			I	4518				Sat	
5-22.07	0420	5	1464	293	l(4672	<u> </u>	<u> </u>	65	Sat	
8-22.02	1610				l	4637	<u> </u>	~			
8.26.02	0615		1508	302	/	4501	4-	+-	66	Sat	
8.27.02	0610	5	1422	286	l	4423	<u> </u>	<u> </u>	61	Jat	
8.27.02	1620					4528		\checkmark		Set	
8-28-02	0730	Nº 605	1409	282	l/	4501		5	64	<u>Sat</u>	
8-28.02	1700			••••••	1	4478		~		8.2	
8-29-02	0610	5	1287	257		4506	Ľ		6/	Sat	
8-29-02	1600	~	-		<i> </i>	4511				Sat	
						<u> </u>					

•

Instrument	23	50-1	# 1294	44		Probe [.]	13-106	# 128	8914	
Cal Due _		8-2-	03			Cal Due [,]	2	- 2 - 0	3	
Source	1D +1 230	5 ⁴ 3937	/lean Source Count Rate	73	9	Mean +2 σ Value:	799	Mear V	n -2 σ /alue: 6	79
Radiat Ty	lion pe·	ح 9	Sigma Value	3	0	vlean +3 σ Value:	829	Mear V	n -3 σ /alue: 6	49
		Background				Source	Check		Re	sults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SA UNS
8.21-02	0670	5	7	1.4	1	701	L-	F	7	5.
8.21.02	1700				<u> </u>	671	×	2		Sa
5.22.02	0630	5	66	1.2	/	142		~		<u>LSa</u>
8.22.02	1603			1.4		725	 	1	7	
8.27.02	0.615	5	<u>ר</u>	1. 4	1	725	F		1	50
8.27.02	1620				1	654	~	+		Sã
8.28-02	0715	5	4	0.8	i	685		L	6	Se
8.28.02	1700				ļļ	721				L_Sa
8-29-02	0615	5		1.7	<u>/</u>	131807~			/	<u> </u>
8-29-02	1600									

, (

•

1

Daily Instrumentation Operational Check Sheet

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	~										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Instrument	23.50	<u>५</u> २	5356		I	Probe:	43-106	1	33866	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cal Due _	i-2	4-03			(Cal Due:		1-29-03	3	
Radiation Type: Sigma Value: 46 Mean +3 σ Value: 4939 Mean -3 σ Value: 4543 Background Source Check Results Date Time (min) Gross Counts BKGD CPM Count Time (min) Gross Counts W/l 2 σ Value W/l 3 σ LLD SAT/ UNSAT $E \cdot l \cdot 0:1$ 0.13.5 S (42.7) 28.5 1 .1566 6.4 s.t $B \cdot 0:2$ 0.13.5 S (42.7) 28.5 .1 .1566 6.4 s.t $B \cdot 0:2$ 0.13.5 S (42.7) 28.5 .1 .1562 6.4 s.t $B \cdot 0:2$ 0.90 1.42.7 28.5 .1 .1562 6.4 s.t $B \cdot 0:2$ 0.90 1.49.7 28.3 .1 .46.25 6.4 s.t $B \cdot 0:2$ 0.90 .1.69.7 21.2 1 .46.25 6.4 s.t $B \cdot 0:2$ 0.90	Source	ID Te 49	3135	Mean Source Count Rate	9 	N	lean +2 σ Value:	ч в 13	Mear V	ו -2 ס alue: רו ע	-09
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Radia Ty	tion 'pe' F	3-,	Sigma Value	66	N	/lean +3 σ Value:	4939	Mear V	1-3 σ /alue: <u>4 ς</u>	543
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Backgroun	d			Source	Check		Res	sults
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.1.02	0135	.5	1427	उद्ध	,]	1566	<u> </u>		64	Sit
$B - 2 - 02$ 02100 1415 283 1 4625 $ 64$ 64 $8 - 5 \cdot 02$ 0610 1620 324 $/$ 4650 $ 662$ $5at$ $8 - 5 \cdot 02$ 0610 1620 324 $/$ 4650 $ 662$ $5at$ $8 - 5 \cdot 02$ 1630 $ 1$ 1913 $ 5at$ $8 - 5 \cdot 02$ 6620 1564 312 1 4602 $ 666$ $5at$ $8 \cdot 0.02$ 1600 $ 1$ 4849 $ 5at$ $8 - 7 \cdot 02$ 0610 1536 307 1 4682 $ 666$ $5at$ $8 - 7 \cdot 02$ 1310 $ 1$ 47632 $ 661$ $5at$ $8 - 7 \cdot 02$ 0610 1582 316 1 4673 $ 61$ $5at$ $8 - 8 \cdot 02$ 1600 $ 1$ 47	8-1-02	1555				<u> </u>	4711				Set
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8-2-02	0710		1-115	283	ll	4625			64	ant .
8 5.02 1630 $ 1$ 1413 $ 5.5t$ $8.6.02$ 6.20 1564 312 1 4602 $ 66$ $50t$ $8.6.02$ 1600 $ 1$ 4849 $ 5.5t$ $8.7.02$ 1600 $ 1$ 4849 $ 5.6t$ $8.7.02$ 1810 $ 1$ 4682 $ 666$ $5at$ $8.7.02$ 1810 $ 1$ 4682 $ 665$ $5at$ $8.8.02$ 1600 $ 1$ 4760 $ 63$ $5at$ $8.13.02$ 1600 $ 1$ 4760 $ 5at$ $8.13.02$ 1640 $ 1$ 4657 $ 5at$ $8.13.02$ 1640 $ -$	8-5.02	OPID		1620	324	/	4650			69	Sat
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 5.02	1630				<u> </u>					
$B \cdot 6 \cdot 03$ (600) $ (7079)$ $ 20t$ $(8 \cdot 7 \cdot 03)$ 0610 1536 307 1 4682 $ 666$ $5at$ $8 \cdot 7 \cdot 02$ 1310 $ 1$ 4616 $ 8ot$ $8 \cdot 7 \cdot 02$ 1310 $ 1$ 4616 $ 8ot$ $8 \cdot 7 \cdot 02$ 1600 $ 1$ 4673 $ 8ot$ $8 \cdot 8 \cdot 02$ 1600 $ 1$ 4760 $ 8ot$ $8 \cdot 8 \cdot 02$ 1600 $ 1$ 4760 $ 8ot$ $3 \cdot 8 \cdot 02$ 1600 $ 1$ 4760 $ 8ot$ $8 \cdot 13 \cdot 02$ 1640 $ 1$ 4651 $ 5at$ $8 \cdot 13 \cdot 02$ 1640 $ 1$ 4651	8-6-02	6620		1564	312	l	4462			L_ L_	Solt
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B.6.02	1600		.5.27			41.93				-Dat
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.7-03	0610		<u> </u>		·	16000				Sal
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8-1.01	13 10		1587	316	· · · ·	46.0	 	 	61	sert 5. A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 8-02	0610			210	/	4760				Sati
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2-12-01	0700		12/73	170	<u> </u>	4800		1	63	Sat
8-13.02 1640 8-13.02 1640 8-13.02 1640 	8-10 00	1140			675	1	4692-		 		Set
813.02 1640 Sat 8-13.02 1655 Sat 8-13.02 1655	8.13.02	0655		1516	303	1	4593	~	V	65	Jat
8-13-02 1655	813.02	1640				1	4651			-	Sat
	8-13-02	1655		+			46				Sart

v=10 mB ¥=13:2

CEE . 20	4 2	:	Dany nisa	unentat	ion ope	rationary	SHELK OF	"				
Instrument	23.50	4	53.56			Probe: <u>4</u>	3-106	133	866			
Cal Due _	1-2	9-03				Cal Due:	1-	29-03		·		
Source	ID:	0 3931	Mean Source Count Rate	718		Mean +2 ʊ [Value: [776	Mear V	n -2 σ /alue:	60		
Radiat Ty	tion /pe.	×	Sigma Value	29		Mean +3 σ Value.	४ <i>७</i> ५	Mear ∨	n -3 σ /alue: 🧲	31		
	Background Source Check Results											
Date	Time	Count Time (min	Gross) Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT		
8.1.02	0745	5	11	2,2	1	696		L	S	Sect		
8.1-02	1600		-	•	· .	702				5at		
8-2-02	0110			7.4		153_	5		9	enes		
8-5-07	0620					709			9			
8-5.02	1620					1.27	<u> </u>	<u> </u>		Sur		
8.6 02	0635		12	2.4		706			9	tos		
8-6-07	1600					688				Lat		
2.7.02	0615		9	1.8		697			8	Sat_		
8-7.02	1705					651				Set		
8-8-02	0615		7	1.4		701	-		7	Sat		
8.8-07	1555					661				Sot		
8-12-02	0710		8	1.6		699			8	Sat		
8-12-12	1640			<u> </u>		685	~ ~			<u>s.t</u>		
8-12.02	0725		7	_1.4		719	<u> </u>		7	Sat		
8-13-02	1435					7/7			-	Sat		
8-13-02	1 700					$\pm - \psi$	$L_1 \Lambda =$		#4~	Sat		

EFF - , 204 Daily Instrumentation Operational Check Sheet											
Instrument	2350	-1 # 9	5356			Probe	43-0	106 2	1 3386	6	
Cal Due _	1-2	9-03				Cal Due:		-29-03	3		
Source	Source ID. Mean Source T Mean Source T Mean $+2\sigma$ Mean -2σ Mean -2σ Count Rate: 718 Value: 776 Value: 660										
Radia Ty	lion pe: C	× "	Sigma Value	29	M	/lean +3 σ Value.	805	Mear ∖	n -3 σ /alue: 6	3 /	
		Background				Source	Check		Res	sults	
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT	
8-14-02	0615	5	//	2.7	1	662	1-	h	8	Set	
8.14.02	1630		·		1	701	<u> </u>	<u> </u>		Sat	
8-15-02	0630	5		2.2		712		<i></i>	8	Sat.	
8.15.02	1620				<u> </u>	703	<u> </u>			Sat	
8.19.02	0640		7	1.4	/	723	<u> </u>	L		Sat	
8.19.02	1630				11	707				Sat	
8-20-02	0650	5	1 4	2.8	/	717			7	Sat	
8.2002	1620				l	666				Sat	
8-21-02	0630	<u> </u>		2.2	/ ₁	6/2			8	Sat	
8.11.02	1615		10		·	-/7/		· / _	-	<u></u>	
6-22-02	0675		10	- <i>d</i>	<u>├</u> /	670				5 2	
0.21.01	1600		 / 1	14	<u>├──</u> / ,──	600				s.t	
8 26-02	0625			-æ. [,	7/0				- Jun Sat	
9-27.02	1655		14	2.8		733			9	Sat	
8-27-07	1650			-	7	688				Sit	

Er=1= . 246

Instrumen	t: <u>2350</u>	[#] 953.	56			Probe:	+3-106	# 1333	66	
Cal Due: _	1.0	9-03				Cal Due:	1-2	9-03		
Source	ID: Teg	9 # 3935	Mean Source Count Rate	e 9: 474	/	Mean +2 σ Value: [4873	Mea	n -2 σ Value: 4	609
Radia Ty	tion /pe: 3		Sigma Value	. 66	M	Mean +3 ơ Value;	4939	Mea \	n -3 σ /alue: 4⁄	543
		Background				Source	Check		Re	sulta
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I3σ Value	LLD	SAT/
5.78.02	0720	5	1505	30	1	4671			66	Sat
<u>) - 28-02</u>	1630				/	4697				Sat
8-29-02	0617		1459	291	<u> </u>	4624			64	Sat
	1000				/	4631				SAF
							;			
							-			

EF	= , 20	4 0	any insti	rumenta	tion Ope	erational	Check S	heet	A	
Instrumen	t: <u>2350</u>)-1 [#] 9.	5356			Probe: <u> </u>	3-106 #	133866	9	
Cal Due: _	(-29-03				Cal Due:	1-29-0	3		
Source	ID:	0 3937	Mean Source Count Rate	e 7/	8	Mean +2 σ Value: [776	Mea	n -2 σ Value:	660
Radia Ty	tion /pe:	×*	Sigma Value	: 29		Mean +3 σ Value; [805	Mea	n -3 σ /alue:	,3/
		Background				Source	Check		Re	
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 o	W/I 3 σ	LLD	SAT/
8-28-02	0730	5	7	1.4	1	664	Value	value		UNSAT
8.28.02	1625				1	672		·····		Jat
8-29-02	0630		6	1.2	1	707			~	- Dal
	_1600				/	689				SAT
		·····								

í	558-,231		Da	ally instr	umentat	ion Ope	rational (check Sr	neet		
Instrument	292	9 #	(15	563		······	Probe: <u> </u>	3 · 10	± 127.	216	
Cal Due _	6-1	4-0	3				Cal Due:	6	-14-03	3	
Source	ID: Te 99	د 39	3 <i>5</i>	Mean Source Count Rate	372	·2	Mean +2 σ Value: 3824 Mean -2 σ Value: 3620				
Radia Ty	tion /pe· í	3 -		Sigma Value	5 /	, N	Mean +3 σ Value:	3875	Mear ∖	n -3 σ /alue: 35	69
		Backg	round	.			Source	Check		Res	sults
Date	Time	Cou Time	ınt (min)	Gross Counts	BKGD CPM	 Count Time (min) 	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
8-13-02	0600	60)	4340	72	1	3727			3.31	set
5-14-02	0600			1220	70	(3719			31	Sat
8-15.02	0605			4256	71	<u> </u>	3736	<u> </u>		31	Sat
8-19-02	0605			4243	_7_/	/	3782			3_1	Jat
8-20-02	0625			4237	73	1	3810	~		31	Jat _
8-21-02	0600			4114	69	1	3727			3/	Sat
8-23-02	0605			4161	69_	1	3793			31	Sat
8.26.02	0605			4199	70	/	3723			31	Sat
827.02	0700			4355	73	l	387.5			31	3 at
8-28-02	0700			4160	69		3820			31	Sat
8-29-02	0605			4031	67		3784			30	Saf
	ļ										
ļ					- <u></u>						
	·	<u> </u>									
		60									

.

۰.

	81717 = .3	47								
Instrument	292	9 .	115563			Probe. <u> </u>	3-10	# 127	216	
Cal Due: _	6-1	4-03				Cal Due:	6	-14-03		·····
Source	1D. Th 23	0 ⁰ 3937	Mean Source Count Rate	1376	1	dean +2 σ Value:	1448	Mear	n -2 σ /alue: /	304
Radia Ty	tion vpe: 0	4	Sigma Value	36		vlean +3 σ Value:	1484	Mear ∖	n -3 σ /alue: /,	268
		Backgrou	ind			Source	Check		Res	sults
Date	Time	Count Time (mir	Gross n) Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
8-13.02	0630	60	10	,17	1	1357	-		.4	Sat
8-14-02	0600		9	.15	1	1425			4	Sat
8-15-02	0605		15	,25	/	1365			5	Sat
8-19-02	0605		10	.17	ll	1409			4	Sat
8-20.02	0625		17	. 28		1340	- U	<u> </u>	5	Sat
8-21-02	0600		6			1371				Sat
8-22-02	0600			. 2.3	<u> l </u>	1410			5	Sat
8-26.02	0600		10	. 17	//	1438			L	Sat
8 27.02	0710		5	08	ļ!	1386			<u> </u>	Sut
8.38.05	0710		7	.12	[(1365			<u> </u>	Sat
8-29-02	0605			a.17		1389		·····	4	- Jat
									Į	·
ļ		┟								
ļ				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
		<u> </u> [••		
	I	<u> </u>			I		l		l	

Eft. 347

ſ

4

,231

Instrument	2424	1	115	563	i	Probe	43-10		1216	
Cal Due			6-14-03		(Cal Due		6-14-0	3	
Source	ID. آد وو	1 3435	Mean Source Count Rate	372	N.	/lean +2 σ Value.	3824	Mear V	1 -2 σ alue: <u>3</u>	620
Radiat Ty	lion pe.	j3:-	Sigma Value	. 51	N	lean +3 σ Value	3875	Mear V	n -3 σ ′alue:3	56.9
		Backgroun	d			Source	Check		Res	sults
Date	Time	Count Time (min)	Gross Counts	BKGD CPM	Count Time (min)	Gross Counts	W/I 2 σ Value	W/I 3 σ Value	LLD	SAT/ UNSAT
7-17-02	0615	60	મેટ્ર રૂપ	71	1	3820	٢		31	ent
1-14-02	0610	<u>↑</u>	4172	64	<u> </u>	3415			31	33-5
7-22-02	0600		4265			3720	/	M	31	Cart
7-23-02	0605		4257			3412		<u> </u>	31	
7-24.02	0800		4/35	69		3811				<u>3 A7</u>
7-25.00	0715		4251			3793		1-	31	Sout
1.29-02	0660		4161	હલ		3739	· ·	/	31	624
7-30.02	0610		4154	<u> </u>		3777	~		<u>3.</u>	c.s.y.
7-31-02	06:5		4,201	10		3819			31	C4+
8.1.02	0715		4347	<u> </u>		3817			31	Der.
8-2-02	0700		-1090	68		3751		~	30	544
8-5-02	0720		4352	73		1752			34	
3-6-02	0615		4349	72		3797				Set
8.7-02	0600		4123	69		3776			<u> </u>	Sat
8-8-02	0 6 0 0	↓	4261	71	+	3773			3/	الته ح
8.12.02	0600	60	4219	70	1	3732	-		31	1 Jat

Appendix E

Background Assessment Data Molycorp Washington, PA

.

Ludlum Model 19 Micro-Rem

.

.

۲

4

.

Routine Performance and Background Data Form

Instrument ID #: 22526	Cal. Due. 1-29-03	Source ID #: CS-137
Mean Source Value: 16c	Mean plus + 20% Value 192	Mean plus - 20% Value 128

			Meter	Scale		Background	
Date	Time	25 µrem	50 µrem	250 jirem	500 µrem	Reading	Sat/Unsat
		(sat/unsat)	(sat/unsat)	+/-20% value	+/-20% value		
7-30.02	1045			160	/	10	504
2-31-02	0630			<u> </u>	/_	1_1	cy:rc
92.02	0805		/	140	/	10	Sat
8.5-02	0605		/	150		<u> </u>	Sal
8.6.07.	0630			160		12	
8-7-02	0615			170	. /.	<u> </u>	Sat
8-8-02	0620			170			Sat
8-12-02	0630			170	/	//	Sat
8-12-02	0155	N	/	165	N_/	10	Sat
8-14.02	0630		A	170	/A	12	Sat
8-15-02	0625	/		170		12	Sat
8-19-02	0620			170			Sat
8-20-02	0625			170		10	Sat
8-21-02	0635			160	/	10	Sat
8.22.07	0615			160			Sat
8.26-02	0610			160		10	Sat
8.27.02	0635			160	_/	10	<u>Sat</u>
8.24.02	0715			160	/	10	Sat
8-24.02	0630	7		150	/	10	Sat

Ludlum Model 19 Micro-Rem

.

.

Routine Performance and Background Data Form

Instrument ID #:	22526	Cal. Due: 1-29-03	Source ID #: C5-/37 A6143
Mean Source Value:	160	Mean plus + 20% Value: / 92	Mean plus - 20% Value・ ノス 8

			Meter	Background			
Date	Time	25 µrem	50 µrem	250 µrem	500 µrem	Reading	Sat/Unsat
		(sat/unsat)	(sat/unsat)	+/-20% value	+/-20% value		
8-30-07	0700			160	/	/!	SAT
9.3.02	0630			150	/	<u> </u>	sat
					/		
					/		
					/		
		,			/		
		N			N/		
	Å		A		<u> </u>		
	TH.						
	1	/					
	· · · · · · · · · · · · · · · · · · ·						
		/					
		/			/		
		/			/		

Background Assessment

MACTEC performed material-specific backgrounds for poured concrete with its three large-area gas flow instruments. The most conservative backgrounds values were selected and used for all background subtracts for direct (static) type surveys performed.

Background measurements for poured concrete and metal/drywall were calculated from surveys obtained at the Canton Volunteer Fire Department Station 52-1, Canton Township, PA on their poured concrete surfaces and their building structure. A mean value for each instrument was calculated. The most conservative background value was selected and used by the Health Physics technicians for all instrument background subtractions

Included in this appendix are the results of MACTEC's background assessment data.

Concrete Background Assessment Molycorp Washington, PA

Poured Concrete Surfaces

_

۰.

Ludlum Model 2350-1 (117563) with 43-106 (128912)

	Beta - Direc	ct Measurer	nents (cpm)	Alpha - Direct Measurements (cpm)			
	Unshield	<u>Shield</u>	Net	Net			
	549	429	120	14			
	641	449	192	13			
	629	487	142	9			
	630	501	129	16			
	651	498	153	14			
	629	480	149	10			
	634	494	140	8			
	684	467	217	5			
	728	458	270	11			
	741	576	165	10			
Mean (cpm)	168			11			
Stand Deviation	46.3			33			
n _b	6			7			

~

••

Readings taken at the Canton Volunteer Fire Department Station 52-1, Canton Township, PA on their poured concrete surfaces.

Concrete Background Assessment Molycorp Washington, PA

Poured Concrete Surfaces

.

.

.

Ludlum Model 2350-1	(95356)) with i	43-68	(91046))
---------------------	---------	------------	-------	---------	---

	Beta - Direc	ct Measurei	ments (cpm)	Alpha - Direct Measurements (cpm)
	Unshield	<u>Shield</u>	Net	Net
	460	330	130	10
	482	397	85	14
	592	381	211	15
	589	381	208	12
	561	348	213	23
	555	408	147	11
-	491	388	103	13
	511	392	119	6
	1014	40 9	605	18
	606	375	231	17
	523	429	94	12
	590	386	204	14
	703	407	296	17
	662	389	273	13
	551	408	143	10
	518	346	172	7
	478	349	129	12
	465	345	120	5
	520	403	117	14
	522	407	115	13
Mean (cpm)	186			13
Stand Deviation	115.5			4.2
n _b	29			8

.

-

Readings taken at the Canton Volunteer Fire Department Station 52-1, Canton Township, PA on their poured concrete surfaces.

Concrete Background Assessment Molycorp Washington, PA

Poured Concrete Surfaces

.

Ludlum Model 2350-1 (126190) with 43-106 (133871)

	Beta - Direo	a - Direct Measurements (cpm)		Alpha - Direct Measurements (cpm)		
	Unshield	<u>Shield</u>	Net	Net		
	500 -	350	150	9		
	418	314	104	6		
	447	326	121	8		
	494	312	182	5		
	483	351	132	3		
	466	306	160	6		
	478	347	131	9		
	469	327	142	8		
	426	353	73	12		
	429	343	86	7		
	499	349	150	10		
	462	330	132	9		
	496	372	124	8		
	491	336	155	9		
	458	295	163	12		
	527	337	190	11		
	464	327	137	13		
	521	302	219	12		
	492	323	169	4		
	484	319	165	8		
Mean (cpm)	144			8		
Stand Deviation	34.4			2.8		
n _b	4			8		

Readings taken at the Canton Volunteer Fire Department Station 52-1, Canton Township, PA on their poured concrete surfaces.

Metal/Drywall Background Assessment Molycorp Washington, PA

Metal/Drywall Surfaces

.

n_b

Ludlum Model 2350-1 (117566) with 43-68 (19046)

	Beta - Direc	ct Measurer	nents (cpm)	Alpha - Direct Measurements (cpn		
	<u>Unshield</u>	<u>Shield</u>	Net	Net		
	268	246	22	3		
	268	238	30	2		
	291	275	16	1		
	286	245	41	2		
	290	274	16	1		
	312	283	29	3		
	333	312	21	2		
	325	275	50	1		
	274	251	23	1		
	266	237	29	4		
Mean (cpm)	28			2		
Stand Deviation	10.8			1.1		
n _b	11			21		

Readings taken at the Canton Volunteer Fire Department Station 52-1, Canton Township, PA on their metal/drywall surfaces.

Metal/Drywall Background Assessment Molycorp Washington, PA

Metal/Drywall Surfaces

.

Ludlum Model 2350-1 (117563) with 43-106 (128912)

	Beta - Direc	ta - Direct Measurements (cpm)		Alpha - Direct Measurements (cpm)		
	<u>Unshield</u>	<u>Shield</u>	Net	Net		
	288	266	22	3		
	305	224	81	4		
	277	252	25	5		
	331	291	40	2		
	294	290	4	3		
	312	301	11	1		
	311	302	9	1		
	315	300	15	1		
	320	285	35	3		
	313	286	27	1		
Mean (cpm)	27			2		
Stand Deviation	22.2			1.4		
n _b	56			26		

Readings taken at the Canton Volunteer Fire Department Station 52-

1, Canton Township, PA on their metal/drywall surfaces

Amendment to Appendix C

Building 19 Foundation Data Package Molycorp Washington, PA

October, 2002

Building 19 Foundation Data Package

This data package contains final status survey information for Building 19 located at the Molycorp, Washington, PA site. The underside of the building's foundation/slab was surveyed for final status in August, 2002 as an affected foundation. During the IV survey performed by the NRC, several localized areas were identified with elevated levels, above the release limits.

Additional radiological surveys were conducted by MACTEC and an averaging calculation was performed on those survey results. Of the five elevated areas identified, four areas averaged less than release limits when averaged over one square meter. One area was identified as having contamination greater than 3000 dpm/100 cm², and was removed from the footprint of building 19 and taken to a designated RMA for proper handing and control.

Field data collection forms, survey report forms, and comparisons to release limits are provided.

Summary

Results from the final status survey of Building 19 foundation, after averaging four identified areas, provides evidence that all release criteria have been met, demonstrates that residual radioactivity is below the unrestricted use criteria, and confirms that the foundation (slab portion only) of Building 19 is suitable for unrestricted use and release.

Amendment to Appendix C - October 2002

RPP-0P-019

~*

		0-138 Radiation	Protection S	urvey Report	Site Mo	ycorp / Washin	gton PA
Section 1: Survey Informa	ation				.1		<u></u>
	Time	1600	Location. Bldg	19	Survey Is	isue Log Numb	er
RWP Number 14		se of Survey		Release 🗇 Other	Page	of	2
Survey Title:	DNE S	Quare Me	ter Sum	y (Average)	Smear Number	Beta dpm/100cm ²	Alpha dpm/100cm
	<u>.</u>	<u>,,,</u>			151		
					2		
					3	<u> </u>	
						<u> </u>	
	0				5	<u>├──</u> \───	
	13				7	<u>├</u>	
	-5/17	44 1			8	<u>├</u>	! i
	SLA	HB - 1			9	<u> </u>	
			• •		10		1
		. 1	8 7		11		
			65		12		
		4			. 13		
-					14		
			2		15		
					16	<u>[</u> -]	· · · ·
							<u>⊢</u> _}
					18	-	++
		492 -1 100	. \		1 19	-1	 /
	/	713.5 (10,0		1 - 10,000)	20	<u> </u>	<u></u>
		14.93 -	+ 245.5	260.4	22	<u> </u>	$\overline{\mathbf{h}}$
			_		23		
•		-	·		24	1	
					25		
	A				26		
00 = mRem/h gamma 0	0 C = mRer	n/h gamma contact	① = Smear Locat	ion 🗸 = Air S	Sample Loo	ation -X-X-2 Bound	K- = Rope, dary, or Barn
00 β = mRem/h oeta 0	0 βC = mRe	em/h beta contact	- 0- = Large Are	a Wipe = Bulk	Material S	ample	
Section 2: Instrument U	sed .						
Instrument Model/SN	Cal Due Date	Probe Model/SN	Cal Due Date	Detector Eff	MDA B	D BK	Uther C-
2350-1/126190 1,	-16-03	43-106 13387	1-12-14-02	1.231 (,177	253		
				1	·		
	·		, 				
			ł	ļ ļ			
			!	<u> </u>		I	
Section 3. Review and	Approval				Data set		
Survey Performed By (Sig	in) - /	И	Area Posted a	nd/or Barricaded'			1600
Mark Bla	vecol		· J Yes JNo		$\frac{7/39}{1000000000000000000000000000000000000$	Time	/
Radiation Safety Officer (I	Print Name	a Sign)	00·		IN/n	1, 1,	830
Steve Kowal:	sKi_/	Stene Kou	alle		- joja-j	00	

.

Radiological Survey Results - Calculational Sheet Survey 02-1181

J.

Location	β Static (unsh) .(cpm)	β Static (sh) (cpm)	Gross β	Minus Bkgd = (Net β)	Net β dpm/100 cm ²
1 .	617	443	174	30	129.8
Z	643	416	227	83	359.3
3	756	486	270	126	545.4
4	· 459	406	53	-91	-394
5.	760	511	249	105	454.5
. 6	674	487	187	43	186.1
7	818	429	3.89	245	1060.6
8	655	: 428	227_	83	·359,3
9	504	468	36	-108	-467.5
	;				+ 3095 - HGI
					9/2234
			.1		248,2
			-		
#1	974	485	489	345	1493.5
			· ·		
			•		
· · · · · · · · · · · · · · · · · · ·					
	<u> </u>				
	· · · · · · · · · · · · · · · · · · ·				

Model/SN:	Detector Eff.: (cpm/dpm)		Material	Bkgd
<u></u>			· · · ·	
		7.	·· .	•
		-		
		-		
		-		
"	BKG=1	44 (Conci	-ete):	·
Γ ε	-	· .	Pag	eof
	- "		BKG-144 (Concr	BKG144 (Concrete) Pag

.

۰.

3

٠.
RPP-OP-019

.•

•

DDO-138 Radiation Protection Survey Report					Site Mol	Site Molycorp / Washington PA		
ection 1: Survey Inform	nation							
Date Time Location			Survey Is	Survey Issue Log Number				
10-1-02		0900	Bldg	71/9	00	- 118 3	<u>ר</u>	
WP Number	Purpos CI RW	e of Survey Ave. P D Routine Surve	v D Unconditional	Release X Other	Page of			
Suprey Title:	6	datas A.			Smear Number	Beta	Alpha dpm/100cm	
Julvey Hud. UNE	Square	Flerer Iti	ernge Jo	rug	1			
					2			
					3		1	
					4			
	< 1	16 #)			5			
	<u>///</u>	1) " a	•		5			
					7			
					8		/	
					9		<u> </u>	
					L <u>10</u>			
					12	A/		
					1 14	/Y	A	
		< 1			15	- /		
					16	1		
	4				17	i /		
-		а З °			18	i /		
		, .			19	L/	1 .	
					20		<u> </u>	
	,	100	1. 100	1	21			
	1026 (-	10000) + 212	(1-10000))	22			
			neg)		23	<u>+</u> /	1	
	,	10.26 + 0	/J· 6 Ø		25	////		
	-	(226 Averag	e	26	1	<u> </u> .	
Bkgd Readings N	<u>/</u>		·····			· • · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Legeno 00 ≈ mRem/b damma	00 C = mRen	n/h gamma contact	D = Smear Loca	tion 🗇 = Aii	Sample Loo	ation -X-X-	X- = Rope,	
00 8 = mRem/b beta	00 BC = mRe	m/h beta contact	-D- = Large Are	ea Wipe = Bui	k Material S	ample Boun	dary, or Barn	
Section 2: Instrument	Used							
Instrument Model/SN	Cal Due	Probe Model/SN	- Cal Due	I Detector Eff	MDA	1	Other RVC	
	I Date		Date	Ø (cpm/dpm)	157	0-1	HU R-	
2350/126190	1-16-03	43-106/1338	2-14-02	1.23/ 1/2	0331			
/						\rightarrow		
				1		1		
				+				
						i		
Section 3. Review an	d Approval	<u> </u>	LAcon Dested	and/or Barricaded	; Date and	Time		
· · · · · · · · · · · · · · · · · · ·			Area Posted			12 / 10		
Survey Performed By (TYPE XNO	Not Required	1/10-1-	02 1 04	00	
Survey Performed By (S Mark Bla	nciak	(Sign)	I Yes XNo	☐ Not Required	<i> 0 - -</i> Date and	02 / 07 Time	00	

. ..

Page 2 of 2

• CKG = 14 4 Exercite

:

				Instr Mod
			Ţ	ument eVSN: *
				Probe Model/Sh
				4: Detector Eff.: (cpm/dpm)

Material

Bkgd

,

.

ł

Radiological Survey Results - Calculational Sheet

•__

Ś

×#02-1183

٠,

RPP OP-019

.

-

.

	DDO-138 Radiation Protection Survey Report Site Molycorp / Washington PA						
Section 1: Survey Inform	nation						
Date	Time		Location.		Survey 1st	sue Log Numb	er
10-1-02		1000	Blog #	19	02	-1198	
RWP Number	Purpos	se of Survey AVECAG	E Survey	Release 🗙 Other	Page _ / _ of _ 2		
Survey Title: a	<u>[U KW</u>	Hatac Aug	an Sucu		Smear Number	Beta dom/100cm ²	Alpha dpm/100cm
Salvey mile. ONE	Sgorie	Merer nver	440 0010		1		
SIAD #	3			/	2		
······································					3		· · · · · · · · · · · · · · · · · · ·
							<u>+/</u>
0	91				5		
لا	2				6	·	
7	^{#5} 3						 /
Ø	5 1						
			100				<u>+</u> -/
1052	5 (100) + 184.9 (1	10000)		9		<u></u>
		~ ~ + 183 1	- (104)	A JORAD	10		
	10.		- (1-1)	Wein be			<u> </u>
					12 1		⊹/
					13	/\	1
Slah	#시				14		[
	-			-	15	{	1
•.	۹.				16	/-	
	8 - ,	,			1/-		1
	- H1 3	-			18	/	· · · · · · · · · · · · · · · · · · ·
	6,4				1 19		······································
	5	,	106		20		1
96	0/100	-)+ 323(1-	$\frac{100}{10000}$		21	/	
10	10000				22	·-/	1
		9 + 319.77	= (329)	Average	23		
				v	24	-/	
					25	\/	<u> </u>
Bkgd Readings 💫	[A	<u> </u>			1 20	!/	
Legend				<u> </u>	Sample Log	Ation X-X-	X- = Rope.
00 = mRem/h gamma	00 C = mRer	n/h gamma contact) = Smear Locat		Sample Luc	Bour	dary or Barr
00 ß = mRem/h oeta	00 βC = mR	em/h beta contact	-D- = Large Are	a Wipe = Bulk	(Material Sa	mple	
Section 2: Instrument	Used						Other
Instrument Model/SN	Cal Due Date	Probe Model/SN	Cal Due Date	Detector Elf (cpm/dpm)	моа 		BKG
2350/129414	8-2-03	43-106/128914	2-2-03	. 240 B-	_244 E	3-: 1	148-
			-	:			\leq
-	N			li	. N		
		A				<u>A</u>	
	· · · · · · · · · · · · · · · · · · ·					i	
	Approval	<u> </u>		. <u></u>			
Section 3. Review and			LArea Posted a	nd/or Barricaded	Date and 1	Time	
Survey Performed By (Sign)			TYes CINO	X Not Required	10-1-1	2/100	٥
- Joen Ftul		f Sign)			Date and 1	lime	
Radiation Safety Officer		Lt V AC). •		10-2-	· DA / 11	030
Steve Kaul	SKI / 2	store Fouralle	<u> </u>		10-0	<u>~~</u> [14	

•

- -*

Survy # 1198

Radiological Survey Results - Calculational Sheet

	-	•		·Br	20#19	_
Location	β Static (unsh) (cpm)	β Static (sh) (cpm)	Gross β	$\begin{array}{l} \text{Minus Bkgd} \\ = (\text{Net } \beta) \end{array}$	Net β dpm/100 cm ²	
1 .	3.54	209	145	11	0.24 4.2	ŀ
2	367	213	154	10	41.6	1
3	431	213	218	74	308	1
4	461	211	250	106	442	1
5	377	188	189	45	187,5	1
6	405	204	201	57	238	
7	370.	186	184	40	167	Į
8	386	233	153	9	38	Į
9	422	221	201	57	238	
				9	1460.38	1664.3
	:			ļ	J.H.	
					(184.5)	189.9
			.1		.א.ד.	
Shay # 3	800	402	398	254	1058	
						[
		-				
	450	197	253	109	454	
2	400	200	200	56	233	
3	456	205.	251	107	446	
4	483	213	270	126	525	
5	428	220	208	64	267	
6	434	220	214	· 70	292	
· 7	421	269	152	8	33	
8	416	210	206	62	258	-
9	467	227	240	96	400	
			•	a	2900	
					()23)	•
SLay#4	820	460	360	216	900	1

Instrument Model/SN:	Probe Model/SN:	Detector Eff.: (cpm/dpm)
•		
		<u></u>
		<u></u>

3

Material	Bkgd
	-
•	

" Bly = 144 (covenete)

Page 2 of 2