ATTACHMENT 4

PUMP AND VALVE LISTS FOR SECOND 10-YEAR INTERVAL

This attachment includes separate reports that provide the information normally submitted as the IST Plan document for the update requirement. The first report is titled IST Valve Groups and it lists all the IST scoped valves which are grouped by like components as described in the Risk Informed Inservice Testing Program Description. As a result of the 10-year update to the OMa-1988 Code, this list also includes the relief valves which are now scoped in the IST program based on the requirements of the OM-1987 edition of Part 1.

The second report of this attachment is the listing of the testing requirements by group. This report shows the IST rank as determined by the Integrated Decision-making Process, the frequency tested under the previous edition of the Code, and the resulting risk informed test frequency. The table below provides a description of the frequency codes that are used in this report. Where applicable, a reference (i.e. CSJ-01) is added to indicate that the frequency is based on a cold shutdown or refueling outage justification.

	IST FREQUENCY CODES												
Q	Once per Quarter	30MO	Every 30 months										
CS	At Cold Shutdown	3YR	Every 3 years										
2Y	Every 2 Years	54MO	Every 54 months										
RF	Every 18 months	5YR	Every 5 years										
R	Every 18 months	6YR	Every 6 years										
6M	Every 6 months	36MO	Every 36 months										
App J	Tested per Appendix J Option B												

The next report is a list of the ASME pumps included in the IST scope. This report shows the pumps divided in the groups for staggered testing. The pump safety function and the IST rank are displayed. Again, the previous frequency and the resulting risk-informed test frequency are shown.

Finally, the last report provides the cases where STP is taking exception to the code requirements for IST High rank components. These activities cannot be performed during normal power operations. The reasons for the testing exceptions and the proposed testing requirements are described. The report also includes the relief requests proposed by STP for situations where the ASME Code cannot be satisfied.

IST Valve Groups

GROUP	P GROUP DESCRIPTION TAGTPNS Act/Pass P&ID # &						Т	ALVE D	ATA		VALVI	9
	TAGTPNS	Act/Pas	s P&ID#&		QClass	IST	Size	Туре	Actuator	Normal	Failsafe	Safety Func.
AF01	Auxiliary Feedwater 2S141TAF0119	Supply to S	iteam Generator 5S141F00024	Inside C F-1	ntmt Isolati 2	on Check V C	alves 8	CHECK	SELF	CLOS	N/A	о
	2S141TAF0122	А	5S141F00024	H-1	2	с	8	CHECK	SELF	CLOS	N/A	0
	2S141TAF0121	А	5S141F00024	C-1	2	С	8	CHECK	SELF	CLOS	N/A	0
	2S141TAF0120	А	5S141F00024	D-1	2	С	8	CHECK	SELF	CLOS	N/A	0
AF02	Auxiliary Feedwate 2S141TAF0085	A	5S141F00024	B-2	2	B/C	4	STOP C	MOTOR	CLOS	FAI FAI	0/C 0/C
	2S141TAF0019		5S141F00024	G-2	2	B/C	4	STOP C	MOTOR	CLOS CLOS	FAI	0/C
	2S141TAF0065		5S141F00024	D-2	2	B/C	4	STOP C	MOTOR			
	2S141TAF0048	A	5S141F00024	F-2	2	B/C	4	STOP C	MOTOR	CLOS	FAI	O/C
AF03	Auxiliary Feedwate 3S141ZAF7526		Steam Generator 5S141F00024	Flow Re H-3	egulating MC 3	DVs B	4	GLOBE	MOTOR	OPEN	FAI	0
	3S141ZAF7525	А	5S141F00024	F-4	3	В	4	GLOBE	MOTOR	OPEN	FAI	0
	3S141ZAF7524	А	5S141F00024	D•4	3	В	4	GLOBE	MOTOR	OPEN	FAI	0
	3S141ZAF7523	А	5S141F00024	B-4	3	в	4	GLOBE	MOTOR	OPEN	FAI	0
AF04	Auxiliary Feedwate 3S141XMS0514		p and Trottle Val 5R169F00024	ve (MS0 F-6	9514) 3	В	4	GLOBE	MOTOR	CLOS	FAI	O/C
AF05	Main Steam to Aux D1AFFV0143		ater Turbine War 5R169F00024	m-up Va G-8	alve 2	В	1	GLOBE	SOLENO	CLOS	CLOS	O/C
AF06	Auxiliary Feedwate A1AFFV7517		harge Cross-Tie 5S141F00024	Valves F-5	3	в	4	GLOBE	AIR	OPEN	CLOS	O/C
	D1AFFV7518	Α	5R169F00024	G-4	3	В	4	GLOBE	AIR	OPEN	CLOS	O/C
	C1AFFV7515	А	5S141F00024	B-5	3	В	4	GLOBE	AIR	OPEN	CLOS	O/C
	B1AFFV7516	Α	5S141F00024	D-5	3	В	4	GLOBE	AIR	OPEN	CLOS	O/C

GROUP	GROUP D	ESCRIP	TION				V	ALVE D	ATA		VALVI	3
	TAGTPNS	Act/Pas	s P&ID#&		QClass	IST	Size	Туре	Actuator	Normal	Failsafe	Safety Func.
AF07	Auxiliary Feedwater 3S141TAF0036	r Auto Recir A	c Valves 5S141F00024	F-6	3	с	4	CHECK	SELF	CLOS	N/A	0
	3S141TAF0091	А	5S141F00024	B-6	3	С	4	CHECK	SELF	CLOS	N/A	0
	3S141TAF0058	А	5S141F00024	D-6	3	С	4	CHECK	SELF	CLOS	N/A	0
	3S141TAF0011	А	5S141F00024	H-5	3	С	4	CHECK	SELF	CLOS	N/A	0
AF08	Main Steam to AF 2S141TMS0143	Turbine Suc A	tion Stop Check N 5S141F00024	MOV (MS H-8	60143) 2	в	4	STOP C	MOTOR	OPEN	FAI	O/C
AP01	RCS Hot Leg Samp B1APFV2455	ole to PASS A	Lab OCIVs 5Z549Z47501	E-7	2	A	1	GATE	SOLENO	CLOS	CLOS	С
	B1APFV2455A	Α	5Z549Z47501	E-7	2	Α	1	GATE	SOLENO	CLOS	CLOS	С
AP02	Cntmt Normal Sum A1APFV2453	p to PASS A	Lab OCIVs 5Z549Z47501	G-7	2	А	1	GATE	SOLENO	CLOS	CLOS	С
AP03	RHR Sample to PA A1APFV2454	ASS Lab OC	ilVs 5Z549Z47501	F-7	2	Α	1	GATE	SOLENO	CLOS	CLOS	С
AP04	PASS Waste Colle C1APFV2458	ction Unit R A	eturn to Pressuriz 5Z549Z47501	er Relief C-3	Tank OCI 2	V A	1	GATE	SOLENO	CLOS	CLOS	с
AP05	Containment Air Sa C1APFV2457	ample Supp A	ly and Return to F 5Z549Z47501	ASS Lai H-2	b OCIVs 2	А	1	GATE	SOLENO	CLOS	CLOS	С
	C1APFV2456	А	5Z549Z47501	D-7	2	Α	1	GATE	SOLENO	CLOS	CLOS	С
BA01	Breathing Air Syste 2Q121TBA0006	em Inside C P	ntmt Isolation Che 5Q129F05044	eck Valve H-4	2	A/C	1	CHECK	SELF	CLOS	N/A	С
BA02	Breathing Air Syste 2Q121TBA0004	em Outside P	Cntmt Isolation M 5Q129F05044	anual Va G-4	alve 2	A	1	BALL	MANUAL	CLOS	N/A	С
CC01	Thermal Relief for 2R201TCC0446	Penetration A	M-40 CCW return 5R209F05021	n for the l B-1	RCPs 2	A/C	1	CHECK	SELF	CLOS	N/A	O/C

)

GROUF							,	VALVE D	DATA		VALVI	<u> </u>
	TAGTPNS	Act/Pas	s P&ID#&		QClass	IST	Size	Туре	Actuator [,]	Normal	Failsafe	Safety Func.
CC02	CCW Supply to the	RCP Therr	nal Barriers (Dout	ole inlet (check valve	s)						
	3R201TCC0327	Α	5R209F05021	B-8	3	С	2	CHECK	SELF	OPEN	N/A	O/C
	3R201TCC0756	Α	5R209F05021	E-4	3	С	2	CHECK	SELF	OPEN	N/A	O/C
	3R201TCC0321	Α	5R209F05021	E-5	3	С	2	CHECK	SELF	OPEN	N/A	O/C
	3R201TCC0363	Α	5R209F05021	B-5	3	С	2	CHECK	SELF	OPEN	N/A	O/C
	3R201TCC0346	А	5R209F05021	E-8	3	С	2	CHECK	SELF	OPEN	N/A	O/C
	3R201TCC0757	А	5R209F05021	B-5	3	С	2	CHECK	SELF	OPEN	N/A	O/C
	3R201TCC0758	А	5R209F05021	E-7	3	С	2	CHECK	SELF	OPEN	N/A	O/C
	3R201TCC0759	A	5R209F05021	B-8	3	С	2	CHECK	SELF	OPEN	N/A	O/C
CC03	Penetration M-40 C D1CCFV4493	CW return A	for the RCPs 5R209F05021	H-1	2	A	12	BUTTER	AIR	OPEN	CLOS	С
CC04	RHR Heat Exchang	nor - CCW (Dutlat Valvas									
0004	A1CCFV4531	A	5R209F05017	G-2	3	В	16	BUTTER	AIR	CLOS	CLOS	0
	B1CCFV4548	А	5R209F05018	G-2	3	В	16	BUTTER	AIR	CLOS	CLOS	0
	C1CCFV4565	А	5R209F05019	G-2	3	В	16	BUTTER	AIR	CLOS	OPEN	0
CC05	Common Suction I	leader Isola	tion Valves (Trair	ns A, B, a	& C) MOVs							0.40
	3R201TCC0132	A	5R209F05020	C-7	3	В	24	BUTTER	MOTOR	EITH	FAI	O/C
	3R201TCC0052	А	5R209F05020	C-7	3	В	24	BUTTER	MOTOR	EITH	FAI	O/C
	3R201TCC0192	А	5R209F05020	B-7	3	В	24	BUTTER	MOTOR	EITH	FAI	O/C
CC06	Common Supply H	leader Isola	tion Valves (Train	s A, B, 8	k C)							
	3R201TCC0312	Α	5R209F05020	E-7	3	В	24	BUTTER	MOTOR	EITH	N/A	O/C
	3R201TCC0314	Α	5R209F05020	E-7	3	В	24	BUTTER	MOTOR	EITH	N/A	O/C
	3R201TCC0316	Α	5R209F05020	F-7	3	В	24	BUTTEP	MOTOR	EITH	N/A	O/C

L

GROUP	GROUP D	ESCRIPT	TION				V	ALVE D	ATA		VALVI	E
	TAGTPNS	Act/Pass	s P&ID#&		QClass	IST	Size	Туре	Actuator	Normal	Failsafe	Safety Func.
CC07	CCW Heat Exchang 3R201TCC0643		OVs (Trains A, B, 5R209F05017	and C) B-5	3	В	24	BUTTER	MOTOR	OPEN	FAI	0
	3R201TCC0647	A :	5R209F05019	B-5	3	В	24	BUTTER	MOTOR	OPEN	FAI	0
	3R201TCC0645	A :	5R209F05018	B-5	3	В	24	BUTTER	MOTOR	OPEN	FAI	0
<i>CC08</i>	CCW Heat Exchang 3R201TCC0644		MOVs (Trains A, 1 5R209F05018	3, and C A-6	C) 3	В	16	BUTTER		CLOS	FAI	O/C
	3R201TCC0646	A	5R209F05019	A-6	3	В	16	BUTTER	MOTOR	CLOS	FAI	O/C
	3R201TCC0642	A	5R209F05017	A-6	3	В	16	BUTTER	MOTOR	CLOS	FAI	O/C
CC09	CCW return from th 2R201TCC0208		iside Containmer 5R209F05019	it Isolati D-4	on Valves (2	Trains A, B A	, and C) 14	BUTTER	MOTOR	OPEN	FAI	O/C
	2R201TCC0147	A	5R209F05018	C-4	2	А	14	BUTTER	MOTOR	OPEN	FAI	O/C
	2R201TCC0068	Α	5R209F05017	C-4	2	Α	14	BUTTER	MOTOR	OPEN	FAI	O/C
CC09A	CCW return from th 2R201TCC0210		outside Containm 5R209F05019	ent Isola D-4	ation Valves 2	s (Trains A, A	B, and C) 14	BUTTER	MOTOR	CLOS	FAI	O/C
	2R201TCC0069	Α	5R209F05017	D-4	2	А	14	BUTTER	MOTOR	CLOS	FAI	O/C
	2R201TCC0148	Α	5R209F05018	D-4	2	Α	14	BUTTER	MOTOR	CLOS	FAI	O/C
CC10	CCW Supply (OCI) 2R201TCC0182		ump and Heat Ex 5R209F05019	F-1	2	A	16	BUTTER		OPEN	FAI	0/0
	2R201TCC0122	Α	5R209F05018	E-2	2	A	16	BUTTER		OPEN	FAI	O/C
	2R201TCC0012	А	5R209F05017	E-2	2	A	16	BUTTER	MOTOR	OPEN	FAI	O/C
CC11	CCW Supply (OCI) 2R201TCC0057		r Containment Fa 5R209F05017	n Coole D-2	ers - Trains 2	A, B, and C A) 14	BUTTER	MOTOR	CLOS	FAI	O/C
	2R201TCC0197	А	5R209F05019	D-2	2	А	14	BUTTER	MOTOR	CLOS	FAI	O/C
	2R201TCC0136	Α	5R209F05018	D-2	2	А	14	BUTTER	MOTOR	CLOS	FAI	O/C

GROUP	GROUP D	ESCRIP	TION				Ţ	ALVE D	ATA		VALVI	5
0110 01	TAGTPNS	Act/Pas	ss P&ID#&		QClass	IST	Size	Туре	Actuator	Normal	Failsafe	Safety Func.
CC12	CCW Return from F	RHR Pump	and Heat Exchan	ger - Tra	ains A, B, ar	nd C						A / A
• •	2R201TCC0190	A	5R209F05019	H-4	2	Α	16	BUTTER	MOTOR	OPEN	FAI	O/C
	2R201TCC0189	Α	5R209F05019	H-4	2	Α	16	BUTTER	MOTOR	OPEN	FAI	O/C
	2R201TCC0130	Α	5R209F05018	G-4	2	А	16	BUTTER	MOTOR	OPEN	FAI	O/C
	2R201TCC0129	А	5R209F05018	G-4	2	А	16	BUTTER	MOTOR	OPEN	FAI	O/C
	2R201TCC0050	А	5R209F05017	G-4	2	А	16	BUTTER	MOTOR	OPEN	FAI	O/C
	2R201TCC0049	А	5R209F05017	G-4	2	А	16	BUTTER	MOTOR	OPEN	FAI	O/C
CC13	Chilled Water Retu	m from RC	FCs Outside Cntr	nt. Isola	tion MOV (T	rains A, B, a	and C)					
0015	2R201TCC0149	A	5R209F05018	C-4	2	A	8	BUTTER	MOTOR	OPEN	FAI	С
	2R201TCC0070	А	5R209F05017	C-4	2	Α	8	BUTTER	MOTOR	OPEN	FAI	С
	2R201TCC0209	А	5R209F05019	C-4	2	А	8	BUTTER	MOTOR	OPEN	FAI	С
CC14	Chilled Water Supp	bly to RCFC	s Outside Cntmt.	Isolatio	n MOV (Trai	ins A, B, and	1 C)					
••••	2R201TCC0059	Α	5R209F05017	D-2	2	Α	14	BUTTER	MOTOR	OPEN	FAI	С
	2R201TCC0199	А	5R209F05019	D-2	2	Α	14	BUTTER	MOTOR	OPEN	FAI	С
	2R201TCC0137	А	5R209F05018	D-2	2	Α	14	BUTTER	MOTOR	OPEN	FAI	С
CC15	CCW Supply Head	er to Spent	Fuel Pool Heat E	xchang	er, First and	Second Iso	lation					-
	3R201TCC0032	A	5R209F05020	E-6	3	В	18	BUTTER	MOTOR	EITH	FAI	С
	3R201TCC0447	Α	5R209F05020	E-7	3	В	18	BUTTER	MOTOR	EITH	FAI	С
CC16	CCW Supply Head					ion	18	BUTTER	MOTOR	OPEN	N/A	С
	3R201TCC0235	A	5R209F05020	D-7	3	В						
	3R201TCC0236	Α	5R209F05020	D-6	3	В	18	BUTTER	MOTOR	OPEN	N/A	С
CC17	CCW Supply to Ex 3R201TCC0393	cess Letdo A	wn Heat Exchang 5R209F05021	er isolat G-3	tion MOV 3	В	4	BUTTER	MOTOR	OPEN	FAI	с

GROUP							r	VALVE D	ATA		VALVI	3	
	TAGTPNS	Act/Pa	ss P&ID#&		QClass	IST	Size	Туре	Actuator	Normal	Failsafe	Safety Func.	
CC18	CCW Supply Heade 3R201TCC0771	er Isolation A	to Charging Pum 5R209F05020	os (Trai G-7	ns A, B, and 3	C) B	6	BUTTER	MOTOR	EITH	FAI	O/C	
	3R201TCC0770	А	5R209F05020	G-7	3	в	6	BUTTER	MOTOR	EITH	FAI	O/C	
	3R201TCC0768	Α	5R209F05020	F-7	3	в	6	BUTTER	MOTOR	EITH	FAI	O/C	
CC19	CCW Return Isolatio 3R201TCC0772	on from Cl A	narging Pumps (Tr 5R209F05020	ains A, B-7	B, and C) 3	В	6	BUTTER	MOTOR	EITH	FAI	O/C	
	3R201TCC0775	Α	5R209F05020	A-7	3	В	6	BUTTER	MOTOR	EITH	FAI	O/C	
	3R201TCC0774	А	5R209F05020	B-7	3	в	6	BUTTER	MOTOR	EITH	FAI	O/C	
CC20	CCW Supply to RCI 3R201TCC0297	DT Ht. Exc A	ch. and Excess Lef 5R209F05021	down G-7	3	В	6	BUTTER	MOTOR	EITH	N/A	С	
CC21	CCW Supply to RCI 3R201TCC0392	DT Ht. Exc A	ch. 5R209F05021	G-3	3	в	4	GATE	MOTOR	OPEN	FAI	С	
CC22	CCW Supply to RCI						10		NOTOD	ODEN		0	
	2R201TCC0291	A	5R209F05021	H-8	2	A	12	BUTTER	MOTOR	OPEN	FAI	C	
	2R201TCC0318	A	5R209F05021	H-8	2	A	12	BUTTER	MOTOR	OPEN	FAI	С	
CC23	CCW Return from F								NOTOD	0051	F A 1	0	
	2R201TCC0404	Α	5R209F05021	H-1	2	A	12	BUTTER	MOTOR	OPEN	FAI	С	
	2R201TCC0542	Α	5R209F05021	B-1	2	А	12	BUTTER	MOTOR	OPEN	FAI	С	
	2R201TCC0403	Α	5R209F05021	B-1	2	Α	12	BUTTER	MOTOR	OPEN	FAI	С	
CC24	Chilled Water Retur C1CCFV0863	n for the F A	RCFCs, Outside Cr 5R209F05017	ntmt Iso C-4	lation Valve 2	(Trains A, A	B, and C) 8	BUTTER	AIR	OPEN	CLOS	С	
	B1CCFV0862	А	5R209F05017	B-4	2	А	8	BUTTER	AIR	OPEN	CLOS	С	
	A1CCFV0864	А	5R209F05017	C-4	2	А	8	BUTTER	AIR	OPEN	CLOS	С	
CC25	CCW Supply Heade B1CCFV4541	er to Post / A	Accident Sampling 5R209F05020	Systen D-8	n, First and 3	Second is B	olation 1.5	GATE	SOLENO	CLOS	CLOS	с	
							1.5	GATE	SOLENO	OPEN	CLOS	c	
	A1CCFV4540	А	5R209F05020	D-7	3	В	1.5	GATE	SULENU	OFEN	0103	v	

.

GROUP	GROUP GROUP DESCRIPTION					V	ALVE D	ATA		VALVI	3	
	TAGTPNS		s P&ID#&		QClass	IST	Size	Туре	Actuator	Normal	Failsafe	Safety Func.
CC26	CCW Common Retu	urn Header	to CCW Pump Su	uction C	heck Valve	(Trains A, B, a	nd C)					
••••	3R201TCC0191		5R209F05020	B-7	3	C	24	CHECK	SELF	OPEN	N/A	O/C
	3R201TCC0131	А	5R209F05020	C-7	3	С	24	CHECK	SELF	OPEN	N/A	O/C
	3R201TCC0051	А	5R209F05020	C-7	3	С	24	CHECK	SELF	OPEN	N/A	O/C
CC27	CCW Pump Dischar	rge Check \	/alve to Common	Supply	Header (Tr	ains A, B, and (C)					-
	3R201TCC0311		5R209F05020	E-7	3	С	24	CHECK	SELF	EITH	N/A	0
	3R201TCC0313	А	5R209F05020	E-7	3	С	24	CHECK	SELF	EITH	N/A	0
	3R201TCC0315	Α	5R209F05020	F-7	3	С	24	CHECK	SELF	EITH	N/A	0
CC28	CCW Supply to RCI	FCs Inside	Cntmt Isolation C	heck Va	lve (Trains	A, B, and C)						
	2R201TCC0058		5R209F05017	D-2	2	A/C	14	CHECK	SELF	OPEN	N/A	O/C
	2R201TCC0138	Α	5R209F05018	D-2	2	A/C	14	CHECK	SELF	OPEN	N/A	O/C
	2R201TCC0198	А	5R209F05019	D-2	2	A/C	14	CHECK	SELF	OPEN	N/A	O/C
CC29	CCW Supply to RHI	R Pump and	d Heat Exchange	r Inside	Cntmt Isola	tion Check Val	ve (Trains /	A, B, and C)			0/0
	2R201TCC0123	Α	5R209F05018	E-2	2	A/C	16	CHECK		CLOS	N/A	O/C
	2R201TCC0013	А	5R209F05017	E-2	2	A/C	16	CHECK	SELF	CLOS	N/A	O/C
	2R201TCC0183	А	5R209F05019	E-2	2	A/C	16	CHECK	SELF	CLOS	N/A	O/C
CC30	CCW Return for RC	DT Heat E	kchanger Check \	/alves								•
	3R201TCC0541	A	5R209F05021	D-1	3	С	4	CHECK		OPEN	N/A	C
	3R201TCC0540	Α	5R209F05021	D-1	3	С	4	CHECK	SELF	OPEN	N/A	C
CC31	CCW Return for Ex					•	c	CHECK	SELF	OPEN	N/A	С
	3R201TCC0402	A	5R209F05021	C-2	3	C	6					
	3R201TCC0763	A	5R209F05021	C-2	3	С	6	CHECK	SELF	OPEN	N/A	С
CC32	CCW Supply to RC 2R201TCC0319	Ps Inside C A	ontainment Isolat 5R209F05021	ion Che G-8	ck Valve 2	A/C	12	CHECK	SELF	OPEN	N/A	с

Ł

GROUI							I	VALVE D	ATA		VALVI	3	
	TAGTPNS	Act/Pas	s P&ID#&		QClass	IST		Size	Туре	Actuator	Normal	Failsafe	Safety Func.
CC33	RCP Thermal Barri N1CCFV4626		ation Valves 5R209F05021	B-3	3	с		3	GLOBE	SELF	OPEN	OPEN	с
	N1CCFV4639	А	5R209F05021	E-6	3	С		3	GLOBE	SELF	OPEN	OPEN	С
	N1CCFV4638	А	5R209F05021	E-6	3	С		3	GLOBE	SELF	OPEN	OPEN	С
	N1CCFV4633	А	5R209F05021	E-3	3	С		3	GLOBE	SELF	OPEN	OPEN	С
	N1CCFV4627	А	5R209F05021	B-3	3	С		3	GLOBE	SELF	OPEN	OPEN	С
	N1CCFV4621	А	5R209F05021	B-6	3	С		3	GLOBE	SELF	OPEN	OPEN	С
	N1CCFV4620	А	5R209F05021	B-6	3	С		3	GLOBE	SELF	OPEN	OPEN	С
	N1CCFV4632	Α	5R209F05021	E-3	3	С		3	GLOBE	SELF	OPEN	OPEN	С
CC34	Cross Connect Valv A1CCFV4657 A1CCFV4656	Α	/ Supply and Rei 5R209F05020 5R209F05020	um for (A-7 G-7	Charging Pu 3 3	mps B B		6	BUTTER BUTTER	AIR AIR	CLOS	CLOS	c c
CC35					0	D		0	borren	/ 1	01 211	0100	·
2235	CCW Common Ret N1CCPSV4492		5R209F05020	B7	3	С	1	.5	RELIEF	SELF	CLOS	N/A	ο
CC36	CCW Heat Exchang N1CCPSV4521		Outlet Pressure 5R209F05019	Relief V B6	/aives 3	с		1	RELIEF	SELF	CLOS	N/A	0
	N1CCPSV4511		5R209F05017	B5	3	c		1	RELIEF	SELF	CLOS	N/A	0
	N1CCPSV4516		5R209F05018	B6	3	C		1	RELIEF	SELF	CLOS	N/A	0
CC37	RHR Heat Exchang	ier A. B. C C	CW Return Pres	sure Be	lief Valves								
0007	N1CCPSV4549		5R209F05018	G2	3	С	1	.5	RELIEF	SELF	CLOS	N/A	0
	N1CCPSV4532	Α	5R209F05017	G2	3	С	1	.5	RELIEF	SELF	CLOS	N/A	0
	N1CCPSV4566	А	5R209F05019	G2	3	С	1	.5	RELIEF	SELF	CLOS	N/A	0
CC38	RHR Pump A, B, C N1CCPSV4567		n Pressure Relie 5R209F05019	f Valves G3	s 3	с		1	RELIEF	SELF	CLOS	N/A	ο
	N1CCPSV4550	А	5R209F05018	G3	3	с		1	RELIEF	SELF	CLOS	N/A	0
	N1CCPSV4533	А	5R209F05017	G3	3	с		1	RELIEF	SELF	CLOS	N/A	0

GROUF	o GROUP L	DESCRIPT	TION				V	ALVE D	ATA		VALVI	3
	TAGTPNS		s P&ID#&		QClass	IST	Size	Туре	Actuator	Normal	Failsafe	Safety Func.
CC39	RCFC 11(21)A, B, N1CCPSV4573		ater/CCW Returr 5R209F05019	Pressu C3	ure Relief Va 3	alves C	1.5	RELIEF	SELF	CLOS	N/A	0
	N1CCPSV4571	Α	5R209F05019	E4	3	с	1.5	RELIEF	SELF	CLOS	N/A	0
	N1CCPSV4556	Α	5R209F05018	C4	3	с	1.5	RELIEF	SELF	CLOS	N/A	0
	N1CCPSV4554	Α	5R209F05018	E4	3	С	1.5	RELIEF	SELF	CLOS	N/A	0
	N1CCPSV4539	P	5R209F05017	E4	3	С	1.5	RELIEF	SELF	CLOS	N/A	0
	N1CCPSV4537	А	5R209F05017	E4	3	С	1.5	RELIEF	SELF	CLOS	N/A	0
<i>CC40</i>	CCP A, B, C Lube N1CCPSV4580 N1CCPSV4588 N1CCPSV4582	A A	Coolers CCW R 5R209F05020 5R209F05020 5R209F05020	etum Pi G6 G5 G4	ressure Reli 3 3 3	ief Valves C C C	1 1 1	RELIEF RELIEF RELIEF	SELF SELF SELF	CLOS CLOS CLOS	N/A N/A N/A	0 0 0
	N1CCPSV4613		5R209F05020	E2	3	c	1	RELIEF	SELF	CLOS	N/A	ο
	N1CCPSV4584	A	5R209F05020	G5	3	С	1	RELIEF	SELF	CLOS	N/A	0
	N1CCPSV4586	A	5R209F05020	G3	3	С	1	RELIEF	SELF	CLOS	N/A	0
CC41	RCP A, B, C Uppe N1CCPSV4618		Lube Oil Cooler (5R209F05021	CCW Re B6	etum Pressu 3	ure Relief V C	alves 1	RELIEF	SELF	CLOS	N/A	ο
	N1CCPSV4622	А	5R209F05021	СЗ	3	С	1	RELIEF	SELF	CLOS	N/A	0
	N1CCPSV4624	А	5R209F05021	B3	3	С	1	RELIEF	SELF	CLOS	N/A	0
	N1CCPSV4628	А	5R209F05021	F3	3	С	1	RELIEF	SELF	CLOS	N/A	0
	N1CCPSV4630	Α	5R209F05021	E3	3	С	1	RELIEF	SELF	CLOS	N/A	0
	N1CCPSV4634	А	5R209F05021	F6	3	С	1	RELIEF	SELF	CLOS	N/A	0
	N1CCPSV4636	Α	5R209F05021	E6	3	С	1	RELIEF	SELF	CLOS	N/A	0
	N1CCPSV4616	А	5R209F05021	C6	3	С	1	RELIEF	SELF	CLOS	N/A	0

GROUF	GROUP D	ESCRIP	TION					VA	LVE D	ATA		VALVI	E
011001	TAGTPNS		s P&ID#&		QClass	IST	Si	ize	Туре	Actuator	Normal	Failsafe	Safety Func.
CC42	RCP A, B, C, D The	rmal Barrie		essure	Relief Valve	s				OELE	CLOS	N/A	ο
	N1CCPSV4638	Α	5R209F05021	D6	3	С	1		RELIEF	SELF		N/A	0
	N1CCPSV4620	Α	5R209F05021	A6	3	С	1		RELIEF	SELF	CLOS		
	N1CCPSV4632	Α	5R209F05021	D3	3	С	1		RELIEF	SELF	CLOS	N/A	0
	N1CCPSV4626	А	5R209F05021	AЗ	3	С	1		RELIEF	SELF	CLOS	N/A	0
CC43	RCP and Heat Exch N1CCPSV4639	angers CC A	W Return Header 5R209F05021	Press C2	ure Relief Va 3	alves C	3		RELIEF	SELF	CLOS	N/A	0
<i>CC44</i>	RCP A, B, C, D Upp			er CCV D7	V Return Pre 3	essure Re C	lief Valves 1		RELIEF	SELF	CLOS	N/A	0
	N1CCPSV4645	A	5R209F05021			c	1		RELIEF	SELF	CLOS	N/A	ο
	N1CCPSV4645A	A	5R209F05021	C7	3		-		RELIEF	SELF	CLOS	N/A	0
	N1CCPSV4646A	A	5R209F05021	C3	3	С	1				CLOS	N/A	0
	N1CCPSV4647	A	5R209F05021	G3	3	С	1		RELIEF	SELF			0
	N1CCPSV4647A	Α	5R209F05021	F3	3	С	1		RELIEF	SELF	CLOS	N/A	
	N1CCPSV4648	А	5R209F05021	G6	3	С	1		RELIEF	SELF	CLOS	N/A	0
	N1CCPSV4648A	Α	5R209F05021	F6	3	С	1		RELIEF	SELF	CLOS	N/A	0
	N1CCPSV4646	Α	5R209F05021	D3	3	С	1		RELIEF	SELF	CLOS	N/A	0
CCPP	Component Cooling 3R201NPA101A	j Water Pu	mps										
CH01	EAB Control Room					Valve (Ti B	ains A, B, a 2	ind C)	BUTTER	AIR	THRO	OPEN	I O
	C1CHTV9496A	A	3V119V10002	F-1	3	-					THRO	OPEN	
	A1CHTV9476A	A	3V119V10002	F-7	3	В	2		BUTTER		THRO	CLOS	
	A1CHTV9476B	A	3V119V10002	E-7	3	В	2		BUTTER				
	B1CHTV9486A	А	3V119V10002	F-4	3	В	2		BUTTER		THRO	OPEN	
	B1CHTV9486B	Α	3V119V10002	E-4	3	В	2		BUTTER		THRO	CLOS	
	C1CHTV9496B	Α	3V119V10002	E-1	3	В	2		BUTTER	AIR	THRO	CLOS	6 C

,

GROUP							V	ALVE D	ATA		VALVI	Ξ
	TAGTPNS		P&ID # &		QClass	IST	Size	Type	Actuator	Normal	Failsafe	Safety Func.
CH02	EAB Main Supply A A1CHTV9477A		Unit Outlet Temp	erature ' C-6	Valve (Train 3	ns A, B, and C) B	4	BUTTER	AIR	THRO	OPEN	0
	A1CHTV9477B		V119V10002	C-6	3	B	4	BUTTER	AIR	THRO	CLOS	С
	B1CHTV9487A		V119V10002	C-4	3	в	4	BUTTER	AIR	THRO	OPEN	0
	C1CHTV9497B	A 3	V119V10002	C-1	3	В	4	BUTTER	AIR	THRO	CLOS	С
	C1CHTV9497A	A S	V119V10002	C-1	3	в	4	BUTTER	AIR	THRO	OPEN	0
	B1CHTV9487B	A 3	SV119V10002	C-4	3	В	4	BUTTER	AIR	THRO	CLOS	С
CH05	Train A, B, C Esseni N1CHPSV9481		Vater Expansion V119V10001	Tank Pr E7	essure Reli 3	ef Valves C	1	RELIEF	SELF	CLOS	N/A	ο
	N1CHPSV9491	A 5	5V119V10001	C7	3	С	1	RELIEF	SELF	CLOS	N/A	0
	N1CHPSV9471	A 5	SV119V10001	H7	3	С	1	RELIEF	SELF	CLOS	N/A	0
<i>CH06</i>	Train A, B, C Essen		Vater Expansion 5V119V10001	Tank Ni H7	trogen Sup 3	ply Pressure Rei C	lief Valve: 1	s RELIEF	SELF	CLOS	N/A	ο
	N1CHPSV9471A N1CHPSV9481A		5V119V10001	E7	3	c	1	RELIEF	SELF	CLOS	N/A	0
	N1CHPSV9401A		5V119V10001	C7	3	c	1	RELIEF	SELF	CLOS	N/A	ο
CH07	Essential Chilled Wa N1CHPSV9493		1(21) A, B, C Ou 5V119V10001	itlet Pres B6	ssure Relie 3	f Valves C	3	RELIEF	SELF	CLOS	N/A	о
	N1CHPSV9483	A t	5V119V10001	E6	3	С	3	RELIEF	SELF	CLOS	N/A	0
	N1CHPSV9473	A t	5V119V10001	G6	3	С	3	RELIEF	SELF	CLOS	N/A	0
CH08	Essential Chilled Wa N1CHPSV9514		2(22) A, B, C Ou 5V119V10001	itlet Pres B4	ssure Relie 3	f Valves C	4	RELIEF	SELF	CLOS	N/A	ο
	N1CHPSV9508	A :	5V119V10001	E4	3	С	4	RELIEF	SELF	CLOS	N/A	0
	N1CHPSV9502	A s	5 V119V10 001	G4	3	С	4	RELIEF	SELF	CLOS	N/A	0

t

GROUI	P GROUP DE	SCRI	PTION				V	ALVE L	DATA		VALVI	3
		Act/Pa	ass P&ID#&		QClass	IST	Size	Type	Actuator	Normal	Failsafe	Safety Func.
CM01	RCB Air Sample Sele	ct Valve	es for Cntmt Hydrog	gen Mor	nitoring Syst	em						
	C1CMFV4130	Α	5Z169Z00046	D-6	2	В	1	GATE	SOLENO	CLOS	CLOS	0
	C1CMFV4131	Α	5Z169Z00046	C-6	2	В	1	GATE	SOLENO	CLOS	CLOS	0
	C1CMFV4103	А	5 Z1 69Z00046	E-6	2	В	1	GATE	SOLENO	CLOS	CLOS	0
	A1CMFV4126	Α	5Z169Z00046	E-6	2	в	1	GATE	SOLENO	CLOS	CLOS	0
	A1CMFV4125	А	5Z169Z00046	F-6	2	В	1	GATE	SOLENO	CLOS	CLOS	0
	A1CMFV4124	Α	5Z169Z00046	F-6	2	в	1	GATE	SOLENO	CLOS	CLOS	0
	A1CMFV4100	A	5Z169Z00046	G-6	2	В	1	GATE	SOLENO	EITH	CLOS	0
	C1CMFV4129	Α	5Z169Z00046	D-6	2	В	1	GATE	SOLENO	CLOS	CLOS	0
СМ02	Cntmt Hydrogen Mon	itorina S	System Inside and	Outside	CIVs							
0///02	A1CMFV4135	A	5Z169Z00046	F-5	2	Α	1	GATE	SOLENO	CLOS	CLOS	O/C
	C1CMFV4136	Α	5Z169Z00046	D-5	2	Α	1	GATE	SOLENÓ	CLOS	CLOS	O/C
	C1CMFV4134	Α	5Z169Z00046	C-5	2	А	1	GATE	SOLENO	CLOS	CLOS	O/C
	C1CMFV4104	Α	5Z169Z00046	D-4	2	А	1	GATE	SOLENO	CLOS	CLOS	O/C
	A1CMFV4128	А	5Z169Z00046	E-5	2	Α	1	GATE	SOLENO	CLOS	CLOS	O/C
	A1CMFV4127	А	5Z169Z00046	E-4	2	Α	1	GATE	SOLENO	CLOS	CLOS	O/C
	A1CMFV4101	А	5Z169Z00046	F-4	2	А	1	GATE	SOLENO	CLOS	CLOS	O/C
	C1CMFV4133	A	5Z169Z00046	C-4	2	Α	1	GATE	SOLENO	CLOS	CLOS	O/C
<i>CS01</i>	Containment Spray P	ump Di	scharge Outside C	ntmt Isc	lation MOV	3						
	2N101XCS0001B	Å	5N109F05037	E-6	2	Α	8	GATE	MOTOR	CLOS	FAI	O/C
	2N101XCS0001A	А	5N109F05037	G-6	2	Α	8	GATE	MOTOR	CLOS	FAI	O/C
	2N101XCS0001C	А	5N109F05037	C-6	2	А	8	GATE	MOTOR	CLOS	FAI	O/C

GROUF	P GROUP D	ESCRII	PTION				V	ALVE D	ATA		VALVI	5
GROOT	TAGTPNS		ss P&ID#&		QClass	IST	Size	Туре	Actuator	Normal	Failsafe	Safety Func.
CS02	Containment Spray	Header In	side Cntmt Isolatic	n Checl	k Valves							- 14
0.502	2N101XCS0002	A	5N109F05037	G-7	2	A/C	8	CHECK	SELF	CLOS	N/A	O/C
	2N101XCS0004	Α	5N109F05037	E-8	2	A/C	8	CHECK	SELF	CLOS	N/A	O/C
	2N101XCS0005	А	5N109F05037	D-8	2	A/C	8	CHECK	SELF	CLOS	N/A	O/C
	2N101XCS0006	Α	5N109F05037	C-7	2	A/C	8	CHECK	SELF	CLOS	N/A	O/C
CV01	Reactor Coolant Au N1CVLV3119	xiliary Spr A	ay Valve 5R179F05	F-7	1	В	2	GLOBE	AIR	CLOS	CLOS	0
<i>CV02</i>	Centrifugal Chargin N1CVFCV0201	g Pump M A	linimum Recirc. Co 5R179F05007	ntrol Va C-6	llves 2	В	2	GLOBE	AIR	EITH	OPEN	ο
	N1CVFCV0202	Α	5R179F05007	D-6	2	В	2	GLOBE	AIR	EITH	OPEN	0
<i>CV03</i>	RCS Letdown Line 2R171TCV0022	Inside Cn A	tmt Isolation Bypas 5R179F05005	s Checl H-3	k Vaive (CV 2	0022) A/C	0 75	CHECK	SELF	CLOS	N/A	O/C
<i>CV04</i>	RCS Seal Water Re 2R171TCV0078	eturn Insid A	le Cntmt Isolation E 5R179F05005	Bypass (F-3	Check Valve 2	e (CV0078) A/C	0.75	CHECK	SELF	CLOS	N/A	O/C
CV05	(CV0346,351) BAT				-		0.75	OHEOK	SELF	EITH	N/A	о
	3R171TCV0346	A	5R179F05009	D-5	3	c	0.75	CHECK CHECK		ЕІТН	N/A	0
	3R171TCV0351	A	5R179F05009	E-6	3	С	0.75	CHECK	SELF	C1111		Ũ
<i>CV06</i>	RCP Seal Injection 1R171TCV0037B		lve (Class 1 Bound 5R179F05005	lary Isol C-7	lation) 1	с	2	CHECK	SELF	OPEN	N/A	O/C
	1R171TCV0037A	A	5R179F05005	C-7	1	С	2	CHECK	SELF	OPEN	N/A	O/C
	1R171TCV0036B	A	5R179F05005	C-7	1	С	2	CHECK	SELF	OPEN	N/A	O/C
	1R171TCV0036C	A :	5R179F05005	C-7	1	С	2	CHECK	SELF	OPEN	N/A	O/C
	1R171TCV0036D	A	5R179F05005	C-7	1	С	2	CHECK	SELF	OPEN	N/A	O/C
	1R171TCV0037D	A	5R179F05005	C-7	1	с	2	CHECK	SELF	OPEN	N/A	O/C
	1R171TCV0037C	; A	5R179F05005	C-7	1	С	2	CHECK	SELF	OPEN	N/A	O/C
	1R171TCV0036A	A	5R179F05005	C-7	1	С	2	CHECK	SELF	OPEN	N/A	O/C

GROUF	P GROUP D	ESCRII	TION					VALVE D	DATA		VALVI	3
011001	TAGTPNS		ss P&ID#&		QClass	IST	Size	Type	Actuator	Normal	Failsafe	Safety Func.
<i>CV07</i>	Seal Injection to RC 2R171TCV0034A	Ps Inside A	Cntmt Isolation Ch 5R179F05005	ieck Valv C-8	ves 2	A/C	2	CHECK	SELF	OPEN	N/A	O/C
	2R171TCV0034C	А	5R179F05005	C-8	2	A/C	2	CHECK	SELF	OPEN	N/A	O/C
	2R171TCV0034B	А	5R179F05005	C-8	2	A/C	2	CHECK	SELF	OPEN	N/A	O/C
	2R171TCV0034D	А	5R179F05005	C-8	2	A/C	2	CHECK	SELF	OPEN	N/A	O/C
CV08	Boric Acid Polishing 3R171TCV0638	A	5R179F05009	F-6	3	С	2	CHECK	SELF	OPEN OPEN	N/A N/A	C C
	3R171TCV0637	A	5R179F05009	F-5	3	C	2	CHECK		OPEN	N/A	c
	3R171TCV0636	A	5R179F05009	E-5	3	С	2	CHECK	SELF			c
	3R171TCV0635	A	5R179F05009	E-5	3	С	2	CHECK	SELF	OPEN	N/A	U
CV09	Centrifugal Chargin 2R171TCV0234B	g Pump M A	Inimum Recirc. Ch 5R179F05007	eck Valv D-6	ves 2	с	3	CHECK	SELF	EITH	N/A	о
	2R171TCV0234A	А	5R179F05007	B-6	2	С	3	CHECK	SELF	EITH	N/A	0
CV10	Reactor Coolant Au 1R171TCV0009	ixiliary Spr A	ay Inlet Check Val 5R179F05005	ve (CV00 F-8	009) 1	с	2	CHECK	SA	CLOS	N/A	ο
CV11	CVCS SEAL WATE C1CVHCV0218	ER INJECT A	FION FLOW CONT 5R179F05007	ROL VA B-7	LVE 2	В	2	GLOBE	AIR	CLOS	OPEN	ο
CV12	Letdown Orifice He C1CVFV0011	ader isolat A	tion Valve 5R179F05005	G-6	2	В	3	GLOBE	AIR	OPEN	CLOS	С
<i>CV13</i>	RCS Charging Flov A1CVFCV0205	v Control \ A	/alve 5R179F05009	E-7	2	В	3	GLOBE	AIR	EITH	OPEN	ο
CV14	Manual Alternate B 2R171XCV0639	orate Che A	ck Valve 5R179F05007	E-4	2	С	2	CHECK	SELF	CLOS	N/A	O/C
CV15	Charging Header C 2R171XCV0671	heck Valv A	e (CV671) 5R179F05007	B-6	2	с	2	CHECK	SELF	CLOS	N/A	O/C

ł

GROUF	P GROUP D	ESCRII	PTION				V	ALVE D	ATA		VALVI	Ξ
GROOT	TAGTPNS		ss P&ID#&		QClass	IST	Size	Туре	Actuator	Normal	Failsafe	Safety Func.
CV16	Boric Acid Supply to B1CVFV8400B	Concent A	rated BA Polishing 5R179F05009	Demine C-8	eralizer Isola 3	ition Valves B	2	DIAPHR	AIR	OPEN	CLOS	С
	A1CVFV8400A	Α	5R179F05009	D-8	3	В	2	DIAPHR	AIR	OPEN	CLOS	С
CV19	RCS Charging Outs 2R171XCV0025	ide Cntmt A	l Isolation MOV 5R179F05005	G-3	2	A	4	GATE	MOTOR	OPEN	FAI	O/C
CV20	RCS Letdown Isolat 1R171XCV0465	ion (Class A	s 1 Boundary Isolat 5R179F05005	ion) G-8	1	В	4	GATE	MOTOR	OPEN	FAI	С
	1R171XCV0468	А	5R179F05005	G-7	1	В	4	GATE	MOTOR	OPEN	FAI	С
CV21	Centrifugal Chargin 2R171XCV8377A	g Pump D A	ischarge Isolation I 5R179F05007	MOVs B-6	2	В	3	GATE	MOTOR	OPEN	FAI	O/C
	2R171XCV8377B	А	5R179F05007	D-6	2	В	3	GATE	MOTOR	OPEN	FAI	O/C
CV22	Volume Control Tar 2R171XCV0112B 2R171XCV0113A	Α	solation MOVs 5R179F05007 5R179F05007	E-4 E-4	2	B	6 6	GATE GATE	MOTOR MOTOR	EITH EITH	FAI	
<i>CU</i> 222												
CV23	Reactor Water Stor 2R171XCV0112C		5R179F05007	C-4	2	B	6	GATE	MOTOR	EITH	FAI	
	2R171XCV0113B	Α	5R179F05007	C-4	2	В	6	GATE	MOTOR	EITH	FAI	
CV24	Alternate Boric Acio 2R171XCV0218	i Make-Ur A	Supply Isolation N 5R179F05007	10V (C' B-3	V0218) 2	В	4	GATE	MOTOR	CLOS	FAI	0
CV25	RCS Normal and A 2R171XCV0003	lternate C A	harging Flow Isolat 5R179F05005	ion MO G-7	Vs 2	в	4	GATE	MOTOR	EITH	FAI	O/C
	2R171XCV0006	Α	5R179F05005	F-7	2	В	4	GATE	MOTOR	CLOS	FAI	O/C
CV26	RCS Letdown Insid 2R171XCV0024	e and Ou A	tside Cntmt Isolatio 5R179F05005	n MOV: H-3	s 2	A	4	GATE	MOTOR	OPEN	FAI	с
	2R171XCV0023	А	5R179F05005	H-3	2	Α	4	GATE	MOTOR	OPEN	FAI	С

GROUP	GROUP D	ESCRIP	TION					VA	ALVE D	ATA		VALVI	3
0.100-	TAGTPNS		ss P&ID#&		QClass	IST	S	ize	Туре	Actuator	Normal	Failsafe	Safety Func.
CV27	RCP Seal Injection (2R171TCV0033D	Dutside Cr A	ntmt Isolation MOV 5R179F05005	/s C-8	2	A	2		DIAPHR	MOTOR	OPEN	FAI	O/C
	2R171TCV0033C	Α	5R179F05005	C-8	2	Α	2		DIAPHR	MOTOR	OPEN	FAI	O/C
	2R171TCV0033B	А	5R179F05005	C-8	2	А	2		DIAPHR	MOTOR	OPEN	FAI	O/C
	2R171TCV0033A	А	5R179F05005	C-8	2	Α	2		DIAPHR	MOTOR	OPEN	FAI	O/C
CV28	Reactor Coolant Put 2R171XCV8348	mp Seal W A	ater Supply MOV 5R179F05007	(CV834 B-6	8) 2	В	2		GLOBE	MOTOR	CLOS	FAI	0
CV29	RCP Seal Water Re 2R171TCV0079	turn Inside A	and Outside Cntr 5R179F05005	nt Isolai E-3	tion MOVs 2	А	2		DIAPHR	MOTOR	OPEN	FAI	С
	2R171TCV0077	А	5R179F05005	E-3	2	А	2		DIAPHR	MOTOR	OPEN	FAI	С
CV30	RCS Excess Letdov 1R171TCV0083	vn Heat Ex A	changer Inlet Isola 5R179F05005	ation MC F-5	OVs (Class 1	1 Bounda B	ary Isolation) 1)	DIAPHR	MOTOR	EITH	FAI	С
	1R171TCV0082	Α	5R179F05005	F-5	1	В	1		DIAPHR	MOTOR	EITH	FAI	С
CV31	CVCS Alternate Imr 2R171TCV0221	nediate Bo A	oration Isolation Va 5R179F05007	alve (CV E-4	'0221) 2	В	2		DIAPHR	MANUAL	CLOS	N/A	
CV32	Charging Pump B D A1CVHCV0206	ischarge E A	Bypass Control Va 5R179F05007	lvə D-6	2	В	1		GLOBE	SOLENO	CLOS	CLOS	0
CV33	Centrifugal Charging 2R171XCV0235A	g Pump Di A	scharge Check Va 5R179F05007	alves B-6	2	с	3		CHECK	SELF	EITH	N/A	O/C
	2R171XCV0235B	Α	5R179F05007	D-6	2	С	3		CHECK	SELF	EITH	N/A	O/C
CV34	(CV0334) check val 3R171XCV0334	ve A	5R179F05009	E-4	2	С	3		CHECK	SELF	CLOS	N/A	0
CV35	RC Filters out to RH 2R171XCV0157	IR Outside P	Cntmt Isolation M 5R179F05006	lanual V F-2	/alve 2	A	4		GATE	MANUAL	CLOS	N/A	С
<i>CV37</i>	Charging Header C 2R171XCV0670	heck Valve A	9 5R179F05007	D-6	2	с	2		CHECK	SELF	CLOS	N/A	O/C

ł

GROUP	GROUP D	ESCRIP	TION				V	ALVE D	ATA		VALVI	E
ono or	TAGTPNS		s P&ID#&		QClass	IST	Size	Туре	Actuator	Normal	Failsafe	Safety Func.
CV38	RCS Normal and Al 1R171XCV0001	ternate Cha A	arging Check Valv 5R179F05005	es (Clas G-8	ss 1 Bounda 1	ary Valves) C	4	CHECK	SELF	EITH	N/A	O/C
	1R171XCV0002	А	5R179F05005	G-8	1	С	4	CHECK	SELF	EITH	N/A	O/C
	1R171XCV0004	А	5R179F05005	F-8	1	С	4	CHECK	SELF	EITH	N/A	O/C
	1R171XCV0005	Α	5R179F05005	F-8	1	С	4	CHECK	SELF	EITH	N/A	O/C
CV40	RCS Charging Insid 2R171XCV0026	le Cntmt Is A	olation Check Valu 5R179F05005	/e. G-3	2	A/C	4	CHECK	SELF	OPEN	N/A	O/C
CV41	Alternate Boric Acid 2R171XCV0217	l Make-Up : A	Supply Isolation C 5R179F05007	heck Va B-3	alve (CV021 2	7) C	4	CHECK	SELF	CLOS	N/A	0
CV42	Boric Acid Pump Di 3R171XCV0338	scharge Cl A	neck Valves (CV34 5R179F05009	49, 338) D-6	3	с	4	CHECK	SELF	EITH	N/A	O/C
	3R171XCV0349	Α	5R179F05009	C-6	3	С	4	CHECK	SELF	EITH	N/A	O/C
CV43	RC Filters out to RF 2R171XCV0158	IR Inside C P	Intmt Isolation Che 5R179F05006	eck Valv F-2	VƏ 2	A/C	4	CHECK	SELF	CLOS	N/A	С
<i>CV44</i>	Reactor Water Stor 2R171XCV0224	age Tank t A	o Charging Pump 5R179F05007	Suction B-4	i Header Isc 2	lation Chec C	k Valve 6	CHECK	SELF	EITH	N/A	0
DW01	Demineralizer Wate 2S191TDW0502	er to the RC P	B Inside Cntrnt Is 5S199F05034	F-3	Check Valv 2	e A/C	4	CHECK	SELF	CLOS	N/A	С
DW02	Demineralizer Wate 2S191TDW0501	er to the RC P	CB Outside Cntmt 5S199F05034	Isolation F-4	n Manual Va 2	alve A	4	DIAPHR	MANUAL	CLOS	N/A	с
ED01	Containment Norm A1EDFV7800	al Sump Di A	scharge Outside (5Q069F05030	Cntmt Is G-7	olation Valv 2	ve (FV7800) A	3	GLOBE	AIR	O/C	CLOS	с
ED02	Containment Norm 2Q061TED0064	al Sump Di A	scharge Inside Cr 5Q069F05030	ntmt Isol G-7	lation MOV 2	(ED0064) A	3	GLOBE	MOTOR	O/C	FAI	с
EW01	Essential Cooling V B1EWFV6936	Vater Blow A	down Isolation Val 5R289F05038	lve (Trai E-5	ins A, B, an 3	dC) B	4	GLOBE		OPEN	CLOS	
	C1EWFV6937	Α	5R289F05038	E-5	3	В	4	GLOBE		ÓPEN		
	A1EWFV6935	Α	5R289F05038	E-5	3	В	4	GLOBE	AIR	OPEN	CLOS	S C

GROUF	P GROUP D	ESCRIP	TION				V	ALVE D	ATA		VALVI	3
	TAGTPNS	Act/Pas	s P&ID#&		QClass	IST	Size	Туре	Actuator	Normal	Failsafe	Safety Func.
EW02	Essential Cooling W						-	01/50/		OPEN	N/A	O/C
	3R281TEW0370A	A	5R289F05038	C-3	3	С	3	CHECK	SELF			
	3R281TEW0370B	Α	5R289F05038	C-3	3	С	3	CHECK	SELF	OPEN	N/A	O/C
	3R281TEW0370C	Α	5R289F05038	C-3	3	С	3	CHECK	SELF	OPEN	N/A	O/C
EW03	ECW Screen Wash	Booster Pr	ump Discharge Ch	eck Val	ve (Trains /	A, B, and C)						•
	3R281TEW0253	Α	5R289F05039	D-7	3	С	3	CHECK	SELF	EITH	N/A	0
	3R281TEW0254	Α	5R289F05039	D-5	3	С	3	CHECK	SELF	EITH	N/A	0
	3R281TEW0255	А	5R289F05039	D-2	3	С	3	CHECK	SELF	EITH	N/A	0
EW04	Essential Cooling W	ater Pump	Discharge Strain	er Emer	gency Back	flush Check \	/alve (Trains	A, B, and (C)			.
	3R281TEW0404	A	5R289F05038	C-3	3	С	6	CHECK	SELF	OPEN	N/A	O/C
	3R281TEW0403	А	5R289F05038	C-3	3	С	6	CHECK	SELF	OPEN	N/A	O/C
	3R281TEW0405	А	5R289F05038	C-3	3	С	6	CHECK	SELF	OPEN	N/A	O/C
EW05	Essential Cooling W	/ater Pump	Discharge MOV	(Trains A	A, B, and C)						•
	3R281TEW0121	A	5R289F05038	C-2	3	В	30	BUTTER	MOTOR	EITH	FAI	0
	3R281TEW0137	А	5R289F05038	C-2	3	В	30	BUTTER	MOTOR	EITH	FAI	0
	3R281TEW0151	Α	5R289F05038	C-2	3	В	30	BUTTER	MOTOR	EITH	FAI	0
	3R281TEW0151	Α	5R289F05038	C-2	3	В	30	BUTTER	MOTOR	EITH	FAI	0
	3R281TEW0121	Α	5R289F05038	C-2	3	В	30	BUTTER	MOTOR	EITH	FAI	0
	3R281TEW0137	Α	5R289F05038	C-2	3	В	30	BUTTER	MOTOR	EITH	FAI	0
<i>EW06</i>	ECW Self-Cleaning	Strainer B	ackflush Throttle	/alve (M	lanual)					0.05	6174	0/0
	3R281TEW0190	Α	5R289F05038	C-2	3	В	6	BUTTER	MANUAL	OPEN	N/A	O/C
	3R281TEW0189	Α	5R289F05038	C-2	3	В	6	BUTTER	MANUAL	OPEN	N/A	O/C
	3R281TEW0188	А	5R289F05038	C-2	3	В	6	BUTTER	MANUAL	OPEN	N/A	O/C

GROUF	GROUP DI	ESCRIP	TION				V	ALVE D	ATA		VALVI	E
	TAGTPNS		ss P&ID#&		QClass	IST	Size	Туре	Actuator	Normal	Failsafe	Safety Func.
EW07	ECW Self-Cleaning	Strainer E								01.00		0/0
	3R281TEW0279	Α	5R289F05038	C-2	3	В	6	BUTTER	MANUAL	CLOS	N/A	O/C
	3R281TEW0278	Α	5R289F05038	C-2	3	В	6	BUTTER	MANUAL	CLOS	N/A	O/C
	3R281TEW0277	Α	5R289F05038	C-2	3	В	6	BUTTER	MANUAL	CLOS	N/A	O/C
EW08	Essential Cooling W	ater Pump	Discharge Check	k Valve	(Trains A, B	, and C)						_
	3R281TEW0079	A	5R289F05038	C-3	3	C	30	CHECK	SELF	EITH	N/A	0
	3R281TEW0006	Α	5R289F05038	C-3	3	С	30	CHECK	SELF	EITH	N/A	0
	3R281TEW0042	Α	5R289F05038	C-3	3	С	30	CHECK	SELF	EITH	N/A	0
<i>EW09</i>	ECW Screen Wash	Pump Dis	charge Valve (Tra	lins A, E	3, and C)							
	C1EWFV6934	Å	5R289F05039	D-3	3	В	3	GLOBE	AIR	EITH	OPEN	0
	B1EWFV6924	А	5R289F05039	D-5	3	В	3	GLOBE	AIR	EITH	OPEN	0
	A1EWFV6914	А	5R289F05039	D-7	3	В	3	GLOBE	AIR	EITH	OPEN	0
<i>EW10</i>	CCW Heat Exchang	er A, B, C	ECW Return Rel	ief Valve	es							
	N1EWPSV6863	Á	5R289F05038	G7	3	С	1.5	RELIEF	SELF	CLOS	N/A	0
	N1EWPSV6853	А	5R289F05038	G7	3	С	1.5	RELIEF	SELF	CLOS	N/A	0
	N1EWPSV6873	А	5R289F05038	G7	3	С	1.5	RELIEF	SELF	CLOS	N/A	0

.

GROUP	GROUP D	ESCRII	PTION				V	ALVE D	ATA		VALVI	Е
	TAGTPNS	Act/Pa	ss P&ID#&		QClass	IST	Size	Type	Actuator	Normal	Failsafe	Safety Func.
EWH	Ess. Chir 11(21)A,B N1EWPSV6864	,C/DG11(/ A	21),12(22),13(23)/(5R289F05038	CCW Pi G5	ump Sup. Cl 3	r A, B, C E C	CW Return Rel 1	ief Valves RELIEF	SELF	CLOS	N/A	0
	N1EWPSV6856	Α	5R289F05038	G8	3	С	1	RELIEF	SELF	CLOS	N/A	0
	N1EWPSV6855	А	5R289F05038	G2	3	С	1	RELIEF	SELF	CLOS	N/A	0
	N1EWPSV6856	Α	5R289F05038	G8	3	С	1	RELIEF	SELF	CLOS	N/A	0
	N1EWPSV6854	А	5R289F05038	G5	3	С	1	RELIEF	SELF	CLOS	N/A	0
	N1EWPSV6874	Α	5R289F05038	G5	3	С	1	RELIEF	SELF	CLOS	N/A	0
	N1EWPSV6875	Α	5R289F05038	G2	3	С	1	RELIEF	SELF	CLOS	N/A	0
	N1EWPSV6865	А	5R289F05038	G2	3	С	1	RELIEF	SELF	CLOS	N/A	0
	N1EWPSV6876	Α	5R289F05038	G8	3	С	1	RELIEF	SELF	CLOS	N/A	0
EW12	Essential Chiller 12(N1EWPSV6906	(22) A, B, A	C ECW Return Re 5R289F05038	lief Valv G4	ves 3	С	1	RELIEF	SELF	CLOS	N/A	ο
	N1EWPSV6905	А	5R289F05038	G4	3	С	1	RELIEF	SELF	CLOS	N/A	0
	N1EWPSV6904	А	5R289F05038	G4	3	С	1	RELIEF	SELF	CLOS	N/A	0
EWPP	EW Pumps 3R281NPA101A											
FC01	SFP Pump Discharg 2R211XFC0050	ge Reacto P	r Cavity ICIV (Man 5R219F05028	ual) B-6	2	A	3	GATE	MANUAL	CLOS	N/A	С
FC02	SFP Pump Cooling 2R211XFC0006C	Supply ar P	nd Return from In-0 5R219F05028	ntmt S B-5	torage Area 2	CIV (Manu A	ual) 10	GATE	MANUAL	CLOS	N/A	С
	2R211XFC0013E	Ρ	5R219F05028	B-6	2	Α	10	GATE	MANUAL	CLOS	N/A	С
	2R211XFC0007C	Ρ	5R219F05028	B-4	2	А	10	GATE	MANUAL	CLOS	N/A	С
	2R211XFC0013F	Ρ	5R219F05028	B-6	2	Α	10	GATE	MANUAL	CLOS	N/A	С
FP01	Fire Protection to th 2Q271TFP0943	e RCB In: A	side Cntmt Isolation 5Q279F05047	n Checł E-8	k Valve 2	A/C	6	CHECK	SELF	CLOS	N/A	С

GROUI						V	ALVE L	DATA		VALVI	3	
	TAGTPNS	Act/Pas	rs P&ID#&		QClass	IST	Size	Type	Actuator	Normal	Failsafe	Safety Func.
FP02	Fire Protection to th 2Q271TFP0756		side Cntmt Isolati 5Q279F05047	ion MOV E-8	2	A	6	GATE	MOTOR	CLOS	FAI	С
FW01	Feedwater to the S A1FWFV7141	team Gener A	ator Isolation Val 5S139F00063	ves G-8	2	в	18	GATE	HYDRAU	OPEN	CLOS	с
	A1FWFV7144	А	5S139F00063	G-2	2	В	18	GATE	HYDRAU	OPEN	CLOS	С
	A1FWFV7142	А	5S139F00063	G-6	2	в	18	GATE	HYDRAU	OPEN	CLOS	С
	A1FWFV7143	А	5S139F00063	G-4	2	в	18	GATE	HYDRAU	OPEN	CLOS	С
FW02	Feedwater flow con N1FWFCV0553	itrol valves A	5S139F00063	D-4	NNS	в	16	ANGLE	AIR	OPEN	CLOS	С
	N1FWFCV0554	Α	5S139F00063	D-2	NNS	в	16	ANGLE	AIR	OPEN	CLOS	С
	N1FWFCV0551	Α	5S139F00063	D-8	NNS	в	16	ANGLE	AIR	OPEN	CLOS	С
	N1FWFCV0552	А	5S139F00063	D-6	NNS	в	16	ANGLE	AIR	OPEN	CLOS	С
FW03	Feedwater Bypass N1FWFV7151	Flow Contro A	ol Valves 5S139F00063	D-7	NNS	в	4	GLOBE	AIR	CLOS	CLOS	С
	N1FWFV7152	А	5S139F00063	D-5	NNS	В	4	GLOBE	AIR	CLOS	CLOS	С
	N1FWFV7153	Α	5S139F00063	D-3	NNS	В	4	GLOBE	AIR	CLOS	CLOS	С
	N1FWFV7154	Α	5S139F00063	D-1	NNS	В	4	GLOBE	AIR	CLOS	CLOS	С
FW04	Steam Generator F A1FWFV7148A	eedwater In P	let Isolation Bypa 5S139F00063	ass Valvo G-7	es 2	в	2	GLOBE	AIR	CLOS	CLOS	С
	B1FWFV7145A	Р	5S139F00063	G-1	2	В	2	GLOBE	AIR	CLOS	CLOS	С
	A1FWFV7147A	Р	5S139F00063	G-5	2	В	2	GLOBE	AIR	CLOS	CLOS	С
	B1FWFV7146A	Р	5S139F00063	G-3	2	В	2	GLOBE	AIR	CLOS	CLOS	С

ł.

GROUF	GROUP D	ESCRIP'	TION				V	ALVE D	ATA		VALVI	3
	TAGTPNS	Act/Pas	s P&ID#&		QClass	IST	Size	Туре	Actuator	Normal	Failsafe	Safety Func.
FW05	Steam Generator Pr A1FWFV7189	reheater By A	pass Valves 5S139F00063	E-8	2	В	3	GLOBE	AIR	CLOS	CLOS	с
	A1FWFV7190	Α	5S139F00063	E-6	2	В	3	GLOBE	AIR	CLOS	CLOS	С
	A1FWFV7191	А	5S139F00063	E-4	2	В	3	GLOBE	AIR	CLOS	CLOS	С
	A1FWFV7192	Α	5S139F00063	E-2	2	В	3	GLOBE	AIR	CLOS	CLOS	С
HC01	RCB Supplemental 2V141THC0003	A	5V149V00019	side Cnt F-3 B-7	mt Isolation 2 2	MOVs A A	18 18	BUTTER BUTTER	MOTOR MOTOR	OPEN OPEN	FAI FAI	c c
	2V141THC0005		5V149V00019				10	DOTTER	Moren	01 211		·
HC02	RCB Supplemental A1HCFV9776		bly and Return Ou 5V149V00019	Itside C F-4	ntmt Isolatio 2	on AOVs A	18	BUTTER	AIR	OPEN	CLOS	С
	A1HCFV9777	А	5V149V00019	B-6	2	А	18	BUTTER	AIR	OPEN	CLOS	С
HC03	RCB Normal Purge 2V141ZHC0010	Supply and A	Exhaust Cntmt I 5V149V00018	solation B-6	(48") MOV: 2	s A	48	BUTTER	MOTOR	CLOS	FAI	С
	2V141ZHC0009	А	5V149V00018	B-7	2	А	48	BUTTER	MOTOR	CLOS	FAI	С
	2V141ZHC0008	А	5V149V00018	G-2	2	А	48	BUTTER	MOTOR	CLOS	FAI	С
	2V141ZHC0007	Α	5V149V00018	G-3	2	Α	48	BUTTER	MOTOR	CLOS	FAI	С
IA01	Instrument Air to R 2Q111TIA0541	CB Inside C A	ntmt Isolation Ch 5N109F05040	eck Valv D-4	ve (IA0541) 2) A/C	2	CHECK	SELF	OPEN	N/A	С
IA02	Instrument Air to Re B1IAFV8565	CB Outside A	Cntmt Isolation V 5N109F05040	alve (IA D-4	.8565) 2	A	2	BALL	AIR	OPEN	CLOS	С
MS01	Main Steam Isolatio A1MSFSV7434	on Valves A	5S109F00016	D-4	2	В	30	GATE	AIR	OPEN	CLOS	с
	A1MSFSV7414	Α	5S109F00016	G-4	2	В	30	GATE	AIR	OPEN	CLOS	С
	A1MSFSV7424	А	5S109F00016	F-4	2	В	30	GATE	AIR	OPEN	CLOS	С
	A1MSFSV7444	Α	5S109F00016	C-4	2	В	30	GATE	AIR	OPEN	CLOS	С

GROUP	GROUP D	ESCRIP	TION				V	ALVE D	ATA		VALVI	3
	TAGTPNS	Act/Pas	s P&ID#&		QClass	IST	Size	Type	Actuator	Normal	Failsafe	Safety Func.
MS02	Main Steam Safety					_				01.00	N/A	о
	N1MSPSV7440	Α	5S109F00016	C-6	2	С	6	RELIEF	SELF	CLOS		
	N1MSPSV7420C	Α	5S109F00016	F-6	2	С	6	RELIEF	SELF	CLOS	N/A	0
	N1MSPSV7420D	Α	5S109F00016	F-6	2	С	6	RELIEF	SELF	CLOS	N/A	0
	N1MSPSV7430C	Α	5\$109F00016	E-6	2	С	6	RELIEF	SELF	CLOS	N/A	0
	N1MSPSV7430	Α	5S109F00016	E-6	2	С	6	RELIEF	SELF	CLOS	N/A	0
	N1MSPSV7440D	А	5S109F00016	C-6	2	С	6	RELIEF	SELF	CLOS	N/A	0
	N1MSPSV7440B	А	5S109F00016	C-6	2	С	6	RELIEF	SELF	CLOS	N/A	0
	N1MSPSV7430D	А	5S109F00016	E-6	2	С	6	RELIEF	SELF	CLOS	N/A	0
	N1MSPSV7440C	А	5S109F00016	C-6	2	С	6	RELIEF	SELF	CLOS	N/A	0
	N1MSPSV7410	А	5S109F00016	H-6	2	С	6	RELIEF	SELF	CLOS	N/A	0
	N1MSPSV7420B	А	5S109F00016	F-6	2	С	6	RELIEF	SELF	CLOS	N/A	0
	N1MSPSV7440A	А	5S109F00016	C-6	2	С	6	RELIEF	SELF	CLOS	N/A	0
	N1MSPSV7410B	А	5S109F00016	H-6	2	С	6	RELIEF	SELF	CLOS	N/A	0
	N1MSPSV7430A	А	5S109F00016	E-6	2	С	6	RELIEF	SELF	CLOS	N/A	0
	N1MSPSV7420	А	5S109F00016	F-6	2	С	6	RELIEF	SELF	CLOS	N/A	0
	N1MSPSV7430B	А	5S109F00016	E-6	2	С	6	RELIEF	SELF	CLOS	N/A	0
	N1MSPSV7410D	A	5S109F00016	H-6	2	С	6	RELIEF	SELF	CLOS	N/A	0
	N1MSPSV7420A	А	5S109F00016	F-6	2	С	6	RELIEF	SELF	CLOS	N/A	0
	N1MSPSV7410C	А	5S109F00016	H-6	2	С	6	RELIEF	SELF	CLOS	N/A	0
	N1MSPSV7410A	Α	5S109F00016	H-6	2	С	6	RELIEF	SELF	CLOS	N/A	0

ļ

GROUP GROUP DESCRIPTION							VALVE DATA			VALVE		
	TAGTPNS	Act/Pas	s P&ID#&	:	QClass	IST	Size	Туре	Actuator	Normal	Failsafe	Safety Func.
MS03	Main Steam Power			• •	-	_				0,00		0/0
	D1MSPV7441	A	5S109F00016	C-6	2	В	8	GLOBE	HYDRAU	CLOS	CLOS	O/C
	A1MSPV7411	A	5S109F00016	H•6	2	В	8	GLOBE	HYDRAU	CLOS	CLOS	O/C
	B1MSPV7421	А	5S109F00016	F-6	2	В	8	GLOBE	HYDRAU	CLOS	CLOS	O/C
	C1MSPV7431	Α	5S109F00016	E-6	2	В	8	GLOBE	HYDRAU	CLOS	CLOS	O/C
MS04	Main Steam Bypass A1MSFV7432	s Isolation V A	/alves 5S109F00016	D-4	2	В	4	GLOBE	AIR	CLOS	CLOS	С
	A1MSFV7422	А	5S109F00016	F-4	2	В	4	GLOBE	AIR	CLOS	CLOS	С
	A1MSFV7442	А	5S109F00016	C-4	2	в	4	GLOBE	AIR	CLOS	CLOS	С
	A1MSFV7412	А	5S109F00016	G-4	2	в	4	GLOBE	AIR	CLOS	CLOS	С
P001	RCP Motor Oil Retu 2R371TPO0217		5R149F05042	B-4	2	А	2	DIAPHR	MANUAL	CLOS	N/A	с
	2R371TPO0218	Р	5R149F05042	B-3	2	А	2	DIAPHR	MANUAL	CLOS	N/A	С
PS01	Pressunzer Vapor S B1PSFV4450	Space Sam A	ole Inside Cntmt 5Z329Z00045	Isolatior H-8	i Valve (445) 2	0) A	1	GATE	SOLENO	CLOS	CLOS	С
PS02	RCS Pressurizer an C1PSFV4455	nd Hot Leg S A	Sample ICIVs 5Z329Z00045	E-8	2	A	1	GATE	SOLENO	CLOS	CLOS	С
	B1PSFV4451	А	5Z329Z00045	G-8	2	Α	1	GATE	SOLENO	CLOS	CLOS	С
	C1PSFV4454	А	5Z329Z00045	F-8	2	Α	1	GATE	SOLENO	CLOS	CLOS	С
PS03	RHR and Accumula C1PSFV4824	tor Sample A	ICIVs 5Z329Z00045	B-8	2	A	1	GATE	SOLENO	CLOS	CLOS	с
	B1PSFV4823	А	5Z329Z00045	D-8	2	Α	1	GATE	SOLENO	CLOS	CLOS	С
PS04	Pressurizer Liquid S C1PSFV4451B	Sample OCI A	V 5Z329Z00045	F-7	2	A	1	GLOBE	AIR	CLOS	CLOS	С
PS05	Pressurizer Vapor S C1PSFV4452	Space Samı A	ole OCIV 5Z329Z00045	G-7	2	A	1	GLOBE	AIR	CLOS	CLOS	С

GROUP GROUP DESCRIPTION							VALVE DATA			VALVE		
	TAGTPNS	Act/Pa	ıss P&ID#&		QClass	IST	Size	Type	Actuator	Normal	Failsafe	Safety Func.
PS07	Primary sampling C	CIVs (FV	4461 and FV4466,	FV 4456								
	B1PSFV4466	Α	5Z329Z00045	B-7	2	Α	1	GLOBE	AIR	CLOS	CLOS	С
	C1PSFV4461	Α	5Z329Z00045	D-7	2	А	1	GLOBE	AIR	CLOS	CLOS	С
	B1PSFV4456	Α	5Z329Z00045	F-7	2	Α	1	GLOBE	AIR	CLOS	CLOS	С
RA01	RCB Atmosphere F	Rad Monito	r Inside and Outsi	de Cntm	t Isolation V	alves						
	2V141TRA0004	Α	5V14900017	G-4	2	А	1	BALL	MOTOR	OPEN	FAI	С
	2V141TRA0006	А	5V14900017	F-3	2	А	1	BALL	MOTOR	OPEN	FAI	С
	2V141TRA0001	Α	5V14900017	G-4	2	Α	1	BALL	MOTOR	OPEN	FAI	С
	2V141TRA0003	Α	5V14900017	F-4	2	Α	1	BALL	MOTOR	OPEN	FAI	С
RC01	Pressurizer Relief T	fank Vent	to Gaseous Waste	Proces	sing Systen	n Outside (Cntmt Isolation	Valve (3652				
	B1RCFV3652	Α	5R149F05004	F-4	2	A	1	BALL	AIR	CLOS	CLOS	C
RC02	Reactor Make-up W	Vater to R			IV (3651)							_
	B1RCFV3651	Α	5R149F05004	E-2	2	A	3	BALL	AIR	OPEN	CLOS	С
RC03	RCS Pressurizer Sa	afety Valve										_
	N1RCPSV3450	A	5R149F05003	F-7	1	С	6	RELIEF	SELF	CLOS	N/A	0
	N1RCPSV3451	Α	5R149F05003	F-6	1	С	6	RELIEF	SELF	CLOS	N/A	0
	N1RCPSV3452	Α	5R149F05003	F-4	1	С	6	RELIEF	SELF	CLOS	N/A	0
RC04	RCS Power Operat	ed Relief	/alves									
	A1RCPCV0655A	Α	5R149F05003	D-8	1	В	3	GLOBE	SOLENO	CLOS	CLOS	O/C
	B1RCPCV0656A	Α	5R149F05003	E-8	1	В	3	GLOBE	SOLENO	CLOS	CLOS	O/C
RC05	RCS PORV Block	Valves										
	1R141XRC0001A	A	5R149F05003	E-7	1	В	3	GATE	MOTOR	OPEN	FAI	С
	1R141XRC0001B	A	5R149F05003	E-8	1	В	3	GATE	MOTOR	OPEN	FAI	С

GROUF	GROUP GROUP DESCRIPTION						V	ALVE D	ATA	VALVE		
ONCOT			s P&ID#&		QClass	IST	Size	Type	Actuator	Normal	Failsafe	Safety Func.
RC06	Reactor Vessel Head	i Vent isol	ation Valves									•
	A1RCHV3657A	Α	5R149F05001	E-4	2	В	1	GLOBE	SOLENO	CLOS	CLOS	С
	A1RCHV3658A	Α	5R149F05001	E-3	2	В	1	GLOBE	SOLENO	CLOS	CLOS	С
	B1RCHV3657B	Α	5R149F05001	E-4	1	В	1	GLOBE	SOLENO	CLOS	CLOS	С
	B1RCHV3658B	А	5R149F05001	E-3	1	В	1	GLOBE	SOLENO	CLOS	CLOS	С
RC07	Reactor Vessel Head A1RCHCV0601	d Vent Thr A	ottle Valves 5R149F05001	E-2	2	В	1	GLOBE	SOLENO	CLOS	CLOS	O/C
	B1RCHCV0602	Α	5R149F05001	D-2	2	в	1	GLOBE	SOLENO	CLOS	CLOS	O/C
<i>RC0</i> 8	Pressurizer Relief Ta A1RCFV3653	ank Vent to A	o Gaseous Waste 5R149F05004	Proces F-4	ssing System 2	n Inside Cnt A	mt Isolation Va 3	alve (3652) GATE	SOLENO	CLOS	CLOS	С
RC09	Reactor Make-up Wa 2R141XRC0046	ater to RC A	P Standpipe and 5R149F05004	PRT Ot E-4	utside Conta 2	inment Che A/C	ck Valve. 3	CHECK	SELF	OPEN	N/A	с
RD01	RCS Vacuum Degas	sing from					-			CLOS	N/A	С
	2R341TRD0008	Р	5R149F05046	E-7	2	A	3	BALL	MANUAL			
	2R341TRD0010	Р	5R149F05046	E-7	2	A	3	BALL	MANUAL	CLOS	N/A	С
RH01	Residual Heat Remo B1RHHCV0865	oval Heat I A	Exchange Control 5R169F20000	Valve (D-4	(Trains A, B, 2	, and C) B	8	BUTTER	AIR	OPEN	OPEN	0
	C1RHHCV0866	A	5R169F20000	G-4	2	В	8	BUTTER	AIR	OPEN	OPEN	0
	A1RHHCV0864	A	5R169F20000	B-4	2	В	8	BUTTER	AIR	OPEN	OPEN	0
RH02	Residual Heat Remo 2R161XRH0066B	oval Outlet A	to CVCS Letdow 5R169F20000	n Valve D-2	es 2	в	4	GATE	MOTOR	OPEN	FAI	С
	2R161XRH0066A	Α	5R169F20000	A-4	2	В	4	GATE	MOTOR	OPEN	FAI	С
RH03	Residual Heat Remo 2R161XRH0067A	oval Pump A	Miniflow MOVs (5R169F20000	Trains / A-6	A, B, and C) 2	В	4	GATE	MOTOR	CLOS	FAI	O/C
	2R161XRH0067B	А	5R169F20000	D-6	2	в	4	GATE	MOTOR	CLOS	FAI	O/C
	2R161XRH0067C	Α	5R169F20000	F-6	2	В	4	GATE	MOTOR	CLOS	FAI	O/C

GROUP GROUP DESCRIPTION						VALVE DATA			VALVE			
	TAGTPNS		s P&ID#&		QClass	IST	Size	Туре	Actuator	Normal	Failsafe	Safety Func.
RH04	Residual Heat Remo	oval Inlet iso	lation MOVs (Cla	ass 1 Bo	oundary) Tra	ains A, B, and C	;					
	1R161XRH0060A		5R169F20000	B-8	1	A	12	GATE	MOTOR	CLOS	FAI	O/C
	1R161XRH0060B	A	5R169F20000	D-8	1	Α	12	GATE	MOTOR	CLOS	FAI	O/C
	1R161XRH0060C	A	5R169F20000	G-8	1	А	12	GATE	MOTOR	CLOS	FAI	O/C
	1R161XRH0061A	Α	5R169F20000	B-8	1	Α	12	GATE	MOTOR	CLOS	FAI	O/C
	1R161XRH0061B	Α	5R169F20000	D-8	1	А	12	GATE	MOTOR	CLOS	FAI	O/C
	1R161XRH0061C	Α	5R169F20000	G-8	1	Α	12	GATE	MOTOR	CLOS	FAI	O/C
RH05	Residual Heat Rem	oval Pump I	Aniflow Check V	alves (T	rains A. B.	and C)						
MIOD	2R161XRH0068B		5R169F20000	D-6	2	Ċ	4	CHECK	SELF		N/A	0
	2R161XRH0068C	А	5R169F20000	F-6	2	С	4	CHECK	SELF		N/A	0
	2R161XRH0068A	А	5R169F20000	A-6	2	С	4	CHECK	SELF		N/A	0
RH06	Residual Heat Rem	oval Pump I	Discharge Check	Valves	(Trains A, E	B, and C)						_
	2R161XRH0065A		5R169F20000	B-6	2	С	8	CHECK	SELF	CLOS	N/A	0
	2R161XRH0065B	А	5R169F20000	D-6	2	С	8	CHECK	SELF	CLOS	N/A	0
	2R161XRH0065C	Α	5R169F20000	G-6	2	С	8	CHECK	SELF	CLOS	N/A	0
RH07	Low Head Safety In	jection to R	CS Hot Leg Chec	k Valve	es (Trains A	, B, and C)						
	1R161XRH0020A		5R169F20000	C-2	1	A/C	8	CHECK	SELF	CLOS	N/A	O/C
	1R161XRH0020B	Α	5R169F20000	E-2	1	A/C	8	CHECK	SELF	CLOS	N/A	O/C
	1R161XRH0020C	Α	5R169F20000	H-2	1	A/C	8	CHECK	SELF	CLOS	N/A	O/C
RH08	Cold Leg Injection C	Check Valve	s (Trains A, B, a	nd C)								
	1R161XRH0032C	Α	5R169F20000	G-2	1	A/C	8	CHECK	SELF	CLOS	N/A	O/C
	1R161XRH0032A	Α	5R169F20000	B-2	1	A/C	8	CHECK	SELF	CLOS	N/A	O/C
	1R161XRH0032B	А	5R169F20000	D-2	1	A/C	8	CHECK	SELF	CLOS	N/A	O/C

GROUP	GROUP GROUP DESCRIPTION TAGTPNS Act/Pass P&ID # &						V	ALVE D	ATA		VALVI	5
011001	TAGTPNS				QClass	IST	Size	Туре	Actuator	Normal	Failsafe	Safety Func.
RH09	RHR Return to RWS 2R161XRH0064B	T CIVs P	5R169F20000	D-5	2	A	8	GATE	MANUAL	CLOS	N/A	С
	2R161XRH0063B	Р	5R169F20000	D-6	2	Α	8	GATE	MANUAL	CLOS	N/A	С
	2R161XRH0064C	Р	5R169F20000	F-5	2	А	8	GATE	MANUAL	CLOS	N/A	С
	2R161XRH0063C	Р	5R169F20000	F-6	2	А	8	GATE	MANUAL	CLOS	N/A	С
RH10	RHR Pump A, B, C I N1RHPSV3851	Discharge A	Relief Valves 5R169F20000	C6	2	с	3	RELIEF	SELF	CLOS	N/A	0
	N1RHPSV3853	А	5R169F20000	H6	2	С	3	RELIEF	SELF	CLOS	N/A	0
	N1RHPSV3852	А	5R169F20000	E6	2	С	3	RELIEF	SELF	CLOS	N/A	0
RH11	RHR Heat Exchange N1RHPSV3944	er A, B, C I A	Bypass Relief Val 5R169F20000	/es H4	2	с	0.75	RELIEF	SELF	CLOS	N/A	0
	N1RHPSV3943	Α	5R169F20000	F4	2	С	0.75	RELIEF	SELF	CLOS	N/A	0
	N1RHPSV3934	Α	5R169F20000	C4	2	С	0.75	RELIEF	SELF	CLOS	N/A	0
RM01	Reactor Make-up W B1RMFV7663	ater Non-e A	ssentlal services 5R279F05033	lsolation F-7	Valves 3	В	4	GLOBE	AIR	OPEN	CLOS	С
	C1RMFV7659	А	5R279F05033	F-7	3	В	4	GLOBE	AIR	OPEN	CLOS	С
SA01	Service Air to RCB I 2Q101TSA0505	nside Cntr P	nt Isolation Check 5N109F05041	Valve D-4	2	A/C	2	CHECK	SELF	CLOS	N/A	С
SA02	Service Air to RCB (2Q101TSA0504	Outside Cr P	ntmt Isolation Man 5N109F05041	ual Valve C-4	ə 2	A	2	BALL	MANUAL	CLOS	N/A	С
SB01	Steam Generator Bi B1SBFV4188	ulk Water S A	Sample Outside C 5S209F20	ntmt Isol H-1	lation Valve 2	es B	0.375	GATE	AIR	CLOS	CLOS	
	C1SBFV4187	Α	5S209F20	D-1	2	В	0.375	GATE	AIR	CLOS	CLOS	
	A1SBFV4189	А	5S209F20	H-5	2	В	0.375	GATE	AIR	CLOS	CLOS	
	A1SBFV4186	Α	5S209F20	D-5	2	В	0.375	GATE	AIR	CLOS	CLOS	C

GROUP GROUP DESCRIPTION						VALVE DATA			VALVE			
0.10001	TAGTPNS		s P&ID#&		QClass	IST	Size	Туре	Actuator	Normal	Failsafe	Safety Func.
SB02	Steam Generator Bl	lowdown O	utside Cntmt Isola	ation Val	lves							_
2202	A1SBFV4150	Α	5S209F20001	C-5	2	В	4	GATE	AIR	CLOS	CLOS	С
	A1SBFV4153	Α	5S209F20001	F-5	2	В	4	GATE	AIR	CLOS	CLOS	С
	C1SBFV4151	А	5S209F20001	C-2	2	В	4	GATE	AIR	CLOS	CLOS	С
	B1SBFV4152	Α	5S209F20001	F-2	2	В	4	GATE	AIR	CLOS	CLOS	С
SD01	Starting Air Receive 3Q151XSD0004B	er Inlet Che A	ck Valves 5Q159F22546	E-4	3	A/C	1	CHECK	SELF	EITH	N/A	с
	3Q151XSD0003B	А	5Q159F22546	E-5	3	A/C	1	CHECK	SELF	EITH	N/A	С
	3Q151XSD0004A	А	5Q159F22546	E-7	3	A/C	1	CHECK	SELF	EITH	N/A	С
	3Q151XSD0004C	Α	5Q159F22546	E-1	3	A/C	1	CHECK	SELF	EITH	N/A	С
	3Q151XSD0003C	Α	5Q159F22546	E-2	3	A/C	1	CHECK	SELF	EITH	N/A	С
	3Q151XSD0003A	Α	5Q159F22546	E-7	3	A/C	1	CHECK	SELF	EITH	N/A	С
<i>SI01</i>	Safety Injection Sys A1SIFV3971	stem Test L A	ine Containment 5N129F05013	Isolatior F-7	n Valves 2	A	0.75	GLOBE	AIR	CLOS	CLOS	С
	B1SIFV3970	А	5N129F05016	F-7	2	Α	0.75	GLOBE	AIR	CLOS	CLOS	C
<i>SI02</i>	Accumulator Nitrog A1SIFV3983	en Supply A	Dutside Cntmt Isc 5N129F05016	olation V G-2	'alve (3983) 2	A	1	GLOBE	AIR	CLOS	CLOS	с
<i>SI03</i>	Accumulator Nitrog 2N121TSI0058	en Supply A	Inside Cntmt Isola 5N129F05016	tion Ch G-2	eck Valve (S 2	SI0058) A/C	1	CHECK	SELF	CLOS	N/A	С
SI04	Reactor Water Stor A1SIFV3936	rage Tank (A	Clean-Up by SFP(5N129F05013	CCS Iso F-2	lation Valve 2	es B	3	GLOBE	AIR	EITH	CLOS	С
	B1SIFV3937	Α	5N129F05013	F-2	2	B	3	GLOBE	AIR	EITH	CLOS	C
SI05	Residual Heat Excl B1SIFCV0852	nanger Byp A	ass Valves (Train 5R129F20000	s A, B, a E-5	and C) 2	В	8	BUTTEF	AIR	CLOS	CLOS	с
	C1SIFCV0853	А	5R169F20000	H-5	2	В	8	BUTTER	R AIR	CLOS	CLOS	C
	A1SIFCV0851	Α	5R169F20000	C-5	2	В	8	BUTTEF	R AIR	CLOS	CLOS	C

GROUF	P GROUP D	<i>ESCRIP1</i>	TION				V	ALVE D	ATA		VALVI	3
	TAGTPNS		s P&ID#&		QClass	IST	Size	Туре	Actuator	Normal	Failsafe	Safety Func.
SI06	Low Head Safety In	iection Pum	o Discharge Outs	ide Cnt	Imt Isolation	Valves (Tra	ains A, B, and C	C)				
5100	2N121XS10018A		5N129F05013	C-4	2	A	8	GATE	MOTOR	OPEN	FAI	O/C
	2N121XSI0018B	A S	5N129F05014	D-4	2	Α	8	GATE	MOTOR	OPEN	FAI	O/C
	2N121XSI0018C	A t	5N129F05015	D-4	2	А	8	GATE	MOTOR	OPEN	FAI	O/C
<i>SI07</i>	Safety Injection Em	ergency Sur	np Outside Cntm	t Isolati	on MOVs (1	rains A, B,	and C)					0/0
	2N121XSI0016A		5N129F05013	B-4	2	A	16	GATE	MOTOR	CLOS	FAI	O/C
	2N121XS10016B	A s	5N129F05014	B-4	2	Α	16	GATE	MOTOR	CLOS	FAI	O/C
	2N121XSI0016C	A :	5N129F05015	B-4	2	А	16	GATE	MOTOR	CLOS	FAI	O/C
<i>SI08</i>	High Head Safety Ir	njection Pum	p Discharge Out	side Cn	tmt Isolatio	n Valves (Tr	ains A, B, and	C)				0/0
	2N121XS10004A		5N129F05013	F-5	2	Α	6	GATE	MOTOR	OPEN	FAI	O/C
	2N121XSI0004B	A	5N129F05014	G-4	2	Α	6	GATE	MOTOR	OPEN	FAI	O/C
	2N121XSI0004C	A	5N129F05015	F-5	2	Α	6	GATE	MOTOR	OPEN	FAI	O/C
<i>SI09</i>	High Head Safety Ir	njection Cold	I Leg Isolation (T	rains A,	, B, and C)							
	2N121XSI0006A	A	5N129F05013	E-7	2	В	6	GATE	MOTOR	OPEN	FAI	O/C
	2N121XS10006B	A	5N129F05014	F-7	2	В	6	GATE	MOTOR	OPEN	FAI	O/C
	2N121XSI0006C	Α	5N129F05015	E-7	2	В	6	GATE	MOTOR	OPEN	FAI	O/C
<i>SI10</i>	High Head Safety I	njection Hot	Leg Isolation (Tr	ains A, I	B, and C)							A (A)
	2N121XSI0008C		5N129F05015	F-7	2	В	6	GATE	MOTOR	CLOS	FAI	O/C
	2N121XS10008A	Α	5N129F05013	F-7	2	В	6	GATE	MOTOR	CLOS	FAI	O/C
	2N121XSI0008B	А	5N129F05014	G-7	2	В	6	GATE	MOTOR	CLOS	FAI	O/C
SII I	Residual Heat Rem	oval Heat E	xchanger Return	to Hot I	Leg MOV (1	rains A, B,	and C)					
	2R161XRH0019B		5R169F20000	E-3	2	В	8	GATE	MOTOR	CLOS	FAI	0
	2R161XRH0019C	; А	5R169F20000	H-3	2	В	8	GATE	MOTOR	CLOS	FAI	0
	2R161XRH0019A	A	5R169F20000	C-3	2	В	8	GATE	MOTOR	CLOS	FAI	0

GROU	GROUP GROUP DESCRIPTION						VALVE DATA			VALVE		
	TAGTPNS	Act/Pa	ıss P&ID#&		QClass	IST	Size	Туре	Actuator	Normal	Failsafe	Safety Func.
SI12	Cold Leg Injection N 2R161XRH0031A	•		B-3	0	в	8	GATE	MOTOR	OPEN	FAI	O/C
		A	5R169F20000		2							
	2R161XRH0031C	A	5R169F20000	G-3	2	В	8	GATE	MOTOR	OPEN	FAI	O/C
	2R161XRH0031B	Α	5R169F20000	D-3	2	В	8	GATE	MOTOR	OPEN	FAI	O/C
SI13	High Head Safety Ir	njection Pu										
	2N121TSI0012C	А	5N129F05015	G-3	2	В	2	DIAPHR	MOTOR	OPEN	FAI	O/C
	2N121TSI0011C	Α	5N129F05015	G-4	2	В	2	DIAPHR	MOTOR	OPEN	FAI	O/C
	2N121TSI0011B	Α	5N129F05014	H-3	2	В	2	DIAPHR	MOTOR	OPEN	FAI	O/C
	2N121TS10012A	А	5N129F05013	F-4	2	В	2	DIAPHR	MOTOR	OPEN	FAI	O/C
	2N121TSI0011A	Α	5N129F05013	F-4	2	В	2	DIAPHR	MOTOR	OPEN	FAI	O/C
	2N121TS10012B	Α	5N129F05014	H-3	2	В	2	DIAPHR	MOTOR	OPEN	FAI	O/C
SI 14	Low Head Safety In	iection Pu	mn Recirc Isolatio	n								
~~~	2N121TSI0014C	A	5N129F05015	D-3	2	В	2	DIAPHR	MOTOR	OPEN	FAI	O/C
	2N121TSI0013A	Α	5N129F05013	D-3	2	В	2	DIAPHR	MOTOR	OPEN	FAI	O/C
	2N121TSI0013B	А	5N129F05014	E-3	2	в	2	DIAPHR	MOTOR	OPEN	FAI	O/C
	2N121TSI0013C	Α	5N129F05015	D-3	2	В	2	DIAPHR	MOTOR	OPEN	FAI	O/C
	2N121TSI0014A	Α	5N129F05013	D-3	2	В	2	DIAPHR	MOTOR	OPEN	FAI	O/C
	2N121TSI0014B	А	5N129F05014	E-3	2	В	2	DIAPHR	MOTOR	OPEN	FAI	O/C
SI15	Safety Injection Sys	tem Reac	tor Water Storage	Tank is	olation							
	2N121XS10001C	А	5N129F05015	H-2	2	В	16	GATE	MOTOR	OPEN	FAI	O/C
	2N121XSI0001A	Α	5N129F05013	G-3	2	в	16	GATE	MOTOR	OPEN	FAI	O/C
	2N121XSI0001B	Α	5N129F05014	H-2	2	В	16	GATE	MOTOR	OPEN	FAI	O/C

GROUP	GROUP GROUP DESCRIPTION						VALVE DATA			VALVE		
0110 01	TAGTPNS		s P&ID#&		QClass	IST	Size	Type	Actuator	Normal	Failsafe	Safety Func.
SI16	Accumulator Nitroge A1SIPV3928	en Vent Val A	ves (Trains A, B, 5N129F05016	and C) C-4	2	в	1	GLOBE	SOLENO	CLOS	CLOS	ο
	B1SIPV3930	А	5N129F05016	G-4	2	в	1	GLOBE	SOLENO	CLOS	CLOS	ο
	C1SIPV3929	A	5N129F05016	E-4	2	В	1	GLOBE	SOLENO	CLOS	CLOS	0
SI17	Accumulator Nitroge B1SIHV0899		ck-Up Valve (899) 5N129F05016	F-2	2	В	1	GLOBE	SOLENO	CLOS	CLOS	0
SI 18	High Head Safety Ir 2N121XSI0005C	njection Pur A	np Discharge Insi 5N129F05015	de Cntr F-5	nt Isolation 2	Valves (Trai A/C	ns A, B, and C 6	) CHECK	SELF	CLOS	N/A	O/C
	2N121XSI0005B	А	5N129F05014	G-4	2	A/C	6	CHECK	SELF	CLOS	N/A	O/C
	2N121XS10005A	A	5N129F05013	F-6	2	A/C	6	CHECK	SELF	CLOS	N/A	O/C
SI 19	High Head Safety I 1N121XSI0007A	Injection Pu A	mp Discharge Ch 5N129F05013	eck to (	Cold Leg (Cl 1	ass 1 Boun A/C	dary) (Trains A 6	, B, and C) CHECK	SELF	CLOS	N/A	O/C
	1N121XSI0007C	А	5N129F05015	E-7	1	A/C	6	CHECK	SELF	CLOS	N/A	O/C
	1N121XSI0007B	A	5N129F05014	F-7	1	A/C	6	CHECK	SELF	CLOS	N/A	O/C
SI20	High Head Safety I 1N121XSI0009C	njection Pur A	np Discharge Cho 5N129F05015	eck to ⊦ F-7	lot Leg (Cla 1	ss 1 Bounda A/C	ary) (Trains A, 1 6	B, and C) CHECK	SELF	CLOS	N/A	O/C
	1N121XSI0009A	Α	5N129F05013	F-7	1	A/C	6	CHECK	SELF	CLOS	N/A	O/C
	1N121XSI0009B	Α	5N129F05014	G-7	1	A/C	6	CHECK	SELF	CLOS	N/A	O/C
SI21	Low Head Safety Ir 2N121XSI0030B	njection Pun A	np Discharge Insi 5N129F05014	de Cntr D-4	nt Isolation ' 2	Valves (Trai A/C	ns A, B, and C 8	) СНЕСК	SELF	CLOS	N/A	O/C
	2N121XSI0030C	А	5N129F05015	D-4	2	A/C	8	CHECK	SELF	CLOS	N/A	O/C
	2N121XSI0030A	А	5N129F05013	D-5	2	A/C	8	CHECK	SELF	CLOS	N/A	O/C
SI22	Safety Injection Sy 1N121XSI0010A	/stem Pump A	os Discharge Che 5N129F05013	ck to He F-8	ot Leg (Clas 1	s 1 Bounda A/C	y) (Trains A, B 8	, and C) CHECK	SELF	CLOS	N/A	O/C
	1N121XS10010B	А	5N129F05014	G-8	1	A/C	8	CHECK	SELF	CLOS	N/A	O/C
	1N121XSI0010C	Α	5N129F05015	F-8	1	A/C	8	CHECK	SELF	CLOS	N/A	O/C

GROUP	GROUP GROUP DESCRIPTION						VALVE DATA			VALVE		
Unit Unit	TAGTPNS		s P&ID#&		QClass	IST	Size	Туре	Actuator	Normal	Failsafe	Safety Func.
SI23	Accumulator to Col 1N121XSI0038A	d Leg Inbo A	ard Check Valves 5N129F05016	(Trains F-7	A, B, and C 1	>) A/C	12	CHECK	SELF	CLOS	N/A	O/C
	1N121XSI0038B	А	5N129F05016	D-7	1	A/C	12	CHECK	SELF	CLOS	N/A	O/C
	1N121XSI0038C	Α	5N129F05016	B-7	1	A/C	12	CHECK	SELF	CLOS	N/A	O/C
SI24	Accumulator Tank I 2N121XSI0039B	Discharge I A	MOVs (Trains A, E 5N129F05016	, and C D-5	) 2	в	12	GATE	MOTOR	OPEN	FAI	O/C
	2N121XS10039C	A	5N129F05016	B-5	2	в	12	GATE	MOTOR	OPEN	FAI	O/C
	2N121XSI0039A	А	5N129F05016	F-5	2	в	12	GATE	MOTOR	OPEN	FAI	O/C
SI25	Safety Injection Pur 2N121XSI0002C	nps Suctio A	n Check Valves (1 5N129F05015	irains A H-2	, B, and C) 2	с	16	CHECK	SELF	CLOS	N/A	O/C
	2N121XSI0002B	Α	5N129F05014	H-2	2	С	16	CHECK	SELF	CLOS	N/A	O/C
	2N121XS10002A	Α	5N129F05013	G-3	2	С	16	CHECK	SELF	CLOS	N/A	O/C
SI26	Accumulator Nitroge A1SIHCV0900	en Vent He A	ader Bleed Valve 5N129F05016	(HCV-0 G-2	900) 2	В	1	GLOBE	SOLENO	CLOS	CLOS	0
SI27	Accumulator to Col 1N121XSI0046B	ld Leg Outi A	ooard Check Valve 5N129F05016	es (Train D-7	ns A, B, and 1	I C) A/C	12	CHECK	SELF	CLOS	N/A	O/C
	1N121XSI0046C	Α	5N129F05016	B-7	1	A/C	12	CHECK	SELF	CLOS	N/A	O/C
	1N121XSI0046A	Α	5N129F05016	F-6	1	A/C	12	CHECK	SELF	CLOS	N/A	O/C
<i>SI28</i>	Safety Injection Tra N1SIPSV3941	in A, B, C A	Pumps Suction He 5N129F05015	eader R C2	elief Valves 2	с	0.75	RELIEF	SELF	CLOS	N/A	0
	N1SIPSV3939	А	5N129F05014	D2	2	С	0.75	RELIEF	SELF	CLOS	N/A	0
	N1SIPSV3935	Α	5N129F05013	C2	2	С	0.75	RELIEF	SELF	CLOS	N/A	0
SI29	HHSI Pump A, B, C N1SIPSV3942	Disch to I A	.oop A, B, C Hot/( 5N129F05015	Cold Leg F6	g Relief Valv 2	ves C	0.75	RELIEF	SELF	CLOS	N/A	ο
	N1SIPSV3940	Α	5N129F05014	F6	2	С	0.75	RELIEF	SELF	CLOS	N/A	0
	N1SIPSV3938	А	5N129F05013	G6	2	С	0.75	RELIEF	SELF	CLOS	N/A	0

GROUI	GROUP GROUP DESCRIPTION						V	ALVE D	ATA		VALVI	S	
	TAGTPNS	Act/Pa	ass P&ID#&		QClass	IST		Size	Туре	Actuator	Normal	Failsafe	Safety Func.
SI30	Safety Injection Accu N1SIPSV3980	imulator A	A, B, C Relief Valv 5N129F05016	es E4	2	С		1	RELIEF	SELF	CLOS	N/A	ο
	N1SIPSV3981	A	5N129F05016	G4	2	c		1	RELIEF	SELF	CLOS	N/A	0
	N1SIPSV3977	A	5N129F05016	C4	2	c		1	RELIEF	SELF	CLOS	N/A	о
SL1	High Pressure Sludg 2S201TSL0004	e Lancin P	g CIVs 5S129F05057	B-6	2	A	:	2	GATE	MANUAL	CLOS	N/A	с
	2S201TSL0002	Ρ	5\$129F05057	B-5	2	Α	1	2	GATE	MANUAL	CLOS	N/A	С
SL2	Low Pressure Sludge 2S201TSL0027	e Lancing P	g CIVs 5S129F05057	F-6	2	A		6	GATE	MANUAL	CLOS	N/A	С
	2S201TSL0029	Р	5S129F05057	F-5	2	А		6	GATE	MANUAL	CLOS	N/A	С
	2S201TSL0014	Ρ	5S129F05057	D-6	2	Α		6	GATE	MANUAL	CLOS	N/A	С
	2S201TSL0012	Ρ	5S129F05057	D-5	2	Α		6	GATE	MANUAL	CLOS	N/A	С
WL01	RCDT Vent Outside B1WLFV4919	Containr A	nent Isolation Valve 5R309F05022	9 G-5	2	A		1	GLOBE	AIR	OPEN	CLOS	С
WL02	RCDT To LWPS Out B1WLFV4913	tside Cor A	ntainment Isolation 5R309F05022	Valve F-3	2	A		3	GLOBE	AIR	OPEN	CLOS	С
WL03	RCDT To LWPS Inst 2R301TWL0312	ide Conta A	ainment Isolation V 5R309F05022	alve E-3	2	A		3	GATE	MOTOR	OPEN	FAI	С
WL04	RCDT Vent Inside C A1WLFV4920	ontainme A	ent Isolation Valve 5R309F05022	G-6	2	А		1	GLOBE	SOLENO	OPEN	CLOS	с
XC01	Reactor Containmen 2C261XXC0049	it Person A	al Air-lock Safety C 5C269F05060	heck V C-7	alves (XC-4 2	8, 49) A/C		1	CHECK	SELF	CLOS	N/A	
	2C261XXC0048	А	5C269F05060	C-7	2	A/C		1	CHECK	SELF	CLOS	N/A	

GROU	GROUP GROUP DESCRIPTION						V	ALVE D	ATA	VALVE		
	TAGTPNS	Act/Pas:	s P&ID#&	:	QClass	IST	Size	Туре	Actuator	Normal	Failsafe	Safety Func.
XC02	Reactor Containm	ent Air-lock A	ir Supply Contai	inment l	solation Valv	/es (FV1	025, 26,27,28)					
	A1XCFV1028		5C269F05060	C-4	2	A	0.5	GLOBE	SOLENO	OPEN	CLOS	С
	A1XCFV1027	A	5C269F05060	C-4	2	Α	0 5	GLOBE	SOLENO	OPEN	CLOS	С
	A1XCFV1026	Α	5C269F05060	F-4	2	Α	0.5	GLOBE	SOLENO	OPEN	CLOS	С
	A1XCFV1025	Α	5C269F05060	G-4	2	А	05	GLOBE	SOLENO	OPEN	CLOS	С

1

# **IST Pump Plan**

•	n PUMP Tag Safety Function	P&ID Drawing	Coord.	PUMP NAME	CLAS	IST Rank	Frequency	RI-IST Freq.
AFMDP	Motor Driven	AFW Pumps						
AF	3S141MPA02	5S141F00024	C-7	MOTOR DRIVEN AUX FEEDWATER PUMP NO. 12		3 High	Q	Q
Of Ma Accide	in Feedwater (w/wo o ent events (DBD Secti	ffsite power available), Feed ion 3 2.8.9). The pump also	water Line Breat functions to su	red feedwater flow of 540 gpm (U ak, Steam Line Break, Loss Of Al Ipply feedwater to one or more stu f approximately 350F (DBD Secti	eam genera	tors to perform c	Evacuation, and L	.055 OF 0001ant
AF	3S141MPA03	5S141F00024	B-7	MOTOR DRIVEN AUX FEEDWATER PUMP NO. 13		3 High	Q	Q
Of Ma Accide	in Feedwater (w/wo o ent events (DBD Sect	ffsite power available), Feed ion 3 2 8.9). The pump also	water Line Bre functions to st	red feedwater flow of 540 gpm (U ak, Steam Line Break, Loss Of Al upply feedwater to one or more st of approximately 350F (DBD Sector	am genera	tors to perform c	Evacuation, and t	

AF	3S141MPA01	5S141F00024	F-7	MOTOR DRIVEN AUX	3	High	Q	Q
				FEEDWATER PUMP NO. 11				

The motor driven AFW pump is capable of delivering a minimum required feedwater flow of 540 gpm (UFSAR Section 6.2.1.4.5) to one steam generator during Loss Of Main Feedwater (w/wo offsite power available), Feedwater Line Break, Steam Line Break, Loss Of All AC Power, Control Room Evacuation, and Loss Of Coolant Accident events (DBD Section 3.2.8.9). The pump also functions to supply feedwater to one or more steam generators to perform cooldown of the Reactor Coolant System from normal zero load temperatures to a hot leg temperature of approximately 350F (DBD Section 3.2.1.5).

#### GROUP CLAS IST Rank Frequency RI-IST Freq. P&ID Drawing Coord. PUMP NAME System PUMP Tag **Pump Safety Function AFTDP** Turbine Driven AFW Pump Q High Q 3 G-7 TURBINE DRIVEN AUX 5S141F00024 AF 3S141MPA04 FEEDWATER PUMP

The turbine driven AFW pump is capable of delivering a minimum required feedwater flow of 540 gpm (UFSAR Section 6.2.1.4.5) to one steam generator during Loss Of Main Feedwater (w/wo offsite power available), Feedwater Line Break, Steam Line Break, Loss Of All AC Power, Control Room Evacuation, and Loss Of Coolant Accident events (DBD Section 3 2.8.9). The pump also functions to supply feedwater to one or more steam generators to perform cooldown of the Reactor Coolant System from normal zero load temperatures to a hot leg temperature of approximately 350F (DBD Section 3 2.1.5).

•	n PUMP Tag Safety Function	P&ID Drawing	Coord.	PUMP NAME	CLAS IS	ST Rank	Frequency	RI-IST Freq.
CCPP	Component Co	ooling Water Pumps						
CC	3R201NPA101A	5R209F05017	B-7	COMPONENT COOLING WATER PUMP 1A	3	Medium	Q	54MO
Provid	les 14,070 gpm of cooli	ing water (DBD 4.1.6 2) to ES	F componer	nts under safe shutdown and acci	ident conditions.			
сс	3R201NPA101B	5R209F05018	B-7	COMPONENT COOLING WATER PUMP 1B	3	Medium	Q	54MO
Provid	tes 14,070 gpm of cooli	ing water (DBD 4.1.6 2) to ES	SF compone	nts under safe shutdown and acci	ident conditions.			
сс	3R201NPA101C	5R209F05019	B-7	COMPONENT COOLING WATER PUMP 1C	3	Medium	Q	54MO

Provides 14,070 gpm of cooling water (DBD 4.1.6.2) to ESF components under safe shutdown and accident conditions.

•	n PUMP Tag Safety Function	P&ID Drawing	Coord.	PUMP NAME	CLAS	IST Rank	Frequency	RI-IST Freq.
CHPP	Chilled Water	Pumps						
СН	3V111VPA004	5V119V10001	F-7	ESSENTIAL CHILL WATER PUMP 11A		3 Medium	Q	54MO
1.Prov (AHUs		or moving chilled water in a	a closed loop th	nrough the essential chillers and c	ooling colls	of the various sa	lfety-related air h	andling units
2.Rem	ain functional during a	nd following all design basi	is accidents an	d plant safe shutdown.				
NOTE	: Receives an auto sta	rt signal upon SI initiation s	signal. Design	flow is 981 gpm (per DBD).				
СН	3V111VPA005	5V119V10001	C-7	ESSENTIAL CHILL WATER PUMP 11B		3 Medium	Q	54MO
1. Prov (AHUs		for moving chilled water In	a closed loop t	through the essential chillers and	cooling coils	s of the various s	afety-related air l	nandling units
2. Ren	nain functional during a	and following all design bas	sis accidents a	nd plant safe shutdown.				
NOTE	: Receives an auto sta	rt signal upon SI initiation s	signal. Design	flow is 981 gpm (per DBD).				
СН	3V111VPA006	5V119V10001	A-7	ESSENTIAL CHILL WATER PUMP 11C		3 Medium	Q	54MO
1. Pro	vides the motive force	for moving chilled water in	a closed loop	through the essential chillers and	cooling coil	s of the various s	afety related air l	nandling units

1. Provides the motive force for moving chilled water in a closed loop through the essential chillers and cooling coils of the various safety related air nanoling units (AHUs).

2. Remain functional during and following all design basis accidents and plant safe shutdown.

NOTE: Receives an auto start signal upon SI initiation signal. Design flow is 981 gpm (per DBD).

•	PUMP Tag Safety Function	P&ID Drawing	Coord.	PUMP NAME	CLAS	IST Rank	Frequency	RI-IST Freq.
CSPP	Containment S	Spray pumps						
CS	2N101NPA101A	5N109F05037	G-3	CONTAINMENT SPRAY PUMP 1A		2 Low	6M	54MO
1. Sup contair	ply borated water from Iment high pressure si	the Reactor Water Storage gnal during a steam break	e Tank to the C Inside containn	containment Spray ring header dur nent or a LOCA to reduce containr	ing the sho ment press	ort-term injection sure.	phase upon rece	ipt of a "HI-3"
2. Rec break i	irculate borated water inside of containment o	from the containment sump or a LOCA to reduce contai	os to the Conta nment pressure	inment Spray header during the lo e.	ng-term re	circulation phase	e subsequent to a	main steam
CS	2N101NPA101B	5N109F05037	D-3	CONTAINMENT SPRAY PUMP 1B		2 Low	6M	54MO
1. Sup contai	ply borated water from nment high pressure si	the Reactor Water Storagignal during a steam break	e Tank to the C inside containr	Containment Spray ring header dur nent or a LOCA to reduce contain	ing the she nent press	ort-term injection sure.	i phase upon rece	ipt of a "HI-3"
2. Rec break	irculate borated water inside of containment o	from the containment sum or a LOCA to reduce contai	os to the Conta Inment pressur	inment Spray header during the lo e	ng-term re	ecirculation phase	e subsequent to a	main steam
CS	2N101NPA101C	5N109F05037	B-3	CONTAINMENT SPRAY PUMP	1	2 Low	6M	54MO
1. Sup contai	ply borated water from nment high pressure si	n the Reactor Water Storag Ignal during a steam break	e Tank to the C inside containr	Containment Spray ring header dur nent or a LOCA to reduce contain	ing the sh ment pres	ort-term injectior sure.	n phase upon rece	ipt of a "HI-3"

2. Recirculate borated water from the containment sumps to the Containment Spray header during the long-term recirculation phase subsequent to a main steam break inside of containment or a LOCA to reduce containment pressure.

•	PUMP Tag Safety Function	P&ID Drawing	Coord.	PUMP NAME	CLAS	IST Rank	Frequency	RI-IST Freq.
CVBAT	Boric Acid Tran	sfer Pumps						
CV	3R171NPA103B	5R179F05009	C-4	BORIC ACID TRANSFER PUMP 1B	3	3 Low	Q	36MO
Transf	Transfer 110 gpm of boric acid solution from the boric acid tanks to the suction of the charging pumps during safety function boration operations (DBD 3 2.1 4).							
cv	3R171NPA103A	5R179F05009	D-4	BORIC ACID TRANSFER PUMP 1A	3	B Low	Q	36MO

Transfer 110 gpm of boric acid solution from the boric acid tanks to the suction of the charging pumps during safety function boration operations (DBD 3.2.1.4).

•	1 PUMP Tag Safety Function	P&ID Drawing	Coord.	PUMP NAME	CLAS	IST Rank	Frequency	RI-IST Freq.
CVCP	Centrifugal Cha	arging Pump						
CV	2R171NPA101B	5R179F05007	D-5	CENTRIFUGAL CHARGING PUMP 1B	2	2 Medium	Q	36MO
Provid	e 112 gpm of boric acid	I solution to the Reactor Coo	lant System	for boration through the charging	flowpath and	d the seal injection	on flow path (DBI	) 3 2 2.1.4).
CV	2R171NPA101A	5R179F05007	B-5	CENTRIFUGAL CHARGING PUMP 1A	:	2 Medium	Q	36MO

Provide 112 gpm of boric acid solution to the Reactor Coolant System for boration through the charging flowpath and the seal injection flow path (DBD 3 2.2.1.4).

•	t PUMP Tag Safety Function	P&ID Drawing	Coord.	PUMP NAME	CLAS	IST Rank	Frequency	RI-IST Freq.
EWPP	EW Pumps							
EW	3R281NPA101A	5N109F05038	C-3	ESSENTIAL COOLING WATER PUMP 1A		3 High	Q	Q
Coolin	a suction from the Em g Water heat exchange on signal.	ergency Cooling Pond and ers during normal operating	delivers coolin , shutdown, an	g water to Emergency Diesel Gene Id following accident conditions. The	erator heat he ECW p	exchangers, Es umps receive ar	sential Chillers, an auto start signal u	d Component Ipon an Sl
Desigr	n Flow: 19,280 gpm (pe	er DBD)						
EW	3R281NPA101C	5N109F05038	C-3	ESSENTIAL COOLING WATER PUMP 1C	:	3 High	Q	Q
Coolin	a suction from the Em g Water heat exchange on signal.	ergency Cooling Pond and ers during normal operating	delivers coolin , shutdown, ar	g water to Emergency Diesel Gene Id following accident conditions. The	erator heat he ECW p	exchangers, Es umps receive ar	sential Chillers, an n auto start signal t	d Component Ipon an Sl
Desigr	n Flow: 19,280 gpm (pe	er DBD)						
EW	3R281NPA101B	5N109F05038	C-3	ESSENTIAL COOLING WATER PUMP 1B		3 High	Q	Q

Takes a suction from the Emergency Cooling Pond and delivers cooling water to Emergency Diesel Generator heat exchangers, Essential Chillers, and Component Cooling Water heat exchangers during normal operating, shutdown, and following accident conditions. The ECW pumps receive an auto start signal upon an SI initiation signal.

Design Flow: 19,280 gpm (per DBD)

•	1 PUMP Tag Safety Function	P&ID Drawing	Coord.	PUMP NAME	CLAS	IST Rank	Frequency	RI-IST Freq.
EWSW	ECW Screen V	Vash Pump						
EW	3R281NPA102A	5N109F05039	D-7	ECW SCREEN WASH BOOSTER PUMP 1A	3	3 Low	Q	54MO
The E flow ra	CW Screen Wash Boo te to clean the ECW tr	ster Pumps take water from avelling water screens. The	the ECW pur pumps receiv	np discharge header and supply it /e an auto start signal upon an SI	to the ECW initiation an	/ travelling scree d will run continu	ens at the required uously.	d pressure and
Desigr	n Flow: 176 gpm (per D	BD)						
EW	3R281NPA102B	5N109F05039	D-4	ECW SCREEN WASH BOOSTER PUMP 1B	3	B Low	Q	54MO
The E flow ra	CW Screen Wash Boo Ite to clean the ECW tr	ster Pumps take water from aveiling water screens. The	the ECW pun pumps receiv	np discharge header and supply it /e an auto start signal upon an SI	to the ECW initiation an	/ travelling scree d will run contini	ens at the require uously.	d pressure and
Desigr	n Flow: 176 gpm (per D	BD)						
EW	3R281NPA102C	5N109F05039	D-2	ECW SCREEN WASH BOOSTER PUMP 1C	3	3 Low	Q	54MO
The E flow ra	CW Screen Wash Boo te to clean the ECW tr	ster Pumps take water from aveiling water screens. The	the ECW pun pumps receiv	np discharge header and supply it ve an auto start signal upon an SI	to the ECW initiation an	/ traveiling scree d will run contini	ens at the require uously.	d pressure and

•

Design Flow: 176 gpm (per DBD)

•	PUMP Tag Safety Function	P&ID Drawing	Coord.	PUMP NAME	CLAS	IST Rank	Frequency	RI-IST Freq.
FCPP	Spent fuel po	of cooling pumps						
FC	3R211NPA101A	5R219F05028	G-3	SPENT FUEL COOLING PUMP		3 Low	Q	36MO
Circula the nor	ites the spent fuel wat mal and maximum de	ter through filter demineraliz esign heat load from the spe	ers to maintair ent fuel pool.	a purity and visual clarity of the spe	nt fuel poc	I water, and thro	ugh heat exchang	ers to remove
Design	Flow: 2500 gpm (UF	SAR Table 9.1-2)						
FC	3R211NPA101B	5R219F05028	D-3	SPENT FUEL COOLING PUMP 1B		3 Low	Q	36MO
				- number and viewal alarity of the coo	nt fuel nor	l water and thro	uch heat exchance	iers to remove

Circulates the spent fuel water through filter demineralizers to maintain purity and visual clanty of the spent fuel pool water, and through heat exchangers to remove the normal and maximum design heat load from the spent fuel pool.

Design Flow: 2500 gpm (UFSAR Table 9.1-2)

•	1 PUMP Tag Safety Function	P&ID Drawing	Coord.	PUMP NAME	CLAS	IST Rank	Frequency	RI-IST Freq.
<i>RHPP</i> RH	RHR Pumps 2R161NPA101B	5R169F20000	E-6	RHR PUMP 1B	2	2 Medium	6M	54MO
Circula	Circulates 3000 gpm for final phase of reactor cooldown following a SBLOCA, SGTR, MSLB, FWLB, and in the event of a fire.							
RH	2R161NPA101C	5R169F20000	G-6	RHR PUMP 1C	2	2 Medium	6M	54MO
Circula	ates 3000 gpm for final	phase of reactor cooldown fo	llowing a SB	LOCA, SGTR, MSLB, FWLB, and	d in the ever	nt of a fire		
RH	2R161NPA101A	5R169F20000	B-6	RHR PUMP 1A	2	2 Medium	6M	54MO

Circulates 3000 gpm for final phase of reactor cooldown following a SBLOCA, SGTR, MSLB, FWLB, and in the event of a fire.

•	n PUMP Tag Safety Function	P&ID Drawing	Coord.	PUMP NAME	CLAS	IST Rank	Frequency	RI-IST Freq.			
SIHHP	High Head Sa	fety Injection Pumps (Trains	A, B, and C)								
SI	2N121NPA101A	5N129F05013	F-4	HIGH HEAD SAFETY INJECTION PUMP 1A	2	2 High	Q	Q			
	1. Inject borated water from the RWST to the RCS cold legs during the short-term core cooling/cold-leg injection phase of safety injection. (Flow is required to be greater than 1470 gpm and less than 1620 gpm per T.S. Surveillance Requirement 4.5 2g )										
2. Rec	irculate borated water	from the containment sump	to the RCS co	old or hot legs during the long-te	rm core coolir	ng/cold and hotic	eg recirculation pl	nase.			
SI	2N121NPA101B	5N129F05014	G-3	HIGH HEAD SAFETY INJECTION PUMP 1B	2	2 High	Q	Q			
	1. Inject borated water from the RWST to the RCS cold legs during the short-term core cooling/cold-leg injection phase of safety injection. (Flow is required to be greater than 1470 gpm and less than 1620 gpm per T.S. Surveillance Requirement 4 5.2g.)										
2. Rec	circulate borated water	from the containment sump	to the RCS co	old or hot legs during the long te	rm core coolir	ng/cold and hotie	eg recirculation pl	nase.			
SI	2N121NPA101C	5N129F05015	F-3	HIGH HEAD SAFETY INJECTION PUMP 1C	2	2 High	Q	Q			
1. Inie	ct borated water from t	the RWST to the RCS cold	legs during the	short-term core cooling/cold-leg	g injection pha	use of safety inje	ection. (Flow is re	quired to be			

1. Inject borated water from the RWST to the RCS cold legs during the short-term core cooling/cold-leg injection phase of safety injection. (Flow is required to be greater than 1470 gpm and less than 1620 gpm per T S. Surveillance Requirement 4.5.2g.)

2. Recirculate borated water from the containment sump to the RCS cold or hot legs during the long-term core cooling/cold and hotleg recirculation phase.

;

•	n PUMP Tag Safety Function	P&ID Drawing	Coord.	PUMP NAME	CLAS	IST Rank	Frequency	RI-IST Freq.			
SILHP	Low Head Saf	ety Injection Pumps (Trains	A, B, and C)								
SI	2N121NPA102C	5N129F05015	C-3	LOW HEAD SAFETY INJECTION PUMP 1C	2	2 Medium	Q	54MO			
1. Inje greate	1. Inject borated water from the RWST to the RCS cold legs during the short-term core cooling/cold-leg injection phase of safety injection. (Flow is required to be greater than 2550 gpm and less than 2800 gpm per T.S. Surveillance Requirement 4.5 2g.)										
2. Rec	irculate borated water	from the containment sump	to the RCS c	old or hot legs during the long-te	rm core coolir	ng/cold and hotie	eg recirculation pl	nase.			
SI	2N121NPA102A	5N129F05013	C-3	LOW HEAD SAFETY INJECTION PUMP 1A	2	2 Medium	Q	54MO			
1.Injec greate	1.Inject borated water from the RWST to the RCS cold legs during the short-term core cooling/cold-leg injection phase of safety injection. (Flow is required to be greater than 2550 gpm and less than 2800 gpm per T.S. Surveillance Requirement 4.5.2g.)										
2. Red	circulate borated water	from the containment sump	to the RCS c	old or hot legs during the long-te	rm core cooli	ng/cold and hoti	eg recirculation p	hase.			
SI	2N121NPA102B	5N129F05014	D-3	LOW HEAD SAFETY INJECTION PUMP 1B	:	2 Medium	Q	54MO			
1. inje greate	1. Inject borated water from the RWST to the RCS cold legs during the short-term core cooling/cold-leg injection phase of safety injection. (Flow is required to be greater than 2550 gpm and less than 2800 gpm per T.S. Surveillance Requirement 4.5.2g.)										

2. Recirculate borated water from the containment sump to the RCS cold or hot legs during the long-term core cooling/cold and hotleg recirculation phase.

i

GROUP	Test	IST Rank	Frequency	RI-IST Frequency	IST TEST DESCRIPTION
AF01	Auxiliary Feedwa	iter Supply to Stea	am Generator Insi	de Containment Isolation (	Check Valves
	CV-O	High	CS	CS (CSJ-02)	Check Valve Open Exercise
AF02	Auxiliary Feedwa	iter Supply to Stea	am Generator Out	side Containment Isolatior	Stop Check MOVs
	CV-C	High	Q	Q	Check Valve Close Exercise
	CV-O	High	cs	CS (CSJ-01)	Check Valve Open Exercise
	Pl	High	2Y	2Y	Position Indication
	ST-C	High	Q	Q	Stroke Time Measurement - Close
	ST-O	High	Q	Q	Stroke Time Measurement - Open
AF03	Auxiliary Feedwa	ater Supply to Stea	am Generator Flo	w Regulating MOVs	
	Pl	High	2Y	2Y	Position Indication
	ST-C	High	Q	Q	Stroke Time Measurement - Close
	ST-O	High	Q	Q	Stroke Time Measurement - Open
AF04	Auxiliary Feedwa	ater Turbine Trip a	and Throttle Valve	(MS0514)	
	PI	High	2Y	2Y	Position Indication
	ST-C	High	Q	Q	Stroke Time Measurement - Close
	ST-O	High	Q	Q	Stroke Time Measurement - Open
AF05	Main Steam to A	Auxiliary Feedwate	er Turbine Warm-u	ıp Valve	
	FS-C	Low	Q	18MO	Fail Safe Test - Close
	Pl	Low	2Y	18MO	Position Indication
	ST-C	Low	Q	18MO	Stroke Time Measurement - Close
	ST-O	Low	Q	18MO	Stroke Time Measurement - Open
AF06	Auxiliary Feedw	ater Pump Discha	urge Cross-Tie Val	ves	
	FS-C	Low	Q	54MO	Fail Safe Test - Close
	PI	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
AF07	Auxiliary Feedw	ater Auto Recirc \	/alves		
	CV-O	High	Q	Q	Check Valve Open Exercise
	CV-OP	High	Q	Q	Check Valve Partial Open Exercise
AF08	Main Steam to	AF Turbine Suctio	n Stop Check MO	V (MS0143)	
	CV-O	Medium	Q	R	Check Valve Open Exercise
	Pl	Medium	2Y	2Y	Position Indication
	ST-C	Medium	Q	R	Stroke Time Measurement - Close
	ST-O	Medium	Q	R	Stroke Time Measurement - Open

# Test Description and Frequency

Mondayy,	October	14,	2002

APOI

Test

IST Rank

RCS Hot Leg Sample to PASS Lab OCIVs

111 01	noo not Eeg oan	ipic to i noo Lu	00000		
	FS-C	Low	Q	R	Fail Safe Test - Close
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	PI	Low	2Y	2Y (VRR-01)	Position Indication
	ST-C	Low	Q	R (VRR-02)	Stroke Time Measurement - Close
AP02	Containment Norr	nal Sump to PA	SS Lab OCIVs		
	FS-C	Low	Q	R	Fail Safe Test - Close
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	PI	Low	2Y	2Y	Position Indication
	ST-C	Low	Q	R	Stroke Time Measurement - Close
AP03	RHR Sample to P	ASS Lab OCIVs	5		
	FS-C	Low	Q	R	Fail Safe Test - Close
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	PI	Low	2Y	2Y	Position Indication
	ST-C	Low	Q	R	Stroke Time Measurement - Close
AP04	PASS Waste Coll	lection Unit Retu	ım to Pressurizer F	Relief Tank OCIV	
	FS-C	Low	Q	R	Fail Safe Test - Close
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	Pl	Low	2Y	2Y	Position Indication
	ST-C	Low	Q	R	Stroke Time Measurement - Close
AP05	Containment Air S	Sample Supply a	and Return to PAS	S Lab OCIVs	
	FS-C	Low	Q	3YR	Fail Safe Test - Close
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	PI	Low	2Y	3YR	Position Indication
	ST-C	Low	Q	3YR	Stroke Time Measurement - Close
BAOI	Breathing Air Sys	tem Inside Cont	ainment Isolation (	Check Valve	
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
BA02	Breathing Air Sys	tem Outside Co	ntainment Isolation	n Manual Valve	
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
CC01	Thermal Relief fo	r Penetration M-	40 CCW return for	r the RCPs	
	CV-C	Low	RF	R	Check Valve Close Exercise
	CV-O	Low	RF	R	Check Valve Open Exercise
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
CC02	CCW Supply to the	he RCP Therma	l Barriers (Double	inlet check valves)	
	DA	Low	RF	6YR	Disassemble and Inspect

Frequency RI-IST Frequency IST TEST DESCRIPTION

CC03	Penetration M-40	CCW return for t	the RCPs		
	FS-C	Low	Q	R	Fail Safe Test - Close
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	PI	Low	2Y	2Y	Position Indication
	ST-C	Low	Q	R	Stroke Time Measurement - Close
CC04	RHR Heat Exchan	iger - CCW Outle	et Valves		
	FS-O	High	Q	Q	Fail Safe Test - Open
	PI	High	2Y	2Y	Position Indication
	ST-O	High	Q	Q	Stroke Time Measurement - Open
CC05	Common Suction	Header Isolation	I Valves (Trains A, I	3, & C) MOVs	
	PI	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
CC06	Common Supply H	leader Isolation	Valves (Trains A, B	, & C)	
	PI	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
CC07	CCW Heat Exchar	nger Outlet MOV	/s (Trains A, B, and	C)	
	PI	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
CC08	CCW Heat Exchar	nger Bypass MC	)Vs (Trains A, B, an	d C)	
	Pl	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
CC09	CCW return from t	the RCFCs, Insid	de Containment Iso	lation Valves (Trains	s A, B, and C)
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	PI	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
CC09A	CCW return from t	the RCFCs, Out	side Containment Is	olation Valves (Trai	ns A, B, and C)
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	PI	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open

Frequency RI-IST Frequency IST TEST DESCRIPTION

GROUP

Test

IST Rank

GROUP	Test	IST Rank	Frequency	<b>RI-IST Frequency</b>	IST TEST DESCRIPTION
CC10	CCW Supply (O	CIV) to RHR Pump	and Heat Excha	nger - Trains A, B, and C	
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	PI	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
CC11	CCW Supply (O	CIV) to Reactor Co	ontainment Fan C	oolers - Trains A, B, and C	;
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	PI	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
CC12	CCW Return fro	m RHR Pump and	Heat Exchanger	- Trains A, B, and C	
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	Pl	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
CC13	Chilled Water R	eturn from RCFCs	Outside Containr	nent Isolation MOV (Trains	A, B, and C)
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Isolation Valve
	Pl	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
<i>CC14</i>	Chilled Water S	upply to RCFCs O	utside Containme	nt Isolation MOV (Trains A	A, B, and C)
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	Pl	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
CC15	CCW Supply He	eader to Spent Fue	el Pool Heat Exch	anger, First and Second Ise	olation
	Pl	Low	2Y	3YR	Position Indication
	ST-C	Low	Q	3YR	Stroke Time Measurement - Close
CC16	CCW Supply He	eader to Non-Safet	ty Loads, First and	d Second Isolation	
	PI	Low	2Y	3YR	Position Indication
	ST-C	Low	CS	3YR	Stroke Time Measurement - Close
CC17	CCW Supply to	Excess Letdown H	leat Exchanger Is	olation MOV	
	PI	Low	2Y	2Y	Position Indication
	ST-C	Low	Q	R	Stroke Time Measurement - Close

GROUP	Test	IST Rank	Frequency	<b>RI-IST Frequency</b>	IST TEST DESCRIPTION
CC18	CCW Supply He	eader Isolation to C	harging Pumps (1	Frains A, B, and C)	
	PI	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
CC19	CCW Return Isc	plation from Chargin	ng Pumps (Trains	A, B, and C)	
	PI	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
CC20	CCW Supply to	RCDT Ht Exch ar	nd Excess Letdow	'n	
	PI	Low	2Y	2Y	Position Indication
	ST-C	Low	Q	R	Stroke Time Measurement - Close
CC21	CCW Supply to	RCDT Ht Exch.			
	PI	Low	2Y	2Y	Position Indication
	ST-C	Low	Q	R	Stroke Time Measurement - Close
CC22	CCW Supply to	RCP Coolers Outs	ide Containment	Isolation MOVs	
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	PI	Low	2Y	3YR	Position Indication
	ST-C	Low	Q	3YR	Stroke Time Measurement - Close
CC23	CCW Return fro	om RCP Coolers, C	ontainment Isolat	ion MOVs	
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	PI	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
<i>CC24</i>	Chilled Water R	leturn for the RCFC	s, Outside Conta	inment Isolation Valve (Tra	ains A, B, and C)
	FS-C	Low	Q	54MO	Fail Safe Test - Close
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	PI	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
CC25	CCW Supply He	eader to Post Accid	lent Sampling Sy	stem, First and Second Iso	lation
	FS-C	Low	Q	3YR	Fail Safe Test - Close
	PI	Low	2Y	3YR	Position Indication
	ST-C	Low	Q	3YR	Stroke Time Measurement - Close
CC26	CCW Common	Return Header to (	CCW Pump Sucti	on Check Valve (Trains A,	B, and C)
	CV-C	Low	Q	54MO	Check Valve Close Exercise
	CV-O	Low	Q	54MO	Check Valve Open Exercise
CC27	CCW Pump Dis	scharge Check Valv	ve to Common Su	pply Header (Trains A, B,	and C)
	CV-O	Low	Q	54MO	Check Valve Open Exercise

GROUP	Test	IST Rank	Frequency	RI-IST Frequency	IST TEST DESCRIPTION
CC28	CCW Supply to	RCFCs Inside Cor	itainment Isolatior	n Check Valve (Trains A, E	, and C)
	CV-C	Low	APP J	APP J	Check Valve Close Exercise
	CV-O	Low	Q	54MO	Check Valve Open Exercise
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
CC29	CCW Supply to	RHR Pump and He	eat Exchanger Ins	ide Containment Isolation	Check Valve (Trains A, B, and C)
	CV-C	High	APP J	APP J (VRR-03)	Check Valve Close Exercise
	CV-O	High	Q	Q	Check Valve Open Exercise
	LR-CIV	High	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
CC30	CCW Return for	RCDT Heat Excha	anger Check Valv	es	
	DA	Low	RF	3YR	Disassemble and Inspect
CC31	CCW Return for	· Excess Letdown H	leat Exchanger C	heck Valves	
	DA	Low	RF	3YR	Disassemble and Inspect
CC32	CCW Supply to	RCPs Inside Conta	ainment Isolation	Check Valve	
	CV-C	Low	RF	R	Check Valve Close Exercise
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
CC33	RCP Thermal B	arrier Leak Isolatio	n Valves		
	FSE	Low	RF	6YR	Full Stroke Exercise (Manual Valves)
	SP	Low	RF	6YR	Setpoint Verification
CC34	Cross Connect	Valves for CCW St	upply and Return	for Charging Pumps	
	FS-C	Low	Q	3YR	Fail Safe Test - Close
	PI	Low	2Y	3YR	Position Indication
	ST-C	Low	Q	3YR	Stroke Time Measurement - Close
CH01	EAB Control Ro	om Envelope Air H	landling Unit Outle	et Temperature Valve (Trai	ins A, B, and C)
	FS-O	Low	Q	54MO	Fail Safe Test - Open
	PI	Low	2Y	54MO	Position Indication
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
CH02	EAB Main Supp	ily Air Handlıng Uni	t Outlet Temperat	ture Valve (Trains A, B, an	d C)
	FS-O	Low	Q	54MO	Fail Safe Test - Open
	PI	Low	2Y	54MO	Position Indication
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
CM01	RCB Air Sample	e Select Valves for	Containment Hyd	Irogen Monitoring System	
	PI	Low	2Y	6YR	Position Indication
	ST-C	Low	Q	6YR	Stroke Time Measurement - Close
	ST-O	Low	Q	6YR	Stroke Time Measurement - Open

UNUUI	rest	151 <i>Nunk</i>	requency	RI-ISI Frequency	ISI IESI DESCRITITON
CM02	Containment Hy	drogen Monitoring	System Inside a	nd Outside CIVs	
	FS-C	Low	Q	6YR	Fail Safe Test - Close
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	Pl	Low	2Y	6YR	Position Indication
	ST-C	Low	Q	6YR	Stroke Time Measurement - Close
	ST-O	Low	Q	6YR	Stroke Time Measurement - Open
CS01	Containment Sp	ray Pump Dischar	ge Outside Conta	ainment Isolation MOVs	
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	PI	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
CS02	Containment Sp	oray Header Inside	Containment Isc	lation Check Valves	
	DA	Low	RF	6YR	Disassemble and Inspect
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
CV01	Reactor Coolant	t Auxilıary Spray V	alve		
	PI	Medium	2Y	2Y	Position Indication
	ST-C	Medium	CS	R	Stroke Time Measurement - Close
	ST-O	Medium	CS	R	Stroke Time Measurement - Open
CV02	Centrifugal Cha	rging Pump Minim	um Recirc. Contr	ol Valves	
	FS-O	Low	Q	3YR	Fail Safe Test - Open
	PI	Low	2Y	3YR	Position Indication
	ST-O	Low	Q	3YR	Stroke Time Measurement - Open
CV03	RCS Letdown L	ine Inside Contain	ment Isolation By	pass Check Valve (CV002	2)
	CV-C	Low	RF	R	Check Valve Close Exercise
	CV-O	Low	RF	R	Check Valve Open Exercise
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
CV04	RCS Seal Wate	r Return Inside Co	ontainment Isolati	on Bypass Check Valve (C	V0078)
	CV-C	Low	RF	R	Check Valve Close Exercise
	CV-O	Low	RF	R	Check Valve Open Exercise
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
CV05	(CV0346, 351) I	BAT Pump recirc	valves		
	CV-O	Low	Q	3YR	Check Valve Open Exercise
CV06	RCP Seal Inject	tion Check Valve (	Class 1 Boundar	y Isolation)	
	CV-C	Low	R	6YR	Check Valve Close Exercise
	CV-O	Low	Q	6YR	Check Valve Open Exercise

Frequency RI-IST Frequency IST TEST DESCRIPTION

GROUP

Test

IST Rank

GROUP	Test	IST Rank	Frequency	<b>RI-IST Frequency</b>	IST TEST DESCRIPTION
CV07	Seal Injection to	RCPs Inside Cont	ainment Isolation	Check Valves	
	CV-C	Low	RF	6YR	Check Valve Close Exercise
	CV-O	Low	Q	6YR	Check Valve Open Exercise
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
CV08	Boric Acıd Polis	hing Return to Bori	c Acid Tank		
	CV-C	Low	Q	3YR	Check Valve Close Exercise
CV09	Centrifugal Cha	rging Pump Minimi	um Recirc. Check	Valves	
	CV-O	Low	Q	3YR	Check Valve Open Exercise
CV10	Reactor Coolan	t Auxiliary Spray In	let Check Valve (	CV0009)	
	CV-O	Medium	CS	R	Check Valve Open Exercise
CVII	CVCS SEAL W	ATER INJECTION	FLOW CONTRO	L VALVE	
	FS-O	Low	CS	R	Fail Safe Test - Open
	PI	Low	2Y	2Y	Position Indication
	ST-O	Low	CS	R	Stroke Time Measurement - Open
CV12	Letdown Orifice	Header Isolation \	/alve		
	FS-C	Low	CS	R	Fail Safe Test - Close
	PI	Low	2Y	2Y	Position Indication
	ST-C	Low	CS	R	Stroke Time Measurement - Close
CV13	RCS Charging	Flow Control Valve			
	FS-O	Medium	CS	R	Fail Safe Test - Open
	PI	Medium	2Y	2Y	Position Indication
	ST-O	Medium	CS	R	Stroke Time Measurement - Open
CV14	Manual Alterna	te Borate Check Va	alve		
	CV-C	Low	RF	R	Check Valve Close Exercise
	CV-O	Low	RF	R	Check Valve Open Exercise
CV15	Charging Head	er Check Valve (C	V671)		
	CV-C	Low	RF	R	Check Valve Close Exercise
	CV-O	Low	Q	R	Check Valve Open Exercise
CV16	Boric Acid Sup	ply to Concentrated	d BA Polishing De	mineralizer Isolation Valve	s
	FS-C	Low	Q	3YR	Fail Safe Test - Close
	PI	Low	2Y	3YR	Position Indication
	ST-C	Low	Q	3YR	Stroke Time Measurement - Close

CV19 RCS Charging Outside Containment Isolation MOV	
	an Malua
LR-CIV Medium 30 MO APP J Leak Rate Test - Cntmt Isolati	on valve
PI Medium 2Y 2Y Position Indication	
ST-C Medium CS R Stroke Time Measurement - C	lose
ST-O Medium CS R Stroke Time Measurement - C	pen
CV20 RCS Letdown Isolation (Class 1 Boundary Isolation)	
Pl Low 2Y 3YR Position Indication	
ST-C Low CS 3YR Stroke Time Measurement - C	lose
CV21 Centrifugal Charging Pump Discharge Isolation MOVs	
PI Low 2Y 3YR Position Indication	
ST-C Low Q 3YR Stroke Time Measurement - C	lose
ST-O Low Q 3YR Stroke Time Measurement - C	pen
CV22 Volume Control Tank Outlet Isolation MOVs	
PI Low 2Y 3YR Position Indication	
ST-C Low CS 3YR Stroke Time Measurement - C	lose
CV23 Reactor Water Storage Tank to Charging Pump Suction Header Isolation MOVs	
PI Low 2Y 3YR Position Indication	
ST-O Low CS 3YR Stroke Time Measurement - C	pen
CV24 Alternate Bonc Acid Make-Up Supply Isolation MOV (CV0218)	
PI Low 2Y 2Y Position Indication	
ST-O Low Q R Stroke Time Measurement - C	pen
CV25 RCS Normal and Alternate Charging Flow Isolation MOVs	
PI Medium 2Y 3YR Position Indication	
ST-C Medium CS 3YR Stroke Time Measurement - C	lose
ST-O Medium CS 3YR Stroke Time Measurement - C	open
CV26 RCS Letdown Inside and Outside Containment Isolation MOVs	
LR-CIV Low 30 MO APP J Leak Rate Test - Cntmt Isolat	on Valve
PI Low 2Y 3YR Position Indication	
ST-C Low CS 3YR Stroke Time Measurement - C	lose
CV27 RCP Seal Injection Outside Containment Isolation MOVs	
LR-CIV Low 30 MO APP J Leak Rate Test - Cntmt Isolat	ion Valve
PI Low 2Y 6YR Position Inducation	
ST-C Low CS 6YR Stroke Time Measurement - C	Close
CV28 Reactor Coolant Pump Seal Water Supply MOV (CV8348)	
PI Low 2Y 2Y Position Indication	
ST-O Low Q R Stroke Time Measurement - C	Open

_

GROUP	Test	IST Rank	Frequency	<b>RI-IST Frequency</b>	IST TEST DESCRIPTION
CV29	RCP Seal Water	r Return Inside and	Outside Contain	ment Isolation MOVs	
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	Pl	Low	2Y	3YR	Position Indication
	ST-C	Low	CS	3YR	Stroke Time Measurement - Close
CV30	RCS Excess Let	tdown Heat Exchar	nger Inlet Isolation	MOVs (Class 1 Boundary	r Isolation)
	PI	Low	2Y	3YR	Position Indication
	ST-C	Low	Q	3YR	Stroke Time Measurement - Close
CV32	Charging Pump	B Discharge Bypa	ss Control Valve		
	PI	Low	2Y	2Y	Position Indication
	ST-C	Low	Q	R	Stroke Time Measurement - Close
	ST-O	Low	Q	R	Stroke Time Measurement - Open
CV33	Centrifugal Char	rging Pump Discha	rge Check Valves	3	
	CV-C	Low	Q	3YR	Check Valve Close Exercise
	CV-O	Low	Q	3YR	Check Valve Open Exercise
CV34	(CV0334) check	valve			
	CV-O	Low	CS	R	Check Valve Open Exercise
CV35	RC Filters out to	RHR Outside Cor	ntainment Isolatio	n Manual Valve	
	LR-CIV	APP J	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
CV37	Charging Heade	er Check Valve			
	CV-C	Low	RF	R	Check Valve Close Exercise
	CV-O	Low	Q	R	Check Valve Open Exercise
CV38	RCS Normal an	d Alternate Charg	ng Check Valves	(Class 1 Boundary Valves)	)
	CV-C	Low	RF	3YR	Check Valve Close Exercise
	CV-O	Low	CS	3YR	Check Valve Open Exercise
CV40	RCS Charging I	Inside Containmen	t Isolation Check	Valve.	
	CV-C	Low	RF	R	Check Valve Close Exercise
	CV-O	Low	Q	R	Check Valve Open Exercise
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
CV41	Alternate Boric	Acid Make-Up Sup	ply Isolation Che	ck Valve (CV0217)	
	CV-O	Low	CS	R	Check Valve Open Exercise
CV42	Boric Acid Pum	p Discharge Check	< Valves (CV349,	338)	
	CV-C	Low	Q	3YR	Check Valve Close Exercise
	CV-O	Low	Q	3YR	Check Valve Open Exercise
CV43	RC Filters out to	o RHR Inside Cont	ainment Isolation	Check Valve	
	LR-CIV	APP J	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve

GROUP	Test	IST Rank	Frequency	RI-IST Frequency	IST TEST DESCRIPTION		
CV44	Reactor Water S	Storage Tank to Ch	arging Pump Suc	tion Header Isolation Chec	k Valve		
	CV-O	Low	CS	R	Check Valve Open Exercise		
DW01	Demineralizer Water to the RCB Inside Containment Isolation Check Valve						
	LR-CIV	APP J	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve		
DW02	Demineralızer W	Vater to the RCB C	utside Containme	ent Isolation Manual Valve			
	LR-CIV	APP J	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve		
ED01	Containment No	ormal Sump Discha	arge Outside Cont	ainment Isolation Valve (F	V7800)		
	FS-C	Low	Q	R	Fail Safe Test - Close		
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve		
	PI	Low	2Y	2Y	Position Indication		
	ST-C	Low	Q	R	Stroke Time Measurement - Close		
ED02	Containment No	ormal Sump Discha	arge Inside Conta	Inment Isolation MOV (EDC	0064)		
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve		
	PI	Low	2Y	2Y	Position Indication		
	ST-C	Low	Q	R	Stroke Time Measurement - Close		
EW01	Essential Coolir	ng Water Blowdow	n Isolation Valve	(Trains A, B, and C)			
	FS-C	Low	Q	54MO	Fail Safe Test - Close		
	PI	Low	2Y	54MO	Position Indication		
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close		
EW02	Essential Coolu	ng Water Pump Di	scharge Vent Che	eck Valve (Trains A, B, and	C)		
	DA	Low	RF	54MO	Disassemble and Inspect		
EW03	ECW Screen W	ash Booster Pum	o Discharge Chec	k Valve (Trains A, B, and C	)		
	CV-O	Low	Q	54MO	Check Valve Open Exercise		
EW04	Essential Cooli	ng Water Pump Di	scharge Strainer I	Emergency Backflush Cheo	ck Valve (Trains A, B, and C)		
	CV-O	Low	Q	54MO	Check Valve Open Exercise		
	DA	Low	RF	54MO	Disassemble and Inspect		
EW05	Essential Cooli	ng Water Pump Di	scharge MOV (Tr	ains A, B, and C)			
	PI	Medium	2Y	54MO	Position Indication		
	ST-O	Medium	Q	54MO	Stroke Time Measurement - Open		
<i>EW06</i>	ECW Self-Clea	ning Strainer Back	flush Throttle Val	ve (Manual)			
	FSE	Low	Q	54MO	Full Stroke Exercise (Manual Valves)		
<i>EW07</i>	ECW Self-Clea	aning Strainer Eme	rgency Backflush	Manual Valve			
	FSE	Low	Q	54MO	Full Stroke Exercise (Manual Valves)		
EW08	Essential Cool	ing Water Pump Di	scharge Check V	alve (Trains A, B, and C)			
	CV-O	High	Q	Q	Check Valve Open Exercise		
		-					

GROUP	Test	IST Rank	Frequency	RI-IST Frequency	IST TEST DESCRIPTION
<i>EW09</i>	ECW Screen Wa	ash Pump Dischar	ge Valve (Trains /	A, B, and C)	
	FS-O	Low	Q	54MO	Fail Safe Test - Open
	Pl	Low	2Y	54MO	Position Indication
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
FC01	SFP Pump Disch	harge Reactor Cav	ity ICIV (Manual)		
	LR-CIV	APP J	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
FC02	SFP Pump Cool	ing Supply and Re	turn from In-Cont	ainment Storage Area CIV	(Manual)
	LR-CIV	APP J	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
FP01	Fire Protection to	o the RCB Inside C	Containment Isola	tion Check Valve	
	CV-C	Low	RF	APP J	Check Valve Close Exercise
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
FP02	Fire Protection to	o the RCB Outside	Containment Iso	lation MOV	
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	PI	Low	2Y	2Y	Position Indication
	ST-C	Low	Q	R	Stroke Time Measurement - Close
FW01	Feedwater to the	e Steam Generato	r Isolation Valves		
	FS-C	Low	CS	6YR	Fail Safe Test - Close
	Pl	Low	2Y	6YR	Position Indication
	PSE	Low	Q	6YR	Partial Stroke Exercise
	ST-C-A	Low	CS	6YR	Stroke Time Msrmt - Close (A Train)
	ST-C-B	Low	CS	6YR	Stroke Time Msrmt - Close (B Train)
FW02	Feedwater flow of	control valves			
	FS-C	Low	CS	6YR	Fail Safe Test - Close
	Pl	Low	2Y	6YR	Position Indication
	ST-C-A	Low	CS	6YR	Stroke Time Msrmt - Close (A Train)
	ST-C-B	Low	CS	6YR	Stroke Time Msrmt - Close (B Train)
FW03	Feedwater Bypa	ss Flow Control V	alves		
	FS-C	Low	CS	6YR	Fail Safe Test - Close
	Pl	Low	2Y	6YR	Position Indication
	ST-C-A	Low	CS	6YR	Stroke Time Msrmt - Close (A Train)
	ST-C-B	Low	CS	6YR	Stroke Time Msrmt - Close (B Train)
FW04	Steam Generato	or Feedwater Inlet	Isolation Bypass	Valves	
	FS-C	Low	Q	6YR	Fail Safe Test - Close
	PI	Low	2Y	6YR	Position Indication
	ST-C-A	Low	Q	6YR	Stroke Time Msrmt - Close (A Train)
	ST-C-B	Low	Q	6YR	Stroke Time Msrmt - Close (B Train)

GROUP	Test	IST Rank	Frequency	RI-IST Frequency	IST TEST DESCRIPTION	
FW05	Steam Generator Preheater Bypass Valves					
	FS-C	Low	CS	6YR	Fail Safe Test - Close	
	PI	Low	2Y	6YR	Position Indication	
	ST-C-A	Low	CS	6YR	Stroke Time Msrmt - Close (A Train)	
	ST-C-B	Low	CS	6YR	Stroke Time Msrmt - Close (B Train)	
HC01	RCB Supplemen	ital Purge Supply a	and Return Inside	Containment Isolation MO	Vs	
	LR-CIV	Medium	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve	
	PI	Medium	2Y	3YR	Position Indication	
	ST-C	Medium	Q	3YR	Stroke Time Measurement - Close	
HC02	RCB Supplemen	ntal Purge Supply a	and Return Outsid	e Containment Isolation A	OVs	
	FS-C	Medium	Q	3YR	Fail Safe Test - Close	
	LR-CIV	Medium	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve	
	Pl	Medium	2Y	3YR	Position Indication	
	ST-C	Medium	Q	3YR	Stroke Time Measurement - Close	
HC03	RCB Normal Pu	rge Supply and Ex	haust Containmer	nt Isolation (48") MOVs		
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve	
	Pl	Low	2Y	6YR	Position Indication	
	ST-C	Low	CS	6YR	Stroke Time Measurement - Close	
IA01	Instrument Air to	RCB Inside Conta	ainment Isolation	Check Valve (IA0541)		
	CV-C	Low	RF	APP J	Check Valve Close Exercise	
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve	
IA02	Instrument Air to	RCB Outside Cor	ntainment Isolation	n Valve (1A8565)		
	FS-C	Low	CS	R	Fail Safe Test - Close	
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve	
	PI	Low	2Y	2Y	Position Indication	
	ST-C	Low	CS	R	Stroke Time Measurement - Close	
MS01	Main Steam Isol	ation Valves				
	FS-C	Low	CS	6YR	Fail Safe Test - Close	
	PI	Low	2Y	6YR	Position Indication	
	ST-C-A	Low	CS	6YR	Stroke Time Msrmt - Close (A Train)	
	ST-C-B	Low	CS	6YR	Stroke Time Msrmt - Close (B Train)	

Test

### IST Rank Frequency RI-IST Frequency IST TEST DESCRIPTION

MS02	Main Steam Safe	ty Valves			
	SP	Medium	RF	5YR	Setpoint Verification
	SP	Medium	RF	5YR	Setpoint Verification
	SP	Medium	RF	5YR	Setpoint Verification
	SP	Medium	RF	5YR	Setpoint Verification
	SP	Medium	RF	5YR	Setpoint Verification
	SP	Medium	RF	5YR	Setpoint Verification
	SP	Medium	RF	5YR	Setpoint Verification
	SP	Medium	RF	5YR	Setpoint Verification
	SP	Medium	RF	5YR	Setpoint Verification
	SP	Medium	RF	5YR	Setpoint Verification
	SP	Medium	RF	5YR	Setpoint Verification
	SP	Medium	RF	5YR	Setpoint Verification
	SP	Medium	RF	5YR	Setpoint Verification
	SP	Medium	RF	5YR	Setpoint Verification
	SP	Medium	RF	5YR	Setpoint Verification
	SP	Medium	RF	5YR	Setpoint Verification
	SP	Medium	RF	5YR	Setpoint Verification
	SP	Medium	RF	5YR	Setpoint Verification
	SP	Medium	RF	5YR	Setpoint Venifcation
	SP	Medium	RF	5YR	Setpoint Venfication
MS03	Main Steam Pow	er Operated Relie	f Valves		
	FS-C	High	Q	Q	Fail Safe Test - Close
	PI	High	2Y	2Y	Position Indication
	ST-C	High	Q	Q	Stroke Time Measurement - Close
	ST-O	High	Q	Q	Stroke Time Measurement - Open
MS04	Main Steam Bypa	ass Isolation Valve	s		
	FS-C	Low	Q	6YR	Fail Safe Test - Close
	PI	Low	2Y	6YR	Position Indication
	ST-C-A	Low	Q	6YR	Stroke Time Msrmt - Close (A Train)
	ST-C-B	Low	Q	6YR	Stroke Time Msrmt - Close (B Train)
PO01	RCP Motor Oil R	eturn system			
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
PS01	Pressunzer Vapo	or Space Sample I	nside Containment	Isolation Valve (44	50)
	FS-C	Low	Q	R	Fail Safe Test - Close
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	PI	Low	2Y	2Y	Position Indication
	ST-C	Low	Q	R	Stroke Time Measurement - Close

0//00/	1031	101 Munik	Trequency	III ISI Troquency					
PS02	RCS Pressunzer and Hot Leg Sample ICIVs								
	FS-C	Low	Q	54MO	Fail Safe Test - Close				
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve				
	PI	Low	2Y	54MO	Position Indication				
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close				
PS03	RHR and Accum	ulator Sample ICI	/s						
	FS-C	Low	Q	3YR	Fail Safe Test - Close				
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve				
	Pl	Low	2Y	3YR	Position Indication				
	ST-C	Low	Q	3YR	Stroke Time Measurement - Close				
PS04	Pressurizer Liqu	id Sample OCIV							
	FS-C	Low	Q	R	Fail Safe Test - Close				
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve				
	PI	Low	2Y	2Y	Position Indication				
	ST-C	Low	Q	R	Stroke Time Measurement - Close				
PS05	Pressurizer Vap	or Space Sample (	VIOCIV						
	FS-C	Low	Q	R	Fail Safe Test - Close				
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve				
	PI	Low	2Y	2Y	Position Indication				
	ST-C	Low	Q	R	Stroke Time Measurement - Close				
PS07	Primary samplin	ng OCIVs (FV4461	and FV4466, FV	4456)					
	FS-C	Low	Q	3YR	Fail Safe Test - Close				
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve				
	PI	Low	2Y	3YR	Position Indication				
	ST-C	Low	Q	3YR	Stroke Time Measurement - Close				
RA01	RCB Atmosphe	re Rad Monitor Ins	ide and Outside	Containment Isolation Valv	es				
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve				
	PI	Low	2Y	6YR	Position Indication				
	ST-C	Low	Q	6YR	Stroke Time Measurement - Close				
RC01	Pressurizer Rel	ef Tank Vent to G	aseous Waste Pr	rocessing System Outside	Containment Isolation Valve (3652)				
	FS-C	Low	Q	R	Fail Safe Test - Close				
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve				
	PI	Low	2Y	2Y	Position Indication				
	ST-C	Low	Q	R	Stroke Time Measurement - Close				

IST Rank Frequency RI-IST Frequency IST TEST DESCRIPTION

GROUP

Test

RC02	Reactor Make-up	Water to RCP St	andpipe and PRT	OCIV (3651)	
	FS-C	Low	Q	R	Fail Safe Test - Close
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	Pl	Low	2Y	2Y	Position Indication
	ST-C	Low	Q	R	Stroke Time Measurement - Close
RC03	RCS Pressurizer	Safety Valves			
	SP	Medium	RF	R	Setpoint Venfication
	SP	Medium	RF	R	Setpoint Verification
	SP	Medium	RF	R	Setpoint Verification
RC04	RCS Power Ope	rated Relief Valves	5		
	FS-C	High	CS	CS (CSJ-03)	Fail Safe Test - Close
	PI	High	2Y	2Y	Position Indication
	ST-O	High	CS	CS (CSJ-03)	Stroke Time Measurement - Open
RC05	RCS PORV Bloc	k Valves			
	Pi	High	2Y	Q	Position Indication
	ST-C	High	Q	Q	Stroke Time Measurement - Close
	ST-O	High	Q	Q	Stroke Time Measurement - Open
RC06	Reactor Vessel I	Head Vent Isolation	n Valves		
	FS-C	Low	CS	6YR	Fail Safe Test - Close
	PI	Low	2Y	6YR	Position Indication
	ST-C	Low	CS	6YR	Stroke Time Measurement - Close
	ST-O	Low	CS	6YR	Stroke Time Measurement - Open
RC07	Reactor Vessel I	Head Vent Throttle	Valves		
	FS-C	Low	CS	3YR	Fail Safe Test - Close
	P۱	Low	2Y	3YR	Position Indication
	ST-C	Low	CS	3YR	Stroke Time Measurement - Close
	ST-O	Low	CS	3YR	Stroke Time Measurement - Open
RC08	Pressurizer Relie	ef Tank Vent to Ga	seous Waste Pro	cessing System Inside	Containment Isolation Valve (3652)
	FS-C	Low	Q	R	Fail Safe Test - Close
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	Pl	Low	2Y	2Y	Position Indication
	ST-C	Low	Q	R	Stroke Time Measurement - Close
RC09	Reactor Make-up	p Water to RCP St	andpipe and PRT	Outside Containment	Check Valve
	CV-C	Low	RF	APP J	Check Valve Close Exercise
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
RD01	RCS Vacuum D	egassing from RC	3 ICIV and OCIV		
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve

Test

IST Rank

## Frequency RI-IST Frequency IST TEST DESCRIPTION

GROUP	Test	IST Rank	Frequency	<b>RI-IST Frequency</b>	IST TEST DESCRIPTION
RH01	Residual Heat R	emoval Heat Exch	ange Control Valv	ve (Trains A, B, and C)	
	FS-O	Low	Q	54MO	Fail Safe Test - Open
	PI	Low	2Y	54MO	Position Indication
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
RH02	Residual Heat R	emoval Outlet to C	VCS Letdown Va	lves	
	Pl	Low	2Y	3YR	Position Indication
	ST-C	Low	Q	3YR	Stroke Time Measurement - Close
	ST-O	Low	Q	3YR	Stroke Time Measurement - Open
RH03	Residual Heat R	lemoval Pump Min	iflow MOVs (Trair	is A, B, and C)	
	PI	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
RH04	Residual Heat R	lemoval Inlet Isolal	ion MOVs (Class	1 Boundary) Trains A, B, a	and C
	LR-PIV	Medium	CS	54MO	Leak Rate Test - Pressure Isoltn Valve
	PI	Medium	2Y	54MO	Position Indication
	ST-C	Medium	CS	54MO	Stroke Time Measurement - Close
	ST-O	Medium	CS	54MO	Stroke Time Measurement - Open
RH05	Residual Heat R	lemoval Pump Min	Iflow Check Valve	es (Trains A, B, and C)	
	CV-O	Low	6M	54MO	Check Valve Open Exercise
RH06	Residual Heat R	temoval Pump Dis	charge Check Va	ves (Trains A, B, and C)	
	CV-O	Medium	CS	54MO	Check Valve Open Exercise
	CV-OP	Medium	6M	54MO	Check Valve Partial Open Exercise
RH07	Low Head Safet	y Injection to RCS	Hot Leg Check V	alves (Trains A, B, and C)	
	CV-C	Low	CS	54MO	Check Valve Close Exercise
	CV-O	Low	CS	54MO	Check Valve Open Exercise
	LR-PIV	Low	CS	54MO	Leak Rate Test - Pressure Isoltn Valve
RH08	Cold Leg Injection	on Check Valves (	Trains A, B, and	C)	
	CV-C	Medium	CS	54MO	Check Valve Close Exercise
	CV-O	Medium	CS	54MO	Check Valve Open Exercise
	LR-PIV	Medium	CS	54MO	Leak Rate Test - Pressure Isoltn Valve
RH09	RHR Return to I	RWST CIVs			
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
RM01	Reactor Make-u	p Water Non-esse	ntial services isol	ation Valves	
	FS-C	Low	Q	3YR	Fail Safe Test - Close
	PI	Low	2Y	3YR	Position Indication
	ST-C	Low	Q	3YR	Stroke Time Measurement - Close

GROUP	Test	IST Rank	Frequency	<b>RI-IST Frequency</b>	IST TEST DESCRIPTION
SA01	Service Air to R	CB Inside Containn	nent Isolation Che	eck Valve	
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
SA02	Service Air to R	CB Outside Contai	nment Isolation N	lanual Valve	
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
SB01	Steam Generato	or Bulk Water Sam	ple Outside Conta	ainment Isolation Valves	
	FS-C	Low	Q	6YR	Fail Safe Test - Close
	PI	Low	2Y	6YR	Position Indication
	ST-C	Low	Q	6YR	Stroke Time Measurement - Close
SB02	Steam Generato	or Blowdown Outsie	de Containment l	solation Valves	
	FS-C	Low	Q	6YR	Fail Safe Test - Close
	PI	Low	2Y	6YR	Position Indication
	ST-C	Low	Q	6YR	Stroke Time Measurement - Close
SD01	Starting Air Rec	eiver Inlet Check V	/alves		
	CV-C	Low	Q	54MO	Check Valve Close Exercise
<i>SI01</i>	Safety Injection	System Test Line	Containment Isol	ation Valves	
	FS-C	Low	Q	3YR	Fail Safe Test - Close
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	PI	Low	2Y	3YR	Position Indication
	ST-C	Low	Q	3YR	Stroke Time Measurement - Close
<i>SI02</i>	Accumulator Nr	trogen Supply Out	side Containment	Isolation Valve (3983)	
	FS-C	Low	Q	R	Fail Safe Test - Close
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	PI	Low	2Y	2Y	Position Indication
	ST-C	Low	Q	R	Stroke Time Measurement - Close
<i>SI03</i>	Accumulator Ni	trogen Supply Insid	de Containment la	solation Check Valve (SI00	58)
	CV-C	Low	RF	APP J	Check Valve Close Exercise
	LR-CiV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
SI04	Reactor Water	Storage Tank Clea	n-Up by SFPCCS	S Isolation Valves	
	FS-C	Low	Q	3YR	Fail Safe Test - Close
	Pl	Low	2Y	3YR	Position Indication
	ST-C	Low	Q	3YR	Stroke Time Measurement - Close
SI05	Residual Heat	Exchanger Bypass	Valves (Trains A	, B, and C)	
	FS-C	Low	CS	54MO	Fail Safe Test - Close
	PI	Low	2Y	54MO	Position Indication
	ST-C	Low	CS	54MO	Stroke Time Measurement - Close

GROUP	Test	IST Rank	Frequency	<b>RI-IST Frequency</b>	IST TEST DESCRIPTION
SI06	Low Head Safet	y Injection Pump D	)ischarge Outside	Containment Isolation Val	ves (Trains A, B, and C)
	LR-CIV	Low	30 MO	54MO	Leak Rate Test - Cntmt Isolation Valve
	PI	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
<i>SI07</i>	Safety Injection	Emergency Sump	Outside Containn	nent Isolation MOVs (Train	s A, B, and C)
	LR-CIV	Medium	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	PI	Medium	2Y	54MO	Position Indication
	ST-C	Medium	Q	54MO	Stroke Time Measurement - Close
	ST-O	Medium	Q	54MO	Stroke Time Measurement - Open
<i>SI08</i>	High Head Safe	ty Injection Pump	Discharge Outside	e Containment Isolation Va	lves (Trains A, B, and C)
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	PI	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
	ST-O	Low	. Q	54MO	Stroke Time Measurement - Open
SI09	High Head Safe	ty Injection Cold L	eg Isolation (Train	s A, B, and C)	
	PI	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
SI 10	High Head Safe	ty Injection Hot Le	g Isolation (Trains	A, B, and C)	
	PI	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
SII I	Residual Heat F	Removal Heat Excl	hanger Return to I	Hot Leg MOV (Trains A, B,	and C)
	PI	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
SI12	Cold Leg Injecti	ion MOVs (Trains /	A, B, C)		
	PI	Low	2Y	54MO	Position Indication
	ST-C	Low	Q	54MO	Stroke Time Measurement - Close
	ST-O	Low	Q	54MO	Stroke Time Measurement - Open
SI13	High Head Safe	ety Injection Pump	Recirc Isolation		
	PI	Medium	2Y	54MO	Position Indication
	ST-C	Medium	Q	54MO	Stroke Time Measurement - Close
	ST-O	Medium	Q	54MO	Stroke Time Measurement - Open

GROUP	Test	IST Rank	Frequency	RI-IST Frequency	IST TEST DESCRIPTION
SI14	Low Head Safety	y Injection Pump F	lecirc Isolation		
	PI	Medium	2Y	54MO	Position Indication
	ST-C	Medium	Q	54MO	Stroke Time Measurement - Close
	ST-O	Medium	Q	54MO	Stroke Time Measurement - Open
SI15	Safety Injection	System Reactor W	/ater Storage Tan	k Isolation	
	Pi	Medium	2Y	54MO	Position Indication
	ST-C	Medium	Q	54MO	Stroke Time Measurement - Close
	ST-O	Medium	Q	54MO	Stroke Time Measurement - Open
SI16	Accumulator Nit	rogen Vent Valves	(Trains A, B, and	C)	
	PI	Low	2Y	54MO	Position Indication
	ST-C	Low	CS	54MO	Stroke Time Measurement - Close
	ST-O	Low	cs	54MO	Stroke Time Measurement - Open
<i>SI17</i>	Accumulator Nit	rogen Vent Back-l	Jp Valve (899)		
	PI	Low	2Y	2Y	Position Indication
	ST-C	Low	CS	R	Stroke Time Measurement - Close
	ST-O	Low	CS	R	Stroke Time Measurement - Open
<i>SI1</i> 8	High Head Safe	ty Injection Pump	Discharge Inside	Containment Isolation Val	ves (Trains A, B, and C)
	CV-C	Low	RF	APP J (VRR-03)	Check Valve Close Exercise
	CV-O	High	RF	R (ROJ-01)	Check Valve Open Exercise
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
SI 19	High Head Safe	ety Injection Pump	Discharge Check	to Cold Leg (Class 1 Bou	indary) (Trains A, B, and C)
	CV-C	High	CS	CS (CSJ-04)	Check Valve Close Exercise
	, CA-O	High	RF	R (ROJ-01)	Check Valve Open Exercise
	LR-PIV	High	CS	CS	Leak Rate Test - Pressure Isoltn Valve
SI20	High Head Safe	ty Injection Pump	Discharge Check	to Hot Leg (Class 1 Boun	dary) (Trains A, B, and C)
	CV-C	Low	CS	54MO	Check Valve Close Exercise
	CV-O	Low	RF	54MO	Check Valve Open Exercise
	LR-PIV	Low	CS	54MO	Leak Rate Test - Pressure Isoltn Valve
SI21	Low Head Safe	ty Injection Pump I	Discharge Inside (	Containment Isolation Val	ves (Trains A, B, and C)
	CV-C	Low	RF	APP J (VRR-03)	Check Valve Close Exercise
	CV-O	Medium	RF	54MO	Check Valve Open Exercise
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
SI22	Safety Injection	n System Pumps D	)ischarge Check t	o Hot Leg (Class 1 Bound	ary) (Trains A, B, and C)
	CV-C	Low	CS	54MO	Check Valve Close Exercise
	CV-O	Low	CS	54MO	Check Valve Open Exercise
	LR-PIV	Low	CS	54MO	Leak Rate Test - Pressure Isoltn Valve

GROUP	Test	IST Rank	Frequency	<b>RI-IST Frequency</b>	IST TEST DESCRIPTION
<i>SI23</i>	Accumulator to	Cold Leg Inboard (	Check Valves (Tra	ains A, B, and C)	
	CV-C	High	CS	CS (CSJ-04)	Check Valve Close Exercise
	CV-O	High	RF	R (ROJ-02)	Check Valve Open Exercise
	LR-PIV	High	CS	CS	Leak Rate Test - Pressure Isoltn Valve
SI24	Accumulator Tar	nk Discharge MOV	's (Trains A, B, ar	d C)	
	PI	Low	2Y	54MO	Position Indication
	ST-C	Low	CS	54MO	Stroke Time Measurement - Close
	ST-O	Low	CS .	54MO	Stroke Time Measurement - Open
SI25	Safety Injection	Pumps Suction Ch	neck Valves (Trair	is A, B, and C)	
	CV-C	High	R (DA)	Q (NI)	Check Valve Close Exercise
x	CV-O	High	R	R (ROJ-03)	Check Valve Open Exercise
SI26	Accumulator Nit	rogen Vent Heade	r Bleed Valve (HC	:V-0900)	
	PI	Low	2Y	2Y	Position Indication
	ST-C	Low	CS	R	Stroke Time Measurement - Close
	ST-O	Low	CS	R	Stroke Time Measurement - Open
SI27	Accumulator to	Cold Leg Outboar	d Check Valves (	Trains A, B, and C)	
	CV-C	Low	CS	54MO	Check Valve Close Exercise
	CV-O	Low	RF	54MO	Check Valve Open Exercise
	LR-PIV	Low	CS	54MO	Leak Rate Test - Pressure Isoltn Valve
SL1	High Pressure S	Sludge Lancing CIV	/s		
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
SL2	Low Pressure S	ludge Lancing CIV	's		
,	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
WL01	RCDT Vent Out	tside Containment	Isolation Valve		
	FS-C	Low	Q	R	Fail Safe Test - Close
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	PI	Low	2Y	2Y	Position Indication
	ST-C	Low	Q	R	Stroke Time Measurement - Close
WL02	RCDT to LWPS	Outside Containn	nent Isolation Val	/e	
,	FS-C	Low	Q	R	Fail Safe Test - Close
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isolation Valve
	PI	Low	2Y	2Y	Position Indication
	ST-C	Low	Q	R	Stroke Time Measurement - Close

GROUP	Test	IST Rank	Frequency	RI-IST Frequency	IST TEST DESCRIPTION
WL03	RCDT To LWPS Inside Containment Isolation Valve				
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isoltn Valve
	PI	Low	2Y	2Y	Position Indication
	ST-C	Low	Q	R	Stroke Time Measurement - Close
WL04	RCDT Vent Inside Containment Isolation Valve				
	FS-C	Low	Q	R	Fail Safe Test - Close
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isoltn Valve
	PI	Low	2Y	2Y	Position Indication
	ST-C	Low	Q	R	Stroke Time Measurement - Close
XC01	Reactor Containment Personal Air-lock Safety Check Valves (XC-48, 49)				
	CV-C	Low	Q	3YR	Check Valve Close Exercise
	CV-O	Low	Q	3YR	Check Valve Open Exercise
	LR-CIV	Low	30 MO	APP J	Leak Rate Test - Cntmt Isoltn Valve
XC02	Reactor Containment Air-lock Air Supply Containment Isolation Valves (FV1025, 26,27,28)				
	FS-C	Low	Q	6YR	Fail Safe Test - Close
	LR-CIV	Low	30 MO	6YR	Leak Rate Test - Cntmt Isoltn Valve
	PI	Low	2Y	6YR	Position Indication
	ST-C	Low	Q	6YR	Stroke Time Measurement - Close

•

Test Exception N	umber Test Exception Type
CSJ-01 Group AF02	Cold Shutdown Justification Auxiliary Feedwater Supply to Steam Generator Outside Cntmt Isolation Stop Check MOVs
Safety Function	<ol> <li>Open upon receipt of:</li> <li>A. steam generator low water level,</li> <li>B. low feedwater flow signal from AMSAC, or</li> <li>C. SI initiation signal to allow 500 gpm</li> <li>(per Technical Specification 4.7.1.2.1) flow to Steam Generator 1(2)D.</li> </ol>
	NOTE: The ESF actuation signal allows the stop check valve to function normally through the self-actuating design of the check valve. Operation of the motor operator function is not required for the valve to fulfill its open safety function.
	2. Close (remote manual) for Steam Generator 1(2)D isolation in response to SGTR, FWLB, and MSLB.
Code Requirement	OMa 4.3.2.1 requires check valves to be exercised nominally every three (3) months. OMa 4.3.2.2 requires that each check valve be exercised or examined in a manner that verifies obturator travel to the closed, full-open or partially open position required to fulfill its safety function.
Reason for Exception	These valves can only be full-stroke open exercised by directing auxiliary feedwater flow into the steam generator. The initiation of auxiliary feedwater flow during power operation would result in unwanted thermal shock to the secondary portions of the steam generators. Additionally, the introduction of cold water to the steam generator would cause an unwanted power transient.
Alternate Testing	These valves will be full-stroke open exercised each cold shutdown unless the period of time since the previous full-stroke open exercise is less than three months. Auxiliary feedwater flow will be directed through the valve from its respective pump and into the steam generator. Verification of flow through the valve will provide assurance that the valve has opened sufficiently to perform its safety function.

- -

Test Exception N	umber Test Exception Type
CSJ-02 Group AF01	Cold Shutdown Justification Auxiliary Feedwater Supply to Steam Generator Inside Cntmt Isolation Check Valves
Safety Function	Open to allow 500 gpm (per Technical Specification 4.7.1.2.1) of auxiliary feedwater flow to Steam Generator 1(2)A.
Code Requirement	OMa 4.3.2.1 requires check valves to be exercised nominally every three (3) months. OMa 4.3.2.2 requires that each check valve be exercised or examined in a manner that verifies obturator travel to the closed, full-open or partially open position required to fulfill its safety function.
Reason for Exception	These valves can only be full-stroke open exercised by directing auxiliary feedwater flow into the steam generator. The initiation of auxiliary feedwater flow during power operation would result in unwanted thermal shock to the secondary portions of the steam generators. Additionally, the introduction of cold water to the steam generator would cause an unwanted power transient. Main feedwater flow cannot be used to exercise this check valve during normal power operation due to the thermal shock that would occur by injecting the cooler, stagnant water in the connecting piping. Flow instrumentation is not available in this configuration to verify that the valve has been properly exercised.
Alternate Testing	These valves will be full-stroke open exercised each cold shutdown unless the period of time since the previous full-stroke open exercise is less than three months. Auxiliary feedwater flow will be directed through the valve from its respective pump and into the steam generator. Verification of flow through the valve will provide assurance that the valve has opened sufficiently to perform its safety function.

# Monday, October 14, 2002

Test Exception N	umber Test Exception Type
<i>CSJ-03</i>	Cold Shutdown Justification
Group RC04	RCS Power Operated Relief Valves
Safety Function	1. Remain closed to preserve the integrity of the reactor coolant pressure boundary.
	2. Open to depressurize the RCS to cold shutdown conditions and to mitigate transients/accidents such as MSLB and FWLB.
	3. Open during the long term cooling mode following a SBLOCA to satisfy LHSI pump minimum flow requirements.
	4. Open in response to COMS to provide overpressure mitigation for the RCS and prevent pressure-temperature conditions from exceeding Appendix G limits.
Code Requirement	OMa 4.2.1.1 requires that each active Category B valve be tested nominally every three (3) months for operational readiness.
Reason for Exception	The operability testing (full-stroke open and close exercise) of these valves during normal power operation would require closing the associated block valve to prevent an undesirable RCS pressure and pressurizer level transients. Failure of the valve to properly reseat after the open and close exercise test would require the block valve to be closed and entry into a Limiting Condition for Operation with a possible plant shutdown being required.
Alternate Testing	These valves will be full-stroke open and close exercised, stroke-timed, and their fail-safe actuation verified at each cold shutdown not to exceed once every three months per the requirements of OMa 4.2.1.2

Test Exception N	umber Test Exception Type
CSJ-04	Cold Shutdown Justification
Group SI19	High Head Safety Injection Pump Discharge Check to Cold Leg (Class 1 Boundary) (Trains A, B, and C)
Safety Function	1. Open to inject borated water from either the RWST or the containment sump to the RCS cold legs during the cold leg injection phase of safety injection (Flow rate required is >1,470 gpm and <1620 gpm for HHSI pump lines following completion of modifications to the system that alters its flow characteristics per Technical Specification 4.5.2.g).
	2. Close to prevent the diversion of flow from the accumulator or from the LHSI pump in the event that the corresponding HHSI pump is not running.
	3. Close and be leak tight (CAT A) to maintain RCS pressure boundary, GDC 14 (PIV).
Code Requirement	t OMa 4.3.2.1 requires that each active Category A/C valve be tested nominally every three (3) months.
Reason for Exception	The close exercise testing of these valves will be in conjunction with the seat leakage testing required by OMa 4.2.2.3. The seat leakage testing must be performed with the maximum differential pressure across the valve seats. In addition, the following normally de-energized valves must be energized and remain energized in the abnormal valve position until testing is completed and the valves are returned to their normal operating position.
	2N121(2)XSI0039A,B,C - Accumulator Tank Discharge Isolation Valves. 2N121(2)XSI0008A,B,C - HHSI Lot Leg Isolation Valves 2R161(2)XRH0019A,B,C - RHR Heat Exchanger Return to Hot Leg Valves 2R161(2)XRH0031A,B,C - Cold Leg Injection Valves
Alternate Testing	These valves will be close exercised tested by the performance of a seat leakage test following each cold shutdown and prior to entering Mode 2 not to exceed once every nine months per the requirements of Technical Specification 4.4.6.2.2.

Test Exception Number Test Exception Type		
CSJ-04	Cold Shutdown Justification	
Group SI23	Accumulator to Cold Leg Inboard Check Valves (Trains A, B, and C)	
Safety Function	1. Open when the RCS pressure falls below the accumulator pressure to force borated water into the RCS cold legs.	
	2. Close to prevent backflow from the RCS into the low pressure SI system.	
	3. Close and be leak tight (CAT A) to maintain RCS pressure boundary, GDC 14 (PIV).	
Code Requirement	OMa 4.3.2.1 requires that each active Category A/C valve be tested nominally every three (3) months.	
Reason for Exception	The close exercise testing of these valves will be in conjunction with the seat leakage testing require by OMa 4.2.2.3. The seat leakage testing must be performed with the maximum differential pressure across the valve seats. In addition, the following normally de-energized valves must be energized and remain energized in the abnormal valve position until testing is completed and the valves are returned to their normal operating position.	
	2N121(2)XSI0039A, B, C - Accumulator Tank Discharge Isolation Valves. 2N121(2)XSI0008A, B, C - HHSI Lot Leg Isolation Valves 2R161(2)XRH0019A, B, C - RHR Heat Exchanger Return to Hot Leg Valves 2R161(2)XRH0031A, B, C - Cold Leg Injection Valves	
Alternate Testing	These valves will be close exercised tested by the performance of a seat leakage test following each cold shutdown and prior to entering Mode 2 not to exceed once every nine months per the requirements of Technical	

Specification 4.4.6.2.2.

1

# Test Exception Number Test Exception Type

PRR-01Pump Relief RequestGroupEWPPEW Pumps

Safety Function Takes a suction from the Emergency Cooling Pond and delivers cooling water to Emergency Diesel Generator heat exchangers, Essential Chillers, and Component Cooling Water heat exchangers during normal operating, shutdown, and following accident conditions. The ECW pumps receive an auto start signal upon an SI initiation signal.

Design Flow: 19,280 gpm (per DBD)

Code Requirement OMa Part 6, 5.2.1(b) requires the system resistance to be varied until the flow rate equals the reference point. The differential pressure shall be determined and compared to its reference value. Alternatively, the flow rate shall be varied until the differential pressure equals the reference point and the flow rate determined and compared to its reference value.

OMa Part 6, 5.2.1(c) states that where system resistance cannot be varied, flow rate and pressure shall be determined and compared to their respective reference values.

*Reason for Exception* The Essential Cooling Water System is designed so that total pump flow cannot be readily adjusted to one reference value for testing without adversely affecting the operating system flow balance or utilizing excessive operator resources which would be better utilized to monitor the safe operation of the plant. These pumps must be tested in a manner that does not adversely affect the flow balance and system operability.

> System resistance is not fixed since each load has an acceptable flow range. Adjusting system total flow to meet a specific reference value may change the individual load flow rates and may cause one or more of the loads to move outside its respective operation range possibly requiring an entry into an LCO. Additionally, STP has specific "cold" and "warm" weather lineups for operation of the essential chillers creating a different system resistance. Consequently, adjusting flow to one specific value on a quarterly basis for the performance of pump testing conflicts with system design and challenges the system operability.

Alternate Testing As an alternative to the testing requirements of OMa Part 6, 5.2.1, STP will assess pump performance and operational readiness through the use of reference pump curves. Flow rate and pump differential pressure will be measured during inservice testing in the as found condition of the system and compared to an established reference curve. The following elements will be used in the development of the reference pump curves:

# **PRR-01** Continued

1. A reference pump curve (flow rate versus differential pressure) will be established for each of the ECW pumps for the data taken when these pumps are known to be operating acceptably.

2. Pump curves will be established from measurements taken with instrumentation meeting or exceeding the accuracy requirements of OMa Part 6, 4.6.1.1.

3. Each Pump curve will be based on at least 5 points beyond the flat portion of the pump curve in the normal operating range of the pumps (at a flow greater than 15,700 gpm). Rated capacity of these pumps is 19,280 gpm. The pumps will be tested over the range of their full design flow rates, 15,700 gpm minimum to 20,610 gpm maximum.

4. The reference pump curves will be based on flow rate versus differential pressure. The acceptance criteria (acceptable and required action ranges) curves will be based on the differential pressure limits of OMa Part 6, Table 3b.

5. Vibration levels will be measured at each of the reference points. If negligible variation readings are observed over the range of pump conditions, a single reference value may be assigned to each vibration measurement location. If vibration levels change over the range of pump conditions, appropriate acceptance criteria will be assigned to regions of the pump curve.

6. After any maintenance or repair that may affect the existing reference pump curve, a new reference curve shall be determined or the existing pump curve revalidated by an inservice test. A new pump curve shall be established based on at least 5 points beyond the flat portion of the pump curve.

Test Exception N	umber Test Exception Type
PRR-02	Pump Relief Request
Group CCPP	Component Cooling Water Pumps
Safety Function	Provides 14,070 gpm of cooling water (DBD 4.1.6.2) to ESF components under safe shutdown and accident conditions.
Code Requirement	OMa-1988 Part 6, Paragraphs 4.6.1.1 and 4.6.1.2 require pressure instrumentation requirements for accuracy and range. Accuracy must be +/- 2% and full-scale range shall be not greater than three times the reference value.
Reason for Exception	The installed suction pressure gauges for the Component Cooling Water pumps have a range of 160 psig and an accuracy of 0.5%. The reference values for suction pressure for these pumps have been as low as 21 psig. The installed suction pressure gauges for the Component Cooling Water pumps have a full-scale range greater than 3 times the reference value, but have an accuracy of $+/-0.5\%$ , which is more conservative than the Code. The combination of the range and accuracy of the installed suction pressure gauge yields a reading at least equivalent to the reading achieved from instruments that meet the Code Requirements. The installed suction pressure gauge meets the intent of the Code requirements and provides for an acceptable level of quality and safety for inservice testing.
Alternate Testing	The permanently installed suction gauges for Component Cooling Water pumps 1A(2A), 1B(2B), and 1C(2C) will be used to obtain test measurements for evaluating pump operability.

Test Exception N	umber Test Exception Type
<b>ROJ-01</b> Group SI18	Refueling Outage Justification High Head Safety Injection Pump Discharge Inside Cntmt Isolation Valves (Trains A, B, and C)
Safety Function	1. Open to inject borated water from either the RWST or the containment sump to the RCS cold legs during the cold leg injection phase of safety injection (Flow rate required is >1,470 gpm and <1620 gpm for HHSI pump lines following completion of modifications to the system that alters its flow characteristics per Technical Specification 4.5.2.g).
	2. Open to recirculate borated water from the containment sump to the RCS hot legs during the hot leg recirculation phase of safety injection.
	3. Close and be leak-tight (CAT A) to provide containment integrity.
Code Requirement	OMa 4.3.2.1 requires check valves to be exercised nominally every three (3) months. OMa 4.3.2.2 requires that each check valve be exercised or examined in a manner that verifies obturator travel to the closed, full-open, or partially open position required to fulfill its safety function.
Reason for Exception	These check valves cannot be exercised during normal power operation since the HHSI pump cannot overcome normal RCS pressure. These valves cannot be exercised at cold shutdown due to the possibility of over-pressurizing the Reactor Coolant System.
Alternate Testing	Per OMa 4.3.2.2.e, these check valves will be exercised, full stroke open, each refueling outage by injecting HHSI flow into the open RCS with a vent path established. The most practical method of verifying valve closure on cessation of flow or flow reversal is in conjunction with the leakage testing required by technical specifications.
	Valves 1N121(2)XSI0007A,B,C and 1N121(2)XSI0009A,B,C will be closed exercised tested in accordance with CSJ-04.
	Valves 2N121(2)XSI0005A,B,C and 2N121(2)XSI0030A,B,C will be closed exercised tested in accordance with VRR-03.

_ _

Test Exception N	umber Test Exception Type
<b>ROJ-01</b> Group SI19	Refueling Outage Justification High Head Safety Injection Pump Discharge Check to Cold Leg (Class 1 Boundary) (Trains A, B, and C)
Safety Function	1. Open to inject borated water from either the RWST or the containment sump to the RCS cold legs during the cold leg injection phase of safety injection (Flow rate required is >1,470 gpm and <1620 gpm for HHSI pump lines following completion of modifications to the system that alters its flow characteristics per Technical Specification 4.5.2.g).
	2. Close to prevent the diversion of flow from the accumulator or from the LHSI pump in the event that the corresponding HHSI pump is not running.
	3. Close and be leak tight (CAT A) to maintain RCS pressure boundary, GDC 14 (PIV).
Code Requirement	OMa 4.3.2.1 requires check valves to be exercised nominally every three (3) months. OMa 4.3.2.2 requires that each check valve be exercised or examined in a manner that verifies obturator travel to the closed, full-open, or partially open position required to fulfill its safety function.
Reason for Exception	These check values cannot be exercised during normal power operation since the HHSI pump cannot overcome normal RCS pressure. These values cannot be exercised at cold shutdown due to the possibility of over pressurizing the Reactor Coolant System.
Alternate Testing	Per Oma 4.3.2.2.e, these check valves will be exercised, full stroke open, each refueling outage by injecting HHSI flow into the open RCS with a vent path established. The most practical method of verifying valve closure on cessation of flow or flow reversal is in conjunction with the leakage testing require by technical specifications.
	Valves 1N121(2)XSI0007A,B,C and 1N121(2)XSI0009A,B,C will be closed exercised tested in accordance with CSJ-04.
	Valves 2N121(2)XSI0005A,B,C and 2N121(2)XSI0030A,B,C will be closed exercised tested in accordance with VRR-03.

.

Test Exception N	umber Test Exception Type
<b>ROJ-02</b> Group SI23	Refueling Outage Justification Accumulator to Cold Leg Inboard Check Valves (Trains A, B, and C)
	1. Open when the RCS pressure falls below the accumulator pressure to force borated water into the RCS cold legs.
	2. Close to prevent backflow from the RCS into the low pressure SI system.
	3. Close and be leak tight (CAT A) to maintain RCS pressure boundary, GDC 14 (PIV).
Code Requirement	OMa 4.3.2.1 requires check valves to be exercised nominally every three (3) months. OMa 4.3.2.2 requires that each check valve be exercised or examined in a manner that verifies obturator travel to the closed, full-open, or partially open position required to fulfill its safety function.
Reason for Exception	These check valves cannot be exercised during normal power operation (full or partial stroke open) since neither the HHSI, LHSI, RHR pump, or Accumulators can overcome normal RCS pressure. These valves cannot be exercised at cold shutdown due to the possibility of over pressurizing the RCS.
Alternate Testing	Per OMa 4.3.2.2.e, these check valves will be exercised, full stroke open, each refueling outage using non-intrusive techniques to ensure no degradation has occurred. If any check valve tested during the refueling outage shows signs of unacceptable degradation or performance, it will be disassembled and inspected during that refueling outage.

----

.

-

Test Exception Na	umber Test Exception Type
<b>ROJ-03</b> Group SI25	Refueling Outage Justification Safety Injection Pumps Suction Check Valves (Trains A, B, and C)
Safety Function	1. Open to provide a source of borated water to the suction of the LHSI, HHSI and CS pumps during the injection mode of accident mitigation (Flow rate required is 5920 gpm. This is a combination of 1470 gpm for HHSI, 2550 gpm for LHSI, and 1900 gpm for CS).
	2. Close to prevent backflow to the RWST when containment sump isolation valves are opened during switchover from the injection phase to the cold leg recirculation mode before SI-MOV001A, B, and C are closed. Operator action is required to manually close SI-MOV001A, B, and C to complete the switchover process.
Code Requirement	OMa 4.3.2.1 requires check valves to be exercised nominally every three (3) months. OMa 4.3.2.2 requires that each check valve be exercised or examined in a manner that verifies obturator travel to the closed, full-open, or partially open position required to fulfill its safety function.
Reason for Exception	These check valves can only be exercised, full stroke, by simulating LOCA conditions and allowing the above pumps to inject flow into the RCS at zero or a very low pressure. These conditions can only be simulated during a refueling outage with the reactor vessel head off and the containment spray pump on full recirculation.
	Closure of these check valves cannot be verified by non-intrusive means. There are no external position indicators on these valves and due to the soft closure of these valves (result of pump coastdown) acoustic methods are not conclusive. Magnetic methods are also not conclusive.
	Draindown of a portion of the safety injection system is required t perform disassembly and inspection of the valves. Disassembly and inspection can only be accomplished during the 7-day Safety Injection System LCO window or during refueling outages.
	Local leakage rate testing of other SI valves and other maintenance activities are now being conducted during the 7-day SI system LCO windows. Conducting the disassembly and inspection of these check valves in conjunction with LLRTs or other maintenance activities would accomplish the following:
	a) Increase the availability of the Safety Injection System during refueling outages, which would lower the overall risk during the outages. The online risk should not be increased if performed during the AOT window since the SI Train will already be removed from service for LLRTs or other maintenance.

# **ROJ-03** Continued

- b) Radwaste should be reduced as the inspections will be performed with other draindown work during the LCO week.
- c) There will be a reduction in outage manpower and resource requirements for both maintenance and operations personnel.
- d) A reduction in radiation exposure should be realized because personnel will have to perform drain and fill operations only once.
- Alternate Testing Per OMa 4.3.2.2.e, these check valves will be exercised, full stroke, each refueling outage by injecting flow into the RCS with the vessel head off and the CS pump on full recirculation.

For closure verification, per OMa 4.3.2.4.c, if other test methods are impractical, a sample disassembly examination program shall be used to verify valve obturator movement. At least one check valve from the sample group will be verified operable by disassembly and inspection on a nominal refueling cycle frequency of 18 months (+/- 25%). This will not result in a reduction in the number of inspections performed over the life of the plant. If a generic failure occurs, a plan of action for inspection the remaining valves will be developed utilizing the Condition Reporting Process and the guidance provided in Generic Letter 91-18. This plan of action will take into account the potential failure modes and their associated plant impacts and will be implemented in a time frame commensurate with their safety significance. This will ensure that all check valves in this sample group are inspected within six years as required by Generic Letter 89-04, Position 2. Approval of this Relief Request safety function will not preclude STP from performing these inspections during refueling outage should some other scope of work make it necessary to drain a train of SI.

Test Exception N	umber Test Exception Type
VRR-01	Valve Relief Request
Group AP01	RCS Hot Leg Sample to PASS Lab OCIVs
	Close in response to an ESF signal and leak tight (CAT A) to maintain containment integrity.
Code Requirement	OMa 4.1 requires that valves with remote position indicators be observed locally at least once every two years to verify that valve operation is accurately indicated.
Reason for Exception	These valves are solenoid valves for which stem movement cannot be directly observed. They are redundant valves in series and operate simultaneously from a single control switch with one set of indicating lights.
Alternate Testing	These valves are stroked and timed during normal inservice testing using the remote indicating lights. Open and closed indication is actuated by the limit switches of each valve wired in series and remote position indication is based on the slowest valve. Since these redundant valves cannot be exercised separately (unless leads are lifted, temporary power supplied to the disabled valve to hold it in the open position, and jumpers placed across the disabled valve's limit switches) the valves will be stroked simultaneously and remote position indication verified by observing that system flow is initiated and then secured.

Test Exception N	umber Test Exception Type
VRR-02	Valve Relief Request
Group AP01	RCS Hot Leg Sample to PASS Lab OCIVs
Safety Function	Close in response to an ESF signal and leak tight (CAT A) to maintain containment integrity.
Code Requirement	OMa 4.2.1.1 requires that each category A valve be tested nominally every three months for operational readiness.
Reason for Exception	The valves are redundant valves in series and operate simultaneously from a single control switch with one set of indicating lights. These redundant valves cannot be exercised separately (unless leads are lifted, temporary power supplied to the disabled valve to hold it in the open position, and jumpers placed across the disabled valve's limit switches).
	Based on the guidance on NUREG 1482, an evaluation was performed and it was determined that only one valve is required to satisfy the plant safety analysis. Both valves will be included in the IST plan.
Alternate Testing	Since these redundant valves cannot be exercised separately, the valves will be stroked simultaneously and timed using the remote position indication of the slowest valve. Failure to meet the stroke time acceptance criteria of OMa 4.2.1.8 shall be treated as a failure of a series valve pair and corrective actions taken to determine the cause of the failure.

- ----

- -

Test Exception N	umber Test Exception Type				
VRR-03 Group SI18	Valve Relief Request High Head Safety Injection Pump Discharge Inside Cntmt Isolation Valves (Trains A, B, and C)				
Safety Function	1. Open to inject borated water from either the RWST or the containment sump to the RCS cold legs during the cold leg injection phase of safety injection (Flow rate required is >1,470 gpm and <1620 gpm for HHSI pump lines following completion of modifications to the system that alters its flow characteristics per Technical Specification 4.5.2.g).				
	2. Open to recirculate borated water from the containment sump to the RCS hot legs during the hot leg recirculation phase of safety injection.				
	3. Close and be leak-tight (CAT A) to provide containment integrity.				
Code Requirement	OMa 4.3.2.1 requires check valves to be exercised nominally every three (3) months. OMa 4.3.2.2 requires that each check valve be exercised or examined in a manner that verifies obturator travel to the closed, full-open, or partially open position required to fulfill its safety function.				
Reason for Exception	These check valves have a safety function in the closed direction as containment isolation valves. There are no intra or intersystem cross-ties downstream of these valves which would cause a diversion of flow from another pump if the check valve did not close. Due to the fact that there are no cross-ties downstream of the valves, the valves lack design provisions for system testing to verify closure capability in any plant condition.				
	Leak rate testing verifies valve closure by validating the valve seats properly and is leak tight, and provides more information about the closed position than a simple backflow test.				
	NUREG 1482, Section 4.1.4, allows the extension of the test interval to refueling outage frequency for check valves where the only practical means of verifying check valve closure is by performing the Appendix J Leak Test. STP has adopted Option B of Appendix J that allows these check valves to be leak tested on a frequency not to exceed once every five years.				
	Disassembly provides limited information on a check valve's ability to seat properly on cessation of flow. Following re-assembly, the Code requires a post-assembly test, which would reopen the check valve without providing assurance the disk would return to the closed position. Disassembly of these check valves is not practical due to the design complexity of the check valves, the increased probability of human error during valve re-assembly, foreign material exclusion concerns, and ALARA considerations.				

Page 16 of 23

---

The subject valves have exhibited a history of satisfactory operation. Based on their performance history, it is believed that the current Probabilistic Risk Assessment (PRA) modeling of the failure rates for these valves is still accurate. Irrespective of the failure rate modeling, the current STPNOC PRA model indicates that the potential failure of these valves to close has no impact on core damage frequency. In addition, the impact on these valves (assuming complete failure) from a Large Early Release standpoint is minimal.

Based on the above, it is evident that in the event that containment isolation is necessary, the subject valves will have a high probability of performing their intended safety function. Therefore, STP believes that the safety significance and potential consequences of the proposed relief is extremely small.

Alternate Testing Closure verification of these check valves will be performed by leak rate testing in accordance with 10CFR50 Appendix J on a frequency specified by Option B of Appendix J.

Test Exception N	Number Test Exception Type
VRR-03 Group SI21	Valve Relief Request Low Head Safety Injection Pump Discharge Inside Cntmt Isolation Valves (Trains A, B, and C)
Safety Function	1. Open to inject borated water from either the RWST or the containment sump to the RCS cold legs during the cold leg injection phase of safety injection (Flow rate required is >2550 gpm and <2800 gpm for LHSI pump lines following completion of modifications to the system that alters its flow characteristics per Technical Specification 4.5.2.g).
	2. Open to recirculate borated water from the containment sump to the RCS hot legs during the hot leg recirculation phase of safety injection.
	3. Close to prevent backflow from the RHR system during post accident recovery operations.
	4. Close and be leak tight (CAT A) to maintain containment integrity.
Code Requirement	OMa 4.3.2.1 requires check valves to be exercised nominally every three (3) months. OMa 4.3.2.2 requires that each check valve be exercised or examined in a manner that verifies obturator travel to the closed, full-open, or partially open position required to fulfill its safety function.
Reason for Exception	These check valves have a safety function in the closed direction as containment isolation valves. There are no intra or intersystem cross-ties downstream of these valves which would cause a diversion of flow from another pump if the check valve did not close. Due to the fact that there are no cross-ties downstream of the valves, the valves lack design provisions for system testing to verify closure capability in any plant condition.
	Leak rate testing verifies valve closure by validating the valve seats properly and is leak tight, and provides more information about the closed position than a simple backflow test.
	NUREG 1482, Section 4.1.4, allows the extension of the test interval to refueling outage frequency for check valves where the only practical means of verifying check valve closure is by performing the Appendix J Leak Test. STP has adopted Option B of Appendix J that allows these check valves to be leak tested on a frequency not to exceed once every five years.
	Disassembly provides limited information on a check valve's ability to seat properly on cessation of flow. Following re-assembly, the Code requires a post-assembly test, which would reopen the check valve without providing assurance the disk would return to the closed position. Disassembly of these check valves is not practical due to the design complexity of the check valves, the increased probability of human error during valve re-assembly, foreign material exclusion concerns, and ALARA considerations.

The subject valves have exhibited a history of satisfactory operation. Based on their performance history, it is believed that the current Probabilistic Risk Assessment (PRA) modeling of the failure rates for these valves is still accurate. Irrespective of the failure rate modeling, the current STPNOC PRA model indicates that the potential failure of these valves (assuming complete failure) from a Large Early Release standpoint is minimal.

Based on the above, it is evident that in the event that containment isolation is necessary, the subject valves will have a high probability of performing their intended safety function. Therefore, STP believes that the safety significance and potential consequences of the proposed relief is extremely small.

Alternate Testing Closure verification of these check valves will be performed by leak rate testing in accordance with 10CFR50 Appendix J on a frequency specified by Option B of Appendix J.

Test Exception Na	umber Test Exception Type
VRR-03 Group CC29	Valve Relief Request CCW Supply to RHR Pump and Heat Exchanger Inside Cntmt Isolation Check Valve (Trains A, B, and C)
Safety Function	1. Open to provide flow path for CCW through RHR pump 1(2)C seal cooler and RHR 1(2)C heat exchanger (4906 gpm required per DBD Table T-7, Minimum or Maximum Safeguards).
	2. Close and leak tight (CAT A) in accordance with UFSAR commitment (Section 6.2.6.3
Code Requirement	OMa 4.3.2.1 requires check valves to be exercised nominally every three (3) months. OMa 4.3.2.2 requires that each check valve be exercised or examined in a manner that verifies obturator travel to the closed, full-open, or partially open position required to fulfill its safety function.
Reason for Exception	These check valves have a safety function in the closed direction as containment isolation valves. There are no intra or intersystem cross-ties downstream of these valves which would cause a diversion of flow from another pump if the check valve did not close. Due to the fact that there are no cross-ties downstream of the valves, the valves lack design provisions for system testing to verify closure capability in any plant condition.
	Leak rate testing verifies valve closure by validating the valve seats properly and is leak tight, and provides more information about the closed position than a simple backflow test.
	NUREG 1482, Section 4.1.4, allows the extension of the test interval to refueling outage frequency for check valves where the only practical means of verifying check valve closure is by performing the Appendix J Leak Test. STP has adopted Option B of Appendix J that allows these check valves to be leak tested on a frequency not to exceed once every five years.
	Disassembly provides limited information on a check valve's ability to seat properly on cessation of flow. Following re-assembly, the Code requires a post-assembly test, which would reopen the check valve without providing assurance the disk would return to the closed position. Disassembly of these check valves is not practical due to the design complexity of the check valves, the increased probability of human error during valve re-assembly, foreign material exclusion concerns, and ALARA considerations.

The subject valves have exhibited a history of satisfactory operation. Based on their performance history, it is believed that the current Probabilistic Risk Assessment (PRA) modeling of the failure rates for these valves is still accurate. Irrespective of the failure rate modeling, the current STPNOC PRA model indicates that the potential failure of these valves to close has no impact on core damage frequency. In addition, the impact on these valves (assuming complete failure) from a Large Early Release standpoint in minimal.

Based on the above, it is evident that in the event that containment isolation is necessary, the subject valves will have a high probability of performing their intended safety function. Therefore, STP believes that the safety significance and potential consequences of the proposed relief is extremely small.

Alternate Testing Closure verification of these check valves will be performed by leak rate testing in accordance with 10CFR50 Appendix J on a frequency specified by Option B of Appendix J.and Figure 6.2.4-1, Sheet 39) to provide containment integrity.

Test Exception N	umber Test Exception Type
VRR-03 Group CC28	Valve Relief Request CCW Supply to RCFCs Inside Cntmt Isolation Check Valve (Trains A, B, and C)
Safety Function	1. Open to provide cooling water to the Reactor Containment Fan Coolers (RCFC) in the event of a Safety Injection signal or Loss of Offsite Power (LOOP) (3600 gpm per DBD Table T-7, Safety Injection, Minimum or Maximum Safeguards, or Recirculation).
	2. Close and leak tight (CAT A) in accordance with UFSAR commitment (Section 6.2.6.3 and Figure 6.2.4-1, Sheet 25) to provide containment integrity.
Code Requirement	OMa 4.3.2.1 requires check valves to be exercised nominally every three (3) months. OMa 4.3.2.2 requires that each check valve be exercised or examined in a manner that verifies obturator travel to the closed, full-open, or partially open position required to fulfill its safety function.
Reason for Exception	These check valves have a safety function in the closed direction as containment isolation valves. There are no intra or intersystem cross-ties downstream of these valves which would cause a diversion of flow from another pump if the check valve did not close. Due to the fact that there are no cross-ties downstream of the valves, the valves lack design provisions for system testing to verify closure capability in any plant condition.
	Leak rate testing verifies valve closure by validating the valve seats properly and is leak tight, and provides more information about the closed position than a simple backflow test.
	NUREG 1482, Section 4.1.4, allows the extension of the test interval to refueling outage frequency for check valves where the only practical means of verifying check valve closure is by performing the Appendix J Leak Test. STP has adopted Option B of Appendix J that allows these check valves to be leak tested on a frequency not to exceed once every five years.
	Disassembly provides limited information on a check valve's ability to seat properly on cessation of flow. Following re-assembly, the Code requires a post-assembly test, which would reopen the check valve without providing assurance the disk would return to the closed position. Disassembly of these check valves is not practical due to the design complexity of the check valves, the increased probability of human error during valve re-assembly, foreign material exclusion concerns, and ALARA considerations.

The subject valves have exhibited a history of satisfactory operation. Based on their performance history, it is believed that the current Probabilistic Risk Assessment (PRA) modeling of the failure rates for these valves is still accurate. Irrespective of the failure rate modeling, the current STPNOC PRA model indicates that the potential failure of these valves to close has no impact on core damage frequency. In addition, the impact on these valves (assuming complete failure) from a Large Early Release standpoint in minimal.

Based on the above, it is evident that in the event that containment isolation is necessary, the subject valves will have a high probability of performing their intended safety function. Therefore, STP believes that the safety significance and potential consequences of the proposed relief is extremely small.

Alternate Testing Closure verification of these check valves will be performed by leak rate testing in accordance with 10CFR50 Appendix J on a frequency specified by Option B of Appendix J

# **ATTACHMENT 5**

**IST GROUP NARRATIVES** 

AF01 Auxiliary Feedwater Supply to Steam Generator Inside Cntmt Isolation Check Valves

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	High	5.75E-04	1799.28	High	High

# **IST_FUNCTIONS**

Open to allow 500 gpm (per Technical Specification 4.7.1.2.1) of auxiliary feedwater flow to Steam Generator 1(2)A.

## **PRA_FUNCTIONS**

Model to open and remain open.

# DETERMINISTIC REMARKS

Open to allow auxiliary feedwater flow to Steam Generator.

There are 4 available flowpaths leading to 4 steam generators.

2 of 4 trains required for immediate response.

1 train is required for long term decay heat removal.

Discussion (The following general IST ranking notes apply to this valve group )

Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth (Three valves would have to fail to fail the function)

Note 4. Low FV with High RAW.

Note 7. High RAW is due to high CCF for check valves.

Note 8. Industry data will reduce CCF term in RAW for check valves in clean systems.

Note 12. Valve group will remain HIGH until new PRA model is approved.

#### **IST RANK DISCUSSION**

Failure of this valve affects heat removal capability of associated steam generator. Function can be performed by any of the four Auxiliary Feedwater trains. Based on the amount of redundancy available for this function the FV is less than 5E-03 and an IST rank of Low is reasonable. However, the RAW is high as a result of the industry failure rate data for check valves. The failure rate data in the current PRA results in a larger contribution to the common cause calculation which is included in the RAW number. The RAW may be reduced when the new industry failure rate data for check valves is included in the PRA update. This valve group will remain IST Rank HIGH until new PRA model is approved. Currently GQA Risk Rank and PRA rank are the same (HIGH) which is also the final ranking for IST.

AF02 Auxiliary Feedwater Supply to Steam Generator Outside Cntmt Isolation Stop Check MOVs

IST Rank	PRA RANK	FV	RAW	GQA_RAN	Final IST
Low	High	4.51E-03	1963.45	High	High

#### IST_FUNCTIONS

1. Open upon receipt of

A. Steam generator low water level,

B. Low feedwater flow signal from AMSAC, or

C. SI initiation signal to allow 500 gpm (per Technical Specification 4.7.1.2.1) flow to Steam Generator 1(2)A.

NOTE: The ESF actuation signal allows the stop check valve to function normally through the self-actuating design of the check valve. Operation of the motor operator function is not required for the valve to fulfill its open safety function.

2.Close (remote manual) for Steam Generator 1(2)A isolation in response to SGTR, FWLB, and MSLB.

# **PRA_FUNCTIONS**

Model to perform its function (throttle) and return open after throttling.

#### DETERMINISTIC REMARKS

Open upon receipt of steam generator low water level, low feedwater flow signal from AMSAC, or SI initiation signal to control flow to Steam Generator. The ESF actuation signal allows the stop check valve to function normally through the self-actuating design of the check valve. Operation of the motor operator function is not required for the valve to fulfill its open safety function.

Close (remote manual) for Steam Generator isolation in response to SGTR, FWLB, and MSLB. This is a normally closed stop check valve. There are 3 check valves in the line, affording much redundancy for the closing function.

There are 4 available flowpaths leading to 4 steam generators. 2 of 4 trains required for immediate response.

1 train is required for long term decay heat removal.

Discussion (The following general IST ranking notes apply to this valve group.)

Medium FV and High RAW Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth. (Three valves would have to fail to fail the function)

Note 7. High RAW is due to high CCF for check valves.

Note 8. Industry data will reduce CCF term in RAW for check valves in clean systems.

Note 12. Valve group will remain HIGH until new PRA model is approved.

## IST RANK DISCUSSION

Failure of this valve affects heat removal capability of associated steam generator. Function can be performed by any of the four Auxiliary Feedwater trains. Based on the amount of redundancy available for this function the FV is less than 5E-03 and an IST rank of Low is reasonable. However, the RAW is high as a result of the industry failure rate data The failure rate data in the current PRA results in a larger contribution to the common cause calculation which is include in the RAW number. The RAW may be reduced when the new industry failure rate data for check valves is included in the PRA update. Valve group will remain IST Rank HIGH until new PRA model is approved. Currently GQA Risk Rank and PRA rank are the same (HIGH) which is also the current ranking for IST.

AF03 Auxiliary Feedwater Supply to Steam Generator Flow Regulating MOVs

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Not modeled		High		High

#### IST_FUNCTIONS

Open by QDPS upon receipt of

- Steam generator low water level,
- Low feedwater flow signal from AMSAC, or
- SI Initiation signal to allow 500 gpm (per Technical Specification 4.7.1.2.1) flow to Steam Generator 1(2)C.

PRA_FUNCTIONS Models to perform throttling function.

## DETERMINISTIC REMARKS

Open by QDPS upon receipt of steam generator low water level, low feedwater flow signal from AMSAC, or SI initiation signal to control flow to Steam Generator.

Normally open valve. Valve has to perform a throttling function.

There are 4 available flowpaths leading to 4 steam generators.

2 of 4 trains required for Immediate response.

1 train is required for long term decay heat removal.

**Discussion** (The following general IST ranking notes apply to this valve group.)

Medium FV and High RAW

Note 1, Above average Redundancy allows for one failure but maintains Defense in Depth. (Three valves would have to fail to fail the function)

Note 7. High RAW is due to high CCF term. (3 trains of like components)

#### IST RANK DISCUSSION

Failure of this valve affects heat removal capability of associated steam generator. Function can be performed by any of the four Auxiliary Feedwater trains. Though the IST function is not specifically modeled in the PRA, the PRA ranking is determined by comparison with other valves in the Auxiliary Feedwater flow stream. Based on the amount of redundancy available for this function the FV is less than 5E-03 and an IST rank of Low is reasonable. However, the RAW is high as a result of the industry failure rate data used in the current PRA results in a larger contribution to the common cause calculation which is include in the RAW number. The RAW may be reduced when the new industry failure rate data for check valves is included in the PRA update. Valve group will remain IST Rank HIGH until new PRA model is approved. Currently GQA Risk Rank and PRA rank are the same (HIGH) which is also the current ranking for IST.

#### AF04 Auxiliary Feedwater Turbine Trip and Throttle Valve (MS0514)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Medium	High	1.95E-01	4.53	High	High

# IST_FUNCTIONS

Open to control steam admission to the AFW pump turbine in response to a SI signal, Lo-Lo SG water level, or AMSAC.

# PRA_FUNCTIONS

Models to open to start the pump

# DETERMINISTIC REMARKS

Open to control steam admission to the AFW pump turbine in response to a SI signal, Lo-Lo SG water level, or AMSAC. Close to isolate steam flow in response to SGTR.

There are 4 available flowpaths leading to 4 steam generators.

2 of 4 trains required for immediate response.

1 train is required for long term decay heat removal.

#### Discussion

High FV. Modeled in PRA with AF Turbine function.

## IST RANK DISCUSSION

Failure of this valve affects heat removal capability of the 1(2)D steam generator. During SBO, this train is the only source of water for decay heat removal. Valve serves as overspeed protection for the Aux. Feedwater Terry Turbine. Three Diesel Generators provide redundant power capability to the other AF trains during LOOP. The Final IST Rank is IST High, based on the FV value determined by the PRA model.

AF06 Auxiliary Feedwater Pump Discharge Cross-Tie Valves

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Not modeled			Medium	Low

# IST_FUNCTIONS

Close upon receipt of

- Low-low steam generator water level signal for any one of the four steam generators,
- SI signal, or
- Low feedwater flow signal from AMSAC.

NOTE: This serves to isolate the S/G's and their respective AFW pumps from one another in the event of a rupture in one of the S/G's.

# PRA_FUNCTIONS

Not modeled

## DETERMINISTIC REMARKS

Close upon receipt of low-low steam generator water level signal for any one of the four steam generators, SI signal, or low feedwater flow signal from AMSAC. This serves to isolate the S/G's and their respective AFW pumps from one another in the event of a rupture in one of the S/G's. There would have to be a failure of 2 of the 4 valves (includes FV7518) in order to affect AF train separation and prevent pump runout. These valves are designed to fail closed.

**Discussion** (The following general IST ranking notes apply to this valve group.)

Note 1. Average redundancy in system maintains defense in depth.

Note 2. Failure of 2 Diverse valves required to fail safety function.

Note 3. Valves are normally closed and fail close (not required to change position to perform safety function.

Note 5. Close function for valve group is ranked low by GQA. Other GQA function not tested by IST.

## IST RANK DISCUSSION

Failure of the valve could affect AF train separation. Requires two valve failures. Valves are normally closed and fail closed. Redundancy, diversity, and passivity are the factors considered that result in the ranking of IST Low. This ranking is in agreement with the GQA risk ranking for the safety function tested by the IST program. Final IST Rank – LOW

AF07 Auxiliary Feedwater Auto Recirc Valves

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	High	5.75E-04	1799.28	High	High

# IST_FUNCTIONS

Open to allow a minimum flow of 100 – 130 gpm (per Aux Feedwater DBD 4.1.2.1) from the AFW pump in recirculation to the AFST and a flow of 550 – 640 gpm (per Aux Feedwater DBD 4.1.2.2) from the AFW pump to the steam generator

#### PRA_FUNCTIONS

Model to open

#### DETERMINISTIC REMARKS

Open to allow flow from the AFW pump in recirculation to the AFST and flow from the AFW pump to the steam generator.

There are 4 available flowpaths leading to 4 steam generators. There is high redundancy of flowpaths.

2 of 4 trains required for immediate response.

1 train is required for long term decay heat removal.

Discussion (The following general IST ranking notes apply to this valve group )

Note 4. Low FV with High RAW.

Note 7. Common Cause Failure is dominant in high RAW (four trains).

Note 12. Valve group will remain HIGH until new PRA model is approved.

## IST RANK DISCUSSION

Failure of this valve affects heat removal capability of associated steam generator. Function can be performed by any of the four Auxiliary Feedwater trains. Based on the amount of redundancy available for this function the FV is less than 5E-03 and an IST rank of Low is reasonable. However, the RAW is high as a result of the industry failure rate data. The industry failure data used in the current PRA results in a larger contribution to the common cause calculation which is included in the RAW number. The RAW may be reduced when the new industry failure rate data for check valves is included in the PRA update. Valve group will remain ranked IST HIGH until new PRA model is approved. Currently GQA Risk Rank and PRA rank are the same (HIGH) which is also the current ranking for IST.

AFMDP Motor-Driven AFW Pumps

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	High	1.00E-02	332.18	High	High

# IST_FUNCTIONS

The motor driven AFW pump is capable of delivering a flow of 540 gpm (UFSAR, Section 6 2.1 4 5) to one steam generator during a loss of main feedwater (with or without offsite power available), during a feedwater line break, during a steam line break, during a Loop, during a control room evacuation, or during a LOCA event (DBD, Section 3.2.8.9). The pump also functions to supply feedwater to one or more steam generators to perform cooldown of the Reactor Coolant System from normal zero load temperatures to a hot leg temperature of approximately 3500F (DBD, Section 3.2.1.5). Discharge pressure shall be greater than 1519 psig per CREE 97-17512-3.

# **PRA_FUNCTIONS**

AFW is credited to provide decay heat removal post-trip.

## DETERMINISTIC REMARKS

The motor driven AFW pumps are capable of delivering flow to the associated steam generators during a loss of main feedwater (with or without offsite power available), during a feedwater line break, during a steam line break, during a Loop, during a control room evacuation, or during a LOCA event. The pumps also functions to supply feedwater to one or more steam generators to perform cooldown of the Reactor Coolant system from normal zero load temperatures to a hot leg temperature of approximately 350 F.

There are 4 available flowpaths leading to 4 steam generators.

2 of 4 trains required for immediate response.

1 train is required for long term decay heat removal.

**Discussion** (The following general IST ranking notes apply to this valve group.)

High FV and high RAW

Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth. (All three pumps would have to fail the function)

#### IST RANK DISCUSSION

Failure of a pump affects heat removal capability of associated steam generator. Function can be performed by any of the four redundant trains. FV and RAW are high indicating that the AFW pumps are high risk significant and are important to the success criteria in the PRA.

AFTDP Turbine-Driven AFW Pump

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Medium	High	1.95E-01	4.53	High	High

# IST_FUNCTIONS

The turbine-driven AFW pump is capable of delivering a minimum required feedwater flow of 540 gpm (UFSAR, Section 6 2.1.4.5) to one steam generator during Loss Of Main Feedwater (with or without offsite power available), Feedwater Line Break, Steam Line Break, Loss Of All AC Power, Control Room Evacuation, and Loss Of Coolant Accident events. The pump also functions to supply feedwater to one or more steam generators to perform cooldown of the Reactor Coolant system from normal zero load temperatures to a hot leg temperature of approximately 350F.

#### **PRA_FUNCTIONS**

AFW is credited to provide decay heat removal post trip.

#### DETERMINISTIC REMARKS

The turbine-driven AFW pump is capable of delivering a minimum required feedwater flow to one steam generator during Loss of Main Feedwater (with or without offsite power available), Feedwater Line Break, Steam Line Break, Loss Of All AC Power (SBO), Control Room Evacuation, and Loss Of Coolant Accident events. The pump also functions to supply feedwater to one or more steam generators to perform cooldown of the Reactor Coolant system from normal zero load temperatures to a hot leg temperature of approximately 350F. During SBO, this train is the only source of water for decay heat removal. DG provides redundant power capability to the other AF trains during LOOP.

There are 4 available flowpaths leading to 4 steam generators.

2 of 4 trains required for immediate response.

1 train is required for long term decay heat removal.

#### Discussion

High FV

#### **IST RANK DISCUSSION**

Failure of this pump affects heat removal capability of associated steam generator. Function backed up by redundant trains. During SBO, this train is the only source of water for decay heat removal. DG provides redundant power capability to the other AF trains during LOOP FV and RAW are high indicating that the AFW turbine driven pump is high risk significant and are important to the success criteria in the PRA.

#### CC05 Common Suction Header Isolation Valves (Trains A, B, & C) MOVs

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Low	6 00E-05	1.05	Medium	Low

#### IST_FUNCTIONS

- 1. Open to provide a return path from the Spent Fuel Pool Heat Exchangers, RCP thermal barrier heat exchangers, bearing lube oil coolers, and motor air coolers to the Train B pump if it is operating for accident conditions.
- 2. Close to isolate the return flow path from the Spent Fuel Pool Heat Exchangers, RCP thermal barrier heat exchangers, bearing lube oil coolers, and motor air coolers if the surge tank level is low or the pump has stopped.

# PRA_FUNCTIONS

Modeled to open

#### DETERMINISTIC REMARKS

Valve opens to allow CCW flow from SFP Heat Exchangers, RCP Coolers, and other Non-ESF loads. Valve closes on low level of the CCW Surge Tank to isolate CCW suction header. Valve is located between Header and suction side of CCW pumps. Valve is a normally open motor-operated valve MOVs fail in current position.

Discussion (The following general IST ranking notes apply to this valve group.)

Low FV and Low RAW

Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth (All three valves would have to fail to fail the function)

Note 3. Valve is normally open and does not have to reposition to allow CCW flow, which is the safety function ranked high by GQA.

## IST RANK DISCUSSION

These valves are normally open. The MOV fails in the existing or normal position. The greatest risk is associated with the function to allow CCW flow. Since these valves are normally open, this function is satisfied without operation of the valve. Reopening of the valve would require a previous need for closure and there are three trains to supply CCW. It would take more than one failure to fail this function. The risk identified for GQA and the PRA is medium. The PRA measures for IST are lower since the valve is normally open and does not change position to satisfy function. The Risk Achievement Worth drops from just over 2 to 1.00. The close function is ranked LOW by GQA. System redundancy and the failure in the normal position for the critical safety function are considerations for the rank of IST Low.

CC06 Common Supply Header Isolation Valves (Trains A, B, & C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Low	6.00E-05	1.05	Medium	Low

## IST_FUNCTIONS

- 1. Open to provide CCW Train A cooling to the Spent Fuel Pool Heat Exchangers, RCP thermal barrier heat exchangers, bearing lube oil coolers, and motor air coolers if the Train A pump is operating for accident conditions.
- 2. Close when the pump is stopped to isolate the Train A Pump from the CCW common header.

# **PRA_FUNCTIONS**

Modeled to open

## DETERMINISTIC REMARKS

Valve opens to allow CCW flow to SFP Heat Exchangers, RCP Coolers, and other Non-ESF loads. Valve closes on low level of the CCW Surge Tank to isolate CCW supply header. Valve is located between Header and discharge side of CCW pumps. Valve is a normally open motor operated valve. MOVs fail in current position and open on pump start.

Discussion (The following general IST ranking notes apply to this valve group.)

Low FV and Low RAW

Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth.

Note 2. Closing function provided by redundant and diverse upstream check valve. (All three valves would have to fail to fail the function)

Note 3. Valve is normally open and does not have to reposition to allow CCW flow, which is the safety function ranked high by GQA.

## IST RANK DISCUSSION

These valves are normally open. The valve fails in the existing or normal position. The greatest risk is associated with the function to allow CCW flow. Since these valves are normally open this function is satisfied without operation of the valve. Reopening of the valve would require a previous need for closure and there are three trains to supply CCW. It would take more than one failure to fail this function. The risk identified for GQA and the PRA is medium. The PRA measures for IST are lower since the valve is normally open and does not change position to satisfy function. The Risk Achievement Worth drops from just over 2 to 1.00. The close function is ranked LOW by GQA. System redundancy and the failure in the normal position for the critical safety function are considerations for the rank of IST Low.

CC26 CCW Common Return Header to CCW Pump Suction Check Valve (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Low	6.30E-05	1.60	Medium	Low

# IST_FUNCTIONS

- 1. Close on reverse flow to ensure CCW Train separation.
- 2. Open to provide return flow path from the RCP thermal barrier heat exchangers, bearing lube oil coolers, and motor air coolers to the CCW Train A pump if it is operating for accident conditions per DBD 4.1 4.5.

## **PRA_FUNCTIONS**

Modeled.

#### DETERMINISTIC REMARKS

The closing function of these valves is redundant to the function of upstream MOVs. Check valves are considered to be more reliable to close. In the case of flow diversion, there are supply MOVs and supply check valves, so the plant would isolate the supply. In the case of the opening function, there are 3 trains. STP typically runs one train therefore, the plant only requires one set of valves).

**Discussion** (The following general IST ranking notes apply to this valve group.)

Low FV and Low RAW

Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth. (All three valves would have to fail to fail the function)

Note 2. Closing function provided by redundant and diverse upstream MOV.

Note 3. Check valves are passive components and considered more reliable to open/close

#### IST RANK DISCUSSION

System function is designed so that failure to open will be mitigated by redundant trains. Loss of RCPs challenges plant response. Redundancy for the open function and diversity for the closing function provide assurance that the safety functions will be performed. Check valves do not have valve operator type failures so they are considered more reliable and have lower failure rates.

## CC27 CCW Pump Discharge Check Valve to Common Supply Header (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Low	8.16E-05	1 66	Medium	Low

## IST_FUNCTIONS

Open to provide CCW flow for CVCS and SFPCCS equipment (4461 gpm required per CR 99-1380-1).

# **PRA_FUNCTIONS**

Modeled to open

## DETERMINISTIC REMARKS

The closing function of these valves is redundant to the function of upstream MOVs. Check valves are considered to be more reliable to close. In the case of flow diversion, there are supply MOVs and supply check valves, so the plant would isolate the supply. In the case of the opening function, there are 3 trains STP typically runs one train therefore, the plant only requires one set of valves).

Discussion (The following general IST ranking notes apply to this valve group.)

Low FV and Low RAW

Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth. (All three valves would have to fail to fail the function)

Note 2. Closing function provided by redundant and diverse downstream MOV.

Note 3. Check valves are passive components and considered more reliable to open/close

#### IST RANK DISCUSSION

System function is designed so that failure to open will be mitigated by redundant trains. Loss of RCPs challenges plant response. Redundancy for the open function and diversity for the closing function provide assurance that the safety functions will be performed. Check valves do not have valve operator type failures so they are considered more reliable and have lower failure rates.

CC29 CCW Supply to RHR Pump and Heat Exchanger Inside Cntmt Isolation Check Valve (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Medium	3 49E-06	7.28	Medium	Medium

## IST_FUNCTIONS

1. Open to provide flow path for CCW through RHR pump 1(2)C seal cooler and RHR 1(2)C heat exchanger (4906 gpm required per DBD Table T-7, Minimum or Maximum Safeguards).

2. Close and leak tight (CAT A) in accordance with UFSAR commitment (Section 6 2.6 3 and Figure 6.2.4-1, Sheet 39) to provide containment integrity.

## **PRA_FUNCTIONS**

Modeled to open

#### DETERMINISTIC REMARKS

There are 3 trains of flow paths available, only 1 train is required. The GQA rank is based on this function. CC10 (MOVs in line) are ranked low by GQA. MOVs in line provide redundant closing function.

Discussion (The following general IST ranking notes apply to this valve group.)

Low FV and Medium RAW

Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth. (All three valves would have to fail to fail the function)

Note 2. Closing function provided by redundant and diverse upstream MOV.

Note 3. Check valves are passive components and considered more reliable to open/close.

Note 8. Industry data will reduce CCF term in RAW for check valves in clean systems.

Note 12. Valve group will remain Medium until new PRA model is approved.

## IST RANK DISCUSSION

Valve open function required for post-accident heat removal. Redundancy available in other trains. MOVs in line provide redundant closing function. Additionally, the valve is in a physically closed system whose piping is higher design pressure than containment pressure and the CCW system is not connected to the reactor coolant pressure boundary. Based on the amount of redundancy available for this function the FV is less than 5E-03 and an IST rank of Low is reasonable. However, the RAWis Medium as a result of the industry failure rate data. The failure rate data in the current PRA results in a larger contribution to the common cause calculation which is included in the RAW number. The RAW may be reduced when the new industry failure rate data for check valves is included in the PRA update. This valve group will remain ranked IST MEDIUM until new PRA model is approved. Currently GQA Risk Rank and PRA rank are the same (MEDIUM) which is also the current ranking for IST.

Final IST Rank – MEDIUM

CC33 RCP Thermal Barrier Leak Isolation Valves

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Low			Medium	Low

## IST_FUNCTIONS

- 1. Remain open for the return of CCW cooling water from the RCP thermal barrier to prevent seal failure or thermal barrier rupture which could lead to a SBLOCA (40 gpm required per DBD Table T-7, Safety Injection).
- 2. Close to prevent CCW overpressurization from flow of the RCS into the CCW system in the event of failure of the thermal barrier.

NOTE: This valve is a normally open, cylinder-actuated, self-regulated globe valve. The process water is used as the input signal to the actuator. The valve starts to close when the pressure of the process water reaches 120 psig. The valve is fully closed, but not seated at 150 psig. The valve shuts off at a pressure of over 200 psig.

## PRA_FUNCTIONS

Modeled to remain open

## DETERMINISTIC REMARKS

Close on increasing pressure to isolate CCW system from possible backflow from the RCP thermal barrier. Remains open to provide cooling water to the RCP thermal barrier. Thermal barrier failure is a highly unlikely event. Redundant closing function is provided by valves in series.

Discussion (The following general IST ranking notes apply to this valve group )

PRA models valve to stay open. Open is not an active function.

Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth. Close function would be lost only if there was a previous failure of the RCP thermal barner and two valves in series both failed to close.

Note 3. Valve is normally open and does not have to reposition to allow CCW flow, which is the safety function ranked medium by GQA. Valve closes if system pressure increases due to a RCP thermal leak.

## **IST RANK DISCUSSION**

Function of the valves is to mitigate thermal barrier failure. These valves do not play a role in any other accident or transient. Ranking of IST Low is based on the normal position of the valve is open to allow CCW flow to cool RCP thermal barriers. Valve failure would not prevent CCW flow. Double isolation valves provide redundant closing capability to mitigate infrequent event.

CCPP Component Cooling Water Pumps

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Medium	Medium	1 30E-03	2.14	High	Medium

## **IST_FUNCTIONS**

Provide 14,070 gpm of cooling water (DBD 4.1.6.2) to ESF components under safe shutdown and accident conditions.

## PRA_FUNCTIONS

Modeled to start and run to provide cooling OR

Fail-to-start/Fail-to-run

## DETERMINISTIC REMARKS

Provide 14,070 gpm of cooling water to ESF components under safe shutdown and accident conditions. CCW pumps support normal operation and shutdown. Three independent trains of CCW are available. One pump train is capable of supplying adequate cooling to all necessary loads. Although original design requires two trains for shutdown, evaluations have determined that one train is sufficient to prevent core damage, and, is therefore used for success criteria in PRA.

Discussion (The following general IST ranking notes apply to this valve group )

Low FV and Medium RAW

Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth. (All three pumps would have to fail to fail the function)

Compensatory measure: Train rotation for maintenance requires starting different CCW pumps frequently. There will be assurance that the pumps will start and provide adequate flow.

#### IST RANK DISCUSSION

CCW Pumps provide the primary means to remove decay heat in both normal and accident conditions. Redundant trains available. All three trains are administratively required for front end mid-loop. CCW pump function is used to mitigate transients and accidents. Failure of a pump to function can affect the associated ECCS train. One CCW pump is running at all times. Train rotation for maintenance results in frequent venfication that the CCW pumps will start as required.

Final IST Rank - MEDIUM with compensatory actions (slave relay test starts all CCW pumps in addition to the regular rotation of the trains for maintenance)

CHPP Chilled Water Pumps

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Medium	5.53E-04	4 65	High	Medium

### IST_FUNCTIONS

Provide the motive force required for moving chilled water in a closed loop through the essential chillers and cooling coils of the various safety related air handling units (AHUs).

## **PRA_FUNCTIONS**

Modeled to start and run to provide cooling OR Fail-to-start/Fail-to-run

## DETERMINISTIC REMARKS

Provide the motive force required for moving chilled water in a closed loop through the essential chillers and cooling coils of the various safety related air handling units (AHUs).

Discussion (The following general IST ranking notes apply to this valve group.)

Low FV and Medium RAW

Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth. (All three pumps would have to fail to fail the function) Compensatory measure: Pumps started to allow slave relay testing per Tech Specs.

#### IST RANK DISCUSSION

Loss of chilled water affects cooling loads on that train. There are 3 trains that provide this function. One CH pump is running at all times. Train rotation for maintenance results in frequent verification that the Essential Chilled Water pumps will start as required.

Final IST Rank - MEDIUM with compensatory actions (slave relay test starts all Essential Chilled Water pumps in addition to the regular rotation of the trains for maintenance)

CV06 RCP Seal Injection Check Valve (Class 1 Boundary Isolation)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Low			Medium	Low

#### IST_FUNCTIONS

1. Open to provide 8 gpm of alternate RCS boration for safe shutdown (CVC DBD 3 2 2.1 4).

2. Close to maintain the RCS pressure boundary integrity in the event of a seal line rupture.

**PRA_FUNCTIONS** Modeled to open and remain open

#### DETERMINISTIC REMARKS

Open to provide alternate RCS boration for safe shutdown. Close to maintain the RCS pressure boundary integrity in the event of a seal line rupture. Valve is normally open (essentially a passive function). Effectively, the valve is tested during the course of normal operation (I.e., there are no hidden failures). The valve closes when flow stops (no automatic signal) during phase A. At phase B, RCPs are not credited (large LOCA scenario). Redundant closing function provided by other check valve

Discussion (The following general IST ranking notes apply to this valve group.)

PRA - not explicitly modeled due to passive function.

Note 1. Average Redundancy provides Defense in Depth requirement.

Note 9. Closing function ranked medium by GQA is not called upon until an unlikely failure (Failure of Q Class 2 piping) has already occurred.

#### IST RANK DISCUSSION

Failure to close affects RCS pressure boundary. The close function is required if there is a pipe break in the Class 2 portion of the seal injection line. Class 2 piping less than 2" is exempt from ISI so this piping has not been risk ranked by the ISI program, however the Class 1 portion of the same line with the same material specification and fluid medium has no degradation mechanisms identified. This indicates that there is negligible risk of a pipe break that would require the check valves to go closed. Redundant closing function provided by other check valve in series. Valve is normally open (essentially a passive function).

CV07 Seal Injection to RCPs Inside Cntmt Isolation Check Valves

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low				Medium	Low

## IST_FUNCTIONS

Close and leak tight (CAT A) to maintain containment integrity and to provide isolation in the event of a seal line rupture.

**PRA_FUNCTIONS** No active function modeled

## DETERMINISTIC REMARKS

Close and leak tight (CAT A) to maintain containment integrity and to provide isolation in the event of a seal line rupture. Open to provide alternate RCS boration for safe shutdown Valve is normally open (essentially a passive function). Effectively, the valve is tested during the course of normal operation (I.e., there are no hidden failures). The valve closes when flow stops (no automatic signal) during phase A. At phase B, RCPs are not credited (large LOCA scenario). Redundant closing function performed by outboard MOV.

**Discussion** (The following general IST ranking notes apply to this valve group.)

PRA models valve to stay open which is a passive function.

Note 1. Average Redundancy provides Defense in Depth requirement

Note 3. Valve is normally open and does not have to reposition to allow Seal Injection flow, which is the safety function ranked medium by GQA.

Note 10. No credible failure could occur, after valve is open and operating, which would prevent performance of function ranked medium.

#### **IST RANK DISCUSSION**

Failure to close affects containment integrity. Function is backed up by outboard MOVs. Valve opens to allow seal injection flowpath. Seal injection flow is established prior to starting the Reactor Coolant Pumps. Established flow indicates that check valves are not stuck in the closed position. Flow to RCP seals is maintained and check valves remain open during all plant modes until the RCS is depressurized. Failure to provide seal flow after valve is initially opened is not considered to be a credible event for Y pattern lift check valves. Final IST Rank - LOW

CV12 Letdown Orifice Header Isolation Valve

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Low	3.33E-05	1.20	Medium	Low

## IST_FUNCTIONS

Close in response to a Containment Phase A signal to isolate the letdown line from PSV-3100. Closure of MOV-0023 and MOV-0024 without closure of FV-0011, would increase the pressure in the letdown line until PSV-3100 lifted.

## **PRA_FUNCTIONS**

Modeled to close

## DETERMINISTIC REMARKS

Close in response to a Containment Phase A signal to isolate the letdown line from PSV-3100. Closure of MOV-0023 and MOV-0024 without closure of FV-0011, would increase the pressure in the letdown line until PSV-3100 lifted. Normally open, fails closed If this valve fails to close, upstream MOVs will isolate the line and downstream CIVs will also provide redundant closing capability.

**Discussion** (The following general IST ranking notes apply to this valve group.)

Low FV and Low RAW

Note 11. IST rank agrees with GQA function rank for the function tested by IST.

#### IST RANK DISCUSSION

Normally open, fails closed. If this valve fails to close, upstream MOVs will isolate the line and downstream CIVs will also provide redundant closing capability. Flow through relief valve is minimized by letdown orifices. Close function is ranked low by GQA. IST rank agrees with GQA function rank for safety function tested by the IST Program.

CV20 RCS Letdown Isolation (Class 1 Boundary Isolation)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	NRS			Medium	Low

## IST_FUNCTIONS

Close in response to low pressurizer level signal to isolate letdown line and maintain RCS pressure boundary integrity or close (remote manual) to isolate a high energy line break in the CVCS between the letdown stop valves and the letdown header isolation valves.

## PRA_FUNCTIONS

Modeled to close

## DETERMINISTIC REMARKS

Close in response to low pressurizer level signal to isolate letdown line and maintain RCS pressure boundary integrity or close (remote manual) to isolate a high energy line break in the CVCS between the letdown stop valves and the letdown header isolation valves. Actuation signals and power come from separate sources. Redundant closing capability provided by 2 MOVs in series.

Discussion (The following general IST ranking notes apply to this valve group.)

PRA models valve to stay open for letdown. Close function not explicitly modeled.

Note 1. Average Redundancy provides Defense in Depth requirement.

Note 2. Two valves in series with separate closing signals and separate power sources provide diversity to assure performance of safety function.

Note 9. Closing function ranked medium by GQA is not called upon until an unlikely failure (Failure of Q Class 2 piping.) has already occurred.

#### IST RANK DISCUSSION

Failure of valve to close could affect RCS inventory. Two valves in series (redundancy) with separate closing signals and separate power sources (diversity) assure performance of safety function.

CV22 Volume Control Tank Outlet Isolation MOVs

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	NRS			Medium	Low

#### IST_FUNCTIONS

- 1. Remain open to provide suction from the VCT to the charging pumps for safe shutdown boration requirements.
- 2. Close in response to a SI signal coincident with an open signal from valves LCV-0112C and LCV-0113B (CVC DBD 4B.11.1.2) to switch charging pump suction from the VCT to the RWST on low-low levels in the VCT for safe shutdown boration requirements.

## PRA_FUNCTIONS

Modeled to remain open, to close on low-low level in VCT

## DETERMINISTIC REMARKS

Remain open to provide suction from the VCT to the charging pumps for safe shutdown boration requirements. Close in response to a SI signal coincident with an open signal from valves LCV-0112C and LCV-0113B to switch charging pump suction from the VCT to the RWST on low-low levels in the VCT for safe shutdown boration requirements. Two valves in series provide redundant closing function. Failure of both valves to close might lead to gas binding of the charging pumps. Valves are powered by separate power supplies and separate actuation signals.

Discussion (The following general IST ranking notes apply to this valve group )

PRA models valve to stay open which is a passive function.

Note 3. Valve is normally open and does not have to reposition to allow suction to charging pumps, which is the safety function ranked medium. IST does not test this function Note 11. IST rank agrees with GQA function rank for the function tested by IST.

#### IST RANK DISCUSSION

Failure of a valve to remain open might lead to failure of the running charging pump. Failure of both valves to close might lead to gas binding of the charging pumps. Valves are normally open and fail as is. Valves are powered by separate power supplies and separate actuation signals. IST rank agrees with GQA ranking for the function tested by the IST program.

CV27 RCP Seal Injection Outside Cntmt Isolation MOVs

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Not modeled			Medium	Low

## IST_FUNCTIONS

- 1. Close in response to an ESF signal coincident with a charging header low pressure signal (ESF signal is blocked if the charging header pressure is high) per CVC DBD 4B 7.4 and leak tight (CAT A) to provide containment integrity.
- 2. Remain open to provide an alternate boration path for safe shutdown.

PRA_FUNCTIONS No active function modeled

## DETERMINISTIC REMARKS

Close in response to an ESF signal coincident with a charging header low-pressure signal to provide containment integrity. Redundant closing function performed by inboard check valve.

Remain open to provide an alternate boration path for safe shutdown. Also provides seal injection. Valve is normally open.

Discussion (The following general IST ranking notes apply to this valve group )

PRA models valve to stay open which is a passive function.

Note 3. Valve is normally open and does not have to reposition to allow for boration through seal injection, which is the safety function ranked medium. IST does not test this function Note 11. IST rank agrees with GQA function rank for the function tested by IST.

## **IST RANK DISCUSSION**

Failure of the valve to close affects containment integrity. Redundant closing function performed by inboard check valve. IST rank agrees with GQA ranking for the close safety function which is tested by the IST program. Valve is normally open and does not have to reposition to allow for boration through seal injection, which is the function that is ranked medium by GQA. IST does not test this passive function. Valve is a cold shutdown valve since closing the valve would isolation RCP seal injection. Valve is not routinely repositioned therefore open is a passive safety function

CV30 RCS Excess Letdown Heat Exchanger Inlet Isolation MOVs (Class 1 Boundary Isolation)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Not modeled			Medium	Low

#### IST_FUNCTIONS

Close to provide isolation of the excess letdown line for pipe break downstream of the valve to maintain RCS pressure boundary integrity.

#### PRA_FUNCTIONS

Not modeled

## DETERMINISTIC REMARKS

Close to provide Isolation of the excess letdown line for pipe break downstream of the valve to maintain RCS pressure boundary integrity.

These valves are normally closed (essentially a passive safety function) and they do not receive a closing signal (because they are infrequently used - start up and cleanup events). There are two MOVs in series which provide redundant closing capability.

**Discussion** (The following general IST ranking notes apply to this valve group.)

PRA models valve to stay closed which is passive function

Note 1. Average Redundancy provides Defense in Depth requirement.

Note 3. Valves are normally closed and do not have to reposition to isolation Excess Letdown from RCS pressure, which is the safety function ranked medium.

## IST RANK DISCUSSION

Failure to close could affect RCS pressure boundary. These valves are normally closed and do not have to be repositioned to isolate Excess Letdown from RCS pressure. This function is ranked Medium by GQA. The valves are cold shutdown valves and are not stroked at power. There are two MOVs in series which provide redundant closing capability. Redundancy and passive safety function are considered for the IST rank.

CV37 Charging Header Check Valve

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	NRS			Medium	Low

## **IST_FUNCTIONS**

1. Open to provide seal injection RCS boration control flow path from discharge of centrifugal charging pump. A flow rate of 32 gpm is required per CVC DBD 4A 1 2.4.

2. Close to prevent diversion of flow due to HELB in charging header with flow path established through valve

## **PRA_FUNCTIONS**

Modeled to open

## DETERMINISTIC REMARKS

Open to provide RCS boration control flow path from discharge of centrifugal charging pumps. Close to prevent diversion of flow due to HELB in charging header with flow path established through valve HCV-0206. This valve is normally open. If this valve fails to close in the event of a HELB, the normal charging flowpaths are lost. The primary charging flowpath is isolated on safety injection.

Discussion (The following general IST ranking notes apply to this valve group.)

PRA models valve to stay open (passive).

Note 3. Valve is normally open with charging in service and does not have to reposition to allow a boration flowpath, which is the safety function ranked medium by GQA. Note 10. No credible failure could occur after valve is open and operating which would prevent performance of function ranked medium.

## IST RANK DISCUSSION

Failure of the valve to close during HELB takes out normal charging path. The close function is ranked low by GQA. Alternate boration paths are available through RCP seal injection. The open function is ranked medium by GQA. Once a check valve has opened and is functioning, a credible failure that would prevent the valve from performing open function is very unlikely. Check valves are normally open and highly reliable.

## CV38 RCS Normal and Alternate Charging Check Valves (Class 1 Boundary Valves)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Not modeled			Medium	Low

#### IST_FUNCTIONS

- 1. Close to maintain RCS pressure boundary isolation in the event of a Class 2 CVCS line break.
- 2. Open to provide 30 gpm for RCS boron and water inventory (charging) control for safe shutdown per Technical Specification 4.1.2.2 d Required flowrate is 190 gpm for RWST as water source per CR 99-1380-3.

## **PRA_FUNCTIONS**

No active function modeled

## DETERMINISTIC REMARKS

Close to maintain RCS pressure boundary isolation in the event of a Class 2 CVCS line break. Open to provide 30 gpm for RCS boron and water inventory (charging) control for safe shutdown. Two check valves in series provide redundant closing capability. Check valves are considered to be reliable to perform their function Redundant flowpaths provided by parallel injection lines.

Discussion (The following general IST ranking notes apply to this valve group.)

PRA models valve to stay open which is a passive function.

Note 1. Redundancy is provided by two check valves in series for closing function. There are two separate flow paths for redundancy of the open function.

Note 3. In one path the closing function is backed up by a normally closed MOV. These check valves will be in the closed position and will not have to be repositioned to perform safety function.

Note 8. Industry data has shown that check valves are reliable. Use of the industry data in the PRA model will reduce CCF term in RAW for check valves in clean systems.

Note 9. Closing function is required if there is a pipe failure. It has been shown that failure of the Class 2 pipe is very unlikely.

Note 10. For the flow path that is used for charging, the valves will be normally open to allow charging and chemical control of RCS. When the check valves are open and in service there is no credible failure that would prevent the valves from performing safety function.

#### IST RANK DISCUSSION

Failure of this valve to open affects one charging path. Redundant path is available. Failure of the valve to close affects RCS pressure boundary. Redundant closing function provided by second check valve. Check valves are considered to be reliable to perform their function.

CV40 RCS Charging Inside Cntmt Isolation Check Valve

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	NRS			Medium	Low

## **IST_FUNCTIONS**

- 1. Close and leak tight (CAT A) to maintain containment integrity.
- 2. Open to provide 30 gpm for RCS boron and water inventory (charging) control for safe shutdown per Technical Specification 4.1.2.2 d. Required flowrate is 190 gpm for RWST as water source per CR 99-1380-3.

## **PRA_FUNCTIONS**

Modeled to remain open

## DETERMINISTIC REMARKS

Close and leak tight (CAT A) to maintain containment integrity.

Open to provide boration and water inventory (charging) control for safe shutdown.

Upstream MOV performs redundant closing function. Check valve is normally open and highly reliable.

#### Discussion (The following general IST ranking notes apply to this valve group.)

PRA models the valve to remain open. Since the check valve is normally open this is a passive function

Note 1. Open function allows for charging and boration flow paths. Redundant flow paths are available through seal injection.

Note 8. Industry data has shown that check valves are reliable. Use of the industry data in the PRA model will reduce RAW for check valves in clean systems.

## IST RANK DISCUSSION

Failure of the valve to close could affect containment integrity. Redundant closing capability provided by upstream MOV. Failure to close following loss of letdown could lead to RCS inventory mismatch, however, in this case, redundancy is provided by upstream control valve. Valve is normally open providing a charging path. Once a check valve has opened and is functioning, a credible failure that would prevent the valve from performing open function is very unlikely. The open function to provide a charging flow path is the reason for the Medium rank by GQA. Failure of the valve to open after phase A reset would affect normal charging and boration flowpath. Alternate boration paths are available through RCP seal injection. System redundancy is provided so that valve is not risk significant.

*EW05* Essential Cooling Water Pump Discharge MOV (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Medium	Medium	1.20E-03	4.67	High	Medium

#### **IST_FUNCTIONS**

Open following ECW pump start to provide essential cooling during accident conditions. The delay allows air that may have accumulated in the discharge line to be pushed out the vent line to minimize water hammer.

## **PRA_FUNCTIONS**

Open to provide flow.

#### DETERMINISTIC REMARKS

Open following ECW pump start to provide essential cooling during accident conditions. The delay allows air that may have accumulated in the discharge line to be pushed out the vent line to minimize water hammer.

This system serves as the ultimate heat sink. Two of these valves (in 2 of the trains) are open all of the time. There are 3 trains. Any 1 train can provide the necessary cooling. These valves will not close on a LOOP.

Discussion (The following general IST ranking notes apply to this valve group )

Medium FV and Medium RAW

Note 1. Above average Redundancy allows for one failure and still maintains Defense in Depth. (All three valves would have to fail to fail the function)

Compensatory measure: Train rotation for maintenance requires starting different ECW pumps frequently. There will be assurance that the pumps will start and the valves will open to provide adequate flow.

## **IST RANK DISCUSSION**

Failure of valve to open affects one train of ECW. 3 trains are available; only one train is required to provide necessary cooling. One train of ECW always in service. FV and RAW are Medium. These valves will be constantly tested for the open function as a result of the rotation of ECW trains for the staggered maintenance schedule. ECW pumps are ranked IST High and will be tested quarterly per Code requirements. These valves will be exercised during each ECW pump inservice test. Final IST Rank - MEDIUM

## EW08 Essential Cooling Water Pump Discharge Check Valve (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	High	7.72E-04	833 51	High	High

## **IST_FUNCTIONS**

Open to allow ECW Pump discharge flow to components cooled by ECW. ECW Pump design flow per DBD is 18,290 gpm per CR 98-19892-3 and CR 99-1380-2.

**PRA_FUNCTIONS** Opens to provide flow

#### DETERMINISTIC REMARKS

Open to allow ECW Pump discharge flow to components cooled by ECW. This system serves as the ultimate heat sink. Two of these valves (in 2 of the trains) are open all of the time. There are 3 independent trains. Any 1 train can provide the necessary cooling.

Discussion (The following general IST ranking notes apply to this valve group.)

Low FV and High RAW

Note 1. Above average Redundancy allows for one failure and still maintains Defense in Depth. (All three valves would have to fail to fail the function)

Note 12. Valve group will remain High until new PRA model is approved.

## IST RANK DISCUSSION

Loss of valve leads to loss of one train of ECW. 3 trains of ECW are available. Only 1 train is required to provide necessary cooling. High RAW results from high common cause as a result of brackish water in essential cooling water pond.

Final IST Rank - HIGH

EWPP EW Pumps

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Medium	High	8.75E-03	836.58	High	High

## **IST_FUNCTIONS**

Take a suction from the Emergency Cooling Pond (ECP) and deliver cooling water to Emergency Diesel Generator heat exchangers, Essential Chillers, and Component Cooling Water heat exchangers during normal operating, shutdown, and following accident conditions. The ECW pumps receive an auto start signal upon an SI initiation signal. Design flow is 19,280 gpm (per DBD).

#### **PRA_FUNCTIONS**

Fail to start, fail to run

#### DETERMINISTIC REMARKS

Take a suction from the Emergency Cooling Pond (ECP) and deliver cooling water to Emergency Diesel Generator heat exchangers, Essential Chillers, and Component Cooling Water heat exchangers during normal operating, shutdown, and following accident conditions. The ECW pumps receive an auto start signal upon an SI initiation signal. This system serves as the ultimate heat sink. There are 3 trains. Any 1 train can provide the necessary cooling.

Discussion (The following general IST ranking notes apply to this valve group.)

High FV and High RAW

Note 1. Above average Redundancy allows for one failure and still maintains Defense in Depth. (All three pumps would have to fail to fail the function )

#### IST RANK DISCUSSION

Failure of pump affects one train of ECW. 3 trains are available; only one train is required to provide necessary cooling. Loss of pump fails all safety class train components. Pumps provide primary means to remove decay heat in both normal and accident conditions. Redundant trains available. All three trains are administratively required for front end mid-loop. FV and RAW are high indicating that the Essential Cooling Water pumps are high risk significant and are important to the success criteria in the PRA.

Final IST Rank - HIGH

MS01 Main Steam Isolation Valves

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Low			Medium	Low

## **IST_FUNCTIONS**

Close on the following signals to provide containment isolation, prevent blowdown of more than one steam generator at a time, and to prevent Containment overpressurization from reverse flow due to a steam line break inside of Containment:

- Low steam line pressure, or
- High negative steam line pressure rate.

#### PRA_FUNCTIONS Close for MSLB and SGTR

#### DETERMINISTIC REMARKS

Normally open, designed to fail closed. During a SGTR and one fails to close, there are two separate trains of solenoid valves that could be used to force the valve to close. From the CR, the close signal will isolate the air supply and vent the air off of the operator to force the valve to close. For all other events, if the break occurs upstream of the valve, we do not want multiple SGs feeding the break. This means that more than one of the MSIVs would have to fail, an unlikely event

Discussion (The following general IST ranking notes apply to this valve group )

PRA models the valve to remain open or fail to transfer to the closed position. Valve is normally open and fails closed.

Note 1. Valve fails closed and has two trains of solenoid valves that can be used to close the valve. For MS line break, two valves would have to fail to affect more than one SG. Multiple SGs are available to cooldown RCS.

Note 9. Function is not called upon until unlikely failure of the Main Steam piping has occurred.

#### **IST RANK DISCUSSION**

Redundancy in isolating the alternate trains for steam line break. System design prevents blow down of more than one generator with single valve failure. Final IST Rank - LOW

MS03 Main Steam Power Operated Relief Valves

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Medium	High	3.71E-02	255.81	High	High

#### IST_FUNCTIONS

- 1. Open to permit the removal of heat from the Nuclear Steam Supply System when the MSIVs are closed to mitigate the consequences of a steam line break, feedwater line break, or steam generator tube rupture. When used in conjunction with the Auxiliary Feedwater System, the Main Steam System is used to achieve a safe shutdown condition.
- 2. Close to isolate steam generator in response to SGTR during startup operations.

## **PRA_FUNCTIONS**

Model to open and to close

#### DETERMINISTIC REMARKS

#### Fail safe position is closed.

Of the steam generators receiving feedwater (typically all 4), we only need one PORV to function in order to depressurize. There are 4 available PORVs. PRA rank is high to remove decay heat. If this does not work, and AFW is available, the 20 safety valves will help remove decay heat. PRA credits the function of 1 safety valve. Failing this, the plant will open the primary side and "create" a LOCA to depressurize. The new PRA model may show that the importance of this valve is low.

Discussion (The following general IST ranking notes apply to this valve group.)

#### High FV and High RAW

Note 1. Above Average Redundancy - Heat can be dissipated using any of four PORVs. Also if Auxiliary Feedwater is available, there are 20 Main Steam Relief Valves that also can perform this function. Closing function is backed up by the PORV block valves, except in case of SGTR concurrent with Core Damage

#### **IST RANK DISCUSSION**

In the case of SGTR, failure to close may challenge containment. Block valves can isolate open PORVs, except in SGTR with core damage due to high radiation. Redundancy in the valves is available. Steam dumps also provide redundant cooling function in scenarios where MSIVs remain open. High FV and High RAW. Final IST Rank - HIGH

MS04 Main Steam Bypass Isolation Valves

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Not modeled			Medium	Low

#### **IST_FUNCTIONS**

Close on the following signals to provide containment isolation, prevent blowdown of more than one steam generator at a time, and to prevent Containment overpressurization from reverse flow due to a steam line break inside Containment:

- Low steam line pressure, or
- High negative steam line pressure rate.

# PRA_FUNCTIONS Not modeled

#### DETERMINISTIC REMARKS

Normally closed, except when starting up to warm up the steam lines.

GQA considered this to be of medium importance due to pressure boundary considerations.

Preliminary assessment supports a low ranking.

Discussion (The following general IST ranking notes apply to this valve group )

PRA - Valves are not explicitly modeled. Valves are open only when starting up to warm up the steam lines.

Note 3. Failure to close can only be a concern when the valves are open. The valves are normally closed.

Note 9. Steam line rupture during startup requiring closure is an unlikely event.

## IST RANK DISCUSSION

Mainsteam/feedwater line rupture, high containment pressure Smaller line has less significant impact than MSIVs. Could only happen when valve is open. (Not likely in small window with valves are in use during startup) Redundancy in isolating the alternate trains for steam line break. System design prevents blow down of more than one generator with single valve failure. IST does not test pressure boundary function which is the function that results in the medium risk rank for GQA. Final IST Rank - LOW

MS05 Main Steam Dump Valves

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
N/A				Low	N/A

IST_FUNCTIONS N/A PRA_FUNCTIONS Not modeled

## DETERMINISTIC REMARKS

Dump steam to the condenser upon load rejection (Hi Tavg) and turbine trip (Hi Tavg)

If the turbine load is low, the 0 percent dump valves and the 10% to 20% dump valves will completely open within 3 seconds to dump steam to the condenser. The steam dump system can dump up to 40% rated steam flow corresponding to 50% external load rejection without a reactor trp.

If a 2/4 lo-lo Tavg signal is detected, the steam dump valves will close to stop the steam flow to the condensers.

The SDVs modulate, based on the turbine impulse pressure, to allow extra steam to the condensers.

All flows are equally divided between the 3 condensers to ensure even heat loads. Steam dump valves are non-safety and not Class 1E powered. These valves are not considered in the accident analysis.

#### Discussion

Steam dump valves are currently not modeled in the PRA. Dump valves are used for decay heat removal and if modeled would probably have a medium rank for the function, but individually the valves would be ranked LOW. STP is analyzed to cool down using the MS PORVs with the MS Isolation Valves closed. If modeled the reliance on the MS PORVs could be reduced. Use of dump valves would require that the MSIVs be open or verified open. The plant reliability process will ensure that maintenance and monitoring activities are identified. Cause determination and corrective actions are performed whenever failures occur.

#### **IST RANK DISCUSSION**

Other program controls are used to focus plant resources on this valve group. Valves are not High risk, therefore are not being added to the IST program. Final IST Rank – N/A

*RC03* RCS Pressurizer Safety Valves

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Medium	Low	1.07E-04	1.09	High	Medium

## IST_FUNCTIONS

Open for overpressure protection of the RCS during loss of electrical load and /or turbine trip, uncontrolled rod withdrawal at power, loss of reactor coolant flow, loss of normal feedwater, and loss of offsite power to the station auxiliaries. Setpoint is 2485 psig per DBD 4D.1.2.4.

PRA_FUNCTIONS Modeled to open to prevent overpressure

#### DETERMINISTIC REMARKS

Open for overpressure protection of the RCS during loss of electrical load and /or turbine trip, uncontrolled rod withdrawal at power, loss of reactor coolant flow, loss of normal feedwater, and loss of offsite power to the station auxiliaries.

PORVs minimize the challenge to safety valves for most events . For a standard overpressure event, only 1 PSV must lift. For other events (ATWS), all 3 PSVs have to open.

#### Discussion

Low FV and Low RAW

Frequency of testing for CODE and possibility for sample expansion does not warrant seeking extension of this valve group. Valves removed and sent offsite for testing each refueling outage.

#### **IST RANK DISCUSSION**

Failure of valve when challenged could affect RCS integrity. In the event of ATWS all valves must open. Redundancy of function provided by other safety valves. Additionally, system redundancy is provided by the RCS PORVs, which relieve RCS pressure and have a setpoint at a lower RCS pressure. PRA FV and RAW are low. Final IST Rank - MEDIUM

RC06 Reactor Vessel Head Vent Isolation Valves

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Not modeled			High	Low

#### IST_FUNCTIONS

1. Close (for Regulatory Guide 1.139 requirements) to preclude a LOCA.

2. Open to vent steam and gases from the reactor vessel head following a LOCA and to provide a safety grade letdown path to the PRT allowing the plant to achieve cold shutdown for accident conditions.

PRA_FUNCTIONS
Not modeled

#### DETERMINISTIC REMARKS

Close to preclude a LOCA.

Open to vent steam and gases from the reactor vessel head following a LOCA and to provide a safety grade letdown path to the PRT allowing the plant to achieve cold

shutdown for accident conditions.

Normally closed, fails closed, 2 valves in senes.

Active function (vent the head) to depressurize. There are two parallel paths to vent the head Separate power supply available for each path.

#### Discussion (The following general IST ranking notes apply to this valve group.)

PRA does not credit Reactor Head Vents. Not explicitly modeled. GQA high function is closed. GQA medium function for Open.

Note 1. Two valves in series provide redundant closing capability. Two parallel paths provide redundant opening capability.

Note 2. Valves have separate power and signal trains.

Note 3. Valves are normally closed and fail close Closing function to provide RCS pressure boundary is passive. This is the function ranked high by GQA.

#### **IST RANK DISCUSSION**

Failure of the valve to close could challenge pressure boundary. Redundant closing capability provided by second head vent valve in vent path. These valves are cold shutdown valves and are not exercised during at power operations. Valves are verified closed following Tech Spec testing of the Head Vent flow path at the end of each refueling outage. The close function for RCS pressure boundary is a passive function. Opening of the vent path facilitates natural circulation decay heat removal. Failure to open is mitigated by redundant flowpath. The open function for vent path is required after a previous failure which results in a lost RCS inventory. Such a scenario would require a minimum of three failures for the Head vent system not to function.

*RC07* Reactor Vessel Head Vent Throttle Valves

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Not modeled			Medium	Low

## **IST_FUNCTIONS**

- 1. Open to vent steam and gases from the reactor vessel head following a LOCA and to provide a safety grade letdown path to the Pressurizer Relief Tank by "feed and bleed" to reach cold shutdown for accident conditions.
- 2. Close (for Regulatory Guide 1.139 requirements) to preclude a LOCA.

PRA_FUNCTIONS

## DETERMINISTIC REMARKS

#### Close to preclude a LOCA.

Open to vent steam and gases from the reactor vessel head following a LOCA and to provide a safety grade letdown path to the PRT allowing the plant to achieve cold shutdown for accident conditions.

Normally closed, fails closed, 2 valves in series.

Active function (vent the head) to depressurize. There are two parallel paths to vent the head Separate power supply available for each path.

## Discussion (The following general IST ranking notes apply to this valve group.)

PRA does not credit Reactor Head Vents. GQA medium function for Open.

Note 1. Two parallel paths provide redundant opening capability.

Note 2. Valves have separate power and signal trains.

## **IST RANK DISCUSSION**

Failure of the valve to close could challenge pressure boundary. Redundant closing capability provided by upstream heat vent valves (requires the failure of three valves to result in LOCA. Failure to open is mitigated by redundant flowpath. Opening of the vent path facilitates natural circulation decay heat removal. The open function for vent path is required after a previous failure which results in a lost RCS inventory. Such a scenario would require a minimum of three failures for the Head vent system not to function. Final IST Rank - LOW

RH01 Residual Heat Removal Heat Exchange Control Valve (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Not modeled			High	Low

#### IST_FUNCTIONS

- 1. Open for normal operating valve lineup after pipeline warmup and thus ensure correct valve position during safety injection and long term recirculation.
- 2. Fail open on loss of air or loss of electrical power.
- 3. Provide indication of valve position, GDC 13.

## PRA_FUNCTIONS

Normally open, fails open (passive)

## DETERMINISTIC REMARKS

Open for normal operating valve lineup after pipe line warmup and thus ensure correct valve position during safety injection and long term recirculation.

Fail open on loss of air or loss of electrical power. Valve is de-energized in open position during Modes 1-3.

Important for injection, recirculation, RHR (long-term cooling). The flowpath is important.

Normally open. Fails open. Redundancy of the flowpath provided by 3 trains. Only one flowpath is required for successful accident mitigation.

**Discussion** (The following general IST ranking notes apply to this valve group.)

PRA models this valve to stay open, which is a passive function.

Note 1. Above average Redundancy allows for one failure and still maintains Defense in Depth. (All three valves would have to fail the function)

Note 3. Valve is normally open and does not have to reposition to perform safety function. The valve fails open also.

## IST RANK DISCUSSION

Failure of the valve could affect flow through the RHR HX and, therefore, decay heat removal. Valve is in its required position for SI. Redundancy is provided by other trains. GQA risk rank is high for residual heat removal during SI and to maintain cold shutdown. These valves are de-energized in the open position (Modes 1,2,3) and therefore the open function for SI is passive, no operation required (zero nsk). These valves fail open which would allow maximum heat removal capability. Three trains of RHR are capable and available to perform this function.

IST Rank - LOW

RH04 Residual Heat Removal Inlet Isolation MOVs (Class 1 Boundary) Trains A, B, and C

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Medium	8.03E-05	28.46	High	Medium

#### **IST_FUNCTIONS**

- 1. Remain close and leak tight (CAT A) to maintain RCS pressure boundary, GDC 14 (PIV).
- 2. Open to allow RHR cooldown following SBLOCA, MSLB, FWLB, and in event of a fire.
- 3. Close to stop flow during a cooldown, with a pipe break downstream of the valve.
- 4. Provide indication of valve position, GDC 13.

#### **PRA_FUNCTIONS**

Model to open during SGTR. For most events, PRA does not need to credit RHR. During the SGTR, RHR is credited. If RHR is unavailable, the PRA will continue to use the SGs and open the PORVs, and then basically go to sump recirculation

#### DETERMINISTIC REMARKS

Remain close and leak tight (CAT A) to maintain RCS pressure boundary.

Open to allow RHR cooldown following SBLOCA, MSLB, FWLB, and in event of a fire (App. R.)

Close to stop flow during a cooldown, with a pipe break downstream of the valve.

Normally closed. Redundancy of closing function provided by other MOV in series. Diverse power supplied to redundant valves.

Redundancy of opening function provided by other trains.

Normally operate two trains during cooldown. Only one train is required.

**Discussion** (The following general IST ranking notes apply to this valve group )

Low FV and Medium RAW, PRA models valve to open during shutdown. GQA High Rank to Open function, MOV Rank - Medium

Note 1. Above average Redundancy allows for one failure and still maintains Defense in Depth. (All three valves would have to fail to fail the function)

Note 2. Separate opening signals and separate power sources provide diversity to assure performance of safety function.

Note 3. The close function to maintain the RCS pressure boundary is a passive function. Reactor Coolant Pressure Boundary valves are closed and leak tested in accordance with the Technical Specifications prior to start up.

Note 4. Low FV (E-05)

Compensatory Measure - No measure available. Valves are not operated during normal operation and are tested during every refueling outage in accordance with Tech Specs.

#### **IST RANK DISCUSSION**

Failure of these valves to open could affect decay heat removal. However, redundancy of opening function is provided by other trains. RHR is the preferred method of long-term decay heat removal. It is not required for early accident mitigation. RHR is required for shutdown. Normally operate two trains to maintain RCS temperature below 140 to avoid inadvertent mode change; however, only one train is required. Valve is required to reclose to isolate excessive leakage in RHR train. Valves are closed and leak tested as required by the Technical Specifications. Valves are closed during at power operations. Since the valves will fail in the as-is position, the close function for RCS pressure boundary is a passive function. During cold shutdown operation, the closure function can be performed by the redundant RHR suction MOV. Pipe break risk is low for the RHR suction line with the exception of the first weld, which can see a thermal transient.

Final IST Rank - MEDIUM

RH06 Residual Heat Removal Pump Discharge Check Valves (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Medium	5.43E-06	7.19	High	Medium

## **IST_FUNCTIONS**

Open to allow flow to occur during RHR cooldown following SBLOCA, MSLB, FWLB, or in event of a fire. Flow rate required is 3,000 gpm per paragraph 4A.1.2.1 of the DBD.

#### **PRA_FUNCTIONS**

Model to open during SGTR. For most events, PRA does not need to credit RHR. During the SGTR, RHR is credited. If RHR is unavailable, the PRA will continue to use the SGs and open the PORVs, and then basically go to sump recirculation.

#### DETERMINISTIC REMARKS

Normally operate two trains of RHR during cooldown. Only one train is required.

Valves open to allow flow to occur during RHR cooldown following SBLOCA, MSLB, FWLB, or in event of a fire.

Redundancy of function provided by other trains.

Discussion (The following general IST ranking notes apply to this valve group.)

Low FV and Medium RAW, GQA High Rank to open function

Note 1. Above average Redundancy allows for one failure and still maintains Defense in Depth. (All three valves would have to fail to fail the function)

Note 4. Low FV (E-06)

Note 7. High RAW is due to high CCF for check valves.

Note 8. Industry data has shown that check valves are reliable Use of the industry data in the PRA model will reduce CCF term in RAW for check valves in clean systems. Note 12. Valve group will remain Medium until new PRA model is approved.

## **IST RANK DISCUSSION**

Failure of these valves to open could affect decay heat removal. However, redundancy of opening function is provided by other trains. RHR is the preferred method of long-term decay heat removal. It is not required for early accident mitigation. Based on the amount of redundancy available for this function the FV is well below 5E-03 (FV = 5 43E-06) and an IST rank of Low is reasonable. However the RAW is in the Medium range therefore the IST rank will be kept at medium until new industry check valve failure data is included in the next update to the PRA.

Final IST Rank - MEDIUM

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Not modeled			Medium	Low

## RH07 Low Head Safety Injection to RCS Hot Leg Check Valves (Trains A, B, and C)

## IST_FUNCTIONS

- 1. Close and leak tight (CAT A) to maintain RCS pressure boundary, GDC 14 (PIV).
- 2. Open to provide sump recirculation flow to the RCS hot leg from LHSI for hot-leg recirculation (Maximum accident flow rate is 840 gpm per CR 97-9239-1).

## PRA_FUNCTIONS

Not modeled. PRA does not credit hot leg recirculation.

## DETERMINISTIC REMARKS

Open to recirculate borated water from the containment sump to the RCS hot leg during the long-term core cooling recirculation phase.

Remain close to maintain RCS pressure boundary.

There are 2 check valves in series to provide redundant ability to maintain RCS pressure boundary.

Closing function is backed up by upstream valves.

Valves are closed and leak tested prior to startup.

Discussion (The following general IST ranking notes apply to this valve group.)

Hot Leg Injection is not modeled in PRA, Valve not explicitly modeled for active function. GQA High Rank for open and Medium Rank for close

Note 1. Above average Redundancy allows for one failure and still maintains Defense in Depth. . (All three valves would have to fail.)

Note 3. The close function to maintain the RCS pressure boundary is a passive function. Reactor Coolant Pressure Boundary valves are closed and leak tested in accordance with the Technical Specifications prior to start up.

Note 7. High RAW is due to high CCF for check valves.

Note 8. Industry data has shown that check valves are reliable. Use of the industry data in the PRA model will reduce CCF term in RAW for check valves in clean systems.

## IST RANK DISCUSSION

If this valve fails to open, the plant will keep the train running on cold leg injection and use another line for the hot leg injection. Only one train is required to be aligned for hot leg injection. Redundancy of function provided by other trains. Check valves do not have valve operator type failures so they are considered more reliable and have lower failure rates. Final IST rank - LOW

RH08 Cold Leg Injection Check Valves (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Medium	Medium	1.08E-04	42.61	High	Medium

#### IST_FUNCTIONS

1. Close and leak tight (CAT A) to maintain RCS pressure boundary, GDC 14 (PIV).

- 2. Open to allow a safety grade cold shutdown of the RCS using RHR following a SBLOCA, SGTR, MSLB, or FWLB accident condition (Maximum flow rate is 3000 gpm per DBD 4A.1.2.1).
- 3. Open to provide cold-leg injection during ECCS injection and recirculation phases (Maximum flow rate is 2550 gpm per CR 97-9239-1).

#### **PRA_FUNCTIONS**

PRA models opening function. Normally closed. PRA models rupture scenario (ISLOCA) of this valve, and then the downstream rupture (XSI0038A).

## DETERMINISTIC REMARKS

Close and leak tight (CAT A) to maintain RCS pressure boundary.

Open to allow a safety grade cold shutdown of the RCS using RHR following a SBLOCA, SGTR, MSLB, or FWLB accident condition.

Open to provide cold-leg injection during ECCS injection and recirculation phases.

Discussion (The following general IST ranking notes apply to this valve group )

Low FV with High RAW. GQA High Rank for open and Med. Rank for close

Note 1. Above average Redundancy allows for one failure and still maintains Defense in Depth. (All three valves would have to fail.)

Note 3. The close function to maintain the RCS pressure boundary is a passive function. Reactor Coolant Pressure Boundary valves are closed and leak tested in accordance with the Technical Specifications prior to start up.

Note 4. Low FV with High RAW.

Note 7, High RAW is due to high CCF for check valves.

Note 8. Industry data has shown that check valves are reliable. Use of the industry data in the PRA model will reduce CCF term in RAW for check valves in clean systems. Compensatory Measure - No measure available. Valves are not operated during normal operation and are tested during every refueling outage in accordance with Tech Specs.

## IST RANK DISCUSSION

Failure to close could challenge RCS pressure boundary. Redundant closing function provided by closed downstream check valves. Failure of valve to open causes loss of one train low head SI and RHR. Redundant trains provide adequate flow. Valves are closed and leak tested prior to startup. Check valves do not have valve operator type failures so they are considered more reliable and have lower failure rates.

Final IST Rank - MEDIUM

*RH09* RHR Return to RWST CIVs

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low				Medium	Low

## **IST_FUNCTIONS**

Remain closed and leak tight (CAT A) to maintain containment integrity.

## **PRA_FUNCTIONS**

Not modeled

## DETERMINISTIC REMARKS

Remain close and leak tight (CAT A) to maintain containment integrity. Manual valve, normally closed, locked closed, redundancy provided by 2 valves in series.

Discussion (The following general IST ranking notes apply to this valve group )

Normally closed, locked closed manual value is not opened except during shutdown. The value closing is a passive function. IST testing requires leak test in accordance with Appendix J only.

Note 5. GQA Medium Rank is for close function. IST does not perform close exercise test since the function is passive and the valve is not routinely repositioned Note 11. IST rank agrees with GQA function rank for containment isolation.

## IST RANK DISCUSSION

System is not used at power. Locked closed and isolated. Used only during shutdown conditions when containment isolation is not required. Valve is used to drain cavity following refueling. The pressure boundary function ranked medium by GQA is tested by the IST Program. Final IST Rank - LOW

Tuesday, October 29, 2002

RHPP RHR Pumps

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Medium	Medium	3 21E-04	7.19	High	Medium

#### IST_FUNCTIONS

Circulate 3,000 gpm for final phase of reactor cooldown following a SBLOCA, SGTR, MSLB, or FWLB accident condition

## PRA_FUNCTIONS

Failure to start, failure to run

#### DETERMINISTIC REMARKS

Circulate reactor coolant for final phase of reactor cooldown following a SBLOCA, SGTR, MSLB, or FWLB accident condition. Redundancy of the flowpath provided by 3 trains. Only one flowpath is required for successful accident mitigation.

**Discussion** (The following general IST ranking notes apply to this valve group.)

Low FV and Medium RAW

Note 1. Above average Redundancy allows for one failure and still maintains Defense in Depth. (All three pumps would have to fail to fail the function)

Compensatory Measure - RHR pumps are started to allow slave relay testing as required by Technical Specifications.

## **IST RANK DISCUSSION**

Failure of a pump could affect decay heat removal. However, redundancy is provided by other trains. RHR is the preferred method of long-term decay heat removal. It is not required for early accident mitigation. Rank of pump in comparison to other components in train is a IST Medium because of requirements to start and continue running For the GQA ranking process, a potential overpressure condition results in a higher Large Early Release Frequency due to the potential for an intersystem LOCA. The higher LERF makes the FV calculated for GQA high. The IST FV does not include the pressure boundary contribution, therefore the FV for IST is not high. The IST Program does not test the pressure boundary function.

Final IST Rank - MEDIUM

SI05 Residual Heat Exchanger Bypass Valves (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Not modeled			Medium	Low

## IST_FUNCTIONS

Close for normal operating valve lineup and thus ensure correct valve position during safety injection and long term recirculation.

**PRA_FUNCTIONS** Not modeled.

## DETERMINISTIC REMARKS

Close for normal operating valve lineup and thus ensure correct valve position during safety injection and long term recirculation. Normally closed, fails closed. Normally de-energized. Redundancy of the flowpath provided by 3 trains. Only one flowpath is required for successful accident mitigation.

**Discussion** (The following general IST ranking notes apply to this valve group.)

PRA models valve to stay close. Not explicitly modeled due to passive function.

Note 11. IST rank agrees with GQA function rank for the function tested by IST.

#### **IST RANK DISCUSSION**

Failure of the valve to remain close could affect one train of RHR /SI cooling Normally closed, fails closed. Normally de-energized. Redundancy of the flowpath provided by 3 trains. Only one flowpath is required for successful accident mitigation. IST Rank agrees with GQA function rank for the function tested by the IST program. Final IST Rank - LOW

SI06 Low Head Safety Injection Pump Discharge Outside Cntmt Isolation Valves (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Low	2.92E-06	1.01	Medium	Low

#### IST_FUNCTIONS

- 1. Remain open to inject borated water from the RWST to the RCS cold legs during the short term core cooling/cold-leg injection phase of safety injection.
- 2 Remain open to recirculate borated water from the containment sump to the RCS cold or hot legs during the long term core cooling/cold and hot leg recirculation phase.
- 3. Close for accidents requiring cooldown using RHR and leak tight (CAT A) to provide containment integrity.
- 4. Provide indication of valve position, GDC 13.

#### **PRA_FUNCTIONS**

PRA models valve to remain open and ISLOCA function (closing function).

#### DETERMINISTIC REMARKS

Remain open to inject borated water from the RWST to the RCS cold legs during the short-term core cooling/cold-leg injection phase of safety injection.

Remain open to recirculate borated water from the containment sump to the RCS cold or hot legs during the long-term core cooling/cold and hot leg recirculation phase.

Close for accidents requiring cooldown using RHR and leak tight (CAT A) to provide containment integrity.

Close to prevent ISLOCA

Discussion (The following general IST ranking notes apply to this valve group )

Low FV and Low RAW for active closing function, open is passive. Open function (ranked high by GQA).

Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth

Note 3. Valve is normally open and does not have to reposition for safety injection, which is the safety function ranked high/medium by GQA.

Note 6. Testing of passive open safety function is not required by IST, but it is listed as an augmented test in the program

Note 11. IST rank agrees with GQA function rank for the function tested by IST.

## **IST RANK DISCUSSION**

Valve is in correct position for accident conditions. MOV fails as is. There are 3 upstream check valves in series to provide redundant capability. IST rank agrees with GQA function rank for the function required to be tested by the IST program. Open is an augmented test function in the IST program. Final IST rank - LOW

SI07 Safety Injection Emergency Sump Outside Cntmt Isolation MOVs (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Medium	High	2 54E-03	83 83	Hıgh	Medium

## IST_FUNCTIONS

1. Open to supply borated water from the emergency containment sump to the suction of the HHSI and LHSI pumps during the hot and cold-leg recirculation phase of safety injection.

2. Remain close to prevent draining the RWST water into the emergency containment sump and for Appendix R FHA.

- 3. Leak tight (CAT A) to provide containment integrity.
- 4. Provide indication of valve position, GDC 13.

## **PRA_FUNCTIONS**

PRA models opening function

#### DETERMINISTIC REMARKS

Open to supply borated water from the emergency containment sump to the suction of the HHSI, CS, and LHSI pumps during the hot and cold-leg recirculation phase of safety injection.

Remain closed to prevent draining the RWST water into the emergency containment sump.

Leak tight (CAT A) to provide containment integrity.

**Discussion** (The following general IST ranking notes apply to this valve group.)

Medium FV and Medium RAW

Note 1. Above average Redundancy allows for one failure and still maintains Defense in Depth. (All three valves would have to fail to fail the function)

Compensatory measure - Slave relay testing operates valve every quarter. Failure to operate will be documented on a Condition Report.

## **IST RANK DISCUSSION**

Failure of valve fails one train of SI and CS. Redundant trains are available for SI and CS. IST Rank based on IST PRA FV and RAW would be medium. Per direction of the Expert Panel, IST rank should be in agreement with the GQA risk rank if there isn't a specific difference in the scope/reason for nsk ranking. GQA designated the system function high for cold leg recirculation mode - recirculate borated water from the containment sump, through the RHR heat exchangers, and back to the RCS cold legs. Final IST Rank – MEDIUM

SI08 High Head Safety Injection Pump Discharge Outside Cntmt Isolation Valves (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Low			Medium	Low

## **IST_FUNCTIONS**

1. Remain open to inject borated water from the RWST to the RCS cold legs during the short term core cooling/cold-leg injection phase of safety injection and for Appendix R FHA.

- 2. Remain open to recirculate borated water from the containment sump to the RCS cold or hot legs during the long-term core cooling/cold and hot leg recirculation phase.
- 3. Close during long term recirculation mode after HHSI pumps have been shut-off and leak tight (CAT A) to provide containment integrity.

4. Provide indication of valve position, GDC 13.

#### **PRA_FUNCTIONS**

PRA models valve to remain open and ISLOCA function (closing function).

## DETERMINISTIC REMARKS

Remain open to inject borated water from the RWST to the RCS cold legs during the short-term core cooling/cold-leg injection phase of safety injection. Remain open to recirculate borated water from the containment sump to the RCS cold or hot legs during the long-term core cooling/cold and hot leg recirculation phase. Close for accidents requiring cooldown using RHR and leak tight (CAT A) to provide containment integrity. Close to prevent ISLOCA

Discussion (The following general IST ranking notes apply to this valve group )

PRA models valve to stay open (not an active function). PRA does not model hot leg injection (closing function not important in PRA) Open function (ranked high by GQA):

Note 1. Above average Redundancy allows for one failure and still maintains Defense in Depth. (All three valves would have to fail to fail the function)

Note 3. Valve is normally open and does not have to reposition for safety injection, which is the function ranked high by GQA. MOV fails as-is.

Note 6. Testing of passive open safety function is not required by IST, but it is listed as an augmented test in the program

Close function (ranked medium by GQA):

Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth. (All three valves would have to fail to fail the function)

Note 2. Separate closing signals and separate power sources provide diversity to assure performance of safety function.

#### IST RANK DISCUSSION

Valve is in correct position for accident conditions. MOV fails as is. The valve does not have to operate to perform the open safety function. There are 3 upstream check valves in series to provide redundant closing capability. Separate closing signals and separate power sources provide diversity to assure performance of the open and close safety functions. Final IST Rank - LOW

*SI09* High Head Safety Injection Cold Leg Isolation (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Not modeled			Medium	Low

## IST_FUNCTIONS

- 1. Remain open to inject borated water from the RWST to the RCS cold legs during the short term core cooling/cold-leg injection phase of safety injection and for Appendix R FHA.
- 2. Remain open to recirculate borated water from the containment sump to the RCS cold legs during the long-term core cooling/cold leg recirculation phase.
- 3. Close to stop flow to the RCS cold leg during switchover from cold-leg to hot-leg recirculation.
- 4. Provide indication of valve position, GDC 13.

## PRA_FUNCTIONS

PRA models valve to remain open and ISLOCA function (closing function).

## DETERMINISTIC REMARKS

Remain open to inject borated water from the RWST to the RCS cold legs during the short-term core cooling/cold-leg injection phase of safety injection and for Appendix R FHA. Remain open to recirculate borated water from the containment sump to the RCS cold legs during the long-term core cooling/cold leg recirculation phase.

Close to stop flow to the RCS cold leg during switchover from cold-leg to hot-leg recirculation.

Provide indication of valve position.

Valve is power locked out at the breaker in the open position.

**Discussion** (The following general IST ranking notes apply to this valve group.)

PRA models valve to stay open (not an active function). PRA does not model hot leg injection (closing function not important in PRA).

Open function (ranked high by GQA).

Note 1. Above average Redundancy allows for one failure and still maintains Defense in Depth (All three valves would have to fail to fail the function)

Note 3. Valve is normally open and does not have to reposition for safety injection, which is the function ranked high by GQA. MOV fails as-Is.

Note 6. Testing of passive open safety function is not required by IST, but it is listed as an augmented test in the program

Close function (ranked medium by GQA)

Note 1. Above average redundancy allows for one failure but maintains Defense in Depth. (All three valves would have to fail to fail the function)

Note 2. Separate closing signals and separate power sources provide diversity to assure performance of safety function.

#### IST RANK DISCUSSION

Valve is in correct position for accident conditions. MOV fails as is. The valve does not have to operate to perform the open safety function. The open safety function, which is ranked high by GQA is an augmented test in the IST program. Separate closing signals and separate power sources provide diversity to assure performance of the open and close safety functions.

*SI10* High Head Safety Injection Hot Leg Isolation (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Not modeled			Medium	Low

## **IST_FUNCTIONS**

- 1. Open to recirculate borated water from the containment sump to the RCS hot legs during the long term core cooling/hot leg recirculation phase.
- 2. Remain closed to prohibit flow to the RCS hot leg during cold-leg injection and recirculation and for Appendix R FHA.

# PRA_FUNCTIONS

Remain closed for ISLOCA (pressure boundary).

# DETERMINISTIC REMARKS

Normally closed. Redundancy of the opening function provided by redundant injection flow paths.

Open to recirculate borated water from the containment sump to the RCS hot legs during the long-term core cooling/hot leg recirculation phase.

Remain close to prohibit flow to the RCS hot leg during cold-leg injection and recirculation and for Appendix R FHA.

Discussion (The following general IST ranking notes apply to this valve group )

PRA models valve to stay closed (not an active function). PRA does not model hot leg injection (opening function not important in PRA).

Close function (ranked medium by GQA):

Note 1. Above average Redundancy allows for one failure and still maintains Defense in Depth. (All three valves would have to fail to fail the function)

Note 3. Valve is normally closed and does not have to reposition for safety injection, which is the function ranked high by GQA. MOV fails as-is.

Note 6. Testing of passive closed safety function is not required by IST, but it is listed as an augmented test in the program.

Open function (ranked medium by GQA)

Note 1. Above average redundancy allows for one failure and still maintains Defense in Depth. (All three valves would have to fail to fail the function)

Note 2. Separate opening signals and separate power sources provide diversity to assure performance of safety function.

# IST RANK DISCUSSION

Valves are normally closed. Close function is passive and is listed as an augmented test in the IST program. Diversity is maintained since each valve has separate trains for the opening signals and for the power supplies. If this valve fails to open, the plant will keep the train running on cold leg injection and use another line for the hot leg injection. Only one train is required to be aligned for hot leg injection. Redundancy of function provided by other trains. Three failures are required to fail this function. Final IST Rank - LOW

# SIII Residual Heat Removal Heat Exchanger Return to Hot Leg MOV (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Not modeled			Medium	Low

#### **IST_FUNCTIONS**

Hot leg injection line. Open to provide sump recirculation flow to the RCS hot leg from LHSI for hot-leg recirculation. This flow path allows the boric acid to remain in solution for cold leg break events (boric acid precipitation).

#### **PRA_FUNCTIONS**

Not modeled. PRA does not credit hot leg recirculation.

#### DETERMINISTIC REMARKS

Normally closed. Redundancy of the opening function provided by redundant injection flow paths.

Open to recirculate borated water from the containment sump to the RCS hot legs during the long-term core cooling/hot leg recirculation phase.

Remain close to prohibit flow to the RCS hot leg during cold-leg injection and recirculation.

Discussion (The following general IST ranking notes apply to this valve group.)

PRA does not model hot leg injection (opening function not important in PRA).

Note 1. Above average Redundancy allows for one failure and still maintains Defense in Depth. (All three valves would have to fail to fail the function)

Note 3. This function can be considered passive. If the valve fails to allow hot leg injection, then the water will be directed to the reactor vessel through the cold leg. Water in the vessel will prevent core damage regardless of valve failure.

## **IST RANK DISCUSSION**

Valves are normally closed and opened to allow hot leg injection. If this valve fails to open, the plant will keep the train running on cold leg injection and use another line for the hot leg injection. Only one train is required to be aligned for hot leg injection. Redundancy of function provided by other trains. If the valves fail to allow hot leg injection, then the water will be directed to the reactor vessel through the cold leg. Water in the vessel will prevent core damage even if all three valves fail.

SI12 Cold Leg Injection MOVs (Trains A, B, C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Not modeled	1.62E-06	1.00	High	Low

## IST_FUNCTIONS

1. Remain open to allow a safety grade cold shutdown of the RCS using RHR following a SBLOCA, SGTR, MSLB, or FWLB accident condition.

2. Remain open for the injection phase and for the sump recirculation phase of SI to the RCS following a LOCA.

3. Close to allow switchover of sump recirculation flow to the RCS from the cold-leg to the hot-leg.

#### PRA_FUNCTIONS Remain open

# DETERMINISTIC REMARKS

Remain open to allow a safety grade cold shutdown of the RCS using RHR following a SBLOCA, SGTR, MSLB, or FWLB accident condition.

Remain open for the injection phase and for the sump recirculation phase of SI to the RCS following a LOCA.

Close to allow switchover of sump recirculation flow to the RCS from the cold-leg to the hot-leg.

Normally open. Redundancy of the hot leg recirculation flowpath provided by 3 trains. Only one hot leg recirculation flowpath is required for successful accident mitigation

**Discussion** (The following general IST ranking notes apply to this valve group.)

Low FV and Low RAW. PRA models value to stay open (not an active function). PRA does not model hot leg injection (closing function not important in PRA). Open function (ranked high by GQA).

Note 1. Above average redundancy allows for one failure and still maintains Defense in Depth. (All three valves would have to fail to fail the function)

Note 3. Valve is normally open and does not have to reposition for safety injection, which is the function ranked high by GQA MOV fails as-is.

Note 6. Testing of passive open safety function is not required by IST, but it is listed as an augmented test in the program.

Close function (ranked medium by GQA)

Note 1. Above average redundancy allows for one failure and still maintains Defense in Depth. (All three valves would have to fail to fail the function)

Note 2. Separate closing signals and separate power sources provide diversity to assure performance of safety function.

## IST RANK DISCUSSION

The open function, ranked high by GQA, is a passive function and is listed as an augmented test in the IST program. Separate closing signals and separate power sources provide diversity to assure performance of close safety function. If this valve fails to close, the plant will keep the train running on injection and use another line for the hot leg injection. Only one train is required to be aligned for hot leg injection. Redundancy of function provided by other trains

SI13 High Head Safety Injection Pump Recirc Isolation

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Medium	Medium	2.07E-04	41.26	High	Medium

#### **IST_FUNCTIONS**

HH recirculation line

1. Remain open to provide a minimum recirculation flow path to the RWST for the HHSI pump.

2. Close to isolate flow to the RWST during switchover of pump suction from the RWST to the containment sump.

# PRA_FUNCTIONS

Models to remain open and to close.

# DETERMINISTIC REMARKS

Remain open to provide a minimum recirculation flow path to the RWST for the HHSI pump.

Close to isolate flow to the RWST during switchover of pump suction from the RWST to the containment sump.

Discussion (The following general IST ranking notes apply to this valve group )

Low FV and Medium RAW, MOV Working Group rank is Medium.

Open function (ranked medium by GQA).

Note 3. Valve is normally open and does not have to reposition to allow pump recirc. path, which is the function ranked medium by GQA. MOV fails as-is.

Note 6. Testing of passive open safety function is not required by IST, but it is listed as an augmented test in the program.

Close function (ranked medium by GQA)

Note 1. Average redundancy maintains Defense in Depth. (Both valves would have to fail to fail the function)

Note 2. Separate closing signals and separate power sources provide diversity to assure performance of safety function.

Compensatory measure - SI Auto. Recirc. Actuation and Response Time Test is performed every 18 months.

# IST RANK DISCUSSION

The open function, ranked high by GQA, is a passive function and is listed as an augmented test in the IST program. Separate closing signals and separate power sources for each valve provide diversity to assure performance of close safety function. Failure to close both valves blocks switchover. Redundant closing function provided by identical valve. Redundant SI function provided by alternate trains.

Final IST Rank - MEDIUM

SI14 Low Head Safety Injection Pump Recirc Isolation

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Medium	Medium	2.07E-04	41.26	High	Medium

## **IST_FUNCTIONS**

LH recirculation line.

1. Remain open to provide a minimum recirculation flow path to the RWST for the LHSI pump.

2. Close to isolate flow to the RWST during switchover of pump suction from the RWST to the containment sump.

# **PRA_FUNCTIONS**

Models to remain open and to close.

# DETERMINISTIC REMARKS

Remain open to provide a minimum recirculation flow path to the RWST for the LHSI pump. Close to isolate flow to the RWST during switchover of pump suction from the RWST to the containment sump.

Discussion (The following general IST ranking notes apply to this valve group.)

Low FV and Medium RAW, MOV Working Group rank is Medium.

Open function (ranked medium by GQA).

Note 3. Valve is normally open and does not have to reposition to allow pump recirc. path, which is the function ranked medium by GQA. MOV fails as-is.

Note 6. Testing of passive open safety function is not required by IST, but it is listed as an augmented test in the program.

Close function (ranked medium by GQA)

Note 1. Average Redundancy maintains Defense in Depth. (Both valves would have to fail to fail the function)

Note 2. Separate closing signals and separate power sources provide diversity to assure performance of safety function.

Compensatory measure - SI Auto. Recirc. Actuation and Response Time Test is performed every 18 months.

# IST RANK DISCUSSION

The open function, ranked high by GQA, is a passive function and is listed as an augmented test in the IST program. Separate closing signals and separate power sources provide diversity to assure performance of close safety function. Failure to close both valves blocks switchover. Redundant closing function provided by identical valve. Redundant SI function provided by alternate trains.

Final IST Rank - MEDIUM

SI18 High Head Safety Injection Pump Discharge Inside Cntmt Isolation Valves (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Medium	Medium	9.15E-04	3593 30	High	Low/High

# **IST_FUNCTIONS**

1. Open to inject borated water from either the RWST or the containment sump to the RCS cold legs during the cold leg injection phase of safety injection (Flow rate required is >1,470 gpm and <1620 gpm for HHSI pump lines following completion of modifications to the system that alters its flow characteristics per Technical Specification 4.5.2 g)

2. Open to recirculate borated water from the containment sump to the RCS hot legs during the hot leg recirculation phase of safety injection.

3. Close and be leak tight (CAT A) to provide containment integrity.

## **PRA_FUNCTIONS**

PRA models open and closing for the ISLOCA scenario.

#### DETERMINISTIC REMARKS

Open to inject borated water from the RWST to the RCS cold legs during the short-term core cooling/cold-leg injection phase of safety injection.

Open to recirculate borated water from the containment sump to the RCS cold or hot legs during the long-term core cooling/cold and hot leg recirculation phase.

Close for accidents requiring cooldown using RHR and leak tight (CAT A) to provide containment integrity.

Close to prevent ISLOCA

There are 2 check valves in series to provide redundant ability to strengthen pressure boundary to minimize LERF impacts.

Open function required for feed and bleed in addition to standard LOCA response.

Discussion (The following general IST ranking notes apply to this valve group)

Low FV and High RAW Open function is ranked medium by GQA. Close function is ranked low.

Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth. (Three valves would have to fail to fail the function)

Note 4. Low FV with High RAW.

Note 7. High RAW is due to high CCF for check valves.

Note 8. Industry data has shown that check valves are reliable. Use of the industry data in the PRA model will reduce CCF term in RAW for check valves in clean systems,

Note 11. For close function, IST rank is the same as GQA function rank. Current relief request approved by the NRC agrees with low risk for closing function. Testing of close function will continue to be performed in accordance with Appendix J testing.

Note 12. For open function, valve group will remain High

#### **IST RANK DISCUSSION**

Failure of valve to open causes loss of one train high head safety injection. Adequate flow provided by alternate trains. Based on the amount of redundancy available for this function the FV is less than 1E-03 and an IST rank of Low is reasonable. However, the RAW is high as a result of the industry failure rate data The failure ratedata in the current PRA results in a larger contribution to the common cause calculation which is included in the RAW number. The RAW will be reduced when the new industry failure rate data for check valves is included in the PRA update. For the open function this valve group will remain IST Rank HIGH until new PRA model is approved Currently GQA Risk Rank and PRA rank are the same (HIGH) which is also the final ranking for IST.

Final IST Rank - HIGH (for the open function).

Failure to close could challenge containment integrity. STP has documented, using Valve Relief Request (VRR-03), that the close function is low risk and the impact to the Large Early Release Frequency is minimal. Since the relief request describes that close exercise testing will be performed in accordance with Appendix J, Option B, we will administratively rank the close function as IST Low.

Final IST Rank – LOW (for the close function)

Tuesday, October 29, 2002

SI19 High Head Safety Injection Pump Discharge Check to Cold Leg (Class 1 Boundary) (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Medium	High	9.15E-04	3593.30	High	High

# **IST_FUNCTIONS**

- 1. Open to inject borated water from the RWST to the RCS cold legs during the short term core cooling/cold-leg injectionphase of safety injection (Flow rate required is >1,470 gpm and <1620 gpm for HHSI pump lines following completion of modifications to the system that alters its flow characteristics per Technical Specification 4.5.2.g).
- 2. Open to recirculate borated water from the containment sump to the RCS cold legs during the long-term core cooling/cold leg recirculation phase.
- 3. Close to prevent backflow from the accumulator and from the LHSI pump in the event that the corresponding HHSI pump is not running
- 4. Close and leak tight (CAT A) to maintain RCS pressure boundary, GDC 14 (PIV).

# **PRA_FUNCTIONS**

PRA models opening function.

## DETERMINISTIC REMARKS

Open to inject borated water from the RWST to the RCS cold legs during the short-term core cooling/cold-leg injection phase of safety injection.

Open to recirculate borated water from the containment sump to the RCS cold leg during the long-term core cooling/cold leg recirculation phase.

Close for accidents requiring cooldown using RHR and leak tight (CAT A) to maintain RCS pressure boundary.

Close to prevent ISLOCA

There are 2 check valves in series to provide redundant ability to maintain pressure boundary.

Open function required for feed and bleed in addition to standard LOCA response. These valves are closed and leak tested prior to startup.

**Discussion** (The following general IST ranking notes apply to this valve group.)

Low FV and High RAW Open function is ranked high by GQA. Close function is ranked low.

Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth. (Three valves would have to fail to fail the function)

Note 3. The close function to maintain the RCS pressure boundary is a passive function. Reactor Coolant Pressure Boundary valves are closed and leak tested in accordance with the Technical Specifications prior to start up.

Note 4. Low FV with High RAW.

Note 7. High RAW is due to high CCF for check valves. Note 8. Industry data has shown that check valves are reliable. Use of the industry data in the PRA model will reduce CCF term in RAW for check valves in clean systems.

Note 12. Valve group will remain High until new PRA model is approved.

Compensatory measure (Open) - No measure available. Valves are not operated during normal operation and are tested during every refueling outage in accordance with TS.

Compensatory measure (Close) - Verify closed and leak tight in accordance with the Technical Specifications.

#### IST RANK DISCUSSION

Failure to close could challenge RCS pressure boundary. Redundant closing function provided by closed upstream and downstream valves. Failure of valve to open causes loss of one train high head safety injection. Redundant trains provide adequate flow. Based on the amount of redundancy available for this function the FV is less than 1E-03 and an IST rank of Low is reasonable. However, the RAW is high as a result of the industry failure rate data. The failure rate data in the current PRA results in a larger contribution to the common cause calculation which is included in the RAW number. The RAW will be reduced when the new industry failure rate data for check valves is included in thePRA update. For the open function this valve group will remain IST Rank HIGH until new PRA model is approved. Currently GQA Risk Rank and PRA rank are the same (HIGH) which is also the final ranking for IST.

Final IST Rank - HIGH

Tuesday, October 29, 2002

SI20 High Head Safety Injection Pump Discharge Check to Hot Leg (Class 1 Boundary) (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Not modeled			High	Low

## IST_FUNCTIONS

- 1. Open to recirculate borated water from the containment sump to the RCS hot legs during the long-term core cooling/hot leg recirculation phase (Flow rate required is >1,470 gpm and <1620 gpm for HHSI pump lines following completion of modifications to the system that alters its flow characteristics per Technical Specification 4 5 2 g).
- 2. Close to prevent backflow from an LHSI pump in the event that the corresponding HHSI pump is not running during the hot leg recirculation phase
- 3. Close and leak tight (CAT A) to maintain RCS pressure boundary, GDC 14 (PIV).

#### PRA_FUNCTIONS

Remain closed (ISLOCA pressure boundary)

## DETERMINISTIC REMARKS

Open to recirculate borated water from the containment sump to the RCS hot leg during the long-term core cooling recirculation phase.

Remain close to maintain RCS pressure boundary. There are 2 check valves in series to provide redundant ability to maintain RCS pressure boundary. Closing function is backed up by upstream valves. Valves are closed and leak tested prior to startup.

Discussion (The following general IST ranking notes apply to this valve group.)

PRA - Hot leg injection is not modeled in the PRA, therefore the FV is low for this function. Open function is ranked medium by GQA. Close function is ranked high.

Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth (Three valves would have to fail to fail the function)

Note 3. The close function to maintain the RCS pressure boundary is a passive function. Reactor Coolant Pressure Boundary valves are closed and leak tested in accordance with the Technical Specifications prior to start up.

Note 8. Industry data has shown that check valves are reliable. Use of the industry data in the PRA model will reduce CCF term in RAW for check valves in clean systems.

#### IST RANK DISCUSSION

If this valve fails to open, the plant will keep the train running on cold leg injection and use another line for the hot leg injection. Only one train is required to be aligned for hot leg injection. Redundancy of function provided by other trains. The close function to maintain the RCS pressure boundary is a passive function. Reactor Coolant Pressure Boundary Pressure Isolation Valves are closed and leaked tested in accordance with the Technical Specifications in Mode 3, prior to Start Up. After testing the valves remain closed in the position required for RCPB during normal operations and are not routinely repositioned.

SI21 Low Head Safety Injection Pump Discharge Inside Cntmt Isolation Valves (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Medium	1.04E-04	36.43	High	Low/ Medium

# **IST_FUNCTIONS**

- 1. Open to inject borated water from the RWST to the RCS cold legs during the short term core cooling/cold-leg injectionphase of safety injection (Flow rate required is >2550 gpm and <2800 gpm for LHSI pump lines following completion of modifications to the system that alters its flow characteristics per Technical Specification 4.5.2.g).
- 2. Open to recirculate borated water from the containment sump to the RCS cold or hot legs during the long term core cooling/cold and hot leg recirculation phase.
- 3. Close to prevent backflow from the RHR system during post accident recovery operations.
- 4. Close and leak tight (CAT A) to maintain containment integrity.

#### **PRA_FUNCTIONS**

PRA models open and closing for the ISLOCA scenario

#### DETERMINISTIC REMARKS

Open to inject borated water from the RWST to the RCS cold legs during the short-term core cooling/cold-leg injection phase of safety injection.

Open to recirculate borated water from the containment sump to the RCS cold or hot legs during the long-term core cooling/cold and hot leg recirculation phase.

Close for accidents requiring cooldown using RHR and leak tight (CAT A) to provide containment integrity.

Close to prevent ISLOCA

There are 3 check valves in series to provide redundant ability to strengthen pressure boundary. This valve may have LERF impacts.

Discussion (The following general IST ranking notes apply to this valve group)

Low FV and Medium RAW. Open function is ranked high by GQA. Close function is ranked low.

Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth (Three valves would have to fail to fail the function)

Note 4. Low FV with Medium RAW.

Note 7. Medium RAW is due to high CCF for check valves.

Note 8. Industry data has shown that check valves are reliable. Use of the industry data in the PRA model will reduce CCF term in RAW for check valves in clean systems.

Note 11. For close function, IST rank should be the same as GQA function rank. Current relief request approved by the NRC agrees with low risk for closing function. Testing of close function will continue to be performed in accordance with Appendix J testing.

Note 12. For open function, valve group will remain Medium until new PRA model is approved.

# IST RANK DISCUSSION

Failure of valve to open causes loss of one train high head safety injection. Adequate flow provided by alternate trains. Based on the amount of redundancy available for this function the FV is less than 1E-03 and an IST rank of Low is reasonable. However, the RAW is Medium as a result of the industry failure rate data. The failure rate data in the current PRA results in a larger contribution to the common cause calculation which is included in the RAW number. The RAW will be reduced when the new industry failure rate data for check valves is included in the PRA update. For the open function this valve group will remain IST Rank Medium until new PRA model is approved.

Final IST Rank - MEDIUM (for the open function).

Failure to close could challenge containment integrity. STP has documented, using Valve Relief Request (VRR-03), that the close function is low risk and the impact to the Large Early Release Frequency is minimal. Since the relief request describes that close exercise testing will be performed in accordance with Appendix J, Option B, we will administratively rank the close function as IST Low.

Final IST Rank - LOW (for the close function)

# SI22 Safety Injection System Pumps Discharge Check to Hot Leg (Class 1 Boundary) (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Not modeled			Hıgh	Low

#### IST_FUNCTIONS

- 1. Open to recirculate borated water from the containment sump to the RCS hot legs during the long-term core cooling/hot leg recirculation phase (Flow rate required is 3,917 gpm per DBD Table T-6).
- 2. Close to prevent RCS backflow into the LHSI and HHSI pumping systems.
- 3. Close and leak tight (CAT A) to maintain RCS pressure boundary, GDC 14 (PIV).

# **PRA_FUNCTIONS**

Remain closed (ISLOCA pressure boundary)

# DETERMINISTIC REMARKS

Open to recirculate borated water from the containment sump to the RCS hot leg during the long-term core cooling recirculation phase.

Remain close to maintain RCS pressure boundary.

There are 2 check valves in series to provide redundant ability to maintain RCS pressure boundary.

Closing function is backed up by upstream valves.

Valves are closed and leak tested prior to startup.

Common path for high head and low head injection.

Discussion (The following general IST ranking notes apply to this valve group.)

PRA - Hot leg injection is not modeled in the PRA, therefore the FV is low for this function. Open function is ranked medium by GQA. Close function is ranked high.

Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth. (Three valves would have to fail to fail the function)

Note 3. The close unction to maintain the RCS pressure boundary is a passive function. Reactor Coolant Pressure Boundary valves are closed and leak tested in accordance with the Technical Specifications prior to start up.

Note 8. Industry data has shown that check valves are reliable. Use of the industry data in the PRA model will reduce CCF term in RAW for check valves in clean systems.

## **IST RANK DISCUSSION**

Low. If this valve fails to open, the plant will keep the train running on cold leg injection and use another line for the hot leg injection. Only one train is required to be aligned for hot leg injection. Redundancy of function provided by other trains. The close function to maintain the RCS pressure boundary is a passive function. Reactor Coolant Pressure Boundary Pressure Isolation Valves are closed and leaked tested in accordance with the Technical Specifications in Mode 3, prior to Start Up. After testing the valves remain closed in the position required for RCPB during normal operations and are not routinely repositioned.

*SI23* Accumulator to Cold Leg Inboard Check Valves (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Medium	High	1.50E-03	704.92	High	High

#### IST_FUNCTIONS

1. Open when the RCS pressure falls below the accumulator pressure to force borated water into the RCS cold legs.

2. Close to prevent backflow from the RCS into the low pressure SI system.

3 Close and be leak tight (CAT A) to maintain RCS pressure boundary, GDC 14 (PIV).

## **PRA_FUNCTIONS**

Models to open and to not fail (rupture) during ISLOCA.

#### DETERMINISTIC REMARKS

Open to recirculate borated water from the containment sump to the RCS cold leg during injection and long term core cooling recirculation phase.

Remain closed to maintain RCS pressure boundary.

There are 2 check valves in series to provide redundant ability to maintain RCS pressure boundary.

Closing function is backed up by upstream valves.

Valves are closed and leak tested prior to startup.

Common path for accumulator, high head, and low head injection.

Discussion (The following general IST ranking notes apply to this valve group.)

Medium FV and High RAW

Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth. (Three valves would have to fail to fail the function)

Note 3. The close function to maintain the RCS pressure boundary is a passive function. Reactor Coolant Pressure Boundary valves are closed and leak tested in accordance with the Technical Specifications prior to start up.

Note 8. Industry data has shown that check valves are reliable. Use of the industry data in the PRA model will reduce CCF term in RAW for check valves in clean systems.

Note 12. Valve group will remain High until new PRA model is approved.

Compensatory measure (Open) – No measure available. Valves are not operated during normal operation and are tested during every refueling outage in accordance with TS. Compensatory measure (Close) – Verify closed and leak tight in accordance with the Technical Specifications.

#### IST RANK DISCUSSION

A failure to open removes 1/3 of injection. Redundancy of function provided by other trains. Failure to close affects RCS pressure boundary. Redundant valves maintain RCS pressure boundary. The close function to maintain the RCS pressure boundary is a passive function. Reactor Coolant Pressure Boundary Pressure Isolation Valves are closed and leaked tested in accordance with the Technical Specifications in Mode 3, prior to Start Up. After testing the valves remain closed in the position required for RCPB during normal operations and are not routinely repositioned. Based on the amount of redundancy available for this function the FV is less than 5E-03 and an IST rank of Medium is reasonable. However, the RAW is High as a result of the industry failure rate data. The failure rate data in the current PRA results in a larger contribution to the common cause calculation which is included in RAW number. The RAW will be reduced when the new industry failure rate data for check valves is included in the PRA update. This valve group will remain IST Rank High until new PRA model is approved. Final IST Rank - HIGH

Tuesday, October 29, 2002

#### SI24 Accumulator Tank Discharge MOVs (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Not modeled			Medium	Low

#### IST_FUNCTIONS

Remain open during plant operation to maintain the safeguards function of the accumulators.

Discussion: ensure the valve remains in the open position during normal plant operation.

Close to demonstrate the ability to allow safety grade cold shutdown utilizing RHR.

#### **PRA_FUNCTION**

Function to remain open and to close when they isolate the accumulator. This valve is opened, placed in the power lockout position, and its power supply breaker is opened to PRA does not credit accumulator for ECCS, doesn't prevent or mitigate core damage. PRA does not model.

#### DETERMINISTIC REMARKS

Remain open during plant operation to maintain the safeguards function of the accumulators.

This valve is opened, placed in the power lockout position, and its power supply breaker is opened to ensure the valve remains in the open position during normal plant operation.

Close to demonstrate the ability to allow safety grade cold shutdown utilizing RHR.

Closed and locked out to prevent inadvertent actuation during shutdown.

Discussion (The following general IST ranking notes apply to this valve group.)

Accumulators are not credited by PRA, Open function is Passive. Open function is ranked high by GQA. Close function is ranked low.

Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth. (Three valves would have to fail to fail the function)

Note 3. Valve is opened, placed in power lockout position, and its power supply breaker is opened to ensure the valve remains in the open position during normal plant operation. It cannot be repositioned and the MOV fails as-is in the open position, which is the function ranked high by GQA.

Note 6. Testing of passive open safety function is not required by IST, but it is listed as an augmented test in the program.

## **IST RANK DISCUSSION**

Function to remain open during normal plant operation and to close during shutdown to isolate the accumulator. If valve fails to close, Ops can vent nitrogen off (in EOPs). These valves are open during modes 1-4 and their power supply is locked out. This makes the open function passive since the valve does not have to reposition to perform function required during modes 1-4. The valves are closed when entering mode 5 and their power supply is again locked out (after valve closure). This makes the close safety function also passive during shutdown operation. These valves are not routinely repositioned during normal operations.

*SI25* Safety Injection Pumps Suction Check Valves (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Medium	High	7.56E-04	347.04	High	High

#### **IST_FUNCTIONS**

1. Open to provide a source of borated water to the suction of the LHSI, HHSI and CS pumps during the injection mode of accident mitigation (Flow rate required is 5920 gpm This is a combination of 1470 gpm for HHSI, 2550 gpm for LHSI, and 1900 gpm for CS).

2. Close to prevent backflow to the RWST when containment sump isolation valves are opened during switchover from the injection phase to the cold leg recirculation mode before SI-MOV001A, B, and C are closed. Operator action is required to manually close SI-MOV001A, B, and C to complete the switchover process.

#### **PRA_FUNCTIONS**

Modeled to open and close

#### DETERMINISTIC REMARKS

Open to provide a source of borated water to the suction of the LHSI, HHSI and CS pumps during the injection mode of accident mitigation Close to prevent backflow to the RWST when containment sump isolation valves are opened during switchover from the injection phase to the cold leg recirculation mode before SI-MOV001A, B, and C are closed. Operator action is required to manually close SI-MOV001A, B, and C to complete the switchover process. Active for both directions. Considered to be the primary isolation. MOV provides the same closing function. If the valve fails to open, the plant loses 1/3 of SI capacity. Procedurally, the plant needs 1 out of 3 trains for success. RAW is very high. CCF contribution is very high.

Discussion (The following general IST ranking notes apply to this valve group.)

Low FV and High RAW. Open function is ranked high by GQA. Close function is ranked low.

Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth (Three valves would have to fail to fail the function)

Note 4. Low FV with High RAW.

Note 7. High RAW is due to high CCF for check valves.

Note 8. Industry data has shown that check valves are reliable. Use of the industry data in the PRA model will reduce CCF term in RAW for check valves in clean systems.

Note 12. Valve group will remain High until new PRA model is approved.

#### IST RANK DISCUSSION

Valve function is to close to isolate the RWST from the containment sump during switchover from the injection mode to the cold leg and hot leg recirculation modes. Redundant closing function is provided by upstream MOV. Based on the amount of redundancy available for this function the FV is less than 1E-03 and an IST rank of Medium is reasonable. However, the RAW is High as a result of the industry failure rate data. The failure rate data in the current PRA results in a larger contribution to the common cause calculation which is included in the RAW number. The RAW will be reduced when the new industry failure rate data for check valves is included in the PRA update. This valve group will remain IST Rank High until new PRA model is approved.

Final IST Rank - HIGH

SI27 Accumulator to Cold Leg Outboard Check Valves (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Low	Not modeled			Medium	Low

## **IST_FUNCTIONS**

- 1. Open when the RCS pressure falls below the accumulator pressure to force borated water into the RCS cold legs.
- 2. Close to prevent backflow from the RCS into the low pressure SI system.
- 3. Close and be leak tight (CAT A) to maintain RCS pressure boundary, GDC 14 (PIV)

# **PRA_FUNCTIONS**

If failed function, accumulator would fail to discharge. PRA does not credit accumulator for ECCS, as it doesn't prevent or mitigate core damage. PRA does not model.

#### DETERMINISTIC REMARKS

Open when the RCS pressure falls below the accumulator pressure to force borated water into the RCS cold legs. Close to prevent backflow from the RCS into the low pressure SI system. Close and be leak tight (CAT A) to maintain RCS pressure boundary. There are 2 check valves in series to provide redundant ability to maintain RCS pressure boundary. Valves are closed and leak tested prior to startup.

Discussion (The following general IST ranking notes apply to this valve group )

PRA - Accumulators are not modeled in the PRA, therefore the FV is low for this function.

Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth. (Three valves would have to fail to fail the function)

Note 3. The close function to maintain the RCS pressure boundary is a passive function. Reactor Coolant Pressure Boundary valves are closed and leak tested in accordance with the Technical Specifications prior to start up.

Note 8. Industry data has shown that check valves are reliable. Use of the industry data in the PRA model will reduce CCF term in RAW for check valves in clean systems.

## IST RANK DISCUSSION

A failure to open removes 1/3 of accumulator injection. PRA does not model the accumulators therefore FV is low. Redundancy of function provided by other trains. Failure to close affects RCS pressure boundary. The close function to maintain the RCS pressure boundary is a passive function. Reactor Coolant Pressure Boundary valves are closed and leak tested in accordance with the Technical Specifications prior to start up. Redundant valves maintain RCS pressure boundary.

SIHHP High Head Safety Injection Pumps (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Medium	High	3 26E-02	813 21	High	High

# IST_FUNCTIONS

- 1. Inject borated water from the RWST to the RCS cold legs during the short-term core cooling/cold-leg injection phase of safety injection (Flow rate required is greater than 1470 gpm and less than 1620 gpm per Technical Specification Surveillance Requirement 4.5 2 g).
- 2. Recirculate borated water from the containment sump to the RCS cold or hot legs during the long-term core cooling/cold and hot leg recirculation phase.

# **PRA_FUNCTIONS**

Fail to start/Fail to run

# DETERMINISTIC REMARKS

Inject borated water from the RWST to the RCS cold legs during the short-term core cooling/cold-leg injection phase of safety injection. Recirculate borated water from the containment sump to the RCS cold or hot legs during the long term core cooling/cold and hot leg recirculation phase. One of three trains required to an intact loop for success of function.

**Discussion** (The following general IST ranking notes apply to this valve group.)

High FV and High RAW.

Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth. (Three pumps would have to fail to fail the function)

# IST RANK DISCUSSION

Failure of the pump fails one train of HHSI. Redundant trains are available. HHSI is an important EOP function. Auto failure requires operator action. PRA FV and RAW are High. Final IST Rank - HIGH

SILHP Low Head Safety Injection Pumps (Trains A, B, and C)

IST Rank	PRA RANK	FV	RAW	GQA RANK	Final IST
Medium	Medium	1.31E-03	36 44	High	Medium

#### IST_FUNCTIONS

1. Inject borated water from either the RWST or the containment sump to the RCS cold legs during the cold leg injection phase of safety injection (Flow rate required is greater than 2550 gpm and less than 2800 gpm per Technical Specification Surveillance Requirement 4.5.2 g).

2. Recirculate borated water from the containment sump to the RCS hot legs during the hot leg recirculation phase of safety injection.

# PRA_FUNCTIONS

Fail to start/Fail to run

## DETERMINISTIC REMARKS

Inject borated water from the RWST to the RCS cold legs during the short-term core cooling/cold-leg injection phase of safety injection. Recirculate borated water from the containment sump to the RCS cold or hot legs during the long term core cooling/cold and hot leg recirculation phase. One of three trains required to an intact loop for success of function.

Discussion (The following general IST ranking notes apply to this valve group.)

Medium FV and Medium RAW.

Note 1. Above average Redundancy allows for one failure but maintains Defense in Depth. (Three pumps would have to fail to fail the unction).

Compensatory Measure - LHSI pumps are started to allow slave relay testing per Tech Specs.

#### IST RANK DISCUSSION

Failure of the pump fails one train of LHSI. Redundant trains are available. LHSI is an important EOP function. Auto failure requires operator action. The PRA modeling assessment results in a rank of Medium based on the FV and RAW.

Final IST Rank - MEDIUM

# **ATTACHMENT 6**

AOV LIST INCLUDING CATEGORY 1 AOVs AND ALL IST AIR-OPERATED VALVES

AOV Rank		TPNS	PSA Rank for GQA	GQA Rank	Final IST Rank	PRA Rank for IST	PRA_FUNCTIONS
AOV-1 Group	CC04	Group Description	RHR Heat Excha	nger - CCW Outlet V	'alves		
-		A1CCFV4531	HIGH	HIGH	Medium	Medium	Modeled to open and remain open
		B1CCFV4548	HIGH	HIGH	Medium	Medium	Modeled to open and remain open.
		C1CCFV4565	HIGH	HIGH	Medium	Medium	Modeled to open and remain open.
Group	RC10	Group Description	RCS Pressurizer				
		N1RCPCV0655B	LOW-T	HIGH			
		N1RCPCV0655C	LOW-T	HIGH			
Group	RH01	Group Description	Residual Heat Re	emoval Heat Exchang	ge Control Valve (Trains	A, B, and C)	
		A1RHHCV0864	MEDIUM	HIGH	Low	Not modeled	Normally open, fails open (passive)
		B1RHHCV0865	MEDIUM	HIGH	Low	Not modeled	(passive) Normally open, fails open (passive)
		C1RHHCV0866	MEDIUM	HIGH	Low	Not modeled	Normally open, fails open (passive)

1

AOV Rank		TPNS	PSA Rank for GQA	GQA Rank	Final IST Rank	PRA Rank for IST	PRA_FUNCTIONS
AOV-2A							
Group	CV13	Group Description	RCS Charging Fl	ow Control Valve			
		A1CVFCV0205	MEDIUM	MEDIUM	Medium	Not modeled	No active function modeled
Group	FW01	Group Description	Feedwater to the	Steam Generator Is	solation Valves		
		A1FWFV7141		MEDIUM	Low	Not modeled	Not modeled
		A1FWFV7142		MEDIUM	Low	Not modeled	Not modeled
		A1FWFV7143		MEDIUM	Low	Not modeled	Not modeled
		A1FWFV7144		MEDIUM	Low	Not modeled	Not modeled
Group	FW02	Group Description	Feedwater flow c	ontrol valves			
-		N1FWFCV0551		NRS	Low	Not modeled	Not modeled
		N1FWFCV0552		NRS	Low	Not modeled	Not modeled
		N1FWFCV0553		NRS	Low	Not modeled	Not modeled
		N1FWFCV0554		NRS	Low	Not modeled	Not modeled
Group	IA02	Group Description	Instrument Air to	RCB Outside Cntm	t Isolation Valve (IA8565)		
•		B1IAFV8565		LOW	Low	Not modeled	Not modeled
Group	MS01	Group Description	Main Steam Isola	ation Valves			
		A1MSFSV7414	MEDIUM	MEDIUM	Low	Low	Close for MSLB and SGTR
		A1MSFSV7424	MEDIUM	MEDIUM	Low	Low	Close for MSLB and SGTR
		A1MSFSV7434	MEDIUM	MEDIUM	Low	Low	Close for MSLB and SGTR
		A1MSFSV7444	MEDIUM	MEDIUM	Low	Low	Close for MSLB and SGTR

AOV Rank		TPNS	PSA Rank for GQA	GQA Rank	Final IST Rank	PRA Rank for IST	PRA_FUNCTIONS
AOV-2B							
Group	AF06	Group Description	Auxiliary Feedwa	ater Pump Discharge			
		A1AFFV7517		MEDIUM	Low	Not modeled	Not modeled
		B1AFFV7516		MEDIUM	Low	Not modeled	Not modeled
		C1AFFV7515		MEDIUM	Low	Not modeled	Not modeled
		D1AFFV7518		MEDIUM	Low	Not modeled	Not modeled
Group	CC03	Group Description	Penetration M-40	OCCW return for the	RCPs		
1		D1CCFV4493	LOW	LOW	Low	Not modeled	Not modeled
Group	CC24	Group Description	Chilled Water Re	eturn for the RCFCs,	Outside Cntmt Isolation	Valve (Trains A, E	3, and C)
Cronp		A1CCFV0864		NRS	Low	Not modeled	Not modeled
		B1CCFV0862		NRS	Low	Not modeled	Not modeled
		C1CCFV0863		NRS	Low	Not modeled	Not modeled
Group	CC34	Group Description	Cross Connect V	alves for CCW Sup	ply and Return for Chargi	ing Pumps	
1		A1CCFV4656	LOW	LOW	Low	no active failure	Remain open, transfer closed
		A1CCFV4657	TRUNCATED	LOW	Low	no active faılure	Remain open, transfer closed
Group	CH01	Group Description	EAB Control Roo	om Envelope Air Har	ndling Unit Outlet Temper	rature Valve (Trair	ns A, B, and C)
•		A1CHTV9476A		LOW	Low	Not modeled	Not modeled explicitly
		A1CHTV9476B		LOW	Low	Not modeled	Not modeled explicitly
		B1CHTV9486A		LOW	Low	Not modeled	Not modeled explicitly
		B1CHTV9486B		LOW	Low	Not modeled	Not modeled explicitly
		C1CHTV9496A		LOW	Low	Not modeled	Not modeled explicitly
		C1CHTV9496B		LOW	Low	Not modeled	Not modeled explicitly

AOV Rank		TPNS	PSA Rank for GQA	GQA Rank	Final IST Rank	PRA Rank for IST	PRA_FUNCTIONS
Group	CH02	Group Description	EAB Main Supply	Air Handling Unit C	Dutlet Temperature Valve	(Trains A, B, and	C)
1		A1CHTV9477A		LOW	Low	Not modeled	Not modeled explicitly
		A1CHTV9477B		LOW	Low	Not modeled	Not modeled explicitly
		B1CHTV9487A		LOW	Low	Not	Not modeled explicitly
		B1CHTV9487B		LOW	Low	modeled Not modeled	Not modeled explicitly
		C1CHTV9497A		LOW	Low	Not modeled	Not modeled explicitly
		C1CHTV9497B		LOW	Low	Not modeled	Not modeled explicitly
Group	CV01	Group Description	Reactor Coolant	Auxiliary Spray Valv	e		
-		N1CVLV3119	LOW	MEDIUM	Medium	NRS	Credited to open
Group	CV11	Group Description C1CVHCV0218	CVCS SEAL WA	TER INJECTION F	LOW CONTROL VALVE Low	NRŚ	Modeled to open
Group	CV12	Group Description	Letdown Onfice I	leader Isolation Val	ve		
		C1CVFV0011	MEDIUM	MEDIUM	Low	Low	Modeled to close
Group	CV16	Group Description	Boric Acid Suppl	y to Concentrated B	A Polishing Demineralize		
		A1CVFV8400A		NRS	Low	Not modeled	Not modeled
Group	ED01	Group Description	Containment No		e Outside Cntmt Isolation		
		A1EDFV7800	LOW	LOW	Low	NRS	Modeled to close
Group	EW01	Group Description	Essential Cooling	g Water Blowdown Is	solation Valve (Trains A,		
		A1EWFV6935		NRS	Low	Not modeled	Not modeled
		B1EWFV6936		NRS	Low	Not modeled	Not modeled
		C1EWFV6937		NRS	Low	Not modeled	Not modeled
Group	EW09	Group Description	ECW Screen Wa	ash Pump Discharge	e Valve (Trains A, B, and	C)	
-		A1EWFV6914		NRS	Low	Not modeled	Not modeled
		B1EWFV6924		NRS	Low	Not	Not modeled
		C1EWFV6934		NRS	Low	Not modeled	Not modeled

AOV Rank		TPNS	PSA Rank for GQA	GQA Rank	Final IST Rank	PRA Rank for IST	PRA_FUNCTIONS
Group	FW03	Group Description	Feedwater Bypas	s Flow Control Val	ves		
1		N1FWFV7151		NRS	Low	Not modeled	Not modeled
		N1FWFV7152		NRS	Low	Not modeled	Not modeled
		N1FWFV7153		NRS	Low	Not modeled	Not modeled
		N1FWFV7154		NRS	Low	Not	Not modeled
Group	FW04	Group Description	Steam Generator	Feedwater Inlet Is	olation Bypass Valves		
Group	1 110 /	A1FWFV7147A		MEDIUM	Low	Not modeled	Not modeled
		A1FWFV7148A		MEDIUM	Low	Not modeled	Not modeled
		B1FWFV7145A		MEDIUM	Low	Not modeled	Not modeled
		B1FWFV7146A		MEDIUM	Low	Not modeled	Not modeled
Group	FW05	Group Description	Steam Generator	r Preheater Bypass	Valves		
-		A1FWFV7189		MEDIUM	Low	Not modeled	Not modeled
		A1FWFV7190		MEDIUM	Low	Not modeled	Not modeled
		A1FWFV7191		MEDIUM	Low	Not modeled	Not modeled
		A1FWFV7192		MEDIUM	Low	Not modeled	Not modeled
Group	HC02	Group Description	RCB Supplemen	tal Purge Supply a	nd Return Outside Cntmt I		
<i>F</i>		A1HCFV9776	LOW	MEDIUM	Medium	Low	Modeled to close
		A1HCFV9777	LOW	MEDIUM	Medium	Low	Modeled to close
Group	MS04	Group Description	Main Steam Byp	ass Isolation Valve	S		
-		A1MSFV7412		MEDIUM	Low	Not modeled	Not modeled
		A1MSFV7422		MEDIUM	Low	Not modeled	Not modeled
		A1MSFV7432		MEDIUM	Low	Not modeled	Not modeled
		A1MSFV7442		MEDIUM	Low	Not modeled	Not modeled
Group	PS04	Group Description	Pressurizer Liqui	id Sample OCIV			
2		C1PSFV4451B		LOW	Low	Not modeled	Not modeled

AOV Rank		TPNS	PSA Rank for GQA	GQA Rank	Final IST Rank	PRA Rank for IST	PRA_FUNCTIONS
Group	PS05	<i>Group Description</i> C1PSFV4452	Pressurizer Vapo	r Space Sample OCI LOW	V Low	Not modeled	
Group	PS07	<i>Group Description</i> B1PSFV4456	Primary sampling	OCIVs (FV4461 and LOW	I FV4466, FV 4456) Low	Not modeled	Not modeled
		B1PSFV4466		LOW	Low	Not modeled	Not modeled
		C1PSFV4461		LOW	Low	Not modeled	Not modeled
Group	RC01	Group Description	Pressurizer Relie	f Tank Vent to Gased	ous Waste Processing S	ystem Outside Cn	tmt Isolation Valve (3652)
_		B1RCFV3652	LOW	LOW	Low	Low	
Group	RC02	Group Description	Reactor Make-up		pipe and PRT OCIV (36	51)	
-		B1RCFV3651	LOW	LOW	Low	Low	
Group	SB01	Group Description	Steam Generator	Bulk Water Sample	Outside Cntmt Isolation		
-		A1SBFV4186	LOW-T	LOW	Low	Medium	Modeled to close
		A1SBFV4189	LOW-T	LOW	Low	Medium	Modeled to close
		B1SBFV4188	LOW-T	LOW	Low	Medium	Modeled to close
		C1SBFV4187	LOW-T	LOW	Low	Medium	Modeled to close
Group	SB02	Group Description	Steam Generator	r Blowdown Outside	Cntmt Isolation Valves		
		A1SBFV4150	LOW-T	MEDIUM	Low	Medium	Modeled to close
		A1SBFV4153	LOW-T	MEDIUM	Low	Medium	Modeled to close
		B1SBFV4152	LOW-T	MEDIUM	Low	Medium	Modeled to close
		C1SBFV4151	LOW-T	MEDIUM	Low	Medium	Modeled to close
Group	SI01	Group Description	Safety Injection S	System Test Line Co	ntainment Isolation Valve	es	
		A1SIFV3971		LOW	Low	Not modeled	3/4" penetration, normally isolated. Not modeled by the PRA.
		B1SIFV3970		LOW	Low	Not modeled	3/4" penetration, normally isolated. Not modeled by the PRA

.

AOV Rank		TPNS	PSA Rank for GQA	GQA Rank	Final IST Rank	PRA Rank for IST	PRA_FUNCTIONS				
Group	SI02	Group Description	Accumulator Nitro	Accumulator Nitrogen Supply Outside Cntmt Isolation Valve (3983)							
•		A1SIFV3983		LOW	Low	Not modeled	Not modeled. Does not penetrate containment atmosphere (closed system outside, closed system inside, small pipe, not normally in use). Pressure rating in piping is higher than containment pressure.				
Group	SI04	Group Description	Reactor Water St	Reactor Water Storage Tank Clean-Up by SFPCCS Isolation Valves							
		A1SIFV3936		LOW	Low	Not modeled	Not modeled				
		B1SIFV3937		LOW	Low	Not modeled	Not modeled				
Group	SI05	Group Description	Residual Heat Ex	changer Bypass Val	ves (Trains A, B, and C)						
•		A1SIFCV0851		MEDIUM	Low	Not modeled	Not modeled.				
		B1SIFCV0852		MEDIUM	Low	Not modeled	Not modeled				
		C1SIFCV0853		MEDIUM	Low	Not modeled	Not modeled.				
Group	WL01	Group Description	RCDT Vent Outs	ide Containment Isol	ation Valve						
-		B1WLFV4919	LOW	LOW	Low	NRS	Modeled to close				
Group	WLO2	Group Description	RCDT To LWPS	Outside Containmer	t Isolation Valve						
		B1WLFV4913	LOW	LOW	Low	NRS	Modeled to close				

ŧ .

AOV Rank		TPNS	PSA Rank for GQA	GQA Rank	Final IST Rank	PRA Rank for IST	PRA_FUNCTIONS
AOV-3 Group	<i>CV02</i>	Group Description	Centrifugal Char	ging Pump Minimum	Recirc. Control Valves		
-		N1CVFCV0201	LOW	LOW	Low	NRS	Modeled to open
		N1CVFCV0202	LOW	LOW	Low	NRS	Modeled to open

 $\sim$