CHAPTER 6[†]: CRITICALITY EVALUATION

This chapter documents the criticality evaluation of the HI-STORM 100 System for the storage of spent nuclear fuel in accordance with 10CFR72.124. The results of this evaluation demonstrate that the HI-STORM 100 System is consistent with the Standard Review Plan for Dry Cask Storage Systems, NUREG-1536, and thus, fulfills the following acceptance criteria:

- 1. The multiplication factor (k_{eff}) , including all biases and uncertainties at a 95-percent confidence level, should not exceed 0.95 under all credible normal, off-normal, and accident conditions.
- 2. At least two unlikely, independent, and concurrent or sequential changes to the conditions essential to criticality safety, under normal, off-normal, and accident conditions, should occur before an accidental criticality is deemed to be possible.
- 3. When practicable, criticality safety of the design should be established on the basis of favorable geometry, permanent fixed neutron-absorbing materials (poisons), or both.
- 4. Criticality safety of the cask system should not rely on use of the following credits:
 - a. burnup of the fuel
 - b. fuel-related burnable neutron absorbers
 - c. more than 75 percent for fixed neutron absorbers when subject to standard acceptance test.

In addition to demonstrating that the criticality safety acceptance criteria are satisfied, this chapter describes the HI-STORM 100 System design structures and components important to criticality safety and defines the limiting fuel characteristics in sufficient detail to identify the package accurately and provide a sufficient basis for the evaluation of the package. Analyses for the HI-STAR 100 System, which are applicable to the HI-STORM 100 System, have been previously submitted to the USNRC under Docket Numbers 72-1008 and 71-9261.

[†] This chapter has been prepared in the format and section organization set forth in Regulatory Guide 3.61. However, the material content of this chapter also fulfills the requirements of NUREG-1536. Pagination and numbering of sections, figures, and tables are consistent with the convention set down in *Chapter 1*, Section 1.0, herein. Finally, all terms-of-art used in this chapter are consistent with the terminology of the glossary (Table 1.0.1) and component nomenclature of the Bill-of-Materials (Section 1.5).

6.1 DISCUSSION AND RESULTS

In conformance with the principles established in NUREG-1536 [6.1.1], 10CFR72.124 [6.1.2], and NUREG-0800 Section 9.1.2 [6.1.3], the results in this chapter demonstrate that the effective multiplication factor (k_{eff}) of the HI-STORM 100 System, including all biases and uncertainties evaluated with a 95% probability at the 95% confidence level, does not exceed 0.95 under all credible normal, off-normal, and accident conditions. Moreover, these results demonstrate that the HI-STORM 100 System is designed and maintained such that at least two unlikely, independent, and concurrent or sequential changes must occur to the conditions essential to criticality safety before a nuclear criticality accident is possible. These criteria provide a large subcritical margin, sufficient to assure the criticality safety of the HI-STORM 100 System when fully loaded with fuel of the highest permissible reactivity.

Criticality safety of the HI-STORM 100 System depends on the following four principal design parameters:

- 1. The inherent geometry of the fuel basket designs within the MPC (and the flux-trap water gaps in the MPC-24, MPC-24E and MPC-24EF);
- 2. The incorporation of permanent fixed neutron-absorbing panels (Boral)-in the fuel basket structure;
- 3. An administrative limit on the maximum enrichment for PWR fuel and maximum planaraverage enrichment for BWR fuel; and
- 4. An administrative limit on the minimum soluble boron concentration in the water for loading/unloading fuel with higher enrichments in the MPC-24, MPC-24E and MPC-24EF, and for loading/unloading fuel in the MPC-32 and MPC-32F.

The off-normal and accident conditions defined in Chapter 2 and considered in Chapter 11 have no adverse effect on the design parameters important to criticality safety, and thus, the off-normal and accident conditions are identical to those for normal conditions.

The HI-STORM 100 System is designed such that the fixed neutron absorber (Boral)-will remain | effective for a storage period greater than 20 years, and there are no credible means to lose it. Therefore, in accordance with 10CFR72.124(b), there is no need to provide a surveillance or monitoring program to verify the continued efficacy of the neutron absorber.

Criticality safety of the HI-STORM 100 System does not rely on the use of any of the following credits:

- burnup of fuel
- fuel-related burnable neutron absorbers
- more than 75 percent of the B-10 content for the fixed neutron absorber (Boral).

The following four interchangeable basket designs are available for use in the HI-STORM 100 System:

- a 24-cell basket (MPC-24), designed for intact PWR fuel assemblies with a specified maximum enrichment and, for higher enrichments, a minimum soluble boron concentration in the pool water for loading/unloading operations,
- a 24-cell basket (MPC-24E) for intact and damaged PWR fuel assemblies. This is a variation of the MPC-24, with an optimized cell arrangement, increased ¹⁰B content in the Boralfixed neutron absorber and with four cells capable of accommodating either intact fuel or a damaged fuel container (DFC). Additionally, a variation in the MPC-24E, designated MPC-24EF, is designed for intact and damaged PWR fuel assemblies and PWR fuel debris. The MPC-24E and MPC-24EF are designed for fuel assemblies with a specified maximum enrichment and, for higher enrichments, a minimum soluble boron concentration in the pool water for loading/unloading operations,
- a 32-cell basket (MPC-32), designed for intact and damaged PWR fuel assemblies of a specified maximum enrichment and minimum soluble boron concentration for loading/unloading. Additionally, a variation in the MPC-32, designated MPC-32F, is designed for intact and damaged PWR fuel assemblies and PWR fuel debris.; #And
- a 68-cell basket (MPC-68), designed for both intact and damaged BWR fuel assemblies with a specified maximum planar-average enrichment. Additionally, variations in the MPC-68, designated MPC-68F and MPC-68FF, are designed for intact and damaged BWR fuel assemblies and BWR fuel debris with a specified maximum planar-average enrichment.

The HI-STORM 100 System includes the HI-TRAC transfer cask and the HI-STORM storage cask. The HI-TRAC transfer cask is required for loading and unloading fuel into the MPC and for transfer of the MPC into the HI-STORM storage cask. HI-TRAC uses a lead shield for gamma radiation and a water-filled jacket for neutron shielding. The HI-STORM storage cask uses concrete as a shield for both gamma and neutron radiation. Both the HI-TRAC transfer cask

and the HI-STORM storage cask, as well as the HI-STAR System[†], accommodate the interchangeable MPC designs. The three cask designs (HI-STAR, HI-STORM, and HI-TRAC) differ only in the overpack reflector materials (steel for HI-STAR, concrete for HI-STORM, and lead for HI-TRAC), which do not significantly affect the reactivity. Consequently, analyses for the HI-STAR System are directly applicable to the HI-STORM 100 system and vice versa. Therefore, the majority of criticality calculations to support both the HI-STAR and the HI-STORM System have been performed for only one of the two systems, namely the HI-STAR System. Only a selected number of analyses has been performed for both systems to demonstrate that this approach is valid. Therefore, unless specifically noted otherwise, all analyses documented throughout this chapter have been performed for the HI-STAR System. For the cases where analyses were performed for both the HI-STAR System, this is clearly indicated.

The HI-STORM 100 System for storage (concrete overpack) is dry (no moderator), and thus, the reactivity is very low ($k_{eff} < 0.52$). However, the HI-STORM 100 System for cask transfer (HI-TRAC, lead overpack) is flooded for loading and unloading operations, and thus, represents the limiting case in terms of reactivity.

The MPC-24EF, MPC-32F and MPC-68FF contains the same basket as the MPC-24E, MPC-32 and MPC-68, respectively. More specifically, all dimensions relevant to the criticality analyses are identical between the MPC-24E and MPC-24EF, the MPC-32 and MPC-32F, and the MPC-68 and MPC-68FF. Therefore, all criticality results obtained for the MPC-24E, MPC-32 and MPC-68 are valid for the MPC-24EF, MPC-32F and MPC-68FF, respectively, and no separate analyses for the MPC-24EF, MPC-32F and MPC-68FF are necessary. Therefore, throughout this chapter and unless otherwise noted, 'MPC-68' refers to 'MPC-68 and/or MPC-68FF', 'MPC-24E' or 'MPC-24E/EF' refers to 'MPC-24E and/or MPC-24EF', and 'MPC-32' or 'MPC-32/32F' refers to 'MPC-32 and/or MPC-32F'.

The MPC-68FF-contains-the same-basket as-the MPC-68. More specifically, all dimensions relevant to the criticality analyses are identical between the MPC-68 and MPC-68FF. Therefore, all-criticality-results obtained for the MPC-68 are valid for the MPC-68FF-and no-separate analyses for the MPC-68FF are necessary.

Confirmation of the criticality safety of the HI-STORM 100 System was accomplished with the three-dimensional Monte Carlo code MCNP4a [6.1.4]. Independent confirmatory calculations were made with NITAWL-KENO5a from the SCALE-4.3 package [6.4.1]. KENO5a [6.1.5] calculations used the 238-group SCALE cross-section library in association with the NITAWL-II program [6.1.6], which adjusts the uranium-238 cross sections to compensate for resonance self-shielding effects. The Dancoff factors required by NITAWL-II were calculated with the CELLDAN code [6.1.13], which includes the SUPERDAN code [6.1.7] as a subroutine. K-

[†] Analyses for the HI-STAR System have previously been submitted to the USNRC under Docket Numbers 72-1008 and 71-9261.

factors for one-sided statistical tolerance limits with 95% probability at the 95% confidence level were obtained from the National Bureau of Standards (now NIST) Handbook 91 [6.1.8].

1 ...

To assess the incremental reactivity effects due to manufacturing tolerances, CASMO-3, a twodimensional transport theory code [6.1.9-6.1.12] for fuel assemblies, and MCNP4a [6.1.4] were used. The CASMO-3 and MCNP4a calculations identify those tolerances that cause a positive reactivity effect, enabling the subsequent Monte Carlo code input to define the worst case (most conservative) conditions. CASMO-3 was not used for quantitative information, but only to qualitatively indicate the direction and approximate magnitude of the reactivity effects of the manufacturing tolerances.

Benchmark calculations were made to compare the primary code packages (MCNP4a and KENO5a) with experimental data, using critical experiments selected to encompass, insofar as practical, the design parameters of the HI-STORM 100 System. The most important parameters are (1) the enrichment, (2) the water-gap size (MPC-24, MPC-24E and MPC-24EF) or cell spacing (MPC-32, MPC-32F, MPC-68, MPC-68F and MPC-68FF), (3) the ¹⁰B loading of the neutron absorber panels, and (4) the soluble boron concentration in the water. The critical experiment benchmarking is presented in Appendix 6.A.

Applicable codes, standards, and regulations, or pertinent sections thereof, include the following:

- NUREG-1536, Standard Review Plan for Dry Cask Storage Systems, USNRC, Washington D.C., January 1997.
- 10CFR72.124, Criteria For Nuclear Criticality Safety.
- Code of Federal Regulations, Title 10, Part 50, Appendix A, General Design Criterion 62, Prevention of Criticality in Fuel Storage and Handling.
- USNRC Standard Review Plan, NUREG-0800, Section 9.1.2, Spent Fuel Storage, Rev. 3, July 1981.

To assure the true reactivity will always be less than the calculated reactivity, the following conservative design criteria and assumptions were made:

- The MPCs are assumed to contain the most reactive fresh fuel authorized to be loaded into a specific basket design.
- Consistent with NUREG-1536, no credit for fuel burnup is assumed, either in depleting the quantity of fissile nuclides or in producing fission product poisons.
- Consistent with NUREG-1536, the criticality analyses assume 75% of the manufacturer's

minimum Boron-10 content for the Boralfixed neutron absorber.

- The fuel stack density is conservatively assumed to be *at least* 96% of theoretical (10.522 | g/cm³) for all criticality analyses. Fuel stack density is approximately equal to 98% of the pellet density. Therefore, while the pellet density of some fuels may be slightly greater than 96% of theoretical, the actual stack density will be less.
- No credit is taken for the ²³⁴U and ²³⁶U in the fuel.
- When flooded, the moderator is assumed to be water, with or without soluble boron, at a temperature and density corresponding to the highest reactivity within the expected operating range.
- When credit is taken for soluble boron, a ¹⁰B content of 18.0 wt% in boron is assumed.
- Neutron absorption in minor structural members and optional heat conduction elements is neglected, i.e., spacer grids, basket supports, and optional aluminum heat conduction elements are replaced by water.
- Consistent with NUREG-1536, the worst hypothetical combination of tolerances (most conservative values within the range of acceptable values), as identified in Section 6.3, is assumed.
- When flooded, the fuel rod pellet-to-clad gap regions are assumed to be flooded with pure unborated water.
- Planar-averaged enrichments are assumed for BWR fuel. (Consistent with NUREG-1536, analysis is presented in Appendix 6.B to demonstrate that the use of planar-average enrichments produces conservative results.)
- Consistent with NUREG-1536, fuel-related burnable neutron absorbers, such as the Gadolinia normally used in BWR fuel and IFBA normally used in PWR fuel, are neglected.
- For evaluation of the bias, all benchmark calculations that result in a k_{eff} greater than 1.0 are conservatively truncated to 1.0000, consistent with NUREG-1536.
- The water reflector above and below the fuel is assumed to be unborated water, even if borated water is used in the fuel region.
- For fuel assemblies that contain low-enriched axial blankets, the governing enrichment is that of the highest planar average, and the blankets are not included in determining the average enrichment.

• For intact fuel assemblies, as defined in the Certificate of Compliance, missing fuel rods must be replaced with dummy rods that displace a volume of water that is equal to, or larger than, that displaced by the original rods.

1 +

· ,

Results of the design basis criticality safety calculations for single internally flooded HI-TRAC transfer casks with full water reflection on all sides (limiting cases for the HI-STORM 100 System), and for single unreflected, internally flooded HI-STAR casks (limiting cases for the HI-STAR 100 System), loaded with intact fuel assemblies are listed in Tables 6.1.1 through 6.1.8, conservatively evaluated for the worst combination of manufacturing tolerances (as identified in Section 6.3), and including the calculational bias, uncertainties, and calculational statistics. To Comparing corresponding results for the HI-TRAC and HI-STAR demonstrates that the overpack material does not significantly affect the reactivity. Consequently, analyses for the HI-STAR System are directly applicable to the HI-STORM 100 System) and vice versa., results of the design basis-criticality safety-calculations for single unreflected, internally flooded HI-STAR easks (limiting cases for the HI STAR 100 System) are listed in Tables 6.1.1 through 6.1.8 for comparison. In addition, a few results for single internally dry (no moderator) HI-STORM storage casks with full water reflection on all external surfaces of the overpack, including the annulus region between the MPC and overpack, are listed to confirm the low reactivity of the HI-STORM 100 System in storage.

For each of the MPC designs, minimum soluble boron concentration (if applicable) and fuel assembly classes^{††}, Tables 6.1.1 through 6.1.8 list the bounding maximum k_{eff} value, and the associated maximum allowable enrichment. The maximum allowed enrichments and the minimum soluble boron concentrations are defined in Appendix B to the Certificate of Compliance. The candidate fuel assemblies, that are bounded by those listed in Tables 6.1.1 through 6.1.8, are given in Section 6.2.

Results of the design basis criticality safety calculations for single unreflected, internally flooded casks (limiting cases) loaded with damaged fuel assemblies or a combination of intact and damaged fuel assemblies are listed in Tables 6.1.9 through 6.1.142. The results include the calculational bias, uncertainties, and calculational statistics. For each of the MPC designs qualified for damaged fuel and/or fuel debris (MPC-24E, MPC-24EF, MPC-68, MPC-68F, and MPC-68FF, MPC-32 and MPC-32F), Tables 6.1.9 through 6.1.142 indicate the maximum

^{††} For each array size (e.g., 6x6, 7x7, 14x14, etc.), the fuel assemblies have been subdivided into a number of assembly classes, where an assembly class is defined in terms of the (1) number of fuel rods; (2) pitch; (3) number and location of guide tubes (PWR) or water rods (BWR); and (4) cladding material. The assembly classes for BWR and PWR fuel are defined in Section 6.2.

number of DFCs and list the fuel assembly classes, the bounding maximum k_{eff} value, and the associated maximum allowable enrichment, and if applicable the minimum soluble boron concentration. For the permissible location of DFCs see Subsection 6.4.4.2. The maximum allowed enrichments are defined in Appendix B to the Certificate of Compliance.

A table listing the maximum k_{eff} (including bias, uncertainties, and calculational statistics), calculated k_{eff} , standard deviation, and energy of the average lethargy causing fission (EALF) for each of the candidate fuel assemblies and basket configurations is provided in Appendix 6.C. These results confirm that the maximum k_{eff} values for the HI-STORM 100 System are below the limiting design criteria ($k_{eff} < 0.95$) when fully flooded and loaded with any of the candidate fuel assemblies and basket configurations. Analyses for the various conditions of flooding that support the conclusion that the fully flooded condition corresponds to the highest reactivity, and thus is most limiting, are presented in Section 6.4. The capability of the HI-STORM 100 System to safely accommodate damaged fuel and fuel debris is demonstrated in Subsection 6.4.4.

Accident conditions have also been considered and no credible accident has been identified that would result in exceeding the design criteria limit on reactivity. After the MPC is loaded with spent fuel, it is seal-welded and cannot be internally flooded. The HI-STORM 100 System for storage is dry (no moderator) and the reactivity is very low. For arrays of HI-STORM storage casks, the radiation shielding and the physical separation between overpacks due to the large diameter and cask pitch preclude any significant neutronic coupling between the casks.

w,

', e. ,

Fuel Assembly Class	Maximum Allowable Enrichment (wt% ²³⁵ U)	Maximum [†] k _{eff}		
	•	HI-STORM	HI-TRAC	HI-STAR
14x14A	4.6	0.3080	0.9283	0.9296
14x14B	4.6		0.9237	0.9228
14x14C	4.6		0.9274	0.9287
14x14D	4.0		0.8531	0.8507
14x14E	5.0		0.7627	0.7627
15x15A	4.1		0.9205	0.9204
15x15B	4.1		0.9387	0.9388
15x15C	· 4.1	-	0.9362	0.9361
15x15D	4.1		0.9354	0.9367
15x15E	4.1		0.9392	0.9368
15x15F	4.1	0.3648	0.9393 ^{††}	0.9395 ^{†††}
15x15G	4.0		0.8878	0.8876
15x15H	3.8		0.9333	0.9337
16x16A	4.6	0.3447	0.9273	0.9287
17x17A	4.0	0.3243	-0.9378	0.9368
17x17B	4.0		0.9318	0.9324
17x17C	4.0		0.9319	-0.9336

BOUNDING MAXIMUM k_{eff} VALUES FOR EACH ASSEMBLY CLASS IN THE MPC-24 (no soluble boron)

Note: The HI-STORM results are for internally dry (no moderator) HI-STORM storage casks with full water reflection on all sides, the HI-TRAC results are for internally fully flooded HI-TRAC transfer casks (which are part of the HI-STORM 100 System) with full water reflection on all sides, and the HI-STAR results are for unreflected, internally fully flooded HI-STAR casks.

6.1-9

[†] The term "maximum k_{eff}" as used here, and elsewhere in this document, means the highest possible keffective, including bias, uncertainties, and calculational statistics, evaluated for the worst case combination of manufacturing tolerances.

^{††} KENO5a verification calculation resulted in a maximum k_{eff} of 0.9383.

ttt KENO5a verification calculation resulted in a maximum k_{eff} of 0.9378.

Fuel Assembly Class	Maximum Allowable Enrichment (wt% ²³⁵ U)	Maximum [†] k _{eff}		
		HI-STORM	HI-TRAC	HI-STAR
14x14A	5.0			0.8884
14x14B	5.0			0.8900
14x14C	5.0			0.8950
14x14D	5.0			0.8518
14x14E	5.0			0.7132
15x15A	5.0			0.9119
15x15B	5.0			0.9284
15x15C	5.0			0.9236
15x15D	5.0			0.9261
15x15E	5.0			0.9265
15x15F	5.0	0.4013	0.9301	0.9314
15x15G	5.0			0.8939
15x15H	5.0		0.9345	0.9366
16x16A	5.0	*		0.8955
17x17A	5.0			0.9264
17x17B	5.0			0.9284
17x17C	5.0		0.9296	0.9294

BOUNDING MAXIMUM k_{eff} VALUES FOR EACH ASSEMBLY CLASS IN THE MPC-24 WITH 400 PPM SOLUBLE BORON

[†] The term "maximum k_{eff}" as used here, and elsewhere in this document, means the highest possible k-effective, including bias, uncertainties, and calculational statistics, evaluated for the worst case combination of manufacturing tolerances.

Fuel Assembly Class	Maximum Allowable Enrichment (wt% ²³⁵ U)	Maximum [†] k _{eff}			
,	·	HI-STORM	HI-TRAC	HI-STAR	
14x14A	5.0			0.9380	
14x14B	5.0			0.9312	
14x14C	5.0			0.9356	
14x14D	5.0			0.8875	
14x14E	5.0			0.7651	
15x15A	4.5			0.9336	
15x15B	4.5			0.9465	
15x15C	4.5			0.9462	
15x15D	4.5			0.9440	
15x15E	4.5			0.9455	
15x15F	4.5	0.3699	0.9465	0.9468	
15x15G	4.5	'		0.9054	
15x15H	4.2		*==	0.9423	
16x16A	5.0			0.9341	
17x17A	4.4		0.9467	0.9447	
17x17B	4.4) 		0.9421	
17x17C	4.4			0.9433	

BOUNDING MAXIMUM k_{eff} VALUES FOR EACH ASSEMBLY CLASS IN THE MPC-24E AND MPC-24EF (no soluble boron)

[†] The term "maximum k_{eff}" as used here, and elsewhere in this document, means the highest possible k-effective, including bias, uncertainties, and calculational statistics, evaluated for the worst case combination of manufacturing tolerances.

Fuel Assembly Class	Maximum Allowable Enrichment (wt% ²³⁵ U)	Maximum [†] k _{eff}			
		HI-STORM	HI-TRAC	HI-STAR	
14x14A	5.0			0.8963	
14x14B	5.0			0.8974	
14x14C	5.0			0.9031	
14x14D	5.0	*==		0.8588	
14x14E	5.0			0.7249	
15x15A	5.0			0.9161	
15x15B	5.0			0.9321	
15x15C	5.0			0.9271	
15x15D	5.0			0.9290	
15x15E	5.0			0.9309	
15x15F	5.0	0.3897	0.9333	0.9332	
15x15G	5.0			0.8972	
15x15H	5.0		0.9399	0.9399	
16x16A	5.0			0.9021	
17x17A	5.0		0.9320	0.9332	
17x17B	5.0			0.9316	
17x17C	5.0			0.9312	

BOUNDING MAXIMUM k_{eff} VALUES FOR EACH ASSEMBLY CLASS IN THE MPC-24E AND MPC-24EF WITH 300 PPM SOLUBLE BORON

[†] The term "maximum k_{eff} " as used here, and elsewhere in this document, means the highest possible k-effective, including bias, uncertainties, and calculational statistics, evaluated for the worst case combination of manufacturing tolerances.

BOUNDING MAXIMUM k_{eff} VALUES FOR EACH ASSEMBLY CLASS IN THE MPC-32 AND MPC-32F FOR 4.1% ENRICHMENT WITH 1900 PPM SOLUBLE BORON

Fuel Assembly Class	Maximum Allowable Enrichment (wt% ²³⁵ U)	Minimum Soluble Boron Concentration (ppm)	Maximum [†] k _{eff}		
	(1170 0)	(ppm)	HI-STORM	HI-TRAC	HI-STAR
14x14A	4.1	1300			0.9005
14x14B	4.1	. 1300			0.9217
14x14C	4.1	1300			0.9393
14x14D	4.1			、 .	0.8901
14x14E	4.1	1300			0.6726
15x15A	4.1	1800		,	0.9183
15x15B	4.1	1800			0.9356
15x15C	4.1	1800			0.9238
15x15D	4.1	1900	'		0.9384
15x15E	4.1	1900		、.	0.9365 -
15x15F	4.1	1900	0.4691	0.9403	-0.9411 -
15x15G	4.1	1800			0.9103
15x15H	4.1	1900			0.9276
16x16A	4.1	1300		. 	-0.9429
17x17A	4.1	1900			0.9111
17x17B	4.1	1900			-0.9309
17x17C	. 4.1	. 1900	,	0.9365	0.9355

Note: The HI-STORM results are for internally dry (no moderator) HI-STORM storage casks with full water reflection on all sides, the HI-TRAC results are for internally fully flooded HI-TRAC transfer casks (which are part of the HI-STORM 100 System) with full water reflection on all sides, and the HI-STAR results are for unreflected, internally fully flooded HI-STAR casks.

[†] The term "maximum k_{eff}" as used here, and elsewhere in this document, means the highest possible k-effective, including bias, uncertainties, and calculational statistics, evaluated for the worst case combination of manufacturing tolerances.

BOUNDING MAXIMUM k_{eff} VALUES FOR EACH ASSEMBLY CLASS IN THE MPC-32 AND MPC-32F FOR 5.0% ENRICHMENTWITH 2600 PPM SOLUBLE BORON

Fuel Assembly Class	Maximum Allowable Enrichment	Minimum Soluble Boron Concentration	Maximum [†] k _{eff}		ſſ
	(wt% ²³⁵ U)	<i>(ppm)</i>	HI-STORM	HI-TRAC	HI-STAR
14x14A	5.0	1900			0.8955
14x14B	5.0	1900			0.9162
14x14C	5.0	1900			0.9422
14x14D	5.0	1900			0.8962
14x14E	5.0	1900			0.6669
15x15A	5.0	2400			0.9271
15x15B	5.0	2400			0.9473
15x15C	5.0	2400			0.9336
15x15D	5.0	2600			0.9466
15x15E	5.0	2600		****	0.9434
15x15F	- 5.0	2600	0.5142	0.9470	0.9483
15x15G	5.0	2400			0.9256
15x15H	5.0	2600			0.9333
16x16A	5.0	1900			0.9442
17x17A	5.0	2600			0.9161
17x17B	5.0	2600			0.9371
17x17C	5.0	2600		0.9436	0.9437

Note: The HI-STORM results are for internally dry (no moderator) HI-STORM storage casks with full water reflection on all sides, the HI-TRAC results are for internally fully flooded HI-TRAC transfer casks (which are part of the HI-STORM 100 System) with full water reflection on all sides, and the HI-STAR results are for unreflected, internally fully flooded HI-STAR casks.

6.1-14

[†] The term "maximum k_{eff}" as used here, and elsewhere in this document, means the highest possible k-effective, including bias, uncertainties, and calculational statistics, evaluated for the worst case combination of manufacturing tolerances.

Fuel Assembly Class	Maximum Allowable Planar-Average Enrichment (wt% ²³⁵ U)	Maximum [†] k _{eff}		
		HI-STORM	HI-TRAC	HI-STAR
6x6A	2.7 ^{††}		0.7886	0.7888 ^{†††}
<u>6x6B[‡]</u>	<u> </u>		0.7833	0.7824 ^{†††}
6x6C	2.7 ^{††}	0.2759	0.8024	0.8021 ^{†††}
7x7A	2.7 ^{††} -		0.7963	0.7974 ^{†††}
7x7B	4.2	0.4061	0.9385	0.9386
8x8A	2.7 ^{††}		0.7690	0.7697 ^{†††}
8x8B	4.2	0.3934	0.9427	0.9416
8x8C	4.2	0.3714	0.9429	0.9425
8x8D	4.2-		0.9408	0.9403
8x8E	4.2		0.9309	- 0.9312
8x8F	4.0		0.9396	0.9411

BOUNDING MAXIMUM $k_{\rm eff}$ VALUES FOR EACH ASSEMBLY CLASS IN THE MPC-68 AND MPC-68FF

Note: The HI-STORM results are for internally dry (no moderator) HI-STORM storage casks with full water reflection on all sides, the HI-TRAC results are for internally fully flooded HI-TRAC transfer casks (which are part of the HI-STORM 100 System) with full water reflection on all sides, and the HI-STAR results are for unreflected, internally fully flooded HI-STAR casks.

^{†††} This calculation was performed for a ¹⁰B loading of 0.0067 g/cm², which is 75% of a minimum ¹⁰B loading of 0.0089 g/cm². The minimum ¹⁰B loading in the MPC-68 is 0.0372 g/cm². Therefore, the listed maximum k_{eff} value is conservative.

[‡] Assemblies in this class contain both MOX and UO₂ pins. The composition of the MOX fuel pins is given in Table 6.3.4. The maximum allowable planar-average enrichment for the MOX pins is given in the Certificate of Compliance.

[†] The term "maximum k_{eff}" as used here, and elsewhere in this document, means the highest possible k-effective, including bias, uncertainties, and calculational statistics, evaluated for the worst case combination of manufacturing tolerances.

^{††} This calculation was performed for 3.0% planar-average enrichment, however, the actual fuel and Certificate of Compliance are limited to maximum planar-average enrichment of 2.7%. Therefore, the listed maximum k_{eff} value is conservative.

Table 6.1.7 (continued)

Fuel Assembly Class	Maximum Allowable Planar-Average Enrichment (wt% ²³⁵ U)	Maximum [†] k _{eff}		
		HI-STORM	HI-TRAC	HI-STAR
9x9A	4.2	0.3365	0.9434	0.9417
9x9B	4.2		0.9417	0.9436
9x9C	4.2		0.9377	0.9395
9x9D '	4.2		0.9387	0.9394
9x9E	4.0		0.9402	0.9401
9x9F	4.0		0.9402	0.9401
9x9G	4.2		0.9307	0.9309
10x10A	4.2	0.3379	0.9448 ^{‡‡}	0.9457*
10x10B	4.2		0.9443	0.9436
10x10C	4.2		0.9430	0.9433
10x10D	4.0		0.9383	0.9376
10x10E	4.0		0.9157	0.9185

BOUNDING MAXIMUM k_{eff} VALUES FOR EACH ASSEMBLY CLASS IN THE MPC-68 AND MPC-68FF

[†] The term "maximum k_{eff} " as used here, and elsewhere in this document, means the highest possible k-effective, including bias, uncertainties, and calculational statistics, evaluated for the worst case combination of manufacturing tolerances.

^{‡‡} KENO5a verification calculation resulted in a maximum k_{eff} of 0.9451.

^{*} KENO5a verification calculation resulted in a maximum k_{eff} of 0.9453.

Fuel Assembly Class	Maximum Allowable Planar-Average Enrichment (wt% ²³⁵ U)	Maximum [†] k _{eff}		
		HI-STORM	HI-TRAC	HI-STAR
6x6A	2.7 ^{††}		0.7886	0.7888
6x6B ^{†††}	2.7		0.7833	0.7824
6x6C	2.7 -	0.2759	0.8024	0.8021
7x7A	2.7		0.7963	0.7974
8x8A	2.7		0.7690	0.7697

BOUNDING MAXIMUM keff VALUES FOR EACH ASSEMBLY CLASS IN THE MPC-68F

Notes:

- 1. The HI-STORM results are for internally dry (no moderator) HI-STORM storage casks with full water reflection on all sides, the HI-TRAC results are for internally fully flooded HI-TRAC transfer casks (which are part of the HI-STORM 100 System) with full water reflection on all sides, and the HI-STAR results are for unreflected, internally fully flooded HI-STAR casks.
- 2. These calculations were performed for a ¹⁰B loading of 0.0067 g/cm², which is 75% of a minimum ¹⁰B loading of 0.0089 g/cm². The minimum ¹⁰B loading in the MPC-68F is 0.010 g/cm². Therefore, the listed maximum k_{eff} values are conservative.

[†] The term "maximum k_{eff} " as used here, and elsewhere in this document, means the highest possible k-effective, including bias, uncertainties, and calculational statistics, evaluated for the worst case combination of manufacturing tolerances.

^{††} These calculations were performed for 3.0% planar-average enrichment, however, the actual fuel and Certificate of Compliance are limited to a maximum planar-average enrichment of 2.7%. Therefore, the listed maximum k_{eff} values are conservative.

Assemblies in this class contain both MOX and UO₂ pins. The composition of the MOX fuel pins is given in Table 6.3.4. The maximum allowable planar-average enrichment for the MOX pins is specified in the Certificate of Compliance.

BOUNDING MAXIMUM k_{eff} VALUES FOR THE MPC-24E AND MPC-24EF WITH UP TO 4 DFCs

Fuel Assembly Class	Enr	Maximum AllowableMinimumEnrichmentSoluble Boron(wt% 235U)Concentration		Maximum k _{eff}	
	Intact Fuel	Damaged Fuel <i>and</i> <i>Fuel Debris</i>	(ppm)	HI-TRAC	HI-STAR
All PWR Classes	4.0	4.0	0	0.9486	0.9480
All PWR Classes	5.0	5.0	600	0.9177	0.9185

Table 6.1.10

BOUNDING MAXIMUM $k_{\rm eff}$ VALUES FOR THE MPC-68, MPC-68F AND MPC-68FF WITH UP TO 68 DFCs

Fuel Assembly Class	Maximum Allowable Planar-Average Enrichment (wt% ²³⁵ U)		Maximum k _{eff} nt	
	Intact Fuel	Damaged Fuel <i>and</i> <i>Fuel Debris</i>	HI-TRAC	HI-STAR
6x6A, 6x6B, 6x6C, 7x7A, 8x8A	2.7	2.7	0.8024	0.8021

Table 6.1.11

BOUNDING MAXIMUM $k_{\rm eff}$ VALUES FOR THE MPC-68 AND MPC-68FF WITH UP TO 16 DFCs

Fuel Assembly Class	Maximum Allowable Planar-Average Enrichment (wt% ²³⁵ U)		Maxin	num k _{eff}
	Intact Fuel	Damaged Fuel <i>and</i> <i>Fuel Debris</i>	HI-TRAC	HI-STAR
All BWR Classes	3.7	4.0	0.9328	0.9328

BOUNDING MAXIMUM k_{eff} VALUES FOR THE MPC-32 AND MPC-32F WITH UP TO 8 DFCs

Fuel Assembly Class of Intact Fuel	Maximum Allowable Enrichment for Intact Fuel and Damaged Fuel/Fuel Debris (wt% ²³⁵ U)	Minimum Soluble Boron Content (ppm)	Maxin	um k _{eff}	
			HI-TRAC	HI-STAR	
14x14A, B, C, D,	4.1	1500		0.9336	
E	5.0	2300		0.9269	
15x15A, B, C, G	4.1	1900	0.9328	0.9341	
	5.0	2700		0.9357	
15x15D, E, F, H	4.1	2100		0.9326	
	5.0	2900	0.9380	0.9378	
16x16A	4.1	1500		0.9335	
	5.0	2300		0.9289	
17x17A, B, C	4.1	2100		0 9283	
	5.0	2900		0.9336	

6.2 <u>SPENT FUEL LOADING</u>

Specifications for the BWR and PWR fuel assemblies that were analyzed are given in Tables 6.2.1 and 6.2.2, respectively. For the BWR fuel characteristics, the number and dimensions for the water rods are the actual number and dimensions. For the PWR fuel characteristics, the actual number and dimensions of the control rod guide tubes and thimbles are used. Table 6.2.1 lists 72 unique BWR assemblies while Table 6.2.2 lists 46 unique PWR assemblies, all of which were explicitly analyzed for this evaluation. Examination of Tables 6.2.1 and 6.2.2 reveals that there are a large number of minor variations in fuel assembly dimensions.

Due to the large number of minor variations in the fuel assembly dimensions, the use of explicit dimensions in the Certificate of Compliance could limit the applicability of the HI-STORM 100 System. To resolve this limitation, bounding criticality analyses are presented in this section for a number of defined fuel assembly classes for both fuel types (PWR and BWR). The results of the bounding criticality analyses justify using bounding fuel dimensions, as defined in the Certificate of Compliance.

6.2.1 <u>Definition of Assembly Classes</u>

For each array size (e.g., 6x6, 7x7, 15x15, etc.), the fuel assemblies have been subdivided into a number of defined classes, where a class is defined in terms of (1) the number of fuel rods; (2) pitch; (3) number and locations of guide tubes (PWR) or water rods (BWR); and (4) cladding material. The assembly classes for BWR and PWR fuel are defined in Tables 6.2.1 and 6.2.2, respectively. It should be noted that these assembly classes are unique to this evaluation and are not known to be consistent with any class designations in the open literature.

For each assembly class, calculations have been performed for all of the dimensional variations for which data is available (i.e., all data in Tables 6.2.1 and 6.2.2). These calculations demonstrate that the maximum reactivity corresponds to:

- maximum active fuel length,
- maximum fuel pellet diameter,
- minimum cladding outside diameter (OD),
- maximum cladding inside diameter (ID),
- minimum guide tube/water rod thickness, and
- maximum channel thickness (for BWR assemblies only).

Therefore, for each assembly class, a bounding assembly was defined based on the above characteristics and a calculation for the bounding assembly was performed to demonstrate compliance with the regulatory requirement of $k_{\rm eff} < 0.95$. In some assembly classes this bounding assembly corresponds directly to one of the actual (real) assemblies; while in most

assembly classes, the bounding assembly is artificial (i.e., based on bounding dimensions from more than one of the actual assemblies). In classes where the bounding assembly is artificial, the reactivity of the actual (real) assemblies is typically much less than that of the bounding assembly; thereby providing additional conservatism. As a result of these analyses, the Certificate of Compliance will define acceptability in terms of the bounding assembly parameters for each class.

To demonstrate that the aforementioned characteristics are bounding, a parametric study was performed for a reference BWR assembly, designated herein as 8x8C04 (identified generally as a GE8x8R). Additionally, parametric studies were performed for a PWR assembly (the 15x15F assembly class) in the MPC-24 and MPC-32 with soluble boron in the water flooding the MPC. The results of these studies are shown in Table 6.2.3 through 6.2.5, and verify the positive reactivity effect associated with (1) increasing the pellet diameter, (2) maximizing the cladding ID (while maintaining a constant cladding OD), (3) minimizing the cladding OD (while maintaining a constant cladding ID), (4) decreasing the water rod/guide tube thickness, (5) artificially replacing the Zircaloy water rod tubes/guide tubes with water, and (6) maximizing the channel thickness (for BWR Assemblies), and (7) increasing the active length. These results, and the many that follow, justify the approach for using bounding dimensions in the Certificate of Compliance. Where margins permit, the Zircaloy water rod tubes (BWR assemblies) are artificially replaced by water in the bounding cases to remove the requirement for water rod thickness from the Certificate of Compliance. As these studies were performed with and without soluble boron, they also demonstrate that the bounding dimensions are valid independent of the soluble boron concentration.

As mentioned, the bounding approach used in these analyses often results in a maximum k_{eff} value for a given class of assemblies that is much greater than the reactivity of any of the actual (real) assemblies within the class, and yet, is still below the 0.95 regulatory limit.

6.2.2 Intact PWR Fuel Assemblies

6.2.2.1 Intact PWR Fuel Assemblies in the MPC-24 without Soluble Boron

For PWR fuel assemblies (specifications listed in Table 6.2.2) the 15x15F01 fuel assembly at 4.1% enrichment has the highest reactivity (maximum k_{eff} of 0.9395). The 17x17A01 assembly (otherwise known as a Westinghouse 17x17 OFA) has a similar reactivity (see Table 6.2.20) and was used throughout this criticality evaluation as a reference PWR assembly. The 17x17A01 assembly is a representative PWR fuel assembly in terms of design and reactivity and is useful for the reactivity studies presented in Sections 6.3 and 6.4. Calculations for the various PWR fuel assemblies in the MPC-24 are summarized in Tables 6.2.6 through 6.2.22 for the fully flooded condition without soluble boron in the water.

Tables 6.2.6 through 6.2.22 show the maximum k_{eff} values for the assembly classes that are acceptable for storage in the MPC-24. All maximum k_{eff} values include the bias, uncertainties, and calculational statistics, evaluated for the worst combination of manufacturing tolerances. All calculations for the MPC-24 were performed for a ¹⁰B loading of 0.020 g/cm², which is 75% of the minimum loading, 0.0267 g/cm², specified on BM-1478, Bill of Materials for 24-Assembly HI-STAR 100 PWR MPC, in Section 1.5. The maximum allowable enrichment in the MPC-24 varies from 3.8 to 5.0 wt% ²³⁵U, depending on the assembly class, and is defined in Tables 6.2.6 through 6.2.22. It should be noted that the maximum allowable enrichment does not vary within an assembly class. Table 6.1.1 summarizes the maximum allowable enrichments for each of the assembly classes that are acceptable for storage in the MPC-24.

Tables 6.2.6 through 6.2.22 are formatted with the assembly class information in the top row, the unique assembly designations, dimensions, and k_{eff} values in the following rows above the bold double lines, and the bounding dimensions selected for the Certificate of Compliance and corresponding bounding k_{eff} values in the final rows. Where the bounding assembly corresponds directly to one of the actual assemblies, the fuel assembly designation is listed in the bottom row in parentheses (e.g., Table 6.2.6). Otherwise, the bounding assembly is given a unique designation. For an assembly class that contains only a single assembly (e.g., 14x14D, see Table 6.2.9), the dimensions listed in the Certificate of Compliance are based on the assembly dimensions from that single assembly. All of the maximum k_{eff} values corresponding to the selected bounding dimensions are greater than or equal to those for the actual assembly dimensions and are below the 0.95 regulatory limit.

The results of the analyses for the MPC-24, which were performed for all assemblies in each class (see Tables 6.2.6 through 6.2.22), further confirm the validity of the bounding dimensions established in Section 6.2.1. Thus, for all following calculations, namely analyses of the MPC-24E, MPC-32, and MPC-24 with soluble boron present in the water, only the bounding assembly in each class is analyzed.

6.2.2.2 Intact PWR Fuel Assemblies in the MPC-24 with Soluble Boron

Additionally, the HI-STAR 100 system is designed to allow credit for the soluble boron typically present in the water of PWR spent fuel pools. For a minimum soluble boron concentration of 400ppm, the maximum allowable fuel enrichment is 5.0 wt%²³⁵U for all assembly classes identified in Tables 6.2.6 through 6.2.22. Table 6.1.2 shows the maximum k_{eff} for the bounding assembly in each assembly class. All maximum k_{eff} values are below the 0.95 regulatory limit. The 15x15H assembly class has the highest reactivity (maximum k_{eff} of 0.9366). The calculated k_{eff} and calculational uncertainty for each class is listed in Appendix 6.C.

6.2.2.3 Intact PWR Assemblies in the MPC-24E and MPC-24EF with and without Soluble Boron

The MPC-24E and MPC-24EF are variations of the MPC-24, which provide for storage of higher enriched fuel than the MPC-24 through optimization of the storage cell layout. The MPC-24E and MPC-24EF also allow for the loading of up to 4 PWR Damaged Fuel Containers (DFC) with damaged PWR fuel (MPC-24E and MPC-24EF) and PWR fuel debris (MPC-24EF only). The requirements for damaged fuel and fuel debris in the MPC-24E and MPC-24EF are discussed in Section 6.2.4.3.

Without credit for soluble boron, the maximum allowable fuel enrichment varies between 4.2 and 5.0 wt% ²³⁵U, depending on the assembly classes as identified in Tables 6.2.6 through 6.2.22. The maximum allowable enrichment for each assembly class is listed in Table 6.1.3, together with the maximum k_{eff} for the bounding assembly in the assembly class. All maximum k_{eff} values are below the 0.95 regulatory limit The 15x15F assembly class at 4.5% enrichment has the highest reactivity (maximum k_{eff} of 0.9468). The calculated k_{eff} and calculational uncertainty for each class is listed in Appendix 6.C.

For a minimum soluble boron concentration of 300ppm, the maximum allowable fuel enrichment is 5.0 wt% ²³⁵U for all assembly classes identified in Tables 6.2.6 through 6.2.22. Table 6.1.4 shows the maximum k_{eff} for the bounding assembly in each assembly class. All maximum k_{eff} values are below the 0.95 regulatory limit. The 15x15H assembly class has the highest reactivity (maximum k_{eff} of 0.9399). The calculated k_{eff} and calculational uncertainty for each class is listed in Appendix 6.C.

6.2.2.4 Intact PWR Assemblies in the MPC-32 and MPC-32F

When loading any PWR fuel assembly in the MPC-32 or MPC-32F, a minimum soluble boron concentration is required.

For a minimum soluble boron concentration of 1900ppm, the maximum allowable fuel enrichment isof 4.1 wt% ²³⁵U for all assembly classes identified in Tables 6.2.6 through 6.2.22, a minimum soluble boron concentration between 1300ppm and 1900ppm is required, depending on the assembly class. Table 6.1.5 shows the maximum k_{eff} for the bounding assembly in each assembly class. All maximum k_{eff} values are below the 0.95 regulatory limit. The 15x15F16x16A assembly class has the highest reactivity (maximum k_{eff} of 0.941129). The calculated k_{eff} and calculational uncertainty for each class is listed in Appendix 6.C.

For a minimum soluble boron concentration of 2600ppm, the maximum allowable fuel enrichment isof 5.0 wt%²³⁵U for all assembly classes identified in Tables 6.2.6 through 6.2.22, a minimum soluble boron concentration between 1900ppm and 2600ppm is required, depending

on the assembly class. Table 6.1.6 shows the maximum k_{eff} for the bounding assembly in each assembly class. All maximum k_{eff} values are below the 0.95 regulatory limit. The 15x15F assembly class has the highest reactivity (maximum k_{eff} of 0.9483). The calculated k_{eff} and calculational uncertainty for each class is listed in Appendix 6.C.

6.2.3 Intact BWR Fuel Assemblies in the MPC-68 and MPC-68FF

For BWR fuel assemblies (specifications listed in Table 6.2.1) the artificial bounding assembly for the 10x10A assembly class at 4.2% enrichment has the highest reactivity (maximum k_{eff} of 0.9457). Calculations for the various BWR fuel assemblies in the MPC-68 and MPC-68FF are summarized in Tables 6.2.23 through 6.2.40 for the fully flooded condition. In all cases, the gadolinia (Gd₂O₃) normally incorporated in BWR fuel was conservatively neglected.

For calculations involving BWR assemblies, the use of a uniform (planar-average) enrichment, as opposed to the distributed enrichments normally used in BWR fuel, produces conservative results. Calculations confirming this statement are presented in Appendix 6.B for several representative BWR fuel assembly designs. These calculations justify the specification of planar-average enrichments to define acceptability of BWR fuel for loading into the MPC-68.

Tables 6.2.23 through 6.2.40 show the maximum k_{eff} values for assembly classes that are acceptable for storage in the MPC-68 and MPC-68FF. All maximum k_{eff} values include the bias, uncertainties, and calculational statistics, evaluated for the worst combination of manufacturing tolerances. With the exception of assembly classes 6x6A, 6x6B, 6x6C, 7x7A, and 8x8A, which will be discussed in Section 6.2.4, all calculations for the MPC-68 and MPC-68FF were performed with a ¹⁰B loading of 0.0279 g/cm², which is 75% of the minimum loading, 0.0372 g/cm², specified on BM-1479, Bill of Materials for 68-Assembly HI-STAR 100 BWR MPC, in Section 1.5. Calculations for assembly classes 6x6A, 6x6B, 6x6C, 7x7A, and 8x8A were conservatively performed with a ¹⁰B loading of 0.0067 g/cm². The maximum allowable enrichment in the MPC-68 and MPC-68FF varies from 2.7 to 4.2 wt% ²³⁵U, depending on the assembly class. It should be noted that the maximum allowable enrichment does not vary within an assembly class. Table 6.1.7 summarizes the maximum allowable enrichments for all assembly classes that are acceptable for storage in the MPC-68 and MPC-68FF.

Tables 6.2.23 through 6.2.40 are formatted with the assembly class information in the top row, the unique assembly designations, dimensions, and k_{eff} values in the following rows above the bold double lines, and the bounding dimensions selected for the Certificate of Compliance and corresponding bounding k_{eff} values in the final rows. Where an assembly class contains only a single assembly (e.g., 8x8E, see Table 6.2.27), the dimensions listed in the Certificate of Compliance are based on the assembly dimensions from that single assembly. For assembly classes that are suspected to contain assemblies with thicker channels (e.g., 120 mils), bounding calculations are also performed to qualify the thicker channels (e.g. 7x7B, see Table 6.2.23). All

of the maximum k_{eff} values corresponding to the selected bounding dimensions are shown to be greater than or equal to those for the actual assembly dimensions and are below the 0.95 regulatory limit.

For assembly classes that contain partial length rods (i.e., 9x9A, 10x10A, and 10x10B), calculations were performed for the actual (real) assembly configuration and for the axial segments (assumed to be full length) with and without the partial length rods. In all cases, the axial segment with only the full length rods present (where the partial length rods are absent) is bounding. Therefore, the bounding maximum k_{eff} values reported for assembly classes that contain partial length rods bound the reactivity regardless of the active fuel length of the partial length rods. As a result, the Certificate of Compliance has no minimum requirement for the active fuel length of the partial length rods.

For BWR fuel assembly classes where margins permit, the Zircaloy water rod tubes are artificially replaced by water in the bounding cases to remove the requirement for water rod thickness from the Certificate of Compliance. For these cases, the bounding water rod thickness is listed as zero.

As mentioned, the highest observed maximum k_{eff} value is 0.9457, corresponding to the artificial bounding assembly in the 10x10A assembly class. This assembly has the following bounding characteristics: (1) the partial length rods are assumed to be zero length (most reactive configuration); (2) the channel is assumed to be 120 mils thick; and (3) the active fuel length of the full length rods is 155 inches. Therefore, the maximum reactivity value is bounding compared to any of the real BWR assemblies listed.

6.2.4 <u>BWR and PWR Damaged Fuel Assemblies and Fuel Debris</u>

In addition to storing intact PWR and BWR fuel assemblies, the HI-STORM 100 System is designed to store BWR and PWR damaged fuel assemblies and fuel debris. Damaged fuel assemblies and fuel debris are defined in Section 2.1.3 and Appendix B to the Certificate of Compliance. Both damaged fuel assemblies and fuel debris are required to be loaded into Damaged Fuel Containers (DFCs) prior to being loaded into the MPC. FourFive different DFC types with different cross sections are considered; three types for BWR fuel and onetwo for PWR fuel. DFCs containing fuel debris must be stored in the MPC-68FF, or MPC-24EF or MPC-32F. DFCs containing BWR damaged fuel assemblies may be stored in the MPC-68, MPC-68FF or MPC-68FF. DFCs containing PWR damaged fuel may be stored in the MPC-24E, and-MPC-24EF, MPC-32 or MPC-32F. The criticality evaluation of various possible damaged conditions of the fuel is presented in Subsection 6.4.4.

6.2.4.1 Damaged BWR Fuel Assemblies and BWR Fuel Debris in Assembly Classes 6x6A, 6x6B, 6x6C, 7x7A and 8x8A

Tables 6.2.41 through 6.2.45 show the maximum k_{eff} values for the five assembly classes 6x6A, 6x6B, 6x6C, 7x7A and 8x8A. All maximum k_{eff} values include the bias, uncertainties, and calculational statistics, evaluated for the worst combination of manufacturing tolerances. All calculations were performed for a ¹⁰B loading of 0.0067 g/cm², which is 75% of a minimum loading, 0.0089 g/cm². However, because the practical manufacturing lower limit for minimum ¹⁰B loading is 0.01 g/cm², the minimum ¹⁰B loading of 0.01 g/cm² is specified on BM-1479, Bill of Materials for 68-Assembly HI-STAR 100 BWR MPC, in Section 1.5, for the MPC-68F. As an additional level of conservatism in the analyses, the calculations were performed for an enrichment of 3.0 wt% ²³⁵U, while the maximum allowable enrichment for these assembly classes is limited to 2.7 wt% ²³⁵U in the Certificate of Compliance. Therefore, the maximum k_{eff} values for damaged BWR fuel assemblies and fuel debris are conservative. Calculations for the various BWR fuel assemblies in the MPC-68F are summarized in Tables 6.2.41 through 6.2.45 for the fully flooded condition.

For the assemblies that may be stored as damaged fuel or fuel debris, the 6x6C01 assembly at 3.0 wt% 235 U enrichment has the highest reactivity (maximum k_{eff} of 0.8021). Considering all of the conservatism built into this analysis (e.g., higher than allowed enrichment and lower than actual 10 B loading), the actual reactivity will be lower.

Because the analysis for the damaged BWR fuel assemblies and fuel debris was performed for a ¹⁰B loading of 0.0089 g/cm², which conservatively bounds the analysis of damaged BWR fuel assemblies in an MPC-68 or MPC-68FF with a minimum ¹⁰B loading of 0.0372 g/cm², damaged BWR fuel assemblies may also be stored in the MPC-68 or MPC-68FF. However, fuel debris is limited to the MPC-68F and MPC-68FF by Appendix B to the Certificate of Compliance.

Tables 6.2.41 through 6.2.45 are formatted with the assembly class information in the top row, the unique assembly designations, dimensions, and k_{eff} values in the following rows above the bold double lines, and the bounding dimensions selected for the Certificate of Compliance and corresponding bounding k_{eff} values in the final rows. Where an assembly class contains only a single assembly (e.g., 6x6C, see Table 6.2.43), the dimensions listed in the Certificate of Compliance are based on the assembly dimensions from that single assembly. All of the maximum k_{eff} values corresponding to the selected bounding dimensions are greater than or equal to those for the actual assembly dimensions and are well below the 0.95 regulatory limit.

6.2.4.2 Damaged BWR Fuel Assemblies and Fuel Debris in the MPC-68 and MPC-68FF

Damaged BWR fuel assemblies and fuel debris from all BWR classes may be loaded into the MPC-68 and MPC-68FF by restricting the locations of the DFCs to 16 specific cells on the periphery of the fuel basket. The MPC-68 may be loaded with up to 16 DFCs containing

damaged fuel assemblies. The MPC-68FF may also be loaded with up to 16 DFCs, with up to 8 DFCs containing fuel debris.

For all assembly classes, the enrichment of the damaged fuel or fuel debris is limited to a maximum of 4.0 wt% ²³⁵U, while the enrichment of the intact assemblies stored together with the damaged fuel is limited to a maximum of 3.7 wt%, ²³⁵U. The maximum k_{eff} is 0.9328. The criticality evaluation of the damaged fuel assemblies and fuel debris in the MPC-68 and MPC-68FF is presented in Section 6.4.4.2.

6.2.4.3 Damaged PWR Fuel Assemblies and Fuel Debris-in the MPC-24E and MPC-24EF

In addition to storing intact PWR fuel assemblies, the HI-STORM 100 System is designed to store damaged PWR fuel assemblies (MPC-24E, and-MPC-24EF, MPC-32 and MPC-32F) and fuel debris (MPC-24EF and MPC-32F only). Damaged fuel assemblies and fuel debris are defined in Section 2.1.3 and Appendix B of the Certificate of Compliance. Damaged PWR fuel assemblies and fuel debris are required to be loaded into PWR Damaged Fuel Containers (DFCs) prior to being loaded into the MPC.

6.2.4.3.1 Damaged PWR Fuel Assemblies and Fuel Debris in the MPC-24E and MPC-24EF

Up to four DFCs may be stored in the MPC-24E or MPC-24EF. When loaded with damaged fuel and/or fuel debris, the maximum enrichment for intact and damaged fuel is 4.0 wt% ²³⁵U for all assembly classes listed in Table 6.2.6 through 6.2.22 without credit for soluble boron. The maximum k_{eff} for these classes is 0.9486. For a minimum soluble boron concentration of 600ppm, the maximum enrichment for intact and damaged fuel is 5.0 wt% ²³⁵U for all assembly classes listed in Table 6.2.6 through 6.2.22. The criticality evaluation of the damaged fuel is presented in Subsection 6.4.4.2.

6.2.4.3.2 Damaged PWR Fuel Assemblies and Fuel Debris in the MPC-32 and MPC-32F

Up to eight DFCs may be stored in the MPC-32 or MPC-32F. For a maximum allowable fuel enrichment of 4.1 wt%²³⁵U for intact fuel, damaged fuel and fuel debris for all assembly classes identified in Tables 6.2.6 through 6.2.22, a minimum soluble boron concentration between 1500ppm and 2100ppm is required, depending on the assembly class of the intact assembly. For a maximum allowable fuel enrichment of 5.0 wt%²³⁵U for intact fuel, damaged fuel and fuel debris, a minimum soluble boron concentration between 2300ppm and 2900ppm is required, depending on the assembly class of the intact assembly. Table 6.1.12 shows the maximum k_{eff} by assembly class. All maximum k_{eff} values are below the 0.95 regulatory limit.

6.2.5 <u>Thoria Rod Canister</u>

Additionally, the HI-STORM 100 System is designed to store a Thoria Rod Canister in the MPC-68, MPC-68F or MPC-68FF. The canister is similar to a DFC and contains 18 intact Thoria Rods placed in a separator assembly. The reactivity of the canister in the MPC is very low compared to the approved fuel assemblies (The ²³⁵U content of these rods correspond to UO₂ rods with an initial enrichment of approximately 1.7 wt% ²³⁵U). It is therefore permissible to the Thoria Rod Canister together with any approved content in a MPC-68 or MPC-68F. Specifications of the canister and the Thoria Rods that are used in the criticality evaluation are given in Table 6.2.46. The criticality evaluation are presented in Subsection 6.4.6.

					(411 4		io m menes)					
Fuel Assembly Designation	Clad Material	Pitch	Number of Fuel Rods	Cladding OD	Cladding Thickness	Pellet Diameter	Active Fuel Length	Number of Water Rods		Water Rod ID	Channel Thickness	Channel ID
					6	x6A Assemt	oly Class					•
6x6A01	Zr	0.694	36	0.5645	0.0350	0.4940	110.0	0	n/a	n/a	0.060	4.290
6x6A02	Zr	0.694	36	0.5645	0.0360	0.4820	110.0	0	n/a	n/a	0.060	4.290
6x6A03	Zr	0.694	36	0.5645	0.0350	0.4820	110.0	0	n/a	n/a	0.060	4.290
6x6A04	Zr	0.694	36	0.5550	0.0350	0.4820	110.0	0	n/a	n/a	0.060	4.290
6x6A05	Zr	0.696	36	0.5625	0.0350	0.4820	110.0	0	n/a	n/a	0.060	4.290
6x6A06	Zr	0.696	35	0.5625	0.0350	0.4820	110.0	1	0.0	0.0	0.060	4.290
6x6A07	Zr	0.700	36	0.5555	0.03525	0.4780	110.0	0	n/a	n/a	0.060	4.290
6x6A08	Zr	0.710	36	0.5625	0.0260	0.4980	110.0	0	n/a	n/a	0.060	4.290
					6x6B	(MOX) Ass	embly Class					L
6x6B01	Zr	0.694	36	0.5645	0.0350	0.4820	110.0	0	n/a	n/a	0.060	4.290
6x6B02	Zr	0.694	36	0.5625	0.0350	0.4820	110.0	0	n/a	n/a	0.060	4.290
6x6B03	Zr	0.696	36	0.5625	0.0350	0.4820	110.0	0	n/a	n/a	0.060	4.290
6x6B04	Zr	0.696	35	0.5625	0.0350	0.4820	110.0	1	0.0	0.0	0.060	4.290
6x6B05	Zr	0.710	35	0.5625	0.0350	0.4820	110.0	1	0.0	0.0	0.060	4.290
					6:	x6C Assemb	ly Class					
6x6C01	Zr	0.740	36	0.5630	0.0320	0.4880	77.5	0	n/a	n/a	0.060	4.542
					7:	x7A Assemb	ly Class					
7x7A01	Zr	0.631	49	0.4860	0.0328	0.4110	80	0	n/a	n/a	0.060	4.542

Table 6.2.1 (page 1 of 7) BWR FUEL CHARACTERISTICS AND ASSEMBLY CLASS DEFINITIONS (all dimensions are in inches)

.

н 1			BW	R FUEL CHA				CLASS DEF	INITIONS			
<u> </u>		1	I		(all d	imensions ar	re in inches)					
Fuel Assembly Designation	Clad Material	Pitch	Number of Fuel Rods	Cladding OD	Cladding Thickness	Pellet Diameter	Active Fuel Length	Number of Water Rods		Water Rod ID	Channel Thickness	Channel ID
-		·····				x7B Assemb	ly Class		-			
7x7B01	Zr	0.738	49	0.5630	0.0320	0.4870	150	0	n/a	n/a	0.080	5.278
7x7B02	Zr	0.738	49	0.5630	0.0370	0.4770	_ 150	0	n/a	n/a	0.102	5.291
7x7B03 ′	Zr	0.738	49	0.5630	0.0370	0.4770	150	0	n/a	n/a	0.080	5.278
7x7B04	Zr	0.738	49	0.5700	0.0355	0.4880	150	0	n/a	- n/a	0.080	5.278
7x7B05	Zr	0.738	49	0.5630	0.0340	0.4775	150	0	n/a	n/a	0.080	5.278
7x7B06	Zr	0.738	49	0.5700	0.0355	0.4910	150	0	. n/a	n/a	0.080	5.278
· · ·		1			87	8A Assemb	ly Class		,			
8x8A01	Zr	0.523	64	0.4120	0.0250	0.3580	110	0	n/a	- n/a	0.100	4.290
8x8A02	Zr	0.523	63	0.4120	0.0250	0.3580	120	0	n/a	n/a	0.100	4.290

4

Table 6.2.1 (page 2 of 7)

 $\{f_{i}\}_{i\in I}$

~ • + 3 ¢

> 1 1 1 τ.

Proposed Rev. 2A

rt.

REPORT HI-2002444

HI-STORM FSAR

4

.

1

6.2-11

4

Fuel' Assembly	Clad		Number of	Cladding	Cladding	Pellet		Number of	Water Rod	Water Rod	Channel	Channel ID
Designation		Pitch	Fuel Rods	OD	Thickness	Diameter	Length	Water Rods	OD	ID	Thickness	
					8	x8B Assemb	ly Class					
8x8B01	Zr	0.641	63	0.4840	0.0350	0.4050	150	1	0.484	0.414	0.100	5.278
8x8B02	Zr	0.636	63	0.4840	0.0350	0.4050	150	1	0.484	0.414	0.100	5.278
8x8B03	Zr	0 640	63	0.4930	0.0340	0.4160	150	1	0.493	0.425	0.100	5.278
8x8B0 ['] 4	Zr	0.642	64	0.5015	0.0360	0.4195	150	0	n/a	n/a	0.100	5.278
					8	x8C Assemb	ly Class					
8x8C01	Zr	0.641	62	0.4840	0.0350	0.4050	150	2	0.484	0.414	0.100	5.278
8x8C02	Zr	0,640	62	0.4830	0.0320	0.4100	150	2	0.591	0.531	0.000	no channel
8x8C03	Zr	0.640	62	0.4830	0.0320	0.4100	150	2	0.591	0.531	0.080	5.278
8x8C04	Zr	0.640	62	0.4830	0.0320	0.4100	150	2	0.591	0.531	0.100	5.278
8x8C05	Zr	0.640	62	0.4830	0.0320	0.4100	150	2	0.591	0.531	0.120	5.278
8x8C06	Zr	0.640	62	0.4830	0.0320	0.4110	150	2	0.591	0.531	0.100	5.278
8x8C07	Zr	0.640	62	0.4830	0.0340	0.4100	150	2	0.591	0.531	0.100	5.278
8x8C08	Zr	0.640	62	0.4830	0.0320	0.4100	150	2	0.493	0.425	0.100	5.278
8x8C09	Zr	0.640	62	0.4930	0.0340	0.4160	150	2	0.493	0.425	0.100	5.278
8x8C10	Zr	0.640	62	0.4830	0.0340	0.4100	150	2	0.591	0.531	0.120	5.278
8x8C11	Zr	0.640	62	0.4830	0.0340	0.4100	150	2	0.591	0.531	0.120	5.215
8x8C12	Zr	0 636	62	0.4830	0.0320	0.4110	150	2	0.591	0.531	0.120	5.215

Table 6.2.1 (page 3 of 7) BWR FUEL CHARACTERISTICS AND ASSEMBLY CLASS DEFINITIONS (all dimensions are in inches)

1

1

4

.

, ' 1 ,			BWI	R FUEL CHA	ARACTERIS	ble 6.2.1 (pa TICS AND limensions a	ĂSSEMĖLY	CLASS DEF	INITIONS			
Fuel Assembly Designation	Clad Material	Pitch	Number of Fuel Rods	Cladding OD	Cladding Thickness	Pellet Diameter		Number of Water Rods		Water Rod ID	Channel , Thickness	Channel IE
۴. 	<u></u>				- 8	x8D Assemt	ly Class					<u>L</u>
8x8D01	Zr	0.640	60	0.4830	0.0320	0.4110	150	2 large/ 2 small	0.591/ 0.483	0.531/ 0.433	0.100	5.278
8x8D02	Zr	0.640	60	0.4830	0.0320	0.4110	150	4	0.591	0.531	0.100	5.278
8x8D03	Zr	0.640	60	0.4830	0.0320	0.4110	150	4	0.483	0.433	0.100	5.278
8x8D04	Zr	0.640	60	0.4830	0.0320	0.4110	150	1	1.34	1.26	0.100	5.278
8x8D05	Zr	0.640	60	0.4830	0.0320	0.4100	150	1	1.34	1.26	0.100	5.278
8x8D06	Zr	0.640	60	0.4830	0.0320	0.4110	150	1	1.34	1.26	0.120	5.278
8x8D07	Zr	0.640	60	0.4830	0.0320	0.4110	150	1	1.34	1.26	0.080	5,278
8x8D08	Zr	0.640	61	0.4830	0.0300	0.4140	150	3	0.591	0.531	0.080	5.278
1			.		8:	x8E Assemb	ly Class	H	-			
8x8E01	Zr	0 640	59	0.4930	0.0340	0.4160	150	5	0.493	0.425	0.100	5.278
·					. 83	x8F Assemb	ly Class .					
8x8F01	Zr	0.609	; 64	0.4576	.0.0290	0.3913	150	`4 [†]	0.291†	0.228†	0.055	5.390
				,	97	x9A Assemb	ly Class				- +	
9x9A01	Zr	0.566	74	0.4400	0.0280	0.3760	150	2	0.98	0.92	0.100	5.278
9x9A02	Zr	0.566	66	0.4400	0.0280	0.3760	- 150	2	0.98	· 0.92	0.100	5.278
9x9A03	Zr_	0.566	74/66	0.4400	0.0280	0.3760	150/90	2	• 0.98 • -	0.92	0.100	5.278
• 9x9A04	· · ·	0.566	66	0.4400 .	- 0.0280	0.3760	150 ·	2	0.98	0.92	0.120	• 5.278
<u>, , , , , , , , , , , , , , , , , , , </u>	ılar water o	cross se	 gments dividi	ng the assem	bly into four	quadrants	, • ·	`	י <u>ן</u> איני ו	, 7	11° ,	1

Four rectangular water cross segments dividing the assembly into four quadrants

HI-STORM FSAR REPORT HI-2002444

1

t

a de la construcción de la constru A construcción de la construcción de

Proposed Rev. 2A

*

Fuel Assembly Designation	Clad Material	Pitch	Number of Fuel Rods	Cladding OD	Cladding Thickness	Pellet Diameter	Active Fuel Length	Number of Water Rods		Water Rod ID	Channel Thickness	Channel ID
9x9B Assembly Class												
9x9B01	Zr	0.569	72	0.4330	0.0262	0.3737	150	1	1.516	1.459	0.100	5.278
9x9B02	Zr	0.569	72	0.4330	0.0260	0.3737	150	1	1.516	1.459	0.100	5.278
9x9B03	Zr	0.572	72	0.4330	0.0260	0.3737	150	1	1.516	1.459	0.100	5.278
			*		9	x9C Assemb	ly Class				-	
9x9C01	Zr	0.572	80	0.4230	0.0295	0.3565	150	1	0.512	0.472 -	0.100	5.278
		K		_	9:	x9D Assemb	ly Class					
9x9D01	Zr	0.572	79	0.4240	0.0300	0.3565	150	2	0.424	0.364	0.100	5.278
I					9,	9E Assembl	y Class [†]			-		
9x9E01	Zr	0.572	76	0.4170	0.0265	0.3530	150	5	0.546	0.522	0.120	5.215
9x9E02	Zr	0.572	48 28	0.4170 0.4430	0.0265 0.0285	0.3530 0.3745	150	5	0.546	0.522	0.120	5.215

Table 6.2.1 (page 5 of 7) BWR FUEL CHARACTERISTICS AND ASSEMBLY CLASS DEFINITIONS (all dimensions are in inches)

The 9x9E and 9x9F fuel assembly classes represent a single fuel type containing fuel rods with different dimensions (SPC 9x9-5). In addition to the actual configuration (9x9E02 and 9x9F02), the 9x9E class contains a hypothetical assembly with only small fuel rods (9x9E01), and the 9x9F class contains a hypothetical assembly with only small fuel rods (9x9E01), and the 9x9F class contains a hypothetical assembly the specification of this assembly in the CoC.

HI-STORM FSAR

÷

†

,

REPORT HI-2002444

Proposed Rev. 2A

Fuel Assembly Designation	Clad Material	Pitch	Number of Fuel Rods	Cladding OD	Cladding Thickness	Pellet Diameter	Active Fuel Length	Number of Water Rods		Water Rod ID	Channel Thickness	Channel ID
	9x9F Assembly Class*											
9x9F01	Zr	0.572	76	0.4430	0.0285	0.3745	150	5	0.546	0.522	0.120	5.215
9x9F02	Zr	0.572	48 28	0.4170 0.4430	0.0265 0.0285	0.3530 0.3745	150	5	0.546	0.522	0.120	5.215
9x9G Assembly Class												
9x9G01	Zr	0.572	72	0.4240	0.0300	0.3565	150	1	1.668	1.604	0.120	5.278
					10:	x10A Assem	bly Class			I		
10x10A'01	Zr	0.510	92	0.4040	0.0260	0.3450	155	2	0.980	0.920	0.100	5.278
10x10A02	Zr	0.510	78	0.4040	0.0260	0.3450	155	2	0.980	0.920	0.100	5.278
10x10A'03	Zr	0.510	92/78	0.4040	0.0260	0.3450	155/90	2	0.980	0.920	0.100	5.278
s .		n .	·• 9		10;	x10B Assem	bly Class	I	, ,			
10x10B01	Zr	0.510	91	- 0.3957	0.0239	0.3413	155	1	1.378	1.321	0.100	5.278
10x10B02	~ Zr	0.510	83	0.3957	0.0239	0.3413	155	. 1	1.378	1.321	0.100	5.278
10x10B03	- Zr	0.510	91/83	0.3957	0.0239	0.3413 .	155/90	1	1.378	1.321	0.100	5.278

Table 6.2.1 (page 6 of 7) BWR FUEL CHARACTERISTICS AND ASSEMBLY CLASS DEFINITIONS (all dimensions are in inches)

* The 9x9E and 9x9F fuel assembly classes represent a single fuel type containing fuel rods with different dimensions (SPC 9x9-5). In addition to the actual configuration (9x9E02 and 9x9F02), the 9x9E class contains a hypothetical assembly with only small fuel rods (9x9E01), and the 9x9F class contains a hypothetical assembly with only large rods (9x9F01). This was done in order to simplify the specification of this assembly in the CoC.

,

· . .

ŧ

Proposed Rev. 2A

* 2 $\mathcal{T}_{\mathcal{T}}$

Table 6.2.1 (page 7 of 7) BWR FUEL CHARACTERISTICS AND ASSEMBLY CLASS DEFINITIONS (all dimensions are in inches)

Fuel Assembly Designation	Clad Material	Pitch	Number of Fuel Rods	Cladding OD	Cladding Thickness	Pellet Diameter		Number of Water Rods		Water Rod ID	Channel Thickness	Channel ID
L .					10	x10C Assem	bly Class					
10x10C01	Zr	0.488	96	0.3780	0.0243	0.3224	150	5	1.227	1.165	0.055	5.347
				-	10:	x10D Assem	bly Class					
10x10D01	SS	0.565	100	0.3960	0.0200	0.3500	83	0	n/a	n/a	0.08	5.663
	10x10E Assembly Class											
10x10E01	SS	0.557	96	0.3940	0.0220	0.3430	83	4	0.3940	0.3500	0.08	5.663

1.*

.

Proposed Rev. 2A

Fuel Assembly Designation	Clad Material	Pitch	Number of Fuel Rods	Cladding OD	Cladding Thickness	Pellet Diameter	Active Fuel Length	Number of Guide Tubes	Guide Tube OD	Guide Tube ID	Guide Tub Thickness
1					14x14A A	ssembly Cla	SS		L		L
14x14A01	Zr	0.556	179	0.400	0.0243	0.3444	150	17	0.527	0.493	0.0170
14x14A02	Zr	0.556	179	0.400	0.0243	0.3444	150	17	0.528	0.490	0.0190
14x14A03	Zr	0.556	179	0.400	0.0243	0.3444	150	17	0.526	0.492	0.0170
, 			• <u> </u>		14x14B A	ssembly Cla	SS				l
14x14B01	Zr	0.556	179	0.422	0.0243	0.3659	150	17	0.539	0.505	0.0170
14x14B02	Zr	0.556	179	0.417	0.0295	0.3505	150	17	0.541	- 0.507	0.0170
14x14B03	Zr	0.556	179	0,424	0.0300	0.3565	150	17 .	0.541	. 0.507	0.0170
14x14B04	Zr	0.556	179	0.426	0.0310	0.3565	150	17	0.541	0.507	0.0170
1		,	ι		14x14C A	ssembly Clas	SS			, ,	
14x14C01	Zr	,0.580	176	0.440 [,]	0.0280	0.3765	, 150 [°]	5	1.115	1.035	0.0400
14x14C02	Zr	0.580	176	0.440	0.0280	0.3770	150	5	1.115	1.035	0.0400
) 14x14C03	Zr	0.580	176	0.440	0.0260	0.3805	150	5	1.111	1.035	0.0380
;	÷	ì.	- *		14x14D A	ssembly Clas	SS				
_14x14D01	• SS	0.556	180	0.422	0.0165	0.3835	144	16	0.543	0.514	0.0145
‡ •							L				
, • , •	۰. ۱			ير .		•	ı	. -	•	٩	,

Table 6.2.2 (page 1 of 4) PWR FUEL CHARACTERISTICS AND ASSEMBLY CLASS DEFINITIONS (all dimensions are in inches)

· · ·

.

.

4

Proposed Rev. 2A

1,

					(all dimension	ons are in ind	ches)				
Fuel Assembly Designation	Clad Material	Pitch	Number of Fuel Rods	Cladding OD	Cladding Thickness	Pellet Diameter	Active Fuel Length	Number of Guide Tubes	Guide Tube OD	Guide Tube ID	Guide Tube Thickness
1					14x14E A	ssembly Cla	SS			<u> </u>	1
14x14E01 [†]	SS	0.453 and 0.411	162 3 8	0.3415 0.3415 0.3415	0.0120 0.0285 0.0200	0.313 0.280 0.297	102	0	n/a	n/a	n/a
14x14E02 [†]	SS	0.453 and 0.411	173	0.3415	0.0120	0.313	102	0	n/a	n/a	n/a

0.0280

0.3580

15x15A Assembly Class

102

150

0

21

n/a

0.533

n/a

0.500

Table 6.2.2 (page 2 of 4) PWR FUEL CHARACTERISTICS AND ASSEMBLY CLASS DEFINITIONS

[†] This is the fuel assembly used at Indian Point 1 (IP-1). This assembly is a 14x14 assembly with 23 fuel rods omitted to allow passage of control rods between assemblies. It has a different pitch in different sections of the assembly, and different fuel rod dimensions in some rods. .

.

14x14E03[†]

. 15x15A01

1

SS

Zr

0.453

and 0.411

0.550

173

204

0.3415

0.418

0.0285

0.0260

n/a

0.0165

r					(all dimension	ons are in inc	ches)				
Fuel Assembly Designation	Clad Material	Pitch	Number of Fuel Rods	Cladding OD	Cladding Thickness	Pellet - Diameter	Active Fuel Length	Number of Guide Tubes	Guide Tube OD	Guide Tube ID	Guide Tube Thickness
		-	ł		15x15B A	ssembly Cla	.SS ~			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
15x15B01	_ Zr	0.563	204	0.422	0.0245	0.3660	150	21	0.533	0.499	0.0170
15x15B02	Zr_	0.563	204	0.422	0.0245	0.3660	150	21	0.546	0.512	0.0170
15x15B03	Zr	0.563	204	0.422	0.0243	0.3660	150	21	0.533	0.499	0.0170
15x ¹ 5B04	Zr	0.563	204	0.422	0.0243	0.3659	150	21	0.545	0.515	0.0150
15x15B05	Zr	0.563	204	0.422	0.0242	0.3659	150	21	0.545	0.515	0.0150
15x15B06	Zr	0.563	204	0.420	0.0240	0.3671	150	21	0.544	0.514	0.0150
					15x15C A	ssembly Cla	SS		-		
15x15C01	Zr	0.563	204	0.424	0.0300	0.3570	150	21	0.544	0.493	0.0255
15x15C02	Zr -	0.563	204	0.424	0.0300	0.3570	150	21 .	0.544	0.511	0.0165
15x15C03	Zr .	0.563	204	0.424	0.0300	0.3565	150	21	0.544	0.511	0.0165
15x15C04	Zr	0.563	204	0.417	0.0300	0.3565	150	21	0.544	0.511	0.0165
1				-	15x15D A	ssembly Cla	SS				
15x15D01	Zr	0.568	208	0.430	0.0265	0.3690	150 -	17	0.530	0.498	0.0160
15x15D02	Zr	0.568	208	0.430	0.0265	0.3686	150	17	0.530	0.498	0.0160
15x15D03	Zr	0.568.	208	0.430	0.0265	- 0.3700	150	17	0.530	0.499	0.0155
15x15D04	Zr	• 0.568 •	208	0.430	0.0250	0.3735	- 150	17	0.530	0.500	0.0150
۰ ۰			-		15x15E A	ssembly Clas	55				
15x15E01	Zr	0.568	' 208 -	0.428	0.0245	<u>;</u> 0.3707	150	17	0.528	0.500	0.0140
		• •		•	• 15x15F A	ssembly Clas	S	r	I	·	
15x15F01	Zr	0.568	208	0.428	0.0230	0.3742	150	17	0.528	0.500	0.0140
ł			-					••••		,	t.

Table 6.2.2 (page 3 of 4) PWR FUEL CHARACTERISTICS AND ASSEMBLY CLASS DEFINITIONS (all dimensions are in inches)

a second a s

HI-STORM FSAR

6.2-19

,

REPORT'HI-2002444

ł

1

,

			······		(JIIS are in mi	Jineb)				
Fuel Assembly Designation	Clad Material	Pitch	Number of Fuel Rods	Cladding OD	Cladding Thickness	Pellet Diameter	Active Fuel Length	Number of Guide Tubes	Guide Tube OD	Guide Tube ID	Guide Tube Thickness
,					15x15G A	ssembly Cla	ISS			1 <u></u>	L
15x15G01	SS	0.563	204	0.422	0.0165	0.3825	144	21	0.543	0.514	0.0145
					15x15H A	ssembly Cla	ISS			A	· · ·
15x15H01	Zr	0.568	208	0.414	- 0.0220	0.3622	150	17	0.528	0.500	0.0140
		-			16x16A A	ssembly Cla	ISS			•	I
16x16A01	Zr	0.506	236	0.382	0.0250	0.3255	150	5	0.980	0.900	0.0400
16x16A02	Zr	0.506	236	0.382	0.0250	0.3250	150	5	0.980	0.900	0.0400
I					17x17A A	ssembly Cla	ISS				
17x17A01	Zr	0.496	26 4	0.360	0.0225	0.3088	144	25	0.474	0.442	0.0160
17x17A0 2 1	Zr	0.496	264	0.360	0.0225	0.3088	150	25	0.474	0.442	0.0160
17x17A0 3 2	Zr	0.496	264	0.360	0.0250	0.3030	150	25	0.480	0.448	0.0160
					17x17B A	ssembly Cla	SS	_		· · · · · · · · · · · · · · · · · · ·	
17x17B01	Zr	0.496	264	0.374	0.0225	0.3225	150	25	0.482	0.450	0.0160
17x17B02	Zr	0.496	264	0.374	0.0225	0.3225	150	25	0.474	0.442	0.0160
17x17B03	Zr	0.496	264	0.376	0.0240	0.3215	150	25	0.480	0.448	0.0160
17x17B04	Zr	0.496	264	0.372	0.0205	0.3232 -	150	25	0.427	0.399	0.0140
17x17B05	Zr	0.496	264	0.374	0.0240	0.3195	150	25	0.482	0.450	0.0160
17x17B06	Zr	0.496	264	0.372	0.0205	0.3232	150	25	0.480	0.452	0.0140
1					17x17C A	ssembly Cla	SS				
17x17C01	Zr	0.502	264	0.379	0.0240	0.3232	150	25	0.472	0.432	0.0200
17x17C02	Zr	0.502	264	0.377	0.0220	0.3252	150	25	0.472	0.432	0.0200

 Table 6.2.2 (page 4 of 4)

 PWR FUEL CHARACTERISTICS AND ASSEMBLY CLASS DEFINITIONS

 (all dimensions are in inches)

HI-STORM FSAR REPORT HI-2002444

1

 Table 6.2.3

 REACTIVITY EFFECT OF ASSEMBLY PARAMETER VARIATIONS for BWR Fuel in the MPC-68

 (all dimensions are in inches)

Fuel Assembly/ Parameter Variation	reactivity effect	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	water rod thickness	channel thickness
8x8C04 (GE8x8R)	reference	0.9307	0.0007	0.483	0.419	0.032	0.410	0.030	0.100
increase pellet OD (+0.001)	+0.0005	0.9312	0.0007	0.483	0.419	0.032	0.411	0.030	0.100
decrease pellet OD (-0.001)	-0.0008	0.9299	0.0009	0.483	0.419	0.032	0.409	0.030	0.100
increase clad ID (+0.004)	+0.0027	0.9334	0.0007	0.483	0.423	0.030	0.410	0.030	0.100
decrease clad ID (-0.004)	-0.0034	0.9273	0.0007	0.483	· 0.415	0.034	0.410	0.030	0.100
increase clad OD (+0.004)	-0.0041	0.9266	0.0008	0.487	0.419	0.034	0.410	0.030	0.100
decrease clad OD (-0.004)	+0.0023	0.9330	0.0007	0.479	0.419	0.030	0.410	0.030	0.100
increase water rod thickness (+0.015)	-0.0019	0.9288	0.0008	0.483	0.419	0.032	0.410	0.045-	• 0.100
decrease water rod thickness (-0.015)	+0.0001	0.9308	0.0008	0.483	0.419	0.032	0.410	0.015	0.100
remove water rods (i.e., replace the water rod tubes with water)	+0.0021	0.9328	0.0008	0.483	0.419	0.032	0.410	0.000	0.100
remove channel	-0.0039	0.9268	0.0009	0.483	0.419	0.032	0.410	0.030	0.000
increase channel thickness (+0.020)	+0.0005	0.9312	0.0007	0.483	0.419	0.032	-0.410	0.030	0.120
reduced active length (120 Inches)	-0.0007	0.9300	0.0007	0.483	0.419	0.032	0.410	0.030	0.100
reduced active length (90 Inches)	-0.0043	0.9264	0.0007	0.483	0.419	0.032	0.410	0.030	0.100

· · · · ·

HI-STORM FSAR

.

REPORT HI-2002444

- -

,

, -

1, 1

 Table 6.2.4

 REACTIVITY EFFECT OF ASSEMBLY PARAMETER VARIATIONS in PWR Fuel in the MPC 24 with 400ppm soluble boron concentration (all dimensions are in inches)

· · · · · · · · · · · · · · · · · · ·		(
Fuel Assembly/ Parameter Variation	reactivity effect	calculated k _{eff}	standard deviation	cladding OD	Cladding ID	cladding thickness	pellet OD	guide tube thickness
15x15F (15x15 B&W, 5.0% E)	reference	0.9271	0.0005	0.4280	0.3820	0.0230	0.3742	0.0140
increase pellet OD (+0.001)	-0.0008	0.9263	0.0004	0.4280	0.3820	0.0230	0.3752	0.0140
decrease pellet OD (-0.001)	-0.0002	0.9269	0.0005	0.4280	0.3820	0.0230	0.3732	0.0140
increase clad ID (+0.004)	+0.0040	0.9311	0.0005	0.4280	0.3860	0.0210	0.3742	0.0140
decrease clad ID (-0.004)	-0.0033	0.9238	0.0004	0.4280	0.3780	0.0250	0.3742	0.0140
increase clad OD (+0.004)	-0.0042	0.9229	0.0004	0.4320	0.3820	0.0250	0.3742	0.0140
decrease clad OD (-0.004)	+0.0035	0.9306	0.0005	0.4240	0.3820	0.0210	0.3742	0.0140
increase guide tube thickness (+0.004)	-0.0008	0.9263	0.0005	0.4280	0.3820	0.0230	0.3742	0.0180
decrease guide tube thickness (-0.004)	+0.0006	0.9277	0.0004	0.4280	0.3820	0.0230	0.3742	0.0100
remove guide tubes (i.e., replace the guide tubes with water)	+0.0028	0.9299	0.0004	0.4280	0.3820	0.0230	0.3742	0.000
voided guide tubes	-0.0318	0.8953	0.0005	0.4280	0.3820	0.0230	0.3742	. 0.0140

.

Table 6.2.5 REACTIVITY EFFECT OF ASSEMBLY PARAMETER VARIATIONS in PWR Fuel in the MPC-32 with 2600ppm soluble boron concentration (all dimensions are in inches)

Fuel Assembly/ Parameter Variation	reactivity effect	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	guide tube thickness
15x15F (15x15 B&W, 5.0% E)	reference	0.9389	0.0004	0.4280	0.3820	0.0230	0.3742	0.0140
increase pellet OD (+0.001)	+0.0019	0.9408	0.0004	0.4280	0.3820	0.0230	0.3752	0.0140
decrease pellet OD (-0.001)	0.0000	0.9389	0.0004	0.4280	0.3820	0.0230	0.3732	0.0140
increase clad ID (+0.004)	+0.0015	0.9404	0.0004	0.4280	0.3860	0.0210	0.3742	0.0140
decrease clad ID (-0.004)	-0.0015	0.9374	0.0004	0.4280	0.3780	0.0250	0.3742	0.0140
increase clad OD (+0.004)	-0.0002	0.9387	0.0004	0.4320	0.3820	0.0250	0.3742	0.0140
decrease clad OD (-0.004)	+0.0007	0.9397	0.0004	0.4240	0.3820	0.0210	0.3742	0.0140
increase guide tube thickness (+0.004)	-0.0003	0.9387	0.0004	0.4280	0.3820	0.0230	0.3742	0.0180
decrease guide tube thickness (-0.004)	-0.0005	0.9384	0.0004	0.4280	0.3820	0.0230	0.3742	0.0100
remove guide tubes (i.e., replace the guide tubes with water)	-0.0005	0.9385	0.0004	0.4280	0.3820	0.0230	0.3742	0.000
voided guide tubes	+0.0039	0.9428	0.0004	0.4280	0.3820	0.0230	0.3742	0.0140

HI-STORM FSAR

.

· • • • • ۰. .

Proposed Rev. 2A

REPORT HI-2002444

+

,

,

5.5

. ..

	14x14A (4.6%	Enrichment, I	Boralfixed ne	utron absor		um loading	of 0.02 g/cm ²)	
		179 fu	el rods, 17 gu	ide tubes, p	1tch=0.556, Z	r clad			
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	guide tube thickness
14x14A01	0.9295	0.9252	0.0008	0.400	0.3514	0.0243	0.3444	150	0.017
14x14A02	0.9286	0.9242	0.0008	0.400	0.3514	0.0243	0.3444	150	0.019
14x14A03	0.9296	0.9253	0.0008	0.400	0.3514	0.0243	0.3444	150	0.017
Dimensions Listed in Certificate of Compliance				0.400 (min.)	0.3514 (max.)	-	0.3444 (max.)	150 (max.)	0.017 (min.)
bounding dimensions (14x14A03)	0.9296	0.9253	0.0008	0.400	0.3514	0.0243	0.3444	150	0.017

 Table 6.2. 6

 MAXIMUM K_{EFF} VALUES FOR THE 14X14A ASSEMBLY CLASS IN THE MPC-24

 (all dimensions are in inches)

HI-STORM FSAR REPORT HI-2002444

						11 ^{- 1}				, 1 1
I4x14B (4.6% Enrichment, Boralfixed neutron absorber ¹⁰ B minimum loading of 0.02 g/cm ²) I79 fuel rods, 17 guide tubes, pitch=0.556, Zr clad Fuel Assembly maximum k _{en} calculated kerr standard deviation cladding OD cladding thickness pellet fuel hickness fuel length 14x14B01 0.9159 0.9117 0.0007 0.422 0.3734 0.0243 0.3659 150 14x14B03 0.9169 0.9126 0.0008 0.417 0.3580 0.0295 0.3505 150 14x14B04 0.9084 0.9039 0.0009 0.424 0.3640 0.0310 0.3565 150 14x14B04 0.9084 0.9039 0.0009 0.426 0.3640 0.0310 0.3565 150 Dimensions Listed in Certificate of Compliance 0.417 0.3734 0.0218 0.3659 150 Mounding dimensions (B14x14B01) 0.9228 0.9185 0.0008 0.417 0.3734 0.0218 0.3659 150			IE MPC-24	LASS IN TH	SSEMBLY C	14X14B A	ES FOR THE	I K _{eff} VALUI	MAXIMUM	
Fuel Assembly Designation maximum k _{eff} (alumbra deviation) calading (dviation) cladding OD Cladding (bidding ID) (bickness) pellet (DD) fuel (length) 14x14B01 0.9159 0.9117 0.0007 0.422 0.3734 0.0243 0.3659 150 14x14B02 0.9169 0.9126 0.0008 0.417 0.3580 0.0295 0.3505 150 14x14B03 0.9110 0.9065 0.0009 0.424 0.3640 0.0300 0.3565 150 14x14B04 0.9084 0.9039 0.0009 0.426 0.3640 0.0310 0.3565 150 Dimensions Listed in Certificate of Compliance 0.417 0.3734 0.3659 150 bounding dimensions (B14x14B01) 0.9228 0.9185 0.0008 0.417 0.3734 0.0218 0.3659 150			of 0.02 g/cm ²)	um loading				Enrichment, I	14x14B (4.6%	
Designation kerr deviation OD thickness OD length 14x14B01 0.9159 0.9117 0.0007 0.422 0.3734 0.0243 0.3659 150 14x14B02 0.9169 0.9126 0.0008 0.417 0.3580 0.0295 0.3505 150 14x14B03 0.9110 0.9065 0.0009 0.424 0.3640 0.0300 0.3565 150 14x14B04 0.9084 0.9039 0.0009 0.426 0.3640 0.0310 0.3565 150 Dimensions Listed in Certificate of Compliance 0.417 0.3734 0.3659 150 bounding dimensions (B14x14B01) 0.9228 0.9185 0.0008 0.417 0.3734 0.0218 0.3659 150				r clad	itch=0.556, Zi	ide tubes, pi	el rods, 17 gu	179 fu		1
14x14B02 0.9169 0.9126 0.0008 0.417 0.3580 0.0295 0.3505 150 14x14B03 0.9110 0.9065 0.0009 0.424 0.3640 0.0300 0.3565 150 14x14B04 0.9084 0.9039 0.0009 0.426 0.3640 0.0310 0.3565 150 Dimensions Listed in Certificate of Compliance 0.417 0.3734 0.3659 150 bounding dimensions 0.9228 0.9185 0.0008 0.417 0.3734 0.0218 0.3659 150	guide tu thickne				cladding ID	cladding OD			maximum k _{eff}	
14x14B03 0.9110 0.9065 0.0009 0.424 0.3640 0.0300 0.3565 150 14x14B04 0.9084 0.9039 0.0009 0.426 0.3640 0.0310 0.3565 150 Dimensions Listed in Certificate of Compliance 0.417 0.3734 0.3659 150 bounding dimensions 0.9228 0.9185 0.0008 0.417 0.3734 0.0218 0.3659 150	0.017	150	0.3659	0.0243	0.3734	0.422	0.0007	0.9117	0.9159	14x14B01
14x14B04 0.9084 0.9039 0.0009 0.426 0.3640 0.0310 0.3565 150 Dimensions Listed in Certificate of Compliance 0.417 0.3734 0.3659 150 bounding dimensions (B14x14B01) 0.9228 0.9185 0.0008 0.417 0.3734 0.0218 0.3659 150	0.017	150	0.3505	0.0295	0.3580	0.417	0.0008	0.9126	0.9169	14x14B02
Dimensions Listed in Certificate of Compliance 0.9228 0.9185 0.0008 0.417 0.3734 0.3659 150 bounding dimensions (B14x14B01) 0.9228 0.9185 0.0008 0.417 0.3734 0.0218 0.3659 150	0.017	150	0.3565	0.0300	0.3640	0.424	0.0009	0.9065	0.9110	14x14B03
Certificate of Compliance (min.) (min.) (max.) (max.) (max.) bounding dimensions 0.9228 0.9185 0.0008 0.417 0.3734 0.0218 0.3659 150	0.017	150	0.3565	0.0310	0.3640	0.426	0.0009	0.9039	0.9084	14x14B04
(B14x14B01)	0.017 (min.)									
	0.017	150	0.3659	0.0218	0.3734	0.417	0.0008	0.9185	0.9228	
	۰. ۲ ,				······································				•	
	×		, , ,	•	- -	• • • • •	- · ·			
FORM FSAR	roposed		<u>'</u>	•			,			ORM FSAR

REPORT HI-2002444

t

t

- k

ev. 2A ł

1			(all dime	nsions are in	inches)				
1	14x14C (4.6%	Enrichment, I	Boralfixed ne	utron absort	ber ¹⁰ B minin	num loading	of 0.02 g/cm ²)	
		176 fu	el rods, 5 gu	ide tubes, pit	ch=0.580, Z	r clad			
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	Cladding ID	cladding thickness	pellet OD	fuel length	guide tube thickness
14x14C01	0.9258	0.9215	0.0008	0.440	0.3840	0,0280	0.3765	150	0.040
14x14C02	0.9265	0.9222	0.0008	0.440	0.3840	0.0280	0.3770	150	0.040
14x14C03	0.9287	0.9242	0.0009	0.440	0.3880	0.0260	0.3805	150	0.038
Dimensions Listed in Certificate of Compliance				0.440 (min.)	0.3880 (max.)		0.3805 (max.)	150 (max.)	0.038 (min.)
bounding dimensions (14x14C03)	0.9287	0.9242	0.0009	0.440	0.3880	0.0260	0.3805	150	0.038

Table 6.2.8 MAXIMUM K_{EFF} VALUES FOR THE 14X14C ASSEMBLY CLASS IN THE MPC-24 (all dimensions are in inches)

λ

,

	· , -	MAXIMUM	I K _{eff} valui	ES FOR THE	Table 6.2.9 E 14X14D A nsions are in	SSEMBLY (inches)	CLASS IN TI	HE MPC-24		×
1	· · · · · · · · · · · · · · · · · · ·	14x14D (4.0%	Enrichment,				num loading	of 0.02 g/cm ²	?)	
i t			180 fue	el rods, 16 gu	ide tubes, pi	tch=0.556, S	S clad	<i>,</i>	٣	
1	Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	Cladding ID	cladding thickness	pellet OD	fuel length	guide tube thickness
	14x14D01	0.8507	0.8464	0.0008	0.422	0.3890	0.0165	0.3835	144	0.0145
	imensions Listed in ificate of Compliance				0.422 (min.)	0.3890 (max.)		0.3835 (max.)	144 (max.)	0.0145 (min.)
f f										•
ł										
1	1.1		٣							
ł	• 0	,			_			I.		
1 1	<u>م</u>	,	÷ •					t		
, -	· .	•	j .			'	•			4
ļ			,							
ļ		r	、		3		۱.			,
1										
						1				
1		<i>.</i> .	,			t	,	,	,	1
			•	ł	, r					
1 1 1	,	,						,	~	
1		,			, i	-,				
!				С. т.	¢					

HI-STORM FSAR REPORT HI-2002444

÷

· |

Proposed Rev. 2A

6.2-27

I			(all dime	nsions are ir	n inches)				
	14x14E (5.0%	Enrichment, I	Boralfixed ne	utron absor	<i>ber</i> ¹⁰ B minin	num loading	of 0.02 g/cm ²))	
1 V		173 fuel rod	s, 0 guide tub	bes, pitch=0	.453 and 0.44	1, SS clad [†]			
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length ^{††}	guide tube thickness
14x14E01	0.7598	0.7555	0.0008	0.3415	0.3175 0.2845 0.3015	0.0120 0.0285 0.0200	0.3130 0.2800 0.2970	102	0.0000
14x14E02	0.7627	0.7586	0.0007	0.3415	0.3175	0.0120	0.3130	102	0.0000
14x14E03	0.6952	0.6909	0.0008	0.3415	0.2845	0.0285	0.2800	102	0.0000
Dimensions Listed in Certificate of Compliance				0.3415 (min.)	0.3175 (max.)		0.3130 (max.)	102 (max.)	0.0000 (min.)
Bounding dimensions (14x14E02)	0.7627	0.7586	0.0007	0.3415	0.3175	0.0120	0.3130	102	0.0000

Table 6.2.10 MAXIMUM K_{EFF} VALUES FOR THE 14X14E ASSEMBLY CLASS IN THE MPC-24

[†] This is the IP-1 fuel assembly at Indian Point. This assembly is a 14x14 assembly with 23 fuel rods omitted to allow passage of control rods between assemblies. Fuel rod dimensions are bounding for each of the three types of rods found in the IP-1 fuel assembly.

^{††} Calculations were conservatively performed for a fuel length of 150 inches.

, 1

		15x15A (4.1%				<i>ber</i> ¹⁰ B minin itch=0.550, Z		of 0.02 g/cm ²)	l	
	Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation		cladding ID		pellet OD	fuel length	guide tube thickness
	15x15A01	0.9204	0.9159	0.0009	0.418	0.3660	0.0260	0.3580	150	0.0165
	imensions Listed in ificate of Compliance				0.418 (min.)	0.3660 (max.)		0.3580 (max.)	150 (max.)	0.0165 (min.)
1										
*	. .	-					ŝ		,	1
1 1 1		,	,							
+	-	`		~						
1 1 1 1 1			, -							,
	, , - , -		ł		، ۱	, ,		•	ç)	۰.
	, -	,			1 0 4 9	•				
1 4 4	,		1		ا ا نى مى تو				•	

HI-STORM FSAR REPORT HI-2002444

i

, .

f

Proposed Rev. 2A

4

6.2-29

			(all dime	nsions are in	inches)				
	15x15B (4.1%	Enrichment,	Boralfixed ne	utron absor	<i>ber</i> ¹⁰ B minin	um loading	of 0.02 g/cm ²))	
·		204 fu	el rods, 21 gu	ide tubes, p	itch=0.563, Z	r clad			
Fuel Assembly Designation	maxımum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	guide tube thickness
15x15B01	0.9369	0.9326	0.0008	0.422	0.3730	0.0245	0.3660	150	0.017
15x15B02	0.9338	0.9295	0.0008	0.422	0.3730	0.0245	0.3660	150	0.017
15x15B03	0.9362	0.9318	0.0008	0.422	0.3734	0.0243	0.3660	150	0.017
15x15B04	0.9370	0.9327	0.0008	0.422	0.3734	0.0243	0.3659	150	0.015
15x15B05	0.9356	0.9313	0.0008	0.422	0.3736	0.0242	0.3659	150	0.015
15x15B06	0.9366	0.9324	0.0007	0.420	0.3720	0.0240	0.3671	150	0.015
Dimensions Listed in Certificate of Compliance				0.420 (min.)	0.3736 (max.)		0.3671 (max.)	150 (max.)	0.015 (min.)
bounding dimensions (B15x15B01)	0.9388	0.9343	0.0009	0.420	0.3736	0.0232	0.3671	150	0.015

Table 6.2.12 MAXIMUM K_{EFF} VALUES FOR THE 15X15B ASSEMBLY CLASS IN THE MPC-24 (all dimensions are in inches)

HI-STORM FSAR REPORT HI-2002444

,

	15x15C (4.1%					•	of 0.02 g/cm ²))	
1		204 fu	el rods, 21 gu	uide tubes, p	itch=0.563, Z	r clad			
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	guide tube thickness
15x15C01	0.9255	0.9213	0.0007	0.424	0.3640	0.0300	0.3570	150	0.0255
15x15C02	0.9297	0.9255	0.0007	0.424	0.3640	0.0300	0.3570	150	0.0165
15x15C03	0.9297	0.9255	0.0007	0,424	0.3640	0.0300	0.3565	150	0.0165
15x15C04	0.9311	0.9268	0.0008	0.417	0.3570	0.0300	0.3565	150	0.0165
Dimensions Listed in Certificate of Compliance				0.417 (min.)	0.3640 (max.)		0.3570 (max.)	150 (max.)	0.0165 (min.)
bounding dimensions (B15x15C01)	0.9361	0.9316	0.0009	0.417	0.3640	0.0265	0.3570	150	0.0165
2 4 4		<u> </u>		L	L	, I		I	I
	-								
۱۱۶ بس س							×		
		s	1						
, 1 1	-					,	•		
		5 4							
						1 4		•	
				,					
	· .			,	,	ų			

Table 6.2.13
MAXIMUM K _{EFF} VALUES FOR THE 15X15C ASSEMBLY CLASS IN THE MPC-24
(all dimensions are in inches)

7 1

.`

REPORT HI-2002444 ł

> 1 .

1 1 ł

ł

 			(all dime	nsions are in	inches)				
!	15x15D (4.1%	Enrichment, I	Boralfixed ne	utron absor	<i>ber</i> ¹⁰ B minin	num loading	of 0.02 g/cm ²)	
		208 fue	el rods, 17 gu	ide tubes, p	itch=0.568, Z	r clad			
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	guide tube thickness
15x15D01	0.9341	0.9298	0.0008	0.430	0.3770	0.0265	0.3690	150	0.0160
15x15D02	0.9367	0.9324	0.0008	0.430	0.3770	0.0265	0.3686	150	0.0160
15x15D03	0.9354	0.9311	0.0008	0.430	0.3770	0.0265	0.3700	150	0.0155
15x15D04	0.9339	0.9292	0.0010	0.430	0.3800	0.0250	0.3735	150	0.0150
Dimensions Listed in Certificate of Compliance				0.430 (min.)	0.3800 (max.)		0.3735 (max.)	150 (max.)	0.0150 (min.)
bounding dimensions (15x15D04)	0.9339 [†]	0.9292	0.0010	0.430	0.3800	0.0250	0.3735	150	0.0150

Table 6.2.14 MAXIMUM K_{EFF} VALUES FOR THE 15X15D ASSEMBLY CLASS IN THE MPC-24 (all dumensions are in inches)

The k_{eff} value listed for the 15x15D02 case is higher than that for the case with the bounding dimensions. Therefore, the 0.9367 (15x15D02) value is listed in Table 6.1.1 as the maximum.

t

1

-

•

	<u> </u>	15x15E (4.1%	Enrichment, 1		nsions are in sutron absor		um loading	of 0 02 a/cm^{2}	······	
						itch=0.568, Z	-)	
-	Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	guide tub thickness
	15x15E01	0.9368	0.9325	0.0008	0.428	0.3790	0.0245	0.3707	150	0.0140
	nensions Listed in Tcate of Compliance				0.428 (min.)	0.3790 (max.)		0.3707 (max.)	150 (max.)	0.0140 (min.)
i i i										
									. ,	
									. ,	- -
			·	•					. ,	
				•					. ,	· •

REPORT HI-2002444

1

1 1 1

(

6.2-33

. 2A

	1	MAXIMUM		(all dime				···-		
	F 1	15x15F (4.1%					-	of 0.02 g/cm ²))	
	! 	,	208 fu	el rods, 17 gu	iide tubes, p	itch=0.568, Z	r clad		- <u>y</u> # " <u>i</u>	
	Fuel Assembly Designation	maxımum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	guide tub thicknes
	15x15F01	0.9395 [†]	0.9350	0.0009	0.428	0.3820	0.0230	0.3742	150	0.0140
	Dimensions Listed in tificate of Compliance		······		0.428 (min.)	0.3820 (max.)		0.3742 (max.)	150 (max.)	0.0140 (min.)
	1									
	i t									
	1									
	1									
	1									
	1									
	1									
	1									
	1									
K	ENO5a verification c		ulted in a ma	ximum k.er	of 0.9383.					
	ENO5a verification c	alculation rest	ulted in a ma	ximum k _{eff} (of 0.9383.					
	ENO5a verification c M FSAR	alculation rest	ulted in a ma	ximum k _{eff} (of 0.9383.					Proposed
ORI	 	alculation rest	ulted in a ma	ximum k _{eff} (of 0.9383. 6.2-34					Proposed

.

(

. 2A

Table 6.2.17
MAXIMUM KEFF VALUES FOR THE 15X15G ASSEMBLY CLASS IN THE MPC-24
(all dimensions are in inches)

	15x15G (4.0%				<i>ber</i> ¹⁰ B minin itch=0.563, S	•	of 0.02 g/cm ²))	
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	guide tube thickness
15x15G01	0.8876	0.8833	0.0008	0.422	0.3890	0.0165	0.3825	144	0.0145
Dimensions Listed in Certificate of Compliance				0.422 (min.)	0.3890 (max.)		0.3825 (max.)	144 (max.)	0.0145 (min.)

HI-STORM FSAR REPORT HI-2002444

- 1, U

5 au 10

I.

-

.

1

Proposed Rev. 2A

.

٤.

	MAXIMUM	I K _{EFF} VALUI		15X15H A		CLASS IN TH	HE MPC-24		
	15x15H (3.8%	Enrichment,	Boralfixed ne	utron absor	ber ¹⁰ B minin	num loading	of 0.02 g/cm ²))	
·		208 fu	el rods, 17 gu	ide tubes, p	itch=0.568, Z	r clad			
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	guide tube thickness
15x15H01	0.9337	0.9292	0.0009	0.414	0.3700	0.0220	0.3622	150	0.0140
Dimensions Listed in Certificate of Compliance				0.414 (min.)	0.3700 (max.)		0.3622 (max.)	150 (max.)	0.0140 (min.)

Table 6.2.18 MAXIMUM K_{EFF} VALUES FOR THE 15X15H ASSEMBLY CLASS IN THE MPC-24 (all dimensions are in inches)

HI-STORM FSAR REPORT HI-2002444

	MAXIMUM	[K _{eff} VALU]	ES FOR THE	Fable 6.2.19 E 16X16A A nsions are in	SSEMBLY C	CLASS IN T	HE MPC-24		
	16x16A (4.6%	Enrichment,				num loading	of 0.02 g/cm ²)	
					tch=0.506, Zi	-			
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	guide tube thickness
16x16A01	0.9287	0.9244	0.0008	0.382	0.3320	0.0250	0.3255	150	0.0400
16x16A02	0.9263	0.9221	0.0007	0.382	0.3320	0.0250	0.3250	150	0.0400
Dimensions Listed in Certificate of Compliance				0.382 (min.)	0.3320 (max.)		0.3255 (max.)	150 (max.)	0.0400 (min.)
bounding dimensions (16x16A01)	0.9287	0.9244	0.0008	0.382	0.3320	0.0250	0.3255	150	0.0400
	· · · · ·	· • • • • •	1	, , ,	· ·	•	, , ,	·	
	, , ,,				- ,		1		
RM FSAR					•		· · · · · · · · · · · · · · · · · · ·		Proposed Rev

Table 6.2.19

HI-ST REPORT HI-2002444

	17x17A (4.0%	Enrichment, I		nsions are ir utron absor		um loading	of 0.02 g/cm ²)	<u></u>
1		264 fue	el rods, 25 gu	iide tubes, p	itch=0.496, Z	r clad			
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	guide tube thickness
17x17A01	0.9368	0.9325	0.0008	0.360	0.3150	0.0225	0.3088	144	0.016
17x17A0 2 /	0.9368	0.9325	0.0008	0.360	0.3150	0.0225	0.3088	150	0.016
17x17A0 3 2	0.9329	0.9286	0.0008	0.360	0.3100	0.0250	0.3030	150	0.016
Dimensions Listed in Certificate of Compliance				0.360 (min.)	0.3150 (max.)		0.3088 (max.)	150 (max.)	0.016 (min.)
bounding dimensions (17x17A021)	0.9368	0.9325	0.0008	0.360	0.3150	0.0225	0.3088	150	0.016

Table 6.2.20
MAXIMUM K _{EFF} VALUES FOR THE 17X17A ASSEMBLY CLASS IN THE MPC-24
(all dimensions are in inches)

HI-STORM FSAR REPORT HI-2002444

.

6.2-38

	MAXIMUM	[K _{eff} VALU]	ES FOR THE	Fable 6.2.21 E 17X17B A nsions are in		LASS IN TH	IE MPC-24		3
	17x17B (4.0%	Enrichment, I	Boral <i>fixed ne</i>	utron absor	<i>ber</i> ¹⁰ B minim	um loading	of 0.02 g/cm ²))	
		264 fu	el rods, 25 gu	iide tubes, p	itch=0.496, Z	r clad			
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	Cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	guide tube thickness
17x17B01	0.9288	0.9243	0.0009	0.374	0.3290	0.0225	0.3225	150	0.016
17x17B02	0.9290	0.9247	0.0008	0.374	0.3290	0.0225	0.3225	150	0.016
17x17B03	0.9243	0.9199	0.0008	0.376	0.3280	0.0240	0.3215	150	0 016
17x17B04	0.9324	0.9279	0.0009	0.372	0.3310	0.0205	0.3232	150	0.014
17x17B05	0.9266	0.9222	0.0008	0.374	0.3260	0.0240	0.3195	150	0.016
17x17B06	0.9311	0.9268	0.0008	0.372	0.3310	0.0205	0.3232	150	0.014
Dimensions Listed in Certificate of Compliance				0.372 (min.)	0.3310 (max.)		0.3232 (max.)	150 (max.)	0.014 (min.)
bounding dimensions (17x17B06)	0.9311 [†]	0.9268	0.0008	0.372	0.3310	0.0205	0.3232	150	0.014
	-	, , ,						4	
•								,	

The k_{eff} value listed for the 17x17B04 case is higher than that for the case with the bounding dimensions. Therefore, the 0.9324 (17x17B04) value is listed in Table 6.1.1 as the maximum.

†

Proposed Rev. 2A

4

į,

	17x17C (4.0%				<i>ber</i> ¹⁰ B minin itch=0.502, Z	•	of 0.02 g/cm ²))	
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	guide tube thickness
17x17C01	0.9293	0.9250	0.0008	0.379	0.3310	0.0240	0.3232	150	0.020
17x17C02	0.9336	0.9293	0.0008	0.377	0.3330	0.0220	0.3252	150	0.020
Dimensions Listed in Certificate of Compliance				0.377 (min.)	0.3330 (max.)		0.3252 (max.)	150 (max.)	0.020 (min.)
bounding dimensions (17x17C02)	0.9336	0.9293	0.0008	0.377	0.3330	0.0220	0.3252	150	0.020

Table 6.2.22 MAXIMUM K_{EFF} VALUES FOR THE 17X17C ASSEMBLY CLASS IN THE MPC-24 (all dimensions are in inches)

HI-STORM FSAR REPORT HI-2002444

ŧ

	1			(all c	limensions a	ABLY CLAS re in inches)				r	
		7x7B (4.2%				orber ¹⁰ B min		ng of 0.0279	g/cm²)		
	1			9 fuel rods,	0 water rods	pitch=0.738	, Zr clad				
	Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	water rod thickness	chan thick
	7x7B01	0.9372	0.9330	0.0007	0.5630	0.4990	0.0320	0.4870	150	n/a	0.0
	7x7B02	0.9301	0.9260	0.0007	0.5630	0.4890	0.0370	0.4770	150	n/a	0.10
	7x7B03	0.9313	0.9271	0.0008	0.5630	0.4890	0.0370	0.4770	150	n/a	0.08
	7x7B04	0.9311	0.9270	0.0007	0.5700	0.4990	0.0355	0.4880	150	n/a .	0.08
	7x7B05	0.9350	0.9306	0.0008	0.5630	0.4950	0.0340	0.4775	150	' n/a	0.08
	7x7B06	0.9298	0.9260	0.0006	0.5700	0.4990	0.0355	0.4910	- 150	n/a	0.08
	imensions Listed in tificate of Compliance	4 1 1			0.5630 (min.)	0.4990 (max.)	,	0.4910 (max.)	150 (max.)	n/a	0,12 (may
Ъ	ounding dimensions (B7x7B01)	0.9375	0.9332	0.0008	0.5630	0.4990	0.0320	0.4910	150	n/a	0.10
boui	nding dimensions with 120 mil channel (B7x7B02)	0.9386 .,	0.9344	0.0007	0.5630	0.4990	0.0320	0.4910	150	n/a	.0.12
			· · · · · · · · · · · · · · · · · · ·		······································	Ii	,	L <u></u>			
					1					-	ŝ
	i. e	к •		~		' 1		••	, ,		
		,			•	i.	•	· · ·	;		
				· · ·		•					-
1		×		ь ч		`	1	,			

REPORT HI-2002444

(

1

6.2-41

2A

Ł

	(all dimensions are in inches)														
	8x8B (4.2% Enrichment, Boralfixed neutron absorber ¹⁰ B minimum loading of 0.0279 g/cm ²)														
	63 or 64 fuel rods [†] , 1 or 0 water rods [†] , pitch [†] = 0.636-0.642, Zr clad														
	Assembly	maximum k _{eff}	calculated k _{eff}	standard deviation	Fuel rods	Pitch	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	water rod thickness	channel thickness		
8x	8801	0.9310	0.9265	0.0009	63	0.641	0.4840	0.4140	0.0350	0.4050	150	0.035	0.100		
8x	8B02	0.9227	0.9185	0.0007	63	0.636	0.4840	0.4140	0.0350	0.4050	150	0.035	0.100		
8x	8B03	0.9299	0.9257	0.0008	63	0.640	0.4930	_0.4250	0.0340	0.4160	150	0.034	0.100		
8x	8B04	0.9236	0.9194	0.0008	64	0.642	0.5015	0.4295	0.0360	0.4195	150	n/a	0.100		
	ons Listed in of Compliance				63 or 64	0.636- 0.642	0.4840 (min.)	0.4295 (max.)	r	0.4195 (max.)	150 (max.)	0.034	0.120 (max.)		
-	(pitch=0.636) x8B01)	0.9346	0.9301	0.0009	63	0.636	0.4840	0.4295	0.02725	0.4195	150	0.034	0.120		
	(pitch=0.640) x8B02)	0.9385	0.9343	0.0008	63	0.640	0.4840	0.4295	0.02725	0.4195	150	0.034	0.120		
	(pitch=0.642) x8B03)	0.9416	0.9375	0.0007	63	0.642	0.4840	0.4295	0.02725	0.4195	150	0.034	0.120		

Table 6.2.24 MAXIMUM K_{EFF} VALUES FOR THE 8X8B ASSEMBLY CLASS IN THE MPC-68 and MPC-68FF (all dimensions are in inches)

This assembly class was analyzed and qualified for a small variation in the pitch and a variation in the number of fuel and water rods.

,

HI-STORM FSAR

t

REPORT HI-2002444

					ons are in in	ches)			-00FF		
	8x8C	(4.2% Enricl	ıment, Boral j	fixed neutror	absorber ¹⁰	B minimum l	oading of 0.	0279 g/cm	²)		
			62 fuel rods,	, 2 water rod	s, pitch ^{\dagger} = 0	.636-0.641, Z	rclad		,		
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	pitch	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	water rod thickness	channel thickness
8x8C01	0.9315	0.9273	0.0007	0.641	0.4840	0.4140	0.0350	0.4050	150	0.035	0.100
8x8C02	0.9313	0.9268	0.0009	0.640	0.4830	0.4190	0.0320	0.4100	150	0.030	0.000
8x8C03	0.9329	0.9286	0.0008	0.640	0.4830	0.4190	0.0320	0.4100	150	0.030	0.800
8x8C04	0.9348 ^{††}	0.9307	0.0007	0.640	0.4830	0.4190	0.0320	0.4100	150	0.030	0.100
8x8C05	0.9353	0.9312	0.0007	0.640	0.4830	0.4190	0.0320	0.4100	150	0.030	0.120
8x8C06	0.9353 /	0.9312	0.0007 **	0.640	0.4830	0.4190	0.0320	0.4110	150	0.030	0.100
8x8C07	0.9314	0.9273	0.0007	0.640	0.4830	∂ 0.4150	0.0340	0.4100	150	0.030	0.100
8x8C08	0.9339	0.9298	0.0007	0.640	0.4830	0.4190	0.0320	0.4100	150	0.034	0.100
8x8C09	0.9301	0.9260	0.0007	0.640	0.4930	0.4250	0.0340	0.4160	150	0.034	0.100
8x8C10	0.9317	0.9275	0.0008	0.640	0.4830	0.4150	0.0340	0.4100	150	0.030	0.120
8x8C11	0.9328, -	⁻ 0.9287	0.0007	0.640	0.4830	, 0.4150	0.0340	0.4100	150	0.030	0.120
8x8C12	0.9285	0.9242	0.0008	0.636	[•] 0.4830	0.4190	0.0320	0.4110	150	0.030	0.120
Dimensions Listed in Certificate of Compliance	• •		- f	0.636- 0.641	0.4830 (min.)	0.4250 (max.)		0.4160 (max.)	150 (max.)	0.000 (min.)	0.120 (max.)
bounding (pitch=0.636) (B8x8C01)	0.9357	0.9313	0.0009	0.636	0.4830	0.4250	0.0290	0.4160	150	0.000	0.120
bounding (pitch=0.640) (B8x8C02)	0.9425	0.9384	0.0007	0.640	0.4830	0.4250	- 0.0290 -	0.4160	150	0.000	0.120
Bounding (pitch=0.641) (B8x8C03)	0.9418	0.9375	0.0008	0.641	0.4830	0.4250	0.0290	0.4160	150	0.000	0.120

Table 6.2.25 MAXIMUM K_{EFF} VALUES FOR THE 8X8C ASSEMBLY CLASS IN THE MPC-68 and MPC-68FF (all dimensions are in inches)

¥ ... - 5 - 5

t This assembly class was analyzed and qualified for a small variation in the pitch.

.

KENO5a verification calculation resulted in a maximum k_{eff} of 0.9343.

HI-STORM FSAR

,

1	(all dimensions are in inches)														
	8x8D (4.2% Enrichment, Boralfixed neutron absorber ¹⁰ B minimum loading of 0.0279 g/cm ²)														
	60-61 fuel rods, 1-4 water rods [†] , pitch=0.640, Zr clad														
	Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	Cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	water rod thickness	channel thickness				
	8x8D01	0.9342	0.9302	0.0006	0.4830	0.4190	0.0320	0.4110	150	0.03/0.025	0.100				
	8x8D02	0.9325	0.9284	0.0007	0.4830	0.4190	0.0320	0.4110	· 150	0.030	0.100				
1	8x8D03 0.9351 0.9309 0.0008 0.4830 0.4190 0.0320 0.4110 150 0.025 0.100 8x8D04 0.9328 0.9309 0.0007 0.4830 0.4190 0.0320 0.4110 150 0.025 0.100														
	8x8D04 0.9338 0.9296 0.0007 0.4830 0.4190 0.0320 0.4110 150 0.040 0.100														
	8x8D05	0.9339	0.9294	0.0009	0.4830	0.4190	0.0320	0.4100	150	0.040	0.100				
	8x8D06	0.9365	0.9324	0.0007	0.4830	0.4190	0.0320 .	0.4110	150	0.040	0.120				
	8x8D07	0.9341	0.9297	0.0009	0.4830	0.4190	0.0320	0.4110	150	0.040	0.080				
	8x8D08	0.9376	0.9332	0.0009	0.4830	0.4230	0.0300	0.4140	150	0.030	0.080				
1	imensions Listed in inficate of Compliance			•	0.4830 (min.)	0.4230 (max.)		0.4140 (max.)	150 (max.)	0.000 (min.)	0.120 (max.)				
b	ounding dimensions (B8x8D01)	0.9403	0.9363	0.0007	0.4830	0.4230	0.0300	0.4140	150	0.000	0.120				

Table 6.2.26 MAXIMUM K_{EFF} VALUES FOR THE 8X8D ASSEMBLY CLASS IN THE MPC-68 and MPC-68FF (all dimensions are in inches)

Fuel assemblies 8x8D01 through 8x8D03 have 4 water rods that are similar in size to the fuel rods, while assemblies 8x8D04 through 8x8D07 have 1 large water rod that takes the place of the 4 water rods. Fuel assembly 8x8D08 contains 3 water rods that are similar in size to the fuel rods.

†

•

	8x8E (4.2%	Enrichment,	Boralfixed n	eutron abso	rber ¹⁰ B mini	imum loadin	g of 0.0279) g/cm ²)		
		5	9 fuel rods, 5	water rods,	pitch=0.640,	, Zr clad				
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	water rod thickness	channe thicknes
8x8E01	0.9312	0.9270	0.0008	0.4930	0.4250	0.0340	0.4160	150	0.034	0.100
Dimensions Listed Certificate of Compl				0.4930 (min.)	0.4250 (max.)		0.4160 (max.)	150 (max.)	0.034 (min.)	0.100 (max.)
			i 		۲. ۲		, ,	,		
		·				х х	,		ر ب	
						I.				r
,		,	· · ·			· ·		,		

(

***`

4 •

MA		FF VALUES I			IBLY CLASS re in inches)	IN THE M	PC-68 and	MPC-68	FF					
	8x8F (4.0% Enrichment, Boralfixed neutron absorber ¹⁰ B minimum loading of 0.0279 g/cm ²) 64 fuel rods, 4 rectangular water cross segments dividing the assembly into four quadrants, pitch=0.609, Zr clad													
Fuel Assembly Designation	Fuel Assembly maximum calculated standard cladding cladding ID cladding pellet fuel water rod channel													
8x8F01	0.9411	0.9366	0.0009	0.4576	0.3996	0.0290	0.3913	150	0.0315	0.055				
Dimensions Listed in Certificate of Compliance				0.4576 (min.)	0.3996 (max.)		0.3913 (max.)	150 (max.)	0.0315 (min.)	0.055 (max.)				

Table 6.2.28 MAXIMUM K_{EFF} VALUES FOR THE 8X8F ASSEMBLY CLASS IN THE MPC-68 and MPC-68FF (all dimensions are in inches)

.

Table 6.2.29
MAXIMUM KEFF VALUES FOR THE 9X9A ASSEMBLY CLASS IN THE MPC-68 and MPC-68FF
(all dimensions are in inches)

	9x9A (4.2%	Enrichment,	Boralfixed n	eutron abso	orber ¹⁰ B mini	mum loadin	g of 0.0279	g/cm ²)		
· · · · · · · · · · · · · · · · · · ·		74/6	56 fuel rods [†]	, 2 water roo	ls, pitch=0.56	6, Zr clad				
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	water rod thickness	channel thicknes
9x9A01 (axial segment with all rods)	0.9353	0.9310	0.0008	0.4400	0.3840	0.0280	0.3760	150	0.030	0.100
9x9A02 (axial segment with only the full length rods)	0.9388	0.9345	0.0008	0.4400	0.3840	0.0280	0.3760	150	0.030	0.100
9x9A03 (actual three-dimensional representation of all rods)	0.9351	0.9310	0.0007	0.4400	0.3840	0.0280	0.3760	150/90	0.030	0.100
9x9A04 (axial segment with only the full length rods)	0.9396 ,	0.9355 	0.0007 :	0.4400	0.3840	0.0280	0.3760	150	0.030 .	0.120
Dimensions Listed in Certificate of Compliance				0.4400 (min.)	0.3840 (max.)		0.3760 (max.)	150 (max.)	0.000 (min.)	0.120 (max.)
bounding dimensions (axial segment with only the full length rods) (B9x9A01)	0.9417	0.9374	0.0008	0,4400	0.3840	0.0280	0.3760	150	0.000	0.120
-		· · · · · · · · · · · · · · · · · · ·	- , - ,		اا		-	L		

t This assembly class contains 66 full length rods and 8 partial length rods. In order to eliminate a requirement on the length of the partial length rods, separate calculations were performed for the axial segments with and without the partial length rods. 5

.. 4 . . .

.

.

	9x9B (4.2% Enrich		·	ons are in inc <i>absorber</i> ¹⁰ I	3 minimum lo	ading of 0.0	279 g/cm^2			
	72 :	fuel rods, 1 w	vater rod (squ	are, replaci	ng 9 fuel rod	s), pitch=0.56	59 to 0.572^{\dagger}	, Zr clad			
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	pitch	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	water rod thickness	channel thickness
9x9B01	0.9380	0.9336	0.0008	0.569	0.4330	0.3807	0.0262	0.3737	150	0.0285	0.100
9x9B02	0.9373	0.9329	0.0009	0.569	0.4330	0.3810	0.0260	0.3737	150	0.0285	0.100
9x9B03	0.9417	0.9374	0.0008	0.572	0.4330	0.3810	0.0260	0.3737	150	0.0285	0.100
Dimensions Listed in Certificate of Compliance				0.572	0.4330 (min.)	0.3810 (max.)		0.3740 (max.)	150 (max.)	0.000 (min.)	0.120 (max.)
bounding dimensions (B9x9B01)	0.9436	0.9394	0.0008	0.572	0.4330	0.3810	0.0260	0.3740 ^{††}	150	0.000	0.120

Table 6.2.30
MAXIMUM K _{EFF} VALUES FOR THE 9X9B ASSEMBLY CLASS IN THE MPC-68 and MPC-68FF
(all dimensions are in inches)

[†] This assembly class was analyzed and qualified for a small variation in the pitch.

[†] This value was conservatively defined to be larger than any of the actual pellet diameters.

HI-STORM FSAR

.

REPORT HI-2002444

	MA	XIMUM K _{ei}	FF VALUES	FOR THE 92 (all d	Table 6.2 X9C ASSEM imensions ar	BLY CLASS	S IN THE M	PC-68 and	I MPC-68	SFF	
		9x9C (4.2%	Enrichment,			rber ¹⁰ B mini	mum loadin	g of 0.0279	9 g/cm ²)		
	·		T	0 fuel rods, 1	water rods,	pitch=0.572,	Zr clad				
	Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	water rod thickness	channel thicknes
	9x9C01	0.9395	0.9352	0.0008	0.4230	0.3640	0.0295	0.3565	150	0.020	0.100
	Dimensions Listed in tificate of Compliance				0.4230 (min.)	0.3640 (max.)		0.3565 (max.)	150 (max.)	0.020 (min.)	0.100 (max.)
	, , , , , , , , , , , , , , , , , , ,		•••								
4			• • • •	· ·	- - - -			•		÷	-
				· · ·			•	•_		·	
			• • •	, , , , ,	• • • •		'	•_ `	. .		

ł

	XIMUM K _{ef}	F VALUES I			2.32 ABLY CLASS re in inches)	S IN THE M	PC-68 and	MPC-68	FF		
1	9x9D (4.2% Enrichment, Boral <i>fixed neutron absorber</i> ¹⁰ B minimum loading of 0.0279 g/cm ²) 79 fuel rods, 2 water rods, pitch=0.572, Zr clad										
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	water rod thickness	channel thickness	
9x9D01	0.9394	0.9350	0.0009	0.4240	0.3640	0.0300	0.3565	150	0.0300	0.100	
Dimensions Listed in Certificate of Compliance				0.4240 (min.)	0.3640 (max.)		0.3565 (max.)	150 (max.)	0.0300 (min.)	0.100 (max.)	

HI-STORM FSAR REPORT HI-2002444

Ϊ

.

	·		(all d	imensions ar	re in inches)		,	_		
	9x9E (4.0%	Enrichment,	Boralfixed n	eutron abso	<i>rber</i> ¹⁰ B mini	mum loading	g of 0.0279	g/cm ²)		
	76 fuel rods, 5 water rods, pitch=0.572, Zr clad									
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	water rod thickness	channel thickness
9x9E01	0.9334	0.9293	0.0007	0.4170	0.3640	0.0265	0.3530	150	0.0120	0.120
9x9E02	0.9401	0.9359	0.0008	0.4170 0.4430	0.3640 0.3860	0.0265 0.0285	0.3530 0.3745	150	0.0120	0.120
Dimensions Listed in Certificate of Compliance [†]				0.4170 (min.)	0.3640 (max.)		0.3530 (max.)	150 (max.)	0.0120 (min.)	0.120 (max.)
bounding dimensions (9x9E02)	0.9401	0.9359	0.0008	0.4170 0.4430	0.3640 0.3860	0.0265 0.0285	0.3530 0.3745	150	0.0120	0.120

 Table 6.2.33

 MAXIMUM K_{EFF} VALUES FOR THE 9X9E ASSEMBLY CLASS IN THE MPC-68 and MPC-68FF

†

This fuel assembly, also known as SPC 9x9-5, contains fuel rods with different cladding and pellet diameters which do not bound each other. To be consistent in the way fuel assemblies are listed in the Certificate of Compliance, two assembly classes (9x9E and 9x9F) are required to specify this assembly. Each class contains the actual geometry (9x9E02 and 9x9F02), as well as a hypothetical geometry with either all small rods (9x9E01) or all large rods (9x9F01). The Certificate of Compliance lists the small rod dimensions for class 9x9E and the large rod dimensions for class 9x9F, and a note that both classes are used to qualify the assembly. The analyses demonstrate that all configurations, including the actual geometry, are acceptable.

the second s

Table 6.2.34 MAXIMUM K_{EFF} VALUES FOR THE 9X9F ASSEMBLY CLASS IN THE MPC-68 and MPC-68FF

	9x9F (4.0%		-		<i>rber</i> ¹⁰ B minin pitch=0.572,		, of 0.0279	g/cm ²)		
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	water rod thickness	channel thickness
9x9F01	0.9307	0.9265	0.0007	0.4430	0.3860	0.0285	0.3745	150	0.0120	0.120
9x9F02	0.9401	0.9359	0.0008	0.4170	0.3640	0.0265	0.3530	150	0.0120	0.120
				0.4430	0.3860	0.0285	0.3745			
Dimensions Listed in Certificate of Compliance [†]				0.4430 (mm.)	0.3860 (max.)		0.3745 (max.)	150 (max.)	0.0120 (min.)	0.120 (max.)
bounding dimensions (9x9F02)	0.9401	0.9359	0.0008	0.4170 0.4430	0.3640 0.3860	0.0265 0.0285	0.3530 0.3745	150	0.0120	0.120

(all dimensions are in inchas)

t

This fuel assembly, also known as SPC 9x9-5, contains fuel rods with different cladding and pellet diameters which do not bound each other. To be consistent in the way fuel assemblies are listed in the Certificate of Compliance, two assembly classes (9x9E and 9x9F) are required to specify this assembly. Each class contains the actual geometry (9x9E02 and 9x9F02), as well as a hypothetical geometry with either all small rods (9x9E01) or all large rods (9x9F01). The Certificate of Compliance lists the small rod dimensions for class 9x9E and the large rod dimensions for class 9x9F, and a note that both classes are used to qualify the assembly. The analyses demonstrate that all configurations, including the actual geometry, are acceptable.

MAXIMUM K_{EFF} VALUES FOR THE 9X9G ASSEMBLY CLASS IN THE MPC-68 and MPC-68FF (all dimensions are in inches) 9x9G (4.2% Enrichment, Boralfixed neutron absorber ¹⁰B minimum loading of 0.0279 g/cm²) 72 fuel rods, 1 water rod (square, replacing 9 fuel rods), pitch=0.572, Zr clad Fuel Assembly calculated standard maximum cladding cladding ID cladding pellet fuel water rod channel Designation ' k_{eff} k_{eff} deviation OD thickness OD length thickness thickness 9x9G01 0.9309 0.9265 0.0008 0.4240 0.0300 0.3640 0.3565 150 0.0320 0.120 Dimensions Listed in 0.4240 0.3640 0.3565 150 0.0320 0.120 Certificate of Compliance (min.) (max.) (max.) (max.) (min.) (max.) 11.5 51. •74 . r. HI-STORM FSAR Proposed Rev. 2A

Table 6.2.35

REPORT HI-2002444

Table 6.2.36
MAXIMUM K _{EFF} VALUES FOR THE 10X10A ASSEMBLY CLASS IN THE MPC-68 and MPC-68FF

			(all di	imensions ar	e in inches)					
1	0x10A (4.2%	6 Enrichmen	, Boral fixed	neutron abs	orber ¹⁰ B mir	nimum loadi	ng of 0.027	79 g/cm ²)		
		92/7	78 fuel rods [†]	, 2 water rod	ls, pitch=0.51	0, Zr clad				
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	water rod thickness	channel thickness
10x10A01 (axial segment with all rods)	0.9377	0.9335	0.0008	0.4040	0.3520	0.0260	0.3450	155	0.030	0.100
10x10A02 (axial segment with only the full length rods)	0.9426	0.9386	0.0007	0.4040	0.3520	0.0260	0.3450	155	0.030	0.100
10x10A03 (actual three-dimensional representation of all rods)		0.9356	0.0007	0.4040	0.3520	0.0260	0.3450	155/90	0.030	0.100
Dimensions Listed in Certificate of Compliance				0.4040 (mın.)	0.3520 (max.)		0.3455 (max.)	150 ^{††} (max.)	0.030 (min.)	0.120 (max.)
bounding dimensions (axial segment with only the full length rods) (B10x10A01)	0.9457 ^{†††}	0.9414	0.0008	0.4040	0.3520	0.0260	0.3455 [‡]	155	0.030	0.120

(-11 J... 1. 1. 1. 1

t

ŧ

This assembly class contains 78 full-length rods and 14 partial-length rods. In order to eliminate the requirement on the length of the partial length rods, separate calculations were performed for axial segments with and without the partial length rods.

tt Although the analysis qualifies this assembly for a maximum active fuel length of 155 inches, the Certificate of Compliance limits the active fuel length to 150 inches. This is due to the fact that the Boral fixed neutron absorber panels are 156 inches in length. ttt

KENO5a verification calculation resulted in a maximum k_{eff} of 0.9453.

This value was conservatively defined to be larger than any of the actual pellet diameters.

HI-STORM FSAR

\

REPORT HI-2002444

.

Table 6.2.37 MAXIMUM K _{EFF} VALUES FOR THE 10X10B ASSEMBLY CLASS IN THE MPC-68 and MPC-68FF (all dimensions are in inches)	
10x10B (4.2% Enrichment, Boralfixed neutron absorber ¹⁰ B minimum loading of 0.0279 g/cm ²)	
91/83 fuel rods [†] , 1 water rods (square, replacing 9 fuel rods), pitch=0.510, Zr clad	

	51/05	iaerrous, i	water rous (a	square, repla	icing 9 fuel ro	us), prieti-0	.510, ZF Cla	10		
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	water rod thickness	channel thickness
10x10B01 (axial segment with all rods)	0.9384	0.9341	0.0008	0.3957	0.3480	0.0239	0.3413	155	0.0285	0.100
10x10B02 (axial segment with only the full length rods)	0.9416	0.9373	0.0008	0.3957	0.3480	0.0239	0.3413	155	0.0285	0.100
10x10B03 (actual three-dimensional representation of all rods)	0.9375	0.9334	0.0007	0.3957	0.3480	0.0239	0.3413	155/90	0.0285	0.100
Dimensions Listed in Certificate of Compliance				0.3957 (min.)	0.3480 (max.)		0.3420 (max.)	150 ^{††} (max.)	0.000 (min.)	0.120 (max.)
bounding dimensions (axial segment with only the full length rods) (B10x10B01)	0.9436	0.9395	0.0007	0.3957	0 3480	0.0239	0.3420 ^{†††}	155	0.000	0.120
x			s. e 1		<u> </u>		LI	I	,	

1

This assembly class contains 83 full length rods and 8 partial length rods. In order to eliminate a requirement on the length of the partial length rods, separate calculations were performed for the axial segments with and without the partial length rods.

Although the analysis qualifies this assembly for a maximum active fuel length of 155 inches, the Certificate of Compliance limits the active fuel length to 150 inches. This is due to the fact that the Boral fixed neutron absorber panels are 156 inches in length.

This value was conservatively defined to be larger than any of the actual pellet diameters.

6.1

Table 6.2.38 MAXIMUM K_{EFF} VALUES FOR THE 10X10C ASSEMBLY CLASS IN THE MPC-68 and MPC-68FF

			(all di	mensions ar	re in inches)					
1					orber ¹⁰ B min		-	U ,		
	96 fuel r	ods, 5 water	rods (1 cent	er diamond	and 4 rectange	ular), pitch=	0.488, Zr o	lad		
Fuel Assembly Designation										
10x10C01	0.9433	0.9392	0.0007	0.3780	0.3294	0.0243	0.3224	150	0.031	0.055
Dimensions Listed in Certificate of Compliance	-	t		0.3780 (min.)	0.3294 (max.)		0.3224 (max.)	150 (max.)	0.031 (min.)	0.055 (max.)

HI-STORM FSAR REPORT HI-2002444

.

Table 6.2.39 MAXIMUM K_{EFF} VALUES FOR THE 10X10D ASSEMBLY CLASS IN THE MPC-68 and MPC-68FF

70

(all dimensions are in inches)

1	0x10D (4.0%	6 Enrichmen		neutron abs	orber ¹⁰ B mir	umum loadu	ng of 0 02'	$70 \mathrm{g/cm^2}$		
	,				, pitch=0.565,		ing 01 0.02	i y gjelli j		
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	water rod thickness	channel thicknes
10x10D01	0.9376	0.9333	0.0008	0.3960	0.3560	0.0200	0.350	83	n/a	0.080
Dimensions Listed in ertificate of Compliance				0.3960 (min.)	0.3560 (max.)		0.350 (max.)	83 (max.)	n/a	0.080 (max.)

HI-STORM FSAR REPORT HI-2002444 6.2-57

Table 6.2.40 MAXIMUM K_{EFF} VALUES FOR THE 10X10E ASSEMBLY CLASS IN THE MPC-68 and MPC-68FF

 			(all di	imensions ar	re in inches)					
1	0x10E (4.0%	6 Enrichment	, Boral fixed	neutron abs	orber ¹⁰ B min	imum loadir	ng of 0.027	9 g/cm ²)		
		96	5 fuel rods, 4	water rods,	pitch=0.557,	SS clad				
Fuel Assembly Designation										
10x10E01	0.9185	0.9144	0.0007	0.3940	0.3500	0.0220	0.3430	83	0.022	0.080
Dimensions Listed in Certificate of Compliance				0.3940 (min.)	0.3500 (max.)		0.3430 (max.)	83 (max.)	0.022 (min.)	0.080 (max.)

HI-STORM FSAR REPORT HI-2002444

.

		MUM K _{EFF} \	ALUES FU	(all c	LoA ASS	EMBLY CL	LASS IN TI les)	HE MPC-68	F and MF	°C-68FF		
	бx	6A (3.0% Er	nrichment [†] , I	Boralfixed	neutron a	absorber ¹⁰ B	minimum	loading of 0	.0067 g/c	m ²)		
			or 36 fuel roo					'	-	ŀ		
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	pitch	fuel rods	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	water rod thickness	channel thickness
6х¢А01	0.7539	0.7498	0.0007	0.694	36	0.5645	0.4945	0.0350	0.4940	110	n/a	0.060
6x6A02	0.7517	0.7476	0.0007	0.694	36	0.5645	0.4925	0.0360	0.4820	110	n/a	0.060
6x6A03	0.7545	0.7501	0.0008	0.694	36	0.5645	0.4945	0.0350	0.4820	110	n/a	0.060
6x6A04	0.7537	0.7494	0.0008	0.694	36	0.5550	0.4850	0.0350	0.4820	110	n/a	0.060
6x6A05	0.7555	0.7512	0.0008	0.696	36	0.5625	0.4925	0.0350	0.4820	110	n/a	0.060
6x6A06	0.7618	0.7576	0.0008	0 696	35 '	0.5625	0.4925	0.0350	0.4820	110	0.0	0.060
6x6A07	0.7588	0.7550	0.0005	0.700	36	0.5555	0.4850	0.03525	0.4780	110	n/a	0.060
6x6A08	0.7808	0.7766	0.0007	0.710	36	0.5625	0.5105	0.0260	0.4980	110	n/a	0.060
Dimensions Listed in Certificate of Compliance	н _х . 1	-	-	0.710 · (max.)	35 or 36	0.5550 (min.)	0.5105 (max.)	0.02225	0.4980 (max.)	120 (max.)	0.0	0.060 (max.)
bounding dimensions (B6x6A01)	0.7727	0.7685	0.0007	0.694	35	0.5550	0.5105	0.02225	0.4980	120	0.0	- 0.060
oounding dimensions (B6x6A02)	0.7782	0.7738	0.0008	0.700	35	0.5550	0.5105	0.02225	0.4980	120	[,] 0.0	0.060
bounding dimensions (B6x6A03)	0.7888	0.7846	0.0007	0.710	. 35	0.5550	0.5105	0.02225	0.4980	120	0.0	0.060

Table 6.2.41 MAXIMUM K_{EFF} VALUES FOR THE 6X6A ASSEMBLY CLASS IN THE MPC-68F and MPC-68FF (all dimensions are in inches)

Although the calculations were performed for 3.0%, the enrichment is limited in the Certificate of Compliance to 2.7%.

,

[†] This assembly class was analyzed and qualified for a small variation in the pitch and a variation in the number of fuel and water rods.

HI-STORM FSAR REPORT HI-2002444 . . .

, 1

					nensions	are in inches	<u>.</u>					
	6:	x6B (3.0% E	nrichment [†] , ł	Boral fixed n	eutron ab	sorber ¹⁰ B n	ninimum lo	ading of 0.0	067 g/cm ²))		
1	3	35 or 36 fuel	rods ^{††} (up to	9 MOX roc	ls), 1 or 0	water rods [†]	† , pitch $^{\dagger\dagger}=$	0.694 to 0.7	10, Zr clad			
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	pitch	fuel rods	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	water rod thickness	channel thickness
6x6B01	0.7604	0.7563	0.0007	0.694	36	0.5645	0.4945	0.0350	0.4820	110	n/a	0.060
6x6B02	0.7618	0.7577	0.0007	0.694	36	0.5625	0.4925	0.0350	0.4820	110	n/a	0.060
6x6B03	0.7619	0.7578	0.0007	0.696	36	0.5625	0.4925	0.0350	0.4820	110	n/a	0.060
6x6B04	0.7686	0.7644	0.0008	0.696	35	0.5625	0.4925	0.0350	0.4820	110	0.0	0.060
6x6B05	0.7824	0.7785	0.0006	0.710	35	0.5625	0.4925	0.0350	0.4820	110	0.0	0.060
Dimensions Listed in Certificate of Compliance				0.710 (max.)	35 or 36	0.5625 (min.)	0.4945 (max.)		0.4820 (max.)	120 (max.)	0.0	0.060 (max.)
bounding dimensions (B6x6B01)	0.7822 ^{†††}	0.7783	0.0006	0.710	35	0.5625	0.4945	0.0340	0.4820	120	0.0	0.060

Table 6.2.42
MAXIMUM K _{EFF} VALUES FOR THE 6X6B ASSEMBLY CLASS IN THE MPC-68F and MPC-68FF
(all dimensions are in inches)

Note:

t

1. These assemblies contain up to 9 MOX pins. The composition of the MOX fuel pins is given in Table 6.3.4.

^{††} This assembly class was analyzed and qualified for a small variation in the pitch and a variation in the number of fuel and water rods.

^{ttt} The k_{eff} value listed for the 6x6B05 case is slightly higher than that for the case with the bounding dimensions. However, the difference (0.0002) is well within the statistical uncertainties, and thus, the two values are statistically equivalent (within 1σ). Therefore, the 0.7824 value is listed in Tables 6.1.7 and 6.1.8 as the maximum

The ²³⁵U enrichment of the MOX and UO₂ pins is assumed to be 0.711% and 3.0%, respectively.

Table 6.2.43
MAXIMUM KEFF VALUES FOR THE 6X6C ASSEMBLY CLASS IN THE MPC-68F and MPC-68FF

(all dimensions are in inches)

	6x6C (3.0%	Enrichment [†] .			orber ¹⁰ B min	imum loadin	g of 0 006	$7 a/cm^2$	· · · · · · · · · · · · · · · · · · ·	
					pitch=0.740,		g 01 0.000	/ g/cm)		
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	water rod thickness	channel thickness
6x6C01	0.8021	0.7980	0.0007	0.5630	0.4990	0.0320	0.4880	77.5	n/a	0.060
Dimensions Listed in ertificate of Compliance				0.5630 (min.)	0.4990 (max.)		0.4880 (max.)	77.5 (max.)	n/a	0.060 (max.)
									L.,,,	
	-	,		-			, ,	š	- V	
- "	r	· .	r				r r	w		•
, ·	i		, , , , , , , , , , , , , , , , , , , ,					7		,

Although the calculations were performed for 3.0%, the enrichment is limited in the Certificate of Compliance to 2.7%.

HI-STORM FSAR REPORT HI-2002444

t

Proposed Rev. 2A

~

4

Table 6.2.44
MAXIMUM K _{EFF} VALUES FOR THE 7X7A ASSEMBLY CLASS IN THE MPC-68F and MPC-68FF

			(all di	mensions ar	e in inches)					
7	7x7A (3.0%)	Enrichment [†] ,	Boralfixed r	eutron abso	orber ¹⁰ B mini	mum loadin	g of 0.006	7 g/cm ²)		
		49	9 fuel rods, 0	water rods,	pitch=0.631,	Zr clad				
Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	water rod thickness	channel thickness
7x7A01	0.7974	0.7932	0.0008	0.4860	0.4204	0.0328	0.4110	80	n/a	0.060
Dimensions Listed in Certificate of Compliance				0.4860 (min.)	0.4204 (max.)		0.4110 (max.)	80 (max.)	n/a	0.060 (max.)

[†] Although the calculations were performed for 3.0%, the enrichment is limited in the Certificate of Compliance to 2.7%.

٠

Table 6.2.45 MAXIMUM K_{EFF} VALUES FOR THE 8X8A ASSEMBLY CLASS IN THE MPC-68FF and MPC-68FF

				(;	all dimer	nsions are in	inches)					
		8x8A (3.	0% Enrichm	ent [†] , Boral<i>fi</i>:	xed neuti	ron absorbe	r ¹⁰ B minimur	n loading of	`0.0067 g/o	cm²)		
1			6	3 or 64 fuel i	rods ^{††} , 0	water rods,	pitch=0.523,	Zr clad				
) 	Fuel Assembly Designation	maximum k _{eff}	calculated k _{eff}	standard deviation	fuel rods	cladding OD	cladding ID	cladding thickness	pellet OD	fuel length	water rod thickness	channel thickness
	8x8A01	0.7685	0.7644	0.0007	64	0.4120	0.3620	0.0250	0.3580	110	n/a	0.100
,	8x8A02	0.7697	0.7656	0.0007	63	0.4120	0.3620	0.0250	0.3580	120	n/a	0.100
	mensions Listed in ificate of Compliance				63	0.4120 (min.)	0.3620 (max.)		0.3580 (max.)	120 (max.)	. n/a	0.100 (max.)
bo	unding dimensions (8x8A02)	0.7697	0.7656	0.0007	63	0.4120	0.3620	0.0250	0.3580	120	n/a	0.100

t A though the calculations were performed for 3.0%, the enrichment is limited in the Certificate of Compliance to 2.7%. tt

This assembly class was analyzed and qualified for a variation in the number of fuel rods.

HI-STORM FSAR REPORT HI-2002444

Proposed Rev. 2A

.

.

Table 6.2.46

SPECIFICATION OF THE THORIA ROD CANISTER AND THE THORIA RODS

Canister ID	4.81"
Canister Wall Thickness	0.11"
Separator Assembly Plates Thickness	0.11"
Cladding OD	0.412"
Cladding ID	0.362"
Pellet OD	0.358"
Active Length	110.5"
Fuel Composition	1.8% UO ₂ and 98.2% ThO ₂
Initial Enrichment	93.5 wt% ²³⁵ U for 1.8% of the fuel
Maximum k _{eff}	0.1813
Calculated k _{eff}	0.1779
Standard Deviation	0.0004

6.3 <u>MODEL SPECIFICATION</u>

6.3.1 <u>Description of Calculational Model</u>

Figures 6.3.1, 6.3.1.a, 6.3.2 and 6.3.3 show representative horizontal cross sections of the four types of cells used in the calculations, and Figures 6.3.4 through 6.3.6 illustrate the basket configurations used. Four different MPC fuel basket designs were evaluated as follows:

111-

• a 24 PWR assembly basket

1 1

• an optimized 24 PWR assembly basket (24E / 24EF)

,

• a 32 PWR assembly basket

• a 68 BWR assembly basket.

For all four basket designs, the same techniques and the same level of detail are used in the calculational models.

Full three-dimensional calculations were used, assuming the axial configuration shown in Figure 6.3.7. Although the Boralfixed neutron absorber panels are 156 inches in length, which is much longer than the active fuel length (maximum of 150 inches), they are assumed equal to or less than the active fuel length in the calculations. As shown on the Drawings in Section 1.5, 16 of the 24 periphery Boralfixed neutron absorber panels on the MPC-24 and MPC-24E/EF have reduced width (i.e., 6.25 inches wide as opposed to 7.5 inches). However, the calculational models for these baskets conservatively assume all of the periphery Boralfixed neutron absorber panels are 6.25 inches in width. Note that Figures 6.3.1 through 6.3.3 show Boral as the fixed neutron absorber. The effect of using Metamic as fixed neutron absorber is discussed in Subsection 6.4.11.

The off-normal and accident conditions defined in Chapter 2 and considered in Chapter 11 have no adverse effect on the design conditions important to criticality safety (see Subsection 6.4.2.5), and thus from a criticality standpoint, the normal, off-normal, and accident conditions are identical and do not require individual models.

The calculational model explicitly defines the fuel rods and cladding, the guide tubes (or water rods for BWR assemblies), the water-gaps and Boralfixed neutron absorber panels on the stainless steel walls of the storage cells. Under the conditions of storage, when the MPC is dry, the resultant reactivity with the design basis fuel is very low ($k_{eff} < 0.52$). For the flooded condition (loading and unloading), pure, unborated water was assumed to be present in the fuel rod pellet-to-clad gaps. Appendix 6.D provides sample input files for two of the MPC basket

HI-STORM FSAR

REPORT HI-2002444

designs (MPC-68 and MPC-24) in the HI-STORM 100 System.

The water thickness above and below the fuel is intentionally maintained less than or equal to the actual water thickness. This assures that any positive reactivity effect of the steel in the MPC is conservatively included. Furthermore, the water above and below the fuel is modeled as unborated water, even when borated water is present in the fuel region.

As indicated in Figures 6.3.1 through 6.3.3 and in Tables 6.3.1 and 6.3.2, calculations were made with dimensions assumed to be at their most conservative value with respect to criticality. CASMO-3 and MCNP4a were used to determine the direction of the manufacturing tolerances, which produced the most adverse effect on criticality. After the directional effect (positive effect with an increase in reactivity; or negative effect with a decrease in reactivity) of the manufacturing tolerances was determined, the criticality analyses were performed using the worst case tolerances in the direction which would increase reactivity.

CASMO-3 was used for one of each of the two principal basket designs, i.e. for the flux trap design MPC-24 and for the non-fluxtrap design MPC-68. The effects are shown in Table 6.3.1 which also identifies the approximate magnitude of the tolerances on reactivity. Generally, the conclusions in Table 6.3.1 are directly applicable to the MPC-24E/EF and the MPC-32. Exceptions are the conclusions for the water temperature and void percentage, which are not directly applicable to the MPC-32 due to the presence of high soluble boron concentrations in this canister. This condition is addressed in Section 6.4.2.1 where the optimum moderation is determined for the MPC-32.

Additionally, MCNP4a calculations are performed to evaluate the tolerances of the various basket dimensions of the MPC-68, MPC-24 and MPC-32 in further detail. The various basket dimensions are inter-dependent, and therefore cannot be individually varied (i.e., reduction in one parameter requires a corresponding reduction or increase in another parameter). Thus, it is not possible to determine the reactivity effect of each individual dimensional tolerance separately. However, it is possible to determine the reactivity effect of the dimensional tolerances by evaluating the various possible dimensional combinations. To this end, an evaluation of the various possible dimensional combinations was performed using MCNP4a. Calculated keff results (which do not include the bias, uncertainties, or calculational statistics), along with the actual dimensions, for a number of dimensional combinations are shown in Table 6.3.2 for the reference PWR and BWR assemblies. Each of the basket dimensions are evaluated for their minimum, nominal and maximum values from the Drawings of section 1.5. For PWR MPC designs, the reactivity effect of tolerances with soluble boron present in the water is additionally determined. Due to the close similarity between the MPC-24 and MPC-24E, the basket dimensions are only evaluated for the MPC-24, and the same dimensional assumptions are applied to both MPC designs.

Based on the MCNP4a and CASMO-3 calculations, the conservative dimensional assumptions listed in Table 6.3.3 were determined. Because the reactivity effect (positive or negative) of the manufacturing tolerances are not assembly dependent, these dimensional assumptions were employed for the criticality analyses.

i in the

As demonstrated in this section, design parameters important to criticality safety are: fuel enrichment, the inherent geometry of the fuel basket structure, the fixed neutron absorbing panels (Boral) and the soluble boron concentration in the water during loading/unloading operations. As shown in Chapter 11, none of these parameters are affected during any of the design basis offnormal or accident conditions involving handling, packaging, transfer or storage.

6.3.2 . Cask Regional Densities

Composition of the various components of the principal designs of the HI-STORM 100 System are listed in Table 6.3.4.

The HI-STORM 100 System is designed such that the fixed neutron absorber (Boral) will remain effective for a storage period greater than 20 years, and there are no credible means to lose it. A detailed physical description, historical applications, unique characteristics, service experience, and manufacturing quality assurance of Boral fixed neutron absorber are provided in Section 1.2.1.3.1.

The continued efficacy of the Boralfixed neutron absorber is assured by acceptance testing, documented in Section 9.1.5.3, to validate the ¹⁰B (poison) concentration in the Boralfixed neutron absorber. To demonstrate that the neutron flux from the irradiated fuel results in a negligible depletion of the poison material over the storage period, an MCNP4a calculation of the number of neutrons absorbed in the ¹⁰B was performed. The calculation conservatively assumed a constant neutron source for 50 years equal to the initial source for the design basis fuel, as determined in Section 5.2, and shows that the fraction of ¹⁰B atoms destroyed is only 2.6E-09 in 50 years. Thus, the reduction in ¹⁰B concentration in the Boralfixed neutron absorber by neutron absorption is negligible. In addition, analysis in Appendix 3.M.1 of the HI-STAR 100 FSAR-the results presented in Subsection 3.4.4.3.1.8 demonstrates that the sheathing, which affixes the Boralfixed neutron absorber panel, remains in place during all credible accident conditions, and thus, the Boralfixed neutron absorber panel remains permanently fixed. Therefore, in accordance with 10CFR72.124(b), there is no need to provide a surveillance or monitoring program to verify the continued efficacy of the neutron absorber.

HI-STORM FSAR REPORT HI-2002444

Table 6.3.1

CASMO-3 CALCULATIONS FOR EFFECT OF TOLERANCES AND TEMPERATURE

	Δk for M	aximum Tolerance	
Change in Nominal Parameter [†]	MPC-24 [‡]	MPC-68	Action/Modeling Assumption
Reduce BoralFixed Neutron Absorber Width to Minimum	N/A ^{†††} min.= nom.= 7.5" and 6.25"	$\frac{N/A^{\dagger\dagger\dagger}}{\min. = nom. = 4.75"}$	Assume minimum Boralfixed neutron absorber width
Increase UO ₂ Density to Maximum	+0.0017 max. = 10.522 g/cc nom. = 10.412 g/cc	+0.0014 max. = 10.522 g/cc nom. = 10.412 g/cc	Assume maximum UO ₂ density
Reduce Box Inside Dimension (I.D.) to Minimum	-0.0005. min.= 8.86" nom. = 8.92"	See Table 6.3.2	Assume maximum box I.D. for the MPC-24
Increase Box Inside Dimension (I.D.) to Maximum	+0.0007 max. = 8.98" nom. = 8.92"	-0.0030 max. = 6.113" nom. = 6.053"	Assume minimum box I.D. for the MPC-68
Decrease Water Gap to Minimum	+0.0069 min. = 1.09" nom. = 1.15"	N/A	Assume minimum water gap in the MPC-24

[†] Reduction (or increase) in a parameter indicates that the parameter is changed to its minimum (or maximum) value.

[‡] Calculations for the MPC-24 were performed with CASMO-4 [6.3.1-6.3.3].

The Boralfixed neutron absorber width for the MPC-68 is 4.75" +0.125", -0", the Boralfixed neutron absorber widths for the MPC-24 are 7.5" +0.125", -0" and 6.25" +0.125" -0" (i.e., the nominal and minimum values are the same).

HI-STORM FSAR REPORT HI-2002444

Table 6.3.1 (continued) CASMO-3 CALCULATIONS FOR EFFECT OF TOLERANCES AND TEMPERATURE

•

(

1	ΔK iviax	imum Toleran	ce		.
Change in Nominal Parameter	MPC-24 [‡]		MPC-68	Action/Mo	deling Assumption
ncrease in Temperature		· · ·	· · · · · · · · · · · · · · · · · · ·	Assume 20°C	
20°C 40°C 70°C 100°C	Ref. -0.0030 -0.0089 -0.0162	:	Ref. -0.0039 -0.0136 -0.0193		, ,
0% Void in Moderator 20°C with no void 20°C 100°C	Ref. -0.0251 -0.0412	· · · · · · · · · · · · · · · · · · ·	Ref. -0.0241 -0.0432	Assume no vo	bid'
Removal of Flow Channel (BWR)	N/A	-	-0.0073	Assume flow MPC-68	channel present for
‡ Calculations for the MPC-24	were performed with CASN	10-4 [6,3,1-6,3,3			
I-STORM FSAR	^	· ;		- 1	Proposed Rev. 2A

Table 6.3.2

Pitch		Box I	.D.	Box Wall 7	Chickness	MCNP4a Calculated k _{eff}
		MPC-24 ^{††} (@ 4.0% Enrich	iment)	······································	
nominal	(10.906")	maximum	(8.98")	nominal	(5/16")	0.9325±0.0008 ^{†††}
minimum	(10.846")	nominal	(8.92")	nominal	(5/16")	0.9300±0.0008
nominal	(10.906")	nom 0.04"	(8.88")	nom. + 0.05"	(0.3625")	0.9305±0.0007
		MPC-68 (8x8C04@	4.2% Enrichm	ent)	
minimum	(6.43")	minimum	(5.993")	nominal	(1/4")	0.9307±0.0007
nominal	(6.49")	nominal	(6.053")	nominal	(1/4")	0.9274±0.0007
maximum	(6.55")	maximum	(6.113")	nominal	- (1/4")	0.9272±0.0008
nom. + 0.05"	(6.54")	nominal	(6.053")	nom. + 0.05"	(0.30")	0.9267±0.0007

MCNP4a EVALUATION OF BASKET MANUFACTURING TOLERANCES[†]

Notes:

1. Values in parentheses are the actual value used.

	t	Tolerance for pitch and box I.D. are ± 0.06 ". Tolerance for box wall thickness is +0.05", -0.00".
3	tt	All calculations for the MPC-24 assume minimum water gap thickness (1.09").
 -	111	Numbers are 1σ statistical uncertainties.

Table 6.3.2 (cont.)

			~		· • ,	
Pitch		Box I.D.		Box Wall Thickness		MCNP4a Calculated k _{eff}
				nent) 400ppm s		1
		(17,17,17,17,16, 0, 5,				11 T
nominal	(10.906")	maximum	(8.98")	nominal	(5/16")	0.9236±0.0007 ^{††}
maximum	(10.966")	maximum	(8.98")	nominal	(5/16")	0.9176±0.0008
minimum	(10.846")	nominal	(8.92")	nominal	(5/16")	0.9227±0.0010
minimum	(10.846")	minimum -		nominal	(5/16")	0.9159±0.0008
nominal	(10.906")	nominal-0.04"	(8.88")	nom.+0.05"	(0.3625")	0.9232±0.0009
nominal	(10.906")	nominal -	(8.92")	nominal	(5/16")	0.9158±0.0007
	· MPC-32	2 (17x17A @ 5.0	0% Enrichm	ent) 2600 ppm so	luble boron	I
minimum	(9.158")	minimum -	(8.69")	nominal	(9/32")	0.9085±0.0007
nominal	(9.218")	nominal	(8.75")	nominal	(9/32")	0.9028±0.0007
maximum	(9.278")	maximum	(8.81")	nominal	(9/32")	0.8996±0.0008
nominal+0.0	05" (9.268")	nominal	(8.75")	nominal+0.05"	(0.331")	0.9023±0.0008
minimum+0	.05"(9.208")	minimum	(8.69'')	nominal+0.05"	(0.331")	0.9065±0.0007
maximum	(9.278")	Maximum-0.05	5" (8.76")	nominal+0.05"	(0.331")	0.9030±0.0008

MCNP4a EVALUATION OF BASKET MANUFACTURING TOLERANCES[†]

Notes:

1. Values in parentheses are the actual value used.

- Tolerance for pitch and box I.D. are ± 0.06 ". Tolerance for box wall thickness is +0.05", -0.00".
- th Numbers are 1σ statistical uncertainties.

HI-STORM FSAR

REPORT HI-2002444

- --

[†]

Table 6.3.3

Basket Type	Pitch	Box I.D.	Box Wall Thickness	Water-Gap Flux Trap
MPC-24	nominal (10.906")	maximum (8.98")	nominal (5/16")	minimum (1.09")
MPC-24E	nominal (10.847")	maximum (8.81", 9.11" for DFC Positions)	nominal (5/16")	minimum (1.076", 0.776" for DFC Positions)
MPC-32	Minimum (9.158")	Minimum (8.69")	Nominal (9/32")	N/A
MPC-68	minimum (6.43")	Minimum (5.993")	nominal (1/4")	N/A

BASKET DIMENSIONAL ASSUMPTIONS

Table 6.3.4

COMPOSITION OF THE MAJOR COMPONENTS OF THE HI-STORM 100 SYSTEM

MPC-24, MPC-24E and MPC-32						
UO ₂ 5.0% ENRICHMENT, DENSITY (g/cc) = 10.522						
Atom-Density .	Wgt. Fraction					
4.696E-02	1.185E-01					
1.188E-03						
2.229E-02						
UO ₂ 4.0% ENRICHMENT, DENSITY (g/cc) = 10.522						
Atom-Density	Wgt. Fraction					
4.693E-02	1.185E-01					
9.505E-04	3.526E-02					
2.252E-02	8.462E-01					
/cm sq), DENSITY (g/c	c) = 2.660 (MPC-24)					
Atom-Density	Wgt. Fraction					
8.707E-03	5.443E-02					
3.512E-02	2.414E-01					
1.095E-02	8.210E-02					
3.694E-02	6.222E-01					
BORAL (0.0279 g 10 B/cm sq), DENSITY (g/cc) = 2.660 (MPC-24E and MPC-32)						
Atom-Density	Wgt. Fraction					
8.071E-03	5.089E-02					
3.255E-02	2.257E-01					
1.015E-02	7.675E-02					
3.805E-02	6.467E-01					
	Atom-Density 4.696E-02 1.188E-03 2.229E-02 CHMENT, DENSITY Atom-Density 4.693E-02 CHMENT, DENSITY 4.693E-02 9.505E-04 2.252E-02 Yem sq), DENSITY (g/c Atom-Density 8.707E-03 3.512E-02 1.095E-02 3.694E-02 g ¹⁰ B/cm sq), DENSIT MPC-24E and MPC-32 Atom-Density 8.071E-03 3.255E-02 1.015E-02					

1

;

COMPOSITION OF THE MAJOR COMPONENTS OF THE HI-STORM 100 SYSTEM

METAMIC (0.02 g	¹⁰ B/cm sq), DENSITY (g	/cc) = 2.648 (MPC-24)
Nuclide	Atom-Density	Wgt. Fraction
5010	6.314E-03	- 3.965E-02
5011	2.542E-02	1.755E-01
6012	7.932E-02	5.975E-02
13027	<i>4.286E-02</i>	7.251É-01
METAMIC (0.0	279 g ⁻¹⁰ B/cm sq), DENS (MPC-24E and MPC-32	
Nuclide	Atom-Density	Wgt. Fraction
5010	6.541E-03	4.110E-02
5011	2.633E-02	1.819E-01
6012	8.217E-03	6.193E-02
13027	4.223E-02	7.151E-01

HI-STORM FSAR REPORT HI-2002444

COMPOSITION OF THE MAJOR COMPONENTS OF THE HI-STORM 100 SYSTEM

	• • • • • •	and and a second se			
BORATED W	BORATED WATER, 300 PPM, DENSITY (g/cc)=1.00				
Nuclide	Atom-Density	Wt. Fraction			
· . 5010	3.248E-06	5.400E-05			
··· 5011	1.346E-05	2.460E-04			
· 1001 ·	6.684E-02	1.1186E-01			
·` 8016	3.342E-02	8.8784E-01			
BORATED WATER, 400PPM, DENSITY (g/cc)=1.00					
Nuclide	Atom-Density	Wgt. Fraction			
5010	4.330E-06	7.200E-05			
-5011	1.794E-05	3.280E-04			
1001	6.683E-02	1.1185E-01			
8016	3.341E-02	8.8775E-01			
BORATED WATER, 1900PPM, DENSITY (g/cc)=1.00					
Nuclide	Atom-Density	Wgt. Fraction			
5010	2.057E-05	3.420E-04			
5011	8.522E-05	1.558E-03			
' 1001	6.673E-02	1.1169E-01			
8016	3.336E-02	8.8641E-01			
BORATED WATER, 2600PPM, DENSITY (g/cc)=0.93					
Nuclide	Atom-Density	Wgt. Fraction			
5010	2.618e-05	4.680E-04			
5011	1.085e-04	2.132E-03			
1001	6.201e-02	1.1161E-01			
8016	3.101e-02	8.8579E-01			

HI-STORM FSAR REPORT HI-2002444 Proposed Rev. 2A

.

and the second

- .

6.3-11

л.

COMPOSITION OF THE MAJOR COMPONENTS OF THE HI-STORM 100 SYSTEM

F	MPC-68	· · · · · · · · · · · · · · · · · · ·			
UO ₂ 4.2% EN	UO_2 4.2% ENRICHMENT, DENSITY (g/cc) = 10.522				
Nuclide	Atom-Density	Wgt. Fraction			
8016	4.697E-02	1.185E-01			
92235	9.983E-04	3.702E-02			
92238	2.248E-02	8.445E-01			
UO2 3.0% EN	UO ₂ 3.0% ENRICHMENT, DENSITY (g/cc) = 10.522				
Nuclide	Atom-Density	Wgt. Fraction			
8016	4.695E-02	1.185E-01			
92235	7.127E-04	2.644E-02			
92238	2.276E-02	8.550E-01			
MOXI	$MOX FUEL^{\dagger}$, DENSITY (g/cc) = 10.522				
Nuclide	Atom-Density	Wgt. Fraction			
8016	4.714E-02	1.190E-01			
92235	1.719E-04	6.380E-03			
92238	2.285E-02	8.584E-01			
94239	3.876E-04	1.461E-02			
94240	9.177E-06	3.400E-04			
94241	3.247E-05	1.240E-03			
94242	2.118E-06	7.000E-05			

t

_

The Pu-238, which is an absorber, was conservatively neglected in the MOX description for analysis purposes.

COMPOSITION OF THE MAJOR COMPONENTS OF THE HI-STORM 100 SYSTEM

	79 g ¹⁰ B/cm sq), DENSI	
Nuclide	Atom-Density	Wgt. Fraction
5010	8.071E-03	5.089E-02
.a. 1 5011	3.255E-02	2.257E-01
· 6012	1.015E-02	7.675E-02
13027	· 3.805E-02	6.467E-01
METAMIC (0.0	279 g ¹⁰ B/cm sq), DENS	ITY (g/cc) = 2.646
Nuclide	Atom-Density	Wgt. Fraction
5010	6.541E-03	4.110E-02
5011	2.633E-02	1.819E-01
6012	8.217E-03	6.193E-02
13027	4.223E-02	7.151E-01
FUEL IN THO	ORIA RODS, DENSITY	' (g/cc) = 10.522
Nuclide	Atom-Density	Wgt. Fraction
5010 8016	4.798E-02	1.212E-01
5011 92235	4.001E-04	1.484E-02
6012 92238	2.742E-05	1.030E-03
13027 90232	2.357E-02	8.630E-01
(COMMON MATERIAL	ĴS
ZR C	LAD, DENSITY (g/cc) =	= 6.550
Nuclide	Atom-Density	Wgt. Fraction
40000	4.323E-02	1.000E+00
MODERAT	OR (H ₂ O), DENSITY (g/cc) = 1.000
Nuclide	Atom-Density	Wgt. Fraction
ituenue		
1001	6.688E-02	1.119E-01

HI-STORM FSAR REPORT HI-2002444 Proposed Rev. 2A

6.3-13

COMPOSITION OF THE MAJOR COMPONENTS OF THE HI-STORM 100 SYSTEM

STAINLE	SS STEEL, DENSITY ((g/cc) = 7.840
Nuclide	Atom-Density	Wgt. Fraction
.24000	1.761E-02	1.894E-01
25055	1.761E-03	2.001E-02
26000	5.977E-02	6.905E-01
28000	8.239E-03	1.000E-01
ALUM	INUM, DENSITY (g/cc) = 2.700
Nuclide	Atom-Density	Wgt. Fraction
13027	6.026E-02	1.000E+00

•

HI-STORM FSAR REPORT HI-2002444

COMPOSITION OF THE MAJOR COMPONENTS OF THE HI-STORM 100 SYSTEM

CONCRETE, DENSITY (g/cc) = 2.35				
Nuclide	Atom-Density	Wgt. Fraction		
1001	8.806E-03	6.000E-03		
8016	4.623E-02	5.000E-01		
11000	1.094E-03	1.700E-02		
13027	2.629E-04	4.800E-03		
14000	1.659E-02	3.150E-01		
19000	7.184E-04	1.900E-02		
20000	3.063E-03	8.300E-02		
26000	3.176E-04	1.200E-02		
LEAD, DENSITY $(g/cc) = 11.34$				
Nuclide	Atom-Density	Wgt. Fraction		
82000	3.296E-02	1.0		
HOLTITE-A, DENSITY (g/cc) = 1.61				
1001	5.695E-02	5.920E-02		
5010	1.365E-04	1.410E-03		
5011	5.654E-04	6.420E-03		
6012	2.233E-02	2.766E-01		
7014	1.370E-03	1.980E-02		
8016	2.568E-02	4.237E-01		
13027	7.648E-03	2.129E-01		

HI-STORM FSAR REPORT HI-2002444

6.4 <u>CRITICALITY CALCULATIONS</u>

6.4.1 <u>Calculational or Experimental Method</u>

6.4.1.1 <u>Basic Criticality Safety Calculations</u>

, [•]

The principal method for the criticality analysis is the general three-dimensional continuous energy Monte Carlo N-Particle code MCNP4a [6.1.4] developed at the Los Alamos National Laboratory. MCNP4a was selected because it has been extensively used and verified and has all of the necessary features for this analysis. MCNP4a calculations used continuous energy cross-section data based on ENDF/B-V, as distributed with the code [6.1.4]. Independent verification calculations were performed with NITAWL-KENO5a [6.1.5], which is a three-dimensional multigroup Monte Carlo code developed at the Oak Ridge National Laboratory. The KENO5a calculations used the 238-group cross-section library, which is based on ENDF/B-V data and is distributed as part of the SCALE-4.3 package [6.4.1], in association with the NITAWL-II program [6.1.6], which adjusts the uranium-238 cross sections to compensate for resonance self-shielding effects. The Dancoff factors required by NITAWL-II were calculated with the CELLDAN code [6.1.13], which includes the SUPERDAN code [6.1.7] as a subroutine.

The convergence of a Monte Carlo criticality problem is sensitive to the following parameters: (1) number of histories per cycle, (2) the number of cycles skipped before averaging, (3) the total number of cycles and (4) the initial source distribution. The MCNP4a criticality output contains a great deal of useful information that may be used to determine the acceptability of the problem convergence. This information was used in parametric studies to develop appropriate values for the aforementioned criticality parameters to be used in the criticality calculations for this submittal. Based on these studies, a minimum of 5,000 histories were simulated per cycle, a minimum of 20 cycles were skipped before averaging, a minimum of 100 cycles were accumulated, and the initial source was specified as uniform over the fueled regions (assemblies). Further, the output was examined to ensure that each calculation achieved acceptable convergence. These parameters represent an acceptable compromise between calculational precision and computational time. Appendix 6.D provides sample input files for the MPC-24 and MPC-68 basket in the HI-STORM 100 System.

CASMO-3 [6.1.9] was used for determining the small incremental reactivity effects of manufacturing tolerances. Although CASMO-3 has been extensively benchmarked, these calculations are used only to establish direction of reactivity uncertainties due to manufacturing tolerances (and their magnitude). This allows the MCNP4a calculational model to use the worst combination of manufacturing tolerances. Table 6.3.1 shows results of the CASMO-3 calculations.

6.4.2 Fuel Loading or Other Contents Loading Optimization

The basket designs are intended to safely accommodate fuel with enrichments indicated in Tables 6.1.1 through 6.1.8. These calculations were based on the assumption that the HI-STORM 100 System (HI-TRAC transfer cask) was fully flooded with clean unborated water or water containing specific minimum soluble boron concentrations. In all cases, the calculations include bias and calculational uncertainties, as well as the reactivity effects of manufacturing tolerances, determined by assuming the worst case geometry.

Nominally, the fuel assemblies would be centrally positioned in each MPC basket cell. However, in accordance with NUREG-1536, the consequence of eccentric positioning was also evaluated, and is discussed in more detail in Section 6.4.12. The evaluations show a small increase in reactivity when all assemblies in the MPC-32 are assumed to be moved towards the center of the basket. All other cases evaluated result in a decrease in reactivity, and the maximum k_{eff} is below the regulatory limit. Overall, the effect of eccentric positioning is therefore negligible. and found to be negligible. To simulate eccentric positioning (and possible closer approach to the MPC steel shield), calculations were performed analytically decreasing the inner radius until it was 1 cm away[†] from the nearest fuel. Results showed a minor increase in reactivity of 0.0026 Ak maximum (MPC-68) which implies that the effect of eccentric location of fuel is negligible at the actual reflector spacing.

6.4.2.1 Internal and External Moderation

As required by NUREG-1536, calculations in this section demonstrate that the HI-STORM 100 System remains subcritical for all credible conditions of moderation.

6.4.2.1.1 Unborated Water

With a neutron absorber present (i.e., the Boralfixed neutron absorber sheets or the steel walls of the storage compartments), the phenomenon of a peak in reactivity at a hypothetical low moderator density (sometimes called "optimum" moderation) does not occur to any significant extent. In a definitive study, Cano, et al. [6.4.2] has demonstrated that the phenomenon of a peak in reactivity at low moderator densities does not occur in the presence of strong neutron absorbing material or in the absence of large water spaces between fuel assemblies in storage. Nevertheless, calculations for a single reflected cask were made to confirm that the phenomenon

[†] PNL critical experiments have shown a small positive reactivity effect of thick: steel reflectors, with the maximum effect at 1 cm distance from the fuel. In the cask designs, the fuel is mechanically prohibited from being positioned at a 1 cm spacing from the overpack steel.

does not occur with low density water inside or outside the casks.

Calculations for the MPC designs with internal and external moderators of various densities are shown in Table 6.4.1. For comparison purposes, a calculation for a single unreflected cask (Case 1) is also included in Table 6.4.1. At 100% external moderator density, Case 2 corresponds to a single fully-flooded cask, fully reflected by water. Figure 6.4.10 plots calculated k_{eff} values ($\pm 2\sigma$) as a function of internal moderator density for both MPC designs with 100% external moderator density (i.e., full water reflection). Results listed in Table 6.4.1 support the following conclusions:

- For each type of MPC, the calculated k_{eff} for a fully-flooded cask is independent of the external moderator (the small variations in the listed values are due to statistical uncertainties which are inherent to the calculational method (Monte Carlo)), and
- For each type of MPC, reducing the internal moderation results in a monotonic reduction in reactivity, with no evidence of any optimum moderation. Thus, the fully flooded condition corresponds to the highest reactivity, and the phenomenon of optimum lowdensity moderation does not occur and is not applicable to the HI-STORM 100 System.

For each of the MPC designs, the maximum k_{eff} values are shown to be less than or statistically equal to that of a single internally flooded unreflected cask and are below the regulatory limit of 0.95.

6.4.2.1.2 Borated Water

With the presence of a soluble neutron absorber in the water, the discussion in the previous section is not always applicable. Calculations were made to determine the optimum moderator density for the MPC designs that require a minimum soluble boron concentration.

Calculations for the MPC designs with various internal moderator densities are shown in Table 6.4.6. As shown in the previous section, the external moderator density has a negligible effect on the reactivity, and is therefore not varied. Water containing soluble boron has a slightly higher density than pure water. Therefore, water densities up to 1.005 g/cm^3 were analyzed for the higher soluble boron concentrations. Additionally, for the higher soluble boron concentrations, analysis have been performed with empty (voided) guide tubes. This variation is discussed in detail in Section 6.4.8. Results listed in the Table 6.4.6 support the following conclusions:

• For all cases with a soluble boron concentration of up to 1900ppm, and for a soluble boron concentration of 2600ppm assuming voided guide tubes, the conclusion of the Section 6.4.2.1.1 applies, i.e. the maximum reactivity is corresponds to 100% moderator density.

• For 2600ppm soluble boron concentration with filled guide tubes, the results presented in Table 6.4.6 indicate that there is a maximum of the reactivity somewhere between 0.90 g/cm³ and 1.00 g/cm³ moderator density. However, a distinct maximum can not be identified, as the reactivities in this range are very close. For the purpose of the calculations with 2600ppm soluble boron concentration, a moderator density of 0.93 g/cm³ was chosen, which corresponds to the highest calculated reactivity listed in Table 6.4.6.

The calculations documented in this chapter also use soluble boron concentrations other than 1900 ppm and 2600 ppm in the MPC-32/32F. For the MPC-32 loaded with intact fuel only, soluble boron concentrations between 1300 ppm and 2600 ppm are used. For the MPC-32/32F loaded with intact fuel, damaged fuel and fuel debris, soluble boron concentrations between 1500 ppm and 2900 ppm are used. In order to determine the optimum moderation condition for each assembly class at the corresponding soluble boron level, evaluations are performed with filled and voided guide tubes, and for water densities of 1.0 g/cm³ and 0.93 g/cm³ for each class and enrichment level. Results for the MPC-32 loaded with intact fuel only are listed in Table 6.4.10 for an initial enrichment of 5.0 wt%²³⁵U and in Table 6.4.11 for an initial enrichment of 4.1 wt%²³⁵U. Corresponding results for the MPC-32/32F loaded with intact fuel, damaged fuel and fuel debris are listed in Table 6.4.14. The highest value listed in these tables for each assembly class is listed as the bounding value in Section 6.1.

6.4.2.2 <u>Partial Flooding</u>

As required by NUREG-1536, calculations in this section address partial flooding in the HI-STORM 100 System and demonstrate that the fully flooded condition is the most reactive.

The reactivity changes during the flooding process were evaluated in both the vertical and horizontal positions for all MPC designs. For these calculations, the cask is partially filled (at various levels) with full density (1.0 g/cc) water and the remainder of the cask is filled with steam consisting of ordinary water at partial density (0.002 g/cc), as suggested in NUREG-1536. Results of these calculations are shown in Table 6.4.2. In all cases, the reactivity increases monotonically as the water level rises, confirming that the most reactive condition is fully flooded.

6.4.2.3 <u>Clad Gap Flooding</u>

As required by NUREG-1536, the reactivity effect of flooding the fuel rod pellet-to-clad gap regions, in the fully flooded condition, has been investigated. Table 6.4.3 presents maximum k_{eff} values that demonstrate the positive reactivity effect associated with flooding the pellet-to-clad gap regions. These results confirm that it is conservative to assume that the pellet-to-clad gap

regions are flooded. For all cases that involve flooding, the pellet-to-clad gap regions are assumed to be flooded with clean, unborated water.

6.4.2.4 <u>Preferential Flooding</u>

Two different potential conditions of preferential flooding are considered: preferential flooding of the MPC basket itself (i.e. different water levels in different basket cells), and preferential flooding involving Damaged Fuel Containers.

Preferential flooding of the MPC basket itself for any of the MPC fuel basket designs is not possible because flow holes are present on all four walls of each basket cell and on the two flux trap walls at both the top and bottom of the MPC basket. The flow holes are sized to ensure that they cannot be blocked by crud deposits (see Chapter 11). Because the fuel cladding temperatures remain below their design limits (as demonstrated in Chapter 4) and the inertial loading remains below 63g's (the inertial loadings associated with the design basis drop accidents discussed in Chapter 11 are limited to 45g's), the cladding remains intact (see Section 3.5). For damaged fuel assemblies and fuel debris, the assemblies or debris are pre-loaded into stainless steel Damaged Fuel Containers fitted with 250x250 fine mesh screens which prevent damaged fuel assemblies or fuel debris from blocking the basket flow holes. Therefore, the flow holes cannot be blocked.

However, when DFCs are present in the MPC, a condition could exist during the draining of the MPC, where the DFCs are still partly filled with water while the remainder of the MPC is dry. This condition would be the result of the water tension across the mesh screens. The maximum water level inside the DFCs for this condition is calculated from the dimensions of the mesh screen and the surface tension of water. The wetted perimeter of the screen openings is 50 ft per square inch of screen. With a surface tension of water of 0.005 lbf/ft, this results in a maximum pressure across the screen of 0.25 psi, corresponding to a maximum water height in the DFC of 7 inches. For added conservativism, a value of 12 inches is used. Assuming this condition, calculations are performed for all three possible DFC configurations:

- MPC-68 or MPC-68F with 68 DFCs (Assembly Classes 6x6A/B/C, 7x7A and 8x8A)
- MPC-68 or MPC-68FF with 16 DFCs (All BWR Assembly Classes)
- MPC-24E or MPC-24EF with 4 DFCs (All PWR Assembly Classes)
- MPC-32 or MPC-32F with 8 DFCs (All PWR Assembly Classes)

For each configuration, the case resulting in the highest maximum k_{eff} for the fully flooded condition (see Section 6.4.4) is re-analyzed assuming the preferential flooding condition. For these analyses, the lower 12 inches of the active fuel in the DFCs and the water region below the active fuel (see Figure 6.3.7) are filled with full density water (1.0 g/cc). The remainder of the cask is filled with steam consisting of ordinary water at partial density (0.002 g/cc). Table 6.4.4 lists the maximum k_{eff} for the three four configurations in comparison with the maximum k_{eff} for

REPORT HI-2002444

the fully flooded condition. For all configurations, the preferential flooding condition results in a lower maximum k_{eff} than the fully flooded condition. Thus, the preferential flooding condition is bounded by the fully flooded condition.

Once established, the integrity of the MPC confinement boundary is maintained during all credible off-normal and accident conditions, and thus, the MPC cannot be flooded. In summary, it is concluded that the MPC fuel baskets cannot be preferentially flooded, and that the potential preferential flooding conditions involving DFCs are bounded by the result for the fully flooded condition listed in Section 6.4.4.

6.4.2.5 Design Basis Accidents

The analyses presented in Chapters 3 and 11 demonstrate that the damage resulting from the design basis accidents is limited to a loss of the water jacket for the HI-TRAC transfer cask and minor damage to the concrete radiation shield for the HI-STORM storage cask, which have no adverse effect on the design parameters important to criticality safety.

As reported in Chapter 3, Table 3.4.4, the minimum factor of safety for either MPC as a result of the hypothetical cask drop or tip-over accident is 1.1 against the Level D allowables for Subsection NG, Section III of the ASME Code. Therefore, because the maximum box wall stresses are well within the ASME Level D allowables, the flux-trap gap change will be insignificant compared to the characteristic dimension of the flux trap.

In summary, the design basis accidents have no adverse effect on the design parameters important to criticality safety, and therefore, there is no increase in reactivity as a result of any of the credible off-normal or accident conditions involving handling, packaging, transfer or storage. Consequently, the HI-STORM 100 System is in full compliance with the requirement of 10CRF72.124, which states that "before a nuclear criticality accident is possible, at least two unlikely, independent, and concurrent or sequential changes have occurred in the conditions essential to nuclear criticality safety."

6.4.3 <u>Criticality Results</u>

Results of the design basis criticality safety calculations for the condition of full flooding with water (limiting cases) are presented in section 6.2 and summarized in Section 6.1. To demonstrate the applicability of the HI-STAR analyses, results of the design basis criticality safety calculations for the HI-STAR cask (limiting cases) are also summarized in Section 6.1 for comparison. These data confirm that for each of the candidate fuel types and basket configurations the effective multiplication factor (k_{eff}), including all biases and uncertainties at a 95-percent confidence level, do not exceed 0.95 under all credible normal, off-normal, and accident conditions.

Additional calculations (CASMO-3) at elevated temperatures confirm that the temperature coefficients of reactivity are negative as shown in Table 6.3.1. This confirms that the calculations for the storage baskets are conservative.

In calculating the maximum reactivity, the analysis used the following equation:

$$k_{eff}^{\max} = k_c + K_c \sigma_c + Bias + \sigma_B$$

where:

- \Rightarrow k_c is the calculated k_{eff} under the worst combination of tolerances;
- \Rightarrow K_c is the K multiplier for a one-sided statistical tolerance limit with 95% probability at the 95% confidence level [6.1.8]. Each final k_{eff} value calculated by MCNP4a (or KENO5a) is the result of averaging 100 (or more) cycle k_{eff} values, and thus, is based on a sample size of 100. The K multiplier corresponding to a sample size of 100 is 1.93. However, for this analysis a value of 2.00 was assumed for the K multiplier, which is larger (more conservative) than the value corresponding to a sample size of 100;
- $\Rightarrow \sigma_c$ is the standard deviation of the calculated k_{eff}, as determined by the computer code (MCNP4a or KENO5a);
- \Rightarrow *Bias* is the systematic error in the calculations (code dependent) determined by comparison with critical experiments in Appendix 6.A; and
- $\Rightarrow \sigma_B$ is the standard error of the bias (which includes the K multiplier for 95% probability at the 95% confidence level; see Appendix 6.A).

The critical experiment benchmarking and the derivation of the bias and standard error of the bias (95% probability at the 95% confidence level) are presented in Appendix 6.A.

6.4.4 <u>Damaged Fuel and Fuel Debris</u>

Damaged fuel assemblies and fuel debris are required to be loaded into Damaged Fuel Containers (DFCs) prior to being loaded into the MPC. Four (4)Five (5) different DFC types with different cross sections are analyzed. Three (3) of these DFCs are designed for BWR fuel assemblies, one (1)-istwo (2) are designed for PWR fuel assemblies. Two of the DFCs for BWR fuel are specifically designed for fuel assembly classes 6x6A, 6x6B, 6x6C, 7x7A and 8x8A. These assemblies have a smaller cross section, a shorter active length and a low initial enrichment of 2.7 wt%²³⁵U, and therefore a low reactivity. The analysis for these assembly classes is presented in the following Section 6.4.4.1. The remaining twothree DFCs are generic DFCs designed for all BWR and PWR assembly classes. The criticality analysis for these generic DFCs is presented in Section 6.4.4.2.

HI-STORM FSAR

REPORT HI-2002444

6.4.4.1 '<u>MPC-68, MPC-68F or MPC-68FF loaded with Assembly Classes 6x6A, 6x6B, 6x6C, 7x7A and 8x8A</u>

This section only addresses criticality calculations and results for assembly classes 6x6A, 6x6B, 6x6C, 7x7A and 8x8A, loaded into the MPC-68, MPC-68F or MPC-68FF. Up to 68 DFCs with these assembly classes are permissible to be loaded into the MPC. Two different DFC types with slightly different cross-sections are analyzed. DFCs containing fuel debris must be stored in the MPC-68F or MPC-68FF. DFCs containing damaged fuel assemblies may be stored in either the MPC-68, MPC-68F or MPC-68FF. Evaluation of the capability of storing damaged fuel and fuel debris (loaded in DFCs) is limited to very low reactivity fuel in the MPC-68F. Because the MPC-68 and MPC-68FF have a higher specified ¹⁰B loading, the evaluation of the MPC-68F conservatively bounds the storage of damaged BWR fuel assemblies in a standard MPC-68 or MPC-68FF. Although the maximum planar-average enrichment of the damaged fuel is limited to 2.7% ²³⁵U as specified in the Certificate of Compliance, analyses have been made for three possible scenarios, conservatively assuming fuel^{††} of 3.0% enrichment. The scenarios considered included the following:

- 1. Lost or missing fuel rods, calculated for various numbers of missing rods in order to determine the maximum reactivity. The configurations assumed for analysis are illustrated in Figures 6.4.2 through 6.4.8.
- 2. Broken fuel assembly with the upper segments falling into the lower segment creating a close-packed array (described as a 8x8 array). For conservatism, the array analytically retained the same length as the original fuel assemblies in this analysis. This configuration is illustrated in Figure 6.4.9.
- 3. Fuel pellets lost from the assembly and forming powdered fuel dispersed through a volume equivalent to the height of the original fuel. (Flow channel and clad material assumed to disappear).

Results of the analyses, shown in Table 6.4.5, confirm that, in all cases, the maximum reactivity is well below the regulatory limit. There is no significant difference in reactivity between the two DFC types. Collapsed fuel reactivity (simulating fuel debris) is low because of the reduced moderation. Dispersed powdered fuel results in low reactivity because of the increase in ²³⁸U neutron capture (higher effective resonance integral for ²³⁸U absorption).

The loss of fuel rods results in a small increase in reactivity (i.e., rods assumed to collapse, leaving a smaller number of rods still intact). The peak reactivity occurs for 8 missing rods, and a smaller (or larger) number of intact rods will have a lower reactivity, as indicated in Table 6.4.5.

^{††} 6x6A01 and 7x7A01 fuel assemblies were used as representative assemblies.

The analyses performed and summarized in Table 6.4.5 provides the relative magnitude of the effects on the reactivity. This information coupled with the maximum k_{eff} values listed in Table 6.1.3 and the conservatism in the analyses, demonstrate that the maximum k_{eff} of the damaged fuel in the most adverse post-accident condition will remain well below the regulatory requirement of $k_{eff} < 0.95$.

6.4.4.2 <u>Generic BWR and PWR Damaged Fuel and Fuel Debris</u>

The MPC-24E, MPC-24EF, MPC-32, MPC-32F, MPC-68 and MPC-68FF are designed to contain PWR and BWR damaged fuel and fuel debris, loaded into generic DFCs. The number of generic DFCs is limited to 16 for the MPC-68 and MPC-68FF, and to 4 for the MPC-24E and MPC-24EF, and to 8 for the MPC-32 and MPC-32F. The permissible locations of the DFCs are shown in Figure 6.4.11 for the MPC-68/68FF, and-in Figure 6.4.12 for the MPC-24E/24EF and in Figure 6.4.16 for the MPC-32/32F.

Damaged fuel assemblies are assemblies with known or suspected cladding defects greater than pinholes or hairlines, or with missing rods, but excluding fuel assemblies with gross defects (for a full definition see Section 1.1 of the Certificate of Compliance). Therefore, apart from possible missing fuel rods, damaged fuel assemblies have the same geometric configuration as intact fuel assemblies and consequently the same reactivity. Missing fuel rods can result in a slight increase of reactivity. After a drop accident, however, it can not be assumed that the initial geometric integrity is still maintained. For a drop on either the top or bottom of the cask, the damaged fuel assemblies could collapse. This would result in a configuration with a reduced length, but increased amount of fuel per unit length. For a side drop, fuel rods could be compacted to one side of the DFC. In either case, a significant relocation of fuel within the DFC is possible, which creates a greater amount of fuel in some areas of the DFC, whereas the amount of fuel in other areas is reduced. Fuel debris can include a large variety of configurations ranging from whole fuel assemblies with severe damage down to individual fuel pellets.

In the cases of fuel debris or relocated damaged fuel, there is the potential that fuel could be present in axial sections of the DFCs that are outside the basket height covered with Boralthe fixed neutron absorber. However, in these sections, the DFCs are not surrounded by any intact fuel, only by basket cell walls, non-fuel hardware, water and for the MPC-68/68FF by a maximum of one other DFC. Studies have shown that this condition does not result in any significant effect on reactivity, compared to a condition where the damaged fuel and fuel debris is restricted to the axial section of the basket covered by Boralthe fixed neutron absorber. All calculations for generic BWR and PWR damaged fuel and fuel debris are therefore performed assuming that fuel is present only in the axial sections covered by Boralthe fixed neutron absorber, and the results are directly applicable to any situation where damaged fuel and fuel debris is located outside these sections in the DFCs.

To address all the situations listed above and identify the configuration or configurations leading to the highest reactivity, it is impractical to analyze a large number of different geometrical configurations for each of the fuel classes. Instead, a bounding approach is taken which is based on the analysis of regular arrays of bare fuel rods without cladding. Details and results of the analyses are discussed in the following sections.

All calculations for generic damaged fuel and fuel debris are performed using a full cask model with the maximum permissible number of Damaged Fuel Containers. For the MPC-68 and MPC-68FF, the model therefore contains 52 intact assemblies, and 16 DFCs in the locations shown in Figure 6.4.11. For the MPC-24E and MPC-24EF, the model consists of 20 intact assemblies, and 4 DFCs in the locations shown in Figure 6.4.12. For the MPC-32 and MPC-32, the model consists of 24 intact assemblies, and 8 DFCs in the locations shown in Figure 6.4.16. The bounding assumptions regarding the intact assemblies and the modeling of the damaged fuel and fuel debris in the DFCs are discussed in the following sections.

Note that since a modeling approach is used that bounds both damaged fuel and fuel debris without distinguishing between these two conditions, the term 'damaged fuel' as used throughout this chapter designates both damaged fuel and fuel debris.

6.4.4.2.1 Bounding Intact Assemblies

Intact BWR assemblies stored together with DFCs are limited to a maximum planar average enrichment of 3.7 wt% ²³⁵U, regardless of the fuel class. The results presented in Table 6.1.7 are for different enrichments for each class, ranging between 2.7 and 4.2 wt% ²³⁵U, making it difficult to identify the bounding assembly. Therefore, additional calculations were performed for the bounding assembly in each assembly class with a planar average enrichment of 3.7 wt%. The results are summarized in Table 6.4.7 and demonstrate that the assembly classes 9x9E and 9x9F have the highest reactivity. These two classes share the same bounding assembly (see footnotes for Tables 6.2.33 and 6.2.34 for further details). This bounding assembly is used as the intact BWR assembly for all calculations with DFCs.

Intact PWR assemblies stored together with DFCs *in the MPC-24E* are limited to a maximum enrichment of 4.0 wt% ²³⁵U without credit for soluble boron and to a maximum enrichment of 5.0 wt% with credit for soluble boron, regardless of the fuel class. The results presented in Table 6.1.3 are for different enrichments for each class, ranging between 4.2 and 5.0 wt% ²³⁵U, making it difficult to directly identify the bounding assembly. However, Table 6.1.4 shows results for an enrichment of 5.0 wt% for all fuel classes, with a soluble boron concentration of 300 ppm. The assembly class 15x15H has the highest reactivity. This is consistent with the results in Table 6.1.3, where the assembly class 15x15H is among the classes with the highest reactivity, but has the lowest initial enrichment. Therefore, *in the MPC-24E*, the 15x15H assembly is used as the intact PWR assembly for all calculations with DFCs.

Intact PWR assemblies stored together with DFCs in the MPC-32 are limited to a maximum enrichment of 5.0 wt%, regardless of the fuel class. Table 6.1.5 and Table 6.1.6 shows results for enrichments of 4.1 wt% and 5.0 wt%, respectively, for all fuel classes. Since different minimum soluble boron concentrations are used for different groups of assembly classes, the assembly class with the highest reactivity in each group is used as the intact assembly for the calculations with DFCs in the MPC-32. These assembly classes are

- '14x14C for all 14x14 assembly classes;
- 15x15B for assembly classes 15x15A, B, C and G;
- 15x15F for assembly classes 15x15D, E, F and H;
- 16x16A; and
- 17x17C for all 17x17 assembly classes.

6.4.4.2.2 Bare Fuel Rod Arrays

A conservative approach is used to model both damaged fuel and fuel debris in the DFCs, using arrays of bare fuel rods:

- Fuel in the DFCs is arranged in regular, rectangular arrays of bare fuel rods, i.e. all cladding and other structural material in the DFC is replaced by water.
- For cases with soluble boron, additional calculations are performed with reduced water density in the DFC. This is to demonstrate that replacing all cladding and other structural material with borated water is conservative.
- The active length of these rods is chosen to be the maximum active fuel length of all fuel assemblies listed in Section 6.2, which is 155 inch for BWR fuel and 150 inch for PWR fuel.
- To ensure the configuration with optimum moderation and highest reactivity is analyzed, the amount of fuel per unit length of the DFC is varied over a large range. This is achieved by changing the number of rods in the array and the rod pitch. The number of rods are varied between 9 (3x3) and 189 (17x17) for BWR fuel, and between 64 (8x8) and 729 (27x27) for PWR fuel.
- Analyses are performed for the minimum, maximum and typical pellet diameter of PWR and BWR fuel.

This is a very conservative approach to model damaged fuel, and to model fuel debris configurations such as severely damaged assemblies and bundles of individual fuel rods, as the absorption in the cladding and structural material is neglected.

This is also a conservative approach to model fuel debris configurations such as bare fuel pellets due to the assumption of an active length of 155 inch (BWR) or 150 inch (PWR). The actual height of bare fuel pellets in a DFC would be significantly below these values due to the limitation of the fuel mass for each basket position.

To demonstrate the level of conservatism, additional analyses are performed with the DFC containing various realistic assembly configurations such as intact assemblies, assemblies with missing fuel rods and collapsed assemblies, i.e. assemblies with increased number of rods and decreased rod pitch.

As discussed in Section 6.4.4.2, all calculations are performed for full cask models, containing the maximum permissible number of DFCs together with intact assemblies.

As an example of the damaged fuel model used in the analyses, Figure 6.4.17 shows the basket cell of an MPC-32 with a DFC containing a 17x17 array of bare fuel rods.

Graphical presentations of the calculated maximum k_{eff} for each typical cases as a function of the fuel mass per unit length of the DFC are shown in Figures 6.4.13 (BWR) and 6.4.14 (PWR, MPC-24E/EF with pure water). The results for the bare fuel rods show a distinct peak in the maximum k_{eff} at about 2 kg UO₂/inch for BWR fuel, and at about 3.5 kgUO₂/inch for PWR fuel.

The realistic assembly configurations are typically about 0.01 (delta-k) or more below the peak results for the bare fuel rods, demonstrating the conservatism of this approach to model damaged fuel and fuel debris configurations such as severely damaged assemblies and bundles of fuel rods.

For fuel debris configurations consisting of bare fuel pellets only, the fuel mass per unit length would be beyond the value corresponding to the peak reactivity. For example, for DFCs filled with a mixture of 60 vol% fuel and 40 vol% water the fuel mass per unit length is 3.36 kgUO₂/inch for the BWR DFC and 7.92 kgUO₂/inch for the PWR DFC. The corresponding reactivities are significantly below the peak reactivies. The difference is about 0.005 (delta-k) for BWR fuel and 0.01 (delta-k) or more for PWR fuel. Furthermore, the filling height of the DFC would be less than 70 inches in these examples due to the limitation of the fuel mass per basket position, whereas the calculation is conservatively performed for a height of 155 inch (BWR) or 150 inch (PWR). These results demonstrate that even for the fuel debris configuration of bare fuel pellets, the model using bare fuel rods is a conservative approach.

6.4.4.2.3 Distributed Enrichment in BWR Fuel

BWR fuel usually has an enrichment distribution in each planar cross section, and is characterized by the maximum planar average enrichment. For intact fuel it has been shown that

using the average enrichment for each fuel rod in a cross section is conservative, i.e. the reactivity is higher than calculated for the actual enrichment distribution (See Appendix 6.B). For damaged fuel assemblies, additional configurations are analyzed to demonstrate that the distributed enrichment does not have a significant impact on the reactivity of the damaged assembly under accident conditions. Specifically, the following two scenarios were analyzed:

- As a result of an accident, fuel rods with lower enrichment relocate from the top part to the bottom part of the assembly. This results in an increase of the average enrichment in the top part, but at the same time the amount of fuel in that area is reduced compared to the intact assembly.
- As a result of an accident, fuel rods with higher enrichment relocate from the top part to the bottom part of the assembly. This results in an increase of the average enrichment in the bottom part, and at the same time the amount of fuel in that area is increased compared to the intact assembly, leading to a reduction of the water content.

In both scenarios, a compensation of effects on reactivity is possible, as the increase of reactivity due to the increased planar average enrichment might be offset by the possible reduction of reactivity due to the change in the fuel to water ratio. A selected number of calculations have been performed for these scenarios and the results show that there is only a minor change in reactivity. These calculations are shown in Figure 6.4.13 in the group of the explicit assemblies. Consequently, it is appropriate to qualify damaged BWR fuel assemblies and fuel debris based on the maximum planar average enrichment. For assemblies with missing fuel rods, this maximum planar average enrichment has to be determined based on the enrichment and number of rods still present in the assembly when loaded into the DFC.

6.4.4.2.4 Results for MPC-68 and MPC-68FF

The MPC-68 and MPC-68FF allows the storage of up to sixteen DFCs in the shaded cells on the periphery of the basket shown in Figure 6.4.11. In the MPC-68FF, up to 8 of these cells may contain DFCs with fuel debris. The various configurations outlined in Sections 6.4.4.2.2 and 6.4.4.2.3 are analyzed with an enrichment of the intact fuel of $3.7\%^{235}$ U and an enrichment of damaged fuel or fuel debris of $4.0\%^{235}$ U. For the intact assembly, the bounding assembly of the 9x9E and 9x9F fuel classes was chosen. This assembly has the highest reactivity of all BWR assembly classes for the initial enrichment of $3.7 \text{ wt}\%^{235}$ U, as demonstrated in Table 6.4.7. The results for the various configurations are summarized in Figure 6.4.13 and in Table 6.4.8. Figure 6.4.13 shows the maximum k_{eff} , including bias and calculational uncertainties, for various actual and hypothetical damaged fuel or fuel debris configurations as a function of the fuel mass per unit length of the DFC. Table 6.4.8 lists the highest maximum k_{eff} for the various configurations. All maximum k_{eff} values are below the 0.95 regulatory limit.

6.4.4.2.5 Results for MPC-24E and MPC-24EF

The MPC-24E allows the storage of up to four DFCs with damaged fuel in the four outer fuel baskets cells shaded in Figure 6.4.12. The MPC-24EF allows storage of up to four DFCs with damaged fuel or fuel debris in these locations. These locations are designed with a larger box ID to accommodate the DFCs. For an enrichment of 4.0 wt% ²³⁵U for the intact fuel, damaged fuel and fuel debris, *and assuming no soluble boron*, the results for the various configurations outlined in Section 6.4.4.2.2 are summarized in Figure 6.4.14 and in Table 6.4.9. Figure 6.4.14 shows the maximum k_{eff}, including bias and calculational uncertainties, for various actual and hypothetical damaged fuel and fuel debris configurations as a function of the fuel mass per unit length of the DFC. For the intact assemblies, the 15x15H assembly class was chosen. This assembly class has the highest reactivity of all PWR assembly classes for a given initial enrichment. This is demonstrated in Table 6.1.4. Table 6.4.9 lists the highest maximum k_{eff} for the various configurations. All maximum k_{eff} values are below the 0.95 regulatory limit.

For an enrichment of 5.0 wt%²³⁵U for the intact fuel, damaged fuel and fuel debris, a minimum soluble boron concentration of 600 ppm is required. For this condition, calculations are performed for various hypothetical fuel debris configurations (i.e. bare fuel rods) as a function of the fuel mass per unit length of the DFC. Additionally, calculations are performed with reduced water densities in the DFC. The various conditions of damaged fuel, such as assemblies with missing rods or collapsed assemblies, were not analyzed, since the results in Figure 6.4.14 clearly demonstrate that these conditions are bounded by the hypothetical model for fuel debris based on regular arrays of bare fuel rods. Again, the 15x15H assembly class was chosen as the intact assembly since this assembly class has the highest reactivity of all PWR assembly classes as demonstrated in Table 6.1.4. The results are summarized in Table 6.4.12. Similar to the calculations with pure water (see Figure 6.4.14), the results for borated water show a distinct peak of the maximum k_{eff} as a function of the fuel mass per unit length. Therefore, fFor each condition, the table lists only the highest maximum k_{eff} , including bias and calculational uncertainties, i.e. the point of optimum moderation. The results show that the reactivity decreases with decreasing water density. This demonstrates that replacing all cladding and other structural material with water is conservative even in the presence of soluble boron in the water. All maximum k_{eff} values are below the 0.95 regulatory limit.

6.4.4.2.6 <u>Results for MPC-32 and MPC-32F</u>

The MPC-32 allows the storage of up to eight DFCs with damaged fuel in the outer fuel basket cells shaded in Figure 6.4.16. The MPC-32F allows storage of up to eight DFCs with damaged fuel or fuel debris in these locations. For the MPC-32 and MPC-32F, additional cases are analyzed due to the high soluble boron level required for this basket:

• The assembly classes of the intact assemblies are grouped, and minimum required soluble boron levels are determined separately for each group. The analyses are

performed for the bounding assembly class in each group. The bounding assembly classes are listed in Section 6.4.4.2.1.

• Evaluations of conditions with voided and filled guide tubes and various water densities in the MPC and DFC are performed to identify the most reactive condition.

In general, all calculations performed for the MPC-32 show the same principal behavior as for the MPC-24 (see Figure 6.4.14), i.e. the reactivity as a function of the fuel mass per unit length for the bare fuel rod array shows a distinct peak. Therefore, for each condition analyzed, only the highest maximum k_{eff} , i.e. the calculated peak reactivity, is listed in the tables. Evaluations of different diameters of the bare fuel pellets and the reduced water density in the DFC have been performed for a representative case using the 15x15F assembly class as the intact assembly, with voided guide tubes, a water density of 1.0 g/cc in the DFC and MPC, 2900 ppm soluble boron, and an enrichment of 5.0 wt% ²³⁵U for the intact and damaged fuel and fuel debris. For this case, results are summarized in Table 6.4.13. For each condition, the table lists the highest maximum keff; including bias and calculational uncertainties, i.e. the point of optimum moderation. The results show that the fuel pellet diameter in the DFC has an insignificant effect on reactivity, and that reactivity decreases with decreasing water density. The latter demonstrates that replacing all cladding and other structural material with water is conservative even in the presence of soluble boron in the water. Therefore, a typical fuel pellet diameter and a water density of 1.0 in the DFCs are used for all further analyses. Two enrichment levels are analyzed, 4.1 wt%²³⁵U and 5.0 wt%²³⁵U, consistent with the analyses for intact fuel only. In any calculation, the same enrichment is used for the intact fuel and the damaged fuel and fuel debris. For both enrichment levels, analyses are performed with voided and filled guide tubes, each with water densities of 0.93 and 1.0 g/cm³ in the MPC. In all cases, the water density inside the DFCs is assumed to be 1.0 g/cm³, since this is the most reactive condition as shown in Table 6.4.13. Results are summarized in Table 6.4.14. For each group of assembly classes, the table shows the soluble boron level and the highest maximum k_{eff} for the various moderation conditions of the intact assembly. The highest maximum k_{eff} is the highest value of any of the hypothetical fuel debris configurations, i.e. various arrays of bare fuel rods. All maximum keff values are below the 0.95 regulatory limit. Conditions of damaged fuel such as assemblies with missing rods or collapsed assemblies were not analyzed in the MPC-32, since the results in Figure 6.4.14 clearly demonstrate that these conditions are bounded by the hypothetical model for fuel debris based on regular arrays of bare fuel rods.

6.4.5 <u>Fuel Assemblies with Missing Rods</u>

For fuel assemblies that are qualified for damaged fuel storage, missing and/or damaged fuel rods are acceptable. However, for fuel assemblies to meet the limitations of intact fuel assembly storage, missing fuel rods must be replaced with dummy rods that displace a volume of water that is equal to, or larger than, that displaced by the original rods.

6.4.6 <u>Thoria Rod Canister</u>

The Thoria Rod Canister is similar to a DFC with an internal separator assembly containing 18 intact fuel rods. The configuration is illustrated in Figure 6.4.15. The k_{eff} value for an MPC-68F filled with Thoria Rod Canisters is calculated to be 0.1813. This low reactivity is attributed to the relatively low content in ²³⁵U (equivalent to UO₂ fuel with an enrichment of approximately 1.7 wt% ²³⁵U), the large spacing between the rods (the pitch is approximately 1", the cladding OD is 0.412") and the absorption in the separator assembly. Together with the maximum k_{eff} values listed in Tables 6.1.7 and 6.1.8 this result demonstrates, that the k_{eff} for a Thoria Rod Canister loaded into the MPC-68F together with other approved fuel assemblies or DFCs will remain well below the regulatory requirement of $k_{eff} < 0.95$.

6.4.7 <u>Sealed Rods replacing BWR Water Rods</u>

. Some BWR fuel assemblies contain sealed rods filled with a non-fissile material instead of water rods. Compared to the configuration with water rods, the configuration with sealed rods has a reduced amount of moderator, while the amount of fissile material is maintained. Thus, the reactivity of the configuration with sealed rods will be lower compared to the configuration with water rods. Any configuration containing sealed rods instead of water rods is therefore bounded by the analysis for the configuration with water rods and no further analysis is required to demonstrate the acceptability. Therefore, for all BWR fuel assemblies analyzed, it is permissible that water rods are replaced by sealed rods filled with a non-fissile material.

6.4.8 <u>Non-fuel Hardware in PWR Fuel Assemblies</u>

Non-fuel hardware such as Thimble Plugs (TPs), Burnable Poison Rod Assemblies (BPRAs), Control Rod Assemblies (CRAs), Axial Power Shaping Rods (APSRs) and similar devices are permitted for storage with all PWR fuel types. Non-fuel hardware is inserted in the guide tubes of the assemblies. For pure water, the reactivity of any PWR assembly with inserts is bounded by (i.e. lower than) the reactivity of the same assembly without the insert. This is due to the fact that the insert reduces the amount of moderator in the assembly, while the amount of fissile material remains unchanged. This conclusion is supported by the calculation listed in Table 6.2.4, which shows a significant reduction in reactivity as a result of voided guide tubes, i.e. the removal of the water from the guide tubes.

With the presence of soluble boron in the water, non-fuel hardware not only displaces water, but also the neutron absorber in the water. It is therefore possible that the insertion results in an increase of reactivity, specifically for higher soluble boron concentrations. As a bounding approach for the presence of non-fuel hardware, analyses were performed with empty (voided) guide tubes, i.e. any absorption of the hardware is neglected. If assemblies contain an instrument tube, this tube remains filled with borated water. Table 6.4.6 shows results for the variation in water density for cases with filled and voided guide tubes. These results show that the optimum moderator density depends on the soluble boron concentration, and on whether the guide tubes are filled or assumed empty. For the MPC-24 with 400 ppm and the MPC-32 with 1900 ppm, voiding the guide tubes results in a reduction of reactivity. All calculations for the MPC-24 and MPC-24E, and for the MPC-32 with 1900 ppm are therefore performed with water in the guide tubes. For the MPC-32 with 2600 ppm, the reactivity for voided guide tubes slightly exceeds the reactivity for filled guide tubes. However, this effect is not consistent across all assembly classes. Table 6.4.10, Table 6.4.11 and Table 6.4.14 shows results with filled and voided guide tubes for all assembly classes in the MPC-32/32F at 2600 ppm4.1 wt% ^{235}U and 5.0 wt% ^{235}U . Some classes show an increase, other classes show a decrease as a result of voiding the guide tubes. Therefore, for the results presented in the Section 6.1, Table 6.1.5, Table 6.1.6 and Table 6.1.12, the maximum value for each class is chosen for each enrichment level.

In summary, from a criticality safety perspective, non-fuel hardware inserted into PWR assemblies are acceptable for all allowable PWR types, and, depending on the assembly class, can increase the safety margin.

6.4.9 <u>Neutron Sources in Fuel Assemblies</u>

Fuel assemblies containing start-up neutron sources are permitted for storage in the HI-STORM 100 System. The reactivity of a fuel assembly is not affected by the presence of a neutron source (other than by the presence of the material of the source, which is discussed later). This is true because in a system with a keff less than 1.0, any given neutron population at any time, regardless of its origin or size, will decrease over time. Therefore, a neutron source of any strength will not increase reactivity, but only the neutron flux in a system, and no additional criticality analyses are required. Sources are inserted as rods into fuel assemblies, i.e. they replace either a fuel rod or water rod (moderator). Therefore, the insertion of the material of the source into a fuel assembly will not lead to an increase of reactivity either.

6.4.10 Applicability of HI-STAR Analyses to HI-STORM 100 System

Calculations previously supplied to the NRC in applications for the HI-STAR 100 System (Docket Numbers 71-9261 and 72-1008) are directly applicable to the HI-STORM storage and HI-TRAC transfer casks. The MPC designs are identical. The cask systems differ only in the overpack shield material. The limiting condition for the HI-STORM 100 System is the fully flooded HI-TRAC transfer cask. As demonstrated by the comparative calculations presented in Tables 6.1.1 through 6.1.8, the shield material in the overpack (steel and lead for HI-TRAC, steel

HI-STORM FSAR

Proposed Rev. 2A

REPORT HI-2002444

for HI-STAR) has a negligible impact on the eigenvalue of the cask systems. As a result, this analysis for the 125-ton HI-TRAC transfer cask is applicable to the 100-ton HI-TRAC transfer cask. In all cases, for the reference fuel assemblies, the maximum k_{eff} values are in good agreement and are conservatively less than the limiting k_{eff} value (0.95).

6.4.11 Fixed Neutron Absorber Material

The MPCs in the HI-STORM 100 System can be manufactured with one of two possible neutron absorber materials: Boral or Metamic. Both materials are made of aluminum and B_4C powder. Boral has an inner core consisting of B_4C and aluminum between two outer layers consisting of aluminum only. This configuration is explicitly modeled in the criticality evaluation and shown in Figures 6.3.1 through 6.3.3 for each basket. Metamic is a single layer material with the same overall thickness and the same ^{10}B loading (in g/cm²) for each basket. The majority of the criticality evaluations documented in this chapter are performed using Boral as the fixed neutron absorber. For a selected number of bounding cases, analyses are also performed using Metamic instead of Boral. The results for these cases are listed in Table 6.4.15, together with the corresponding result using Boral and the difference between the two materials for each case. Individual cases show small differences for the two materials. However, the differences are mostly below two times the standard deviation (the standard deviation is about 0.0008 for all cases in Table 6.4.15), indicating that the results are statistically equivalent. Furthermore, the average difference is well below one standard deviation, and all cases are below the regulatory limit of 0.95. This demonstrates that the two fixed neutron absorber materials are identical from a criticality perspective. All results obtained for Boral are therefore directly applicable to Metamic and no further evaluations using Metamic are required.

6.4.12 Eccentric Fuel Positioning

Evaluations have been performed to study the effect of eccentric fuel positioning. In these evaluations, all assemblies (and DFCs, as applicable) in a basket are moved as close as possible either to the center or to the periphery of the basket, as permitted by the basket structure. Results for a selected number of cases are presented in Table 6.4.16, in comparison with the corresponding reference cases with assemblies and DFCs centered in the basket cell locations. The following observations can be made:

- For the MPC-24E/EF, moving the content to the center or to the periphery will both result to a reduction in reactivity. Therefore, assuming the centered location of the cell content is bounding.
- For the MPC-32/32F, moving the content to the center of the basket results in an increase in reactivity, whereas moving the content to the periphery results in a reduction in reactivity.

However, the increase is small, and all listed values for k_{eff} are below the regulatory limit. Further, the absolute value of the increase (movement to center) is much lower than the absolute value of the decrease (movement to periphery). A realistic configuration where all assemblies and DFCs would be randomly positioned in their cells, would therefore result in a slight reduction in reactivity compared to the centered configuration.

• +1

The studies demonstrate that the effect of eccentric positioning of fuel assemblies and DFCs is negligible, since in most cases it results in a substantial reduction in reactivity, and in cases where a small increase is observed, the maximum k_{eff} is still below the regulatory limit.

HI-STORM FSAR REPORT HI-2002444

	Water Density		MCNP4a Maximum k _{eff} ^{††}			
Case Number	Internal	External	MPC-24 (17x17A01 @ 4.0%)	MPC-68 (8x8C04 @ 4.2%)		
1	100%	single cask	0.9368	0.9348		
2	100%	100%	0.9354	0.9339		
3	100%	70%	0.9362	0.9339		
4	100%	50%	0.9352	0.9347		
5	100%	20%	0.9372	0.9338		
6	100%	10%	0.9380	0.9336		
7	100%	5%	0.9351	0.9333		
8	100%	0%	0.9342	0.9338		
9	70%	0%	0.8337	0.8488		
10	50%	0%	0.7426	0.7631		
11	20%	0%	0.5606	0.5797		
12	10%	0%	0.4834	0.5139		
13	5%	0%	0.4432	0.4763		
14	10%	100%	0.4793	0.4946		

MAXIMUM REACTIVITIES WITH REDUCED WATER DENSITIES FOR CASK ARRAYS[†]

For an infinite square array of casks with 60cm spacing between cask surfaces.

^{††} Maximum k_{eff} includes the bias, uncertainties, and calculational statistics, evaluated for the worst case combination of manufacturing tolerances.

t

MPC-2	24 (17x17A01 @ 4.0% EN	RICHMENT) (no soluble	e boron)
Flooded Condition (% Full)	Vertical Orientation	Flooded Condition (% Full)	Horizontal Orientation
25	0.9157	25	0.8766
50	0.9305	50 ,	0.9240
75	0.9330	75	. 0.9329
100	0.9368	100	0.9368
	MPC-68 (8x8C04 @ 4	.2% ENRICHMENT)	
Flooded Condition (% Full)	Vertical Orientation	Flooded Condition (% Full)	Horizontal Orientation
25	0.9132	23.5	0.8586
50	0.9307	50	0.9088
75	0.9312	76.5	0.9275
100	0.9348	100	0.9348
MPC-32	(15x15F @ 5.0 % ENRIC	HMENT) 2600ppm Solu	ble Boron
Flooded Condition (% Full)	Vertical Orientation	Flooded Condition (% Full)	Horizontal Orientation
25	0.8927	31.25	0.9213
50	0.9215	50	0.9388
75	0.9350	68.75	0.9401
100	0.9445	100	0.9445

REACTIVITY EFFECTS OF PARTIAL CASK FLOODING

Notes:

1. All values are maximum k_{eff} which include bias, uncertainties, and calculational statistics, evaluated for the worst case combination of manufacturing tolerances.

REACTIVITY EFFECT OF FLOODING THE PELLET-TO-CLAD GAP

Pellet-to-Clad Condition	MPC-24 17x17A01 4.0% Enrichment	MPC-68 8x8C04 4.2% Enrichment
dry .	0.9295	0.9279
flooded with unborated water	0.9368	0.9348

Notes:

1. All values are maximum k_{eff} which includes bias, uncertainties, and calculational statistics, evaluated for the worst case combination of manufacturing tolerances.

REACTIVITY EFFECT OF PREFERENTIAL FLOODING OF THE DFCs

DFC Configuration	Preferential Flooding	Fully Flooded
MPC-68 or MPC-68F with 68 DFCs (Assembly Classes 6x6A/B/C, 7x7A and 8x8A)	0.6560	0.7857
MPC-68 or MPC-68FF with 16 DFCs (All BWR Assembly Classes)	0.6646	0.9328
MPC-24E or MPC-24EF with 4 DFCs (All PWR Assembly Classes)	0.7895	0.9480
MPC-32 or MPC-32 with 8 DFCs (All PWR Assembly Classes)	0.7213	0.9378

Notes:

k

1. All values are maximum k_{eff} which includes bias, uncertainties, and calculational statistics, evaluated for the worst case combination of manufacturing tolerances.

HI-STORM FSAR REPORT HI-2002444 Proposed Rev. 2A

÷

	MCN	
Condition	Maximu	m ^{tt} k _{eff}
	DFC	DFC
	Dimensions:	Dimensions:
	ID 4.93"	_ ID 4.81"
	THK. 0.12"	THK. 0.11"
6x6 Fuel Assembly		
6x6 Intact Fuel	0.7086	0.7016
w/32 Rods Standing	0.7183	0.7117
w/28 Rods Standing	0.7315	0.7241
w/24 Rods Standing	0.7086	0.7010
w/18 Rods Standing	0.6524	0.6453
Collapsed to 8x8 array	0.7845	0.7857
Dispersed Powder	0.7628	0.7440
7x7 Fuel Assembly		
7x7 Intact Fuel	0.7463	0.7393
w/41 Rods Standing	0.7529	0.7481
w/36 Rods Standing	0.7487	0.7444
w/25 Rods Standing	0.6718	0.6644

MAXIMUM $k_{\text{eff}} \, \text{VALUES}^{\dagger}$ in the damaged fuel container

^{††} Maximum k_{eff} includes bias, uncertainties, and calculational statistics, evaluated for the worst case combination of manufacturing tolerances.

[†] These calculations were performed with a planar-average enrichment of 3.0% and a ¹⁰B loading of 0.0067 g/cm², which is 75% of a minimum ¹⁰B loading of 0.0089 g/cm². The minimum ¹⁰B loading in the MPC-68F is 0.010 g/cm². Therefore, the listed maximum k_{eff} values are conservative

Internal Water Density [†] in g/cm ³	Maximum k _{eff}				
	MPC-24 (400ppm) @ 5.0 %	(1900	C-32 Oppm) .1 %	(2600	C-32 0ppm) .0 %
Guide Tubes	filled	filled	void -	filled	void
1.005	NC ^{††}	0.9403	0.9395	NC	0.9481
1.00	0.9314	0.9411	0.9400	0.9445	0.9483
0.99	NC	0.9393	0.9396	0.9438	0.9462
0.98	0.9245	0.9403	0.9376	0.9447	0.9465
0.97	NC	0.9397	0.9391	0.9453	0.9476
0.96	NC	NC	NC ·	0.9446	0.9466
0.95	0.9186	. 0.9380 .	0.9384	0.9451	0.9468
0.94	NC	NC	NC	0.9445	0.9467
0.93	0.9130	0.9392	0.9352	0.9465	0.9460
0.92	NC	NC ····	NC	0.9458	0.9450
0.91	NC -	· NC ·	NC	0.9447	0.9452
0.90	0.9061	0.9384	NC ·	0.9449	0.9454
0.80	0.8774	0.9322	NC	0.9431	0.9390
0.70	0.8457	0.9190	NC.	0.9339	0.9259
0.60	0.8095 -	0.8990	NC	0.9194	0.9058
0.40	` 0.7225	0.8280	NC .	0.8575	0.8410
0.20	0.6131	0.7002	NC *	0.7421	0.7271
0.10	0.5486	0.6178	,NC	0.6662	0.6584

. .

MAXIMUM k_{eff} VALUES WITH REDUCED BORATED WATER DENSITIES

[†] External moderator is modeled at 0%. This is consistent with the results demonstrated in Table 6.4.1. ^{††} NC: Not Calculated

HI-STORM FSAR

REPORT HI-2002444

Fuel Assembly Class	Maximum k _{eff}
бхбА	0.8287
6x6C	0.8436
7x7A -	0.8399
7x7B	0.9109
8x8A	0.8102
8x8B	0.9131
8x8C	0.9115
8x8D	0.9125
8x8E	0.9049
8x8F	0.9233
9x9A	0.9111
9x9B	0.9134
9x9C	0.9103
9x9D	0.9096
9x9E	0.9237
9x9F.	0.9237
9x9G	0.9005
10x10A	0.9158
10x10B	0.9156
10x10C	0.9152
10x10D	0.9182
10x10E	0.8970

MAXIMUM k_{eff} VALUES FOR INTACT BWR FUEL ASSEMBLIES WITH A MAXIMUM PLANAR AVERAGE ENRICHMENT OF 3.7 wt% ²³⁵U

MAXIMUM k_{eff} VALUES IN THE GENERIC BWR DAMAGED FUEL CONTAINER FOR A MAXIMUM INITIAL ENRICHMENT OF 4.0 wt% ²³⁵U FOR DAMAGED FUEL AND 3.7 wt% ²³⁵U FOR INTACT FUEL

• •

Model Configuration inside the DFC	Maximum k _{eff}
Intact Assemblies (4 assemblies analyzed)	0.9241
Assemblies with missing rods (7 configurations analyzed)	0.9240
Assemblies with distributed enrichment (4 configurations analyzed)	0.9245
Collapsed Assemblies (6 configurations analyzed)	0.9258
Regular Arrays of Bare Fuel Rods (31 configurations analyzed)	0.9328

MAXIMUM k_{eff} VALUES IN *THE MPC-24E/EF WITH* THE GENERIC PWR DAMAGED FUEL CONTAINER FOR A MAXIMUM INITIAL ENRICHMENT OF 4.0 wt% ²³⁵U AND NO SOLUBLE BORON.

Model Configuration inside the DFC	Maximum k _{eff}
Intact Assemblies (2 assemblies analyzed)	0.9340
Assemblies with missing rods (4 configurations analyzed)	0.9350
Collapsed Assemblies (6 configurations analyzed)	0.9360
Regular Arrays of Bare Fuel Rods (36 configurations analyzed)	0.9480

Fuel Class	Minimum	MPC-32 (2600ppm) @ 5.0 %				
· · · · ·	Soluble Boron Content	Guide Tubes Filled, Moderator Density 0.93		Guide Tubes Voided, Moderator Density 1.0		
	<i>(ppm)</i>	1.0 g/cm ³	0.93 g/cm ³	1.0 g/cm ³	0.93 g/cm ³	
14x14A	1900	0.8930	0.8955	0.8896	0.8897	
14x14B	1900 .	0.9162	0.9157	0.9094	0.9082 -	
14x14C	1900 ;	0.9334	0.9347	0.9422	0.9374	
14x14D	1900 .	0.8962	0.8937	0.8863	0.8825	
14x14E	1900	0.6669	0.6625	0.6669	0.6625	
15x15A	2400	0.9246	0.9271	0.9242	0.9233	
15x15B	2400	0.9430	0.9444	0.9473	0.9435	
15x15C	2400	0.9292	0.9311	0.9336	0.9335	
15x15D	2600	0.9426	0.9419	0.9466	0.9440	
15x15E	· 2600	0.9394	0.9415	0.9434	0.9442	
15x15F	2600 -	0.9445	0.9465	0.9483	0.9460	
15x15G	2400	0.9256	0.9253	0.9252	0.9229	
15X15H	2600	0.9271	0.9301	0.9317	0.9333	
16X16A	1900	0.9411	0.9405	0.9442	0.9396	
17x17A	2600	0.9105	0.9145	0.9160	0.9161	
17x17B	2600	0.9345	0.9358	0.9371	0.9356	
17X17C	2600	0.9417	0.9431	0.9437	0.9430	

MAXIMUM k_{eff} VALUES WITH FILLED AND VOIDED GUIDE TUBES FOR THE MPC-32 AT 5.0 wt% ENRICHMENT

HI-STORM FSAR REPORT HI-2002444 Proposed Rev. 2A

• •

Fuel Class	Minimum		MPC-32 @ 4.1 %			
	Soluble Boron Content	Guide Ti	ibes Filled	Guide Tubes Voided		
	(ppm)	1.0 g/cm ³	0.93 g/cm ³	1.0 g/cm ³	0.93 g/cm ³	
14x14A	1300 ·	0.9005	0.9004	0.8944	0.8905	
14x14B	1300	0.9217	0.9179	0.9103	0.9074	
14x14C	1300	0.9373	0.9363	0.9393	0.9329	
14x14D	1300	0.8901	0.8862	0.8770	0.8727	
14x14E	1300	0.6726	0.6680	0.6726	0.6680	
15x15A	1800	0.9181	0.9183	0.9147	0.9095	
15x15B	1800	0.9355	0.9350	0.9356	0.9310	
15x15C	1800	0.9221	0.9229	0.9238	0.9205	
15x15D	1900	0.9375	0.9384	0.9380	0.9329	
15x15E	1900	0.9348	0.9340	0.9365	0.9336	
15x15F	1900	0.9411	0.9392	0.9400	0.9352	
15x15G	1800	0.9103	0.9083	0.9075	0.9038	
15X15H	1900	0.9267	0.9274	0.9276	0.9268	
16X16A	1300	0.9429	0.9396	0.9401	0.9329	
17x17A	1900	0.9105	0.9111	0.9106	0.9091	
17x17B	1900	0.9309	0.9307	0.9297	0.9243	
17X17C	1900	0.9355	0.9347	0.9350	0.9308	

MAXIMUM k_{eff} VALUES WITH FILLED AND VOIDED GUIDE TUBES FOR THE MPC-32 AT 4.1 wt% ENRICHMENT

MAXIMUM k_{eff} VALUES IN THE MPC-24E/24EF WITH THE GENERIC PWR DAMAGED FUEL CONTAINER FOR A MAXIMUM INITIAL ENRICHMENT OF 5.0 wt% ²³⁵U AND 600 PPM SOLUBLE BORON.

Water Density inside the DFC	Bare Fuel Pellet Diameter	Maximum k _{eff}
1.00	minimum	0.9185
1.00	typical	0.9181
1.00	maximum	0.9171
0.95	typical	0.9145
0.90	typical	0.9125
0.60	typical	0.9063
0.10	typical	0.9025
. 0.02	typical	0.9025

MAXIMUM k_{eff} VALUES IN THE MPC-32/32F WITH THE GENERIC PWR DAMAGED FUEL CONTAINER FOR A MAXIMUM INITIAL ENRICHMENT OF 5.0 wt% ²³⁵U, 2900 PPM SOLUBLE BORON AND THE 15x15F ASSEMBLY CLASS AS INTACT ASSEMBLY.

Water Density inside the DFC	Bare Fuel Pellet Diameter	Maximum k _{eff}	
1.00	minimum	0.9374	
1.00	typical	0.9372	
1.00	maximum	0.9373	
0.95	typical	0.9369	
0.90	typical	0.9365	
0.60	typical	0.9308	
0.10	typical	0.9295	
0.02	typical	0.9283	

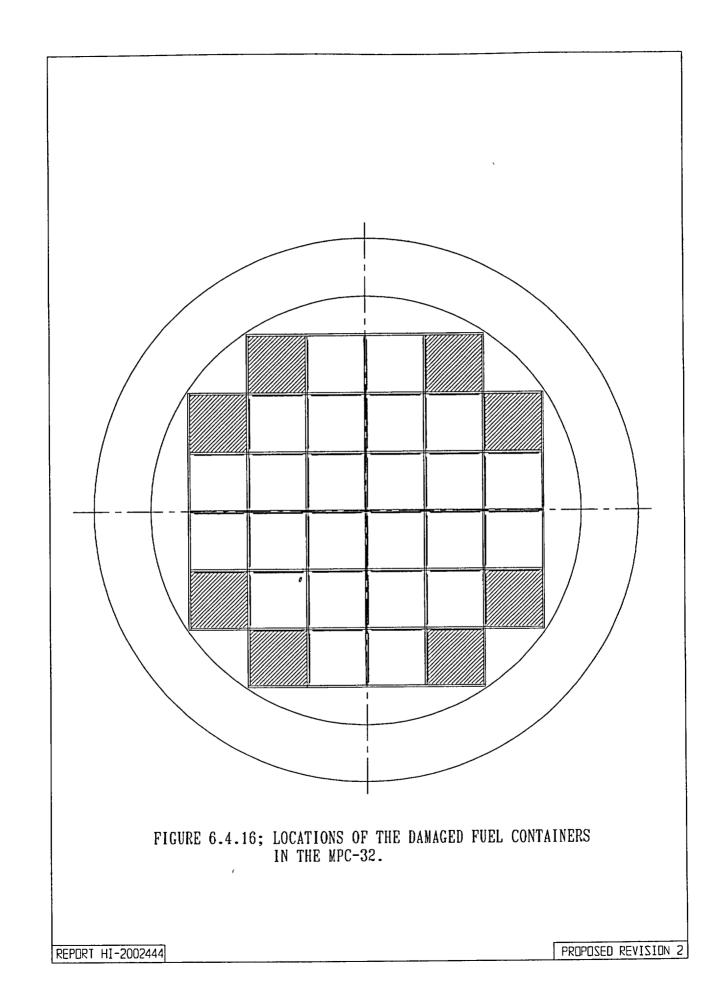
BOUNDING MAXIMUM keff VALUES FOR THE MPC-32 AND MPC-32F WITH UP TO 8 DFCs UNDER VARIOUS MODERATION CONDITIONS.

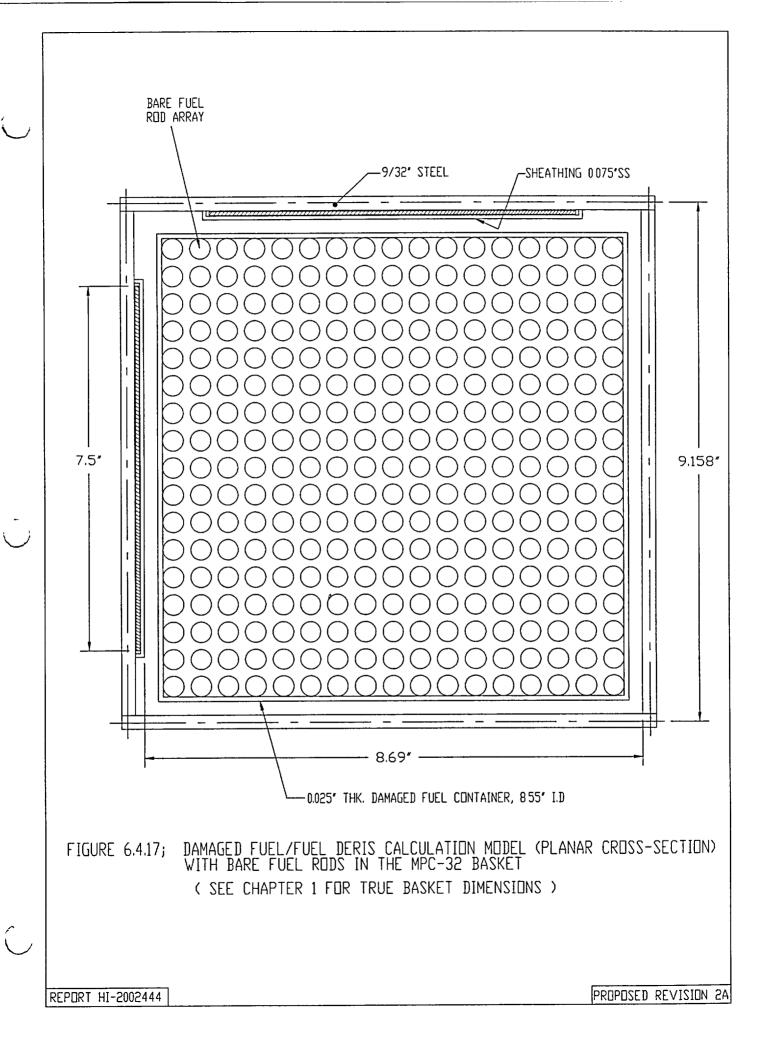
Fuel Assembly Class of Intact	Initial Enrichment	Enrichment Soluble Boron				
Fuel	(wt% ²³⁵ U)	Content (ppm)	Filled Guide Tubes		Voided Guide Tubes	
-		- -	1.0 g/cm ³	0.93 g/cm ³	1.0 - g/cm ³	0.93 g/cm ³
14x14A	4.1	1500	0.9277	0.9283	0.9336	0.9298
through 14x14E	5.0	2300	0.9139	0.9180	0.9269	0.9262
15x15A, B, C,	4.1	1900	0.9329	0.9341	0.9339	0.9327
G	5.0	2700	0.9294	0.9321	0.9344	0.9357
15x15D, E, F,	4.1	2100	0.9321	0.9308	0.9326	0.9317
H	5.0	2900	0.9307	0.9343	0.9372	0.9378
16x16A	4.1	1500	0.9322	0.9321	0.9335	0.9302
	5.0	2300	0.9198	0.9239	0.9289	0.9267
17x17A, B, C	4.1	2100 .	0.9276	0.9278	0.9283	0.9269
	5.0	2900	0.9284 -	0.9323	0.9331	0.9336

HI-STORM FSAR REPORT HI-2002444

Case	Maxii	Reactivity Difference	
	BORAL	METAMIC	- -
MPC-68, Intact Assemblies	0.9457	0.9452	-0.0005
MPC-68, with 16 DFCs	0.9328	0.9315	-0.0013
MPC-68F with 68 DFCs	0.8021	0.8019	-0.0002
MPC-24, 0ррт	0.9478	0.9491	+0.0013
MPC-24, 400ppm	0.9447	0.9457	+0.0010
MPC-24E, Intact Assemblies, 0ppm	0.9468	0.9494	+0.0026
MPC-24E, Intact Assemblies, 300ppm	0.9399	0.9410	+0.0011
MPC-24E, with 4 DFCs, 0ppm	0.9480	0.9471	-0.0009
MPC-32, Intact Assemblies, 1900ppm	0.9411	0.9397	-0.0014
MPC-32, Intact Assemblies, 2600ppm	0.9483	0.9471	-0.0012
Average Difference	<u>, * ***, ****, ***</u> , ****		+0.0001

COMPARISON OF MAXIMUM k_{eff} VALUES FOR DIFFERENT FIXED NEUTRON ABSORBER MATERIALS


REACTIVITY EFFECTS OF ECCENTRIC POSITIONING OF CONTENT (FUEL ASSEMBLIES AND DFCs) IN BASKET CELLS


CASE	Contents Content moved towards centered center of basket (Reference)		Content moved towards basket periphery		
	Maximum k _{eff}	Maximum k _{eff}	k _{eff} Difference to Reference	Maximum k _{eff}	k _{eff} Difference to Reference
MPC-24E/EF, Intact Fuel and Damaged Fuel/Fuel Debris, 5% Enrichment, 600ppm Soluble Boron	0.9185	0.9178	-0.0007	0.9132	-0.0053
MPC-32/32F, Intact Fuel, Assembly Class 16x16A, 4.1% Enrichment, 1300ppm Soluble Boron	0.9429	0.9468	0.0039	0.9068	-0.0361
MPC-32/32F, Intact Fuel, Assembly Class 15x15B, 5.0% Enrichment, 2400ppm Soluble Boron	0.9473	0.9493	0.0020	0.9306	-0.0167
MPC-32/32F, Intact Fuel and Damaged Fuel/Fuel Debris, Assembly Class 15x15F (Intact), 5% Enrichment, 2900ppm Soluble Boron	0.9378	0.9397	0.0019	0.9277	-0.0101

HI-STORM FSAR

Proposed Rev. 2A

REPORT HI-2002444

APPENDIX 6.C: CALCULATIONAL SUMMARY

The following table lists the maximum k_{eff} (including bias, uncertainties, and calculational statistics), MCNP calculated k_{eff} , standard deviation, and energy of average lethargy causing fission (EALF) for each of the candidate fuel types and basket configurations.

Table 6.C.1CALCULATIONAL SUMMARY FOR ALL CANDIDATE FUEL TYPESAND BASKET CONFIGURATIONS

~	<i>,</i>)	MPC	-24	, ='		
Fuel Assembly Designation	Cask	Maximum k _{eff}	Calculated k _{eff}	Std. Dev. (1-sigma)	EALF : (eV)	
14x14A01	HI-STAR	0.9295	0.9252	0.0008	0.2084	
14x14A02	HI-STAR	0.9286	0.9242	0.0008	0.2096	
14x14A03	HI-STORM	0.3080 -	0.3047	0.0003	3.37E+04	
14x14A03	HI-TRAC	0.9283	0.9239	0.0008	0.2096	
14x14A03	HI-STAR	0.9296	- 0.9253	. "0.0008 ""	0.2093	
14x14B01	HI-STAR	0.9159	, 0.9117 .	0.0007,	· 0.2727	
14x14B02	- HI-STAR	0.9169	- 0.9126	0.0008	0.2345	
14x14B03	HI-STAR	0.9110	0.9065	÷ ~0.0009	0.2545	
- 14x14B04	HI-STAR	0.9084	0.9039	0.0009,	0.2563	
B14x14B01	- HI-TRAC	0.9237	0.9193	0.0008 (0.2669	
B14x14B01	HI-STAR	0.9228	0.9185	0.0008	· 0.2675 ···	
14x14C01	HI-TRAC	0.9273	0.9230 、	. 0.0008	- 0.2758 .	
14x14C01	HI-STAR	0.9258	, 0.9215	0.0008	,0.2729	
14x14C02	HI-STAR	0.9265	0.9222	- ,0.0008	0.2765	
- 14x14C03	HI-TRAC	0.9274	0.9231	0.0008	0.2839	
14x14C03	HI-STAR	0.9287	0.9242	0.0009	<u>.</u> 0.2825	

HI-STORM FSAR

REPORT HI-2002444

Appendix 6.C-1

MPC-24							
Fuel Assembly Designation	Cask	Maximum k _{eff}	Calculated k _{eff}	Std. Dev. (1-sigma)	EALF (eV)		
14x14D01	HI-TRAC	0.8531	0.8488	0.0008	0.3316		
14x14D01	HI-STAR	0.8507	0.8464	0.0008	0.3308		
14x14E01	HI-STAR	0.7598	0.7555	0.0008	0.3890		
14x14E02	HI-TRAC	0.7627	0.7586	0.0007	0.3591		
14x14E02	HI-STAR	0.7627	0.7586	0.0007	0.3607		
14x14E03	HI-STAR	0.6952	0.6909	0.0008	0.2905		
15x15A01	HI-TRAC	0.9205	0.9162	0.0008	0.2595		
15x15A01	HI-STAR	· 0.9204	0.9159	0.0009	0.2608		
15x15B01	HI-STAR	0.9369	0.9326	0.0008	0.2632		
15C15B02	HI-STAR	0.9338	0.9295	0.0008	0.2640		
15x15B03	HI-STAR	0.9362	0.9318	0.0008	0.2632		
_15x15B04	HI-STAR	0.9370 -	0.9327	0.0008	0.2612		
15x15B05	HI-STAR	0.9356	0.9313	0.0008	0.2606 ,		
15x15B06	HI-STAR	0.9366	0.9324	0.0007	0.2638		
B15x15B01	HI-TRAC	0.9387	0.9344	0.0008	0.2616		
B15x15B01	HI-STAR	0.9388	0.9343	0.0009	0.2626		
_ 15x15C01	HI-STAR	0.9255	0.9213	0.0007	0.2493		
15x15C02	HI-STAR	0.9297	0.9255	0.0007	0.2457		
15x15C03	HI-STAR	0.9297	0.9255	0.0007	0.2440		
15x15C04	HI-STAR .	0.9311	0.9268	0.0008	0.2435		
B15x15C01	HI-TRAC	0.9362	0.9319	0.0008	0.2374		
B15x15C01	HI-STAR	· 0.9361	0.9316 -	- 0.0009	0.2385		

HI-STORM FSAR REPORT HI-2002444

Appendix 6.C-2

Proposed Rev. 2A

 \smile

	MPC-24							
Fuel Assembly Designation	Cask	Maximum k _{eff}	Calculated k _{eff}	Std. Dev. (1-sigma)	EALF (eV)			
15x15D01	HI-STAR	0.9341	0.9298	0.0008	0.2822			
⁻ 15x15D02	HI-STAR	• 0.9367 •	··· 0.9324	0.0008	0.2802			
·15x15D03	HI-STAR	0.9354	0.9311	0.0008	0.2844			
15x15D04	HI-TRAC	0.9354	0.9309	0.0009	0.2963			
15x15D04	HI-STAR	• 0.9339	0.9292	0.0010	0.2958			
15x15E01	HI-TRAC	0.9392	0.9349	0.0008	0.2827			
15x15E01	HI-STAR	0.9368	0.9325	0.0008	0.2826			
15x15F01	HI-STORM	·• 0.3648 [·]	0.3614	0.0003	3.03E+04			
15x15F01	HI-TRAC	0.9393	0.9347	0.0009	0.2925			
15x15F01	HI-STAR	0.9395	0.9350	0.0009	0.2903			
15x15G01	HI-TRAC	0.8878	0.8836	0.0007	0.3347			
15x15G01	HI-STAR	0.8876	0.8833	0.0008	0.3357			
15x15H01	HI-TRAC	0.9333	0.9288	0.0009	0.2353			
15x15H01	HI-STAR	0.9337	0.9292	0.0009	0.2349			
16x16A01	HI-STORM	0.3447	0.3412	0.0004	3.15E+04			
16x16A01	HI-TRAC	0.9273	0.9228	0.0009	0.2710			
16x16A01	HI-STAR	0.9287	0.9244	0.0008	0.2704			
16x16A02	HI-STAR	0.9263	0.9221	0.0007	0.2702			
17x17A01	HI-STAR	0.9368	0.9325	0.0008	0.2131			
17x17A0 2 /	HI-STORM	0.3243	0.3210	0.0003	3.23E+04			
17x17A0 2 /	HI-TRAC	0.9378	0.9335	0.0008	0.2133			
17x17A0 2 1	HI-STAR	0.9368	0.9325	0.0008	0.2131			

ż

HI-STORM FSAR

3

REPORT HI-2002444

Appendix 6.C-3

Proposed Rev. 2A

1.1

	MPC-24							
Fuel Assembly Designation	Cask	Maximum k _{eff}	Calculated k _{eff}	Std. Dev. . (1-sigma)	EALF (eV)			
17x17A0 3 2	HI-STAR	0.9329	0.9286	- 0.0008	0.2018			
17x17B01	HI-STAR	. 0.9288	0.9243	0.0009	0.2607			
17x17B02	HI-STAR	0.9290	0.9247	0.0008	0.2596			
17x17B03	HI-STAR	0.9243	0.9199	0.0008	0.2625			
17x17B04	HI-STAR	0.9324	0.9279	0.0009	0.2576			
17x17B05	HI-STAR	0.9266	0.9222	0.0008	0.2539			
17x17B06	HI-TRAC	0.9318	0.9275	0.0008	0.2570			
17x17B06	HI-STAR	0.9311	0.9268	0.0008	0.2593			
17x17C01	HI-STAR	0.9293	0.9250	0.0008	0.2595			
17x17C02	HI-TRAC	. 0.9319	0.9274	0.0009	0.2610			
17x17C02	HI-STAR	0.9336	0.9293	0.0008	0.2624			

MPC-68							
Fuel Assembly Designation	Cask	Maximum k _{eff}	Calculated	Std. Dev. (1-sigma)	EALF (eV)		
- 6x6A01	HI-STAR	0.7539	0.7498	0.0007	0.2754		
6x6A02	HI-STAR	∴ ∏0.7517 ¯	.0.7476	0.0007	0.2510		
6x6A03 -	HI-STAR	0.7545	0.7501	0.0008	0.2494		
6x6A04	HI-STAR	0.7537	0.7494	0.0008	0.2494		
6x6A05 ~	HI-STAR	0.7555	0.7512	0.0008	0.2470		
6x6A06	- HI-STAR	0.7618	0.7576	0.0008	0.2298		
6x6A07	HI-STAR	, 0.7588	0.7550	0.0005	0.2360		
6x6A08 -		0.7808	0.7766	0.0007	0.2527		
- B6x6A01	- HI-TRAC	· 0.7732 · .	. 0.7691	0.0007	0.2458		
B6x6A01	HI-STAR	0.7727	0.7685	0.0007	0.2460		
B6x6A02	HI-TRAC	0.7785	0.7741	0.0008	0.2411		
_ ⁻ B6x6A02	HI-STAR	0.7782	0.7738	0.0008	0.2408		
B6x6A03	, HI-TRAC	0.7886	0.7846	0.Õ007	0.2311		
- B6x6A03	HI-STAR	0.7888	0.7846	0.0007	0.2310		
6x6B01	HI-STAR	0.7604	0.7563	0.0007	0.2461		
_6x6B02 📜 -	HI-STAR	0.7618	0.7577	0.0007	. 0.2450		
- 6x6B03	HI-STAR	0.7619	0.7578	0.0007	0.2439		
6x6B04	HI-STAR	0.7686	0.7644	0.0008	0.2286		
6x6B05 ,	HI-STAR	0.7824	0.7785	0.0006	0.2184		
B6x6B01	HI-TRAC	0.7833	0.7794	0.0006	0.2181		
B6x6B01 ⁻	HI-STAR	0.7822	0.7783	0.0006	0.2190		

به سد ۲

· 9457 1 7

HI-STORM FSAR

REPORT HI-2002444

Appendix 6.C-5

Proposed Rev. 2A

- -

.

ŗ

	MPC-68							
Fuel Assembly Designation	Cask	Maximum k _{eff}	Calculated k _{eff}	Std. Dev. (1-sigma)	EALF (eV)			
6x6C01	HI-STORM	0.2759	0.2726	0.0003	1.59E+04			
6x6C01	HI-TRAC	0.8024	0.7982	0.0008	0.2135			
6x6C01	HI-STAR	0.8021	0.7980	0.0007	0.2139			
7x7A01	HI-TRAC	0.7963	0.7922	0.0007	0.2016			
7x7A01	HI-STAR	. 0.7974	0.7932	0.0008	0.2015			
7x7B01	HI-STAR	0.9372	0.9330	0.0007	0.3658			
7x7B02	HI-STAR	0.9301	0.9260	0.0007	0.3524			
7x7B03	HÌ-STAR	0.9313	0.9271	0.0008	0.3438			
7x7B04	HI-STAR	0.9311	0.9270	0.0007	0.3816			
7x7B05	HI-STAR	0.9350	0.9306	0.0008	0.3382			
7x7B06	HI-STAR	0.9298	0.9260	0.0006	0.3957 -			
B7x7B01	HI-TRAC	0.9367	0.9324	0.0008	0.3899			
B7x7B01	HI-STAR	0.9375	0.9332	0.0008	0.3887			
B7x7B02	HI-STORM	0.4061	0.4027	0.0003	2.069E+04			
B7x7B02	HI-TRAC	0.9385	0.9342	0.0008	0.3952			
B7x7B02	HI-STAR	0.9386	0.9344	0.0007	0.3983			
8x8A01	HI-TRAC	0.7662	0.7620	0.0008	0.2250			
8x8A01	HI-STAR	0.7685	0.7644	0.0007	0.2227			
8x8A02	HI-TRAC	0.7690	0.7650	0.0007	0.2163			
8x8A02	HI-STAR	0.7697	0.7656	0.0007	0.2158			
8x8B01	HI-STAR	0.9310	0.9265	0.0009	0.2935			
8x8B02	HI-STAR	0.9227	. 0.9185	0.0007	0.2993			

HI-STORM FSAR REPORT HI-2002444

Appendix 6.C-6

r			م م م م م 	· · · · ·			
MPC-68							
Fuel Assembly Designation	Cask	Maximum k _{eff}	* Calculated k _{eff}	Std. Dev. (1-sigma)	EALF (eV)		
8x8B03	HI-STAR	0.9299	0.9257	0.0008 [*]	0.3319		
8x8B04	HI-STAR	0.9236	0.9194	0.0008	0.3700		
B8x8B01	HI-TRAC	0.9352	0.9310	0.0008	0.3393.		
B8x8B01	HI-STAR	0.9346	0.9301	0.0009	0.3389		
⁻ · B8x8B02	HI-TRAC	0,9401	_0.9359	0.0007	0.3331		
[•] B8x8B02	HI-STAR	0.9385	0.9343	0.0008	0.3329		
B8x8B03	HI-STORM	0.3934	0.3900	0.0004	1.815E+04		
' B8x8B03	HI-TRAC	0.9427	0.9385	- 0.0008	0.3278		
B8x8B03	HI-STAR	0.9416	0.9375	0.0007	0.3293		
8x8C01	HI-STAR	0.9315	0.9273	0.0007	0.2822		
8x8C02	HI-STAR	0.9313	0.9268	0.0009	0.2716		
8x8C03	HI-STAR	0.9329	0.9286	· 0.0008			
8x8C04	HI-STAR	0.9348	0.9307	0.0007	0.2915		
8x8C05	HI-STAR	0.9353	0.9312	. 0.0007	0.2971		
8x8C06	HI-STAR	0.9353	[•] 0.9312	0.0007	0.2944*		
8x8C07	HI-STAR	0.9314	0.9273	, Ó.0007	0.2972		
8x8C08	HI-STAR	0.9339	0.9298	0.0007			
8x8C09	HI-STAR	0.9301	0.9260	<u> </u>	0.3183		
8x8C10	HI-STAR	0.9317	0.9275	0.0008	0.3018		
8x8C11	HI-STAR	0.9328	0.9287	. "0.0007	0.3001		
8x8C12	HI-STAR	0.9285		0.0008	0.3062		
B8x8C01	HI-TRAC	0.9348	0.9305	0.0008	0.3114		

HI-STORM FSAR

REPORT HI-2002444

Appendix 6.C-7

MPC-68							
Fuel Assembly Designation	Cask	Maximum k _{eff}	Calculated k _{eff}	Std. Dev. (1-sigma)	EALF (eV)		
B8x8C01	HI-STAR	0.9357	0.9313	0.0009	0.3141		
B8x8C02	HI-STORM	0.3714	0.3679	0.0004	2.30E+04		
B8x8C02	HI-TRAC	0.9402	0.9360	0.0008	0.3072		
B8x8C02	HI-STAR	0.9425	0.9384	0.0007	0.3081		
B8x8C03	HI-TRAC	0.9429	0.9386	0.0008	0.3045		
B8x8C03	HI-STAR	0.9418	0.9375	0.0008	0.3056		
8x8D01	HI-STAR	0.9342	0.9302	0.0006	0.2733		
8x8D02	HI-STAR	0.9325	0.9284	0.0007	0.2750		
8x8D03	HI-STAR	0.9351	0.9309	0.0008	0.2731		
8x8D04	HI-STAR	. 0.9338	0.9296	0.0007	0.2727		
8x8D05	HI-STAR	0.9339	0.9294	0.0009	0.2700		
8x8D06	HI-STAR	0.9365	0.9324	0.0007	0.2777		
8x8D07	HI-STÅR	0.9341	0.9297	0.0009	0.2694		
8x8D08	HI-STAR	0.9376	0.9332	0.0009	0.2841		
B8x8D01	HI-TRAC	0.9408	0.9368	0.0006	0.2773		
B8x8D01	HI-STAR	0.9403	0.9363	0.0007	0.2778		
8x8E01	HI-TRAC	0.9309	0.9266	0.0008	0.2834		
8x8E01	HI-STAR	. 0.9312	0.9270	0.0008	0.2831		
8x8F01	HI-TRAC	0.9396	0.9356	0.0006	0.2255		
8x8F01	HI-STAR	0.9411	0.9366	0.0009	0.2264		
9x9A01	HI-STAR	0.9353	0.9310	0.0008	0.2875		
9x9A02	HI-STAR	0.9388	0.9345	0.0008	0.2228		

HI-STORM FSAR

REPORT HI-2002444

Appendix 6.C-8

Proposed Rev. 2A

.

Ì	MPC-68							
	Fuel Assembly Designation	Cask	Maximum k _{eff}	Calculated	Std. Dev. (1-sigma)	EALF (eV)		
	9x9A03	HI-STAR	0.9351	0.9310	0.0007	0.2837		
ſ	9x9A04	HI-STAR	² 0.9396	0.9355	0.0007	0.2262		
ſ	B9x9A01	HI-STORM	0.3365	0.3331	0.0003	1.78E+04		
ſ	B9x9A01	HI-TRAC	0.9434	0.9392	0.0007	0.2232		
ſ	B9x9A01	HI-STAR	0.9417	0.9374	0.0008	0.2236		
	9x9B01	HI-STAR	0.9380	0.9336	0.0008	0.2576		
	9x9B02	HI-STAR	0.9373	0.9329	0.0009	0.2578		
	9x9B03	HI-STAR	0.9417	0.9374	0.0008	0.2545		
ſ	B9x9B01	HI-TRAC	0.9417	0.9376	0.0007	0.2504		
	·B9x9B01	HI-STAR	0.9436	0.9394	0.0008	0.2506		
'	9x9C01	HI-TRAC	0.9377	0.9335	0.0008	0.2697		
	9x9C01	HI-STAR	0.9395	0.9352	0.0008	0.2698		
	9x9D01	HI-TRAC	0.9387	0.9343	0.0008	0.2635		
	9x9D01	HI-STAR	0.9394	0.9350	0.0009	0.2625		
	9x9E01	HI-STAR	0.9334	0.9293	0.0007	0.2227		
	9x9E02	HI-STORM	0.3676	0.3642	0.0003	2.409E+04		
	9x9E02	HI-TRAC	0.9402	0.9360	0.0008	0.2075 /		
	9x9E02	HI-STAR	0.9401	0.9359	0.0008	0.2065_ ;		
	9x9F01	· HI-STAR	0.9307	0.9265	0.0007	0.2899		
	9x9F02	HI-STORM	0.3676	0.3642	0.0003	2.409E+04		
	9x9F02	HI-TRAC	0.9402	0.9360	0.0008	0.2075		
	9x9F02	HI-STAR	0.9401	0.9359	0.0008	0.2065		

HI-STORM FSAR

REPORT HI-2002444

Appendix 6.C-9

Proposed Rev. 2A

-

\$

)

MPC-68						
Fuel Assembly Designation	Cask	Maximum k _{eff}	Calculated k _{eff}	Std. Dev. (1-sigma)	EALF (eV)	
9x9G01	, HI-TRAC	0.9307	0.9265	0.0007	0.2193	
· 9x9G01	HI-STAR	0.9309	0.9265	0.0008	0.2191	
10x10A01	HĨ-STÁR	0.9377	0.9335	0.0008	0.3170	
-10x10A02	HI-STAR	0.9426	0.9386	0.0007	0.2159	
10x10A03	HI-STAR	0.9396	0.9356	0.0007	0.3169	
B10x10A01	HI-STORM	0.3379	0.3345	0.0003	1.74E+04	
B10x10A01	HI-TRAC	0.9448	0.9405	0.0008	0.2214	
B10x10A01	HI-STAR	0.9457	0.9414	0.0008	0.2212	
10x10B01	HI-STAR	0.9384	0.9341	0.0008	0.2881	
10x10B02	, HI-STAR	0.9416	0.9373	0.0008	0.2333	
10x10B03	HI-STAR	0.9375	0.9334	0.0007	0.2856	
B10x10B01	HI-TRAC	0.9443	0.9401	0.0007	0.2380	
B10x10B01	HI-STAR	0.9436	0.9395	0.0007	0.2366	
10x10C01	HI-TRAC	0.9430	0.9387	0.0008	0.2424	
10x10C01	HI-STAR	0.9433	0.9392	0.0007	0.2416	
10x10D01	HI-TRAC	0.9383	0.9343	0.0007	0.3359	
10x10D01	HI-STAR	0.9376	0.9333	0.0008	0.3355	
10x10E01	HI-TRAC	0.9157	0.9116	0.0007	0.3301	
10x10E01	HI-STAR	0.9185	0.9144	0.0007	0.2936	

MPC-24 400PPM SOLUBLE BORON							
Fuel Assembly Designation	Cask	Maximum , k _{eff}	Calculated k _{eff}	Std. Dev. (1-sigma)	EALF (eV)		
14x14A03	HI-STAR	0.8884 -	0.8841	0.0008	0.2501		
B14x14B01	HI-STAR	0.8900	0.8855	* 0.0009	0.3173		
14x14C03	HI-STAR	0.8950	0.8907	0.0008	- 0.3410		
· 14x14D01	HI-STAR	0.8518	· 0.8475	0.0008	0.4395		
14x14E02	HI-STAR	0.7132	0.7090	0.0007	0.4377		
15x15A01	HI-STAR	0.9119	0.9076	0.0008	0.3363		
B15x15B01	HI-STAR	0.9284	0.9241	0.0008	0.3398		
B15x15C01	HI-STAR	0.9236	0.9193 ·	0.0008	0.3074		
15x15D04	HI-STAR	0.9261	· 0.9218 ·	0.0008	0.3841		
15x15E01	HI-STAR	0.9265	0.9221	0.0008	0.3656		
- 15x15F01	HI-STORM (DRY)	0.4013	0.3978	0.0004	28685		
15x15F01	· HI-TRAC	0.9301	0.9256	0.0009	0.3790		
15x15F01	HI-STAR	0.9314	0.9271	0.0008	0.3791		
,15x15G01	HI-SŤAR	0.8939	0.8897	0.0007	0.4392		
15x15H01	HI-TRAC	0.9345 -	0.9301	0.0008	0.3183		
15x15H01	n HI-STAR	0.9366	0.9320	0.0009	0.3175		
16x16A01	HI-STAR	0.8955	0.8912	0.0008	0.3227		
17x17A0 2 /	HI-STAR	0.9264	0.9221	0.0008	0.2801		
17x17B06	HI-STAR	0.9284	0.9241 🧹	0.0008	0.3383		
17x17C02	HI-TRAC	0.9296	0.9250	0.0009	0.3447		
17x17C02	HI-STAR	0.9294	0.9249	0.0009	0.3433		

. .

1

HI-STORM FSAR REPORT HI-2002444

Appendix 6.C-11

MPC-24E/MPC-24EF, UNBORATED WATER						
Fuel Assembly Designation	Cask	Maximum k _{eff}	Calculated k _{eff}	Std. Dev. (1-sigma)	EALF (eV)	
14x14A03	HI-STAR	0.9380	0.9337	0.0008	0.2277	
B14x14B01	HI-STAR	0.9312	0.9269	0.0008	0.2927	
14x14C01	HI-STAR	0.9356	0.9311	0.0009	0.3161	
14x14D01	HI-STAR	0.8875	0.8830	0.0009	0.4026	
14x14E02	HI-STAR ⁻	0.7651	0.7610	0.0007	0.3645	
15x15A01	HI-STAR	0.9336	0.9292	0.0008	0.2879	
B15x15B01	, HI-STAR	0.9465	0.9421	0.0008	0.2924	
B15x15C01	· · HI-STAR	0.9462	0.9419	0.0008	0.2631	
15x15D04	HI-STAR	0.9440	0.9395	0.0009	0.3316	
15x15E01	• HI-STAR	0.9455	0.9411	0.0009	0.3178	
15x15F01	HI-STORM (DRY)	0.3699	0.3665	0.0004	3.280e+04	
15x15F01	HI-TRAC	0.9465	0.9421	0.0009	0.3297	
15x15F01	HI-STAR	0.9468	0.9424	0.0008	0.3270	
15x15G01	HI-STAR	0.9054	0.9012	0.0007	0.3781	
15x15H01	HI-STAR	0.9423	0.9381	0.0008	0.2628	
16x16A01	HI-STAR	0.9341	0.9297	0.0009	0.3019	
17x17A0 2 1	HI-TRAC	0.9467	0.9425	0.0008	0.2372	
17x17A0 2 1	HI-STAR	0.9447	0.9406	0.0007	0.2374	
17x17B06	, HI-STAR	0.9421	0.9377	0.0008	0.2888	
17x17C02	HI-STAR	0.9433	0.9390	0.0008	0.2932	

3	MPC-24E/MPC-24EF, 300PPM BORATED WATER						
Fuel Assembly Designation	Cask	Maximum k _{eff}	Calculated k _{eff}	Std. Dev. (1-sigma)	EALF (eV)		
14x14A03	· HI-STAR	0.8963	0.8921	0.0008	0.2231		
B14x14B01	HI-STAR	0.8974	0.8931	0.0008	0.3214		
14x14C01	HI-STAR	0.9031	0.8988	0.0008	0.3445		
:14x14D01	HI-STAR	0.8588	0.8546	· 0.0007	0.4407		
14x14E02	HI-STAR	0.7249	0.7205	0.0008	0.4186		
-15x15A01	HI-STAR	0.9161	0.9118	0.0008	0.3408		
B15x15B01	HI-STAR	0.9321	0.9278	·`0.0008	0.3447		
B15x15C01	HI-STAR	0.9271	0.9227	0.0008	0.3121		
15x15D04	HI-STAR	0.9290	0.9246	0.0009	0.3950		
15x15E01	HI-STAR	0.9309	0.9265	-0.0009	0.3754		
15x15F01	HI-STORM (DRY)	0.3897	0.3863	0.0003	3.192E+04		
15x15F01	- HI-TRAC	0.9333	0.9290	0.0008	0.3900		
15x15F01	- HI-STAR	0.9332	0.9289	0.0008	0.3861		
15x15G01	- HI-STAR	0.8972 -	- 0.8930		0.4473		
15x15H01	HI-TRAC	0.9399	- 0.9356 -	0.0008	- 0.3235		
15x15H01	HI-STAR	0.9399 -	0.9357 -	0.0008	0.3248		
16x16A01	HI-STAR	0.9021	0.8977	0.0009	0.3274		
17x17A0 2 1	HI-STAR -	0.9332	0.9287	0.0009	-0.2821		
17x17B06	HI-STAR	0.9316	0.9273	0.0008	0.3455		
17x17C02	HI-TRAC	- 0.9320	-0.9277	0.0008	0.2819		
17x17C02	HI-STAR	- 0.9312	- 0.9270 -	0.0007 .	0.3530`		

HI-STORM FSAR

REPORT HI-2002444

Appendix 6.C-13

MPC-32, 1900 PPM-BORATED-WATER4.1% Enrichment, Bounding Cases						
Fuel Assembly Designation	Cask	Maximum k _{eff}	Calculated k _{eff}	Std. Dev. (1-sigma)	EALF (eV)	
14x14A03	HI-STAR	0.9005	0.8966.	0.0006	0.2784	
B14x14B01	, HI-STAR	0.9217	0.9176	0.0007	0.3476	
14x14C01	HI-STAR	0.9393	0.9351	0.0007	0.4362	
14x14D01	HI-STAR	0.8901	0.8862	0.0006	0.4687	
14x14E02	HI-STAR	0.6726	0.6687	0.0006	0.4920	
15x15A01	HI-STAR	0.9183	0.9142 [.]	0.0007	0.4741	
B15x15B01	HI-STAR	0.9356	0.9315	0.0007	0.5145	
B15x15C01	HI-STAR	0.9238	0.9200	0.0005	0.4631	
15x15D04	• HI-STAR	0.9384	0.9345	0.0006	0.5594	
15x15E01	HI-STAR	0.9365	0.9326	0.0006	0.5403	
15x15F01	HI-STORM (DRY)	0.4691	0.4658	0.0003	1.207E+04	
15x15F01	HI-TRAC	0.9403	0.9364 ⁻	0.0006	0.4938	
15x15F01	HI-STAR	0.9411	0.9371	0.0006	0.4923	
15x15G01	HI-STAR	0.9103	0.9064	0.0006	0.5583	
15x15H01	HI-STAR	0.9276	0.9237	0.0006	0.4710	
16x16A01	HI-STAR	0.9429	0.9388	0.0007	0.3601	
17x17A0 2 1	HI-STAR	0.9111	0.9072	0.0006	0.4055	
17x17B06	HI-STAR	0.9309	0.9269	0.0006	0.4365	
17x17C02	HI-TRAC	0.9365	0.9327	0.0006	0.4468	
17x17C02	HI-STAR	0.9355	0.9317	0.0006	0.4469	

HI-STORM FSAR REPORT HI-2002444

:

Appendix 6.C-14

MPC-32-2600 PPM BORATED WATER, GUIDE TUBES FILLED							
Fuel Assembly Designation	Cask	Maximum k _{eff}	Calculated k _{eff}	Std. Dev. (1-sigma)	EALF (eV)		
- 14x14A03	- HI-STAR	0.8362	- 0.8324 - ·	0.0006	0:4651		
B14x14B01	HI-STAR	- 0.8633 -	0.8594	0.0006	0.5923		
` 14x14C01	HI-STAR	0.8808	0.8768	0.0007	0.6567		
14x14D01	HI-STAR	- 0.8 485	0.8446	- 0.0006 -	0.7957		
14x14E02	HI-STAR	- 0.62 40 -	- 0.6200	0.0006 -	0.9061		
-15x15A01	HI-STAR	0.9121	0.9082	<u> 0.0006</u>	0.6343		
B15x15B01	HI-STAR	0.9286	0.9247 -	9.0006	0.6613		
. B15x15C01 -	- · HI-STAR	0.9150	0.9110	•_ 0.0007	0.5997		
15x15D0 4	- HI-STAR	0.9419		_~ 0.0006	0.7572		
15x15E01	- HI-STAR	- 0.9415 -	0.9376	~ 0.0006	- 0.719 4		
15x15F01	HI-STORM (DRY)	0.5142	0.5108	0.0004	1.228E+04		
15x15F01	HI-TRAC	0.9463 -	0.9423 -	- 0.0007	0.7409		
- 15x15F01 -	- HI-STAR	0.9465	0.9425	0.0006	0.7421		
15x15G01	HI-STAR	0.9109	0.9070	0.0006	· 0.8486		
15x15H01	HI-STAR	- 0.9301	0.9263	0.0006	- <u>0.6257</u>		
16x16A01	-HI-STAR	0.8868	0.8829	0.0006	0.6105		
17x17A02	HI-STAR	- 0.9145	- 0.9105 -	 0.0006	0.5382		
17x17B06	HI-STAR	0.9358	0.9318	0.0007	0.6500		
17x17C02	HI-TRAC	0.9424	0.9385	0.0006	0.6659		
17x17C02	HI-STAR -	·· 0.9431	0.9391	0.0006	0.6628 -:		

۰*

HI-STORM FSAR

REPORT HI-2002444

Appendix 6.C-15

- --

م مود مرد در د

- ---

Proposed Rev. 2A

., ,

,

apint nas der Jav

MPC-32, 2600 PPM BORATED WATER, GUIDE TUBES VOIDED 5.0% Enrichment, Bounding Cases							
Fuel Assembly Designation	- Cask	Maximum k _{eff}	Calculated k _{eff}	Std. Dev. (1-sigma)	EALF (eV)		
14x14A03	HI-STAR	0.8955	0.8916	0.0006	0.3998		
B14x14B01	HI-STAR	0.9162	0.9122	0.0006	0.4582		
14x14C01	HI-STAR	0.9422	0.9383	0.0006	0.5791		
14x14D01	HI-STAR	0.8962	0.8921	0.0007	0.6154		
14x14E02	HI-STAR	0.6669	0.6630	0.0006	0.6684		
15x15A01	HI-STAR	0.9271	0.9230	0.0007	0.6143		
B15x15B01	HI-STAR	0.9473	0.9434	0.0006	0.6693		
B15x15C01	HI-STAR	0.9336	0.9297	0.0006	0.6017		
15x15D04	HI-STAR	0.9466	0.9425	0.0007	0.7525		
15x15E01	HI-STAR	0.9434	0.9394	0.0007	0.7215		
15x15F01	HI-STORM · (DRY)	0.5142	0.5108	0.0004	1.228E+04		
15x15F01	HI-TRAC · ·	0.9470	0.9431	0.0006	0.7456		
· 15x15F01	HI-STAR	0.9483	0.9443	0.0007	0.7426		
15x15G01	HI-STAR	0.9256-	0.9215	0.0007	0.7237		
15x15H01	HI-STAR	0.9333	0.9292	0.0007	0.7015		
16x16A01	- HI-STAR -	0.9442	0.9401	0.0007	0.5316		
17x17A0 2 1	HI-STAR	0.9161	0.9122	0.0006	0.6141		
-17x17B06	HI-STAR	0.9371	0.9331	0.0006	0.6705		
17x17C02	· HI-TRAC	0.9436	0.9396	0.0006	0.6773		
17x17C02	HI-STAR	0.9437	0.9399	0.0006	0.6780 -		

HI-STORM FSAR REPORT HI-2002444

Appendix 6.C-16

Note: Maximum k_{eff} = Calculated $k_{eff} + K_c \times \sigma_c + Bias + \sigma_B$ where: $K_c = 2.0$ $\sigma_c = Std. Dev. (1-sigma)$ Bias = 0.0021 $\sigma_B = 0.0006$ See Subsection 6.4.3 for further explanation.

Appendix 6.C-17