ANO-1 Reactor Vessel Nozzle Repair

والمتحدثات والمستحد والمستحد

ۍ

Entergy Operations Inc. October 16, 2002

Agenda

•••

۰.

*	Introduction/Purpose	Craig Anderson
***	1R16 (Spring 2001) Findings/Repair	William Sims
*	1R17 NDE Findings	Steve Lewis
*	1R17 Weld Repair Details	William Sims
*	Evaluation of Weld Repair	Steve Lewis
	Assurance for Not Having Leakage Path to Annulus	Steve Lewis
**	Safety Perspective	Mike Krupa
*	Concluding Remarks	Craig Anderson

Introductory Remarks

Craig Anderson

Status of ANO-1 CRDM Nozzle Examinations

- 100% Bare Metal Visual Exam Completed
 Periphery Nozzle 56 was identified to be leaking
- Volumetric Examinations in Progress

and the second second

Liquid Penetrant and Eddy Current Exams Performed on Nozzle 56

1R16 (Spring 2001) Findings/Repair

and the second second

William Sims Entergy A600 Technical Lead

Repairs Performed During 1R16 on Nozzle 56

- Visual Inspection Performed Identified Nozzle 56 was the Only Leaking Nozzle
- UT and PT Performed
 - Flaw was determined to be axial in the weld to nozzle interface at ~30 degrees from low hill side

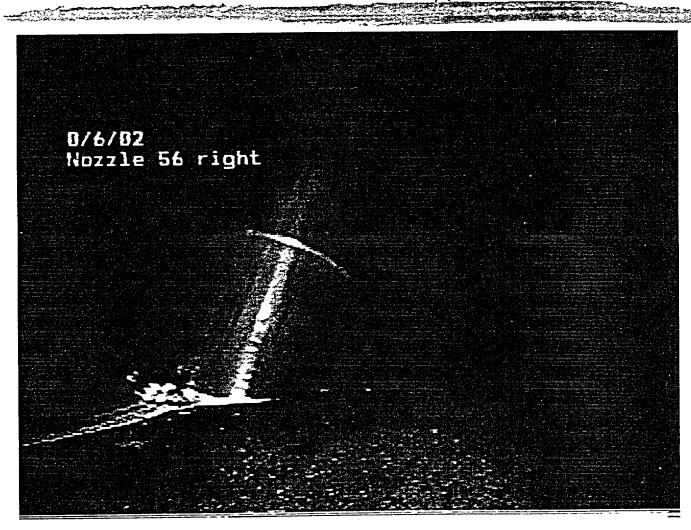
- > Extended above J-weld in the nozzle
- > Circumferential flaw in nozzle below J-weld

Repairs Performed During 1R16 on Nozzle 56 (cont.)

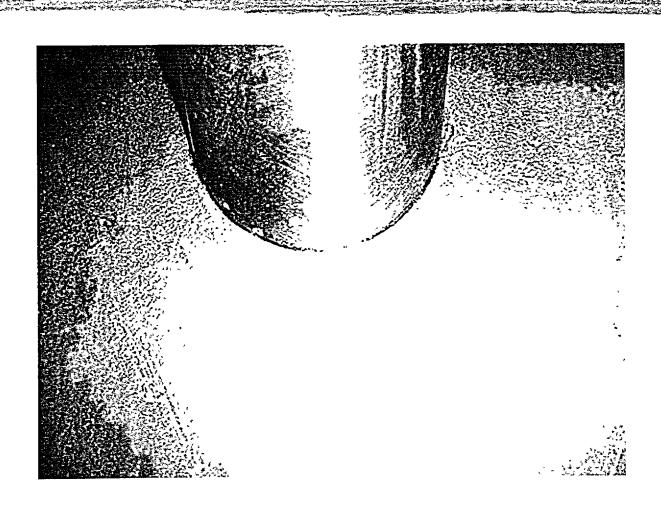
- Severed Nozzle above the OD Circ Crack
- Excavated the Flaw in nozzle/J-Weld to Butter Region At Triple Point
- Excavated Area Filled with 152 Weld Material to Surface of Existing 082/182 weld

7

New Weld was PT Cleared with Progressive Exams


1R17 NDE Findings

Steve Lewis Supervisor, Engineering


Status of Current Findings of Examinations of CRDM Nozzles

- Top Head Bare Metal Visual Inspections
 - Nozzle 56 Determined to be the only leaking nozzle
 - ➢ No evidence of wastage

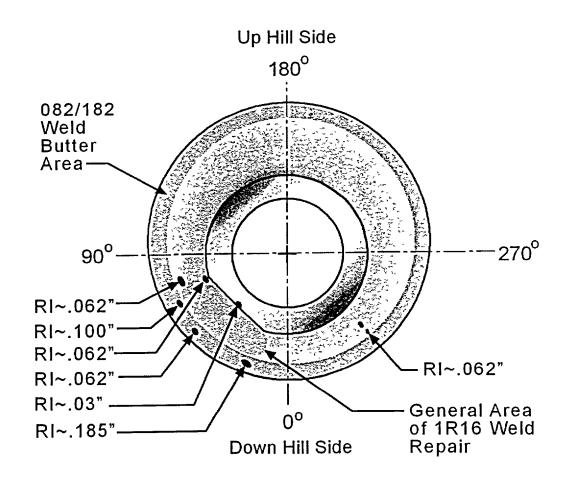
1R17 Nozzle 56 Boric Acid

1R17 Post Cleaning of Nozzle 56

Status of Current Findings of Examinations of CRDM Nozzles (cont.)

Nozzle 56 Ultrasonic Data

A second s


- Four Indications Adjacent to 1R16 Weld Repair
- Two Indications on Hill Side of Nozzle

Flaw #	Depth	Length Az.	Above	Below
1A	0.177	0.56 20°	.16	
2A	0.145	0.44 37 °	.12	
4A	0.177	0.28 175 °	[°] .16	
5A	0.125	0.6 164 °	° 0	.12
1C	0.266	0.4 24 °		*
2C	0.180	0.68 39 °	.32	~ ==

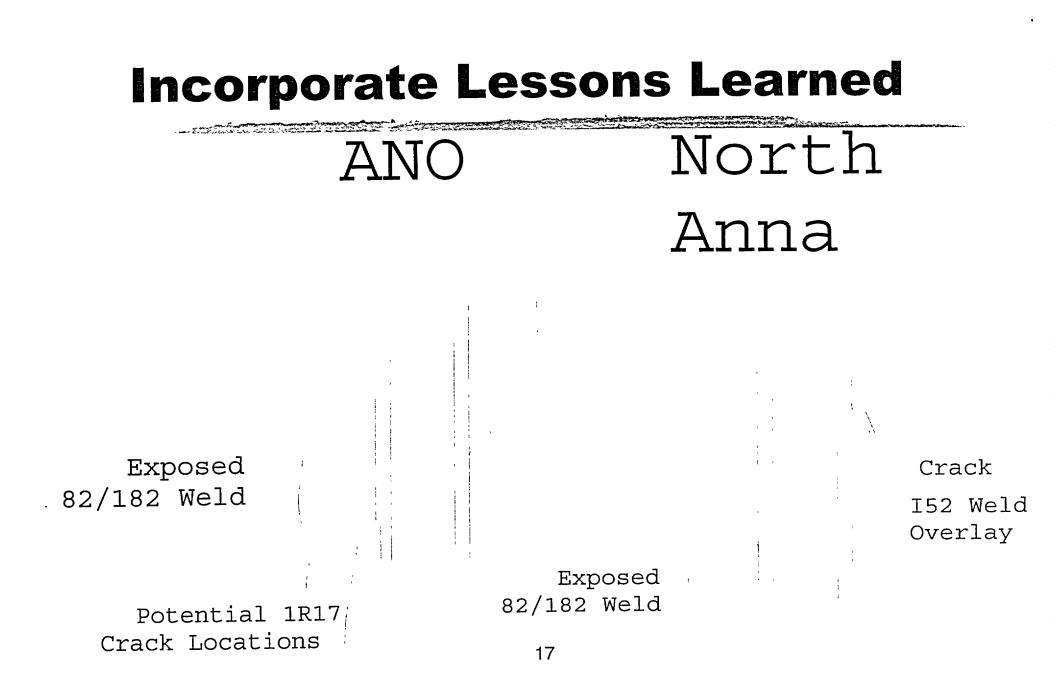
*With uncertainty below weld only

No Indications Identified to Have Circumferential Extent

PT Layout of Nozzle 56 (General Representation)

Preliminary Results of Nozzle 56 Findings

- No Evidence of Alloy 052 cracking
- No Wastage Identified at Nozzle Bore Annulus Area from Bare Metal Visual Inspection (Boric Acid Showed No Discoloration)


1R17 CRDM Nozzle Weld Repair

William Sims Entergy A600 Technical Lead

Design Repair Objectives

- Maintain Safe Operation of the Unit
 - Provide ASME Code Compliance for Two Cycles of Operation
 - Maintain Code margins
 - Isolate the Flaw from the PWSCC Environment
 - Use of PWSCC resistant material
 - Control of repair processes
 - ➢ No leaks

Incorporate Lessons Learned

Description of Weld Repair Options

	, 1 ,	
 Embedded Flaw Repair Features (used in combination or individually) 360° J-Groove weld and butter overlay 360° Nozzle inlay or overlay 		
 > 90° Nozzle inlay > Weld overlay on nozzle OD surface to mitigate crack initiation 		Overlay
 Or Just Remove The Flaw 	: ; ; ;	Overlay

18

Inlay

Weld Repair Process

- Identification of 082/182 Material Boundary
 - Entergy will identify boundary between existing 082 material and SS clad using "ferrite" tool
 - Marks will be applied to location of 082/182 SS clad interface to identify boundary
 - Personnel will be trained and qualified by blind mockup
 - > Independent verification will be performed
 - > Welds will overlap SS Clad by a minimum of 1/2"
 - > Written instructions will control this process

Weld Repair Process

- Weld Process Applied at ANO-1
 - J-weld overlay will be at least 3/8" thick (minimum of 3 layers)
- Post Weld NDE
 - Surface exam of J-weld overlay and nozzle inlay
 - > Volumetric exam of nozzle inlay
 - > Visual of weld surfaces

Weld Repair Design

والمراجبين المرادين المستحسين المالي

Steve Lewis Supervisor, Engineering

Weld Repair Design

Repairs were Designed by Detailed State of the Art Analysis

- Repairs are Designed by Detailed 3D FE Analysis
- Stress determination performed by Dominion Engineering
- > All other analysis performed by Structural Integrity Associates

Weld Repair Design (cont.)

- Testing and history to date has shown that 052 integrity is established for greater than two cycles
 - > EPRI NP-3061, SSC of A600 and A690, May 1983
 - Tests @ 680°F for 6300 hrs
 - Could not get 052 to crack due to PWSCC
 - McDermott Tech Report, Evaluation of 82, 152 and 052 SSC, Constant Extension Rate Tests performed
 - 152(052) Materials tested at 650°F
 - >Westinghouse Bettis Pub. PWSCC Crack Growth (1999)

Weld Repair Design

- Westinghouse Bettis Publication on PWSCC Crack Growth Results for Alloy 82H and Alloy 052
 - ➢ Fracture mechanics crack growth test a 360°C (680°F)

> Results compared to industry data

- Alloy 82H crack growth rates consistent with industry data for Alloy 600
- No crack extension in Alloy 52 at high stress intensity and extended times

Recent Industry Experience with Alloy 052/152

DC Cook Inlay Repair
VC Summer Butt Weld Repair
Canopy Seal Weld Overlay Repairs
BWR Nozzle to Safe End Weld Overlay Repairs
North Anna Overlay Repairs
ANO-1 Repair in 1R16

To Date, No Problems Have Been Reported

Weld Repair Design (cont.)

Summary

and the second se

- Material Demonstrated to be Resistant to PWSCC Initiation and Growth
- Repair Qualified to Meet All Pertinent ASME Code Section III & XI Criteria

Repair Assurance for Not Having Leak Paths to Annulus

and a second second second

2.2

Repair Assurance for Not Having Leak Paths to Annulus

Evaluation of Leak Paths to Annulus

- > Boron from above RV nozzle annulus
- > Flowpath through ID of nozzle to annulus
- > Flowpath through 052 weld material
- > Flowpath around 052 weld repair

Boron from Above RV Nozzle Annulus

Geometry and Temperature Result in Low Probability of Maintaining a Wetted Surface

Not Considered to be a Credible Condition

Flowpath Through ID of Nozzle to Annulus

- Volumetric Exam of Nozzles Performed
- No Indications will be Left in Service

and the second second

Adequate Assurance is Being Provided to Prevent Leakage through ID of Nozzle

Flowpath Through 052 Weld Material

- Previously Discussed the Integrity of the 052 Weld Material
- Not considered to be a Credible Leak Path

Flowpath Around 052 Weld Repair

and the second s

- Existing 082/182 Weld Boundary Will Be Clearly Identified
- Lessons Learned on Ensuring Adequate Coverage of 082/182 Material with Repair Weld Included in Repair Procedures
- Repair Process Will Ensure Integrity of Weld Repair

Safety Perspective

ان به المراجع میکند. این از این از این این این میکند کرد کرد میکند میکند میکند میکند. این میکند این این کرد کرد کرد کرد کرد میکند و داد میکن میکند میکند. این این این کرد این میکند و با این کرد کرد Mike Krupa Director, Nuclear Safety Assurance

Safety Perspective

- Repair Plans will Remove All Mechanistic Failures that Can Create Leak Paths
- Repair meets ASME Section XI Code Requirements
- Repair Process Has Incorporated Industry Lessons Learned
- Boundary of 082/182 and SS Clad will be Defined
- Appendix B Program will Ensure Proper Weld Application and Quality Control

Safety Perspective

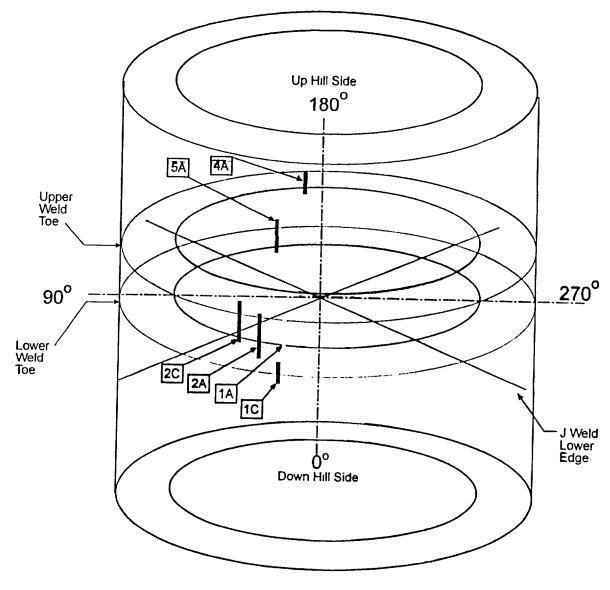
- Annulus <u>Will Be Isolated</u> from PWSCC Environment
- Industry/MRP Analyses Have Demonstrated that Alloy 600 Will Not Become a Safety Concern when Properly Managed

Concluding Remarks

and a state of the state of the

ALC: CONTRACTOR

NELASSON

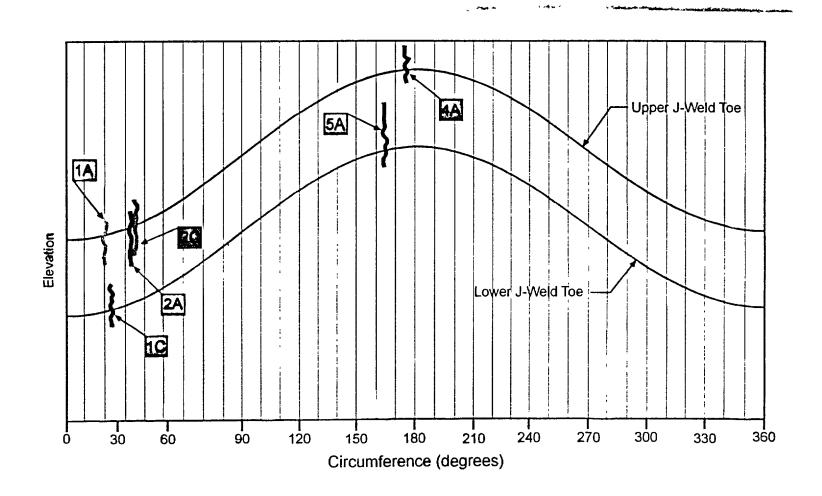

CH- ERENIA

o, the second and the second

and the second states a

Backup CRDM Nozzle Slides

Nozzle 56 UT Scans



.

38

•

UT Graphic of 1R17 Nozzle 56

39