

August 1, 2002

PURPOSE OF MEETING

11

- > Review RAI response with NRC staff
- > Identify and resolve differences between
 - TN 32PT DSC basket thermal model and results

NSNUCLEAR

t 1

NRC confirmatory analysis model and results

RAI BACKGROUND

> Transnuclear's Simplified Model used isotropic material properties to represent the aluminum, poison plates and associated helium-filled gaps, and XM-19 stainless steel and associated helium-filled gaps

NSNUCLEAR

In the RAI, the NRC staff questioned this modeling approach

ACCOMPLISHMENTS

- >In response to the RAI, TN has completed the following
 - Developed Detailed Model to address the isotropic property question
 - The Detailed Model explicitly includes
 - XM-19 basket structure
 - Helium-filled gaps
 - Aluminum plates
 - Poison plates
 - Evaluated the thermal case with the minimum margin on peak clad temperature
 - Compared the Simplified Model to the Detailed Model

RANSNUCLEAR

SIMPLIFIED vs. DETAILED MODEL RESULTS

Maximum Temperature (°F)

70° Storage Case	Peak Clad	Aluminum	XM-19	Rail
> Simplified Model	613	597	597	369
> Detailed Model	611	596	596	367

Note: Allowable peak clad temperature limit is 615°F for this case.

היוראין דיאויז

s

CONCLUSIONS

- >The Simplified Model predicts slightly higher temperatures than the Detailed Model
- > The Detailed Model results demonstrate reasonable assurance that the 32PT DSC can store spent fuel with a total heat load of 24 kW as specified in the amendment application

RANSNUCLEAR