NNI

4.0 Presentation

- 4.1 Introduction
 - 4.1.1 Cover instrumentation block diagrams for RCS & secondary systems
 - 4.1.2 Particulars of ICS inputs
- 4.2 RCS Temperatures
 - 4.2.1 Locations (figure 11.1-1)

note: RPS and NNI NOT shared!

4.2.2 T_h (figure 11.1-2)

signal sources:

NNI RTD & bridge ECI RTD & bridge

note: optical isolator

outputs:

non-selected to plant computer NR indication (530F - 650F) flow temperature compensation input to Loop Tave input to ΔT calculation input to Unit Th input to Unit Tave input to ICS BTU calculation high temperature alarm (635F)

4.2.3 Wide Range T_c (figure 11.1-3)

signal sources:

NNI RTD & bridge ECI RTD & bridge

outputs:

non-selected to plant computer WR indication (50F - 650F) RCP start interlock (500F)

A-33

4.2.4 Narrow Range T_c (figure 11.1-4)

signal sources:

```
NNI RTD & bridge
ECI RTD & bridge
```

outputs:

plant computer NR indication (530F - 650F) input to Loop ΔT calculation input to Unit Tave input to Loop Tave input to average Loop T_C input to ΔT_C calculation

> (Loop A - Loop B) FW demand ∆T_c control

4.2.5 △T (figure 11.1-5)

 $\Delta T = (T_h - T_c)$ indication (OF - 80F) ... no control functions sources: Loop A & Loop B

Unit $\Delta T = (\text{Unit } T_h - \text{Unit } T_c)$

4.2.6 Tave

オンドイ

Tave = (T_h + T_c) / 2 sources: Loop A Loop B Unit T_h Unit T_c outputs: NR indication (530F - 650F) ICS (reactor demand) auto / man selector switch: interlock ... auto selects Loop with highest RCS flow should RCS flow sensed in a Loop fall below 90%

4.2.7 Temperature summary (figure 11.1-17)

RCS flow (figure 11.1-6) 4.3 4.3.1 Location ... in each hot leg 4.3.2 Detector (figure 11.1-7) flow tube high side ... RCP discharge low side ... static head advantage ... minimum flow restriction disadvantage ... unable to measure low flow outputs: (figure 11.1-8) indication (0 - 120×10^6 lbm/hr) Tave auto / man selector switch ICS ... Unit load demand (load limiter) ICS ... FW demand (partial flow ops) Pressurizer level (figure 11.1-9) 4.4 4.4.1 Signal sources ... ECI 4.4.2 Outputs: non-selected to plant computer high-high level alarm (350") high_level_alarm (240") low level alarm (200") low-low level alarm & interlock (120") recorder (0" - 400") input to makeup control valve 4.4.3 Density compensated

Ę

ر ۲ کر ۱

 $(H_{ref} \times D_{ref}) - (H_{var} \times D_{var})$

Dvar is a function of pressurizer temperature

4.4.4 Level program (figure 11.1-10) 90% 360" expansion on turbine trip 240" insurge margin level setpoint 220" outsurge margin 200" no HPI low level tap 0" Pressurizer Pressure (figure 11.1-11) 4.5 4.5.1 Wide Range Signal sources ... ECI Outputs: non-selected to plant computer recorder (0 psig - 2500 psig) high pressure bypass warning (1920-psig) 4.5.2 Narrow Range Pressurizer Pressure (figure 11.1-12) Signal sources: NNI-X NNI-Y Alarms: low (2095 psig) high (2295 psig) PORV: open (2295 psig) close (2270 psig)

ч

3

Heaters:

error controls heaters PI control to SCR 4.6 Secondary Indications

-

 \mathbf{i}

4.6.1 Locations (figure 11.1-13) 4.6.2 Main feed flow (figure 11.1-14) indication (0 - 9 x 10^6 lbm/hr) plant computer square root extractor variable gain temperature compensation ICS FW demand 4.6.3 Start up feed flow (figure 11.1-14) indication (0 - 2 x 10^6 lbm/hr) plant computer square root extractor variable gain temperature compensation ICS FW demand 4.6.4 Feed temperature (figure 11.1-14) indication (OF - 600F) plant computer RTD bridge supplies temp compensation for FW flow ICS FW demand (BTU limits) 4.6.5 Feed reg valve dp (figure 11.1-14) indication (0 psid - 100 psid) plant computer ICS FW demand (MFP speed) 4.6.6 OTSG instrumentation (figure 11.1-15) Start up level ... ICS input Full range Steam temperature ... superheat limits (removed)

4.7 Smart Analog Signal System (figure 11.1-16)

4.7.1 Purpose

**

. F

mitigate effects of ICS input failures

4.7.2 Operation

senses degraded input & auto transfers to operable input

two transmitter inputs designated A & B

A & B compared to 3% mismatch

if mismatch ... program determines rate of change of mismatched signal (by comparing with its previous value) ... if rate of change exceeds 30% per second program reiterates to verify failure ... if verified then auto selects operable transmitter and generates alarm