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DERIVATION OF THE POTENTIAL DEPENDENCE OF THE PASSIVE 
CURRENT DENSITY 

This appendix justifies the statement that the passive current density is independent of the 
applied potential if the rate of charge transport through the oxide film via cation vacancies is 
negligible with respect to the rate of charge transport via oxygen vacancies and 
cation interstitials.  

In the original Point Defect Model (Macdonald, 1992), it is proposed that for a passive metal, M, 
forming an oxide of stoichiometric composition, MOr2, the fundamental charge transfer 
reactions controlling the dissolution of the metal at the metal-film interface are (an additional 
reaction with respect to the original model has been added to account for interstitial dissolution) 

M k, M,-+ + V,,, + ;re- (A-I) 

MA+V- k2 4 MM + Vm + Xe- (A-2) 

MMm + -L+V2+ + Xe- (A-3) 
2 

where 

X - oxidation state of the metal 

M' -- cation interstitial in the oxide 

Vm , - vacancy in the metal 
e - electron 

Vtx - cation vacancy in the oxide 

MM - metal in the oxide lattice 

V2+ - oxygen vacancy in the oxide 
kP - rate constant, p = 1,2,3,...7 

On the other hand, at the film-solution interface the fundamental charge transfer reactions are 

M,.+ k4 4 M"+ +(5 - )e- (A-4) 

MM k, 5 M` + Vm- + (M5 - X)e- (A-5) 

V2+ +H20 k6 > 0 + 2H+ (A-6) 

MO, 12 + H - -M'+ +1H 20+(.6-X)e- (A-7) 
2
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where

5 - oxidation state of cation in solution 
H÷ - hydrogen ion 
H20 - water molecule 
00 - oxygen in the oxide lattice 

The reaction in Eq. (A-3) results in the formation of oxide volume, which can be expressed in 
mathematical form for a one-dimensional system as 

dL- = M3 (A-8) 
dt 

where 

Q molar volume of the oxide {in units of cm 3/mol [ft3/mol] assuming that k3 is in 
units of mol/(cm2 s) [mol/ft2s} 

L oxide thickness at time t 

On the other hand, the rate of film dissolution is controlled by the reaction in Eq. (A-9) 

dL = _K (aH_ )n k7 (A-9) 

where 

aH+ - activity of hydrogen ion 
n - reaction order with respect to the hydrogen ion activity 

Therefore, the expression defining the overall film growth is 

dL 
dL = Qk3- 0 (aH'.)' k, (A-10) dt 

Under the steady-state condition, dl/dt = 0, the rate constants k3 and k7 are related as 

k3 = (a H' )'k7 (A-1 1) 

Equation (A-1 1) is significant because it can be used to relate the potential drop at the 
metal-film interface, ý,w to the potential drop at the film-solution interface, ý,,, using the 
formalism of the Point Defect Model. The Point Defect Model postulates (Macdonald, 1992) 
that the potential drop at the film-solution interface is proportional to the total applied potential 
to the system, V, that is, 

Oils = aV + V0 (A-12)
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where V, is a constant. The Point Defect Model proposes that the rate constants follow an 
exponential dependence with respect to the change in potential energy; that is, 

F 
k o a3 'ZFm If (A-13) k3 = K3e e T 

where 

3k 0 -- a reference rate constant 

a 3  - transfer coefficient, positive and less than one 
F - Faraday's constant 
R - ideal gas constant 
T - absolute temperature 

Similarly, for the reaction in Eq (A-7), the rate constant is defined as 

k7= -koe R(x)•f' (A-14) 

where 

7k - a reference rate constant 

a7  - transfer coefficient 

From Eq. (A-1 1), a relationship between the potential drop at the metal-film interface, ý,nmf, and 
the potential drop at the film-solution interface, 4•, is derived 

0,,, = a 7 (8 -A O)f Is + FRT InaH- k7k' (A-15) 

For steady-state conditions, the potential drop at the metal-film interface is proportional to the 
corresponding drop at the film-solution interface, which is assumed proportional to the total 
applied potential. Note that if there is no change in the oxidation state of the cation transferred 
from oxide film to the solution (i.e., 8 = X), the potential drop at the metal-film interface is 
independent of the applied potential.
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If I is the current density {in units of A/cm2 [A/ft2]} vector, conservation of charge requires that 

VI p (A-16) 
at 

where p is the charge density {expressed in units of Coulomb/cm3 [Coulomb/ft3 ]}. Under 
steady-state conditions, the right side of Eq. (A-16) is zero. Therefore, at steady state and for 
a one-dimensional problem, the current density is independent of the spatial coordinate. For 
the case 8 = X, the current density at the metal-film interface (which is the same at any point in 
the system) is computed as 

I = XF (kl + k3 ) + Z F a v, k2  (A-17) 

where avM_ is the cation-vacancy activity in the proximity of the metal-film interface. Note that if 

the rate of charge transport via cation vacancies is negligible with respect to the rate of charge 
transport of cation interstitials or oxygen vacancies (i.e., k 2 << kl,k 3), Eq. (A-17) reduces to 

/ ;: XF(k1 + k3 ) (A-1 8) 

Likewise k3, k, is dependent on the potential drop at the metal-film interface, . The drop 4, 
has been argued to be independent of the applied potential for the case 8 = y. Therefore, 
Eq. (A-18) implies that the current density is independent of the applied potential, if cation 
interstitials or oxygen vacancies are the predominant charge carriers.  

If, on the other hand, cation vacancies are the dominant charge carriers, Eq. (A-17) becomes 
F 

X Z F ave_ k 2 = XFk5 = XFk~e -T (A-19) 

where 

a5  - transfer coefficient 

k• -5 - a reference rate constant 

The second equality results from requiring that the rate of cation vacancy creation, from 
Eq. (A-5), be the same as the rate of cation vacancy annihilation, from Eq. (A-2). The third 
equality in Eq. (A-19) is the exponential expansion of the rate constant as dictated by the Point 
Defect Model. Because the potential drop 4 is assumed proportional to the total applied 
potential, it follows that for systems in which cation vacancies are the predominant charge 
carriers, the passive current density is an exponential function of the applied potential
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A discussion of the more complex alloy system is presented as follows. In developing the 
model in Chapter 51 for the dissolution of nickel-chromium-molybdenum alloys, it was assumed 
that cations do not experience a change in oxidation state in the transfer from the oxide to the 
solution. Consistent with arguments in this appendix, it was assumed in Chapter 52 that the 
potential drop at the metal-film interface is independent of the applied potential. Under 
steady-state conditions, the current density at the metal-film interface is computed as 

I= F [zacr (k~r +k + av kC) + gaN, (k' + k" + avk')2+ ) aMokl ] (A-20) 

where 

X, 5, 8 , oxidation state of chromium, nickel, and molybdenum, respectively 
aM - atomic fraction of element M (= Cr, Ni, Mo) 

k - rate constant, the superscript M (= Cr, Ni, Mo) and subscript n (= 1,2,3) are used 

to label particular species and reactions. See Chapter 53 for additional details in 
the notation 

a X- activity of cation vacancies at the metal-film interface 

Experimentally it is known that the passive current density for Alloy 22 is independent of the 
applied potential over a wide range up to the potential for transpassive dissolution (Dunn, et al., 
1999, 2000). According to the assumptions in Chapter 54, this independence is possible only if 
the rate of cation vacancy transport is negligible with respect to the rate of interstitial or oxygen O r < Cr c, OradakN, <<k N', NiInohrwdsuig 

vacancy transport (i.e., avkcr<<kcr kc and avkN k, ). In other words, using 

steady-state constraints, it can be argued (similar to other arguments developed in this 

appendix) that the terms avkcr and avkN' are functions of the applied potential; therefore, 2 2 

these terms should not be important contributors to the current density for the Alloy 22 system.  
Equation (5-16) follows from this observation. The predominant charge carriers, consistent with 
the Point Defect Model, should be cation interstitials or oxygen vacancies. Chapter 55 provides 
additional arguments in favor of the interstitial transport mechanism.  

1Pensado, 0., D S Dunn, G A Cragnolino, and V Jain. "Passive Dissolution of Container Materials, Modeling, and 
Experiments" San Antonio, Texas: CNWRA Unpublished report, 2002.  

2 1bid 
3 Pensado, 0., D S Dunn, G A Cragnolino, and V Jamn. "Passive Dissolution of Container Matenals, Modeling, and 

Experiments' San Antonio, Texas: CNWRA Unpublished report, 2002.  

"4Ibid 

5lbid
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FINITE DIFFERENCE IMPLEMENTATION OF THE SOLD-STATE 
DIFFUSION PROBLEM 

This appendix provides a detailed discussion of the finite difference implementation of the 
constitutive equation and mass conservation equation describing the transport of vacancies and 
atoms in the alloy.  

In Chapter 51 it was discussed that the constitutive equation for the diffusion of vacancies in the 
metal is 

j -DA cAVcV+ -- DAVcA (B-i) 
Cv A Cv A 

where 

Jv - flux of vacancies 
CA - concentration of specie A (A = Ni, Cr, Mo) 
DA - diffusion coefficient for element A in the bulk of the alloy 
Cv - concentration of vacancies in the alloy 

0 

Cv - equilibrium concentration of vacancies at a reference temperature 

Mass conservation demands that 

9Cv =-V.Jv = 1--_DAOAVOv- Cv IDAV'oA (B-2) 

ot CV A c0 A 

If it is assumed that the vacancy concentration is negligible with respect to the atom 
concentration in the alloy, Eq. (B-2) can be approximated as 

9Cv ; 1 Z DAOAV2Cv = D.V 2Cv (B-3) 
I CvO A 

The effective diffusion coefficient, Def, is not constant but nearly constant if the concentration of 
vacancies is negligible. Without requiring that the concentration of vacancies be negligible, but 
requesting the diffusion coefficient be similar (i.e., DN, ý Dc, r= DMo = D ) and the total sites in the 
alloy be constant (i.e., Cm+Ccr+CMo+Cv = cT ), Eq. (A-2) can be simplified, without additional 
approximations, into 

c, =Ce---,-TE DV2cv,= DenV2Cv (B-4) dt Cv 

1Pensado, 0 , D S Dunn, G.A Cragnolino, and V Jam "Passive Dissolution of Container Materials, Modeling, and 
Experiments" San Antonio, Texas CNWRA Unpublished report, 2002
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The effective diffusion coefficient, Deff, is a constant. Results reported in Chapter 52 are based 
on Eq. (B-4). The finite difference equations implemented to integrate a one-dimensional 
representation of Eq. (B-4) are described next.  

Let the timestep and position step of the finite difference implementation be represented as At 
and Ax. Let the dimensionless parameter Xý be defined as 

A. = Deff At (B-5) 
Ax 

The parameter, X, must be less than or equal to 0.5 to guarantee convergence of the finite 
difference computations. For the sake of simplicity in the notation, concentrations are referred 
to with two subscripts, c,,. The first subscript, i, tracks the time step and the second subscript, j, 
tracks the position. Superscripts v (for vacancies), Ni, Cr, and Mo are used to differentiate the 

particular species being considered (e.g., C, or C,). The metal-oxide interface is located at 

the spatial stepj = 0. The spatial steps range fromj= 0 toj= N. A free boundary in the metal 
is constructed at the position stepj = N. The temporal steps start at i = 0 (initial time).  

B.1 Finite Difference Equations to Determine Vacancy Concentrations 
vT 

At the P timestep, the total vacancies in the system, cT , is defined as 

N 
VT V cIV I T, (B-6) 

J=0 

The total vacancies injected into the system, inj, as a result of the alloy dissolution process, 
between the time steps i and i + 1, is computed as 

At AkA 
CT= I k ,C'0  (B-7) 
CTAX A 

The symbol kA (A-Ni, Cr, and Mo) represents rate constants for the reactions in Eqs. (5-1), 

(5-2), and (5-3) in Chapter 5.3 

2 Pensado, O, D S Dunn, G.A Cragnolino, and V Jain "Passive Dissolution of Container Materials, Modeling, and 

Experiments." San Antonio, Texas CNWRA Unpublished report, 2002.  

3
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A free boundary is constructed at the position stepj = N. A free boundary can release or 
receive vacancies depending on the concentration gradient and Fick's law. The number of 
vacancies leaving the system, 6j,, between the time steps i and i + 1, is computed as 

ej, =2(C - I -cN) (B-8) 

If the system between the position stepj = 0 and j = N was a closed system, all vacancies 
injected to the system would remain in the system, and, for that particular case, by definition, 
ej, = 0.  

Equations (B-6), (B-7), and (B-8) allow the computation of the total vacancies at the time step 
i + 1 to be 

cvT = cT + inj, - ej, (B-9) 

Concentrations at positionsj = 1,...,N-1, for a new timestep, i + 1, are computed from a 
first-order finite difference representation of Eq. (B-4) 

cv cv +A(v 2v +-110 
c+ j .1J 2 c1 I =, I ) j . .N - ( B - 0 

At the spatial step, j = N (the free boundary), the vacancy concentration is computed according 
to logarithmic extrapolation 

v 2 (c 1, N-1 .)2a 1 
_ (+c(B-1 ) 

Ci+l,N ( 
Ci+lN - 2 

Finally, the concentration of vacancies at the metal-film interface, j = 0, at the new timestep, 
i + 1, is computed by requesting conservation of mass 

N Cv vm ' (B-1 2) 
i+1,0 "" C 1+I +1Ci+l1k 

k=1 

N 

Note that from Eq. (B-12), it follows that C,. 1 = CV c 1.J, which guarantees, by induction, that 
j=0 

Eq. (A-6) is valid for all timesteps. Equation (B-7) requires determination of the atom 
concentrations at the interface. Therefore, the complete coupled diffusion problem must be 
solved to compute the concentration of vacancies. Note also that finite difference computations 
of two simulations having the same kinetic parameters will be identical if X and the ratio, At/Ax, 
are the same for both simulations. In other words, simulations having constant ratios of At/Ax 
and DeflAx will yield identical results.
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B.2 Finite Difference Equations To Determine Atom Concentrations 

Concentrations at a new timestep, i+ 1, for the position steps j= 1,. ., N-1 are computed as 

CI - IC J-C lt l ... N-1 (B-13) 

The second term on the right side of Eq. (B-13) is the decrease in the concentration caused by 
the diffusive transport of vacancies. The factorFA satisfies FN' + Fcr + o 

consistent with the assumption CN,+Cc,+CMo+Cv= CT. This factor is defined later in this appendix.  Ni c~r Mo v It is straightforward to demonstrate by induction that if C,1 + Cr, + C'., + C, CT , then 

Eq. (B-13) guarantees that the total number or sites is a constant for any later timestep.  

The concentration at the free interface, j = N, is computed by logarithmic extrapolation and 
corrected to enforce that the total number of sites is a constant 

A )2 CA+ 
A(C,' + 1,N-1_ C +1_,N-2 

CA+lN =(CT-C_+I N) (-•C, +,NI 81l)2,1N2 (B-14) 
1,(-B i + 1,N-2 

B 

Finally, the concentration at the interface, j = 0, is computed as follows 

N A A 
CA+ C A N (B-15) 

J 0 CT AxJ= j1 

Equation (B-15) is consistent with the conservation of the mass requirement that the total 
atoms ejected from the system at the metal-film interface complements the atoms remaining in 
the system, or, in mathematical representation 

N N CA At 

=0 J =O CT 1 AT x 

Equation (B-13) through (B-16) are general and independent of the relative magnitude of 
diffusion coefficients. If it is assumed that the solid-state diffusion coefficients are similar, a 
simplified expression for the factor F, can be derived. The constitutive equation for the 

diffusion of atoms is 

JA- 0 (CvVCA -CAVCV) (B-17) cO
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Let j Am and j A Out be the flux of atoms jumping in and out of the spatial element, j. From 

Eq. (B-16), it follows that 
jA in CA" _ CA CA( 

"i, c Cc.j I,j + . ij .\I,')cIj (B-18) 

and 

jA out V (C A A _~CA(c'V _ Cv ' 

j c C. /'C - C.. _1) Q~j i 'j _. 1) (B-1 9) 

Let AcA be the increase in concentration caused by diffusion transport. Forj = 1 ... N-1 the 

following relationship holds 

Acj ocjA in A out cv(. 2 cA +cA cA( + -2cV V 1)B-20) 

The fraction, F' A, can be immediately derived from Eq. (B-20) forj = 1 ... N-1 

C v(CA + 2cAc +c( CA C' c v) 
"F"(+ + - V j=l,.., N-1 (B-21) 

CT Ctj +1 -2c' -+C 

The denominator in Eq. (B-21) is obtained by adding the numerator for nickel, chromium, and 
molybdenum, and assuming the total concentration is a constant equal to CT. Finally, the 

factorF ,N needed in Equation (B-15) is computed as 

v A Cv 

i,N v v (B-22) 
-TO ,N - - 1 

Equation (B-21) is a postulated equation, that is suggested by Eq. (B-20). Likewise, in 
Eq. (B-20), the denominator in Eq. (B-21) is obtained by adding the numerator for Ni, Cr, and 
Mo and assuming the total concentration is a constant equal to CT.  

The system of equations in this appendix is valid provided that the diffusion coefficients in the 
bulk of the alloy are similar for all alloy components. If this assumption is not valid, it may be 
possible the existence of enhanced transport of one of the alloy components toward the 
interface. Equations developed in this appendix can be extended to address the case of 
dissimilar diffusion.
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