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PREFACE

From its inception as a separate discipline, geostatis
tics sought recognition from practitioners, not from math
ematicians or physicists. and rightfully so. Indeed, the 
theory was essentially established by the 1950's by Kol
mogorov and Wiener and exposed by Matern (1960), Whit
tle (1963), and Matheron (1965), among others. But there 
is a long, hard way between a concept expressed by matrix 
notations in a Hilbert space and its implementation and 
routine application. It is my opinion that the main con
tribution of geostatistics has been and still is implementa.  
tion, an essential follow-up step much too often forsaken 
by theoreticians.  

Implementation requires a prior effort of simplifica
tion. A concept or algorithm will take root only if un
derstood by the user, who can customize it to the ever 
changing needs of his various projects. Practice over time 
is a merciless judge that will strip all concepts of their 
fancy dressing, whether wording or computer coding, and 
let the sole essence stand for itself. Geostatisticians would

accelerate the diffusion process if they could go about ex
tracting the essence of their favorite tools - a very hum
bling task - and deliver it in simple terms.  

Stressing the essence of one's finding may not make it 
into a publication list but would help the understanding 
and correct application of the corresponding algorithm.  
Behind most sophisticated concepts, there is a simple 
idea sometimes so simple that we feel like dressing it up.  
Practitioners face real data with their extraordinary com
plexity that defies any pre-conceived model, and they are 
the best positioned to customize the algorithm to make 
it work. Thus, it is of great importance that they (the 
practitioners) understand what we (the academics) are 
proposing.  

Andre G. Journel 
Stanford University
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Fundamentals of Geostatistics in Five Lessons 

Andre G. Journel 

Stanford Center for Reservoir Forecasting 
Department of Applied Earth Sciences 

Stanford University, Stanford, California 94035

Introduction 

These lessons, except for the fourth, were "speed"-written 
as support for a "Geostatistics for Reservoir Characteri
zation" course given in Dallas, December of 1987. There 
is definitely a need for new books in Geostatistics that 
would acknowledge the contribution of new application 
fields and sort the wheat from the tares, the theory that 
did yield from that which remained but elegant. I know 
of at least two such books in the mill. In the meantime, 
course supports were needed and I attempted this quick 
draw. I ask for the reader indulgence and patience until 
the availability of official books.  

Textbooks are polished logical constructions which do 
not lend themselves to the spot-painting and diversions 
that could sometimes enlighten a class. Lessons allow 
digressions, returns to fundamentals, parallels, that could 
reveal a hidden side of the theory being developed and, 
in the best case, the essence of an algorithm that which 
makes it work. Building from rigorous random function 
theory, how could one tell that the essence of ordinary 
kriging is: 

1. the usage of a structural distance, specific to the 
va iable being considered, which need not be a var
iogram 

2. the possibility of accounting for data redundancy, 
as figured by the data covariance matrix? 

If kriging sometimes works it is not because of its prob
abilistic pedigree - in fact the algorithm could be estab
lished without a single reference to random variables 
but because it extends well-proven and intuitive distance

Copyright 1989 American Geophysical Union

weighting criteria. Associating kriging to distance
weighting algorithms, or in a dual fashion to surface
fitting algorithms, makes it more "ordinary" now that it 
is severed from that hazy random function source. Geo
statistics may end up looking less prestigious (or mysteri
ous?), but being better understood will be better applied.  

After much hard selling, the time for a fresh and more 
temperate look at geostatistics has come. Geostatistics 
is foremost Data Analysis and Spatial Continuity Model
ing. Such analysis and modeling cannot be done without 
a clear understanding of the origin of the data, includ
ing geological interpretation. The main reason for model
ing spatial continuity is to assess spatial uncertainty. As 
for using probabilistic models, it is naive to think that 
any statistical tool provides objectivity, it should provide 
though consistency once a prior model has been chosen.  
Geostatistics is a set of numerical tools to be added to the large tool chest of the geologist; it allows transporting 
quantitatively a geological model all the way to process 
design and engineering. That geological model should not 
stem from a blackbox package, particularly if that pack
age is cryptic. Good geology based on well understood 
data is still the only recipe for good reservoir/site/deposit 
characterization.  

These five lessons address the fundamentals of geo
statistical theory relevant to spatial interpolation, image 
reconstitution and uncertainty modeling. The practice of 
geostatistics, although of paramount importance, is not 
covered here for lack of space. The book from Srivas
tava and Isaaks, which should be in the shelves by mid
3989, will fulfill that need beautifully. The remarkably 
user-friendly and yet complete software "Geostat Tool
box", made public-domain by its author Roland Froide
vaux, provides the tools for anyone to get started.  

Lesson I proposes a brief review of statistics and no-

I
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2 FUNDAMENTALS OF GEOSTATISTICS 

tations; needed for developing the further lessons. The 
reader is supposed to have a prior familiarity with statis
tics, integral and differential calculus at an introductory 
college level.  

Lesson II presents the classical linear regression theory 
with the particular geostatistical twist, in the sense that 
the data used (the so-called "independent" variables of 
classical regression) are themselves dependent one upon 
each other and thus needed to be made independent in 
a first step. The simple kriging system (SK) is shown to 
be but a variant of the normal system of equations. A 
dual interpretation of the simple kriging algorithm shows 
it amounts to fit covariance-type interpolation functions 
to the data values at their locations.  

Simple kriging requires that the mean of the variable 
over the field being estimated be constant and known. Or
dinary kriging does not require knowledge of that mean, 
as long as it remains constant. Kriging with a trend model 
allows considering a variable mean, function of the coor
dinates values. That function is everywhere unknown but 
is of known functional form and could represent a local 
trend component being added to residual values. In Les
son III, it is shown that ordinary kriging and kriging with 
a trend model are achieved by adding specific constraints 
to the normal system of equations.  

Lesson IV is possibly the most important of this set 
of five lessons, for it addresses the critical problem of un
certainty modelling. No estimator is devoid of potential 
error, thus qualified decision-making requires an assess
ment (model) of the uncertainty underlying each estimate.

Too often, a Gaussian error distribution is casually taken 
as model for uncertainty although evidence for the in
adequacy of such symmetric distribution model do exist.  
Alternative models based on the actual distribution of 
neighboring data are proposed building on an indicator 
data kriging paradigm. Construction of models of un
certainty precedes the derivation of an estimate for the 
unknown, which allows retaining non-least squares, i.e.  
non-kriging-type estimates possibly better suited to the 
project at hand.  

All moving average-type estimates, including all krig
ing estimates, provide a smooth image of the underlying 
reality: the variogram of these estimates would not repro
duce the data variogram. The concept of conditional sim
ulation allows generating alternative, equiprobable, im
ages which honor data values at their locations and re
flect a series of spatial continuity functions. The novel 
technique of Indicator conditional simulations, presented 
in Lesson V allows generation of images that do not suf
fer from the maximum entropy (maximum disorganiza
tion for a given variograrn model) limitacin-i of Gaussian
related random function models. Also, indicator simula
tions allows honoring, in addition to hard data, soft infor
mation whether local (e.g. constraint intervals at specific 
locations) or global (e.g. interpretative structural geol
ogy). A set of simulated images provide an assessment of 
joint spatial uncertainty rather than a series of, say, local 
estimation variances.  

References are proposed at the end of each lesson, and 
an index of subjects is given.

Lesson I: Statistics Review and Notations
In this lesson, we will review only those basic notions 

of statistics that are useful to geostatistics and spatial 
interpolation problems. Engineering-type definitions are 
preferred over more rigorous but less intuitive axiomatic 
definitions.  

Random variable (RV) 

A random variable can be seen as a variable, say, Z, in 
capital letters, that can take a series of outcomes or real
izations (zi , i = 1,..., N) with a given set of probability 
of occurrence (pi, 1, .... ,N) 

When the number N of occurrences is finite, one speaks 
of a "discrete" RV. The N probabilities of occurrences 
must verify the conditions

p, > 0 ,foralli=l,.-.,N 
N 

Y-p. = 1 *=1

(1)

If the number of possible occurrences is infinite, say, a 
porosity value within the interval [0, 100%], the RV Z 
is said to be continuous, and its probability distribution 
is characterized by the cumulative distribution function 
(cdf) defined as:

F(z) = Prob{Z <5 } E [0, 1]

The cdf corresponds to the notion of cumulative histogram 
in the discrete case: 

F(zi) pi • , with the set (j) corresponding to 
' all realizations zi < z, 

UI) 

The cdf fully characterizes the RV Z. Probability inter
vals can be derived: 

Prob{Z EIa,&] } = F(b) - F(a)

Similarly, the probability of exceedence of any threshold (2) value can be derived:

(3)



k4 = (zk+l + zk)/2 
The expected value of any well-behaved function of 

Z, say, P(Z), can also be defined, under conditions of 
existence of the integral: 

- in the discrete case:

Prob{Z > a) = 1 -F(a) 

Quantiles 

The p-quantile of the distribution F(z) is the value z.  
such that: F(z,) = p E [0, 1], i.e., the value z. which has 
a probability p not to be exceeded by the RV Z. Defining 
the inverse F-'(p) of the cdaf:

p - quantile z, = F-'(p) , with p E [0,1] 

Expressing p in percent, the p-percentile is defined: 

p - percentile z. = F-'(100 p) , with p E [0, 100] 

Quantiles of interest are: 

- the .5 quantile (50th percentile) or median:

M = F- 1 (.5)

N 

8=p

- in the continuous case: 

E -p(Z(z dF(z)= v••(z) -f(z) dz 

m = EIZ) being the mean of Z, the variance of the RV 
Z is defined as the expected squared deviation of Z about 
its mean:

(4)

(5)

(s)

- the lower and upper quartile: 

Z.25 = (.25) , Z. = F-(.75) 

The interquartile range (IR) is define- as the interval 
bounded by the upper and lower quartii,.. R = [z.25 , z. 75) 

Expected value 

The expected value is the probability-weighted sum of 
all possible occurrences of the RV.  

The expected value of Z, also called mean of Z, is 
defined as: 

- in the discrete case, corresponding to relations (1) 
and (2):

N 
E{Z) = m = Ep,•, 

i=1

VarfZ} = 0
2 = E {[z - m]2} Ž 0

- ,p,(z, - rn_ ) , in the discrete case 
i=1 

= (z - m)2dF(z) = (z - m) 2f(z)dz , (10) 

in the continuous case.  
The mean is a central location characteristic of the 

pdf A(z), see Figure 1. The variance is a characteristic of 
spread of that distribution around the mean.

f(z)

(6)

- in the continuous case with cdf F(z), under condi
tions of existence of the integrals: 

E{Z}=m = I z dF(z) =jf'z f (z) dz (7) 

K 
J=im •"4,[F(zki) - F(z*)], with 4 Z] zEIk, Zk+] 

k=1I 

where: f(z) = F'(z) is the probability density function 
(pdf) defined as the derivative, when it exists, of the cdf 
F(z). The integral f- z dF(z) is approximated by K 
clae of respective frequencies [F(zk+,) - F(z&) , and 
z4, is a value within the kth class, say, the center of that 
class:

M 0 m z

F(z)

M 0 M 

Fig. 1. Probability density function (pdf), and 
Cumulative density function (cdf)

JOUIUNEL 3
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4 FUNDAMENTALS OF GEOSTATISTICS 

Another central location characteristic is the median 
M. A corresponding characteristic of spread would be the 
mean absolute deviation about the median (mAD): 

mAD = E{ Z- Mf} 

The skewness sign is defined as: 

Sign of(m - M) 

A positive skewness usually indicates a long tail of the pdf 
towards the high outcome values.  

Order relations 

The cdf F(z) and its derivative, the pdf f (z), being 
probability-related functions, must verify the following 
conditions:

F(z) f(u)du E [0,1] (11)

F(z) Ž F(z') , for all z > z' , i.e., the cdf is a non
decreasing function of z.  

Correspondingly: 

f (z) = Fo(z) >_0 

+ o i.e., the integral of the pdf 
o f zis equal to 1.  

Linear property of the expected value 

The expected value is a "linear operator," in the sense 
that the expected value of a linear combination of RV's 
is the linear combination of the expected values of these 
RV's: 

E {~akZk} ~E{k (12) 
k 

whatever the RV's Zk whether dependent or independent 
from each other, and whatever the constant ak's.  

In particular, for any transform functions •p and W2: 

E{p 1 (Z) + ý02(Z)} = E{v,(Z)} + E{W2 (Z)} 

provided the corresponding expected values exist.  

Application: 

VarZ = E{[Z - m]2} = E{Z 2 - 2mZ + m2} 
= E{Z2 }-2mE{Z}+m 2 =E{Z 2}-m2

g(z)

M 2

0(z) GW

0.5 

mM. Z 

Fig. 2. Normal (Gaussian) pdf and cdf 

Gaussian (normal) model 

It is a distribution model fully characterized by its two 
parameters, mean m and variance a2. The pdf g(z) is, see 
Figure 2:

9(Z) = 1 exp [_Z- M2 a 12-

The standard normal pcif corresponds to m = 0 ,2 = 1 

go(z) = v exp 

The corresponding ecdf's have no close-form analytical ex
pression, but the standard normal cdf Go(z) is well tabu
lated:

Go(z) = f *go (u)du (14)

G(z) = gI~ d = G. z 2 

Symmetry. The Gaussian distribution is symmetric about 
its mean, thus:

m =M, g(z+nm)=-g(mn-z), 
G(m-z) =l-G(m+z), for all z

zi-, = 2m-z,, for all p E [0- .51, z, being the p-quantile.

I

(13)

(15)
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Some Gaussian values 

G(m + a) = .84, G(m - a) = .16 

G(m + 2a) = .977, G(m - 20) = .023 

Thus: 

Prob{Z E [m ± c]} = .84 - .16 = .68 

Prob{Z E [m ± 2a]} = .977 - 0.23 = .954 = .95 

The "success" of the Gaussian model stems from a series 
of Central Limit theorems which state that: 

The sum of a not too large number of independent, 
equally distributed (although not necessarily Gaussian), 
standardized RV's tend to be normally distributed, i.e., 
if the n RV's Z,'s have same cdf and zero means, the RV 
Y = I Z= Z, tend towards a normal cdf, as n - 0c.  

The most restrictive constraint to application of Cen
tral Limit theorems is the condition of independence: the 
n RV's Z, must be independent.  

In the highly controlled environment of a laboratory 
experiment where measurement devices are carefully cho
sen and monitored, one may expect normal distributions 
for measurement errors. In fact, the experiment(s) may 
have been designed specifically to generate such normal 
distribution. However, in the nature-controlled environ
ment of a spatial distribution, say, that of porosity within 
a layer or permeability within a sandstone formation, there 
is no reason to believe a priori that the conditions of a 
Central Limit theorem would apply. Nor should these 
conditions apply to the various sources of error involved 
in a spatial interpolation exercise, that of estimating, say, 
a porosity value from neighboring well data.  

The lognormal model 

The normal (Gaussian) model is very convenient be
cause it is fully characterized by only two parameters, 
its mean and variance. However, it is symmetric and al
lows for the occurrence of negative outcomes. Many ex
perimental distributions tend to be skewed (asymmetric) 
with mean different from median, and most earth sciences 
variables are non-negative valued.  

Various transforms of the normal model have been de
fined to accommodate the usual features of earth sciences 
data distributions.  

A positive RV, Y > 0, is said to be lognormally dis
tributed if its logarithm X = In Y is normally distributed: 

Y > 0-,ý logN(m,or) ,if X =lnY--,.- N(a, #') (16)

The lognormal distribution is a two-parameter distribu
tion fully characterized by: 

"* either its mean and variance (in, C 2
) also called arith

metic parameters, 

"* or the mean and variance (a,32 ) of the log trans
form X = In Y , also called logarithmic parameters.  

The lognormal cdf is more easily expressed as a func
tion of its logarithmic parameters (a, f2).  

Prob{Y <( = Fy(y) = Go (n '- a) for a >0 

(17) 

where Go(.) is the standard normal cdf defined in (15).  

The corresponding pdf is: 

fM(Y) = (y) = 0 (ln Y- a) 

where go(.) is the standard normal pdf defined in (14).  

The relations between arithmetic parameters and log
arithmic parameters are:

0{ m efl' 

o.2 . in2[eP2 -- 1]
a =inm-R 2/2 R2 =~in(1+ &2T)

(18)

The lognormal pdf fy(y) plots as a positively skewed 
distribution with a long tail allowing for very large y
outcomes, although with increasingly low probability of 
occurrence, see Figure 3.  

fy(y)

0 Yp M m YYI.p

Fig. 3. Lognormal density function
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If v, is the p-quantile of a standard normal distribution, 
i.e., 

vp = G'(p), pE [0,1], 
the p-quantile of the lognormal distribution (a, ,6) is: 

, -- e+ ' (19) 

entailing the following relation which can be used to deter
mine the logarithmic mean a from estimates of opposite quantiles y,, yl-,: 

P • YI-P --- e 2- = M 2 =* 2 a = In y, + Iny 1 _, (20) 

where: M = y.5 : median of the lognormal distribution.  

As a corollary of the Central Limit theorem, the product 
of a great number of independent, identically distributed 
RV's tend to be lognormally distributed. Indeed, 

'I] Y = ll Yg nY InY Normal, as n -- o.  

thus: Y -. Lognorrnal, as n -4o.

However, there is no a priori reason to believe that 
the various sources of spatial variability of permeabil
ity/transmissivity are all independent, of roughly equal 
variance, and are multiplicative. The traditional model
ing of permeability distributions by a lognormal model is 
more a question of convenience than a hard fact supported 
either by data or theory. There exist many other possible 
models for positively-skewed distributions of non-negative 
variables.  

Bivariate distribution 

Up to now we have considered only one random vari
able at a time, whether Z,, or the sum Y = = Z, of n 
RV's.  

In earth sciences, what is often most important is the 
pattern of dependence relating one variable X to another 
Y, relating the outcome of one RV X to the outcome of 
another Y. This pattern of dependence is particularly 
critical if one wishes to estimate, say, the outcome of X 
(core porosity) from the known outcome of Y (well log 
datum).  

Just like the distribution of outcomes of a single RV 
X is characterized by a cdf Fx(x) = Prob{X < x}, see 
relation (3), the joint distribution of outcomes from a pair 
of RV's X and Y is characterized by a joint cdf:

Fxy(z, y) = Prob{X <5z, and Y < y}2 ,

in practice estimated by the proportion of pairs of data 
values jointly below the respective threshold values z, y.  

The bivariate (X, Y) equivalent of a histogram is a 
scattergram, where each data pair (z,, y,) is plotted as a 
point, see Figure 4.  

The degree of dependence between the two variables 
X and Y can be characterized by the spread of the previ
ous scattergram around any regression line, with perfect 
linear dependence corresponding to all experimental pairs 
(xi, ,u), i = 1,.-., N plotting on that line.

Y,

0 X,

Fig. 4. Pair (zx, ,) on a scattergrarn 

Thus, the moment of inertia of the scattergrarn around 
e.g. the 450 line would be a characteristic of lack of de
pendence, see Figure 4:

SN d 1 N 
UYx Y--]

This moment of inertia is called the "serni-variogram" of 
the set of data pairs (x,, y,,), 
t = 1,.-. ,N. The variogram, 2 Vrxy, is none other than 
the average squared difference between the two compo
nents of each pair. The greater the variogram value, the 
greater the scatter and the less related are the two vari
ables X and Y.  

Just like one has defined the expected value of, say.  
X, as the frequency-weighted average of the X-outcomes, 
estimated here by: 

1 N Mnx = 7 E X, 

sul 

one could define the expected value of the product XY 
as the bivariate probability-weighted average of the joint 
outcomes XY = zy; more precisely and similarly to rela
tion (7):

(22)

(21)
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E{XY) =1] z+yd 2 Fxy(z, y) = zyfxy(zy)dzdy 

(23) 
in practice, estimated by:

1 N 

E i=2

where: fxy(z, y) = d is the bivariate probability 
density function (pdf).  

d2Fxy(x, y) = fxy(x, y)dxdy is the probability of oc
currence of the joint outcome 
{X = x ± dz , y = y ± dy}. Similarly, the probability of 
outcome of the pair (z,, yi) is 7 if N pairs were sampled.  

The bivariate moment (23) is called the non-centered 
covariance of the two RV's X, Y. The centered covariance, 
or simply "covariance," is defined as:

Cov{X,Y} = axy = E{[X-mxl.f [Y-my]} 
= E{XY} - mx .my (24)

in practice estimated by: 

i=1 
1 N1 

with: mx EN , E, 

The variance, say, of X, as defined in relation (9) is 
but the autocovariance of X with itself: 

4 = Var {X} = Coy {X,X} = E{[X - mx]2 } > 0 

Note that although the variances a' and a2 are necessar
ily non-negative, the covariance axy may be negative if a 
positive deviation [x - mxl is related, in average, with a 
negative deviation [y - my].  

The coefficient of correlation Pxy between the two 
RV's X and Y is but a covariance standardized to be 
unit-free:

= = axy = Cov{X, Y} E[-l,+1 
UXaY , {5} • Var{Y})

(25)

It can be shown (Schwarz inequality) that the coefficient 
of correlation is necessarily within [-1, +1].  

Relation between covariance and variogram 

Consider the bivariate data set (x,,y,),i = 1,. N 
and its moments:

1N I N 
2- NZy 1> _ y.)2 I k7XY = T 1: MXM) 

t=1 t=1 

2-vxy= I _m2 + [1~ ?r~ IN E N ' 

E-j~ [ix/- mx -myJ + (m'x + m' - 2mx my) 

i.e., 

27xy = ax + cry + (mx - my)2 - 2ax 2!> 0 (26) 

Thus, whenever the variogram 2 -yxy increases, the covari
ance axy decreases: the greater the spread of the scatter
gram (xi,y,),i = 1,-.., N around the 45° line, see Figure 
4, the larger "txy and the smaller the covariance axy and 
the correlation coefficient pxy.  

-txy is a measure of variability, while axy and Pxy are 
measures of similarity.  

Both measures r'xy and axy are dependent on a lin
ear transform of the variables X, Y, either a translation 
X + b, or a unit rescaling aX. A more intrinsic, unit
free, measure of variability/similarity should therefore be 
defined on the standardized variables: 

X'= (X - mx)/ax and Y' = (Y - my)/ay 

The corresponding statistics are:

mx, = my, = 0 , 4. = 4, = l (27)

axr, E x -rM X Y - m y) caxYmx = E = Pxy E [-1' +1] 

"x,= 1- Pxy E 0, 2] 

The coefficient of correlation pxY is unchanged by any 
linear transform applied on either RV X or Y.  

Note that, when Pxy = 1 == yXy = 0, thus all 
standardized pairs (. A-.M,.  
S ,-.,n are aligned around the 45* line.  
Therefore:

Zi= m + -x(y - my) = ay + b . Oy (28)

A unit correlation, and more generally px2y = 1, char
acterizes two RV's which are linearly related. The coeffi
cient Pxy is a measure of linear (cor)relation between the 
two RV's X, Y. However, zero correlation, i.e., Pxy = 0, 
does not entail necessarily that the two variables are in-

I



8 FUNDAMENTALS OF GEOSTATISTICS 

dependent; it indicates simply that their pattern of de
pendence cannot be modeled by a linear relation of type 
(28).  

Random function 

In any of the previous discussions, the two RV's X, Y 
can represent: 

(i) either two different attributes measured at the same 
location, say, porosity and permeability measured 
from the same core plug; 

(ii) the same attribute measured at two different loca
tions in space, say, porosity at locations x and x + h 
distant of a vector h: X = Z(z), Y = Z(z + h); or 

(iii) two different attributes measured at two different lo
cations, say, porosity at location x and permeability 
at vector h apart: X = ¢(x), Y = K(x + h).

In all cases, the semi-variogram .yxy or -..e correl 
pxy would measure the degree of variability/simi 
between the two variables X, Y.  

The second case (ii) is of particular interest for 
tial interpolation problems, where a whole field of a 
attribute, Z(z),x E Site A, has to be inferred (mal 

Sfrom a limited number of locations sampled for that 
attribute.  

Pooling all n(h) pairs of data found on attribu 
over the same site/zone/layer A, these pairs beinj 
proximately distant of the same vector h (in length 
direction), one could estimate the variogram charac' 
tic of spatial variability over A: 

I ,n(h) 

't=)Zxh Y A(h) = 1 -h) [ z(x.) - z(z. + hl) 

By varying the vector h (in length and direction), 
characteristic is made into a vectorial function -y(h).  

The experimental semi-variogram % (h) is not the 
mate of some elusive expected value of squared incren 
of a no less elusive set of random variables Z(x), Z(x 
It is the discrete estimate of a well-defined spatial int 
defining an average over A: 

YA(h) = A--- f [z(z) - z(x + h)]) dx 

with: AnA-h being the intersection of A and its tran 
A-h by vector -h. If z E A n A.h, then both x

z + h are in A. A(h) is the measure (area/volume) of that 
intersection.  

Just as the random variable Z(x) and its distribution 
characterize the uncertainty about the attribute value at 
location x, the random function Z(z), z E A, defined as a 
set of dependent RV's, will characterize the joint spatial 
uncertainty over A. The variograxn 27 (h) of that random 
function (RF) characterizes the degree of spatial variabil
ity between any two RV's Z(x), Z(z + h) distant of vector 
h. The variogran 2.y(h) is modeled after the spatial av
erage 2-YA(h) which can be estimated by the discrete sum 
2jA(h) defined in (29).  

The modeling of y(h) after the spatial average yA(h) 
amount to decide to average statistics over a given area/ 
site/zone/layer A. That decision is necessarily subjective, 
usually based on geological criteria, and cannot be proven 
(or refuted) by statistical tests. Once the decision of mod
eling 7(h) after 7A(h) is taken, -y(h) just like 7A(h) is not 
any more location (z) dependent within A: 

2-t(h) = E{f[Z(x) - Z(z + h)]'} is independent of z E A.  
(31) 

The moment y(h) is said to be stationary. Stationarity 
is a model decision, not some intrinsic property of the 
actual distribution of z-values over A.  

Once a model y(h) is obtained, the corresponding co
variance model can be deduced by the classical relation:

C(h) = Constant -.- (h) (32)

5 ap- Indeed: 
Sand 

teris- 27 (h) = E{[Z(x) - Z(x + h)12} = 

[E{Z2(X)I m21 + [E{Z2x+h)} -m2) 

2 2 [E fZ(x)Z(z + h)} - M 2) = 

Var{Z(x + Var {Z(z+h)} -2 Coy {Z(x),Z(+h) = (29) 

that 2 [C(o) - C(h)], thus: C(h) = C(o) - -y(h) 

esti- The constant of formula (32) can either be set equal to the 

nents sill -y(oo) of the semi-variogram, model if it exists, or can be 

+ h). set to any arbitrary large value. That arbitrary constant 

egral should then be filtered out from all further algorithms, as 
will be the case in ordinary kriging, see Lesson III, System 
(4).  

The very idea of geostatistics is remarkably simple. It 

(30) consists in the following sequence of steps: 

(i) Define an area/site/population/.. A, deemed ho
slate mogeneous enough to warrant statistical averaging 
and within it.
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(ii) Scan all data available within A to calculate the 

experimental h-characteristics of spatial variability, 
i.e., calculate the experimental variograrn values (30).  

(iii) Smooth and complete the partial experimental im
age thus obtained into a model -y(h), available for 
all interdistance vectors h.  

(iv) Use this model y(h), or the corresponding covari
ance model C(h) for traditional, well-proven regres
sion techniques, also called "kriging", see Lesson II 
and III.  

The most important steps, and by far the most consequen
tial of any geostatistical study, are: step (i) - decision of 
averaging or stationarity, and, step (iii) - the modeling.  
Step (iv) is but well-known calculus.  

The decision of stationarity is implicit in all statistics, 
it is not particular to the geostatistical approach. That 
decision allows defining a pool of data (area A) over which 
experimental averages and proportions will be calculated 
and assumed representative of the population as a whole, 
not of any particular individual location (z E A).  

In the practice of reservoir characterization, that deci
sion corresponds to the traditional split of the reservoirs 
into zones/layers deemed homogeneous enough by the ge
ologist. Of course, that split should not be so fine as 
to retain one zone per datum, for then no averaging (no 
statistics) is possible.

Typical variograms

Variogram and covariance as defined in relations (23) 
to (26) are functions of the vector h (length and direc
tions). When that function depends only on the length of 
the vector h, the model is said to be isotropic. When it 
depends also on the direction of the vector h, the model 
is said to be anisotropic. The variograms in a direction 
(oa) along continuity, say, of a sedimentation channel, will 
present less variability than in a direction (a2) across con
tinuity; correspondingly, the covariance or correlogram 
will indicate greater correlation in the direction of sed
imentation, see Figure 5.  

The variance operator 

Knowledge of the covariance function C(h) for a ran
dom function {Z(z),z E A}, or the covariance matrix 
fC.oa,,6 = 1,.. ,] nfor a set ofn RV's Z.,.a = 1, .. ,n, 
not necessarily related to the same attribute, allows cal
culation of the variance of any linear combination of the 
component RV's.

h

C(h) 

", I

h0 82

Fig. 5. Anisotropic variogram and covariance 
oa: direction of continuity 
02: direction across continuity 
&I: distance at which spatial correlation vanishes in 
direction al: 
C(Ihl,oa) = 0, "y(IHL, al) = sill value = C(0), 
for all IhJ > &1 

Let:

Y = a. Z(x.), 
at=I

or Y=E2a.Z.  
&.1

then:

Var{Y) = E = = a,.a¢C(. - z0 ) > 0 
=&_ Er2c.=i a~aoC,3 2! 0

A variance is necessarily non-negative, thus the previ
ous expression must be non-negative whatever the choice 
of the n weights a., possibly negative. The variance is 
nought only if all weights a. are zero, assuming that none 
of the component RV's are exactly constant. Thus, the 
covaziance function C(h) or the covariance matrix [C.,6] 
must be such to ensure the positivity of the variance op
erator (33) whatever the weights a. chosen: This is the 
condition of "positive definiteness" of either the function 
C(h) or the matrix [C.,O] 

Not all functions nor all matrix of numbers can be 
taken as a covariance/variogram model, respectively, as a 
covariance/variogram matrix. When modeling an exper
imental covariance/variogram, a valid function C(h) or 
7 (h) must be chosen.

(33)
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Lesson II: Linear Regression Theory or Simple Kriging 
(SK)

The basic idea of linear regression is to estimate an 
unknown value Zo by a linear combination of n known 
values Zo, a = 1,..-, n. These n known values may cor
respond to the same attribute as Z0, in which case one 
speaks of "kriging," or to attributes different from Z0, in 
which case it is "cokriging." From an algorithmic point of 
view, there is no difference between kriging and cokriging; 
the difference appears only at the stage of inference of the 
covariance/variogram models required for solving for the 
linear regression weights.  

Consider an unknown value z0 , interpreted as an out
come of a random variable (RV) Zo.  

The n data values za,a = 1,..., n are themselves in
terpreted as n outcomes of n RV's Za, c = 1,..., n.  

The (n + 1) RV's Z0, Z1,.. , ZA are characterized by 
*" their means, for now assumed known: 

Ef Z} = mo, a = 0,...,n (1) 

* their covariances: 

Cov{fZ,Z~gl = EfZ.,z•}-,.mo=Co 

= forall c,B=0,.--,n.  

The (n + 1) variances are none other than the autocovari
ances Values: 

Var {Zo,}{=•{ '} a-=co° , &=O,...,n (2) 

One can also define the standardized covariances or coef
ficient of correlation between any two variables Z., Zp:

p0a0 = ca E[1 1 (3)

We will distinguish the data covariance matrix K (n x n):

K = [Co , a,0 = ".,n]

The critical step of covariance/variogram inference and 
modeling allows determination of all the required covari
ance values.  

Linear estimator: 

The unknown value z0 is estimated by a linear combi
nation of the n data plus a shift parameter A0 :

Z;= A0 +

z; is said to be the "estimate." Corresponding]y. the lin
ear combination of the n RV's Z. is itself an RV called 
the "estimator":

(6)

Z; = A, + • AaZa 
O=1

(7)

The actual error, zo - z;, is usually unknown and little 
can be done about it. However, some moments of the RV 
error, Zo - Z2, can be calculated thus acted upon.  

The expected value of the RV error is: 

E{Zo - z;} = E{Zo} - E{Z} 

= E{Zo} - \o - A.E{Z 0} = - A0 - f A, 

We would wish that expected error to be zero ensuring "unbiasedness," thus the shift parameter A0 is taken as: 

A o = \- Aarn* 
0=1 

Thus:

(4)
2; = m + ~AO[ 0 -in.] (8)

from the data-to-unknown covariance column k (n x 1): 

rkT= [C 0 , =1,...,n•] (5

The unbiased estimator Z; appears as the result of a linear 
estimation of the residual [Z0 - mo] from the residual RV 
data [Z - r.]:

N-
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[Z; - moo = [Zo - mo] = .[Zo - m.) (9) 
boml 

There remains to determine the n weights A,, a = 1,.. n.  
For this, we will act upon (minimize) the error variance.  

Viewing the RV error (Z0 - 2;) as a linear combination 
Y of (n + 1) RV's: 

Y = Zo - Z= [,o - mo] - [Zo - rm]° a.[Z. - ma.] 

(10) 
with: ao l 

The error variance is expressed as a double sum of the 
covariances C.,, see Lesson 1, relation (33):

fi Y n Var Y = • oao 
aOfi•=

(11)

We would wish the error variance to be the smallest pos
sible. Thus, the n weights a,, = -A,,,a = 1,...,n are 
chosen to minimize Var Y. This is done by setting to zero 
the n partial derivatives of Var Y with regard to each of 
the n parameters a. , a = 1,..-,n: 

IaVar Y n 

2 Oat = E aoC, aoCao + a,6C,, 
,6=0 0=1 

= C.0o- AoC.o =0 , for all a=1,-.-,n 
0}=i 

We have just established the well known "normal system" 
of equations, also known as "linear regression" equations, 
and belatedly renamed "simple kriging" (SK) system:

(12)4,C0 = C0, 1 n 

The corresponding minimized error variance, also 
"simple kriging" variance, is then written: 

VSK =var{zo-z} =Z {aa C- E 
aemO $=0 

n nt ft 

C-oo- >-C.co + F. + 
0=1 aw al =I 

= m 21:A...+ A0  A0C 0 = C0 
0=1 aul 

Finally: 

4x =Var{Zo- Z;} =Cco0- _.C O 0 
0=1

In matrix notations, the SK system (12) is written: 

KLA=k = k 

with: 

[• 1 ' matrices defined in (4),(5) 

Defining the residual data matrix 

X• = [&1 -M,,...,Zn - M] , 

the estimator (9) is written: 

[z0 - Mo]" =A, . B. = IT B-

(14)

(15)

since: K = KT (the data covariance matrix is symmetric), 
L-2 = (&-])T.  

The minimized estimation variance is: 

1 2 Coo - A k- k = Qo - j. • k 

The system, (12) or (14), yields one and only solution 
as soon as the data covariance matrix K is positive def
inite, in practice as soon as no two columns (or rows) of 
that matrix are identical, i.e., there is no two data totally 
redundant: 

Ca = Coa, for all 0 , if and only if: a = a'.  

Of course, K should be a covariance matrix, i.e.. the 
n 2 values cannot be picked arbitrarily, see Lesson I (33).  

Independence case 

Assume that the n RV data Z4 , a = 1,...,n, are 
independent one from another; they are then called "in
dependent variables," the unknown RV Z, being the "de
pendent variable." 

The data covariance matrix K thus reduces to a diag
onal matrix with for diagonal elements the data variances: 

K (Ca~pI = i .- 1 

C.0 J"0, for a i~eC. = / Ca., for ao= 

The SK system (12) is then written: 

A.aCo = C 0o * A\ = C.0/Coo , a=
Introducing the coefficient of correlation:

•mA%
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P.o = C oo/Cv * *= A = Zoo 0 •, a n 

and the SK estimator (9) becomes: 

[-o - = mo-- M.] 
adi 

i.e., with the standard deviation notation: 0'. Z'

[Zo -_Mo= [Z. -ma 
t E' Pa oI a,

(16)

In presence of independent data, the SK (regression) weights 
A., a = 1,. . . , n, are none other than the correlation co
efficients p0, between each datum and the unknown (de
pendent) variable Zo.  

The greater the correlation po0 of a particular datum with 
Z0, the greater its weight.  

Note that: 

=PL o # 1 , usually.  

SK = CoO [I1- Fo } =Cc®[1- E. p0oI 

Moreover, if the n data are independent of the unknown 
Z0, i.e., if Pgo = 0, the SK estimator reduces to the mean: 
Zý = Mo.  

Example. n = 1(1 single datum ZI).  

Expressions (12) or (16) reduces to: 

[Zo -Mo P10[Z,- rn,] i.e.  
Oo F I a"i I 

Z; = M'o + P10o•(Zl - MI) 

which is the traditional expression of the regression line 
related to a scattergram 
(oW,-1 ," = 1,. -.. L), see Figure 1:

z0

Ono 3= % 1,. MI - =o I= I ,,[." m 
L r.1 LL WW 

_zr[0 Ml.[ I mr l 

Pio = aio/Oi•o E [-1, +1] 

rno, rni, a'2, 172, jlo are the experimental statistics of the L 

pairs (Zi) z W )) 
i = 1,..., L, available.  

The exactitude property 

Consider the case when one of the data, say, Z.,, is 
considered the unknown: 

., =_ Z0 . We would then wish the SK estimate to identify 
that single datum.  
In such a case: C.., = C"0 , for all a = 1, .-- ,n, and 
the SK system (12) becomes: 

SACo + ACo = Co, a = ,-,n 

The unique solution is: Aw, = 1, Ae = 0, for all 0 # a'.  

Thus, the SK estimate is:

ZZ = Zo, , and cK= 0 (17)

Spatial interpolation 

Spatial interpolation corresponds to the case where the 
n data Z, relate to the same attribute Z but at different 
locations z. i zo.  

For example, the porosity Z(xo) at unsampled location 
zo is to be estimated from n porosity data Z(: 0 ) taken 
at n surrounding locations xo:

(18)Z*(xo)-m= - [Z(.) - mI

with m being the common expected value of the (n + 1) 
RV's Z(zo), Z(zx), a = I, ... , n. In practice, m would 
be the mean of all porosity data available within the same 
layer or homogeneous formation.  

Defining the covariance function C(h) as the covari
ance between any two porosity RV's Z(z), Z(z + h), dis
tant of vector h but still within the same formation:

(19)C(h) = Co- {Z(z), Z( + h)} 

The simple kriging system (12) is:

ZI

Fig. 1. Scamrgm m(ZO7 Z1 )

SA0 C(Zo-Ze)=C(zo-Zo), a=1, .- ',n (20)0



mak The SK estimator (18) requires prior knowl edge or estimation of the common mean m. That prioi step can be pooled with the error variance minimizatior 
step into a single algorithm, called "ordinary kriging," set 
Lesson III, system (4).  

Simple cokriging 

When the n data Zo relate to one or more (up to n) 
attributes different from the attribute corresponding to 
the unknown Z0, the previous SK process is called "simple 
cokrigin&." 

For example, ZO may be the sought after core porosity at any particular given location. The Z.'s may be 
n porosity-related well log data at that same location.  
The corresponding simple cokriging estimate is none other 
than the traditional linear regression of core porosity from 
the log data: 

0 

[ZO - mo] = • ,Ao [Z - mto) , according to (9) 
0=1 

Remark. If one of the data, say, Z,,, happens to be either the sought after core porosity, or !og datum per
fectly correlated to the core porosity Z0 , -ze previous SK 
estimate would identify that datum: 

Z; E Z,,, , see the exactitude property (17).  

The previous linear regression considers for estimation of the core porosity Z0 only those well log data at the same 
location. In fact, there also exists core data at other locations. If these data at other locations are correlated 
to Z0 . they should be included to improve the regression 
defining a full cokriging pattern.  

Consider for the estimation of an unknown porosity 
Zo(xo) at a location zo the information constituted by: 

"* no core porosity data Zo(z. 0 ) , ao = 1 , .,no 
obtained from neighboring cored well(s) 

" K sets of log data Zk(z°,) , k= 1, ... fnk , kl = 1,. .. , K coming from various locations z,, corre
sponding to either cored or simply logged wells.  

The generalized linear regression, or "cokriging" estima
tor, is written: 

[Zo(Xo) - m0J" = A•.0 [Zo(°z0 ) - M0] 
+ AL, E A.. [Zk(,..) - in1 

(21) This expression is no different from the general SK ex
pression (9). The total number of data being:

K 

n = no + Enk 

k= I 
The corresponding okriging system to determine the 

n weights, A.0 , A&A, is no different from the general SK 
system (12) except for the notations differentiating each 
type of log data, see hereafter System (22).  

The traditional regression using only the data avail
able at the location to be informed fails to use existing 
spatial correlations existing between further away data 
and the attribute Zo(z.,) to be estimated.  

Simple cokriging system

40 0C k= En AO1,C.,00 , = C000 for ko =1 ,..,no

Z n =, kA, C .. ,a, + Z ,K ~l • = 0+ Xk=1 Z'1 A01,,C.1,,"1 = C01,,0 for ok,=l,...,n,, and k'=1,...,K 

with: 

C-*4 = Coy {Zo(Z.°), Zo(r•)} 
C-. 0 , = Coy {Zo(X0 .) ,zk(XO.)} 

C 0oo = Coy {Zo(z 0 o), Zo(zo)} 

C-.,1% = Coy {Zk'(Zo ,,), Zo(z&)} 

C.",C' = Coy {Z.,(x0 ,,) , Zk(X.)} 

C.. , o = Coy {Zk',(Z.,), Zo(Xo)) 

In matrix terms, the general system (14) holds true with 
simply the various matrices being partitioned, e.g.,

[K [oo1 I ... 7
Data orthogonalization 

In most practical situations, the n data Z.,a = 1,.., n 
are dependent on each other. The idea is to define from 
the initial set of dependent data Z., a = 1,.. .,n, a new 
set of independent data Y,,a =' 1, .,*,n, on which the 
simpler regression (16) could be applied.  

Given any initial data vector: Z! = [Z1 , Z,,] with 
non-diagonal covariance matrix K, there exists a linear 
transform Y- = A. Z which will transform Z into a 
vector X with an identity diagonal covariance matrix, 
i.e., the n transformed RV's L are uncorrelated.  

The initial matrix , being a covariance matrix always 
admits the following LU decomposition:

(23)
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(22)
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K= LL.

with: L being a lower triangular matrix [\2J 
and: =IT L being an upper triangular matrix -\], 
[Golub and van Loan 1983, p. 54).  

The inverse of,& always exists and is written:

(24) Dual kriging 

Going back to the matrix expression (15) of the SK 
estimate: 

[Zo -ml •] =•Ao[Zo -m ,1o]=kT. K-I. te,

K-= = since,& and K'-are symmetric it can be rewritten as:

Consider the linear transform A =L-1: 

.=L- *.7Q =* =T-- (25) 

The covariance matrix of the Y.'s is written: 

= 

= L L-- = IZE)L- = L 
Thus, the transform Y = L-1 .e, "uncorrelates" the 
data. The new data Yo,, however, remains correlated to 
the unknown RV Zo, with for covariance matrix: 

-y = E{ZoL} = - {z0 L= ' .k 
Consider the SK estimate based on the Y., data: 

[z 0 - mo0 = V-, [yO - my.] L , .'L 

The corresponding SK system (14) is written, with K(Y = L 

L .=ky -1=ky 
Thus: Zo_- mo0f" =k_ L L- . (jT*-,L-,) .e 

i.e. [Z0 - no]*" =_ [Zo - mo]° , as defined in (15).  

Thus, the SK algorithm as described by the system (14) 
is the sequence of two steps: 

(i) an orthogonalization of the data 

Y.a =4'- Z. , with: K _.•. T 

(ii) a straight weighting of the orthogonal data Y. by 
their correlation with the unknown Zo:

[Zo - mo]" = kyT [-(,Y - my,.

The first step accounts for the redundancy between the 
data Zo. Once that redundancy is corrected, a straight
forward correlation weighting, of type (16), is performed.

(26)

with: bT fb,i,. b_] =-.,. K-' 

Thus: k = . , and the coefficients b. are given by 
the system, called "dual SK" system:

The dual expression (26) and the dual system (27) are 
both extremely similar to the original (primal) expression 
(15) and system (14). Instead of being read as a linear 
combination of the n data (z. - m.,), the SK estimate is 
read as a linear combination of n interpolation functions 
which happen to be the n data-to-unknown covariance 
functions Coo.  

In the case (18) of a single attribute Z(z) distributed 
over various locations of a formation, relation (26) is writ
ten: 

Z'(zo)-m = A .° [Z(x.) - ml = b b,,C(ze°-.o) (28) 

and the dual system (27) amounts to ascertain that the 
interpolated surface Z'(z0), zo E A, identifies the data 
values z(x,) at data locations, i.e. when zo = z.,: 

Z'(-.) - m = E.1 boC(z# - z.) = r. = z. - m 
forall a=1,.-.,n 

(29) 

Spline interpolation amounts to replace in expression 
(28) the covariance functions C(ze - x) by extremely reg
ular and smooth functions f(z,, - z), then ensure data 
identification through a system of type (29):

I

[Zo-m] =(i .~.L T = K .

.Kk=&t , i.e. (27)
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Z'(x) = b0 + Z bof(z - x) 
a=1

with:

Z'(x.) = bo + = bf(x0 - z 0 ) = datum z(zx) 
for"a a=1,.,n 

(31) 

Then one may argue on the arbitrariness of choosing, in 
the SK case, covariance functions for interpolation func
tions. As was shown before, the choice of covariance 
functions allows to minimize the resulting error variance, 
Var {Z0 - zZ }.  
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Lesson III: Linear Regression Under Constraint(s) and 
Ordinary Kriging (OK)

In all the simple kriging (SK) developments of the 
previous Lesson II, the mean(s) were supposedly known, 
cf. relations (9) and (18). Consider, for example, the 
SK estimator (18) of an unknown Z(zo) from n data 
related to the same attribute but at different locations

Z'(xo) - M [fZ(X,,) - M) 
a=1

(1)

The common (stationary) mean m is supposed known.  
If the process Z(z) was sampled at all locations x within 
the formation A considered, that mean m would be known 
but also there would not be any estimation problem left.  
Thus. in practice, either m is to be estimated prior to 
the SK algorithm, or an estimation algorithm should be 
designed which does not require prior estimate of that 
mean.  

Consider the linear estimator: 

Z'(.o) = A0 + • A.Z(z 0 ) 

The error mean is: 

E{2(Zo)-Z"(z0 )} = m-,A-• Am = -A 0+m 1-E A)

and should be set to zero, whatever the unknown value of 
rn. This can be achieved only if: 

{AO = 0 
:=I A,. = 1 

Thus, an unbiased linear estimator of Z(zo) is written as:

a n1 

Z'(xo) = E A.Z(Zo) , with: £ A,, = 1 
ao=l ol

(2)

Note. Although for reason of convenience, we have used 
the same notation A. for the SK weights of relation (1) 
and the weights of relation (2) they are not equal.  

The error variance is written, as in Lesson 11 (11): 

S= Var = I aoa - a) (3) 

no 0==0 

with: { 
1 a* = --A,( a ,.,n 

and: C(Z. - Zs) = Coy {Z(Zo), Z(zp)) 

We wish to minimize that error variance, still ensur
ing unbiasedness of the estimator, i.e., ensuring the con
straint: E'. Ak. = 1, This amounts to an optimization 
under linear constraint. The Lagrange formalism will 
be used whereby a function, of the (n + 1) parameters
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A,, a = 1,.. n and 2 a being the Lagrange parameter, is 
defined as: 

S(A,,,a =1.,n; a) = a' + 2p L•_n A. _ 11 

The extreme of that function S is obtained by setting to 
zero its (n + 1) partial derivatives:

I 8S = =An - 1 =0 

The n first equations are rewritten: 

C(x, - xo) - t A8C(x, - zx1 ) - p = 0, i.e., 
13=1 

E AcC(xo - x3) + u = C(xo - xo) , a = 1,..., n.  
8=1 

Finally. the (n + 1) unknowns, the A.'s and y, are giver 
a system of (n + 1) linear equations, known as the "( 
strained normal" system of equations, belatedly renar 
"ordinary kriging" (OK) system: 

E{ =, AC(Xo - z,) + # = C(x,, - Zo) , a = 

The corresponding minimized error variance, also ca 
"ordinary kriging" (OK) variance is written: 

a2OK = E{[Z(xo) - Z-(:0 )J2} = 

= C(o) - ELI AC((:o - X.0) - ' > 0 

Just like the SK system of Lesson 11 (12), the 
system (4) presents one and only one solution as sooz 
the data covariance matrix K = [C(z0 - x,3)] is posi 
definite, in practice as soon as: 

(i) the covariance function C(h) is licit, i.e., is a posi 
definite function, see Lesson I condition (34) 

(ii) there are no two data locations totally redundi 
i.e., 

C(zc, - XO) = C(Z,,, - XO) , for allu =1.

if and only if: a = a' 

Independence case 

If the n RV data Z(x,) are independent (or unc 
related) one from another, the data covariance mat 
[C(zo - x:)] reduces to a diagonal matrix with all 
ements of the diagonal equal to the common variam 

' C(0) = Var {Z(:)}, for all x.  
The OK system (4) becomes:

i.e.

{ A.C(O)+ ' =C(zo- ),a = 1,..,n 5"c., A13 = 1 

C({• .- ) .-L . - Z. - o)

= C(O) C(O) 

-=' C(O)[1 - ELI X(° - Zo)]

(6)

qOK = C(o) [1 - E:"=I p2(Z,. - Zo)] 
-', [1 - ELI P(.-o)] 0> 0 

with: p(h) = C(h)/C(O) E [-1,+1] being the standard
ized covariance, or "correlogram," measuring the correla
tion between two values Z(z), Z(z + h) distant of vector 
h.  

If, moreover, the n data are uncorrelated with the un
known RV Z(xo): 
p(x. - x0) = 0 , a = 1,-- ,n, the OK system (6) then 
yields:

{A,.=l/n,a=1,...,n -p = C(O)/n (7)

Thus: Z() = E'. Z(x:), whatever the location x0 
(4) and: = C(0) + Cn(o) > 0 

Rled In the case of total spatial independence, the OK es
timate reduces to the arithmetic mean of the n data re
tained.  

(5) In the SK case Lesson 11 (16), the SK estimate did 
reduce to the known mean m0 . In the OK case, that 
mean is unknown and is estimated by the mean of the n 

OK data.  
n as The exactitude property 
tive 

If one datum, say, Z(ze), is considered to be the un
known Z(zo), then: 

tive C(x, - zo) = C(zo - zo) , for all i=1,..,n, and the 
OK system (4) is written: 

3nt, E "., AaC(Z, - zo) + AoC(xz, - ZO) + p = C(Z, - =o) 

The unique solution is: Ae, = 1, A0 = 0$ # a',6 = 0.  
Thus, the OK estimate identifies the datum value Z(o,) = 

... Z(zo), and:

0K = C(o) - A;.C(o) = 0 (8)
As SK, the OK algorithm features the exactitude prop

erty: the OK surface, Z'(zo) ,:o E Domain, honors the 
data values at data locations.
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Similarity SK-OK 

Rewriting the expression Lesson 11 (18) of the SK es
timator as:

Z;E(2o) - )m+ AZ() (9)

It appears as a Linear combination of (n + 1) data, in
cluding the known mean m, with the sum of the (n + 1) 
weights being equal to 1 by construction. In the OK case, 
the mean is unknown, thus there are only n weights which 
must sum up to 1, calling for a constrained optimization 
and a Lagrange parameter.  

Example. n = 1 (1 single datum) 

The unbiasedness condition (2) fully determines the 
unique weight: A, = 1, and: Z*(zo) = Z(xj).  

The OK system (4) determines the Lagrange parame
ter value: 

AC(0) + . = C(z, - o) = C(X - o) - C(0), 

Thus: 

o,< = E{[Z(zo) - Z(,,)])} = 2 [C(O) - C(z 1 - So)] > 0 

More generally, the basic estimation variance of one 
value Z(z) by another Z(x + h), a vector h apart, isby 
definition the "variogram," see Lesson 1 (31): 

2-1(h) = E{[Z(x) - Z(x + h )]2) = 2[C(o) - C(h)] (10)

Example. n = 2 (2 data), see Figure 1 

Z(x0) 

Z(x2) 0 Z(X ) 
(14.) 00(k

Fig. 1. Regression from 2 data

The unbiasedness condition defines the OK estimator as: 

Z'(Zo) = AZ(sa) + (I - A)Z(X2 ) 

The OK system (4) is written: {AC(0) + (1 - A)C(X1 - Z2) + A = C(z 1 - Zo) 
AC(X1 - X2) + (1 - A)C(0) + P = C( 2 - Xo)

After some elementary algebra, it is found that: 

1 1 C(I I -ZO)- C(z 2 -X..0 ) 
2= 2 C(O)-C(.x-, 2) 

Introducing the correlograrn p(h) = C(h)/C(0), it comes: 

A = 1 P(z1 .. zO)- pXZ2 - --0) 

2 2 1- P( 1 - z 2 ) 

As expected, the weight A given to the datum Z(z,) in
creases as 

(i) the correlation p(xl - zo) of that datum with the 
unknown Z(xo) increases 

(ii) the correlation P(X2 - Zo) of the other datum with 
Z(xo) decreases.  

Similarly, it is found: 

C(0) 2= Jp(X - Zo) + p(Z 2 - -O) - p(I -i) -Z1] 

(12) 

OK/C(O) = 1 - AP(• 1 - Xo) - (1 - A)p(r 2 - ZO) -- lC(0) 

Thus, and'as expected, the estimation variance ao2K de
creases, i.e., the estimation precision increases as 

(i) the two data are better correlated with the unknown 
Z(zo), i.e., the two correlations p(x1 --o) and 
,XX2 - So) increase 

(ii) the two data are less redundant: if p(xl - x2) de
creases, M will increase and aK decreases.

As already pointed out in the previous Lesson II, the 
regression (kriging) algorithm accounts not only for the 
respective correlation p(x. - zo) between each datum and 
the unknown, but also for the degree of redundancy be
tween the data through the data covariance matrix K.  

If the two data of the last example are uncorrelated 
(no redundancy): p(zX - Z2) = 0, and expression (11) 
gives: 

A = + I [p(z, - Xo) - P(X2 - So)1

The weight A increases directly as the excess of correla
tion [P(zi - Zo) - P(z2 - XO)] of datum Z(x1 ) over datum 
Z(Z2). If, moreover, the two data are equi-correlated with 
the unknown: A = (1 - A) = 1/2, and: 

3 
fo&KIC(O) = - - 2p(z, - zo) 

If, moreover, the two data are uncorrelated with the un
known
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p(rI -o)= p(X 2-zo)=0 , and: 

oK = iC(0) = C(O) + C , as it should.  
2 

Kriging in presence of a trend 

In presence of an unknown, but constant, mea 
the condition E. A. = 1 allows to filter out that con 
m from the OK system and in the same time acl 
unbiasedness.  

One can generalize that concept and seek for e 
tions on the n weights A. that would filter out a 
complex trend function m(x) = E{Z(x)} that woul 
location x-dependent.  

Consider a trend function, i.e., a smoothly var 
function of the coordinate(s) z, which is of known s 
but with unknown parameters: 

L 
m(z) = Zalf,(z) 

t=0 
where the f/(x)'s are known functions of the -oordina 
and the at's are unknown parameter values making 
trend value rn(x) unknown.  

By convention, the zeroth term is the constant 
tion, i.e., 

fo(z) = 1 , for all z 
The case of a constant mean, m(x) = m, would c 
spond to L = 0, and a0 = m either known (SK case 
unknown (OK case).  

Examples. In RI (e.g., 1 dimensional time space), 
fl(t) can be cosine functions of given frequencies wt: 

fl(t) = cos 27rwtt 

In R2 (e.g., horizontal space), the ft(zI,X2 ) are 
ally taken as low order polynomials, up to order 2 f 
quadratic trend: 

m(z, Iy) = ao + al. + a2Y1 + a 3 X2 
+ a4 y 2 + aszy 

corresponding to the choice L = 5, and: 

fo(Z,Y) = 1, A (z,Y) = X, M2(X,Y) = Y 

f3(, Y) = X2 , f(, M y) = t, fs(Zy ) = ZY 

A linear trend in R2 would be defined as: 

m(z, y) = ao + a,- + a2y 

If that linear trend is known to be limited to the 
direction, the number of parameters can be limited 
two, i.e., L = 1:

(13) 

stant 
ieves 

ondi
more 
Id be 

jable 
hape

m(z,y) = ao + a,(x + y) (15)

At data locations Z.,ck = 1,... ,n, only the Z(zo) val
ues are known, not the trend values m(zo), because the 
notion of trend is usually a model of the experimenter 
not necessarily intrinsic to the spatial distribution of the 
attribute Z.  

The problem consists of estimating at any unsampled 
location zo 9 Zx, the unknown value Z(zo) ensuring the 
unbiasedness condition: 

E{Z(zo) - Z(zo)} = 0 , i.e.  

L 
E{Z*(zo)} = E{Z(zo)} = m(xo) = alfl(zo) 

t=0

Consider the linear estimator: 

Z'(xo) = E A.Z(z.) 
a-1

(14) Note. Again, for reason of convenience, we have adopted 
for the weights the same notation A. used for the SK 

te(s) estimator (1) and OK estimator (2). Although sharing 
the the same notation, these weights need not be equal.  

The expected value of the RV error is to be set to zero: 
unc

E{Z(zo) - Z'(xo)} = m(xo) - A ,-m(:o) 

off e-L 
)or Eat [f(xo) - o Aof(z,) =0 

the Unbiasedness, whatever the unknown parameters at's, is 
thus achieved by imposing the following (L + 1) conditions 
on the n weights A.: 

A)f,(z.) =fe(zo) , for all = 0,..,L (17) 
usu- -1 

!or a * The OK case corresponds to L = 0, fo(x) = 1, thus 
to the single condition: E. A. = 1 

* The case of a diagonal linear drift (15) would call 
for two unbiasedness conditions: 

EA.=1, and: 
a a 

We wish now to minimize the error variance under the 
previous (L+ 1) linear constraints (17) on the weights A0.  
The Lagrange formalism, used to establish the OK system 
under one single constraint, is repeated similarly except 

450 for (L + 1) Lagrange parameters / 0, pj,t = 1,.. ., L.  
to The resulting system of (n + L + 1) equations with 

(n + L + 1) unknowns, the n weights A. and the (L + 1)

(16)
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Lagrange parameter ju, is but a high order constrained 
"normal"system, belatedly renamed "universal kriging" 
(UK) system: 

{ E•= A•C~o - r 0 ) + X~10 f,(94) = C(z 0 -TO) 

E0=1 A•df(x,) = f,(xo) , t = 0, .. , L 

The correspondihng minimized error variance, or "kriging" 
variance, is written: 

a.?, - E{[Z~xo) - Z(xo)J2 } 

= C(o) - E A0C(Xo - Xo) - EL 0 ,(xo) 

(19) 
Remarks. The adjective "universal" stems from the (L + 
1) unbiasedness conditions (17), also called "universality 
conditions" for they ensure unbiasedness whatever the un
known trend parameters at's. This adjective "universal" 
is unfortunate, for there is nothing universal nor intrinsic 
to either the conditions (17) or the constrained system 
(18): they depend on the arbitrary choice of the trend 
component functions fi(x)'s.  

A better, although more cumbersome name, for the 
system (18) and the corresponding algorithm would be 
"kriging under trend constraints." 

The system (18) reduces to the OK system (4) in the 
case of a constant-but known mean, L = 0 and m(x) = m.  

The covariance C(h) used in system (18) is that of the 
residual data R(z0 ) = Z(zo) - m(x0 ). Since the trend 
values m(xz0 ) are usually unknown, the residual data are 
also unknown and their covariance C(h) cannot be in
ferred directly. The formalism of "intrinsic random func
tions of order L" has been designed for inference of C(h) 
directly from the original data Z(zo), see discussion in 
the next section of this lesson.  

In most practical situations, within a site or forma
tion there exists subzones or privileged directions within 
or along which the trend effect m(z + h) - m(x) can be 
ignored, at least for short interdistances h. In such sub
zones and/or directions, the R-covariance C(h) can be 
inferred directly from the Z-data.  

The system (18) presents one and only one solution if: 

(i) the data covariance matrix K = [C(z0 - zo)] is 
positive definite, which requires that the covariance 
model C(h) be itself positive definite.  

(ii) the (L + 1) functions fe(z) are linearly independent 
on the set of n data.

This last condition simply says that, e.g., estimation 
of a linear drift in, say, the x direction cannot be done if 
all n data are aligned in the y-direction.  

The intrinsic random functions of order L 

Consider the random function Z(z), with covariance 
function C(h) = Coy {f(z),Z(x + h)) and the linear 
estimator 

n 

2(zo) = A.0Z(X() 

The estimation error Y can be seen as a linear combina
tion of (n + 1) RV's:

Y = Z(Z0 ) - Z'(XO) = Z d:Z(zT) 
0=0

with: 

do 1, for a = 0 
- ,for~a=1,...,n 

The error variance, i.e., the variance of the linear combi
nation is given by Lesson I (33):

(20)

Vary = E E d.d0 C(z0 -. zT) 0 0 

a=0,6=0
(21)

A variance being necessarily non-negative, the covari
ance function C(h) must be such that the expression (21) 
be positive whatever the choices of the (n + 1) weights 
do, positive or negative. This is the well known "positive 
definite" condition for a function C(h) to be a valid co
variance function. Zero variance is obtained only when 
all (n + 1) weights d, are zero.  

Calculation of the variance (21) requires existence and 
knowledge of the covariance function C(h), which required 
prior knowledge or estimation of the constant mean: 
E{Z(x)} = m, for all x.  

There are cases, as in (14), where the expected value 
E{Z(x)} = m(z) is neither constant nor known. It would 
then be useful to express the error variance Var Y as a 
function of some "generalized" covariance function K(h) 
that would not require prior knowledge of m(z).  

Consider first the case of a constant but known mean: 
E{Z(x)} = m, for all z. Under the OK unbiasedness 
condition (2):

A0 =1, entailing d, = 0 
0=1 s00

(22)

the estimation error Y can be written as a linear combi
nation of (n + 1) increments: 

Y = Z(Xo) - Z'(zo) = f do[Z(xo - Z(zTo)] (23) 
0-0
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and its variance is expressed as: 

Var Y = E dad# Cov{Z(z. - Z(xo), Z(zo - Z(x 0)} 
0-0 0=0 

Introducing the variogram Lesson 1 (22) defined as the 
variance of the increment Z(z + h) - Z(x): 

2-r(h) = Var{Z(z + h) - Z(z)} 
= Var{[Z(z + h) - Z(xo)] - [Z(x) - Z(xo)]} 

2-y(x + h - Zo) + 2 y(z - zo) 
-2Cov{Z(zo) - Z(z + h), Z(zo) - Z(x)} 

Thus:

Cov{Z(xo) - Z(r + h), Z(xo) - Z(x)} = t(x + h - xo) + -t(x zo) - 7t(h) 

The error variance (23) is then rewritten: 

VarY 

= 0=o Z3= d3o [-y(z - xo) + -f(r0 _ Xo) -x(0) 
[Z= d,- z - z0)1 j''= g 

+ [Zd=0 .(x. - x0)]. do]0 
aE'=0 d. d,3-y(x - x£) 

Accounting for relation (22), it comes finally: 
VarY= -Z=O:0 =0odd,3y(z.-x) >0 

under the condition E=0 do = 0 
Note the similarity of the two error variance expres4 
(21) and (25). The negative of the semi-variogram, -
is said to be a "generalized covariance" of order zero.  
order zero comes from the order of a polynomial t: 
m(z) = Po(z) = m that can be filtered by the error 
pression (20). Indeed, if a constant m (polynomial ti 
of order 0) is added to the random function model Z 
i.e., to the (n + 1) values Z(zo), Z(zo) in expres 
(20), it would be cancelled out thanks to the condi 
E'=0 d. = 0.  

Any linear combination Y = o daZ(Za), such i 
E 0 d,,, = 0, is said to be a "generalized increment order 0 and its variance is given by expression (25).  
particular, the elementary increment Z(x + h) - Z(z 
an increment of order 0 and acccording to (25): 

Var{Z(z + h) - Z(z)} = 
+ -y(x + h - x) + y(x - x - h) - 2y(0) = 2-y(h) 
since -f(0) = 0 

Genealiztion. Any linear combination Y = £--.0 d.2 such that the weights d. verify the (L + 1) unbiasedn 
conditions (17), is said to be a "generalized incremen 
of order L and its variance is given as a double sum o 
"generalized covariance" of order L:

o=0 B: Var Y = E )d.d£3KL(z.T. - z) > 0

under the (L + 1) conditions (17): 

•, ( )O, t = O,...,-L 
a=0 

A generalized increment of order L, Y = Z(z), 
would filter any polynomial of order L and more gener
ally any function f(z) = 0 alf,(z) being added to the 
random function Z(z). Indeed:

(24) dc [. ) + E at() o=0 1=0 

= £od.Z(Z.) + EL-ae -deft(xa) =En 

whatever the coefficients a,.  
An intrinsic random function of order L (IRF-L) is 

a class of random functions defined up to an arbitrary 
polynomial of order L, and more generally up to an ar
bitrary trend of type f(z) = 0Loatfe(x). The variance 
of such random functions is then characterized from the 
"intrinsic" covariance KL(h).  

The variance (26) can be minimized under the (L + 1) 
constraints yielding a system of equations identical to the 
constrained system (18), except for the residual covari(25) ance C(h) being replaced by the generalized covariance 

;ions KL(h).  

Up to this point, notwithstanding its formal elegance, 
Th), the formalism of intrinsic random function of order L 
rend (IRF-L) has not brought any new insight into the very 
. ex- classical and simpler algorithm of constrained minimiza
rend tion of an error variance.  

Infrrn . Proponents of the IRF-L approach argue 
"that the generalized covariance KL(h) is easier to infer sion than the residual covariance C(h).  tion Inference of the residual covariance C(h) requires the 
choice of subzones and/or directions where the trend that Et alft(z) can be ignored; C(h) is then inferred directly 

"of from the original Z-data.  
Is Inference of the generalized covariance KL(h) requires r) is also a preliminary definition of generalized increments of 

order, i.e., linear combinations Y = E.o d. Z(x) whose 
variances would be insensitive to any trend of type 
ELo atft(r) and expressed as function of KL(h) through 
relation (26).  

Assume that N such generalized increments 
g(zY), l=,j =- ,...,N could be defined.  
ess The generalized covariance KL(h) is arbitrarily as
at" sumed to be of a rather restrictive and isotropic form, 
f a such as a parametric polynomial form, e.g., for L = 1 in

I

(26)
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K1(h) = b0(l - jhi0÷) - b5lhl + b2fhj3  (27) 

with: /o, bl, b2 > 0.  
The covariance parameters bo, bi, b2 are identified by a 

regression-type procedure that seeks to identify the theo
retical variances Var {Y, }, calculated from the model (27) 
and relation (26), to the experimental values y: 

N 
Ej [yN -Var{1} is minimum (28) 
J=1 

An analog of such procedure in the case of L = 0, and 
b2 = 0, would be a least-squares fit of a linear variograxn 
model to the experimental average squared increments 

y,• with y!, = z( ) z()]. Well estab
lished practice has shown that such blind least-squares fit 
of a parametric variogram model is not recommendable.  

Besides the severe restriction to narrow families of 
parametric polynomial-type covariance models, the regres
sion-type procedure (28) used to identify the parameters 
b's has little resolution, is highly outlier-data sensitive and 
allows little experimentor interaction. All practitioners of 
traditional variogram modeling know the paramount im
portance of "variogram cleaning." 

Moreover, it is this author's understanding that au
tomatic determination of the parameters b's often yields 
generalized covariance models close to a pure nugget ef
fect, i.e., a model where the first term bo(1 - hl°÷) is 
predominant. In which case, the corresponding kriging 
yields but a traditional least-squares fit of the specified 
trend, assuming little or no spatial correlation; indeed, a 
small yield for such an elaborated formalism.  

In conclusion, this author does not recommend us
age of the IRF-L formalism and the related canned pack
ages. If programs like Bluepack are used wisely, i.e., set-

ting aside all the automatic parameter determination as
pects, they do not differ from any other constrained krig
ing problem, i.e., from a linear system solver.  
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Lesson IV: Non-Parametric Assessment of Local 
Uncertainty

Uncertainty about any paritcular unknown value is 
modeled by a probability distribution os that unknown 
value conditional to available related information. The 
essence of that model lies in the assumed relations be
tween information and unknown and between the various 
elements of information available. These conditional dis
tributions are not necessarily related to any particular 
prior multivariate distribution model, such as Gaussian.  
Their determination is done prior and independently of 
the estimate(s) retained, and accounts for the data config
uration, data values and data quality. It allows for usage 
of soft information either of local or global (structural) 
nature.

Priorto the choice of a goal oriented optimal estimate(s), 
availability of conditional distributions for the unknown 
allows mapping of probabilities of exceedence, risks of mis
classification and the assessment of need for additional 
sampling.  

Introduction 
Consider the general problem of spatial interpolation 

and uncertainty assessment. The "local" information con
sists in a data set distributed in space, with not all data 
of the same quality or relevant to the same attribute.  
The "global" information consists in usually soft quali
tative, appreciation of the patterns of spatial dependence 
between local data arising from structural, geological in-
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terpretation and/or experience from similar and better 
developed fields.  

Deterministic interpolation techniques, including tri
angulation and inverse distance-weighting, do not con
sider the possibility of a distribution of potential values 
for the unknown, they do not provide any measure of the 
reliability of the estimates. The main advantage of prob
abilistic interpolation (prediction) techniques, e.g. ordi
nary kriging as described in Lesson III, is that an error 
variance is attached to each estimate. Unfortunately, un
less a parametric distribution of spatial errors is assumed.  
an error variance falls short of providing confidence inter
vals and the error probability distribution required for risk 
assessment. Most often symmetric, Gaussian-related, dis
tribution models are assumed for the errors; these models 
are fully characterized by only two parameters, the er
ror mean and the error variance. Such congenial models 
are perfectly reasonable for the distribution of, say, mea
surement errors in the highly controlled environment of 
a laboratory. However, they are questionable when used 
for spatial interpolation errors, the kind considered in this 
text.  

It is argued that uncertainty about an unknown is in
trinsic to the level of information available and to a prior 
model for the relations between that information and the 

"•_- unknown. Thus assessment of uncertainty should not be 
done around a particular estimate, if only because many 
optimality criteria can be defined resulting in different, 
yet all "optimal", estimates. Non-parametric geostatis
tics put as priority, not the derivation of a "optimal" esti
mator, but the modeling of the uncertainty. That uncer
tainty model takes the form of a probability distribution 
of the unknown rather than that of an estimation error.  

The modeling of the probability that the unknown at 
any unsampled location is greater than a given threshold 
value capitalizes on the proportion of neighboring data 
valued above that same threshold. That modeling ac
counts for the proximity of each datum to the unsampled 
location, the particular threshold considered and the qual
ity of the data being considered.  

In this Lesson, the concepts of non-parametric Geo
statistics are presented with a minimum of probabilistic 
formalism. For example, stationarity is introduced as the 
decision to proceed with averaging and statistical infer
ence over a pre-determined population or area in space; 
when it comes to implementation, the hypothesis of sta
tionarity boils down to that, no more, no less.  

Probabilistic assessment of uncertainty 
Consider an attribute value z to be measured. Any 

particular measurement would provide an estimated value 
z, likely to be in error. Hence and whenever possible,

several measurements are performed yielding several esti
mates, zj, j = 1,... , n. Provided that the measurement 
device and its accuracy have remained constant over the 
sequence j = 1, - -., n, (which implies in particular that 
there is no potential for trend in the n outcomes zj), the 
distribution of these n outcomes z, can be used to model 
the uncertainty about the model z.  

For example it may be said that "the probability that 
the unknown z is lesser or equal to a threshold z0" is 
modeled by the corresponding proportion of outcomes 
zj _< z0 . By so saying the unknown value z has been 
elevated to the status of a random variable (RV) Z, the 
cumulative distribution function (cdf) of which is modeled 
by: 
Prob{Z < zol(n)} = proportion of zj < Zo, j = n 

(1) 
Introducing the indicator function (of the threshold 

value zo):
i(ZO;Z)= O0, ifzo<z' 

1, if Zo > Zj 
The previous model for uncertainty is written:

(2)

F(zol(n)) = Prob{Z < zof(n)} = i(,; zo ) E [0, 1) 

(3) 
Again the notation F(zol(n)) serves to recall that this 

probability model is a function of both the threshold value 
z0 and the information set (n) constituted by the n out
come values zj, j = 1,..., n.  

The model (3) corresponds to an equal weighted av
erage (by .) of the indicator data i(zo; z3 ). Under the 
previous hypothesis that the measurement accuracy has 
remained stable over the sequence j = 1, ... , n, there is 
indeed no reason to over/under weight any particular out
come. Otherwise one may consider an alternative model 
corresponding to an unequal weighting scheme: 

F(zol(n)) = Prob{Z < zol(n)} = Zaj i(zo; zj) E [0, 1] 
J=.  

(4) 
with a, _> 0, for all j, and r a' = 1.  

Remaks. Expressions (3) and (4) are different mod
els of the uncertainty about the unknown value z. They 
are not different estimates of some elusive "true" prob
ability distribution. In particular, one cannot say that 
model (4) is better than model (3), before having defined 
what a "good" model should feature. Also such defi
nition would be needed to determine the set of weights faj, j = 1,..., n}.  

The conditions, aj > 0 and rj aj = 1, ensure that the 
function F(zoj(n)) is an acceptable cumulative distribu
tion function (cdf), i.e. a non-decreasing function valued 
between [0,1].



Probability intervals. Availability of cdf's as models of 
uncertainty allows the derivation of probability intervals: 

Prob{Z E]a, b]j(n)I = F(bI(n)) - F(al(n)) (5) 
Again such a probability interval is but a model fig

uring the uncertainty around the unknown z, Questions 
such as "How reliable is this probability interval?" amounts 
to asking "How reliable is the model F(zo0(n))?", and can
not be answered unless a model for the distribution of cdf 
models is built. Statisticians do have such second level 
models, but most often they do not bother qualifying the 
uncertainty attached to models of uncertainty.  

Note that these probability intervals can be estab
lished prior to the choice of any particular estimate for 
the unknown value z.  

Estimates for z. Beyond the assessment of uncertainty, 
a unique estimated value for z may be required, say, for 
decision-making or engineering design purposes. If there 
is no reason to over/under weight any of the n outcomes, 
a "reasonable" estimate is the equal-weighted arithmetic 
average: 

-I z, (6) 
n=1 

An equally "reasonable" estimate is the median value 
of the n outcomes, i.e. the value i(2; - ýt would leave 
approximately one half of the outcome values below it 
and one half above it: 

P) = F-(0.5I(n)), such that: F(i(2)J(n)) - .5 (7) 
If the n outcomes are not equally accurate, they should 

be weighted differently. Using, for example, the weights 
a, retained for the cdf model (4), the two following "rea
sonable" estimates for z are derived: 

z'1) = ajzj (8) 
j=1 

and z"(') = F-'(0.51(n)). (9) 
However, other estimates can be derived independently 

of the cdf model. Examples are: 

Z"(3) = ma{z:, y = 1,.. .,n), for conservative reasons 

(10) 
, 

z-(4) maz(zi) + min(zj) (1I) 
2 

z-= :.0) equal-weighted arithmetic average (12) 

-( n-2 = " ziarithmetic average eliminating 
the lowest and highestobserved outcomes 

(13) , 
emarks. All previous estimates can be considered 

as "reasonable", although they can be quite different one t 
from another. There is thus a need to go beyond the ad- • 
jective "reasonable" and define precisely worded criteria h

for retaining a single value for estimate of the unknown 
value z.  

Because there is no unique "best in all cases", estimate 
for the unknown z, assessments of uncertainty such as 
probability intervals of type 5 should not depend on the 
particular estimate chosen but solely on the information 
available (n). In other words, the uncertainty linked to an 
unknown value z is a function of the information available.  
not the estimate retained.  

Indeed, consider n analyses zk of a particularly toxic 
(lethal) substance; for cleaning decisions, the maximum 
value estimate z'P) may be retained. Such an estimate 
however reasonable will be outside most probability in
tervals of type 5 based on the same information set (n).  

A corollary of the previous remark is that traditional 
95% probability intervals, leaving 2.5% probability below 
and above respectively, need not be centered or even con
tain the estimated value retained.  

We have thus established the need for: 

"* defining a model for the uncertainty about the un
known value, given the available information (n).  

"* defining criteria for retaining a unique value for es
timate of the unknown.  

These two tasks need not be related, nor should they 
call for any Gaussian assumption.  

But first we need to broaden our discussion on prob
abilistic assessment of uncertainty to the case of non
repetitive measurements at different locations of a given 
space.  

The case of spatial distributions.  

In the previous section, the case of repeated measure
ments, zi, j = 1, .-. ,n, of a unique attribute value z has 
been considered. The cdf model F(zoI(n)), cf, relations 
(3) or (4), provided an assessment of the measurement 
uncertainty.  

We will consider now the uncertainty linked to spatial 
interpolation when an attribute value z(z) at location x 
s to be estimated from measurements z(zj), j = 1,..., n 
made at different locations z, 0 X.  

For the sake of simplicity we will consider first that 
he data z(zi) are error free. This limitation is removed 
n the later section "Soft Kriging".  

The previous space of measurement variability is now 
replaced by the physical space of locations z, but other
vise the approach used is the same.  

Define "spatial independence " as the state whereby 
he attribute value z(z), at any location z, is not influ
nced in any way by the attribute values z(x,) at other 
ocations z, 4 z, no matter how close they are. If the
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(n+l) values z(x,) and z(z) relate to the same attribute 
Z, but otherwise could be considered as independent one 
from another, a possible model for the uncertainty about 
the unknown value z(x) given the n data z(zj) is the dis
tribution of these data. More precisely it is said that the 
probability of the unknown z(z) be lesser or equal to a 
given threshold z is the corresponding proportion of such 
data values z(zx). Again by so saying the unknown value 
z(z) has been elevated to the status of a RV. Z(z), the 
cumulative distribution of which is modeled by:

Prob{Z(z) :5 z1(n)} = proportion of data 
z(x 2)• z, j = 1,...,n (14)

or introducing the indicator variables, one for each datum 
location Z, and each threshold value z: 

i(z; ){) 0, if z < Z(Xj) 1, if z > z(xj) (5 

the previous relation is written similar to relation (3).  

1 n 
F(z; zj(n)) = Prob{Z(z) < zl(n)} = -nf i(z; x,) E [0,1 

n.,=1

Remark. By pooling all n data z(x,) into the sarr 
(16), we are assuming that, although independent 
one another, they still have something in common 
fact that they relate to the same attribute Z. This i 
source of the stationarity hypothesis, which states 
the (n+1) random variables, Z(z), Z(xj), j = 1,.  
have the same distribution which can then be estin 
by an average of type (16) considering data taken a 
ferent locations.  

Dependence. In the general case there will be 
pattern of dependence between the attribute v 
z(z), z(x'), z(z") at different locations x, x', x".  
the datum value which is the closest or more generall: 
most related to the unknown value should be weil 
more, leading to an unequal weighted average: 

F(z;zl(n) = Prob{Z(z) < zl(n)} 
= E'., a(z) i(zz;x,) E [0,1] 

with aj(x) ? 0 for all j, and ,=I a2 (x) = 1.  
Since the probability value F(z; zI(n)) needs to bt 

culated for each different threshold value z, the wei 
can be made also dependent on z, defining the ne; 
model: 

F(z; zI(n)) = -aj(z;z) i(;;zj) 
J7=1 

Remarks. The weights a,(z:x) need not be any 
•. non-negative nor sum up to one, as long as expres

(18) remains that of a cdf, i.e. provided that the following 
order relations are verified:

F(z;.I(n)) E [0,1] 
F(z;xj(n)) _ F(z';xj(n)), for all z > z' (19)

Probability Intervals. The uncertainty about the value 
z(z) can be assessed through probability intervals derived 
directly from any of the cdf models (16), (17), and (18): 

Prob{Z(z) E]a, b]I(n) = F(b;zl(n)) - F(a;zl(n)) (20) 

Of particular importance for many applications is the 
probability of exceedance of a threshold b:

Prob{Z(z) > bl(n)} = I - F(b; xI(n)) (21)

Again note that such probability intervals and probabili
ties of exceedance can be established prior to the choice 
of any particular estimate of the unknown value z(z).  

Isopleth curves for the probability of exceedance (21) 
can be contoured (for z varying in space and b fixed).  
For many decision making processes, these iso-probability 
maps suffice; thus there would be no need for the addi
tional hypotheses required to retrieve unique-valued esti
mates of z(x).  

Exactitude Requirement. Whatever cdf model 
F(z;zl(n)) is retained to assess the uncertainty about the 
unknown z(x), it should be consistent with the fact that 
at data locations there is no uncertainty, i.e. the model 
should be as such 

F(z;zjl(n)) = Prob{Z(zx) < zj(n)} 
S-i('z;X')= 0, if z< datum value z(x,) 

1 1, otherwise

some for all data locations z,, j = 1,-.. ,n. (22) 

alues Remarks. Relation (22) assumes that the data z(xj) 
Thus are exact. If they are not, then the cdf model F(z; zj(n)) 
y the need only be consistent with what is actually known at 
;hted location zj, possibly only a prior distribution for the value 

z(xj), see section on Soft Kriging.  
Relations (18) and (22) show that the cdf model 

(17) F(z;zj(n)) may be seen as an estimate of the unknown 
indicator function i(z; z) using weighted averages of the 
known indicator values i(z; z,):

F(z; z1(n)) i [i(z;z)" = a,(z;.T) i(z; z,) 
j, =1i

(23)

Under a rigorous probability setting one can show that 
(18) the uncertainty model (18) or (23) is, indeed, a linear 

estimate of the conditional distribution of Z(z) given the 
more n data Z(z,) = z(xj), [Isaaks 1984, p.26] or [Journel 1986 
ssion - appendix].
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Determination of the cdf uncertainty model 

The very reason for considering an unequal weighting 
of the data, as in relations (4), (17), (18), or (23), is the 
recognition of the existence of patterns of spatial depen
dence between the data z(z,) and the unknown z(z), thus 
entailing some dependence between the indicator data 
i(z; zx) and the unknown indicator function i(z; x). Hence 
these patterns must be identified and first, the notion of 
spatial dependence must be defined and measured.  

E. A datum value z(z,) can be seen 
as a pair of information, one related to the datum loca
tion z, the second related to the attribute value. Com
mon measures of proximity between two values z(z) and 
z(z + h) are linked to the eucidian distance jhj, or mod
ulus of the interdistance vector h; examples are: 

* Constant - IhI 

e or the reciprocal of Jhj to some power: ' with 
usually w = I or 2.  

Such measures account for only the location informa
tion z, of a datum z(xj), not for the attribute-information 
z. Indeed, the Euclidian distance Ijh is attribute Z in
dependent; it is the same whether very continuous layer 
thickness or very erratic transmissivity values are consid
ered. Also the Euclidian distance is the same for two indi
cator pairs fi(z; zj), i(z; r, + h)] and [i(z'; x), i(z'; x, + h)], 
although z 6 z'.  

Variogram Distance Measure. The classical, although 
not unique distance measure used in geostatistics is the 
variogram function 27 (h) modelled from the experimental 
average squared discrepancy between the n(h) data pairs 
separated by approximately the same vector h, see Lesson 
1 (29): 

2-yz(h) modeled from ' Z'I)[z(,) -z(z, + h)]' 

2y,(z; h) modeled from . ' i(z; ) - i(z; z, + h)] 2 

(24) 

The average squared discrepancy usually increases with 
the interdistance jh[. However, as opposed to the Euclid
ian distance Ihl, the variogram distance 27(h) is attribute 
specific with in particular: 't(z; h) 6 yt(z'; h) if z 9 z'.  
The variograms are dependent on both the modulus jhI 
and the direction of the interdistance vector h. They are 
said to be anisotropic, if they actually depend on the di
rection of vector h otherwise they are said to be isotropic.  
As an example, porosity data present greater spatial de
pendence (smaller variogram values) in directions of de
position (horizontal and along ancient channels).

The corresponding measure of proximity or depen
dence is the covariance:

Cz(h) = Consitant- -z(h) 

Cj(z; h) = Constant - 71(z; h) (25)

The arbitrary constant is filtered out from all subse
quent utilizations of these proximity measures.  

The Indicator Kriging Algorithm. Once a proximity 
measure is available for the attribute being estimated, 
a straightforward generalized linear regression algorithm 
also called "ordinary kriging" can be applied to deter
mine the weighting system, Lesson III (2). For example 
interpreting relation (23) as an estimation of the unknown 
indicator value i(z; x) :

(26)

The n weights a (z; a) are given by a constrained system of 
normal equations, also called the ordinary kriging system, 
Lesson III (4).  

7•,= a2,Cz;z) . C,(z;j•, - z,) +j~z;•) = CJ(z;L - ) 
for all j=1,.-,n 

E:= agCz;z) = 1 

(27) 
Reh-k•. System (27) appears as a system of (n+l) 

linear equations with (n+l) unknowns, the n weights 
aG(z;T) and a Lagrange parameter p(z;z) associated to 
the condition that the weights sum up to 1. A sufficient 
condition for the system (27) to provide one and only one 
solution is that the proximity model Ci(z; x) be positive 
definite, i.e. be a covariance function, and that no two 
data be at the exact same location, i.e. ,j 0 xj, for all 
j # j'. There is one such system for each threshold value 
z and for each unsampled location x. In practice the 
interval of variability of the attribute Z is discretized by 
a small number of K threshold values, Zk, k = 1,- --, K.  
Thus at each location x, K systems of type (27) need 
to be solved to provide an assessment of the uncertainty 
through K discrete cdf values F(zk;zI(n)). Cdf values 
for intermediary threshold values Z E ]Zk,zk+lj can be 
obtained by interpolation, e.g. linear: 

F(z;L.I(n)) = F(zk;xI(n)) 
+ " [F(zh+z;.I(n)) - F(za,; l(n))] &4,i--I& 

(28) 
Other non-linear interpolation procedures might also 

be considered.  
Exactitude. The ordinary kriging systems (27) provide 

weights such that the exactitude requirement (22) is met.  
Order-elation. The K systems (27) do not ensure 

that the resulting K cdf values verify the order relations

F(z; x (n)) = [i(z;.T)]"
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(19). In practice a piecewise linear model is fitted to the 
K values F(zk; xl(n)) so that to guarantee the order rela
tions, and it is this model which is used to characterize 
the uncertainty about the unknown. For more details on 
such corrections see [Sullivan 1984 p 36-42].  

The Probability Kriging Algorithm. The indicator es
timate (23) uses only the indicator part of exceedence 
rather than the whole information available z(x:). That 
estimate is enhanced if all the information available is 
used, defining the new weighted average: 

[:(Z; XT]= a1 (z;z). - (z; z3) + b3(z;.T z) zi 
j=--1 j=--1 

This new estimate mixes indicator data valued either 0 
or 1 and data z(z 2 ) valued in the possibly widely different 
measurement unit of attribute Z. This scaling problem is 
solved by considering instead of the data z(x,) their rank 
order transforms r(z,).  

If the n data z(xj) are ranked in increasing order and 
r(z,) E [1,n) is the rank of the datum z(z,), the trans
formed datum lr(xj) is valued between [0,1]. The im
proved indicator estimate is written and is taken as model 
for the uncertainty about z(z):

F(z;xI(n)) = [i(z; x)]" 

= •f aj((z; z) i(z; Xz) 
+ En

(29)

Relation (29) can be read as a cokriging estimate of 
the indicator value i(z; z) by two sets of data, the n indi
cator data i(z; xj) and the n rank order data r(xj). The 
corresponding 2n weights aj(z;x) and bj(z;x) are given 
by a cokriging system of the type described in Lesson II 
(21-22), see also [Isaaks, 1984, p. 16-27], [Journel, 1984-a].  

It is of paramount importance to understand that ex
pressions (26) or (29) are not used as estimates of the lo
cal indicator value i(z; x), although they are built as such.  
These expressions are used as model values for the con
ditional probability F(z;zI(n)) = Prob{Z(z) <_ zl(n)), 
[Journel, 1986, Appendix].  

The Soft Kriging Generalization 

In all the preceding developments, the data available 
were all considered "hard data", that is without uncer
tainty, generating indicator data that are valued either 0 
or 1.  

However in real practice, data are never exactly hard 
if only because of measurement errors. It would be ap
propriate to enter actual data either under the form of 
constraint intervals:

z (zj) E ]"(zj), b(xj)] 

or under the form of prior probability distributions: 

Prob{Z(z3 ) _< z} = F(z; z:) E [0, 1]

(30) 

(31)

For a given datum location the indicator information 
can be viewed as a column of K indicator data, one in
dicator datum for each of the K threshold values Zk. In 
the case (30) of a constraint interval, the indicator data 
column is informed only outside that interval with:

i(zk;z,) = Ofor all zk < a(xj) 
i(zk; Xz) = unknown for all zk Ela(z:), b(xz)] 
i(Zk; j) = 1, for all zL. > b(zx)

(32)

A "hard" datum is but a particular case of a constraint 
interval (31) with zero amplitude: a(zj) = b(x,) = z(zx).  
In the case (32) of local information given as a probability 
distribution, the indicator datum column is filled-in with 
values between [0,1] instead of equal to either 0 or 1.

(33)

The indicator algorithm (26) or (29) thus allows pooling 
and joint weighting of data of several types, 

"* hard data.  

"* inequality constraints of type (30) with possibly 

1. a(z:) = -co corresponding to z(z2 ) < b(Xz) 
2. b(x,) = +oo corresponding to z(z 2 ) > a(x1 ) 

"* soft information presented under the format of a 
prior distribution of type (31).  

At a given location z. where no core sample is avail
able, well log data or simply geological interpretation may 
indicate that a particular rock type prevails. At that lo
cation z., no hard data is available but one may consider 
the soft information constituted by, say, the distribution 
(31) of all core porosity data available within the indicated 
rock type.  

The result of indicator kriging is a probability column 
F(zk; x1(n)) valued between [0,1] and used as a model for 
the uncertainty about the unknown value z(x).  

E. If at a location z, there exists prior soft in
formation of type (33), the exactitude property of kriging 
entails that this prior information is restituted unchanged:

F(zk;zl(an)) =- F(z,; z), for all zh, (34)

whatever is the information at the n other locations. In 
other words the process of indicator/probability kriging

i(zk; xj) = F(zk; Xj) E [0, 1]
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does not update prior information, it completes it by in
terpolation.  

In most practical cases at every location there exists 
minimum prior information such as a large constraint in
terval [0, 100%] for porosity or saturation. Consequently 
at any location, the initial indicator column is only par
tially filled with: 

i(zk; z) = 0 for all zk < 0 
i(z,; x) = 1 for all zk > 100% 

The process of probability/indicator kriging does not 
update these prior values but completes the indicator col
umn with probability values for those threshold values 
Zk E [0, 100%].  

Optimal estimate(s) for the unknown 

The probabilistic assessment of the uncertainty about 
an unknown value is completed with determination of a 
probability distribution of type (23). As discussed before, 
knowledge of that distribu•i•n suices to the derivation 
of type (18).  

It is recalled that the determination of a probability 
distribution for an unknown does not, and should not, re
quire any preliminary choice of a unique estimate for z(z).  
Similarly, a probability-oriented oriented decision making 
process should not require more than the assessment of 
the uncertainty about z(z).  

However it is traditional to require the derivation of 
such unique estimated values z*(x). Since the unknown 
value could be any value within the interval [0,100%] for 
concentrations, there is clearly a need to make precise the 
criterion for selecting a unique estimated value. Plausible 
criteria are numerous, each leading to different estimates.  
Different uses of the estimates may call for different cri
teria, and there is no such thing as an "optimal for all 
purposes" estimate or estimation algorithm. As an exam
ple, most estimates featuring good local accuracy proper
ties, including the kriging estimate, are smoothed in their 
spatial variability; thus they may prove inadequate for 
mapping purposes if the map is to be used to evaluate 
spatial variability.  

An incisive layman-oriented discussion of optimality 
for decision making can be found in [Srivastava 1987).  
This is not the place to survey the vast array of diverse 
optimality criteria leading to as vast an array of estimates, 
all optimal. We will limit our discussion to those esti
mates that can be derived straightforwardly from the un
certainty model F(z; zI(n)). These estimates are but a 
subset of the former vast array of optimal estimates and 
may not include the one needed for a specific application.

Loss Functions and L-Optimal Estimates.  

When estimating an unknown value by a single value 
z'(x) = z', a non-zero error z' - z(z) is likely to occur.  
Assume that the impact or loss attached to each level of 
error can be assessed by a function L(z" - z(z)). The 
function L(e) is known, e.g. L(e) = e2 , but the argu
ment e = z" - z(x) is unknown. However an uncertainty 
model F(z;zj(n)) which represents the distribution of the 
unknown z(z) is available. Thus the idea is to use that 
distribution model to determine the expected loss value: 

E{L(z" - Z)I(n)} = J L(z" - z) . dF(z;xl(n)) (35) 

in practice approximated by the discrete sum: 
K 

;ý _L(z'-Zk').[F(zk+I; zj(n))-F(Zk; zI(n))] = V(z*; ) k=! 

(36) 
with, e.g. z,?, if the attribute Z interval of vari
ability has been discretized by K threshold values 
zj,k = 1,... ,K, and usually: F(zK+I;zl(n)) = 1.  

The expected loss (35) calculated from the model 
F(z;zj(n)), appears as a function o(z*;z) of the partic
ular estimated value z' retained. The optimal estimate 
for the loss function L is the value z4(z) minimizing the 
expected loss V(z'; z):

zj(x) = value z' minimizing ((z'; z)

Derivation of the optimum zj(z), for any particular 
loss function L, can be done through iterative calculations 
of the discrete sums approximating the Stieltjes integral 
(35); such calculations do not present any difficulty.  

For some particular loss functions, the solution is straight
forward, 

9 if L(e) = e2, i.e. for the least squares criterion, 
the best estimate z' is the expected value of the 
probability distribution F(z;zl(n)), also called E
type estimate:

4(z) = f z dF(z; xI(n)) (38)

see relation (43) for an approximation of this inte
gral.  

0 if L(e) = jej, i.e. for the mean absolute deviation 
criterion the best estimate is the median of the dis
tribution F(z;.Tl(n)) defined as: 

q.s(z) = F-'(.5; zI(n)) such that F(q.s(z); zi(n)) = .5 
(39) 

if

(37)
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L(e) = wle for e > 0 (overestimation) 
W w21eC for e <0 (underestimation) 

(40) 
i.e. for an asymmetric linear loss function, the best 
estimate is the p-quantile of the distribution 
F(z; zf(n)), see [Journel 1984 -b]: 

qp(x) = F-(p; zI(n)) with p = w E [0,1] 
w 1 •W 2

sif 
0(0, fore =0 

L constant, otherwise 

the best estimate is the most plausible outcon 
the distribution F(z;zI(n)), i.e. the mode of 
corresponding density function 
f(z; =1(n)) = ,F(z;lj(n))/8z 

Remrks. Spatial distributions of toxic chemical 
centrations are usually highly skewed and would gen 
strongly asymmetric pdf models f(z;zl(r- for the 
certainty about an unknown. In such casez_ the opt 
estimates (38) and (39) are quite different, and the 
pact of using one criterion rather than the other ca 
dramatic.  

It bears repeating that nature is rarely Gaussian.  
that uncontrolled spatial distributions of earth/env 
mental sciences attributes are almost always non-Gau 
as opposed to distributions of repetitive measuremen 
a highly controlled, carefully planned, laboratory ex.  
ment.  

Most decision making processes, if properly anal 
w uld call for an asymmetric loss function of type 
whether linear or not. For example, for mud-loading 
poses, the impact of pressure underestimation (with b 
out risk) is usually much higher than that of an over 
mation (using too much mud). Thus for such decisi 
standard least-squares type estimate such as (38) w, 
be inappropriate; fortunately decision makers are ai 
of such shortcomings and apply various sorts of safety 
tors which amount to considering asymmetric loss i 
tions. The rigorous concept of loss function and opti 
L-estimate may allow greater consistency in the deci 
making process, once a particular and possibly subjec 
loss function has been chosen.  

The E-Type Estimate. The E-type estimate (40) 
though a least squares type estimate, is usually diffe 
from the direct ordinary kriging estimate, z:,,g(x) u 
only the original data z(z:) and the corresponding p: 
imity measure model Cz(h) as defined in relation ( 
As opposed to the approach yielding the E-type estim 
the ordinary kriging approach does not qualify the

dinary kriging estimate for uncertainty (probability in
tervals), unless a Gaussian distribution for interpolation 
errors is assumed.  

The Stieltjes integral (38) defining the E-type estimate 
is, in practice, approximated by a discrete sum:

K 

(z() Z E Zk. [F(z&+i; z(n)) - F(zh;zf(n))] 
k=i

(43)

(41) with: zk' = z:+' dF(z;Il(n)) E ]zk, zk+,] 
being the PLh class mean 

and zk, k = 1,...,KK + 1 being (K+1) class bounds dis
(42) cretizing the Z attribute interval of variability.  

The indicator/probability kriging process provides for fe of the probability values F(zk; z:(n)) but not for the class 
fthe means zk'. Estimation of these class means, except for the 

last one, usually does not pose any problem. For exam
ple a class mean can be estimated by the equal weighted 

con- average of all data falling into the corresponding class.  
erate Whenever the class mean zk' relates to a narrow class 

un- amplitude zk+l - zk, there is no need to consider sophis
timal ticated unequal-weighted averages.  

eim- However, for heavily skewed distributions the last class 
. be mean may have a disproportionate influence on the esti

mate (43). This last class mean is highly dependent on 
and the largest datum observed and thus on the decision to 

iron- keep it, cull it, or set it back to a lower value. A conser
ssian, vative decision consists of using the class median for the 
.ts in estimate. Another solution calls for a parametric model of 
peri- the distribution within that class: for example a 2 param

eter lognormal model can be fitted to two robust statistics 
yzed of the highest data z(zj) E IZK,zK+1I, such as ZK being 
(40), the F(zK; zl(n)) - quantile, and the median of these high 
pur- data being the [1 + F(zK; zI(n))]/2- quantile, then the 
low- last class mean of that lognormal model is taken for the 
esti- estimate of zK'.  
on a The poor outlier resistance of the E-type estimate (43) 
ould is shared by all mean type estimates, including the direct 
sare ordinary kriging estimate. At least in the case of an E
fac- type estimate, that outlier-sensitivity is confined to the 
Lnc- last class. Quantile type estimates such as (39) and (41) 
mal have much better outlier resistance and should be con
sion sidered whenever their underlying optimality criteria are 
tive acceptable.  

, al- Risk-qualified maps 
rent Availability of cdf models F(z; z1(n)), one such func
sing tion for each location z within a given area A, allows 
rox- contouring of isopleth curves of.  
25).  
ate, e the optimal estimate(s) z'(:) retained. These esti
or- mates can be derived independently of the uncer-



tainty model F(z; zI(n)), see for examples relations 
(6) to (13).  
It is recalled that most estimated values z'(z) de
rived from a local accuracy criterion, including all 
kriged estimates and the E-type estimates (38), tend 
to present an oversmooth image of the spatial dis
tribution of the actual attribute values. A solution 
to this problem is proposed in the next Lesson.  

e probabilities that the actual unknown value z(z) ex
ceeds any given threshold, such as: 

Prob{Z(z) > zo0(n)J = 1 - F(zo; zI(n)) (44) 

Considering for threshold value, e.g., a high per
meability value zo, a zone where all such proba
bilities of exceedence are high may indicate a vol
ume of high pay or a flow path. Correspondingly, 
if a low threshold value z0 is considered, mapping 
isopleth values of probabilities of non-exceedence 
1 - Prob{Z(z) :_ zo0(n)} indicate probable zones 
of low pay or flow barriers.  

• risk of misclassification: 

a(z) = Prob{Z(x) < zojz0() > zO,(n)} (45) 
= F(zo;x.I(n)) 

for those locations z such that z'(z) > zo, or: 

8(x) = Prob{Z(x) > zOz'(x) < zo,(n) (46) 
= 1 -F(zo; zI(n)) 

for those locations z such that z*(x) 5 zo. Again, 
the estimate z*(z) used for the classification could 
be any.  

p-quantiles, qp(r),x E A, p fixed in [0,1], of the 
distributions F(z;zj(n)), i.e. contour maps of the 
values qp(z) for which the probability of exceedance 
is I-p. Ifp is chosen low, e.g. p = .1, the probability 
of exceedence of qp(z) at location x is high: 1 
p = .9, thus those areas where the values 9.1(z) are 
high are high z-values areas with a large confidence.  
Conversely, if p is chosen high, e.g. p = .9, the 
probability of non-exceedence of q,(x) at location x 
is high: p = .9, thus those areas where q..(x) are low 
are low z-values areas with a large confidence. Note 
that determination of p-quantiles and their mapping 
do not require the choice of a particular estimator 
Z'(z).  

It is suggested that a probabilistic assessment of ad
ditional sampling need not require a prior map of esti
mated values z'(z), i.e. a prior, often arbitrary, deci-
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sion about an optimality criterion. Additional data are 
needed in zones that are not only poorly sampled but also 
critical for the design at hand. For example, if a string 
of locations (z) with high probability of exceedence of a 
high permeability threshold, say Prob{Z(z) > zo0(n)} > 
.8, is interrupted by some low such probability values 
Prob{Z(z') > zol(n)} < .5, the latter locations z' are 
prime candidates for additional sampling if ascertaining a 
continuous flow path along the string (z) is critical to the 
design at hand. Similarly if a string of locations (z) with 
high probability of non exceedence of a low permeability 
threshold, Prob{Z(z) :_ zol(n)} = .8, is broken by a few 
locations (z') with lower such probability, these latter lo
cations (x') are candidates for additional sampling if the 
continuity of that flow barrier (low permeability string) 
is critical. Similar assessments can be done from quantile 
maps {q,(X),z E A).  

Warning: Quantile maps q,(z) or exceedence maps 
Prob{Z(x) > zoI(n)}, for very large p and threshold val
ues z0 , may depend almost totally on the model extrapo
lating the last calculated value F(zK; Zl(n)) towards the 
maximum value 1. If q,,(z) is larger than zK, or p is 
larger than F(zK; zx(n)), they are not any more actual
data related. This model dependence for extreme values 
occurence is not particular to the indicator kriging for
malism, it is shared (although possibly not stated) by all 
other algorithms, e.g. when used a standard normal 95% 
or 99% confidence interval. Non-parametric geostatistics 
is no replacement for actual data.  

Conclusions 

The available information whether hard data, con
straint intervals, or soft information under the form of 
prior probability distributions, is coded as a series of in
dicator columns. There is one such indicator column for 
each location, whether a datum location or an unsam
pled location. The indicator/probability kriging process 
consists in filling-in the missing entries of the indicator 
columns with probability values. These probability val
ues are obtained by weighting neighboring and related 
indicator data.  

This process yields at each location a probability dis
tribution for the unknown attribute. The process is non
parametric in the sense that it does not assume any par
ticular prior model for these distributions. These proba
bility distributions characterize the uncertainty about the 
unknowns, independently of the particular estimates re
tained; they are only information.dependent and are fully 
so in the sense that they are not only data-configuration

I
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dependent, but also data-values and data-quality depen
dent.  

If a loss function measuring the impact of any given 
magnitude of the interpolation error is available an opti
mal estimate minimizing that loss can be derived. Various 
optimal estimates may thus be considered depending on 
their particular utilizations. However a single measure 
of uncertainty applies to all such estimates, for a given 
information set.  

The availability of distributions of the unknowns al
lows contouring isopleth maps of 

"* conditional quantile values 

"* probability of exceedence of any given threshold 

"* risks c and # of misclassification 

Such maps can be used for various decision-making pro
cesses, including the assessment for additional data.  

Implementation of the indicator/probability kriging 
technique requires but linear geostatistical tools, i.e. a 
variogram and an ordinary kriging (normal equations) 
software. However, as in many statistical applications, 
the necessary art of approximations requires some expe
rience.  

Typical of non-parametric techniques, the elaboration 
through indicator/probability kriging of the distributions 
for the unknowns does require an appreciable amount of 
data. This requirement is in fact a positive aspect, for 
it indicates whenever data are clearly insufficient for the 
goal at hand, the alternatives being to acquire more data 
or rely on a model which is thus not data-based. The gen
eral rule is to exhaust the information available through

non-parametric tools, and only then revert to parametric 
modeling.  
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Lesson V: Stochastic Simulations for Imaging Spatial 
Uncertainty

In the previous lessons we strove to model the un 
tainty about one unknown at a time, for example, the 
sampled porosity value Z(z) at location z. In Lesson 
that uncertainty is modeled by a posterior (conditioi 
distribution: 

F(z; zx(n)) = Prob{Z(z) _5 zl(n)} 

However, that posterior distribution does not provide 
formation about joint spatial uncertainty, e.g. the prc 
bility that a string of locations z#,j = 1,..-, N be val 
above a certain threshold value zo characterizing, sa: 
fracture or a preferential flow path. Such joint spa 
uncertainty would require the joint N-variate poste 
distribution:

cer- K (zo; z,, j = 1,..., NI(n)) = (2) 
un- ---- Prob{Z(z,) > zo, j = 1,- -- ,NI(n)) 
IV where (n) represents the set of prior (conditioning) data.  

aal) Only when the N RV's Z(z,) can be assumed indepen

dent one from another, the joint probability (2) appears 
(1) as the product of the N probabilities of type (1): 

in- K(zo; zj,j =- 1,.-,Nj(n)) = Ii",1 [1 - F(zo; xjl(n))] 
•)ba

ued When N is large, the previous product would yield 
y, a an artificially small probability of joint exceedence of the 
.tial threshold z0 . Spatial dependence of the RV's Z(r,) could 
rior make this joint probability much higher, i.e., the possibiliy 

of a flow path along the string z, more likely.
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Similarly, a map of local estimates Z'(x,), whether 
ordinary kriging estimates (Lesson III, (2)) or E-type es
timates (Lesson IV, (40)). may fail to reveal the possibility 
of such a flow path along the string xj. Local estimation 
algorithms are designed to minimize a certain local error 
impact, whether an error variance in the OK case or a 
conditional variance in the case of the E-type. They are 
not designed to reproduce patterns of spatial continuity, 
less those of extreme values such as Z(xj) > zo. Kriged 
maps are notoriously smoothed in their spatial variation, 
compare Figures 3 and 5 which fail to reflect the propor
tion of extreme values (both high and low) as seen on the 
data.  

For reservoir characterization where detection of pat
terns of occurrence of extreme values (permeability-poro
sity) are more critical than local accurate estimation or 
global estimation of mean values, we need maps that would 
honor patterns of spatial continuity and which provide an 
assessment of joint spatial uncertainty.  

Simulation vs. Estimation 
One may see the process of reservoir characterization 

as that of providing the "correct" input to a transfer func
tion representing some aspect of the reservoir engineering, 
see Figure 1. For example, the transfer function may be 
a flow simulator requiring for input an unsmoothed spa
tial distribution of permeability/porosity/saturations, the 
output being breakthrough times, production rates and 
sweeping efficiency.  

Short of a unique perfect input map of permeabili
ties which would require exhaustive sampling, the idea is 
to propose equiprobable alternative maps as input. All 
such maps should share in common whatever information 
is available, hard and soft, numerical and interpretative, 
local and structural. Their differences then provide an 
image if not a measure of spatial uncertainty about the 
input. These alternative inputs can then be processed 
through the flow simulator to yield the corresponding 
measure of uncertainty on the response function, and an
swers to such questions as, "What is the probability of an 
early breakthrough?", see Figure 1.  

IZA TMnsfer 
i 0 

L ahemativc images Response disibuLion 

Fig. 1. Processing uncertain spatial information

This approach requires running the transfer function 
on each alternative input spatial distribution and could 
be tedious. A shortcut consists in selecting among the 
alternative input images some deemed diametrically op
posed, say, a most favorable image, a median case and a 
worst case, then run a limited sensitivity analysis on these 
images. Other shortcuts do exist, most of them specific 
to the particular transfer function under consideration.  

In an estimation approach, the unknown spatial dis
tribution {z(x),x E A) is replaced by a unique set of 
estimated values {z'(x),z E A). In a (stochastic) simu
lation approach, joint spatial uncertainty is characterized 
by L alternative sets of simulated values 
{z(z),z E A),e = 1,...,L.  

In the first case, one gets a unique response with no 
measure of its uncertainty:

r" = P(zW(),z E A)

Knowing the estimation variance or even the posterior 
cdf about each of the unknown z(x) does not provide any 
measure of uncertainty about R or R*, unless the transfer 
function V is linear.  

In the second case, one gets a distribution of responses:

rt= X(zz),x E A), 1,...,L
That distribution of responses provide a measure of un
certainty and an assessment of such critical probability of 
exceedence as Prob {R > ro) is estimated by the propor
tion of observed responses r, > ro.  

Remarks. No matter the unbiasedness or the local 
accuracy of each estimate zr(z), the average response F 
need not be close to the response (3) based on the unique 
estimated map:

1i L i r = V(z(z),X E A) 
t=1

(5)

Local accuracy does not entail that the map is any 
good as a whole. In all rigor, estimates based on a local 
accuracy criterion such as kriging should only be tabu
lated; to map them is to entice the user to read on the 
map patterns of spatial continuity that may be artifacts 
of the data configuration and the kriging smoothing ef
fect. Where data are abundant the kriged map would 
appear more variable, where data are sparse the kriged 
map is essentially flat. The previous remark would apply 
equally well to most traditional interpolation algorithms, 
including spline or polynomial fitting and inverse distance 
weighting.

(3)

(4)
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Each set of simulated values {ze(x), z E A) shoul 
produce those spatial statistics of the unknown true v 
{z(x), X E A} which are deemed the most conseque 
for the transfer function p. For example, flow in a 
tured reservoir is essentially dependent on the pa 
of connectivity within A of the high permeability v 
(z(z) > zo), not so much on whether at any particulh 
cation x the permeability is high or low, nor even oi 
proportion within A of these high values. In such a 
the zl(z)'s should reproduce patterns of connectivi 
extreme values even if this means trading off such I 
erty as local unbiasedness or reproduction of the o
histogram of the z(r)'s over A.  

A set of simulated values {zt(x), z E A} is good 
much as it is drawn from a model that identifies th( 
evant spatial characteristics of the unknown true v
{z(),z E A)}.  

The random function Z(x), function of the co, 
nate(s) z within a domain A. can be seen as a sA 
spatially dependent random variables {Z(z),z E A}, 
at each location z. Stochastic simulation amount 
draw joint realizations from all random variables.  
essence of any stochastic simulation is the particular 
tial dependence model that is imposed on the ran 
"function and thus imparted to each of the simulated 
{zt(z),x r S},I = 1,... ,L.  

Spatial connectivity of extreme values between 
two locations z and z + h is a highly multivariate p 
erty that would require establishing the probability t 
along any path linking z and z + h, all values z(u) ex, 
jointly a certain threshold. Notwithstanding the innw 
able number of possible paths linking two locations 
3-dimensional space, such multivariate statistics is n 
accessible from usually available data. Short of a full 
tivariate connectivity measure one can define a two-pc 
connectivity function as the joint probability that at 
locations z and z + h the attribute does not exceed 
threshold values z, z: 

F(z, z'; h) = Prob{Z(z) < z, Z(z + h) : z'} 

This two-points connectivity function was defined in] 
son 1 (21) as the bivariate distribution function charac 
izing spatial dependence between any two RV's Z(z) 
Z(x + h), separated by the same vector h. The bivar 
cdf (6) can be seen as an non-centred indicator covaria.  
function of the separation vector h: 

F(z, z': h) = E{I(z; z). I(z + h; z')} 

with the indicator transform random function definec 
in Lesson IV (15):

ld re- ) O, if z < Z(z) 
alues AZ()) = I(ZX) 1, if z _ Z(Z) (8) 
!ntial 
frac- Note that the complement indicator transform: 

ttern J(z; z) = 1 - I(z; z) can be used to define the joint prob

alues ability of exceedence: 

Lr 1o- D(z, z'; h) = Prob{Z(z) > z, Z(z + h) > z' 
i the E{J(z; z) . J(z + h; z')} (9) 
case, 
ty of A full characterization of the spatial dependence be
)rop- tween two RV's Z(z), Z(z + h) is given by the bivariate 
'erall cdf (6), thus correspondingly by the set of all indicator 

covariances for all choices of the pair of parameters z, z'.  
inas- Such indicator covariances can be inferred from experi

Srel- mental covariances run from the corresponding indicator 
alues data. For example, the two-points connectivity function 

F(z, z; h) can be inferred by the proportion of data pairs, 
ordi- in number n(h), approximately distant of vector h and 
et of jointly not exceeding z: 
one 

s to ,(h) 
The FA(z, z; h) = - i(z; z). i(z; z + h) (10) 
spa- Wa= 

dom Alternatively, the function F(z, z; h) can be synthe
sets sized from "soft" structural information as provided, e.g.  

by digitized geologically interpreted and drawn maps based 
any on outcrop sections and/or data from similar depositional 
rop- environments. Also the model F(z, z; h) can be borrowed 
hat, from a similar but more mature field where information 
ceed is more abundant.  
mer- Consider for example the indicator covariance (9) de
in a fined for a high threshold value z = z': if the two-points 
ever connectivity function D(z, z; h) is valued high for all 
mnul- h < h0 , one can expect a significant probability that two 
ints locations z and z + h0 be linked by one or more strings 
two (paths) of low values (< z). However, it bears repeating 
the that D(z, z; h) is not the multivariate connectivity func

tion that one would ideally wish to have.  
The two-points measure of connectivity, 

(6) whether F(z, z; h) or D(z, z; h), need not be isotropic (the 
same in all directions of h), nor the same for all thresh

Les- old values z. For example, very high permeability values 
ter- (open fractures) may be well connected in a given direc
and tion and not in others, resulting in a strongly anisotropic 
iate covariance D(z, z; h); whereas low permeability values (e.g.  
ace, non-pay shales) may be more isotropic in their horizontal 

variability.  
The covariance of the original random function Z(r), 

(7) as defined in Lesson 1(32), is but a moment of the bivariate 

das cdf F(z, z'; h): 

C(h) = E{Z(z)Z(x + h)) - [E{Z(x)}]2 (11)
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Just like the variance of an univariate cdf F(z) does 
not characterize fully that cdf, the covariance C(h) does 
not characterize fully the bivariate cdf F(z, z'; h) i.e. does 
not reflect the various connectivity functions F(z, z; h) or 
D(z, z; h). Consequently, a stochastic simulation 
{zt(z), z E A) that reproduces only the covariance C(h), 
or equivalently only the semi-variogram -t(h), does not 
necessarily identify any of the important connectivity func
tions F(z, z; h) or D(z, z; h). There are cases where iden
tification of one or more critical connectivity functions, 
i.e. indicator covariances F(z, z; h) or D(z, z; h), is more 
relevant than reproduction of their indifferentiated aver
age C(h).  

The Gaussian model.  

The Gaussian RF model is remarkable and particu
larly congenial in the sense that it is fully determined by 
the single covariance C(h) of type (11). Conversely, the 
Gaussian model does not leave any flexibility for the re
production of more than one indicator covariance model, 
[Journel and Alabert, 1988).  

Consider a Gaussian RF Y(z), with zero mean and 
correlogram py(h) = Cy(h)/Cy(o). Ar.- adicator covari
ance of type (7) or (10) is fully determined from py(h), 
[Xiao 1985], e.g., 

Prob{Y(x) > y, , Y(z + h) > y,} = (12) 

I (1 P)2 +h]exp dO = ( 1 -)+T 0 1 + sin0] 

with yl, = G-(p) being the p-quantile of the standard 
normal cdf, see Lesson 1 (14). For example, at the median 
threshold: Y.s = 0: 

1 1 

Prob{Y(z) > 0, Y(z + h) > 0} = 1 + -Larcsinpy(h), 
4 2ir (13) 

[Abrarnovitz and Stegun 1964, p. 936.] 
In practice, the original variable Z(z) may not be 

normally distributed, thus the Gaussian model would ap
ply to its normal score transform Y(z) = T(Z(z)), e.g., 
Y(z) = In Z(z). However, such univariate-type transform 
does not change in essence the bivariate cdf. Indeed, 

Prob{Z(z) > zp, Z(z + h) > z,I =_ (14) 

Prob{Y(z) > y,, Y(z + h) > ye), for all p,p' E [0, 1) 

whatever the monotone transform T.  
(z,, z,,) and (yV, ,) are the p, p'-quantiles of the uni

variate cdf's of respectively Z(z) and Y(z).  
Thus, a normal score transform does not introduce 

any additional degrees of freedom for modeling of specific

indicator covariances, i.e., connectivity functions of type 
(7) or (9).  

Maximum entropy.  

Not only do Gaussian model-related simulations lack 
the flexibility to identify actual indicator covariances, they 
impart to the realizations {zt(z), z E A} a severe maxi
mum entropy character. It can be shown [Jones 1979, 
p. 137], that among all possible random function models 
with an imposed covariance CQh) or correlogram p(h) the 
Gaussian model maximizes entropy, i.e., spatial disorder.  

Indeed, in expression (12) for extreme threshold values 
y, whether extremely low or high, V2 is large and the 
integral is close to zero leaving a constant value for the 
bivariate probability.

Prob{Y(z) > y, , Y(z + h) > y,)} :- (15)

Prob{Y(z) > y,) . Prob{Y(z + h) > V,) = (1 - p)2 

when p tends towards 0 or 1.  
Thus, the Gaussian model does not allow for spatial 

connectivity of extreme occurrences: the two indicators 
I(z; x) and I(z; z + h) become independent as the thresh
old value z becomes extreme (departs more from the me
dian).  

If high permeability values might connect each other 
in space generating preferential flow paths, a Gaussian
related model (e.g., a lognormal model) would be inad
equate, because it would fail to reveal the possibility of 
occurrence of such preferential flow paths. Maximum en
tropy, i.e., minimum ordering of extreme values, does not 
represent a conservative (i.e., less favorable) model for 
flow simulations and reservoir management.  

The extreme convenience of the Gaussian model is no 
sufBcient justification for adopting a model that may dan
gerously understate the potential for unfavorable spatial 
distributions. It behooves the geostatistician to come up 
with non-Gaussian alternatives allowing patterns of con
nectivity of high/low values, if only for worst cases anal
ysis.  

Simulation features.  

Stochastic simulation provides alternative, equiproba
ble sets of simulated values {zt(z),z E A} , I = 1,---,L 
mimicking part or all of the bivariate spatial variability 
of the unknown true values {ze(z),z E A).  

The vast majority of simulation algorithms are Gaussian
related. They yield simulated sets values {zt(z), x E A} 
which features: 

(i) reproduction of an univariate cdf, usually some his
togram deemed representative of the domain A
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(ii) honoring the data values at data locations, i.e.  

= zX- x = (16) 

for all realization t, at any datum location zx 

(iii) reproduction of the covariance C(h) as defined in 
relation (11) 

(iv) a multivariate Gaussian distribution for the nor
mal score transforms, [Journel and Huijbregts 1978), 
[Mantoglou and Wilson 19811, [Luster 1985], and 
[Alabert 1987a).  

Because of the limitations of the Gaussian model, for 
some applications we may trade the last two features (iii) 
and (iv) for: 

(iii-a) reproduction of any number K indicator covariances 
F(zk, zk; h) of type (6) or (10) 

(iv-a) honoring not only the hard data values z(z 0 ) but 
also any number of soft local data, such as con
straint intervals z(z,) E]a0,,b0 j and/or prior prob
ability distributions for the datum value z(xo), see 
Figures 2b and 2c.  

Sequential indicator simulation 

Consider K threshold values zk, k - I,.., K discretiz
ing the range of variability of the attribute Z(z). K can 
be made as large as needed, however, in practice a small
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number from 3 to 9 would be sufficient, defining from 4 
to 10 classes for Z(z). Indeed, in many applications the 
exact value of z(z) with 2 or 3 digits of precision is not 
as important as the fact that it is low, median or high 
and whether those lows, medians or highs are spatially 
connected or not.  

Indicator coding.  

Any particular hard (or assumed so) datum z(zl) can 
be coded into an indicator data column 
{i(zk; z 1 ), k = 1,.-., K), with the indicator data defined 
as in (8), see Figure 2a.  

At the location X2 of a soft datum known only to be 
in an interval, z(X2) E I a 2, b2], the indicator data column 
is incomplete: the values i(zk;z2) for zk E Ia 2, b2j are 
unknown, see Figure 2b. Such constraint intervals may 
arise from, say, soft porosity data deduced from well logs 
or seismic data, the bounds a., b. being deduced from 
calibration using neighboring hard data, [Thadani, et al.  
1987].  

At some other locations z 3 the soft datum z(z 3) may 
be known to lie within an interval Ja 3 , b3l with some prior 
probability distribution. Thus, at that location: 

i(zk; X3 ) = 0, for all z, < a 3 
- Prob{Z(z 3) < zk I, for all zk EI a3 , b3] 
- 1 , for all zk_ b3 

(17) 
Figure 2c and [Journel 19861.  

At any unsampled location, where no soft information 
pre-exists, the indicator data column is void, see Figure 
2d.  

The idea of indicator/probability kriging (IK/PK) is 
to complete all indicator columns with a probability val
ued between [0, 1], see Lesson IV (26, 29).  

The idea of sequential indicator simulation is: 

(i) to complete a first indicator column for all K thresh
old values zk, say, at location z by IK or PK.  

(ii) to draw from that indicator column (posterior cdf) 
a value, say, z,(z) 

(iii) to move that simulated value ze(z) into the condi
tioning set, ...  

and repeat the process at another location z', until all 
required locations are informed by a simulated value.  

At each step, the process is conditional to the initial 
information and all previously simulated values. As the 
sequential process moves forward, only the nearest condi
tioning data are retained for the IK/PK algorithm deter-
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mining the posterior cdf from which the simulated value 
is drawn.  

Exactitude property.  

Since the IK/PK algorithm is class-exact, see Lesson 
IV (35), the simulated values ze(z) will also be class-exact, 
in the sense that, e.g., at a location of a prior interval 
z(X2) E]a 2, b2], all simulated values zt(z 2), t = 1,...L, 
will honor that interval up to the class zk, zk4+j resolution.  
Thus, conditions (ii) and (iv-a) are verified up to the class 
resolution of the initial indicator coding.  

Indicator covariance reproduction.

Consider the simple indicator kriging estimate used to 
determine a posterior cdf model for the RV Z(z):

r(Zk, z) - Pk = l .\o [i(Zk; Z.) - Pk) (18)

with: p, = F(Z,) = E{I(zk; x)} being the mean indicator 
value to be reproduced.  

The corresponding simple kriging (SK) system is writ
ten, see Lesson 11 (12):

A,=Ck(:T - X.) = Ck( -X (19)

for all c = 1,--.,n 

if the n nearest data locations zx are retained for IK.  
Ck(h) is the centered indicator covariance model for 

the threshold zk, i.e., according to relation (6):

Ck()= F(zk, zk; h) - pk (20)

By construction of the SK estimate (18), the indicator 
estimate is unbiased: 

E{r*(zk; x)} = ph = F(zk), 

thus condition (i) is honored: the model histogram will 
be reproduced by the simulated values zt(z).  

Consider now the covariance of the indicator estimator 
I'(zk, z) with anyone of the n indicator data: 

E{1r(Zk; z) - Pk][I(zk; Xo) - Pk(Z)]} = 

SAE{[I(z.; x.) - Ph[lJ(Zk; X.) - Pk]} = 
$s

ZACk(X0 - Zo) = Ck(z - Z.) 
0=1 

according to (20) for any a = 1,. .~n.

Thus, the SK indicator estimator P*(zk; x) is such that 
it honors all the indicator covariance model values, 
Ck(x - x,). The condition (iii-a) is therefore verified.  

Implementation problems.  

Implementation of a sequential indicator simulation 
exercise requires the following five steps: 

1. Indicator coding of all local prior information, in
cluding possibly soft data. This coding requires de
termining the minimum resolution acceptable and 
the K threshold values zk.  

2. Indicator covariance/variogram inference. The K 
indicator covariances Ck(h) are either modeled from 
the corresponding experimental covariances or syn
thesized from geological interpretation and draw
ings. It is often preferable to use geological inter
pretation, i.e., a form of "soft" structural informa
tion, rather than accept blindly implicit Gaussian
type indicator covariance models with their maxi
mum entropy character.  

3. Define a random path through all N nodes to be 
simulated.  

4. At each node zj of the simulation grid, perform the 
(up to) K indicator/probability krigings to deter
mine the posterior cdf of the unknown Z(z3 ) at that 
location: 

i*(zj,; x) = Prob{Z(z,) < zkjInformation} 

5. Draw from that posterior cdf the simulated value 
ze(xj) and add that value to the list of conditioning 
data, to impart the necessary correlation structure 
to the next simulated values.  

6. Return to step 3 and loop over all N nodes 
z,,j = 1,...,N.  

Generation of another set of simulated values requires 
starting the process again from step 3 or 4. Starting again 
from step 4 amounts to keep the same random path, in 
which case considerable CPU time can be saved: indeed 
all indicator data configurations remain the same and thus 
the kriging weights at each node can be saved for reuse at 
that same node in other simulations.  

The main advantage of the sequential indicator simu
lation algorithm over other more traditional, and Gaussian
related algorithms, is the possibility to control K spatial 
covariances instead of a single one. Of course, this ad
vantage is real only if these K indicator covariances are
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Fig. 3. Statistics and greyscale map of the exhaustive 
data set 

74 11IJ 

Fig. 5. Greyscale maps of the three sets of simulated Fig. 4. Greyscale map of 1600 kriged values from 64 data values

number of data 1600 
mean 55.53 
variance 249.  
coefficient of variation 0.284 
minimum 19.6 
maximum 111.5 
prob. [z < 40.51 0.17 
prob. [40.5 < z _< 55.1 0.36 
prob. {55. < z < 74.1 0.34

Lprob. 1z > 74J 0.13
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Fig. 6. Indicator variograms of the simulation of figure 5a (dots .) Dash line is the model

indeed representative of the spatial distribution of Z(x) 
over the domain A.  

The Berea case study.  

The greyscale map of Figure 3 images the spatial dis
tribution of 40 x 40 air permeameter measurements taken 
on a vertical slab of Berea sandstone of dimensions two 
feet x two feet. This data set is described in [Giordano, et 
al. 1985] and made available by Arco. The corresponding 
statistics of the 1600 data values are attached to Figure 
3. Note the diagonal banding, particularly strong for the 
low permeability values.  

Typically, the image of Figure 3 is not available and 
must be reconstituted with much less data. Figure 4 gives 
a greyscale representation of the kriged map (ordinary 
kriging) using 64 data taken at random locations. Coin-

paring Figures 3 and 4, note the strong smoothing effect 
induced by the kriging algorithm which is in essence a 
weighted moving average.  

Three sets of simulated values {ze(zj),j = 1,..., 1600), 
1 = 1 .. , 3, using the sequential indicator simulation al
gorithm are given on Figure 5. Only four classes (K = 3) 
were considered, thus yielding a rather gross resolution.  
The three threshold values considered are: z, = 40.5 
, Z2 = 55.0 , z2 = 74.0 millidarcies, corresponding to 
the .14, .5 (median), and .84 quantiles, respectively, of 
the 64 data distribution.  

Figure 6 gives, as an example, the indicator variograms 
calculated from the simulated set of Figure 6a together 
with the corresponding models. The variogramn models 
are seen to have been reasonably well-reproduced by the 
simulated data set.

Mie I .120

I
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The banding of the original Figure 3 is well reproduced 
by all three simulated images of Figure 5. In particular, 
the main streaks of low values are reproduced.  

The variance of the 1600 simulated values of Figure Sa 
is oa = 229, a value close to the variance 0 2 = 249 of the 
original 1600 permeability values, whereas the variance of 
the 1600 kriged values of Figure 5 is only a' = 175.  
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Additional sampling: 29 
Anisotropy: 9-25 
Averaging decision: see Stationarity 
Autocorrelation function: see Covariance function 

B 

Bias, see also Unbiasedness conditions: 10-15-18 
Bivariate distribution: 6-7-32 

C 

cdf (cumulative distribution function): 2-22-24 
Central limit theorem: 5 
Class means (determination): 28 
Cokriging: 13-26 
Conditional (posterior) distribution: 21-25-30-35 
Conditional expectation: see E-type estimate 
Confidence interval: see Probability interval 
Connectivity (spatial): 32-33 
Constraint interval, see also Soft kriging: 26-34 
Correlation (coefficient of -): 7-11 
Correlogram: 16-17 
Covariance: 7 
Covariance function: 12-19-25-32 
Covariance matrix: 10-13-17 
Cross-covariance function/matrix: 13 

D 

Data orthogonalization: 13 
Data redundancy: 14-17 
Data uncertainty: 26 
Decision making (under risk): 29 
Dependence (measure of.-): 6-24-32 
Drift: see Trend 
Dual kriging: 14

Entropy: 33 
Estimate, see also Kriging: 23-27 
Estimation error: 10 
Estimation variance: 10-15-19-22-31 
E-type estimate: 27-28 
Exactitude property: 12-16-24-26-35 
Expected value: 3-18 
Extreme value: 31 

G 

Gaussian model: 4-33-34 
Generalized increment/covariance: 20 

H 

Hard data: 26-34 

1 

Independence: 8-1 1-16-23 
Indicator coding (of information): 26-34 
Indicator covariance/variogram: 25-32-35-37 
Indicator kriging: 25-34 
Indicator variable: 24-32 
Interpolation: 12-14-23 
Interquartile range (IR): 3 
Intrinsic random function: 19 

3 

Joint probability distribution: 30 
Joint spatial uncertainty: 30
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K 

Kriging, see! also Simple -, Ordinary -, 

Universal ., Indicator - Probability 10-15 
Kriging variance: 11-16-19 

L 

Least-squares estimate: 27 
Linear estimator: 10 
Linear operator: 4 
Linear regression: see Regression, Kriging 
Linear transform: 7 
Logarithmic parameters: 5 
Lognormal model: 5-33 
Loss function: 27 
LU-decomposition (of kriging matrix): 13 

M 

Mean abosolute deviation (mAD): 4 
Median: 3-23-27 
Multivariate distribution: 30 

N 

Non-parametric geostatistics: 22 
Normal model: see Gaussian model 
Normal system: 11-16-25 

0 

Optimal estimate: 27 
Order relations: 4-24-25 
Ordinary kriging: 15-25-37 
Orthogonalization (of kriging matrix): 13 

P 

Parametric vs. non-parametric geostatistics: 22-30 
Percentile: 3 
Polynomial trend: 18-20 
Positive definite condition: 9-11-16-19 
Posterior distribution: see Conditional distribution 
Prior distribution: 26

Probability intervals: 23-24 
Probability kriging: 26-34 
Probability maps: 24 
Probability of exceedence: 2-29-31 

Q 

Quantile: 3-6-28 
Quantile estimator/map: 28 
Quartile (lower/upper): 3 

R 

Random function (RF): 8-32 
Random variable (RV): 2-10 
Rank order transform: 26 
Regression (linear without constraint): 2 
Regression (linear with constraint): 10 
Residual covariance: 19 
Response function: 31 
Risk assessment: 29 

S 

Scattergram: 6-12 
Semi-variogram: see Variograrn 
Simple kriging: 11-17-35 
Simulation: 30-31-34 
Skewness sign: 4 
Smoothing effect: 31-37 
Soft information/kriging: 26-34 
Spline interpolation: 14 
Stationarity: 8-22-24 
Stochastic simulation: see Simulation 

T

Transfer function: 31 
Trend (Kriging with a _): 18 

U

Unbiasedness conditions: 15-17-18 
Uncertainty (measures of _): 22-25-30 
Uncertainty imaging: 30 
Universal kriging: 19 

V 

Variance: 3-9 
Variogram: 6-8-17-25
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Non-Gaussian data expansion in the Earth Sciences 

A.G. Journel and F. Alabert 
Stanford Center for Reservoir Forecasting, Applied Earth Sciences Department, Stanford University

ABSTRACT A formalism is proposed to generate alternative equiprobable images of an under
lying population spatial distribution. The resulting images honour data values at 
their locations and reflect important characteristics of the data such as patterns of 
spatial connectivity of extreme-values. The formalism capitalizes on a coding of all 
information available into bits (0-1), which are then processed all together 
accounting for their patterns of correlation in space. Such common coding allows 
accounting for qualitative information, possibly of an interpretative nature, to 
complement the usually sparse hard data available in Earth Sciences applications.  
The approach proposed, although of a probabilistic nature, does not call for any 
Gaussian-type modelling or hypothesis.  
TERRA No'a 1989, 1, 123-134.

INTRODUCTION 

Popular understanding tends to limit statistics to a data 
reduction (descriptive) r6le: large tables are summarized 
into a few numbers or graphs such as mean, median, 
histograms and pie charts. In fact in many applications 
statistics are taken towards a data expansion (inference) 
objective. In Earth Sciences applications, for example, the 
ratio of sample size to population size is usually extremely 
low, from 10' to 10-a or below. The problem is not to re
duce the information but to expand it towards a picture of 
the considerably larger population. At the heart of that 
data expansion process is a probablistic model that allows 
for a number of controlled interpolations between the data 
available. The critical question is 'how good is the model 
and have enough alternative models been tried?' 

Consider the grey-scale map of Fig. 1. It presents the 
spatial distribution of 40x40 air permeameter measure
ments taken on a vertical slab of Berea sandstone of dimen
sions 2x2 foot (Giordano et al., 1985). These 1600 horizon
tal permeability measurements taken on a regular grid will 
be considered as providing an exhaustive sampling of the 
slab population at the scale considered. Note the clear 
diagonal banding and the strong connectivity of low 
values.  

Typically, the image of Fig. 1, or at least its important fea
tures, must be reconstituted from a much smaller sample.  
Sixteen randomly located sample values were drawn from 
the 1600 reference database. Their locations are given by 

crosses on the location map in Fig. 12.  
Figure 2 gives a first reconstitution of the reference map 

of Fig. 1. A generalized linear regression algorithm, also 
known as ordinary kriging (Goldberger, 1962; Journel and 
Huijbregts, 1978) is used to interpolate from the 16 data.  
The kriging algorithm is 'exact' in the sense that it honours 
the data values at their locations. The algorithm accounts

for data spatial correlation through a covariance model.  
This covariance model is usually inferred from the experi
mental correlation observed between the data available.  
However, since statistical inference is not the subject of this 
paper, all covariance models used in this paper were de
rived from all 1600 values of the reference database.  

Figure 2 reveals the well-known spatial smoothing 
characteristic of all regression and moving average 
techniques. The initial 16 data are honoured through local 
discontinuities whose amplitude depends on the high fre
quencv content of the.movariance model used.  

Figure 3(a) gives a second reconstitution drawn from a 
stochastic Gaussian-related model (Journel, 1974). A Gaus
sian-related model is fully characterized by a marginal dis
tribution or histogram, not necessarily normal, and bv a 
single covariance function. Then realizations are drawn

Berea sandstone data set

mOarcy 

76.111.5 

O 68.76 

E] 58 
E] 55.58 

51 •55 

47 - 51 

42.5 47 

S19.5-42.5

Fig. 1. The Berea data set. Colour-coded spatial distribution ot 
1600 permeability data.
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Kriging map, 16 hard data

mOarcy 

-' 76-111.5 

I 68-76 
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EJ 55.58 
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42.5.47 

*19.5 42.5

Fig. 2. A regression-type estimated map. (Ordinary kriging using 
16 da a.) 

from it through a generalized Monte Carlo procedure.  
Figure 3(a) corresponds to one such drawing. Each realiza
tion is 'conditional' to the data (16) availabUtz in the sense 
that it honours the data values at their L - ins. In addi
tion, the simulated values of each realizati.,-i are related in 
a way which ensures reproduction of the input covariance 
model.  

If Fig. 3(a) reproduces reasonably well the diagonal 
banding of the exhaustive map of Fig. 1, it does so with ex
cess local noise. This noise tends to blur the strong connec
tivitv of low values. At a larger scale such connectivity of 
extreme-valued permeability may be the most important 
feature. controlling fluid flow, say in an oil reservoir or, a]
ternativel, a nuclear repositor-.  

Figure 3(b) provides a third reconstitution based on a 
-non-Gaussian stochastic model. This model accounts for 
the spatial connectivity of extreme-valued permeabilities 
through a sequence of indicator covariance models. As 
defined hereafter, an indicator covariance is a measure of 
the joint probability of two values in space exceeding a 
given permeability threshold. An indicator covariance is 
thus a model of two-point spatial connectivity. As was the 
case for the two previous reconstitutions of Figs 2 and 3(a), 
the 16 data values used are reproduced at their locations.  
However, the diagonal banding and particularly the con
nectivity of low values is reproduced with much less noise: 
compare with the exhaustive map of Fig. 1.  

Figure 4 is based on the same non-Gaussian model and 
the same 16 data as used for Fig. 3(b). However, the aniso
tropy of the indicator covariance model (connectivity 
model) f&r the high permeability values has been intention
ally inverted, generating banding of high values ortho
gonal to the true banding. The same 16 data, however, are 
honoured at their locations.  

Since all four images of Figs 2-4 honour identically the 
same 16 data, they cannot be differentiated from statistics

Gaussian simulation

40

Indicator simulation

I mOarcy 
40 [ 76-111.5 

68-76 

0-58 - 68 

55 -58 

U S1-55 
47-51 

C 425 47 

* 19.5 42.5

Fig. 3. Two reconstitution using 16 data. (a) By drawing from a 
Gaussian-related model (b) L:sing an indicator simulation 
approach (non-Gaussian).  

based on these data. Yet these four images appear quite dif
ferent, and any planning based on them might yield vastly 
different decisions.  

Imaging of spatial uncertainty 

None of the three images of Figs 2 and 3 identifies the 'true' 
distribution of Fig. 1. In any process of data expansion, 
whether interpolation or simulation, there is necessarily 
some error involved and the resulting spatial uncertaintY 
should be assessed.  

A unique estimated map such as that of Fig. 2, no matter 
the criterion for which it is optimal, does not carry any 
measure of spatial uncertainty. A measure of spatial uncer
tainty is necessarily multivariate: it should not only ad
dress the uncertainty at any particular location u within a 
site but also the joint uncertainty along any string of loca
tions u., I = 1 ..... L within that site. For example, if a string 
of high values is observed on any one ot the reconstituted
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Orthogonal anisotroples
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Fig. 4. A reconstitution wvith inverted anisotropy for the high 
values (non-Gau-.sian model and 16 data).  

images of Figs 2 and 3 and the existence of such a string is 
highly consequential for the project at hand, the question 
arises as to how reliable that string is.  

Stochastic simulation allows drawing several equiprob
able realizations all honouring the same initial data at their 
locations. Figure 5 gives three such equiprobable simu
lations (reconstitutions), among many more possible, of 
the reference image of Fig. 1. All such simulations use the 
same non-Gaussian model and the same 16 conditioning 
data as used for the fourth simulation of Fig. 3(b). Spatial 
features observed consistentlv on all simulated images 
may be considered as reliable, i.e. representative of the 
true reference map, whereas features present on some 
simulations but not on others would be deemed unreliable.  

These introductory examples emphasize the uncertainty 
faced in data expansion, and how the results depends on 
the prior model explicitly or implicitly adopted through the 
choice of an interpolation or simulation algorithm. The 
process of inducing a model, be it deterministic or prob
abilistic, from prior information is usually more important 
than the details of how to extrapolate (deduction process) 
from that model.  

It behoves the cartographer to provide a readily usable 
assessment of spatial uncertainty, and the statistician to 
come up with stochastic models with greater flexibility 
than Gaussian-related models.  

MODELLING SPATIAL DEPENDENCE 

In most Earth Sciences related applications spatial depen
dence is an irrefutable hard fact that cannot be ignored.  
Identification and reproduction of patterns of dependence 
in space and or time might be the very goal of the statistical 
analysis. In mapping problems spatial dependence is a 
blessing for it allows building from the correlation of 
nearby data to estimate (predict) a particular unsampled 

S.va lu e .

Consider the distribution in space of an attribute :, say 
that of horizontal permeability :(u), u being the location on 

the vertical sandstone slab of Fig. 1. The spatial depen

dence between any two values :(u) and :(u+h) separated 

by vector h is modelled by the bivariate probability distri

bution:

(1)

A stationaritv decision over a given domain (population) 
S allows inference of the probability distribution (1) or part 
thereof. The stationaritv decision defines a space where 
repetitiveness can be found, giving physical significance to 
the probability (1) and allowing its inference from corres
ponding proportions of data pairs.  

3 Indicator simulations

mDarcy 

"D 76-111.5 

El168.76 
E' -68 

51-55 

E 47-51 

42.5-47 

19.5-42.5

Fig. 3. Three equiprobabie reconstitutions (using 10 data and thei 
saine non-.,au-.ian model as for Fig 3b).
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Indicator statistics 

Indicator coding of information and indicator statistics are 
particularly convenient to infer characteristics of spatial de
pendence such as the bivariate probability distribution (1) 
(Switzer, 1977; Journel, 1983).  

The indicator transform of the spatially distributed attri
bute z(u) is defined as the binary variable:

(2)

At any location u, where a datum z(u,) is available, the 
whole series of indicator data i(u1; z) for all threshold values 
z is also available.  

The indicator values i(u; z) are interpreted as outcomes 
of indicator random variables l(u;- z). The marginal dis
tribution of the binary random variable I(u; z) is fuily 
characterized by a single parameter, its mean or expected 
value, which is seen to be the marginal probability distribu
tion of Z(u) for the threshold value z: 

E{I(u, z)} = I xP{Z(u) _- z}+0xP{Z(u) > z} 

= P{Z(u) <_ z} = F(z). (3) 
Following from the decision of stationaritv the distri

bution model F(:) is made independent of the location u 
and is inferred from a spatial average of the corresponding 
indicator data available.  

Similarly, the bivariate distribution (1) of any two ran
dom variables Z(u) and Z(u+h) is seen to be the expected 
value of the product of two indicator random variables, 
e.g. in the casez - :': 

E{1(u; z). I(uh+ :h)} = P{Z(u) _- z, Z(u+h) -_ z}.  
= F(h; z).

Expression (4) appears to be the non-centred covariance 
of the indicator process 1(u; :) There is one such indicator 
covariance for each new threshold value z.  

The indicator correlogram, or measure of linear corre
lation between two indicators 1(u; z) and l(u+hI z) is tne 
centred standardized covariance: 

p1(h, z) - F(h; z)-FF2() : -) 
F(z)[1-F(z)] E +1+(5) 

with: Var{l(u; Z)} = F(z)[1-F(z)J.  

The threshold parameter z can be written as a p-quantile 
Z' such as: F(z.) = p E [0, 1], in which case the previous 
indicator statistics (4) and (5) are parametrized with the 
probability value p.  

E ,"Iu; z;.)} = F{l(u; ,) ) 

Varil(u; p)} = p(1 -p)

pj(h; :;*) = p;(h; 1).

The indicator formalism allows inferring Z-probal:.iiitv 
distributions through indicator statistics: mean indicator 
data for the marginal distribution F(z), indicator covariance 
for the bivariate distribution F(h; z), (Journel, 1983). For a 
given set of data locations, inference of the indicator 
covariances is usually easier than inference of the tradi
tional Z-covariance, at least for not too extreme thres1co'd 
values of z. Also indicator covariance models can be svn
thesized, e.g. from interpretative hand-drawn maps, to re
flect patterns of spatial continuity of the process Zx).  

Besides its relation to the bivariate probability F(h; :) the 
indicator correlogram p.,(h ') can be read as a unit-free 
measure of two-points spatial connectivity: the higher 
p.(h; p) the greater the probability of having two values z(u)

Table 1. Statistics of the 1600 reference permeability data.  

Berea data set

number of data j 1600
mean 
vtriance 
coefficient of variation 

skewness 

kurtosis 
minimum 

maximum 
first quartile 

median 
third q-uarti~le_

55.526 
249.  
0.284 
0.379 
3.127 
19.5 
111.5 
4-5. 0 
55.0 
65.0

0.2 

0.15

U 

0� 

a.' 
Ca..

0.1

0.05 t 

0
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Normal probability plot

I,, ri 

" 0.75 

W 0.5 

E 

"• 0.25 

0 

r,

data cumulative frequency

Fig. 6. Normal probability plot ot the reierence lot1h data (note the 
cua-i-normalitv of that data seti 

and z(u+h) jointly not exceeding (or equivalently exceed
ing) the same threshold value z., Conversely, when 
p (h; p) = 0 from relation (5) it appears that: 
F(h; z•) = Fz(z,.) = p 2, i.e. the two events Z(u--h) _- z and 
Z(u) <_ z are independent.  

The quantification of spatial connectivity using indicator 
covariances has been anticipated by a few authors, see in 
particular (Haralick et al., 1973), but not actually put to 
work for stochastic imaging.  

Table I gives the statistics of the 1600 permeability data 
shown in Fig. 1. The corresponding cumulative histogram,

i.e. the indicator mean E{I(u; ;')} = F(::.) is plotted on a 
normal graph in Fig. 6.  

The quasi-straight line indicates a good fit by a Gaussian 
(normal) model. However this marginal Gaussian charac
ter does not imply any multivariate Gaussian character as 
shown by the following figures.  

Figures 7-9 give the indicator correlogram maps, pj(h;,10 
corresponding to the p = 0.1, 0.5, and 0.9 quantile 
threshold values of ;. The experimental correlograms cal
culated from the 1600 indicator data are given on the left of 
the maps while the models calculated from a bi-Gaussian 
hypothesis are given on the right. The maximum corre
lation value p1(0; p) = 1.0 is plotted at the centre of each 
map. Each two-dimensional correlogram value p,(h., It:.; p), 
with h = (h_, It,), is plotted at a point h,,-units left of and 
hk-units above the centre point. Such correlation maps al
low a global appreciation of directional patterns of spatial 
dependence.  

The generation of the bi-Gaussian models on the right
hand side of Figs 7-9 is discussed in the next section.  

All three experimental correlogram maps exhibit strong 
anisotropy: the connectivity measure p1(h; p) depends not 
only on the length ;hi of the vector h but also on its direc
tion. Maximum continuity is obtained in the N5TW 
direction of banding: refer to Fig. 1. Most striking are the 
differences in correlation behaviour as the threshold value 

increases.  

* At the low threshold value ,= 35.5 md, indicator cor
relation (p > 0.5) persists beyond the map limits in the 
direction of banding but vanishes ven- quickly in the di
rection across band'ihg.  

* At the median threshold value :,• = 55.0 nid, the indi
cator correlation anisotropy is less marked.

INDICATOR CORRELATION MAPS - 0.10 PERCENTILE
1600 data

20

0

.20m

Gaussian model

20

El 

0 El 
n] 
U 
[]

ad m

0.85 - 1.00 

0.70 - 0.85 

0.55 - 0o70 

0.40-0.55 

0.30-0 40 

0.20- 0.30 

0.10- 0.20 

0M00 - 0 10

-20 0 20 -20 0 20 

Fig. 7. Berea indicator correh I,,rar in:. 1, . = 35.53 m.i) (a' Experinmental vaIlues (1rmM 16l00 data) (b) Cau-,-,ian rnodtdl
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INDICATOR CORRELATION MAPS - 0.50 PERCENTILE

1600 data Gaussian model

20 20 

0.85 - 10.0 

0.70-0.8s 
E- 0.55.0.70 

0.40-055 

0 0.30-0.40 

H 0.20 -0.30 

E 0.10- 0.20 

S0.00-0 10 

-20 .20 -20 0 20 -20 0 20 

Fig. 8. Berea indicator correlograni p..(h; Zv, 55,0 "id).(al E\perimental values (from 1600 data) (b) G.u-, mode 

INDICATOR CORRELATION MAPS - 0.90 PERCENTILE 
1600 data Gaussian model

20

0E [] 
[]

-2t

0.85- 1.00 

0.70- 0.85 

0.55-0.70 

0.40-0.55 

0.30-0.40 

0.20 - 0.30 

0.10-0.20 

0.00-0.10

-20 0 20 -20 0 20 

Fig. 9. Berea indicator coTrelogram p I i 7fni da) ENperimental values (from 3-00 data). (b) Gaui,,-ii model

* At the high threshold :,, 4 = 76 nid, leaving only 10% of 
Z-data above it, experimental indicator correlation be
comes almost isotropic: there is no strong banding of 
high permeability values as can be checked on Fig. 1. In
dicator correlation in the direction across banding is 
much stronger at high threshold values than it is at low 
threshold values.  

The three experimental indicator correlation maps show 
that the pattern of spatial connectivity (correlation and 
anisotropy) is clearly different for different classes of per
meabilitv % aluti•,.  

A• a measure of comparison, Fig. 10 gives the Z-cor
re!ogram map. p/(h), of the z-permeabilit' attribute itsel!.  
again calculated from all loot ) data. Thi:- /-correlhgrani

map appears as intermediary between the three indicator 
correlogram maps at the left of Figs 7-9. This is no surprise 
since it is known that an attribute covariance is the average 
of all its indicator covariances and cross-covariance-, 
(Alabert, 1987).

Cw(h) dz f C o(h; z, z)d , h 1 

with C,(h; z, z') = Cov{I(u; z), I(u-fh; :)lW

(7)

However, the Z-correlogram map of Fig. 10 undcrstatet, 
severely the spatial connectivity and anisotropy of low per
meability valucs as evidenced in Fig. I and at the left of Fil,.  
7. Conversely, Fig. It) oý erntate, the banding (COnnLe ti\ It'
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CORRELATION MAPS 
Gaussian model

20

0.55-1.00 

"E" 0.70 - 0.85 

U 0.55-0.70 

- 0.40-0.55 

0 Li 0.30 - 0.40 

E 0.20-0.30 

S0.10-0.20 
000-O.0

-20 . .. ... - Z - O " " - • - -2() -2 0 20 -20 0 20 
Fig. 10. Berea permeability correlogram (from original 1600 permeability data). (a) E\perimental values (from 1600 data). (b) Gaussian 
model.

and anisotropy) of high permeability values as seer -n the 
left of Fig. 9.  

If detection of such connectivity of low values (flow bar
riers or aquitards) is critical, the average correlation image 
given by the Z-correlogram of Fig. 10 is inadequate.  

'-.-The Gaussian attraction 

The Gaussian mode! holds a dominant. though question
able, place in statistical theory for it provides a full mul
tivariate probability distribution at very little inference 
cost.  

First a normal score transform is applied to the original 
z-data. This transform allows the defining of a new set of 
z-data with standard normal marginal distribution (Ander
son, 1958):

y(u) = Tjz(u)], and: :(u) = T- '[y(u)]. (S)

The transform T is usually made monotone and invert
ible so that any proposition made on the ys can be trans
formed back into asimilar proposition made on the original 
zs. In particular, the multivariate distribution of the pro
cess Z(u) is expressed in terms of the multivariate distribu
tion of the Gaussian process Y(u), itself fully determined 
from the Y-correlogram pý(h): 

P{Z(u) -_ z;,, j = 1L .. ,n) = P{Y(u,) -- y,, J = 1_.... fl, (9) 

with zP, and y, being the p,-quantiles of their respective 
marginal distributions.  

The bivariate case, n = 2 in expression (9), is particularly 
illustrative because analytical expressions are available 

Tnderson, 1958; Xiao, 1985; Abramovit7 and Stegun, 
J164). The Z-bivariate distribution, expressed in terms of 

indicator correlogram as in relations (5) and (h), is written:

(10)

with y:. being the standard normal p-quantile, and: 
p,(h) = E{Y(u) Y(u+ h)} being the Y-correlogram.  

The Gaussian model (10) possesses an extreme, and un
fortunately not always well understood, property of 
maximum entropy Jones, 1079) i.e. of ma\imum disorder 
for a given covariance pj(h). This maximum entropy 
character is shown by the behaviour of the Gaussian indi
cator correlogram (10) for extreme values of the threshold 
y,,: when p tends towards zero or one, the normal p-quan
tile tends towards ± x, and the expression under the inte
gral sign (10) tends towards zero leaving:

p,(h; p) -" 0. (11)

The Gaussian model does nmo allow for any indicator 
correlation at extreme threshold values, i.e. for any' spatial 
connectivity of extreme values. Moreover, the pattern of 
loss of indicator correlation is symmetric as the threshold 
value z, moves away from the median value z,.;. Indeed the 
expression (10) is symmetric about p = 0.5, since Y = 2._;..  

Figures 7-9 provide side by side the experimental Berea 
sand indicator correlogram maps and the corresponding 
Gaussian models as calculated from expression (10). The 
experimental correlogram maps show patterns of correla
tion that are neither symmetric about p = 0.5, nor decreas
ing as p comes closer to zero or one. In fact, the best indi
cator correlation is found for an extreme value p = 0.1 in 
the direction of low-permeability banding. The divergence 
between the experimental indicator correlation, and the 
Gaussian models iý seen to be larg4er for the t% o extreme 
thresholds (p = 0.1 and 0.qi.
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Multiple steps connectivity 
Just as the two points (u) anLd (u~h) connectivit\, is characterized b' the mean of the product of two indicator variables 1(u; :) and I(u--h; z) as in relation (4), a threepoint connectivity can be characterized by the mean ot the product of three indicator variables 1(u: _-), !(u~h; --], l(u+2h; z): 

EJ1(u, Z) - I(u-+-h; Z) - (u +-2h; z)} 
Similarly, n-point connecti% it, in a particular direction can be characterized by the mean of the product of it indicator 
variables: 

EfJ--'u+ (j--I)h; : 6(n) 

The elementary lag vector h considered hereafter has for direction, .57\W the direction of banding on Fig. 1; the modulus h is the basic step between two pixels in that direction. The threshold value considered is the low 0.1qulicn!:e : = 35.5 Ind used to specify connectivit% ot low values. Figure 11 gives three experimental connectivity functions 6(n), for up to n = 16 steps, in the N57:WV direction. The upper curve corresponds to the 1600 data of the reference map shown in Fig. 1. The middle curve corresponds to the simulated map of Fig. 3(b) built from a nonGau-sian model. The lower curve corresponds to the simtulated map of Fig. 3(a) using a Gaussian-related model.

0 

0 

PC 

0 

.0 

. 1 

04

The reference map (upper curve) exhibats the strongest connectivity followed by the simulated map using a non
Gaussian model. The Gaussian-related model resulted in the lowest connectivity.  

A map based on spatial independence would entai: 
4)(n) = [F(z,)]': = p", for all n.  
On Fig. 11, for it = 2, it is read: 

4)(2) = 0.065 for both the reference map and the nonGaussian simulated map, Figs I and 3(b) respectivel", 
db(2) = 0.038 for the Gaussian-related map of Fig. 3;a i, 4(2) = ;72 = 0.01 would correspond to spatial independence.  

When used for data expansion a maximum entropy model, such as the Gaussian model, need not be the most conservative. In the Earth Sciences and civil engineering, lob entropy patterns such as connected strings of extreme values often correspond to hazardous features whose potential occurrence should not be understated. Areas with potential clusters of low soil strength art: hazardous pile sites for construction; strings of high permeability values can be leakage conduits hazardous for the design of a nuclear repositorn, or detrimental to oil sweep efficiency in a reservoir. When mapping in the field or drawing on a board geologists seek low entropy features. Conversely statisticians prefer not to commit themselves and ,,ould go for maximum entropy models, not always realizing the adverse consequence of such models for certain applications.

0.1 

0.075 

0.05 

0.025

0

.. . . - indicator sim ulation 

5 2 1a 4 6 8 7 0 9 10 11 1? 13 14 15 18 number of Conne~fp 0 1 ,1 ,
Fig. 1 . \ht 1 4,.. si cpcnn'cti\'it fu iati ko ', I 'i' : pro bahihlt Cth tt7,1 ixes in a ro \ 6e1 al ued I e- than r ,qual k = , , , 
todir, \. A at Maj ,rrt.,,ni to i I IbI.wIprr,,polu-L.ng toFig. 3,b: (indcatorsinniut t, to Fig 3ra, i ((.auian simULatiton.L
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Tractable non-Gaussian models for data expansion 

which can account tor low entropy characteristics of the 

data spatial distribution should be proposed.  

SEQUENTIAL INDICATOR SIMULATION 

Consider an\ tw\o random events, A: and A2, with joint 

probability denoted bv P(A2,A1 ). For example, A. can be the 

event 'Z(u) <* z' related to the permeability value z(u) at 

location u or it could be the event 'earthquake of magnitude 

greater than 7', or it could be 'rock type i is present at 

location u'. The two events A, and A, need not relate to the 

same variable, for example A2 may correspond to the ques

tion 'is z(u) -_ :' whereas A: may correspond to an informa

tion of interpretative nature 'sand is present at location u.' 

The conditional probability of event A4, knowing that 

event AI has occurred is given by Bayes postulate (Thomas, 

1986): 

P(A<I A1) = P(. P(A1), 

with P(AI) being the marginal probability of event .A, and 

P(A,, A,) being the joint probability of events A1 and A,.  

Joint simulation of the two events can be done by 

simulating first the event A, from its marginal probability 

distribution P(A;), then simulating the event A- from the 

conditional probability distribution P(A2 1Ai). This se

quence requires inference of the conditional probability 

More generallyv, any number of dependent events 

A. = 1 .... _, can be sequentially simulated using the 

e\precsion (Devrove. 1986): 

P(A,,A . = 1..... \-1) P(A,.-!A,. = 1 .... ,N -2). (12) 

P(A\-21A, i .... '-3) -.. P(A,!A ) - P(AI).  

The technique requires inference of the successive (N-1) 

conditional probability distributions P(A2 A,).. P(A,,A.  

Relation (12) is absolutely general, in the sense that the N' 

event A, can be of any nature. In particular it can be applied 

to the simulation of joint realizations of N-dependent con

tinuous random variables Z(u,), j = 1,...,N modelling the 

spatial variability of an attribute z(u) over a grid with N 

nodes u, The sequence is: 

1. Starting at any node, say ul, derive the conditional dis

tribution of Z(u1 ) given any available information. This 

available information, denoted (n), usually consists in 

known outcome values Z(u.) = z. at data locations u.. The 

conditional or posterior distribution of Z(ul) is denoted: 

PJZ(ul) < :(), = P{Z(ul) -_ z1Z(u,,) = ,, Ce E (17)1.  

2. Draw a realization of Z(u,), say :., from that distribu

"tion. Transfer that realization into the data set which is now

of dimension (n-+ 1).  
3. Move at random to a second node, say u- Derive the 

conditional distribution of Z(u-) given the information 

(n + 1), i.e. the distribution: 

P{Z(u2 ) - zI(ni+1)) = P{Z(u:) _ zIZ(u.) = z-. a, E 0(,), 

Z(u,) = ").  

Draw a realization of Z(u,), say z, from that distribution.  

Transfer that realization -," into the data set which then 

becomes of dimension (n+2).  

Loop at random over all N nodes, until each node is in

formed with a simulated value 

The set of N values {z,", j = 1 .... N} represents one 

realization of the random field {Z(u), u E S} over the N 

nodes u. Any number L of such simulations {:a, = 

1 ..... }, I = 1 .. L, can be obtained by repeating the en

tire sequential process L times.  

Two major implementation problems must be ad

dressed: 

"* the derivation of the (N-1) successive conditional prob

ability distributions of type P{Z(u,) -_ z:(,,+j-1)J 

"* the increasing size of the conditioning information from 

(ii) to (n-N+1).  

Derivation of conditional distributions (Journel, 1983; 

Sullivan, 1985; Suro Perez, 1988) 

The event Z(u) -_ z can be characterized by a random bi

nary indicator variable, as defined in (2): 

1, if Z(u) <: 

0, if not 

Any conditional probability for Z(u) can be written as a 

conditional expectation of an indicator random variable, 

similarly to relation (3):

P{Z(u) -_ zI(n)} = E{1(u; z)I(n)}.

Consider K threshold values zi, k = 1 ... , K providing a 
discrete approximation of the range of variability of the at

tribute z. Each conditioning datum Z(u.) = z. can be coded 

into an indicator data column with K members valued 

either zero or one:

Z(u,) = z. - {i(u.; 2k), k = 1,...,K).

The previous probability distribution can be seen as con
ditional to the n indicator data columns, i.e. to the nxK 

indicator data: 

P{Z(u) zk,,IZ(u.); = z., ca E (n)} 

- EJ(u; z,) I 1(u,.; Z•) = i(u.; :•), 

k = I_... K;cE (n)i, 
(15)
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with 2 4 being one of the K threshold values Z
considered.  

Arguing or assuming that l(u; z") is more correlated with 
I(u.; z,) than with any of the other indicator data l(u,,; "-,) 
with z P :_,, the probability (15) can be approximated by: 

P{Z(u) _ z, 1(n)} = E{l(u; z, 1(u.; z,) = i(u,,;:A,), u E (E)O.  

(16) 
This approximation amounts to ignoring all cross-corre
lation between indicators defined at different threshold 
values. The result is a considerable reduction in the 
number of conditioning indicator data, it instead of Ki. In 
each particular application, the indicator cross-correlations 
can be calculated and compared to the indicator auto
correlations of type (5). In cases when these indicator cross
correlations cannot be ignored, a more demanding for
malism using indicator principal components can be called 
for (Suro Perez, 198S).  

A conditional expectation can be written as a function 6 
of the conditioning information, i.e. for the conditional 
expectation (16): 

E{l(u; ,,) i(u_; , ) = i(u,,; :k ), a E (n)} 

= 6)i(.uý; Z, ),a E (11)} 

= aC+'• a,(c)i(u,,:-,)

+7 Vz 
t- E (I: Ez (,:!, , = ,l

a-(a, c')i(uý; Z.) . i(ut .; ::, )-+-..

+ia, .7 K iu,; 2-,) 

(17) 
where the symbol H indicates multiplication.  

Indeed any function of one single indicator variable can 
be written as a linear combination of that indicator 
N'(i) = a0o+ai. Similarly any function of any number i of 
indicator variables can be written as a linear combination of 
products of these indicators (Journel, 1986). Then, a first 
order approximation to the conditional probability (16) 
amounts to retaining only the first (n+]) terms of the 
expansion (17): 

P{Z(u) -- Z,,(10)) = a,)+ a,(a) - i(u,,; k.) (18) 

The argument is that introducing more terms of the ex
pansion (17), such as the products i(u,; zik) - i(u..; AX), 
would require the use of trivariate and higher order statis
tics for which inference is rarely possible. Limiting the 
expansion (17) to functions of one indicator at a time as in 
(18) reduces the inference needed to only bivariate dis
tribution functions expressed as indicator covariances, see 
definition (4).

It remains to determine the set of (17-.- ) coefficients ai, 
ai(c) for the approximation (18). These coefficients arc ob
tained by linear regression of the unknown indicator 
i(u; :J) on the n indicator data i(u,,; z, ). That regression calls, 
only for the indicator correlogram p,(hJ, ) as detined in 
relation (5j. In its simplest form, the regression estimate is 
written (Journel, 1983): 

[P{Z(u) -_ zj,!(,i)}-F(zJ ]" ,(,*-[iu :: - {,) 

(19) 

with the it weights {,,(k0), a ( (ii)} given by a system of 
normal equations.  

' ,d(k0 ) ' p,(u,,-uO; A, ) = pi(u-u,,; 2. ), for all , C (1:), 

(20) 

The choice of a linear regression procedure to determine 
the weights a. of expression (18) is not arbitrary. It can be 
shown (Journel, 1986) that a conditional expectation being 
by definition a L2-norm projection on the 'nformation 
space, a regression technique must be used to determine it.  
Also the normal system (20) can be seen as an identification 
of the correlation of the estimator (19) with any one of the 
it indicator data I(u,,; zi) to the model indicator correlogram 
value pl(u-u,; z, ). The K systems (20) for k,. = 1 ... ,K are 
interpreted then as the conditions for the simulated values 

- = 1 ..... Nto reproduce the K indicator correlogram 
models p(h; z4 ), k0 = 1 . ,K (Alabert, 1987).

Dimension reduction 

In practice, at each node u, K normal systems of type (20) 
must be solved to generate a K-discrete version of the 
conditional probability distribution P{Z(u) _- :, I(n)). k, 
= 1 .. ,K. The factor K is not a problem if the sv-.tems 
(20) are not of too large dimension n. But precisely, in the 
sequential simulation process over the N nodes u;.1 = 
1 .. ,N, the number of conditioning data keeps growing 
from ii for the first node being simulated to n+N- l for the 
last node. A grid with N = 10' nodes is not extraordinary 
in Earth Sciences applications and thus would require the 
solving of unreasonably large systems.  

The solution consists of retaining only those data loca
tions u., closest to the node u. being simulated. The argu
ment is that the information carried bv the further away 
conditioning data is 'screened' by the information content 
of the nearest data. For example, if the five nearest data are 
retained in each of four quadrants with apex at the node u 
being simulated, a normal system of maximum dimension 
20 would have to be solved for each node, no matter how 
advanced is the sequential process ! = 1,
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Conditioning to soft information 

In many applications, particularly in the Earth Sciences, 
'hard' numerical data of type (14): Z(u.) = z. are sparse.  
The reconstitution of the spatial distribution {:(u), u E S} is 
thus likely to be poor. Fortunately, hard data are usually 
complemented by a host of 'soft' data stemming from 
different and less accurate measurement devices or from 
interpretative origin (e.g. geological interpretation). The 
reconstitution can be dramatically improved if that soft in
formation is accounted for.  

The indicator formalism offers great flexibility for coding 
information of various sources and qualities into a common 
format; that of zero/one bits (indicator data): 

"* A hard datum Z(u.) = z. generates a complete indicator 
data column as in expression (14).  

"* A constraint interval generates an incomplete indicator 
data column:

One simulated field using that additional soft infor
mation is shown in Fig. 13, and should be compared to the 
simulated fields of Figs 3(b) and 5 which use only the 16 
hard data. The improvement achieved by the incorpor
ation of the soft information is appreciable: compare Figs 5 
and 13 to the reference Fig. 1.  

In addition to allowing a coding of soft local information, 
the indicator formalism lends itself to utilizing soft infor
mation of a structural nature. Indeed, the indicator simu
lation approach utilizes K connectivity functions p,(h; Zk).  

k = 1 .. ,K, as opposed to a single one py(h) for the Gaus
sian approach. Some aspects, such as spatial anisotropy, of 
these connectivity functions may be obtained directly from 
geological (soft structural) information. For example, it 
may be known beforehand that low permeability values 
are connected along N57W whereas high permeability 
values are connected in the orthogonal direction N33'E.

r0, ifZk <a 
Z(u.) E [a, b] = i(u 0 ; z) =., 1, if :k -_ b 

Lundefined otherwise.

Soft and Hard data locations

(21)

* Local prior distributions are coded as 'fuzzy' indicator 
data valued between 0 and 1, as opposed to 'hard' indi
cator data valued either zero or 1:

0, if Zk < a 

Z(uj) E [a, b] = i(u0 ; :Z = [0, 1], if :. E [a. b] 

1, if Zk -- b .

A 

I

:+ 0 

0

(22)

For example, at a location u. where a hard measurement 
-(u,) could not be taken, information about the prevailing 
rock type may be available. That rock type information may 
indicate in which interval [a, b] the attribute value z(u,,) 
resides. In addition the distribution (histogram) of z-values 
within that rock type may be available and that information 
can be coded as a prior local distribution of type (22) and 
put to use.  

The indicator data regardless of their origins, are then 
processed all together for: 

"* Inference of the required indicator correlograms pI(h; zk), 
k=1 ... K.  

"* Conditioning the probability distribution (13) required 
for generating the simulated maps.  

In addition to the 16 hard data, 144 constraint intervals of 
type (21) were given at the nodes of a regular 12x 12 grid, 
(see the location map of Fig. 12). At each of these 144 
locations soft information indicates that the permeability 
value z(u,,) belongs to one of the three intervals [0, 35.5], 
[35.5, 76], [76, 150]. This soft information mimicks the 
imprecise permeability information one might be able to 
extract from well logs or, in the best case, from dense 
seismic lines.

+ 0 0 0 a 

0 0 0 * 40 

o 0 0 0 0 

o+o o 

0 0 0 a4a 

@0 .0 a@0 

0 0 04.0 0 

0 0 a 0 a 

0 +. a 0 a 

0 0 0 0 a

0 

0 

0 

0

0 

0L 

+

-- soft information 

* -A-- hard information 

+ 16 hard data, C 144

0 

0 

0 

0 

0 

0 

0

o 

0 

4.0

East -> 

Fig. 12. Location of available information.  
constraint intervals (soft data).

Simulation with soft data

mOarcy 

C 76-111.5 

6 68-75 

El s8-68 

*55-58 

51.55 

47-51 

U42.3•47 

M 19.5. 42.5

Fig. 13. A reconstitution using both hard and soft information 
(compare with Figs 3b and 5)

133

,0 .+

0 

0 

0 

0



�imim

S2REVIEW

"The anisotrop% modelled for p;(h; z, 1) at the low threshold 
value .mav then be inverted for the model p1(h; :,..) at 
the high threshold value' : .. A resulting simulated field 
with this inverted anisotropv has been given in Fig. 4, to be 
compared with the realization of Fig. 3(b); in both cases the 
same 16 hard data were used.  

CONCLUSIONS 

In the Earth Sciences, where data are typicall]\ scarce, 
statistics are often taken towards a goal of data expansion.  
Models of dependence in space are built from sample 
statistics and allow expansion of the original information 
into a detailed picture of the population of interest. The 
reconstructed maps or numerical models are considered 
good to the extent that they' reproduce certain characteris
tics of the spatial distribution of the underlying population.  

Important characteristics to be honoured include: 

"* the sample values and qualitative information at their 
locations, 

"* patterns of connectivity in space, part:-ularly those of 
extreme-valued attributes.  

Geological mapping is aimed at detecting and enhancing 
low entropy (organized) patterns of spatial connectivity, 
wýhereas traditional interpolation techniques tend to 
smooth out extreme values, and statistical models lean 
towards maximum entropy (maximum disorganization) 
whenever a doubt arises. Yet, strings or patches of con
nected extreme values might be the most consequential 
features of the map depending on the intended usage of 
that map.  

Spatial connectivitv models defined as probabilities for 
any two attribute values, separated by a vector h, to jointly 
exceed any given threshold value, can be inferred and 
imposed on the reconstitution exercise. The resulting maps 
will reflect these connectiv'itv models, in addition to hon
ouring local information of any type. These connectivity 
functions can be in number K > 1, and can image patterns 
of low values different from patterns of median or high 
values, they can be inferred from hard data or synthesized 
from soft interpretative information. Thus, they allow the 
generation of maps with a greater and more valuable infor
mation content, maps that better reflect the actual popula
tion distribution.  

Typically in the Earth Sciences, hard numerical data are 
scarce and the reconstitution exercise must rely on soft 
information of various sources. The indicator formalism 
calls for a common coding of all information available at 
any location into a series of elementary bits (0 or 1). These 
bits of information are then processed together, indepen
dently of their origins. The results are a series of equiprob
able maps honouring all prior intormation, whether hard 
or soft. The differences between these equiprobable maps 
image the prevailing spatial uncertainty. That stochastic

imaging of spatial uncertainty can be put to different uses, 
including the assessment of consequent risks and the need 
for additional information.  
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