

NRC 2002-0077

10 CFR 50.55a

A047

September 4, 2002

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555

Ladies/Gentlemen:

Dockets 50-266 and 50-301 Point Beach Nuclear Plant, Units 1 and 2 Fourth Interval Inservice Inspection Program Relief Request No. 10 Corrected Page

Reference: 1. Letter from T. J. Webb (NMC) to Document Control Desk dated March 22, 2002, PBNP Fourth Interval Inservice Inspection Program, Plan and Schedule.

In accordance with IWA-1400(c) of the 98A00 Section XI ASME Code, Nuclear Management Company, LLC (NMC), licensee for the Point Beach Nuclear Plant (PBNP), submitted the PBNP Fourth Interval Inservice Inspection (ISI) Program in Reference 1.

Included in Appendix D of Reference 1 were several relief requests. Relief Request No. 10 requested an alternative to the requirement to examine all three regenerative heat exchanger vessels.

During a conference call on August 22, 2002, NRC identified an error in Relief Request No. 10 on page 109 of 115. In accordance with the 1998 Edition of ASME Section XI with Addenda through 2000, the requirement for Class 2 nozzle to shell welds, examination category C-B, item no. C2.21, is to perform both surface and volumetric examinations on each weld. In Relief Request No. 10, NMC summarized this requirement as only a volumetric exam. The intent was to meet the requirement of the ASME code for both surface and volumetric examinations.

In response, attached is the corrected page 109 for Relief Request No. 10.

Sincerely.

Thomas J. Webb Regulatory Affairs Manager

. NRC 2002-0077 Page 2

LAS/kmd

7

Attachment

cc: NRR Project Manager NRC Resident Inspector NRC Regional Administrator PSCW Attachment To the Letter

•

2

From:

T. J. Webb (NMC)

To:

Document Control Desk (NRC)

NRC 2002-0077

Fourth Interval Inservice Inspection Program Relief Request No. 10 Corrected Page 109 Point Beach Nuclear Plant

POINT BEACH NUCLEAR PLANT INSERVICE INSPECTION PROGRAM

÷

ISI CL 1,2,3 PROGRAM Revision 0 March 11, 2002

PBNP CLASS 1, 2, AND 3 INSERVICE INSPECTION PROGRAM

RHE-N8-IRS	RHE-N8-IRS
RHE-N9-IRS	RHE-N9-IRS
RHE-N12-IRS	RHE-N12-IRS

Examination Category C-A, Item No. C1.20, tubesheet to shell weld, volumetric examination

Unit 1	Unit 2	
RHE-04	RHE-04	
RHE-08	RHE-08	
RHE-12	RHE-12	

Examination Category C-A, Item No. C1.30, tubesheet to shell weld, volumetric examination

Unit 1	Unit 2	
RHE-03	RHE-03	
RHE-07	RHE-07	
RHE-11	RHE-11	

Examination Category C-B, Item No. C2.21, tubesheet to shell weld, surface and volumetric examination

Unit 1	Unit 2
RHE-N2	RHE-N2
RHE-N3	RHE-N3
RHE-N6	RHE-N6
RHE-N7	RHE-N7
RHE-N10	RHE-N10
RHE-N11	RHE-N11

Relief Requested

Relief is requested from performing the examinations of the Regenerative Heat Exchanger welds as required by the 1998 Edition of Section XI with Addenda through 2000.

Basis for Relief

The Regenerative Heat Exchanger is a high radiation component, located inside of a lock high radiation area. It is the greatest single source of radiation exposure accumulated during a normal refueling outage for ISI and support personnel. Just as an outage begins, Radiation Protection personnel make a survey of the area to document dose rates. These rates are typically 700 mr to 1400 mr for the general area. Hot spots of 3000 mr are normally found on contact with the heat exchanger. The following dose accumulations are expected using 3.0 Rem-hour due to the close contact the workers and NDE examination personnel experience in the course of performing their duties for each weld: 0.2 Man-hours for insulation removal = 0.6 Man-Rem

0.2 Man-hours for weld cleaning and preparation	= 0.6 Man-Rem
0.75 Man-hours for conducting examinations	= 1.5 Man-Rem

NRC 2002-0074

September 4, 2002

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555

Ladies/Gentlemen:

Docket 50-266 Point Beach Nuclear Plant, Unit 1 Summary of the Spring 2001 Unit 1 (U1R26) Steam Generator Eddy Current Examinations

In accordance with the requirements of Point Beach Nuclear Plant Technical Specifications 5.6.8.b.1 and 5.6.8.b.2, Nuclear Management Company, LLC (NMC), licensee for PBNP, is submitting the summary of the spring 2001 Unit 1 Steam Generator Eddy Current Examinations.

The attached summary reports the number and extent of tubes tested and the location and percentage of wall-thickness penetration for each indication of degradation in each steam generator. Note that these descriptions were previously provided in the Annual Results and Data Report for PBNP that was required by the previous Technical Specifications. The annual report for the year 2000 was submitted on February 28, 2001. With the implementation of Improved Technical Specifications at Point Beach in 2001, this annual report is no longer required.

Please contact us if you have any questions.

Sincerely.

Thomas J. Webb Regulatory Affairs Manager

LAS/kmd

Attachment

NRC 2002-0074 Page 2

,

cc: NRR Project Manager NRC Resident Inspector NRC Regional Administrator PSCW Attachment 1 To the Letter

•

.

From:

T. J. Webb (NMC)

To:

Document Control Desk (NRC)

NRC 2002-0074

Summary of the Spring 2001 Unit 1 (U1R26) Steam Generator Eddy Current Examinations Point Beach Nuclear Plant Unit 1

SUMMARY OF THE SPRING 2001 UNIT 1 (U1R26) STEAM GENERATOR EDDY CURRENT EXAMINATIONS

During the Point Beach Nuclear Power Plant Unit 1 spring 2001 refueling outage (U1R26), the following steam generator (SG) services were performed:

Eddy Current Examinations

The U1R26 SG tube eddy current examination program included:

- 1) A bobbin coil examination of 100% cf the non-plugged tubes through their entire length.
- 2) A low frequency rotating plus point examination of 20% of the row 1 U-bends, from the sixth hot leg tube support plate to the sixth cold leg tube support plate.
- 3) A high frequency rotating plus point examination of 20% of the row 1 U-bends, from the sixth hot leg tube support plate to the sixth cold leg tube support plate.
- 4) A rotating plus point examination of 40% of the hot leg tube expansion transitions, 2 inches above and below the secondary face of the tubesheet.
- 5) Supplemental rotating plus point examinations of ambiguous bobbin coil signals, as required.

As required by Technical Specification 5.6.8.b.1, Table 1 contains a summary of the U1R26 SG eddy current examinations, including the number and extent of tubes tested.

As required by Technical Specification 5.6.8.b.2, Table 2 contains the location and percent of wall-thickness penetration for each indication of degradation in SG A, and Table 3 contains the location and percent of wall-thickness penetration for each indication of degradation in SG B.

Steam Generator Repairs

SG repairs were performed during the U1R26, including tube plug removal and replacement and SG tube plugging.

As required by Technical Specification 5.6.8.b.3, Table 4 lists the tube locations that were plugged or repaired.

NRC 2002-0074 Attachment 1 Page 2 of 6

TABLE 1

SUMMARY OF THE U1R26 STEAM GENERATOR EDDY CURRENT EXAMINATIONS

Item	Scope	Extent	Number of 7	ubes Tested
	-		SGA	SG B
1	Bobbin Examination	TEH to TEC	3210	3209
2	Low Row U-Bends (Low Freq)	06H-1" to 06C-1"	19	19
3	Low Row U-Bends (High Freq)	06H-1" to 06C-1"	17	19
4	Hot Leg Tubesheet Expansion Transitions	$TSH \pm 2"$	1308	1300
5	Supplemental RPC Testing	TSH-1" to FBH+1"	4	0
6	Supplemental RPC Testing	TSH-1" to 01H+1"	0	3
7	Supplemental RPC Testing	FBH-1" to 01H+1"	0	1
8	Supplemental RPC Testing	01H-1" to 02H+1"	2	2
9	Supplemental RPC Testing	02H-1" to 03H+1"	2	0
10	Supplemental RPC Testing	03H-1" to 04H+1"	1	0
11	Supplemental RPC Testing	04H-1" to 05H+1"	1	11
12	Supplemental RPC Testing	05H-1" to 06H+1"	2	2
13	Supplemental RPC Testing	06H-1" to 06H+1"	0	1
14	Supplemental RPC Testing	06C-1" to 06C+1"	1	1
15	Supplemental RPC Testing	06C+1" to 05C-1"	2	4
16	Supplemental RPC Testing	05C+1" to 04C-1"	2	0
17	Supplemental RPC Testing	04C+1" to 03C-1"	3	0
18	Supplemental RPC Testing	03C+1" to 02C-1"	1	2
19	Supplemental RPC Testing	02C+1" to 01C-1"	1	3
20	Supplemental RPC Testing	01C+1" to FBC-1"	1	0
21	Supplemental RPC Testing	FBC+1" to TSC-1"	0	4
22	Supplemental RPC Testing	01C+1" to TSC-1"	1	0

NRC 2002-0074 Attachment 1 Page 3 of 6

•

Table 1

Nomenclature

FBC:	Flow distribution baffle cold leg side
FBH:	Flow distribution baffle hot leg side
RPC:	Rotating Pancake Coil (Plus Point)
TEC:	Tube end cold leg side
TEH:	Tube end hot leg side
TSC:	Top of tubesheet cold leg side
TSH:	Top of tubesheet hot leg side
01H:	First hot leg tube support plate
02H:	Second hot leg tube support plate
03H:	Third hot leg tube support plate
04H:	Fourth hot leg tube support plate
05H:	Fifth hot leg tube support plate
06H:	Sixth hot leg tube support plate
06C:	Sixth cold leg tube support plate
05C:	Fifth cold leg tube support plate
04C:	Fourth cold leg tube support plate
03C:	Third cold leg tube support plate
02C:	Second cold leg tube support plate
01C:	First cold leg tube support plate

NRC 2002-0074 Attachment 1 Page 4 of 6

.

TABLE 2

LOCATION AND PERCENT OF THICKNESS PENETRATION U1R26 STEAM GENERATOR A

ROW	COL	%	LOCATION
32	14	3	AV3
40	27	4	AV3
40	25	5	AV2
31	63	5	AV3
33	66	5	AV3
38	22	6	AV3
45	41	6	AV1
45	41	6	AV4
34	65	6	AV3
27	71	6	AV4
34	33	7	AV2
34	69	7	AV1
39	68	8	AV4
32	71	9	AV2
34	33	10	AV1
40	44	10	AV3
33	71	10	AV3
33	66	11	AV2
27	71	11	AV2

ROW :	COL	.h%	LOCATION
45	43	12	AV1
34	65	12	AV4
27	71	12	AV3
33	37	13	AV4
40	47	13	AV3
45	49	14	AV1
19	54	14	AV2
31	63	14	AV2
33	66	14	AV1
34	69	14	AV2
35	56	15	AV1
19	54	16	AV4
33	71	17	AV2
38	54	18	AV3
19	61	18	AV1
38	43	19	AV1
38	43	19	AV2
19	61	23	AV2
35	56	27	AV2

Location Nomenclature

AV1:	Anti	vibra	ation	bar	number	1
		••	. •	1	1	~

- AV2: Antivibration bar number 2
- AV3: Antivibration bar number 3
- AV4: Antivibration bar number 4

NRC 2002-0074 Attachment 1 Page 5 of 6

0

TABLE 3

LOCATION AND PERCENT OF THICKNESS PENETRATION U1R26 STEAM GENERATOR B

ROW	- COL	- % i *	
23	33	6	AV1
32	44	7	AV3
22	58	8	AV1
19	36	9	AV3
32	46	11	AV2
32	49	11	AV2
32	32	12	AV3
22	58	12	AV4
23	33	13	AV2
32	49	14	AV1
32	70	14	AV1
45	44	14	AV1
32	46	15	AV3
22	58	16	AV3
33	71	17	AV1
32	70	17	AV2
23	33	17	AV3
45	46	19	AV1
22	58	19	AV2
32	38	20	AV1
32	38	27	AV4
32	38	30	AV2
32	38	39	AV3

Location Nomenclature

AV1:	Antivibration	bar	number	1
AVI.	Antivioration	υщ	mannoon	*

- AV2: Antivibration bar number 2
- AV3: Antivibration bar number 3
- AV4: Antivibration bar number 4

NRC 2002-0074 Attachment 1 Page 6 of 6

د

TABLE 4

IDENTIFICATION OF TUBES PLUGGED OR REPAIRED U1R26

SG	- ROW	- COL = -	PCT -	LOCATION	P/R
В	1	1	NA	NA	R
В	2	1	NA	NA	R
В	43	40	NA	NA	R
В	32	38	39	AV3	Р

Nomenclature

AV3: Antivibration bar number 3

P: Plugged preventatively during U1R26

R: Repaired during U1R26. Repair consisted of removal of old Westinghouse plug and PIP assembly and replacement with an Inconel 690 rolled plug