GS.92.M.000002

See. in

USGS-OFR-91-572

10

÷ •

ч, т

USGS-OFR-91-572

. .

COMPANY AND

1

UNITED STATES DEPARTMENT OF THE INTERIOR

U.S. GEOLOGICAL SURVEY

SEISMICITY AND FOCAL MECHANISMS FOR THE SOUTHERN GREAT BASIN OF NEVADA AND CALIFORNIA: 1987 THROUGH 1989

by

S. C. Harmsen and C. G. Bufe

Open-File Report 91-572

Prepared in cooperation with the Nevada Operations Office U.S. Department of Energy (Interagency Agreement DE-AI08-78ET44802)

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards (or with the North American Stratigraphic Code). Any use of trade, product, or firm names is for descriptive purposes only and does not constitute endorsement by the U.S. Government.

> Denver, Colorado 1992

GS.92.A.100239

0716.0078

INFORMATION ONLY

GS.92.M.000002 GSP-92-0020

N

· • •

·

QRP: WBS 1.2.3.2.8.4.1 QA: QA GP: QMP 3.04, R3

Page 1 of 1

YMP-USGS-GSP TABLE OF CONTENTS PUBLICATIONS QA RECORD PACKAGE

Seismicity and focal mechanisms for the southern Great Basin of Nevada and California: 1987 through 1989, by S.C. Harmsen and C.G. Bufe

		No. of page	ges of	V
Published	Open-File Report	208 2	16 2 20	₹,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Published	Report Package:		12.01	
1.	Table of Contents		700	
2.	DOE Form 1332	1		
3.	Letter to DOE for concurrence (02/27/92)	2		
4.	DOE concurrence letter (04/29/92)	2		
5.	USGS approval letter and MRS showing date of	۷.,		
· ·	USGS approval of October 31, 1991 (11/8/91)	2		
<u>6</u> .	Reconstructed Manuscript Routing Sheet	2		
/.	QA review (02/21/92)	2		
8.	TPO review (02/25/92)	1		
<u> </u>	Reviewer selection form for Swolfs (06/06/91).	î		
11	Reviewer selection form for Perkins (06/06/91)	ī		
12	Swolls review (08/16/91)	1		
13	Author recreases to Dauk	9		
	Addid response to Perkins review (10/07/91)	15	0	
TAL PAGE	COINT		N N'V	
		249	an an	
aw Data Pa	ackage:	257	Yeld C	
South	Pern Great Basin Local Farthmann American	,	v	
	L1009 through L1036			
Ттасі	ing numbers for the data			
nubli	Cation and Collegalized associated with this			
and C	S910593117412.032, GS910583117412.033	,		
41.44	NJ10 J8311/422.030.			
UTHENTICAT	ED BY: HOUME A MARCA			
	Jace: 06/02/9	2		

Additional tracking numbers for the data associated with this publication: GS91083117412.019 (supercedes NNA.910517.0005), GS91083117412.020, GS910583117412.021 and GS910583117412.022

USGS-OFR-91-572

the state of the same

USGS-OFR-91-572

.

i.

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

Denver, Colorado

SEISMICITY AND FOCAL MECHANISMS FOR THE SOUTHERN GREAT BASIN OF NEVADA AND CALIFORNIA: 1987 THROUGH 1989

by

S. C. Harmsen¹ and C. G. Bufe¹

¹ U. S. Geological Survey, Denver, Colorado, 80225

Copies of this Open-File Report may be purchased from lant sterry of the

1940 - A.S. 1

.

6.32

-

~

Open-File Services Section Branch of Distribution U.S. Geological Survey Box 25425, Federal Center Denver, Colorado 80225

PREPAYMENT IS REQUIRED

Price information will be published in the monthly listing "New Publications of the Geological Survey"

FOR ADDITIONAL ORDERING INFORMATION

CALL: Commercial: (303) 236-5456 FTS: 8-303-236-5456

CONTENTS

P	age
Abstract	1
	1
Acknowledgments	2
Calibration procedures and results	2
Preliminary hypocenter determination for SGB earthquakes and explosions	4
Can localized velocity anisotropy be inferred from NTS nuclear tests?	6
Earthquake magnitudes and detection threshold	10
Overview of local SGB seismicity, 1987 through 1989	13
Seismicity at Yucca Mountain, 1987 through 1989	21
1988 Boulder City, Nevada swarm	22
Earthquake focal mechanisms	26
Effects of modeling on focal mechanisms	29
Representativeness of focal mechanisms in the SGB catalog	30
Untypical focal mechanisms and source zones in the SGB	30
Evidence of seismically active detachment faults?	31
Yucca Mountain earthquake focal mechanisms	33
Reverse-slip focal mechanisms and compressional tectonism in the SGB	35
Focal mechanisms of other notable SGB earthquakes	36
Average directions of P and T and tectonic strain	38
Depth-of-focus distribution and deep-crust intraplate earthquakes	42
Conclusions	47
Polozonces cited	48
Appendix A SGB earthquake locations for the years 1987, 1988, and 1989, and	
quadrangle names	51
Appendix B. Chemical explosion locations for the years 1987, 1988, and 1989	135
Appendix C. NTS nuclear device test locations and low-frequency event listing for the years 1987, 1988, and 1989	152
Appendix D. Southern Great Basin earthquake focal mechanisms, 1987 through	162
1989	202
Appendix E. Station codes, locations, and instrumentation	200
Appendix F. Input parameters to HYPO71	206

. ~

~

ILLUSTRATIONS

14.1

, , , , , , , ,

... C

F	age
Figure 1 SGBSN station locations and some physiographic features of the southern Great Basin	3
Figure 2.– SGBSN travel-time delays from NTS nuclear device tests	8
Figure 3 Comparison of M_L determined from horizontal-component instruments with M_L determined from vertical-component instruments.	11
Figure 4 Seismicity in the southern Great Basin, 1987	14
Figure 5 Seismicity in the southern Great Basin, 1988	15
Figure 6 Seismicity in the southern Great Basin, 1989	17
Figure 7 Seismicity in the vicinity of Oasis Valley, southern Nevada, 1979 through 1989.	18
Figure 8 Epicenter counts in SGB quadrangles, 1987-1989 versus 1984-1986.	19
Figure 9 Epicenter counts in SGB quadrangles, 1987-1989 versus 1978-1983.	20
Figure 10 Epicentral scatter and variation of RMS travel time residual with depth of focus for a small Yucca Mountain earthquake	23
Figure 11 Seismicity at Yucca Mountain, 1979 through 1989	24
Figure 12 Preliminary epicenters for Boulder City vicinity swarm, 1988	25
Figure 13 SGB earthquake focal mechanisms on regional map base, 1987 through 1989	23
Figure 14 Epicentral scatter and RMS travel time residual as a function of depth of focus for a shallow Yucca Flat earthquake	37
Figure 15 Focal mechanism P and T axes on lower hemisphere, 1987 through 1989	40
Figure 16 Focal mechanism P and T axes on lower hemisphere, 1979 through 1986	41
Figure 17. Depth-of-focus distribution for a subset of SGB earthquakes, 1987 through 1989	43
Figure 18. SGBSN seismograms for a deep-crustal earthquake of August 8, 1989	44
Figure 19 Epicentral scatter and RMS travel time residual as a function of depth of focus for a deep-crust Yucca Flat earthquake	45
Figure 20 Epicentral scatter and RMS travel time residual as a function of depth of focus for an earthquake north of Las Vegas, Nev. having depth near the	
brittle-ductile transition zone	46
Figure A1Quadrangle names in the northeast quarter of the southern Great Basin.	52
Figure A2 Quadrangle names in the southeast quarter of the southern Great Easin.	53
Figure A3 Quadrangle names in the northwest quarter of the southern Great Basin.	54
Figure A4 Quadrangle names in the southwest quarter of the southern Great Basin.	55
Figure A5 Maximum earthquake magnitude per $7\frac{1}{2} \times 7\frac{1}{2}'$ quadrangle in the SGB, 1987 through 1989 and August 1978 through 1986	56
Figure B1 Preliminary epicenter map of blasts and probable blasts in the SGB, 1987 through 1989	136

iv

Figure C1 Map of announced NTS nuclear device test epicenters and selected low-frequency phenomena, 1987 through 1989	153
Figure C2 Contour map of P-wave velocity variation from the standard model for the NTS test "ALAMO"	154
Figure C3 Contour map of P-wave velocity variation from the standard model for the NTS test "DISKO ELM"	155
Figure C4 Contour map of P-wave velocity variation from the standard model for the NTS test "KAWICH"	156
Figure D1 Focal mechanism for Stovepipe Wells earthquake 1982-03-16	163
Figure D2 Focal mechanism for Alamo SE earthquake 1987-01-13	164
Figure D3 Focal mechanism for Yucca Mountain (Bare Mtn. quadrangle) earth- quake 1987-03-10	165
Figure D4 Focal mechanism for Tin Mtn. earthquake 1987-04-08	166
Figure D5 Focal mechanism for Specter Range SW earthquake 1987-04-20	167
Figure D6 Alternate focal mechanism for Specter Range SW earthquake 1987-04	
20	168
Figure D7 Focal mechanism for Yucca Mtn. (Topopah Spring NW quadrangle) earthquake 1987-06-01	169
Figure D8 Focal mechanism for Desert Hills SE earthquake 1987-06-17	170
Figure D9 Focal mechanism for Stonewall Pass earthquake 1987-07-13	171
Figure D10 Focal mechanism for Timber Mtn. (Buckboard Mesa quadrangle) earthquake 1987-08-13	172
Figure D11 Focal mechanism for Papoose Lake SE earthquake 1987-10-02	173
Figure D12 Alternate focal mechanism for Papoose Lake SE earthquake 1987-10- 02	174
Figure D13 Focal mechanism for Reveille Peak earthquake 1987-10-28	175
Figure D14 Alternate focal mechanism for Reveille Peak earthquake 1987-10-28	176
Figure D15 Focal mechanism for Specter Range NW earthquake 1987-12-10 .	177
Figure D16 Focal mechanism for Striped Hills earthquake 1988-01-14	178
Figure D17 Focal mechanism for Thirsty Canyon NW earthquake 1988-01-26	179
Figure D18 Focal mechanism for Yucca Flat earthquake 1988-02-07	180
Figure D19 Alternate focal mechanism for Yucca Flat earthquake 1988-02-07	181
Figure D20 Focal mechanism for Dry Mountain earthquake 1988-05-26	182
Figure D21 Focal mechanism for Ammonia Tanks earthquake 1988-06-15	183
Figure D22 Focal mechanism for Thirsty Canyon SW earthquake 1988-07-02 .	184
Figure D23 Focal mechanism for Owens Valley, California, earthquake 1988-07-05	185
Figure D24 Focal mechanism for Timber Mountain earthquakes 1988-07-03 and 1988-07-24	186
Figure D25 Focal mechanism for Reveille Peak earthquake 1988-08-30	187
Figure D26 Focal mechanism for Gold Flat (Mellan quadrangle) earthquake 1988- 10-28	188

2 G G 3

and the second sec

-

Figure D27 Focal mechanism for Gold Flat (Mellan quadrangle) earthquake 1988- 10-29	189
Figure D28 Focal mechanism for Yucca Mtn. (Bare Mtn. quadrangle) earthquake 1988-11-18	190
Figure D29 Focal mechanism for Gass Peak, Nevada, earthquake 1989-01-09	191
Figure D30 Alternate focal mechanism for Gass Peak, Nevada, earthquake 1989- 01-09	192
Figure D31 Focal mechanism for Dead Horse Flat earthquake 1989-01-31	193
Figure D32 Focal mechanism for Timber Mountain earthquake 1989-03-05	194
Figure D33 Focal mechanism for Ubehebe Crater earthquake 1989-04-12	195
Figure D34 Focal mechanism for Alamo SE earthquake 1989-04-19	196
Figure D35 Alternate focal mechanism for Alamo SE earthquake 1989-04-19 .	197
Figure D36 Focal mechanism for Jackass Flats earthquake 1989-07-21	198
Figure D37 Focal mechanism for Scottys Junction SW earthquake 1989-08-28 .	199
Figure E1. Magnification curves for SGBSN seismographs at Yucca Mountain, Nevada with telemetry to and computer recording at Golden, Co.	201
Figure F1 The two P and S velocity model used for preliminary hypocenter determination in the SGB	208

- . ·

LIST OF TABLES

Table 1 Hypocentral parameters for selected Rainier Mesa nuclear device tests that display 180° P-wave azimuthal delay periodicity at SGBSN stations	9
Table 2 - Preliminary hypocentral parameters for Yucca Mountain seismicity, 1987	
through 1989	22
Table 3 Preliminary SGB focal mechanisms, 1982 and 1987 through 1989.	27
Table C1 Announced NTS nuclear device test locations for 1987, 1988, and 1989.	
157	
Table E1 Seismographic systems in use in SGBSN in 1989.	200

X**

A STATE OF A

Seismicity and Focal Mechanisms for the Southern Great Basin of Nevada and California: 1987 through 1989

Abstract

For the calendar year 1987, the southern Great Basin seismic network (SGBSN) recorded about 820 earthquakes in the southern Great Basin (SGB). Local magnitudes ranged from 0.2 to 4.2 (December 30, 1987, 22:50:42 UTC at Hot Creek Valley). Five earthquakes epicenters in 1987 within the detection threshhold of the seismic network are at Yucca Mountain, the site of a potential national, high-level nuclear waste repository. The maximum magnitude of those five earthquakes is 1.1, and their estimated depths of focus ranged from 3.1 to 7.6 km below sea level. For the calendar year 1988, about 1280 SGB earthquakes were catalogued, with maximum magnitude 4.4 for an Owens Valley, California, earthquake on July 5, 1988. Eight earthquake epicenters in 1988 are at Yucca Mountain, with depths ranging from three to 12 km below sea level, and maximum magnitude 2.1. For the calendar year 1989, about 1190 SGB earthquakes were located and catalogued, with maximum magnitude equal to 3.5 for an earthquake about ten miles north of Las Vegas, Nevada, on January 9. No Yucca Mountain earthquakes were recorded in 1989. An earthquake having a well-constrained depth of about 30 km below sea level was observed on August 21, 1989, in eastern Nevada Test Site (NTS).

The greatest concentration of SGB earthquakes in a small area during the three years 1987 through 1989 occurred at the Reveille Range (Reveille Peak quadrang'z), about 115 km north of Yucca Mountain. Other concentrations of seismicity were observed at Rock Valley (southern Nevada Test Site), Pahranagat Shear Zone, Sarcobatus Flat, Gold Flat, and in the Grapevine Mountains. Seismicity near Boulder City, Nevada and Lake Mead produced very modest structural damage at Boulder City. The magnitude 3.5 earthquake in January, 1989, near Las Vegas, Nevada, resulted in a few cracked windows at Las Vegas, the only other case of damage being reported from earthquakes in the southern Great Basin for that three-year period.

Focal mechanisms from thirty-one SGB earthquakes are presented in this report. The solutions range from normal slip or oblique slip to strike slip, with a few having sub-horizontal nodal planes. Tension axes for most SGB earthquake focal mechanisms cluster in the northwest-southeast direction, and tend to display sub-horizontal angles of inclination. Alternate focal mechanism solutions resulting from different assumed hypocenters demonstrate that, in some instances, the current seismographic network cannot provide unambiguous focal mechanism solutions, even for some of the magnitude > 3 earthquakes. This is because the focal mechanism is dependent on depth of focus, which is often a poorly resolved parameter.

Examination of travel-time delays for P waves from NTS nuclear tests indicates a strong 180° azimuthal pattern, especially for data from Rainier Mesa and western Yucca Flat tests. This pattern could be the signature of stress-induced and/or crack-induced azimuthal velocity anisotropy, or alternatively, of a high-speed body having a longitudinal axis oriented approximately north 10° east to south 10° west, possibly the lower carbonate aquifer. Whatever the source, delays have no significant correlation with distance, probably indicating the presence of localized tectonic or geologic anomalies (radius < 50 km) rather than a regional feature.

Introduction

The SGBSN, one of several regional seismographic networks operating in the Great Basin, has monitored local seismicity and has recorded arrivals from regional and teleseismic earthquakes continuously since August, 1978. 54 permanent stations were in place by mid-1981, including a dense sub-array at Yucca Mountain, Nevada. Preliminary hypocenter listings and seismicity data analysis from data collected by the SGBSN for the period August, 1978 through December, 1986, are presented in Rogers and others (1987) and Harmsen and Rogers (1987). This report is an addendum/update to those reports. A broad-scope review of the seismotectonics of Nevada is available in

Rogers and others (1991), where contemporary SGB and other seismicity data are discussed in the context of the Cenozoic deformation of the Great Basin,

The SGBSN was initially composed entirely of vertical-component seismographic stations. Eight horizontal-component seismographs were added in 1984, and a vertical-component seismograph south of Boulder City, Nevada, was added in August, 1988. Figure 1 shows the seismic station locations and major physiographic structures discussed below. Appendix E lists station parameters. References to individual stations in the text below will be in **bold** font.

The primary purpose of the network is to investigate the seismotectonic environment in the immediate vicinity of Yucca Mountain, Nevada, the potential site of a high-level, national nuclear waste repository. Also, the network provides information on seismicity at greater distances, out to about 160 km radial distance of Yucca Mountain. Seismic signals from the network are continuously telemetered to the USGS data processing center in Golden, Colorado, where preliminary hypocenter determination is performed, along with research on focal mechanisms and faulting, on fluid-induced seismicity, on attenuation of seismic waves, on velocity structure, on crustal strain in the southern Great Basin, and other topics having relevance to the Yucca Mountain Project.

Operation of the seismic network is funded under an interagency agreement with the Department of Energy, which provides Quality Assurance regulations for the collection, analysis, interpretation, reporting and archiving of data. Digital, event-oriented SGBSN data (seismograms, station data, and so on) are permanently archived on magnetic tapes, and a nearly continuous record of analog SGBSN data is also maintained on 16 mm develocorder film. Because seismic data in the SGB come from sources and crustal paths that exhibit large degrees of geologic variability, with many details that are simply unknown, the hypocenters and analyses that are presented in open-file format must be considered preliminary. Uncertainty in many reported parameters, such as those associated with earthquake location and focal mechanism, is in most cases substantial and difficult to completely quantify. In this report, consequences of uncertainty are explicitly addressed by offering alternate hypocenters and focal mechanisms that are of comparable "goodness-of-fit" within the context of the simplified geologic models invoked to parametrize the earth. Since a possible consequence of this high level of ambiguity is that permissable licensing uncertainties about the seismotectonic component of the geologic system may be exceeded, as stipulated in 40 CFR Part 191, the U.S.G.S. response is to increase the density of seismic station coverage of southwestern Nevada during the next few years, with the expectation of reducing parameter estimate uncertainties for much of the recorded local seismicity.

0

Acknowledgments

Maintenance and periodic calibration of seismographs and related field equipment is performed by D. E. Overturf of the U. S. Geological Survey, and by contract technicians. Arrival time and amplitude data from earthquakes and blasts were initially scaled by Pingsheng Chang, a contract technician, and by Miles Weida and Mark Meremonte, of the U.S. Geological Survey.

The seismological laboratories of the University of Utah at Salt Lake City (UUT), the University of Nevada at Reno (REN), the California Institute of Technology at Pasadena (PAS), the USGS at Menlo Park, California (MNLO), and the National Earthquake Information Center at Golden, Colorado (NEIC), provided useful seismograms, first motion data, and/or magnitude estimates for several of the earthquakes discussed in this report.

Helpful reviews of this report were provided by David M. Perkins and Henri S. Swolfs of the U.S. Geological Survey, Branch of Geologic Risk Assessment. The manuscript benefited from suggestions and section reviews by R. E. Anderson, J. Gomberg, and K. F. Fox.

Calibration procedures and results

A complete discussion of the technical procedures used in field calibrations of SGBSN stations is presented in the Quality Assurance document, YMP-USGS Seismic Procedure 11. Seismometers

Figure 1.- Map of SGBSN seismograph station locations, cities and towns, and some major physiographic features of the southern Great Basin.

3

.0

0.1

 \sim

are visited and calibrated every six months, or as needed. A station calibration is deemed acceptable when the amplitude response of a seismographic system lies within a $\pm 30\%$ range of a nominal response, in the frequency band $2 \le f \le 10$ Hz. In practice, seismographs with Teledyne-Geotech S13 seismometers generally display responses within $\pm 10\%$ of their nominal (theoretical) values in the frequency band $0.1 \le f \le 20$ Hz during field calibrations. Seismographs with Mark L4C seismometers generally display responses within $\pm 20\%$ of their nominal values in the frequency band $1 \le f \le 10$ Hz. Whenever measured responses deviate beyond the prescribed limits, a notation is made in a log of station calibrations, the field technicians are informed, and maintenence is performed on the defective component(s). The system is then recalibrated until its amplitude response falls within the prescribed limits. Calibration results are not currently used to correct or modify amplitude data scaled from SGBSN seismograms in order to estimate SGB earthquake magnitudes.

An upgrade seismic network, composed primarily of three-component S13 seismographs with much wider dynamic range than the current network, and digital satellite telemetry, is currently being deployed in the SGB. This network is expected to provide a more accurate measure of ground vibrations than the current network.

Preliminary hypocenter determination for SGB earthquakes and explosions

Earthquakes, explosions, and low-coda-frequency seismic phenomena (e.g., some cavity collapses and some nuclear detonation aftershocks) occurring in the southern Great Basin are located with HYPO71, and listed in Appendices A, B, and C, respectively. The SGB velocity models and other pertinent parameter information are listed in Appendix F. HYPO71 (Lee and Lahr, 1975) employs several iterative algorithms, some of which perform forward modelling; i.e., ray tracing in a simplified geologic medium to determine T_c , the computed source-to-station travel time. Others perform inverse modelling, in which a trial hypocenter is assumed at some position, and new solutions are found that move the trial hypocenter in a direction that reduces the root-mean-square travel-time residual, *RMS*. The definition of *RMS* is,

$$RMS = sqrt(\frac{1}{n}\sum_{i}w_{i}(T_{o}-T_{c})_{i}^{2}),$$

where n is the number of phase arrival time readings used in the determination (as discussed below, approximately 20% of the arrival time picks are not used in the final location), T_o is the "observed" source-to-station travel time (scaled arrival time - computed origin time) and w_i is the computed weight for the ith reading, with $\sum_i w_i = n$. Ideally, iterations towards a final solution continue until no significant reductions in RMS can be achieved by further adjustments. The directions/amplitudes of adjustments are determined by a Newton-Raphson scheme, known to seismologists as Geiger's method. In the absence of "noise" or errors in the velocity model, or in the data, the method is both fast and accurate. Even in the presence of moderate Gaussian-distributed noise in the data, the method continues to perform satisfactorily. In the real world, however, pitfalls of the method are known to exist. One shortcoming of the iterative scheme is that it is apt to converge to a local minimum of the RMS function, rather than the global minimum, depending on the initial trial hypocenter, (x_0, y_0, z_0) . To partly ameliorate this problem, hypocenters for all earthquakes reported in Appendix A were relocated using different values of $z_0 = 0.0, 7.0$, and 12.0 km below sea level, respectively, selecting for reporting here the final iterate (x_f, y_f, z_f) having the minimum RMS residual. In the catalog, immediately following the two letter grades, the hypocenter is tagged with the letter "Z," "S," or "T," depending on whether the solution having the minimum RMS was derived from iterations having starting depth of zero km, seven km, or twelve km below sea level, respectively.

If different final iterates yield the same RMS residual (± 0.005 sec), the hypocenter corresponding to the initial $z_0 = 7.0$ starting depth is selected for publication. This selection process may appear

 \mathbf{c}

arbitrary, but statistically, has little effect on the overall depth-of-focus distribution. We define $RMS(k) = RMS|z_0 = k$ km, and similarly, depth estimate, z(k), and standard error in depth estimate, stz(k). We investigated the percentage of hypocenters listed in Appendix A, below, that were derived from $z_0 = 7$ or 12 km iterations, but which also have competing solutions within $\approx 10\%$ of the sampled travel time residual minimum, $RMS(0) - RMS(k) \leq \max(0.01, 0.1 \min(RMS(k)))$ sec, k = 7 or 12 km. For the hypocenters of 1987, 570 hypocenters met this criterion. However, all but 92 of those 570 had the property that the depth estimate, z(0), was within one standard error in depth of the reported depth estimate, $|z(k) - z(0)| \leq stz(k)$. Of the remaining 92, 49 competing depths were within two standard errors from the reported depth of focus, |z(k)-z(0)| > 2stz(k) ($\approx 5\%$ of the catalog, case B). In Appendix A, hypocenters having misleadingly low stz estimates are flagged by a + sign to the right of stz for case A, or by ++ for case B. This procedure conforms to the tradition of providing point estimates for hypocenters in preliminary seismicity catalogs, but explicitly acknowledges cases where depth-of-focus uncertainty is clearly underestimated by HYPO71's standard error statistics.

A more comprehensive solution than that outlined above would describe the volume where the RMS function (or a similar function) approximately attains its minimum. In general, it is emphatically not the case that the point estimate \pm one standard deviation is a reliable estimate of that volume, whether using HYPO71 or any similar leas-squares software for hypocenter determination. One source of "undeserved optimism" regarding error estimates is that their statistical determination is based on the *local* behavior of RMS, which in some instances may display a steep-flanked trough at a depth corresponding to a local minimum, but which may display a broad, featureless minimum at another competing depth. In other instances the standard error estimate for focal depth may be unrealistically large, as occurs when the hypocenter locates in the immediate vicinity of the deepest sampled layer interface in the earth model.

The RMS travel time residual function is multivariate, and algorithmic attempts to minimize RMS are necessarily performed in lower-dimensional subspaces than its true domain. As a practical matter, hypocenter determination is performed by fixing many of these variables at "plausible" values, rather than routinely exploring all "equally likely" alternate values. In particular, RMS is obviously sensitive to weighting schemes, w_i , as well as to velocity model, T_c . Weighting of data has four components, (1) the analyst's subjective weight assignment at the time of phase data collection, which is based on the impulsiveness of the arrival, (2) the source-station distance, (3) the azimuthal quadrant which the source-station ray samples, and (4) the "feedback" residual weight. Weighs assigned by the analyst are discussed further in YMP-USGS Technical Procedure SP-01, "Procedure for the preliminary determination of the earthquake hypocenter." We note here that an S-arrival weight at a given station is always downweighted relative to the corresponding P-arrival weight, since the S-wave slowness is greater and would increase its relative influence on the location process if such downweighting were not performed (see Gomberg and others, 1990, eq. 6). Distance weights, w_d , depend on the model. For all earthquakes that are located using the Yucca Mountain velocity model, shown in Appendix F, $w_d = 1$ for d < 5 km, and w_d linearly decreases with d in the range $5 \le d \le 90$ km. Station arrival time data for stations greater than 90 km from Yucca Mountain epicenters are automatically zero-weighted. For all other earthquakes in the SGB, $w_d = 1$ for d < 10km, and w_d decreases linearly with d in the range $10 \le d \le 220$ km, and $w_d = 0$ for d > 220 km. Azimuthal weights attempt to balance the sum of arrival time data weights in each 90° quadrant, or in each 120° sector if station coverage is very poor. The azimuthal weight algorithm is discussed in greater detail in Lee and Lahr (1975).

The last weight factor is computed from each station's travel time residual, $(T_o - T_c)_i$. After each iteration after the second, the station residual is examined by the algorithm, and if its amplitude is relatively large, the *i*th weight is reduced, sometimes to zero. The computed travel time to each

station, T_c , is the minimum travel time for the direct ray and each of the possible refracted rays, for the given velocity model, plus any *a priori* delay that has been defined for the station.

Therefore, for a given set of arrival time data, there are infinitely many computable RMS functions, and the determination of the "quality" of a hypocenter is necessarily colored by the analyst's choice of station delays, weighting functions, and velocity model (earth parametrization). For the hypocenters of this report, HYPO71 assigns two grades to the hypocenter (A through D, never F!), but neither grade fully accounts for uncertainties in the velocity model or in the station delays, or for the effects of information censoring performed by the weighting functions. The first grade focuses on the quality of the hypocenter (low RMS residual, small standard errors of the epicenter and depth), and the second on the station distribution (number of phases, station azimuthal gap, distance from source to nearest station). Lee and Lahr (1975) discuss HYPO71's grading criteria in detail.

Where crustal velocities are not well known (for example, where velocities differ from the model velocities by more than 2 percent), primary and secondary wave arrival time data are usually insufficient to constrain the depth of focus estimate for local earthquakes to lie within approximately one standard-error-of-depth (as reported in Appendix A) of the true hypocenter (Gomberg and others, 1990). To some extent, this uncertainty is reduced by insuring that accurate P and S arrivals from a station within one focal depth epicentral distance are available - a condition which is absent for most data of this report, but which is driving the site selection for the upgrade seismic network, the deployment of which is presently under way. Although we routinely asrign HYPO71's depth of focus estimate, z, to earthquake hypocenters discussed in this report, the true depth should not be considered known to within one standard error of z unless "DMIN," the source-to-nearest-station distance, is less thar about $1.4 \times z$.

Estimated hypocenters for chemical explosions are reported in Appendix B. Many known chemical explosions are located treating depth a free parameter, and the results of some of those experiments are listed in Appendix B. If a blast's depth is constrained during iteration for its epicenter, the depth is generally fixed at -1.0 (one km above sea level). The fact that unconstrained depth estimates for known blasts can exceed ten km below sea level is an indication of poor station coverage and of problems with the velocity model, especially in the source zone (SGB mining detonations often occur in low-velocity alluvium, with $V_p \leq 2$ km/sec, while $V_p = 3.8$ km/sec in the shallow layer of the standard SGB velocity model). The fact that earthquake data usually include several secondary wave arrivals that constrain the depth estimate whereas chemical explosion data usually lack such arrivals, as well as the probability that the earthquake source zone is better modelled by the simple layered velocity structure used in hypocenter determination than explosion source zones, imply that earthquake location accuracy is better than would be indicated by blast location errors reported in the chemical explosion catalog.

Alternatives to the forward-inverse approach to hypocenter determination have been suggested in various seismological research articles. A maximum-likelihood approach yielding a more comprehensive description of the hypocenter is explored by Gomberg and others (1990). In that approach, the inverse problem is avoided by computing RMS or an equivalent measure of goodness-of-fit at all points on a grid that surrounds the true source. The resulting hypocenter is then a "probability cloud" whose dimensions are determined by requirements of Gaussian distribution of the station travel time errors. In the interests of conciseness, that approach has not been adopted for data analysis in this report, although the variation of RMS with constrained depth is examined for a few hypocenters discussed below.

Can localized velocity anisotropy be inferred from NTS nuclear tests?

Whereas the comparison of true location with the estimated hypocenter of blasts (either chemical or nuclear device) provides, at best, indirect information about earthquake mislocation in a highly heterogeneous crust- unless they occur in the same place - the examination of station residuals

when using the true source location, and tracing rays using HYPO71 and the standard velocity model, provides useful, direct information about crustal rock velocities at shallow depths. This topic has been investigated for SGBSN P-wave arrival time data from several dozen nuclear device tests detonated at Pahute Mesa, Rainier Mesa, and Yucca Flat (manuscript in preparation). Although a complete description of the findings of this investigation is beyond the scope of this data report, some observations and speculations about their significance both to earth structure and to earthquake hypocenter determination are discussed below.

Arrival times of compressional waves at southern Great Basin seismic stations from nuclear device tests at NTS consistently display delay patterns with a strong directional signature or trend. Here, delay is defined as the difference between the observed arrival time and the theoretical time, when computed using the standard SGBSN velocity model, which is azimuthally isotropic. This apparent azimuthal anisotropy is observed to varying degrees in data from all testing regions, Yucca Flat, Rainier Mesa, and Pahute Mesa. Because seismic network station separation is on the order of 20-30 km, and the distribution of sources is limited, no detailed "tomographic analysis" of the upper crust is possible; however, the delay patterns are grossly related to known geology and to regional structural grain (orientation of microfractures, cracks, joints and faults), and to tectonic stresses.

Perhaps the most striking feature of the P-arrival delays for Rainier Mesa (southern Belted Range) nuclear device test data is their 180° -period azimuthal variation, which has peak-to-peak amplitude of one second, and appears to be nearly distance-independent for SGBSN station distances, ranging from 12 to 200 km. Figures 2a and 2b show the delays for Rainier Mesa tests Disko Elm and Mission Cybar, respectively, plotted as a function of azimuth. Figure 2c shows the "reduced" delays for the test detonation Disko Elm. plotted against source-to-station distance, where the 180° -period azimuthal effect, as defined in the next sentence, has been removed. Fitting the Disko Elm delays, T_{i} , with the function,

$$T_i(\theta) = a \cos^2(\theta_i - \theta_H) + b + \epsilon_i,$$

where θ_i is the source-station azimuth for the *i*th datum, θ_H is the "high-speed" azimuth, and ϵ_i is the unmodeled component of the *i*th delay $(l^2 \text{ norm})$, yields a = -0.741, b = -.133, and a correlation coefficient, ρ , of 0.80 between the data and the function values. The angle $\theta_H \approx 10^\circ$ maximizes ρ for the P-arrival data of Disko Elm, and lies in the range $10^\circ \leq \theta_H \leq 15^\circ$ for the other Rainier Mesa tests of Table 1. Furthermore, because P-delays show very weak distance dependence, it is reasonable to hypothesize that the azimuthal variations are generated in the inner 30 to 50 km of the source hypocenters (working points), or in a combination of the initial down-going and the final up-going portions of the raypaths.

Possible physical explanations for these anomalous travel time delays include the presence in the vicinity of Rainier Mesa of a high-speed body at shallow depth having longitudinal axis trending at $\approx \theta_H$, or stress-induced velocity anisotropy in much of the rock surrounding Rainier Mesa. The relevance of the stress-induced velocity anisotropy model (Nur, 1971) comes from the observation that θ_H is approximately perpendicular to the direction of average tension of SGBSN focal mechanism solutions, presented in previous SGB seismicity reports, and below, and to the direction of least compressive principal stress in the earth's shallow crust, as determined from a series of Yucca Mountain hydrofrac experiments (Stock and others, 1985 and 1986). It is possible that P-wave velocities are being strongly influenced by aligned, propped open, cracks and microcracks in rock at shallow depths, according to the "extensive dilatancy anisotropy (EDA)" model (see Leary and others, 1990, for a review of recent seismological investigations on this topic). The possibility that seismic anisotropy results in significant P-wave velocity variations in the shallow crust of the southern Great Basin of Nevala is a current area of research.

If EDA is the primary source of the observed travel-time delay patterns from many NTS nuclear detonations, an 180° P-wave amplitude modulation effect (not necessarily sinusoidal) should also be observable in local station seismograms. This potentially diagnostic effect cannot be verified by

9105100/287

Figure 2.- Plot of P-wave travel time delays for NTS nuclear device tests recorded at SGBSN stations. Delays are relative to the predicted arrival times from the standard (azimuthally isotropic) velocity model shown in Figure F1(a). (a) For data from the Rainier Mesa test Disko Elm, open circles are observed delays plotted against source to station azimuth, closed triangles are values of $a \cos^2(\theta - 10^\circ) + \delta$, a sinusoid with 180° periodicity that attempts to fit the observed data. (b) Observed P-wave delays for the Rainier Mesa test Mission Cyber. (c) Disko Elm delays after removing $a \cos^2(\theta - 10^\circ) + \delta$ plotted against source-to-station distance. The lack of a linear trend in these residuals with distance suggests that the asimuthally varying component of the "signal" occurs near the source. (d) Observed delays (open circles) and a 180° period functional fit (dark triangles) for the P-wave arrivals for the Pahute Mesa test Alamo (880707 15:05:30 UTC), plotted against source-to-station asimuth. Note phase shift evident in (d) relative to (a) and (b). The larger average delay for Alamo arrivals relative to those of Rainier Mesa tests is the result of lower average compressional wave velocity in the shallow rock at Silent Canyon Caldera compared to that of other NTS testing areas.

ငာ

H., N., N.,

Naman Naman Naman Nama

۱<u>"</u>

. Hannulla

the current SGBSN, since initial P-wave energy from most nuclear tests overdrives the telemetry electronics. Teleseismic P-wave amplitude modulations with period 180° have been observed from NTS explosions (Lay and others, 1984), but they were interpreted as radiation from strike slip tectonic release triggered by the tests. Although investigators are apt to model the propagation medium as isotropic, "one of the most powerful factors modifying radiation patterns of body waves in anisotropic media is focusing of energy near velocity maxima and defocusing near velocity minima. These effects are pronounced even for small anisotropy" (Tsvankin and Chesnokov, 1990, p. 11,330).

Large-scale heterogeneities in rock properties at NTS may also be the primary source of the strong variation in P-delay with azimuth. Measurements of some dolomite rock velocities from core samples taken from Rainier Mesa and northern Yucca Flat, NTS, indicate P-velocities approaching seven km/sec (Carroll and Magner, 1988). Much of the lower carbonate aquifer that extends through eastern and central NTS is comprised of dolomites and quartzites (Winograd and Thorardson, 1975). $A \ge 0.6$ km thick dolomite section was encountered below a depth of 1.2 km at a borehole near Yucca Mountain, Nevada (Carr and others, 1986). The geographic extent of the lower carbonate aquifer is not precisely known. If it is terminated by the volcanic calderas of western NTS, and by an unknown relatively slow structure east of NTS, the lower carbonate aquifer may act as a high-speed corridor for seismic rays from Rainier Mesa and western Yucca Flat nuclear device source zones to many SGBSN stations that lie in sectors at azimuths $15^{\circ} \pm 15^{\circ}$ or $195^{\circ} \pm 15^{\circ}$ from those sources. The fact that the P-wave delays from sources at Pahute Mesa, for example, Alamo delays, plotted in Figure 2d, do not display the same high-speed phase angle, θ_H as those from Rainier Mesa tests, suggests that (1), directions of horizontal principal stresses within Silent Canyon Caldera may be rotated 50° to 60° from those at Rainier Mesa, or (2), structural heterogeneity is the primary source of the azimuthal variations in travel-time delays.

Table 1. Summary of PDE location parameters for selected nuclear device tests at Rainier Mesa, 1985-1989, having strong azimuthal P-wave delay pattern. Dmin is the approximate epicentral distance to the nearest reporting SGBSN station, M_L is the Berkeley observatory magnitude.

DATE TIME	LATITUDE,	LONGITUDE,	Depth	Name	M_L	Dmin
(UTC)	N.	W.	(km)			(km)
850406 23:15:0.09	37°12.05'	116°12.43′	-1.85	Misty Rain	4.8	11
851009 23:20:0.09	37°12.58'	116°12.61′	-1.85	Diamond Beech	4.0	10.1
870318 18:28:0.09	37°12.61'	116°12.52'	-1.85	Middle Note	4.4	10.2
870620 16:00:0.10	37°13.20'	116°10.67′	-1.74	Mission Ghost	3.5	12.9
871202 16:30:0.08	37°14.08'	116°9.80'	-1.65	Mission Cybar	3.5	14
881210 20:30:0.06	37°11.94′	116°12.57′	-1.86	Misty Echo	5.0	17
890914 15:00:0.10	37°14.15′	116°9.77′	-1.60	Disko Elm	4.0	13.6

Contour maps of percent horizontal velocity variation from the underlying azimuthally isotropic model of Figure F1(a) are shown in Appendix C, figures C2, C3, and C4, for SGBSN station P-arrival delays computed for the NTS tests Alamo (a Silent Canyon Caldera test), Disko Elm, and Kawich (a Yucca Flat test), respectively. These contour maps show a similar high-speed corridor (the lower carbonate aquifer?) east of the caldera region of the western NTS, extending north and south of the NTS. The values of the velocity variation function, $\Delta V(x, y)$, are arrived at by the following reasoning. Let t_i be the *i*th source to station travel time (sec), Δ_i the source to station distance (km), v_i the *i*th apparent observed horizontal velocity, and u_i the *i*th apparent horizontal velocit; computed by HYPO71 (u_i is a function of distance and station elevation). If we assume that the *i*th station residual computed by HYPO71, D_i , is the result of unmodeled horizontal velocity variations, then $t_i = \Delta_i/v_i = \Delta_i/u_i + D_i$, whence $u_i = \Delta_i v_i/(\Delta_i - D_i v_i)$. The percent velocity variation,

computed at the ith station's location, is then

$$\Delta V_i(\%) = 100 \times \frac{v_i - u_i}{u_i} = 100 \times \frac{-D_i}{t_i}.$$

 $\Delta V(x, y)$ is then computed by interpolation/extrapolation of ΔV_i onto a (constant-elevation) grid over the SGB, and is plotted. Common features in the contour plots of data from different source regions (Figures C2, C3, and C4) suggest that crustal heterogeneity rather than azimuthal anisotropy may have a dominant role in the production of observed P-wave delays.

It is difficult to determine the extent of azimuthal velocity anisotropy at shallow to mid-crustal seismogenic depths because earthquake locations are uncertain, and typical hypocenter algorithms adjust available free parameters to reduce data/model misfit, thereby obscuring unmodeled properties of the earth. A theoretical study (Rothman and others, 1974) on the sensitivity of hypocenters to unmodeled transverse isotropy showed that epicenters will be consistently biased, regardless of assumed isotropic velocity used, and that depth estimate error varies linearly with fractional error in average velocity. Using actual SGBSN data, relocating Disko Elm as a hypothetical earthquake, allowing latitude, longitude, depth of focus, and origin time to readjust freely, HYPO71's final solution using the standard SGBSN velocity model converges to a depth about three km below sea level. indicating a low model velocity. The station residuals for the free hypocenter continue to show a faint azimuthal periodicity, but the correlation of delays with $T(\theta)$ drops to $\rho = 0.51$, from $\rho = 0.80$ when fixing the hypocenter at the true working point. It is easy to imagine that if the anisotropy imprint on arrival time data is not very clear to begin with, what signal there is will be lost by the typical hypocenter-determining algorithm which uses an azimuthally isotropic velocity model. However, routinely invoking an azimuthally anisotropic velocity model when determining hypocenters is not justified until alternate explanations (crustal heterogeneity) for the seismic travel time delays from NTS nuclear device tests have been fully discounted. One investigation having relevance to the question of how seismic anisotropy varies with crustal depth concludes that there is no evidence of shear-wave polarization at depths greater than three to five km (Kaneshima, 1990). Although that investigation analysed seismograms from events in the Japan volcanic arc, the underlying rock physics is similar for the SGB, and may imply that EDA effects may be confined to the final upgoing portions of most source-to-station raypaths for most SGB earthquakes.

Earthquake magnitudes and detection threshold

The SGBSN routinely detects earthquakes having $M_L \ge 1.5$ throughout the southern Great Basin. This size threshold drops to $M_L \approx 1.0$ in the southern NTS and to $M_L \approx 0.0$ at Yucca Mountain. For the SGB earthquake data listed in Appendix 1, 90% of the hypocenters have $M_L \leq 2.2$, and 95% have $M_L \leq 2.4$. Size estimation is done using one or more of the following methods, discussed in greater detain in YMP-USGS SP-04, "Preliminary determination of earthquake magnitude," (1), M_L from horizontal-component amplitude/period data, (2), M_L -equivalent from vertical-component amplitude/period data (vertical component amplitudes are multiplied by 1.75 to convert them to horizontal), (3), M_{ca} from fitting an envelope over the decaying S-coda in series of 5-second "windows" that do not contain overdriven amplitudes, (4), M_D from total coda duration, and (5), a M_L "lower bound" from clipped amplitude/period data. Measures (1) through (4) have been discussed in previous SGB data reports (Rogers and others, 1987). In previous reports, M_L was reported as the average of vertical-component and horizontal-component magnitude estimates; here, the two are reported separately. Figure 3 is a scattergram of the horizontal-component M_L estimates (scaled to the horizontal axis) versus the vertical-component estimates (scaled to the vertical axis) for about 800 randomly selected SGB earthquakes that occurred in the period 1987 through 1989. Least-squares regression of the y-values on the x-values for the data in Figure 3, constrained to pass through the origin,

 $y_i = ax_i + \epsilon_i,$

·. 98.

್ಷನೇಷ್

10

Figure 3.- Comparison of horizontal-component instrument-determined local magnitudes, M_L^H , with vertical-component instrument-determined local magnitudes, M_L^V , for a subset of the 1987 through 1989 SGBSN hypocenter data.

yields a slope a = 1.00, indicating that the 1.75 factor that is routinely used to convert vertical amplitudes to "equivalent" horizontal amplitudes is reasonable for SGBSN data, in the sense that, on average, no bias is thereby introduced.

44.6

The fifth magnitude, M_L from clipped or overdriven data, is theoretically a lower bound on magnitude because the clipped amplitude is, by definition, less than the actual amplitude. However, in practice, this magnitude is not necessarily a lower bound when compared to other M_L estimates, because the clipped M_L is defined as the maximum of $M_L(j)$, where j is an index over all clipped, scaled, post-S wavelets, whereas the other M_L estimates are averages of all unclipped scaled data. Because the earthquake radiation pattern, site conditions, and other geologic variability all contribute to a large range in reported station magnitudes, we frequently observe that the averages of on-scale station magnitude estimates are lower than the maximum of the off-scale estimates. Magnitudes derived from clipped records are provided as a check on M_L computed from on-scale records. The seismic network upgrade will alleviate many of the problems associated with the current network's high-gain, limited dynamic range design, including that of most stations' amplifiers going off-scale for input signals from SGB earthquakes having $M_L > 3.0$.

We are often faced with the apparent paradox of reporting M_L from 38-dB horizontal-component station data that is on the order of one unit higher than M_L from 84-dB, vertical-component station data, for a given earthquake. Examples of this discrepency are magnitudes for an earthquake on June 17, 1987, 0:00:50 UTC having $M_L^H = 4.18$ and $M_L^V = 2.8$ and an earthquake on October 28, 1988, 20:02:50 in Gold Flat (Mellan quadrangle) having $M_L^H = 3.40$ and $M_L^V = 2.78$ (the superscripts refer to horizontal-component and vertical-component, respectively). Tentatively, the primary reason for these discrepencies is that the network provides a severely biased sample of on-scale station data from earthquakes having $M_L > 3.0$. In other words, for larger microcarthquakes in the SGB, an unbiased sample of the actual distribution of peak amplitudes of ground motion is not currently available; only those high-gain stations that sample the relatively low-amplitude tail of the distribution remain on-scale. Various calibration tests at the low-gain station at Little Skull Mountain and at highgain stations run near the amplifier/VCO band edge have revealed no system non-linearity that might provide an alternate explanation. For a few earthquakes having $M_L \ge 3.5$, only low-gain horizontal-component station magnitudes are reported, since virtually all of the vertical-component station amplifiers are overdriven. Examples of such earthquakes are May 26, 1988, 03:56 UTC , for which $M_L^H = 4.2$, $M_L^{\text{BRK}} = 3.9$, and $M_L^{\text{PAS}} = 3.4$, in the Dry Mountain, California, quadrangle, and January 9, 1989, 05:08 UTC, for which $M_L^H = 3.5$, $M_L^{\text{NEIC}} = 3.5$, and $M_D^{\text{RENO}} = 3.6$, 10 miles north of Las Vegas, Nevada (Gass Peak SW quadrangle). The May 26, 1988 Dry Mountain magnitude discrepency may be the result of only one SGBSN station, LSMIN, providing an on-scale amplitude for magnitude determination, which is too few for a robust estimate. Also, LSMIN generally provides a magnitude estimate several tenths above that of any other SGBSN station for a given earthquake, suggesting a local site amplification effect. If so, it is peculiar that the high-gain vertical component station, LSM, does not display a systematic magnitude bias relative to other vertical-component SGBSN stations.

The magnitude determination procedure for the SGBSN, in summary, is internally consistent for earthquakes having $M_L < 3.0$. For larger earthquakes, we have to rely on meager on-scale amplitude data from the SGBSN, which are difficult to calibrate due to the relative rarity of such events, or on estimates from adjoining seismic networks. For earthquakes having $M_L > 3.9^{\pm}$, the SGBSN has ≤ 1 on-scale station, and that station displays hints of overestimating magnitude by 0.3 - 0.5units. Furthermore, the M_{ca} estimate has been calibrated against M_L for smaller earthquakes, having $M_L < 3$ (Rogers and others, 1987), but tends to underestimate larger earthquakes. Thus, the SGBSN magnitude estimates for earthquakes having $M_L \geq 3$ are preliminary and subject to revision as more data become available. For example, the upgrade seismic network, now being installed in the SGB, will have sufficient dynamic range to allow us to calibrate the current network's horizontal-

component data against the upgrade network magnitudes.

Overview of local SGB seismicity, 1987 through 1989

In order to distinguish "local" seismicity from "regional" seismicity in this report, the southern Great Basin is defined as the interior of the region bounded by parallels 35.6° North and 38.5° North, and meridians 114.5° West and 118.0° West, respectively (definition 1). A more tectonically inspired definition would place the Sierra Nevada frontal fault as a western boundary, and the Garlock Fault as a southern boundary of the province (definition 2; see Carr, 1984); a few SGB earthquakes that are "regional" by definition 1 and local by definition 2 are discussed in this report. The SGBSN (Figure 1) does not extend to either the tectonic boundaries or to the above map boundaries, and no claims are advanced as to the completeness of the catalog outside the convex polyhedron with verteces at the outermost SGBSN stations. In particular, seismic activity in and southwest of the Panamint Mountains, California, is not routinely located, because the southern California seismic network covers that region. Also, north of 38.0° North, only one SGBSN station exists (HCR), and south of 36° North, only two SGBSN stations exist (QSM and EMIN), not enough to constrain locations effectively in their vicinity. Station coverage east of the NTS, from Nellis Air Force Range to Alamo, Nevada, is also not sufficient to capture low-magnitude earthquakes in that area. With these limitations, the 1987 through 1989 catalog should be complete to a lower M_L bound of 1.5.

Data from "regional" earthquakes that are detected by the SGBSN's computer are permanently archived onto magnetic tapes, usually without analysis. These tapes include data from California earthquakes, including the seismically active Long Valley Caldera and the less-active southern Death Valley, from central Nevada earthquakes, and from earthquakes in eastern Nevada, western Utah, and northwestern Arizona. Regional earthquake data are available to and are frequently provided to seismologists investigating those regions.

SGB seismicity for 1987 is shown in Figure 4. Concentrations of southern Nevada earthquakes occur at the southern end of the Roveille Range, in the Pahroc Range, in the Pahranagat Shear Zone, in the Spetted Range (northwest of Indian Springs, Nevada), in the southern NTS (Rock Valley fault zone, Mercury Valley, Mine Mountain) in the central NTS (Eleana Range), in the northern NTS (Silent Canyon caldera), at Gold Flat, at Gold Mountain, Slate Ridge, and Mt. Dunfee, and in the Sylvania Mountains. A concentration of earthquakes near Mina, Nevada, occurred during July and August, 1987, with mainshock on July 28, at 19:55 UTC, having $M_L = 4.7$ (BRK), coordinates 38.383° North, 118.117° West, 14 km depth (not shown). Concentrations of California earthquakes occur in the Inyo Mountains, Eureka Valley, Last Chance Range, Grapevine Mountains, and in the Panamiut Range. More diffuse activity occurs in Death Valley. All of these areas were active or moderately active in previous years (Rogers and others, 1987). Four earthquakes at Yucca Mountain, Nevada, are discussed in the next section.

SGB seismicity for 1988 is shown in Figure 5. The regions of concentrated seismicity for 1987 mentioned above continued to be active in 1988. Also, a second swarm area 10 km east of the first at the southern Reveille Range, Nevada, began to show activity in 1988. At Gold Flat, the seismicity level increased. A north-south trending concentration of microearthquakes in southwest Amargosa Desert, California, occurred in 1988 and 1989. Strongly felt earthquakes at Boulder City, Nevada, during the early part of 1988 (discussed below) prompted the installation of a permanent seismic station, EMN, in the Eldorado Mountains, south of Lake Mead, in August of 1988. Seismicity in the Eldorado Valley and in southern Lake Mead has been catalogued since that time by the SGBSN. The largest SGB earthquake for 1988 was a $M_L = 4.4$ earthquake in Owens Valley, California, on July 5, at 18:18 UTC. Although west of the SGBSN, the earthquake is within the physiographic province, and is of interest because a magnitude 7.5⁺, MMI=X, earthquake occurred in Owens Valley in 1872 (Beanland and Clark, 1987). A normal-slip focal mechanism for the 1988 Owens Valley earthquake is shown in Appendix D, Figure D23. At Yucca Mountain, an isolated earthquake occurred on October

ý 105 100 / 20

Figure 4.- Earthquake epicenters in the SGB and SGBSN stations for the year 1987.

14

9105100/2878

15

9.45.77

· י

Ċ

-

5, 1988 and a small swarm of earthquakes occurred on November 18. Yucca Mountain seismicity is discussed in sections below.

SGB seismicity for 1989 is shown in Figure 6. Areas of concentrated seismicity for 1987 and 1988 continued to be active in 1989, although Yucca Mountain was seismically quiet. Sarcobatus Flat, noted for several seismicity swarms in previous years (Rogers and others, 1987), showed renewed activity in 1989, after being quiet in 1987 and 1988. Bare Mountain, Nevada, had several earthquakes in 1989. Yucca Flat, NTS, was seismically active, moreso than in the previous two years. Although the Oasis Valley, the western boundary of volcanic calderas that comprise most of the western NTS, was not particularly active in any one calendar year, it does show a north-south trend of epicenters for the 11-year monitoring period, 1979 through 1989. Figure 7 shows epicenters in the vicinity of the Oasis Valley for that period, along with the westermost boundaries of major local volcanic caldera complexes (Christiansen and others, 1977; W. C. Carr, written communication, 1990). An earthquake on January 9, 1989, 10 miles north of Las Vegas, Nevada, was energetic enough to crack a few windows in Las Vegas, the only cultural damage reported to the NEIC from SGB earthquakes during the three-year period, 1987 to 1989. Its focal mechanism is discussed in a section below.

In an attempt to discern whether rates of seismicity are changing significantly with time in different parts of the SGB, we count the number of earthquakes recorded by the SGBSN in each of the 384 $7\frac{1}{2} \times 7\frac{1}{2}$ minute quadrangles contained in the region 114.875°W to 117.875°W, and 36.125°N to 38.125°N. (To increase legibility in the following figures, data for the outermost subregions of Figures 8 and 9, for example, those having longitude 117.875°W to 118°V, are not included in this compilation.) In each such quadrangle, two numbers are printed, the top being the number of earthquakes recorded in that quadrangle during the period 1987 through 1989, and the bottom being the number recorded during the previous three-year period, 1984 through 1986 (Harmsen and Rogers, 1987). A similar map shown in Figure 9 compares those same numbers of recorded earthquakes in 1987 through 1989 (top number) with those recorded in the period August, 1978 through December, 1983 (bottom number, Rogers and others, 1987). The two periods of seismic monitoring for which the data of Figure 8 are compared have the same station coverage, detection threshold, and instrumentation, whereas significant variations in station coverage, etc., occurred between the two periods compared in Figure 9. Therefore, caution needs to be exercised when comparing rates of observed seismicity in a given subregion. Also, significant spatial variation in detection threshold exists over the SGB, as noted earlier, so that comparisons of seismicity rates in different parts of the SGB should be made with caution.

Some of the most obvious temporal variations in seismicity rates for the data of Figure 8 occur at the Pahranagat Shear Zone, Nevada (roughly 37.25° North, 115.0° West), in the Reveille Range (roughly 37.8° North, 116.2° West), in the southern Montezuma Range (roughly 37.6° North, 117.4° West), at Gold Mountain (roughly 37.25° North, 117.25° West), at various locales within Sarcobatus Flat, in the Amargosa Desert south of NTS, and at Timber Mountain, which straddles the western NTS boundary (see figure 1 for locations of physiographic features). In these and other subregions, clear increases or decreases in rates are evident, suggesting that stable patterns of seismicity or aseismicity cannot necessarily be determined from a few years of seismic monitoring. This conclusion is reinforced by comparing the temporal variations evident when comparing the period 1987 through 1989 with 1978 through 1983. The Pahranagat Shear Zone was active during both of the periods, whereas the Reveille Range was seismically quiet during the earlier period. This quiescence is not the result of insufficient station coverage, as the SGBSN had a station, RVE, in the Reveille Range through July, 1981 (Rogers and others, 1987), which was then moved north to HCR, so that detection threshold in that subregion was comparable for all three periods.

While several zones having large temporal seismicity rate variations may be discerned, the majority of $7\frac{1}{2} \times 7\frac{1}{2}'$ quadrangles show relative rate stability. For example, within a 50-km radius of station YMT4, on Yucca Mountain (that station's location is shown in Figures 8 and 9), temporal

115 110 38.5 117 8 37.8 36.6 D VECAS us ۹. ٩r ____] 35.8 114.5 CITY OR TOWN 118 RCITATE V SEISMOGRAPHIC 100 km 50 2.0 \$ mag < 3.0 25 ٥ ٥ < 1.0 • 1.0 \$ mag < 2.0 O 3.0 ≤ mag

 $\leq e^{i \omega_{1}} \leq$

· . .

Figure 7.- Earthquake epicenters in the Oasis Valley region west of the Black Mountain and Timber Mountain calderas and east of Sarcobatus Flat, for the period 1979 through 1989. Caldera boundaries are shown as solid curves or dashed curves (written communication, Will Carr, 1990). An inner limit and an outer limit for the resurgent dome of Timber Mountain are partially shown as dashed rings.

84-86 compared to 87-89

1982 - N. S.

Figure 8.- Map of SGB region showing, on a $7\frac{1}{2}'$ quadrangle scale, the number of earthquakes recorded by the SGBSN in the three-year period, 1987 through 1989 (top number in each $7\frac{1}{2}'$ quadrangle) compared to number of earthquakes recorded by the SGBSN in the previous three-year period, 1984 through 1986 (bottom number in each quadrangle). Alternate rows are shaded to aid in visual separation of information in adjacent quadrangles.

78-83 compared to 87-89

Figure 9.- Map of SGB region showing, on a $7\frac{1}{2}'$ quadrangle scale, the number of earthquakes recorded by the SGBSN in 1987 through 1989 (top number in each $7\frac{1}{2}'$ quadrangle) compared to number of earthquakes recorded by the SGBSN in the period, August, 1978 through December, 1983 (bottom number in each quadrangle). Alternate rows are shaded to aid in visual separation of information in adjacent quadrangles.

20

fluctuations in seismicity rates detected by the SGBSN appear to be relatively modest when comparing time periods of at least three years. These observations are purely statistical in nature. If the region surrounding Yucca Mountain, Nevada, indeed exhibits a more uniform rate of seismic energy release than many other subregions of the southern Great Basin, a physical mechanism should be found that explains this phenomenon. In particular, an improved understanding of zones where distortional strain is accumulating without displaying concomitant rates of microseismicity is needed to predict where future potentially hazardous earthquakes may occur.

Yucca Mountain seismicity, 1987 through 1989

The SGBSN operates six vertical-component S13 seismometers and two horizontal-component L4C seismometers at Yucca Mountain, so that microearthquake detection capability is at its maximum sensitivity there. Four small earthquakes were detected at Yucca Mountain in 1987, and of these, two were further analysed to obtain focal mechanisms (data quality was inadequate in the other cases). Eight earthquakes at Yucca Mountain were recorded in 1988, seven of which were members of a swarm having total duration 10 minutes; of these, one was large enough to provide a well-constrained focal mechanism. No Yucca Mountain earthquakes were recorded by the SGBSN in 1989. For the purpose of this catagorization, Yucca Mountain is the interior of the region bounded by parallels at 36.75° N and 36.93° N, and meridians 116.375° W, and 116.56° W, respectively. This definition is somewhat arbitrary; the northwest end of Yucca Mountain blends topographically into the Timber Mountain Caldera, and the rest of Yucca Mountain rises from alluvial flats and washes. This region includes the Yucca Mountain area geologically mapped by Scott and Bonk (1984).

A Yucca Mountain velocity model, based on interpretations of Hoffmann and Mooney (1984), and shown in Appendix F, Figure F1(b), is input to HYPO71 for Yucca Mountain hypocenter determination. The effect of inputting the Yucca Mountain velocity versus inputting the standard SGB velocity model (shown in Figure F1(a)) on Yucca Mountain hypocenters is small. Figure 10(a) shows the effect that varying the assumed focal depth has on epicenter (left side) and on RMS (right side) when HYPO71 invokes the standard SGB velocity model for the Yucca Mountain earthquake of June 1, 1987 ($M_L = 0.1$). Figure 10(b) shows the same effects when the Yucca Mountain velocity model is invoked. For this arrival time data set, the minimum RMS occurs for hypocenters in the 5-6 km below see level range, with $\min(RMS) = 0.04$ sec when using the standard model and $\min(RMS) = 0.08$ sec when using the Yucca Mountain model. The epicenters at a given depth derived from the two velocity models differ by about 0.2-0.3 km, which is a reasonable epicentral uncertainty estimate for Yucca Mountain earthquakes located using SGBSN station data, in agreement with HYPO71's standard error estimates. The fact that, in some cases, the Yucca Mountain velocity model fails to fit Yucca Mountain earthquake arrival time data better than the regional velocity model suggests that "fine-tuning" of the Yucca Mountain velocity model (for example, determining station corrections appropriate for that model and for local earthquake sources) may improve hypocenter estimates (or RMS). Table 2 summarizes Yucca Mountain earthquake location parameters for the period 1987 through 1989.

Table 2. Summary of preliminary location parameters for earthquakes located at or near Yucca Mountain, Nevada, for the years 1987 and 1988. "Distance to site" represents the epicentral distance to the point 36°51'N., 116°27.5'W., near the center of a potential national nuclear waste repository. Depth is relative to sea-level (0.0 km). Sdx, sdy, and sdz are HYPO71 standard errors in estimates of hypocentral longitude, latitude, and depth of focus, respectively.

~0 ~0

 \sim

 $\overline{}$

1

4

......

Figure 10.-(a) Left side, the distribution of epicenters for various fixed-depth hypocenter solutions for the Yucca Mountain earthquake of June 1, 1987, 11:03:35 UTC, where all hypocenters are determined using the standard SGB velocity model (Appendix F, Figure F1(a)). The epicenter symbols are M, O, 1, 2, ..., A, B, C, D, E, F, corresponding to depth-constrained hypocenters having z =-1, 0, 1, 2, ..., 10, 11, 12, 13, 14, 15 km, respectively. The open square symbol at (0,0) is for a freedepth solution, with starting iterate depth 7 km, and the symbol "Z" is for a free-depth solution with starting iterate depth 0 km (at sea level). Right side, the variation in RMS travel time residual for various fixed-depth and free-depth hypocenters for that earthquake and velocity model. (b) The same distribution of epicenters (left side) and variation in RMS travel time residual (right side) as in Figure 10(a), except that here, the Yucca Mountain velocity model (Appendix F, Figure F1(b)) is used in hypocenter determinations.

DATE TIME	LAT.	LONG.,	N-S sdy	E-W sdx	Depth±sdz	ML	Dist. to
(UTC)	° N.	• W.	(km)	(km)	(km)		site (km)
970207 16-04-53	36 895	116.450	0.2	0.2	7.6:上0.3	1.11	5.0
870207 10.04.00	36 840	118.511	0.1	0.3	3.3±0.4	0.52	4.8
070010 14.01.02	36 804	116.469	0.1	0.1	5.3±0.3	0.10	5.0
870001 11.03.55	26 755	116.532	0.3	0.4	3.6±1.2	1.14	12.4
8/1031 23:00:59	26 911	116 458	0.2	0.4	2.3±0.4	-0.16	4.3
881005 14:14:30	26 024	116 558	0.1	0.1	10.7±0.6	1.28	12.4
881118 20:29:30	26 020	118 555	0.1	0.1	11.0±0.4	1.87	12.4
881118 20:29:48	30.930	118 547	0.2	0.2	11.2 ± 0.3	1.21	11.5
881118 20:31:20	30.923	116 550	0.1	0.1	12.2 ± 0.5	2.08	11.7
881118 20:32:24	30.920	116 556	0.1	0.1	11.9±0.5	1.40	12.2
881118 20:33:46	30.927	110.550	0.1	0.1	10.5±0.5	1.85	12.6
881118 20:35:53	36.931	110.556	0.1	0.1	11.8+0.4	1.30	12.2
881118 20:39:35	36.928	110.555	0.1	0.1	11.020.1		L

Earthquake data gathered by the SGBSN to the present time indicates that Yucca Mountain is relatively inactive when compared to other nearby subregions, such as Rock Valley, southern NTS, Sarcobatus Flat, Ossis Valley, Timber Mountain, and parts of the Amargosa Desert. Bare Mountain is slightly more active, seismically, than Yucca Mountain. Crater Flat, separating those two mountains, is seismically quiet. A seismicity map of Yucca Mountain and the surrounding areas showing all catalogued earthquakes for the period 1979 through 1989 is shown in Figure 11.

Sometimes seismic hazard is estimated by considering the largest magnitude earthquake recorded in each subzone during a monitoring period. We present preliminary magnitude data to support this kind of analysis in Appendix A, Figure A5. In that figure a regional map, with Yucca Mcuntain at its center, shows the maximum earthquake magnitude (M_L where available, otherwise M_D or M_{ca}) recorded by the SGBSN in each $7\frac{1}{2}$ quadrangle for two periods, (1) August, 1973 through December, 1986, and (2) 1987 through 1989. (Appendix A, Figure A5). (The location of station YMT4 near Yucca Crest is shown in Figure A5.) No earthquakes having magnitude ≥ 1.0 have been detected in the quadrangle containing Yucca Crest, although magnitude 3.0^+ earthquakes have been monitored within 50 km of Yucca Crest at Silent Canyon Caldera and at Yucca Flat, NTS, in the Amargosa Desert, Nevada, and at Sarcobatus Flat, Nevada, during the monitoring period August, 1978, through December, 1989 (Figure A5).

1988 Boulder City, Nevada swarm

An extended swarm of small earthquakes occurred near Boulder City, Nevada, in 1988. The largest of the earthquakes felt in the Boulder City area were magnitude (M_L , USGS NEIC) 3.7, on February 23 00:48 UTC (February 22, George Washington's birthday, local time) and on July 4 10:56 UTC (Independence Day). Minor damage to some roof structures at Boulder City was locally reported following the February 23, 1988, earthquake, with epicenter in the Eldorado Valley (Boulder City News, July 7, 1988).

Historically, the Boulder City area has been seismically active since the construction of Hoover Dam and impoundment of Lake Mead in 1935-36 (Carder, 1970). The largest earthquakes (M_L 4.9 to 5.0) occurred between 1939 and 1963. Although there have been several temporary networks operated at Lake Mead over the years, no permanent network exists.

In order to better evaluate the significance of the 1988 swarm and its relation, if any, to seismicity induced by the impoundment of Lake Mead, a permanent station, EMN, was installed in the Eldorado Mountains south of Lake Mead on August 11, 1988, and a temporary network of portable seismographs was deployed around the Eldorado Valley and at southern Lake Mead during August and September. Preliminary results from the analysis of data from this network (M. Meremonte and C. Langer, written communication) show two areas of microearthquakes, one in the Eldorado

. tr

.....

Figure 11.-Epicenters in the vicinity of Yucca Mountain, Nevada, for earthquakes recorded by the SGBSN in the 11-year period, 1979 through 1989. The small concentration of earthquakes in the northwestern part of Yucca Mountain occurred in November, 1988, with maximum magnitude 2.1. The concentration of seismicity at about 37° North latitude is within the southeast part of the Timber Mountain Caldera.

Valley south of Boulder City and the other northeast of Boulder City in the vicinity of Hoover Dam (see Figure 12). The earthquakes are relatively shallow (z < 10 km), and focal mechanisms are consistent with minimum stress (T axis) oriented between east-west and northwest-southeast, with maximum stress (P axis) ranging from north to northeast for the strike-slip mechanisms to vertical for the normal faulting events. These mechanisms are similar to those observed elsewhere in the SGB. Earthquake locations and focal mechanisms are also consistent with the observations of Rogers and Lee (1976) for the seismic network operated around Lake Mead during 1972-73, who proposed a physical model for impoundment-induced seismicity based on lower effective normal stresses on faults resulting from higher fluid pressure. If such a mechanism is still operating more than 50 years since the impoundment of Lake Mead, the recent seismicity may be a response to diffusion of water pressure into rock containing highly stressed faults. However, the pattern of occasional felt earthquakes followed by years of relative aseismicity in a locale is commonly observed in much of the Great Basin, and is not generally associated with reservoirs or with hydrologic cycles. In the vicinity of Lake Mead, stick-slip behavior may be operating much as it does elsewhere, but at lower stress levels. Expansion of the SGBSN into the Lake Mead region would provide an answer to the question of whether the vicinity of Lake Mead continues to be a region of elevated microearthquake activity.

Earthquake focal mechanisms

For the three year period 1987 through 1989, gouble-couple focal mechanisms obtained from thirty SGB earthquakes are discussed. Also, a previously unpublished focal mechanism for a Furnace Creek/north Tucki Mtn. (Panamint Range, California) earthquake that occurred on March 16, 1982, is included here. Most of the earthquakes are considered because of their relatively large size (maximum magnitude = 4.4); however, magnitude 0+ earthquakes at Yucca Mountain are analysed for their possible relevance to site characterization. For most of the focal mechanisms presented, the strike, dip, and rake of nodal planes are adequately constrained by P-wave polarities alone. For eight of the mechanisms, including those for three earthquakes at Yucca Mountain, first motions do not provide sufficient constraint, so vertical-component SV-to-P amplitude ratios, corrected for path and free-surface effects, are also used to constrain the range of focal mechanism solutions (Kisslinger and others, 1981 and 1982). The amplitude ratios and P-wave polarities are input into the computer program former.for (Snoke and others, 1984), along with instructions on how densely to sample the range of possible solutions, and how much data misfit to allow. The program outputs the set of solutions that satisfy the input criteria and data, and, if the range is sufficiently limited to be of practical use, the solutions are reported and plotted on an equal-area, lower hemisphere projection. The plotted subset always includes a solid-line solution (which may be unique, or, if not, has representative (average) strike and/or dip), and, optionally, one or two dashed-line solutions, which are shown to indicate the range of strike, dip, and/or rake angles that are consistent with the input data. The solid-line solution is designated as the primary solution, and the dashed-line solutions are designated as alternate solutions. Focal mechanism parameters are listed in Table 3, with indexes from 0 to 30, corresponding to the numbering in the epicenter/focal mechanism plot of Figure 13. To avoid crowding, Timber Mountain caldera focal mechanisms are plotted at the bottom of Figure 13. Individual focal mechanisms, showing the primary solutions of Table 3, and various alternates, are shown in Appendix D, Figures D1 through D37. The magnitude, M_L , that is reported for each earthquake is the average of the horizontal-component and vertical-component magnitudes, where each of those is the average of all on-scale horizontal-component magnitudes and vertical-component magnitudes, respectively, scaled at SGBSN stations, unless otherwise noted. "DMIN" is the minimum source to station distance. (Hypocenter parameters reported in Appendix D may not correspond exactly to those reported in Appendix A. Appendix D hypocenters often are the product of a more careful analysis of seismic wave arrival times, residuals, and polarities, than the routine data analysis that results in Appendix A hypocenters. All reported hypocenters and

24

6

ົ

ت. ن

the states of

بالإخراف والمتعيدة والمحافظ والمحافظ

പം പെ

Figure 12.– Preliminary sample of microearthquake epicenters located from temporary Boulder City, Nevada, array during August and September, 1988, showing $1-\sigma$ epicentral error ellipses.

Table 3. Preliminary Southern Great Basin Focal Mechanisms 1982 and 1987-1989.

St, strike of nodal plane; Dp, dip of nodal plane; Rk, rake of slip vector; Tr, trend of axis; Pl, plunge of axis. ML, local (SGB) magnitude; Tsm, type of source mechanism: 1, single event focal mechanism; 2, composite focal mechanism. Nodal planes: No inferred fault planes for these focal mechanisms are presented here, although for many of the mechanisms, inferences about the preferred nodal plane based on lineations of epicenters and/or on the state of tectonic crustal stress are possible. For example, if the maximum horizontal compressional stress is oriented at about North 20° to 30° East, then right-lateral strike slip may be expected on steeply dipping, north-trending fault planes with greater likelihood than left-lateral strike slip on east-trending fault planes, other mechanical conditions being equal. Rmk: Remarks, designated by $^{\circ}$, means that $(SV/P)_{*}$ amplitude ratios were used to constrain or help determine the focal mechanism. Alternate focal mechanisms: rather than trying to present uncertainty estimates for strike, dip, and rake, we present alternate solutions as dashed-line great circles. Other alternate primary and secondary solutions for different hypocenters are shown in Appendix L. Solutions based on fixed-depth hypocenters are indicated by a $^{\circ}$ next to the focal depth.

	Foca			Geologic	T		Nodal planes						Principal axes						
Figure	Origin time	(UTC)	denth	Magnitude	Quadrangle or	8		lst		-	2nd		P		T		<u> </u>		m
Index	Date	Time	(km)	(ML)	Geographic ID	m	St	Dp	Rk	SL	Dp	Rk	Tr	Pl	Tr	Pl	Tr	Pl	k
Index	Date	4 11110	14111	110001					r 0			or	140	10	100	50	070	25	
0	1982 0316	8:47	5.21	3.4	Stovepipe Wells	1	255.	70.	52.	141.	42.	25.	149.	10.	122.	JU.	210.	35.	
1	1987 0113	1:15	8.39	3.2	Alamo SE	1	17.	51.	-140.	204.	04.	-11.	225.	49.	323.	<u>o</u> .	00.	40.	
2	1987 ()310	12:51	3.13	0.4	Yucca Mountain	1	349.	66.	-141.	240.	55.	-30.	209.	44.	112.	7.	15.	45.	•
3	1987 0408	19:40	7.84	2.6	Tin Mountain	2	210.	68.	-46.	359.	<u>n</u> .	-117.	167.	48.	270.	11.	10.	40.	
4	1987 0420	11:24	-1.19	1.9	Specter Range SW	1	305.	85.	-90.	125.	5.	•90.	215.	50.	35.	40.	125.	0.	
5	1987 0601	11:03	5.94	0.1	Yucca Mountain	1	75.	88.	20 .	345.	70.	178.	208.	13.	302.	15.	80.	70.	
6	1987 0617	0:00	7.41	3.5	Desert Hills SE	1	200.	60.	-155.	90.	60.	-35.	55.	45.	325.	0.	234.	45.	•
ž	1987 0713	20:10	-0.07	2.5	Stonewall Pass	1	101.	88.	-28.	193.	62.	-177.	53.	21.	150.	18.	277.	62.	•
Ŕ	1987 0813	11:46	8.99	1.4	Buckboard Mesa	2	95.	90.	-5.	185.	85.	-180.	50.	4.	140.	3.	270.	85.	-
ğ	1987 1002	11:11	11.00	3.0	Papoose Lake SE	1	247.	80.	-80.	22.	14.	-135.	167.	54.	328.	34.	65.	10.	•
10.4	1987 1028	17:25	0.65	2.8	Reveille Peak	1	91.	79.	9.7	179.	80.	10.	45.	1.3	315.	15.	140.	75.	
10B	1987 1028	17:25	10.92	2.8	Reveille Peak	1	343.	50.	123.	117.	50.	57.	50.	0.	320.	65.	140.	25.	
11	1987 1210	2:35	4.59	2.4	Specter Range NW	1	15.	90.	-140.	285.	50.	0.	248.	27.	142.	27.	15.	50.	
12	1988 0114	5.16	10.11	24	Striped Hills	1	181.	60.	-125.	56.	45.	-45.	39.	59.	295.	9.	200.	30.	•
13	1088 0124	18.17	0.80	23	Thirsty Canyon NW	Ĩ	230.	65.	-90.	50.	25.	-9 0.	140.	70.	320.	20.	50.	0.	
14	1088 0207	18.47	-0.21	20	Yucca Flat	1	178.	80.	-151.	80.7	52.	-12.	47.	34.	303.	19.	190.	50.	
15	1088 0526	3.56	7 00*	4 2	Dry Mountain	1	183.	70.	-95.	18.	21.	-76.	84.	65.	277.	25.	185.	5.	
16	1088 0815	6.23	0.12	16	Ammonia Tanks	1	130.	54.	-121.	357.	46.	-54.	342.	65.	242.	5.	150.	25.	
17	1988 0702	10.40	1 72	23	Thirsty Canyon SW	Ī	276.	85.	30.	183.	60.	174.	46.	17.	144.	25.	285.	60.	
10	1000 0705	10.10	6.00*	A A	Owene Valley	1	331	47	-111.	180.	47.	-69.	165.	75.	75.	0.	345.	15.	
10	1900 0703	10:10	8 30	1.1	Buckboard Mesa	î	231	76.	2.	330.	59.	-164.	186.	33.	283.	11.	30.	55.	
19	1900 0724	0.39	5,00 5 00	1.1	Reveille Peak	i	64	60.	-55	190.	45.	-135.	26.	59.	130.	9.	225.	30.	
20	1900 0030	2:30	3.00	2.1	Mallan	- i	189	52	-129	62.	52.	-51.	35.	60.	305.	Ó.	215.	30.	
21	1900 1020	20:02	10.07	0.1	Mellan	- i	183	69	-139	76.	52.	-27.	46.	43.	306.	11.	205.	45.	
22	1988 1029	0:37	10.15	2.3	Bara Mtn	i	220	74	-37	322	55	-160.	175.	37.	274.	13.	20.	50.	•
23	1988 1118	20:32	11.00	2.0	Valley	;	<u> </u>	<u>60</u>	10	270	80.	0.0	225.	7.	135.	7.	0.	80.	
24	1999 0103	5:08	4.00	3.5	Dead Home Flat	1	321	45	-00	141	45	-90.	0.	90.	51.	Ó.	141.	0.	
25	1989 0131	10:07	0.00	2.2	Timber Min		236	58	-48	358	51	-137	201.	55.	297.	4.	30.	35.	
26	1989 0305	22:31	8.29	1.2	Timber Min.	1	230.	65	-10.	189	25.	-102	303.	69.	108.	20.	200.	5.	
27	÷ 1989 0412	20:24	7.91	3.2	Tower Debranaget Take	1	115	81	-50.	17	30	171.	229.	30.	354.	45.	120.	30.	
28	1989 0419	22:39	1.00	3.0	Lower rantanagas Lake	1	79	88	-50	173	41	-174	23	36	136	29	255	40	
29	1989 0721	23:01	2.75	2.0	Jackass Flats Contine Tunction CW	1	70. 60	54	-50.	183	48	-126	18	65	118	5	210	25	٠
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	1988 0207 1988 0526 1988 0526 1988 0702 1988 0705 1988 0705 1988 0724 1988 0830 1988 1028 1988 1029 1988 1118 1989 0109 1989 0131 1989 0412 1989 0419 1989 0721 1989 0428	16:47 3:56 6:23 10:40 18:18 5:39 2:30 20:02 6:37 20:32 5:08 16:07 22:31 20:24 22:39 23:01 15:47	-0.21 7.00* 0.12 1.72 6.00* 8.39 5.00* 10.87 10.15 11.86 4.00* 0.00 8.29 7.91 7.00* 2.75 5 74	2.0 4.2 1.6 2.3 4.4 1.1 2.7 3.1 2.3 2.0 3.5 2.2 1.2 3.6 2.6 1.6	Yucca Flat Dry Mountain Ammonia Tanks Thirsty Canyon SW Owens Valley Buckboard Mesa Reveille Peak Mellan Mellan Bare Mtn. Valley Dead Horse Flat Timber Mtn. Ubehebe Crater Lower Pahranagat Lake Jackass Flats Scottya Junction SW		178. 183. 130. 276. 331. 231. 64. 189. 183. 220. 0.0 321. 236. 22. 115. 50.	80. 70. 54. 85. 47. 76. 60. 52. 69. 74. 90. 45. 58. 651. 86. 54.	-151. -95. -121. 30. -111. -55. -129. -139. -37. 10. -90. -48. -85. 60. -59.	80.7 18. 357. 183. 180. 330. 190. 62. 76. 322. 270. 141. 356. 189. 173. 173. 183.	52. 21. 46. 60. 47. 59. 45. 52. 55. 80. 45. 51. 25. 30. 41. 46.	-12. -76. -54. -69. -164. -135. -51. -27. -160. 0.0 -90. -137. -102. 171. -174. -128.	47. 84. 342. 46. 165. 186. 26. 35. 46. 175. 225. 0. 201. 303. 229. 23. 18.	34. 65. 17. 75. 33. 59. 60. 43. 37. 7. 90. 55. 69. 30. 36. 65.	303. 277. 242. 144. 75. 283. 130. 305. 306. 274. 135. 51. 297. 108. 354. 136. 118.	19. 25. 5. 25. 0. 11. 9. 0. 11. 13. 7. 0. 4. 20. 45. 29. 5.	190. 185. 150. 285. 345. 30. 225. 205. 20. 0. 141. 30. 200. 120. 120. 255. 210.	50. 5. 25. 60. 15. 55. 30. 45. 50. 80. 51. 50. 30. 45. 50. 80. 5. 25.	•

 $\langle 2 \rangle$

2

He.

Figure 13.- Regional map of SGB showing lower-hemisphere projections of earthquake focal mechanisms indexed to Table 3. Event 0 occurred in 1982, all others (1-30) occurred in the period 1987 through 1989. The focal mechanisms are plotted near the earthquake epicenters, for all events except those at Timber Mountain (events 8, 19, and 26), which are plotted at the bottom of the map. Two mechanisms are included for event 10, to show how different interpretations are possible for the same earthquake first motion data, resulting from different assumed depths of focus.
focal mechanism solutions are preliminary.)

Effects of modeling on focal mechanisms

The SGBSN has very sparse station coverage away from Yucca Mountain, with average station spacing of 20 to 30 km. The main consequence of the limited station coverage is poor resolution of most earthquakes' depth-of-focus, when using the standard velocity model and first-arriving P and S waves to determine the hypocenter. For example, many earthquake arrival time data sets display nearly equal local RMS travel time residual minima for $z \approx 2$ km below sea level and $z \approx 7$ km below sea level. The effect of varying depth-of-focus on the earthquake focal mechanism is explicitly examined for many of the data presented here. When deriving focal mechanisms from various hypocenter solutions, we invoke the same velocity model for ray tracing; therefore, the observed variations in mechanism for a given earthquake are a consequence only of ray parameters varying due to different source depths and not to different velocity models. In some instances, the P-wave polarity data help to prescribe which velocity model is used in hypocenter determination (a good example is shown in Appendix D, Figure D20; also, see the following paragraph). It should be noted that changing the velocity model may change the solution set of focal mechanisms, even if the hypocenter remains the same. For example, ray tracing from a crustal model in which seismic velocities increase linearly with depth may yield different focal mechanisms than those from data derived from models in which seismic velocities are fixed within a series of layers with velocity discontinuities at the interfaces, as we presently use in preliminary hypercenter determination for SGB earthquakes. This report does not systematically investigate the effect on focal mechanism parameters of changing the seismic velocity model.

Experience computing earthquake focal mechanisms from SGBSN data indicates that adding an interface (sometimes referred to as the Conrad discontinuity) somewhere between 12 and 15 km below sea level, below which $V_p = 6.5$ km/sec, often improves the fit of P-wave polarity data to focal mechanism nodal plane solutions. This interface has been used for determining hypocenters and raypaths for many of the earthquakes for which focal mechanisms are presented in this report. Examples of focal mechanisms which require this interface are shown in Appendix D, Figures D4, D14, and D20.

In previous SGBSN data reports, the 15 km interface is absent, although another interface, located 24 km below sea level, below which $V_p = 6.9$ km/sec, is present in all reports, and may also be identified as the Conrad discontinuity. RMS for the vast majority of SGB earthquake hypocenters is not significantly affected by the presence/absence of the 15 km interface, and therefore cannot be invoked to justify its inclusion/exclusion. For a very small subclass of hypocenters, namely, those having depths near the 15 km interface, RMS is sensitive to its presence/absence; an example is discussed in the section entitled "depth-of-focus distribution and deep-crust intraplate earthquakes."

Whereas the RMS travel time residual from local earthquake data is not a very sensitive tool for ascertaining the presence of mid-crustal to deep-crustal layer interfaces, the earthquake focal mechanism often is, as long as we consider only those mechanisms that arise from pure shear deformation. Unless an active magmatic process or other high-fluid-pressure phenomenon is present, there is probably no compelling reason to doubt that the microearthquake source can be represented by a double-couple. Thus, this report takes the position that if quadrantal partitioning of unambiguous P-wave polarity data from SGB microearthquakes requires the modification of the velocity model, and if such modification does not degrade RMS, and does not contradict established models, then it is more scientifically justifiable to modify the velocity model than to argue that the polarity data imply other than pure shear source properties.

Independent confirmation of the presence of a strong P-wave velocity gradient or a velocity discontinuity at some depth between 12 and 15 km below sea level would be helpful. Seismic refraction is the natural tool for searching for such a discontinuity. Pakiser's review (1985) of papers written in the previous three decades that deal with interpretations of seismic refraction

data in the Basin and Range province suggests that refraction seismologists have divided opinions on the visibility of P* phase(s) that should arrive from such mid-crustal reflectors, both provincewide, and more specifically, at NTS. Hoffman and Mooney (1984) observe evidence for a 15 km interface in an east-west profile across Yucca Mountain, but not in an unreversed profile from a nuclear device detonation at Pahute Mesa. Ismail and Priestley (1986) also argue that a mid-crustal layer boundary (12 to 16 km) is present in the vicinity of Yucca Mountain, Nevada, based on their interpretations of P-arrivals from east-west and north-south profiles. Serpa and others (1988) note "a prominent zone of reflections at a traveltime of 5 ± 1.5 sec (15 km)^{*} in the central Death Valley and surrounding mountain ranges (p. 1446), which they interpret as either a deep detachment, a zone of transition between the brittle upper crustal rocks and a ductile lower crust, or as an uplifted rock horizon originally formed at the base of the crust. In a recent interpretation of combined refraction, reflection, and gravity data in northwest to central Nevada (about 4° north of the SGB), Catchings and Mooney (1991) found mid-crustal reflectors at depths ranging from 12 to 18 km, below which $V_{\rm s} = 6.3$ km/sec. These reflectors, which they interpreted as a possible brittle-ductile transition zone boundary, extended over the length of their survey, 200 to 300 km. In summary, available evidence appears to either support or not reject the existence of mid-crustal reflector(s) in the SGB.

Representativeness of focal mechanisms in the SGB catalog

Because the focal mechanism solutions presented in Appendix D of this report include data from only about one percent of the local earthquakes located and catalogued in the period 1987 through 1989, it is difficult to argue that they represent an unbiased and adequate sample of earthquake sources sufficient to characterize seismic deformation of shallow crust in the SGB. However, insofar as polarities can be determined for P-arrivals of smaller earthquakes for which focal mechanisms were not computed, there is a remarkable consistency of azimuthal partitioning of polarities for the vast majority of SGB earthquakes. For most earthquake source regions in the SGB, first motions of P rays travelling from the source into the northwest and southeast quadrants are compressional. First motions of P rays travelling in the interior of the northeast and southwest quadrants are usually dilatational. Near the edges of these quadrants, the first motions may be compressional or dilatational, depending on whether the seismic slip is predominantly normal or strike slip, respectively. A significant counterclockwise rotation of this first motion pattern is observed for many earthquakes in the westernmost part of the southern Great Basin, as is evident from several focal mechanisms presented in Appendix D, the most pronounced case being for the Owens Valley earthquake of July 5, 1988 (Figure D23). The rotation of the average strain field from the center of the SGB to its western boundary is further discussed in Rogers and others (1989) and below, in the section "average directions of \vec{P} and \vec{T} and tectonic strain."

The bulk of SGB earthquake P-arrival data, whether from earthquakes having well-constrained focal mechanisms, or from smaller earthquakes, tend to support the model of earthquake generation from uniform regional stresses and deformation processes more than it supports the model of microearthquakes being a nearly chaotic accomodation to local perturbations of the stress field. Conceptual models of the strain field in the shallow to mid-crustal rock of the SGB should account for the consistent patterns of P-wave first motions that are generally observed by the SGBSN for most SGB earthquakes.

Untypical focal mechanisms and source sones in the SGB

While the azimuthal distribution of P-wave first motions discussed above is likely to be observed for most SGB shallow-crustal to mid-crustal earthquakes, a few earthquake data sets do not conform to that pattern. An example of a data set having first motions that are 180° out of phase from the norm is that of an earthquake on May 30, 1985, at northern NTS (Tippipah Spring quadrangle), shown in Figure 13 of Harmsen and Rogers (1987). Two focal mechanisms from earthquakes in the epicentral vicinity of that May, 1985, earthquake, which occurred in July, 1984, also reported in Harmsen and Rogers (1987), display typical P-wave azimuthal distributions.

For sources within the Silent Canyon Caldera, in the vicinity of Pahute Mesa underground nuclear explosions (UNEs), earthquake seismograms from SGBSN stations often exhibit either dilatational or indeterminate first motions, even in the northwest and southeast quadrants of the focal hemisphere, indicating the possibility that these initiate predominantly as isotropic, volume-reducing events rather than as double-couple events. Because of the sparsity of U.S.G.S. seismic station coverage in the vicinity of the Silent Canyon Caldera, the proportion, $r: 0 < r \leq 1$, of deformation at the seismic source that is deviatoric (double-couple) rather than isotropic (spherical) cannot be determined using P-wave polarity information only; if we assume r = 1, the mechanisms exhibit approximate 90° rotation of pressure and tension axes from the regional averages. Two examples of double-couple interpretations for these peculiar Silent Canyon Caldera events are included in Appendix D, Figures D21 and D31. Another good example of a SCC earthquake having almost exclusively dilatational first motions is that of September 26, 1987, 22:52:31, listed in Appendix A, which occurred about 56 hours after the relatively large UNE, Lockney ($M_b = 5.7$). A possible explanation of such events at SCC is that they are seismic release from the closing of tension cracks formed during nuclear device tests, or from partial implosion of the cavity. If this is the case, it is probably true that r << 1 for these SCC events, in which case the double-couple interpretations are invalid.

Yet another class of events following UNEs (which probably overlaps the class of "dilatational sources" discussed above) is that of the "low-frequency events." Seismogram dominant frequencies for both P-coda and S-coda are significantly lower for these events than those observed in "natural" earthquake seismograms at comparable source-to-station distances. The remarks about typical distributions of P-wave first motions and focal mechanism properties therefore do not apply to the events that are most closely associated, both temporally and spatially, with UNEs. Such post-test phenomena are probably induced by the tests, and need to be separated both from the earthquake hypocenter catalog when we estimate rates of regional natural seismic strain, and from the focal mechanism catalog, when we compute the average direction of extension or other strain parameters. Most hypocenters of events during the period 1987 through 1989 having coda with lower-than-average frequency content, whether in the Silent Canyon caldera or elsewhere in the SGB, have been separately tagged and listed in Appendix C of this report. In general, because of the large number of such phenomena, and the noisy, emergent nature of first motions at many stations, no attempt is made to routinely determine hypocenters for the vast majority of these low-frequency events. However, their seismograms are all archived onto magnetic tapes to provide a permanent data base for future research. Of the three NTS nuclear device testing regions, Pahute Mesa, Rainier Mesa, and Yucca Flat, the most active region with respect to quantity of potentially induced seismicity per test of a given reported magnitude is Pahute Mesa, and the least-active region is Rainier Mesa.

Inasmuch as low-roda-frequency events have been occasionally recorded in the SGB away from the NTS, we cannot rule out the possibility that some are not induced by nuclear device tests. One class of low-coda-frequency seismicity that is definitely natural is that of relatively deep-focus earthquakes, at the crust-mantle interface, examples of which are discussed in the section, "depth-offocus distribution and deep-crust intraplate earthquakes." If the event's hypocenter and origin time strongly suggest that it is not induced by cultural activity, it is included in the earthquake catalog and listed in Appendix A, regardless of the frequency content of SGBSN seismograms.

Evidence of seismically active detachment faults?

The possibility that detachment faults are seismically active in parts of the SGB has not been previously documented to the authors' knowledge. Much of the large-scale extensional tectonics of the southern Great Basin during the Neogene period is now understood to require a major component of block movement along gently dipping faults (Wernicke and others, 1988). Therefore, it should not be surprising if some of that movement is sufficiently "catastrophic" to result in earthquakes detectable by the SGBSN. However, under Hamilton's (1988) model for detachment faulting in the Death Valley region, detachment faults would originate as moderately-dipping or steeply-dipping normal fault segments. Fault dips become more gentle through unloading and ductile deformation of the lower plate, and fault segments may be inactivated as their dip becomes too gentle to permit further slip. Such fault segments would not be expected to be seismogenic.

All double-couple focal mechanisms have two orthogonal nodal planes. If the inclination or dip of one of those planes is $\approx 20^{\circ}$ or less, that focal mechanism solution provides evidence of a possible seismically active detachment fault. Without further geological or geophysical information about deformation in the vicinity of that hypocenter, detachment is one of two possible interpretations, and not the most likely unless movement on the near-vertical auxiliary plane can be discounted. No instances are given in this report where we wish to imply that the probability of slip on the near-vertical auxiliary plane is significantly less than 0.5. However, in addition to the major, if not dominant, role that shallow-dipping faults must play in the large-scale Neogene extension of the southern Great Basin, shallow-dipping nodal planes of focal mechanisms are sometimes unavoidably present in SGBSN data sets. If these shallow dipping nodal planes are not the fault planes, we are left with vertical slip on very steeply-dipping faults, implied by the auxiliary nodal plane of such focal mechanisms. Such deformation yields almost no net crustal extension, and provides as many obstacles to plausibility from a rock-mechanics perspective as does seismic slip on gently dipping faults.

The first example of a shallow-dipping nodal plane for the focal mechanism solutions computed for this report is for an earthquake of April 20, 1987, in the Specter Range SW quadrangle (Appendix D, Figures D5 and D6). This shallow-dipping nodal plane is somewhat "robust," in the sense that, for two very different assumed hypocenters, the dip of the plane remains sub-horizontal, although the angle of slip changes from -90° (normal slip) for the surface focus hypocenter, to 0° (strike slip) for the six km below sea level hypocenter. Several focal mechanisms presented in this report have primary or alternate solutions with a nodal plane whose dip is less than 20° (Appendix D, Figures D7, D11, D17, D19, D20, D33, and D34). For some station geometries relative to SGB sources, the shallow dipping nodal plane "goes away" by changing the assumed hypocentral depth (compare Figures D18 and D19, for example). Other cases in which the focal mechanism primary solution contains a nodal plane whose dip is strongly dependent on the assumed hypocenter depth are discussed below. These observations are intended to emphasize that for the current SGBSN and probably for many regional seismographic networks, uncertainties in source properties inferred from their focal mechanism solutions are frequently substantial.

One possibly important example of a focal mechanism having a shallow-dipping nodal plane that does not "go away" by depth-of-focus manipulation is that for an earthquake in the Grapevine Mountains, California (Dry Mountain quadrangle), on May 26, 1988, 03:56:49 UTC. This earthquake is among the largest of SGB earthquakes recorded by the SGBSN in 1988. Because of its magnitude, this earthquake's P-wave polarities are exceptionally clear. The quadrantal distribution of firstmotion P-polarities for SGBSN data *does not occur* for assumed hypocenters less than about 6-7 km below sea level, i.e., for shallower focus hypocenters, dilatations are hopelessly intermixed with compressions when plotted on the lower (equivalently, upper) hemisphere around the assumed source. The distribution of first motions does partition into quadrants of like polarity without significant inconsistencies for a source with assumed 7 km depth (Appendix D, figure D20), when source-tostation rays are computed using the velocity model of Appendix F, containing a velocity discontinuity at 15 km. Supplementary data from the southern California and central California seismic networks (PAS and MNLO, respectively) were included to help constrain the focal mechanism, which has a nodal plane dipping 21°. Slip is normal. This example may be among the strongest evidence yet collected by the SGBSN for possible seismic slip on a shallow-dipping surface. However, this

plane, if the fault plane, is perhaps too steeply dipping to imply seismic activity on a detachment surface. Other examples presented in this report have more shallow-dipping nodal planes, but these are generally less well-constrained than the May 26, 1988 earthquake's focal mechanism.

Yucca Mountain earthquake focal mechanisms

Three earthquakes at Yucca Mountain are examined to see if it is possible to derive focal mechanisms; a magnitude 0.4 on March 10, 1987, a magnitude 0.1 on June 1, 1987, and a magnitude 2.1 on November 18, 1988. For each of these, hypocenters were relocated using a flat layer velocity model having P-wave velocities and layer interfaces that approximately correspond to those found by Hoffman and Mooney (1984) in a refraction survey of Yucca Mountain. These velocities are lower near-surface than those of the standard SGB model, with the consequence that seismic rays traveling to Yucca Mountain stations suffer more refraction towards the vertical than in standard model paths. The two models' P and S velocities are plotted as a function of crustal depth in Appendix F, Figure F1. Because none of the Yucca Mountain earthquakes was large enough to be adequately constrained by P-wave first motions, SV and P vertical ground vibration amplitude data were gathered, and had to be corrected for propagation effects to provide SV-to-P amplitude ratios representative of the source only. These path corrections are dependent on the earthquake's depthof-focus, with greater amplitude corrections necessary for deeper focus hypocenters. The Yucca Mountain velocity model differs from the "standard" SGB velocity model in the important detail that all source-to-station rays from SGB crustal earthquakes arriving at Yucca Mountain stations are incoming at $\phi < \phi_c$, where ϕ is the free-surface angle of incidence, and ϕ_c is the critical angle. When ray tracing is performed using the standard SGB velocity model the opposite case is true, $\phi > \phi_c$. Although this modeling consideration may appear to be of only academic interest, the use of slow surface-layer velocities results in different focal mechanism interpretations for the extremely small Yucca Mountain earthquakes than would result when using the standard SGB crustal model for ray tracing and propagation effect corrections.

The largest recorded Yucca Mountain earthquake $(M_L = 2.1)$ from the inception of the SGBSN in 1978-1979 through 1989 occurred on November 18, 1988, 20:32:24 UTC, at 36.925° North latitude. 116.553° West longitude, and 11 km below sea level depth. The epicenter is about 12 km northwest of the site of a potential national high-level nuclear waste repository (shown in Figure 11). Focal mechanism solutions for this earthquake are not sufficiently well constrained from SGBSN P-wave first motion polarities; thus, (SV/P), amplitude ratios are used to limit the range of solutions. Seismic energy of the S-coda of the mainshock overdrove the telemetry electronics of all Yucca Mountain stations. Yucca Mountain station seismograms from a small foreshock, which preceeded the main shock by a minute, were scaled to provide amplitude and period data for $(SV/P)_s$ ratios (this procedure assumes that the hypocenters and elastic energy radiation patterns of the two earthquakes are nearly identical). Path corrections having amplitudes several times those of the $(SV/P)_s$ ratios were added to remove propagation and free-surface effects (these corrections are sensitive to assumed incident angle of P and S waves at the free surface, thus to velocity model). If we accept the validity of these modelling assumptions, the resulting focal mechanism solutions are well-constrained. The azimuth of T is $276 \pm 3^{\circ}$, its plunge is $18 \pm 5^{\circ}$; the azimuth of P is $178 \pm 3^{\circ}$, its plunge is $28 \pm 9^{\circ}$. All solutions are predominantly strike slip, with some alternate solutions having a component of reverse slip. Two representative solutions are shown in Appendix D, Figure D28, with the "observed" and theoretical $(SV/P)_{s}$ ratio data for each solution. The tension axes for these solutions trend west, and are therefore rotated counterclockwise from the average direction of T for SGB focal mechanisms (see the section, "average directions of \vec{P} and \vec{T} and tectonic strain" below). The southwest-trending nodal plane of the primary solution, if imagined to project to the earth's surface as a planar fault, would crop out $3\frac{1}{2}$ km southeast of the hypocenter, or 8 km northwest of the potential repository's location on the crest of Yucca Mountain. Slip on that plane is oblique left-lateral strike slip with a substantial normal component. No Quaternary faults or lineaments have been mapped in the

vicinity of that plane's surface projection (Reheis and Noller, 1990). The northwest-trending nodal plane has predominantly right-lateral strike-slip motion. If projected to the surface, it would crop out at Bare Mountain, cutting the trace of the Bare Mountain fault.

Selection of the fault plane for this Yucca Mountain earthquake from the two (solid-line) nodal planes of Figure D28 is possible based on plausibility arguments taken from rock physics. If the direction of minimum horizontal compressive stress in the vicinity of the hypocenter of November 18, 1988, is approximately the same as that inferred by Stock and others (1985 and 1986) from hydraulic fracturing measurements at various Yucca Mountain drillholes, $azi(\sigma_3) = N60^\circ - 65^\circ W$, then application of the Coulomb-Mohr failure criterion to the two nodal planes of the primary solution of Figure D28 selects the northeast- southwest trending plane as the fault plane. In other words, when considering the ratio of applied shear stress, r_{xy} , to effective normal stress, σ_n , on each nodal plane, the condition

$|\tau_{xy}| \ge 0.7\sigma_n$

occurs when the fault normal direction, $\vec{n} = \vec{Y}$, where \vec{Y} is the normal to the northeast-southwest trending nodal plane, but not when $\vec{n} = \vec{X}$, where \vec{X} is the normal to the other nodal plane (see Figure D28). Here, in order to satisfy the Coulomb-Mohr criterion using a plausible friction coefficient, $\mu = 0.7$, it is assumed that the ratio of effective maximum principal compressive stress, to effective minimum principal compressive stress, $\frac{\sigma_1 - P_s}{\sigma_3 - P_p}$, is approximately four in the vicinity of the hypocenter. P_p is the local fluid pore pressure. To satisfy another plausibility criterion, that the direction of slip on the fault plane equals the direction of maximum shear stress on that plane, the amplitude of the intermediate principal compressive stress, σ_2 , is considered a free parameter (in the range $\sigma_3 < \sigma_2 < \sigma_1$). This Coulomb-Mohr analysis also suggests that σ_1 is oriented subhorizontally at the hypocenter, a conclusion that would also be valid if the alternate (dashed-line) nodal planes of Figure D28 had been considered. (Harmsen and Rogers (1986) discuss this process of fault plane selection from rock physics considerations in greater detail.) The dip of the inferred fault plane of the primary solution, 74°, is probably too great for that plane to correspond to Quaternary faults on Yucca Mountain having similar trend, mapped by Scott and Bonk (1984), who state that faults at Yucca Mountain that dip approximately 70° at the surface and display a "major dip slip displacement" tend to flatten somewhat with depth, with 60° dip at depth > one km.

The other two focal mechanisms for Yucca Mountain earthquakes occurring in 1987 were for earthquakes that, anywhere else in the SGB, would have been considered far too small to investigate $(M_L = 0.4 \text{ on March 10, 1987, and } M_L = 0.1 \text{ on June 1, 1987})$. The March 10 earthquake, with a focal depth of 3.1 km below sea level, has a well-constrained focal mechanism from six polarities and four ratios, if we require a very close fit between all theoretical and "observed" ratios (maximum difference between logrithms = 0.15). The resulting mechanism is predominantly strike slip, with substantial normal component, on either a north-northwest trending nodal plane or on a westsouthwest trending nodal plane. The north-northwest striking nodal plane dips east at about 66°, and the west-southwest striking nodal plane dips northwest at about 55°. Mapped Quaternary faults in the vicinity of the epicenter, such as the Solitario Canyon fault and the Windy Wash fault, trend north, with gentle undulations. Most of the mapped faults on the west side of Yucca Mountain dip to the west, perhaps forming a headwall complex for the Bare Mountain detachment fault, most active 12.5 million years BP (Scott and Whitney, 1987). Because of its dip, the focal mechanism's north-south nodal plane does not appear to be related to remanent activity of that system. The auxiliary nodal plane's strike does not correspond to any mapped fault orientations in the vicinity of the epicenter. The orientation of the tension axis, with azimuth N68°W, approximately coincides with the direction of inferred minimum horizontal compressive stress at Yucca Mountain (Stock and others, 1985 and 1986). Because constraint on the range of focal mechanism solutions is achieved by closely fitting four (SV/P), amplitude ratios (implying that many assumptions about the earth model are valid for this data set), our confidence in these focal mechanism parameters is relatively

"low."

The set of plausible focal mechanisms for the $M_L = 0.1$ earthquake of June 1, 1987, with depth of 5.9 km below sea level, is not well constrained even when four amplitude ratio data supplement the five unambiguous P-wave polarities. A strike-slip focal mechanism solution, shown in Appendix D, Figure D7, has only marginally better amplitude ratio fit than an alternate normal-slip mechanism (RMS ratio error = 0.180 versus 0.197) when all "observed" ratios are required to have amplitudes within a factor of two of theoretical values. One of the nodal planes of the normal-slip mechanism dips about 10 degrees to the east, which, if the fault plane, is an example of a possible active detachment fault at Yucca Mountain. If the strike-slip solution is correct, the north-northwest trending nodal plane agrees in strike and dip with the Solitario Canyon fault, but not with mapped sense of alip. The T-axis for the strike slip solution also trends parallel to the direction of minimum horizontal compressive stress as determined from hydrofrac measurements at Yucca Mountain drillholes (Stock and others, 1985 and 1986).

In summary, focal mechanism solutions for Yucca Mountain, Nevada, earthquakes detected through 1989 are poorly to, at best, moderately well constrained when only P-wave polarities are used in their determination. This lack of constraint is the direct result of the inability of most SGBSN sensors to detect first motions, due to the very small size of Yucca Mountain earthquakes recorded through 1989. While supplementing polarity data with $(SV/P)_s$ amplitude ratios is sometimes, but not always, able to constrain the solution set to a narrow, geologically plausible, range, the ratio method borrows heavily on hard-to-validate assumptions. A better understanding of seismic slip at Yucca Mountain and vicinity requires that we improve seismographic coverage there, a project that is currently underway by YMP-USGS.

While we have attempted to relate the microseismicity at Yucca Mountain to relatively major mapped Quaternary faults there, it is probable that much of the SGBSN's monitoring is recording activity on secondary structures, such as Riedel shears; thus, correlation of focal mechanism parameters with major faults may be expected to be low. A second caveat may be in order. The shallow (≤ 1.5 km below surface) hydrofrac determinations of minimum compressive stress that were invoked to determine the fault plane for the Yucca Mountain earthquake of November 18, 1988 (Appendix D, figure D28) may not be appropriate for seismogenic depths. Such factors as topographic influence on the crustal stress field (Swolfs and others, 1988) or a detachment surface may not justify extrapolation of those hydrofrac measurements to depths corresponding to earthquake hypocenters considered in this section.

Reverse-slip focal mechanisms and compressional tectonism in the SGB

Tucki Mountain and the Panamint Range, California, may have moved $\approx 125 \pm 7$ km in the direction N65±7°W from the Nopah block during the Neogene period (Wernicke and others, 1988), and may therefore be expected to display significant seismicity if this extensional process is still active. Prominent reverse-slip faults have been observed at Tucki Mountain (Wernicke and others, 1988). The mainshock of a short-lived Tucki Mountain series of earthquakes in March, 1982, reported in Rogers and others (1987), provides sufficient P-wave polarity data from the SGBSN and from the southern California seismic network (PAS) to yield a well-constrained focal mechanism. (Appendix D, Figure D1). The focal mechanism of the earthquake ($M_L^{PAS} = 3.4$) has east-west trending and northwest-southeast trending nodal planes, each with oblique reverse slip. The mainshock's epicenter is at the north-trending, right-lateral strike-slip Death Valley fault, and about 12 km southwest of the northwest-trending right-lateral Furnace Creek fault zone.

Although well-constrained oblique-reverse-slip focal mechanisms are extremely uncommon in the southern Great Basin, "most 'strike-skip' faults ... are associated with an assemblage of related structures including both normal and reverse faults" (Christie-Blick and Biddle, 1985, p. 1). The deformation implied by the March, 1982, Tucki Mountain mainshock may be the result of compressional strain west of the junction of the Death Valley and Furnace Creek fault zones in the manner predicted by laboratory-scale photoelastic models of segmented faults (see Freund, 1974, his figure 27).

Compressional tectonism is of some interest to site characterization, because of its potential to interact with the hydrologic subsystem. No unequivocal, predominantly reverse-slip focal mechanism solutions have been determined from SGBSN data for earthquakes within 70 km of Yucca Mountain to the present date. One oblique reverse-slip mechanism for a small earthquake ($M_L = 1.7$) in the Tippipah Spring quadrangle, also mentioned above in the section "unusual mechanisms," has epicenter 35 km northeast of a central point (coordinates 36°51'N, -116°27.5'W) on Yucca Mountain (Harmsen and Rogers, 1987). That solution has one glaring polarity inconsistency, so our confidence in the solution is low.

Focal mechanisms of other notable SGB earthquakes, 1987 to 1989

The October 2, 1987, 11:11 UTC, magnitude 3.4 earthquake in the Papoose Lake SE quadrangle (Table 3, Index 9) yields focal mechanisms that vary significantly as a function of assumed depth-offocus. The nearest station is over 27 km from the epicenter, so depth resolution is necessarily poor. In Appendix D, two mechanisms are presented, one for an assumed five km below sea level focus shown in Figure D11, and the other for an assumed 11 km below sea level focus shown in Figure D12. RMS travel time residuals are of little help in narrowing down the hypocenter, being 0.19 sec for the shallower-focus solution and 0.20 sec for the deeper-focus solution when using the standard SGB crustal model. Both hypocenters' focal mechanisms possess a northwest-dipping and southeastdipping nodal plane. The southeast-dipping nodal plane for the shallower-focus hypocenter dips at about 14 degrees, providing another example of a possible seismically active detachment fault. The northwest-dipping nodal planes for both solutions dip steeply, and are oriented favorably for normal slip if the extensional direction is north-northwest in the vicinity of the hypocenter. The earthquake was somewhat unusual in that only two other hypocenters were observed in its vicinity over the next month, an unusually low level of concomitant seismicity for an earthquake of its magnitude.

Focal mechanisms for a $M_L = 2.0$ Yucca Flat earthquake on February 7, 1988, (Table 3, Index 14) show strong dependence of strike, dip, and rake on assumed depth of focus. When treated as a surface-focus event, the focal mechanism indicates oblique slip on a steeply-dipping north-south fault (Yucca Fault?), or strike slip on an east-west oriented fault (Figure D18). When treated as a deeper-focus event, five km below sea level, the focal mechanism includes a 5° northwest dipping nodal plane, with strike-slip motion, and a northwest-oriented vertical nodal plane with vertical motion (Figure D19). The possibility of a seismic detachment fault thus reappears, although this example suffers from a poorer data fit to the velocity model, with RMS travel time residual = 0.20seconds for the deeper hypocenter, versus 0.14 seconds for the surface-focus hypocenter. A graph of how the RMS travel time residual varies as a function of depth-of-focus when using HYPO71 to determine the hypocenter of this Yucca Flat earthquake is shown in Figure 14. The surface-focus solution is not particularly satisfying to many seismologists, who believe that ultra-shallow rock is generally not strong enough to store sufficient distortional strain energy for magnitude 2 earthquake generation. Thus, the relatively large travel time residual for the deeper focus solution may be more the result of an inadequate velocity model for this earthquake's arrival time data set than of an intrinsically poorer depth-of-focus estimate.

The Reveille Peak quadrangle earthquake of October 28, 1987, 17:25 UTC (Table 3, Index 10), is one of the larger $(M_L = 2.8)$ of a few hundred earthquakes observed in a few km zone at the southern end of the Reveille Range from 1986 through 1989. The nearest seismic station to this series, QCS, is about 21 km east, so depth of focus is poorly resolved for these earthquakes. A rangefront fault on the west side of the Reveille Range may be active in the Quaternary, and may be associated with this long-running series. Focal mechanisms were computed for a near sea level focus,

9105100/2900

Figure 14.- Left side: epicentral scatter for various fixed depth and free depth HYPO71 hypocenters for a Yucca Flat earthquake of February 7, 1988, 16:47 UTC. The symbols correspond to the fixed depth hypocenters: M,0,1,2,..., A,B,C,D,E, and F for depths = -1,0,1,2,...,10,11,12,13,14, and 15 km below sea level. The open square is for the free depth solution, with starting iterate depth 7 km, and the Z is for the free depth solution with starting iterate depth 0 km (at sea level). Right side: The RMS travel time residual for the various fixed depth and free depth solutions for the same event. The letters above the fixed depth solutions, and below the free depth solutions, are HYPO71 "grades" assigned during the process of hypocenter determination. This plot shows a small variation in RMS for many shallow depth estimates, a pattern that is often present for SGB data sets where the nearest station is relatively distant from the epicenter.

37

and for a 5.7 km below sea level focus. The shallower-focus focal mechanism solutions, shown in Figure D13, indicate right-lateral strike slip on a steeply dipping north-trending fault, or left-lateral strike slip on a steeply dipping west-trending fault. The deeper-focus focal mechanisms shown in Figure D14, are less well constrained, but all solutions have a significant component of reverse slip on northwest-trending nodal planes, and a steeply plunging tension axis. Another earthquake in the southern Reveille Range series, occurring on August 30, 1988, at 2:30 UTC, has an oblique normalslip strike-slip solution for a fixed-depth hypocenter at five km below sea-level, shown in Figure D36 (Table 3, Index 20). The near-surface layer velocities used for hypocenter determination were two to 25% faster than those of the standard model, based on observed negative travel-time residuals for stations north of Yucca Flat and Rainier Mesa nuclear device tests, relative to the standard velocity model.

A strike-slip earthquake occurred on January 9, 1989, 05:08 UTC, with epicenter about 10+ miles (17 km) north of Las Vegas, Nevada (Valley quadrangle), where it was strongly felt (M_{L}^{H} = 3.5; $M_L^{\text{NEIC}} = 3.5$; MMI= V to VI, Carl Stover, written communication). This is the only SGB earthquake during the 1987-1989 period for which property damage was reported to the National Earthquake Information Center (NEIC), although damage was slight (cracked windows). The focal mechanism solutions shown in Appendix D, Figure D29 and D30, indicate right-lateral strike slip on a steeply dipping north-trending fault, or left-lateral strike slip on a west-trending fault. The epicenter is in an alluvial valley at the base of the south flank of Gass Peak, with no immediately obvious fault to identify as the source. The inferred Las Vegas Valley fault strikes west-northwest in the vicinity of the epicenter, but SGBSN first-motion data do not fit the local trend of that fault. Variations in assumed focal depth for this earthquake have little effect on the focal mechanism solutions. For example, the angle of slip on the east-west nodal plane is $0^{\circ} \pm 15^{\circ}$ for a seven km below sea level hypocenter; it is $7^{\circ} \pm 8^{\circ}$ for the four km below sea level hypocenter shown in Figure D29; it is $-5^{\circ} \pm 3^{\circ}$ for solutions derived from a hypocenter at sea level, shown in Figure D30 (0° represents horizontal block movement). This earthquake is one of the few observed for the 1987 through 1989 period for which the regional SGBSN network P-wave polarities provide a fairly well-constrained set of focal mechanisms, relatively independent of assumed hypocentral depth.

 \sim

In this section, focal mechanism solutions for four SGB earthquakes that occurred between 1987 and 1989, all having magnitude ≥ 2.0 , have been discussed, with emphasis on the variety of solutions that result by changing the assumed hypocentral depth. In only one case, that of the January, 1989, earthquake north of Las Vegas, Nevada, was the focal mechanism solution set not strongly affected by changing the assumed earthquake depth of focus by a few km. In some cases, depth uncertainty translates primarily to nodal plane dip-angle uncertainty, and seismically active detachment faults become possible source interpretations. In some cases, predominantly strike slip solutions change to predominantly reverse slip solutions by increasing the assumed depth of focus. Although the earthquakes for which these ambiguous source interpretation: are > 50 km distant from Yucca Mountain, they are often the mainshocks of relatively important earthquake clusters. These observations point to the need to put temporary portable networks over seismically active spots in the SGB if we wish to better understand seismotectonic processes in the region surrounding a potential national nuclear waste repository at the Yucca Mountain site.

Average directions of \vec{P} and \vec{T} and tectonic strain

When considered collectively, the focal mechanisms for SGB earthquakes provide a fairly consistent descriptor of certain components of the regional tectonic strain tensor at shallow to mid-crustal depths. Figure 15 is a plot of the thirty pressure axes (P or \vec{P}) and tension axes (T or \vec{T}) for the 1987-1989 mechanism primary solutions listed in Table 3. The pressure axes form a girdle or belt through the hemisphere, and the tension axes cluster in the northwest and southeast quadrants, with relatively small plunge angles. When using Watson's eigenvalue/eigenvector analysis of directional data on the sphere (Schuenemeyer and others, 1972), we obtain an average tension direction, $azi(\vec{T})$, of N59°W, with plunge 2.8°, for the data of Table 2. (Each datum was weighed equally, regardless of earthquake magnitude or degree of constraint on mechanism parameters.) When excluding the Silent Canyon caldera focal mechanisms, whose sources may be induced by nuclear device tests, the azimuth of $avg(\vec{T}) = N55^{\circ}W$, with plunge 2.8°. Figure 16 is a plot of the pressure and tension axes for previously published SGB earthquake focal mechanism data for the period 1979-1986 (Rogers and others, 1987, and Harmsen and Rogers, 1987). For these earlier data, $azi(\vec{T}) = N57^{\circ}W$, with plunge $= 2.0^{\circ}$. The distributions are very comparable. The average T-axis is the seismically determined direction of average minimum principal compressional strain within the seismogenic crust, and is sometimes taken as an approximation to the direction of minimum principal compressional tectonic stress. Furthermore, the $avg(\vec{T})$ azimuth corresponds remarkably well with the direction of net Great Basin extension as determined from space geodesy and neotectonic constraints, N56±10°W (Minster and Jordan, 1987).

The focal mechanism $\operatorname{avg}(\vec{T})$ is rotated about 15° clockwise from the direction of net Neogene extension from the Las Vegas fault system to the Death Valley fault system, as geologically determined, N73 ± 12°W (Wernicke and others, 1988), although the significance of this observation is not known.

Focal mechanisms provide relatively cheap indicators of tectonic stress parameters, but because of the multiple uncertainties in depth of focus, focal mechanism strike, dip, and slip, the particular mechanics of each fault (strength, friction, fluid pore pressures in fault zone, fault interactions), and the variability of the stress tensor with position due to crustal heterogeneity, there is no mathematically well-defined mapping between focal mechanism data and the crustal stress tensor. The majority of SGB focal mechanism solutions computed to the present date certainly conform to the model of a highly stressed shallow crust (earthquakes are triggered by many NTS nuclear device tests) in which the horizontal stress in the northwest to west-northwest direction is substantially reduced, releasing gravitational energy through normal faulting events on northeast trending faults and releasing horizontal strain energy through strike slip motion on steeply dipping, generally northtrending, faults. The mechanics permitting seismic slip on sub-horizontal (detachment) faults does not fit this conventional model.

Some of the earthquake focal mechanisms whose $ec{T}$ azes differs markedly from the average \vec{T} may be called "outliers." Outliers include (1), events with oblique to near-vertical \vec{T} plunge angle, and (2), events with \vec{T} 's azimuth rotated significantly from the northwest-southeast direction. An example of an event having a 50°-plunging tension axis is the Furnace Creek eathquake of March 16, 1982, discussed briefly in an earlier section. Examples of events with obliquely inclined \vec{T} (i.e., plunge(\vec{T}) \approx 45°) are discussed in the section on possible active detachment faults, above. Examples of events having rotated azi (\vec{T}) include the Yucca Mountain mechanism for earthquakes on October 18, 1988, two Silent Canyon Caldera earthquakes discussed above, and the composite Timber Mountain mechanism for earthquakes on July 3, 1988 and July 24, 1988 shown in Appendix D, Figure D24. The focal mechanism for the Owens Valley earthquake of July 5, 1988, shown in Figure D23, has azi (\vec{T}) = N105°W (longitude 118.05° W), and that of the Dry Mountain quadrangle earthquake of May 26, 1988, shown in Figure D20, has $azi(\tilde{T}) = N83^{\circ}W$ (longitude 117.71° W), providing evidence for the possible counterclockwise rotation of the direction of minimum crustal compression at the western edge of the SGB, in the vicinity of the Sierra Nevada block boundary, relative to the central SGB. Another southwest SGB hypocenter with a focal mechanism having $azi(\vec{T}) \approx east-west$ is that for the Stovepipe Wells quadrangle earthquake of July 8, 1986, 03:02 UTC (Harmsen and Rogers, 1987). The northwest-southeast orientation of the Furnace Creek fault, northern Death Valley, California, may be favorable for right-lateral strike slip if the extensional direction is more east-west than would be suggested by the average strain tensor for SGB earthquakes, and if north-south crustal compression is sufficiently great in its vicinity. Very extensive sets of focal

predominantly strike-slip, oblique slip, and normal slip focal mechanisms, respectively. Horizontal projections of average values of P and T, computed from Watson statistics, are plotted as tabs.

mechanism solutions (hundreds) have been determined for the seismically active Mammoth Lakes, Round Valley, Chalfant Valley, and Mono-Walker Lake regions, as well as for central Nevada, and are used to infer crustal stress tensor rotation from central Nevada ($\approx 39.5^{\circ}$ N, 118° W) to the Sierra Nevada rangefront ($\approx 37.5^{\circ}$ N, 118.8° W) (Vetter, 1990). A clear counterclockwise rotation of σ_3 , the minimum principal compressive stress, is evident from the Central Nevada Seismic Zone, where the inferred σ_3 azimuth is approximately N50°W (plunge negligible), to Mammoth Lakes, where the inferred σ_3 azimuth is approximately N100°W (plunge negligible) (Vetter, 1990).

Depth-of-focus distribution and deep-crust intraplate earthquakes

A widely-held view on the depth distribution of earthquakes in the Great Basin is that depths should be confined to the upper 15 km or so of crustal rock, with local variations based on higherthan-average or lower-than-average heat flow, different lithologies, and strain rates (Smith and Bruhn, 1984). The vicinity of 15 km depth is frequently termed the brittle-ductile transition zone. The SGBSN hypocenter catalog generally conforms to this model, in that less than two percent of the reported earthquake hypocenters for the 1987-1989 period have estimated depths, z, greater than 15 km below sea level. This property generally holds for depth distributions in other parts of the Great Basin where hypocenter data are available, with the exception of the Truckee, California, region, where depths of focus often lie between 15 and 20 km (Rogers and others, 1989). Figure 17 shows the frequency distribution of depth-of-focus of a subset of earthquake hypocenters from Appendix A of this report having the properties that the minimum source to station distance < 10 km, the standard error in depth, $err_{s} < 5$ km, and the HYPO71 average grade (Avg(Q1,Q2) in Appendix A listing) is C or better. Although these restrictions are not enough to insure well-constrained hypocenters, they reduce the population from $N \approx 3300$ to N = 851, and therefore result in a sample of what may be the best-constrained quartile of the population of 1987 through 1989 SGB hypocenters. Figure 17(a) shows a bargraph of the counts of such events in each 1-km interval, from one km above sea level to 20 km below sea level. Figure 17(b) shows the probability distribution of depth of focus for that sample, where cumulative probability within each interval is assigned by assuming that "depth" for the ith hypocenter is a normally and independently distributed random varible, with mean z_i and standard deviation err_{s_i} , respectively. The values z, and err_{s_i} are the depth and standard error in depth, as reported in Appendix A. Also, the tails of the normal distributions are truncated at one km above sea level and 20 km below sea level, and any remaining area under the probability curves beyond those limits is accumulated into those extreme intervals. (A more realistic probability density function would, of course, have finite tails, with limits corresponding to the bounds of the seismogenic crust.) The distributions of Figure 17 are comparable to those reported in previous SGBSN data reports (Rogers and others, 1987, and Harmsen and Rogers, 1987). Although the "fine structure" of the distributions may be more a function of the location algorithm and velocity model than of any fundamental property of the earth's seismogenic crust, the main feature, a rapid tapering off of seismic activity at depth > 12 km, is probably real.

<u></u>

 $\overline{}$

Of the relatively deep-focus hypocenter solutions for earthquakes in the SGB, very few depths are in the relatively well-constrained upper quartile as defined in the preceeding paragraph, the typical deep hypocenter being from a data set having a source-station gap > 180° and the nearest station > 25 km from the source. A very small subset of the deep-crust hypocenters is well-located, having both primary and secondary arrivals available at a station within 15 km of the epicenter, relatively low RMS residual, reasonable V_P/V_S ratio, and $\leq 180°$ gap in station azimuthal coverage. The V_P/V_S ratio is the ratio of primary to secondary wave velocity, as inferred from P-wave and S-wave arrival times at recording stations. For the period 1987 to 1989, the deepest hypocenter meeting all of these criteria is that of a magnitude one earthquake on August 21, 1989, 16:17:45 UTC, in the Halfpint Range, eastern NTS (Faiute Ridge quadrangle). The hypocenter is about 30 km below sea level, at a depth corresponding to the crust-mantle interface. Seismograms from the 12 nearest SGBSN stations that recorded this earthquake are displayed in Figure 18, with their corresponding P

1. N. .

:

Figure 17.- Depth of focus distribution of the best-constrained upper quartile of SGBSN hypocenters for the period 1987 through 1989 (see text for definition of "best-constrained"). (a) Graph of counts of events versus focal depth, in one km intervals. (b) Graph of probability that an event occurs within a given one-km interval in the depth range -1 < z < 20 km, where negative depths are understood to be above sea level (see text for discussion of how probabilities are determined).

43.

- 1

.)

2 9 0

8

Figure 18.- Seismograms from a deep-crustal earthquake on August 21, 1989, 16:17:45 UTC, in the eastern NTS (Paiute Ridge quadrangle) are displayed for 12 SGBSN stations nearest to the espicenter. The total time between the left and right brackets is 56 seconds. Scaled arrivals for primary (1') and secondary (S) waves are also displayed. The S - P time for the nearest station, GLR, is 4.30 seconds.

. • -

G

 $\overline{}$

) : str

Figure 19.- Left side, epicentral scatte.. and right side, behavior of RMS function, as a function of assumed depth of focus for HYPO71 hypocenters for an eastern NTS deep-crustal earthquake of August 21, 1989, 16:17 UTC. The symbols in the epicenter plot. M. 0.1, 2, ..., A, B, C, D, E, F now represent fixed-depth epicenters for solutions having depth 15, 16, 17, 18, ..., 26, 27, 28, 29, 30, and 31 km below sea level, respectively. The open square, arbitrarily plotted at (0,0), is the epicenter for a free-depth solution, with initial iterate depth 7 km, and the "Z" symbol is the epicenter for a free-depth solution with initial iterate depth 0 km. All epicenters are plotted relative to the position of the square

на 1991 г. 211 1.4

Figure 20.- Left side, epicentral scatter and right side, behavior of RMS as a function of fixed-depth and free-depth HYPO71 solutions, with symbols having same meanings as in Figures 10 and 14, for an earthquake north of Las Vegas, Nevada, on December 31, 1987 8:12 UTC having probable depth of focus near the brittle-ductile transition. (a) Hypocenters derived using a model with no interface at 15 km below sea level, $V_p = 6.15$ km/sec between 3 and 24 km below sea level, (b) Hypocenters derived using a model with an interface at 15 km below sea level, $V_p = 6.5$ km/sec below that interface (see Figure F1(a) for the velocity model). This figure shows that in some instances, the 15 km interface, or the relatively high velocity below that interface, is not well supported by arrival time data.

46

In summary, deep crustal earthquakes in the SGB are both rare and small (maximum magnitude = 1). Data quality of those earthquakes' seismograms is poor, probably due in part to peculiar source properties and to relatively high P-wave and S-wave attenuation (low Q) of rock at midcrustal to deep-crustal depths. To depths of about 15 km below sea level, SGB microearthquakes yield seismograms that contain relatively high energy content in the 5-10 Hz range, whereas seismograms of microearthquakes originating at greater depths are depleted in those frequencies. Focal mechanism solutions have not been attempted for the data of deep-crustal SGB earthquakes, due to the ambiguity of P-wave onsets at SGBSN stations.

Conclusions

• Although epicentral constraint on most SGB earthquake locations is fairly good (probable epicentral error ≤ 1 km), hypocenter (depth-of-focus) constraint is often poor (uncertainty in depth frequently on the order of 5 km). A more accurate velocity model could reduce depth uncertainty, but in its absence, and given the high degree of structural variability of SGB rock, a denser seismographic network is necessary.

• An important consequence of depth-of-focus uncertainty is that focal mechanism solutions, even if well-constrained for a given assumed depth, sometimes vary significantly with changes in depth. However, some SGB focal mechanism parameters, e_pecially the azimuth of the tension axis, are relatively stable or "robust" for those different solutions.

• Deep-crustal earthquakes in the SGB are rare (less than 2% of the total hypocenters) but not nonexistent. Their presence at the crust-mantle interface (≈ 32 km) provides an intriguing geophysical problem in a high heat-flow region.

• SGB earthquake focal mechanism solutions are generally strike-slip, oblique slip, or normal-slip, in roughly equal proportions, with tension axes clustering in the northwest-southeast quadrants, with relatively small plunge angles, and pressure axes forming a girdle or belt through the focal hemisphere. These solutions suggest a uniform crustal stress pattern in which compressional stress in the northwest-southeast direction is substantially lower than in other directions. Gravitational energy is released through normal faulting events on north-northeast to northeast trending faults and horizontal strain energy is released through dextral motion on steeply dipping, north trending faults and through sinistral motion on east-northeast trending faults. The mechanics permitting seismic slip on sub-horizontal (detachment) faults does not fit this conventional model.

• Exceptional focal mechanism solutions, including solutions having a nodal plane with dip< 20°, strongly rotated tension axis direction, or reverse slip are encountered in the 1987-1989 SGB data. They do not conform to the regional pattern, and some may indicate local anomalous tectonic features. No unequivocal, predominantly compressional focal mechanism solutions have been determined from SGBSN data for earthquakes within 70 km of Yucca Mountain through 1989.

• SGB focal mechanism data are consistent with crustal stress models which display regional counterclockwise rotation of principal horizontal stress directions from the California-Nevada stateline at 36°N to 37°N, and $\approx 116°W$ to 117°W to the eastern Sierra Nevada block boundary at about 118.1°W.

• Yucca Mountain, Nevada, is a seismically quiet site relative to surrounding areas. Focal mechanisms for Yucca Mountain earthquakes are difficult to constrain, because no Yucca Mountain earthquakes yet recorded have size greater than $M_L = 2.1$, and most have $M_L < 1.0$.

• Rock at shallow depths in the vicinity of Rainier Mesa displays a strong directional anisotropy for P-wave velocities; whether this apparent anisotropy is the result of aligned cracks and stresses or of the presence of crustal heterogeneity, i.e., a high-speed ridge under Rainier Mesa, is not determinable

from P-wave arrival data alone. The ability to distinguish among competing explanations could be achieved by an analysis of shear wave splitting from on-scale, three-component recordings of nuclear device detonations which release tectonic strain over a range of azimuths; such data are not available from the current SGBSN.

References Cited

- Beanland, S., and Clark, M. M., 1987, The Owens Valley fault zone, eastern California, and surface rupture associated with the 1872 earthquake: Seismological Research Letters, v. 58, p. 32. (NNA.920407.0002)
- Brocher, T. M., Hart, P. E., and Carle, S. F., 1990, Feasibility study of the seismic reflection method in Amargosa Desert, Nye County, Nevada: U.S.G.S. Open File Report 89-133, 150 p. (NNA.901022.0011)
- Carder, D. S., 1970, Reservoir loading and local earthquakes : in Engineering Seismology The Works of Man, Geol. Soc. Am. Eng. Geol. Case Histories, v. 8, p. 51-61. (NNA.920407.0003)
- Carr, M. D., Waldell, S. J., Vick, G. S., Stock, J. M., Monsen, S. A., Harris, A. G., Cork, B. W., and Byers, F. M., 1986, Geology of drill hole UE25p#1: A test hole into pre-Tertiary rocks near Yucca Mountain, southern Nevada: U.S.G.S. Open-File Report 86-175, 87 p. (HQS.880517.2633)
- Carr, W. J., 1984, Regional structural setting of Yucca Mountain, southwestern Nevada, and late Cenozoic rates of tectonic activity in part of the southwestern Great B-sin, Nevada and California: U.S. Geological Survey Open-File Report 84-854, 109 p. (NNA.870325.0475)
- Carroll, R. D. and Magner, J. E., 1988, Velocity logging and seismic velocity of rocks in the Rainier Mesa area, Nevada Test Site, Nevada: U.S.G.S. Open-File Report 88-380, 85 p. + Appendices. (NNA.920407.0004)
- Catchings, R. D., and Mooney, W. D., 1991. Basin and Range crustal and upper mantle structure, northwest to central Nevada : J. Geophysical Research, v. 96, p. 6247-6267. (NNA.920407.0005)
- Christiansen, R. L., Lipman, P. W., Carr, W. J., Byers, F. M., Orkild, P. P., and Sargent, K. A., 1977, Timber Mountain-Oasis Valley calders complex of southern Nevada: Geological Society of America Bulletin, v. 88, p. 943-959. (NNA.900329.0044)
- Christie-Blick, N., and Biddle, K. T., 1985, Deformation and basin formation along strike-slip faults: in Biddle, K. T., and Christie-Blick, N., eds., Strike-slip deformation, basin formation, and sedimentation: Society of Economic Paleontologists and Mineralogists Special Publication No. 37, p. 1-34. (NNA.920407.0006)
- Freund, R., 1974, Kinematics of transform and transcurrent faults : Tectonophysics, v. 21, p. 93-134. (NNA.920211.0031)
- Gomberg, J., Shedlock, K. M., and Roecker, S., 1990, The effect of S-wave arrival times on the accuracy of hypocenter estimation: Sciemological Society of America Bulletin, v. 80, p. 1605-1628. (NNA.920211.0033)
- Hamilton, Warren B., 1983, Detachment faulting in the Death Valley region, California and Nevada, in Geologic and Hydrologic Investigations of a Potential Nuclear Waste Disposal Site at Yucca Mountain, Southern Nevada: U.S. Geological Survey Bulletin 1790, Michael D. Carr and James C. Yount, eds., p. 51-86. (NNA.920211.0034)
- Harmsen, S. C., and Rogers, A. M., 1986, Inferences about the local stress field from focal mechanisms: applications to earthquakes in the southern Great Basin of Nevada: Seismological Society of America Bulletin, v. 76, p. 1560-1572. (NNA.920211.0035)
- Harmsen, S. C., and Rogers, A. M., 1987, Earthquake location data for the southern Great Basin of Nevada and California: 1984 through 1986: U.S. Geological Survey Open-File Report 87-596, 92 p. (NNA.920211.0046)
- Hoffman, L. R., and Mooney, W. D., 1984, A seismic study of Yucca Mountain and Vicinity, southern Nevada; Data report and preliminary results : U.S. Geological Survey Open-File Report 83-588, 50 p. (HQS.880517.1267)

- Ismail, A., and Priestley, K. F., 1986, Crustal structure in the vicinity of Yucca Mountain, Nevada: Earthquake Notes, v. 57, p. 10. (NNA.920407.0007)
- Kaneshima, S., 1990, Origin of crustal anisotropy: shear wave splitting studies in Japan: Journal of Geophysical Research, v. 95, p. 11,121-11,134. (NNA.920407.0008)
- Kisslinger, C., Bowman, J. R., and Koch, Karl, 1981, Procedures for computing focal mechanisms from local (SV/P_s) data : Seismological Society of America Bulletin, v. 71, p. 1719-1729. (NNA.920211.0036)
- Kisslinger, C., Bowman, J. R., and Koch, Karl, 1982, Errata to procedures for computing focal mechanisms from local (SV/P), data: Seismological Society of America Bulletin, v. 72., p. 344. (NNA.920211.0037)
- Lay, T., Wallace, T., and Helmberger, D. V., 1984, The effects of tectonic release on short-period P waves from NTS explosions: Seismological Society of America Bulletin, v. 74, p. 819-842. (NNA.920407.0009)
- Leary, P. C., Crampin, S., and McEvilly, T. V., 1990, Seismic fracture anisotropy in the earth's crust: an overview: Journal of Geophysical Research, v. 95, p. 11,105-11,114. (NNA.920407.0010)
- Lee, W. H. K., and Lahr, J. C., 1975, HYPO71 (revised): A computer program for determining hypocenter, magnitude, and first-motion pattern of local earthquakes: U.S. Geological Survey Open-File Report 75-311, 116 p. (NNA.920211.CO38)
- Lee, W. H. K., and Stewart, S. W., 1979, Principles and applications of microearthquake networks: New York City, N. Y., Academic Press, 293 p. (NNA.920211.0039)
- Minster, J. B., and Jordan, T. H., 1987, Vector constraints on western U.S. deformation from space geodesy, neotectonics, and plate motions: Journal of Geophysical Research, v. 92, p. 4798-4804. (NNA.920407.0011)
- Minster, J. B., Savino, J. M., Rodi, W. L., Jordan, T. H., and Masso, J. F., 1981, Three-dimensional velocity structure of the crust and upper mantle beneath the Nevada Test Site: Systems Science and Software Report SSS-R-81-5138, 218 p. (NNA.920407.0012)
- Nicholson, C., and Simpson, D., 1985, Changes in V_p/V_s with depth: implications for appropriate velocity models, improved earthquake locations, and material properties of the upper crust: Seismological Society of America Bulletin, v. 75, p. 1105-1123. (NNA.920407.0013)
- Nur, A., 1971, Effects of stress on velocity anisotropy in rocks with cracks: Journal of Geophysical Research, v. 76, p. 2022-2034. (NNA.920407.0014)
- Pakiser, L. C., 1985, Seismic exploration of the crust and upper mantle of the Basin and Range province: Geological Society of America Centennial Special Volume 1, p. 453-469. (NNA.920407.0015)
- Reheis, M. C., and Noller, J. S., 1990, Aerial photographic interpretation of lineaments and faults in late Cenozoic deposits in the eastern part of the Benton Range 1:100000 quadrangle and the Goldfield, Last Chance Range, Beatty, and Death Valley Junction 1:100000 quadrangles, Nevada and California: U.S. Geological Survey Open-File Report 90-41, 9 p. + 4 plates. (NNA.901031.0001)
- Rogers, A. M., and Lee, W. H. K., 1976, Seismic study of earthquakes in the Lake Mead, Nevada-Arizona region: Seismological Society of America Bulletin, v. 66, p. 1657-1681. (NNA.920407.0016)
- Rogers, A. M., Harmsen, S. C., and Meremonte, M. E., 1987, Evaluation of the seismicity of the southern Great Basin and its relationship to the tectonic framework of the region: U. S. Geological Survey Open-File Report 87-408, 196 p. (HQS.880519.1409)
- Rogers, A. M., Harmsen, S. C., Corbett, E. J., Priestley, K., and DePolo, D., 1991, The seismicity of Nevada and some adjacent parts of the Great Basin, in Neotectonics of North America, Slemmons, D. B., Engdahl, E. R., Blackwall, D., and Schwartz, D., eds., Geological Society of America, vol. DMV, p. 153-184. (NNA.920211.0043)

Rothman, R. L., Greenfield, R. J., and Hardy, H. R., 1974, Errors in hypocenter location due to velocity anisotropy: Seismological Society of America Bulletin, v. 64, p. 1993-1996. (NNA.920407.0017)

÷.

- Schuenemeyer, J. H., Koch, G. S., and Link, R. F., 1972, A computer program to analyse directional data, based on the methods of Fisher and Watson: Journal of Mathematical Geology, v. 4, p. 177-202. (NNA.920211.0045)
- Scott, R. B. and Bonk, J., 1984, Preliminary geologic map of Yucca Mountain with geologic sections, Nye County, Nevada: U. S. Geological Survey Open-File Report 84-494. (HQS.880517.1443)
- Scott, R. B. and Whitney, J.W., 1987, The upper-crustal detachment system at Yucca Mountain, SW Nevada [abs.]: Geological Society of America Abstracts with programs, v. 19, p. 332-333. (HQS.880517.2863)
- Serpa, L., deVoogd, B., Wright, L., Willemin, J., Oliver, J., Hauser, E., and Troxel, B., 1988, Structure of the central Death Valley pull-apart basin and vicinity from COCORP profiles in the southern Great Basin: Geological Society of America Bulletin, v. 100, p. 1437-1450. (NNA.901206.0011)
- Smith, R. B., and Bruhn, R. L., 1984, Intraplate extensional tectonics of the eastern Basin-Range: Inferences on structural style from seismic reflection data, regional tectonics and thermalmechanical models of brittle/ductile deformation: J. Geophysical Research, v. 89, p. 5733-5762. (NNA.920407.0018)
- Snoke, J. A., Munsey, J. W., Teague, A. G., and Bollinger, G. A., 1984, A program for focal mechanism determination by combined use of polarity and SV-P amplitude ratio data: Earthquake Notes, v. 55, p. 15. (NNA.920211.0046)
- Stock, J. M., Healy, J. H., Hickman, S. H., and Zoback, M. D., 1985, Hydraulic fracturing stress measurements at Yucca Mountain, Nevada, and relationship to the regional stress field: Journal of Geophysical Research, v. 90, p. 8691-8708. (HQS.880517.1509)
- Stock, J. M., Healy, J. H., Svitek, J., and Mastin, L., 1986, Report on televiewer log and stress measurements in holes USW G-3 and UE-25p1, Yucca Mountain, Nye County, Nevada : U.S. Geological Survey Open-File Report 86-369, 91 p. (HQS.900326.0253)
- Swolfs, H., Savage, W., and Ellis, W., 1988, An evaluation of the topographic modification of stresses at Yucca Mountain, Nevada, in Geologic and Hydrologic Investigations of a Potential Nuclear Waste Disposal Site at Yucca Mountain, Southern Nevada : U.S. Geological Survey Bulletin 1790, Michael D. Carr and James C. Yount, eds., p. 95-101. (NNA.920407.0019)
- Tsvankin, I. D., and Chesnokov, E. M., 1990, Synthesis of body wave seismograms from point sources in anisotropic media: Journal of Geophysical Research, v. 95, p. 11317-11331. (NNA.920407.0020)
- Vetter, Ute R., 1990, Variation of the regional stress tensor at the western Great Basin boundary region from the inversion of earthquake local mechanisms: *Tectonics*, v. 9, p. 63-80. (NNA.910123.0032)
- Wernicke, B, Axen, G. J., and Snow, J. K., 1988, Basin and Range extensional tectonics at the latitude of Las Vegas, Nevada : Geological Society of America Bulletin, v. 100, p. 1738-1757. (NNA.920407.0021)
- Winograd, I. J., and Thordarson, W., 1975, Hydrogeologic and hydrochemical framework, southcentral Great Basin, Nevada-California, with special reference to the Nevada Test Site: U. S. Geological Survey Professional Paper 712-C, 126 p. + 3 Plates. (NNA.870406.0201)
- Wong, Ivan G., and Chapman, D. S., 1990, Deep intraplate earthquakes in the western United States and their relationship to lithospheric temperatures: Seismological Society of America Bulletin, v. 80, p. 589-599. (NNA.920407.0022)
- NOTE: Parenthesized numbers following each cited reference are for U.S. Department of Energy OCRWM Records Management purposes only and should not be used when ordering the publication.

Appendix A

Earthquake locations for the years 1987, 1988 and 1989 and quadrangle map names to which locations are keyed

All earthquake hypocenters reported in Appendix A are preliminary. The local hypocenter summary column headings are for the most part self-explanatory. UTC is Universal Coordinated Time. Horizontal error equals $\sqrt{sdx^2 + sdy^2}$, where sdx and sdy refer to the HYPO71 standard errors in longitude and latitude, respectively. Vertical error is the HYPO71 standard error in depth (sdz). "AZI GAP" is the azimuthal gap, that is, the largest angle subtended by the epicenter and any two circularly adjacent stations with positive phase weight. "Q1" and "Q2" represent two HYPO71 hypocenter quality estimates as defined by Lee and Lahr (1975). "DS" is a code for data source: A for analog seismograms, (data scaled from develocorder films, starting depth, zo, at 7 km for iterations), all other letters are for data scaled from digital seismograms. Five digital data letters are defined: Z, S, and T are for minimum RMS travel time residual solution having $z_0 = 0, 7$, or 12 km below sea level, respectively, using the standard SGB crustal velocity model, modified to include a layer interface at 15 km, below which $V_P = 6.5$ km/sec; I is a solution using the standard SGB model without the 15 km interface, and Y is a solution using the Yucca Mountain velocity model. In each of the latter cases, $z_0 = 7$ km. for the initial hypocenter guess. z_0 and y_0 are always taken to be near the earliestreporting station. When equal final RMS values occur for solutions having different z_0 , the priority for reporting is I, S, Z, and T. A and Y solutions were not extensively redetermined using different values of z_0 .

Mca is the coda-average magnitude, Md is the duration magnitude estimate, MLh is local magnitude from horizontal-component instruments, MLv is local magnitude from vertical-component instruments, MLc is the maximum of station magnitudes from overdriven (clipped) records. Amplitudes recovered from vertical-component data are multiplied by 1.75 to provide an approximate horizontalequivalent amplitude. Mca is computed from the post-S coda by fitting the envelope function,

$$A(t) = A_0(t-t_p)^{-1.8},$$

to a sequence of 5.12-second windows of peak amplitude data in the unclipped portion of the seismogram. In this formula, A_0 is statistically determined, and is transformed into Mca. The modeled time rate of decay is governed by the exponent 1.8, which lumps geometric spreading, scattering, and anelastic attenuation. Mca appears to underestimate the true event magnitude when M > 2.7.

Depth estimates may be followed by one or two stars. One star means that the depth-of-focus standard error estimate was very large (\geq half crustal thickness). Two stars imply that the depth was fixed by HYPO71 during the last several iterations for hypocenter, because the data lacked resolving power for that parameter. In some instances, the standard depth error estimate, *sdz* is followed by one or two +s. These cases, discussed in greater detail in the section, Preliminary hypocenter determination for SGB earthquakes and explosions, are for hypocenters whose depth-of-focus uncertainty is greater than would be suggested by *sdz*.

DELMIN is the minimum source to station distance in km, and RMS RES. is the root-meansquare travel time residual, defined in the text of this report. #N PH. is the number of (P+S) phases having positive weight in the solution. Finally, U.S.G.S. quadrangle is the name of $7\frac{1}{2}$ or 15 minute topographic quadrangle in which the epicenter lies. Regional events are not assigned quadrangle names.

Figure A1.- Quadrangle names in the northeast quarter of the southern Great Basin.

5

C

Figure A2.- Quadrangle names in the southeast quarter of the southern Great Basin.

53

12:17

117.000 38.500 43 43 43 Can Bring Spatho ALL OL ON SALES تنام^ي جو المو چاهر , 1⁸⁰ , 18 y re^save 1 Ser Pes ALC . d' CILERY می فکھی انگراھی مکر بچو ملاحق , IONORON 8) ACT \$ ONE ,0¹⁴ BUTE 1007 NIN 1.11.42 · and the Anter and (يوجد متلا بمحج بي جمع (And Canada Cana 39.000 NO DINE STIMPING STIMP ANT BIOCE Car Cat ter lon SI' Cat plat Parily and as rai Terselver OUNTIL a'i+ Cachospins V e des 99 10 e lait 100 State N. Cont V . Stat 2"1" " 5 4 5 ADD ST Cr. Car at the 01,20 Contra an and and a start 2010 COLOR W RING Sic. KRUDLA . 10 25m ુર્વ 295 £1,4 5. . . . **** 1²0 0 1 2 C se lo 60°* BUIL NEL. * (Plant 1.5,1 S CA: 800 Cale σ 5001HORE (Part of Calat APUL OBS Ville Ville South CHANN . E and જુ and a star ર્સ્ટ and a street ÷, ్రీ 3 119.000 V SEISHOGRAPH STATION

1.4.5

Figure A3.- Quadrangle names in the northwest quarter of the southern Great Basin.

3

. ب

5

- -

-

а. Ф

55

(،

. N. N

0

· つ

Max. eq mag. Top:1987-1989, Bottom: 8/1978-1988

Figure A5.- Map tabulating maximum earthquake magnitude (M_L where available, otherwise M_D or M_{ca}) in each $7\frac{1}{2}'$ quadrangle within the ranges 114.875°W to 117.875°W and 36.125°N to 38.125°N recorded by the SGBSN. The top number is the maximum magnitude in the period 1987 through 1989, and the bottom number is the maximum magnitude in the period August, 1978 through December 1986. The letter "Q" (quiet) within a quadrangle means no earthquakes were monitored during that period by the SGBSN. The NTS boundary and part of the California-Nevada state border are shown. Alternate rows are shaded to aid in visual separation of information in adjacent quadrangles.

1987 LOCAL HYPOCENTER SUMMARY - SCB EARTHQUAKES

DA	1 E - (UT	TIME C)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND AZI ERROR GAP Z(KM) (DEG	000 125 ;)	MAGNI Mca	TUDE Md	ESTIMA' MLh	TES MLv	MLc	DEL MIN (KM)	RMS RES. (SEC)	₽ Н.	U.S.G.S. QUADRANGLE
MAL	1 1 1 2 2	1:27:48 4: 6: 5 13:26:38 14:58:10 13: 7:56 14:13:29	37.289 36.806 37.540 37.856 36.906 36.900	114.837 115.987 115.760 116.137 115.976 115.971	1.7 0.3 0.2 0.2 0.4 0.3	11.91 0.32 4.32 0.23 -0.65 -0.16	3.9 233 0.4 176 1.1+ 87 0.2 106 0.4 156 0.4 126	BDI ACS ACS ACS ACI ACI ACI	1.80 1.60	1.81 0.72 1.20 1.57 0.94 1.30	1.09 1.09	1.79 0.94 1.44 1.55 1.10 1.25		23. 15. 12. 20. 7. 8.	0 0.12 3 0.10 0 0.08 4 0.06 5 0.11 2 0.11	9 23 22 15 13 20	GREGERSON BASIN FRENCHMAN FLAT WHITE BLOTCH SPRINGS REVEILLE PEAK PLUTONIUM VALLEY PLUTONIUM VALLEY
	3 3 4 5 6 6	5: 7:29 7:40: 2 2:38: 5 19:48:18 2:18:23 3:49:32	37.854 36.462 36.464 35.671 37.116 36.651	116.140 116.165 116.159 116.478 117.354 116.345	0.2 0.2 0.4 0.9 0.2 0.5	3.92 10.64 10.64 11.69 0.28 2.43	8.8 105 0.2 64 0.5+ 13 3.0++ 28 0.4 120 0.4 170	6 CCI AAI 7 ACI 8 BDI 8 ACI 8 ACI	1.72 2.07	1.68 1.16 0.83 1.74 0.97 0.40	1.10 1.83 0.85	1.53 1.35 0.80 2.14 1.04 0.50		20. 5. 5. 47. 13. 0.	5 0.84 8 0.07 5 0.09 9 0.10 0 0.11 8 0.09	9 32 17 14 20 16	REVEILLE PEAK AMARGOSA FLAT AMARGOSA FLAT AVAWATZ PASS UBEHEBE CRATER STRIPED HILLS
	6 7 8 8 8	12:20: 0 0:21: 8 2:59:18 7:24:37 11:48: 3 17:24: 8	36.862 37.651 36.613 37.346 37.140 36.624	115.965 114.878 115.896 117.234 116.289 116.345	0.2 0.2 0.3 0.2 1.4	6.45 5.22 9.57 0.17 6.88 0.9 0	0.7 8 0.4 14 0.5 10 0.2 7 0.5 8 1.0 29	0 AB 6 AC 0 AB 1 AB 5 AB 3 BD	I 1.72 I 1.59 I 1.56 S 2.10 I I 1.27	1.28 1.20 1.09 1.65 0.95 0.76	1.47	1.36 1.43 1.00 1.72 0.67 0.51	1.7	11. 7.5. 7. 5. 8. 14.	1 0.10 2 0.05 9 0.10 4 0.05 7 0.05	46 12 36 20 26 16	FRENCHMAN FLAT PAHROC SPRING MERCURY SW SCOTTYS JUNCTION SW AMMONIA TANKS LATHROP WELLS SE
	9 9 10 10	7:39:17 11:51:33 22:47:36 6:10:17 11:40:14	37.857 37.447 37.833 37.874 37.874 36.800	116.143 117.807 114.737 116.130 115.826 116.327	0.3 0.8 1.2 0.4 0.3 0.3	8.25 4.48 3.07 7.49 2.32 3.67	2.6++ 10 3.2 10 2.6 25 5.5++ 11 1.0 10 0.4 9	6 BC 6 BB 3 BD 9 CC 4 AC 0 AB	I I S I 1.64 I 1.82 I	1.64 1.27 1.63 1.39 0.98	1.34 2.09 0.89	1.59 1.46 1.83 1.73 0.76) 5 5 5	20 9 25 48 11 4	.8 0.07 .1 0.14 .2 0.08 .1 0.10 .9 0.13	10 24 12 17 33 25	REVEILLE PEAK SOLDIER PASS THE BLUFFS REVEILLE PEAK FRENCHMAN LAKE SE AMMONIA TANKS
	11 11 12 12 12	7:18:44 7:31:1 3: 0: 2 5:34:12 20: 3:2	36.656 37.406 36.705 37.154 36.871 37.154	116.345 114.682 115.771 117.354 116.229	0.5 0.7 0.3 0.2 0.3 0.1	2.76 5.11 1.71 8.10 2.33 0.00	0.7 26 1.4 21 0.6 15 0.6 11 9.9 10 0.2 11	8 AD 6 AD 9 AC 1 AC 2 AB 1 AC	I S 2.57 I 1.68 I S Z 1.09	0.45 2.40 1.36 1.11 0.28	1.22 1.53 1.16	0.48 2.80 1.35 1.22 0.21	3 1.2 3 2 1 9	2 11 22 3 17 5 18	.6 0.0 .7 0.0 .7 0.0 .2 0.0 .7 0.0 .7 0.0	5 13 5 12 5 32 9 32 9 24 5 12 5 21	STRIPED HILLS SLIDY MTN MERCURY NE UBEHEBE CRATER SKULL MTN UBEHEBE CRATER
	13 13 16 16 18	1:15: 17:26:1 0:53:2 18: 8:2 0: 6:4	9 37.329 2 37.323 2 37.376 7 37.215 9 37.859 5 37 855	115.032 115.034 115.084 117.316 116.137 116.113	0.2 0.5 0.8 0.3 0.2 0.2	8.48 6.33 5.87 7.69 -0.47 0.07	0.3++ 17 1.0 17 0.5 16 0.8 8 0.3 10 0.4 10	7 AC 9 AC 60 AC 37 AB 96 AC	1 2.85 1 1 1 1.54 2 1.98 2	2.93 1.07 1.15 1.46 1.83 1.83	3 3.77 5 5 5 1.96 7 1.28	2.79 1.49 1.1 1.60 1.8 1.5	9 3.0 5 1 0 3 2	8 8 9 4 10 20 18	.8 0.1 .4 0.0 .5 0.0 .8 0.1 .6 0.0 .5 0.0	0 40 7 13 5 9 0 21 8 16 9 15	ALAMO SE ALAMO SE ALAMO NE UBEHEBE CRATER REVEILLE PEAK REVEILLE PEAK
	19 20 21 21 22 22	8:17:3 19:22:3 6:30:3 9:32:5 1:32: 8:13:2	0 37.249 5 37.855 4 37.423 0 36.464 2 36.975 6 37.378	115.010 116.133 117.015 116.163 116.124 114.994	0.3 0.4 0.2 0.2 0.3 0.2	0.65 9.48 0.55 10.05 2.14 -0.05	0.4 15 2.8 16 0.3 5 0.3 6 0.7 18 0.2 15	58 AC 56 BC 76 AC 52 AJ 52 AL 74 AC	CZ 2.04 CI CS 1.86 VI CI 1.74	1.89 1.52 1.71 1.13 0.54 1.54	9 2 3 1.78 6 4	2.3 1.6 1.7 1.0 0.4 1.6	2 1 8 6 1 7	17 20 25 5 7 5	.9 0.0 .9 0.0 .9 0.0 .9 0.0	5 23 6 8 7 28 9 46 6 26 7 17	E LOWER PAHRANAGAT LAKE REVEILLE PEAK SCOTTYS JUNCTION NE AMARGOSA FLAT YUCCA LAKE DELAMAR NW
	22 22	10:39:1 13:48:	3 37.188 2 37.376	117.390 114.991	0.1 0.5	-0.40 -0.47	0.2 1 0.4 1	13 AC	CZ C1 1.96	0.9 0.9	6 1.06 3 1.91	0.9 2.1	6 0	17 6	.2 0.0 .3 0.1	6 2° 3 10	I UBEHEBE CRATER 5 DELAMAR NW

10 m + 10 - 6

57

н_{и (}ни) Нистрии Нистрии

.

2 1 0 3 1 ? 7 2 ?

1987 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

DATE - TIME (UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND AZI ERROR GAP Z(KM) (DEG)	QQD 125 MAGNITUDE Mca Md	ESTIMAT MLh	IES MLV MLC	DEL MIN (KM)	RMS II RES. PI (SEC)	N H. U.S.G.S. QUADRANGLE
JAN 22 23:19:14 23 13:58:11 23 18:24:17 23 21: 6:38 24 14:59:17 25 4:23:43	37.110 37.192 36.459 36.460 37.379	117.914 117.621 116.162 118.159 114.997 115.060	0.6 0.2 0.2 0.3 0.3 0.3	5.40 10.55 11.11 11.12 -0.15 6.95	6.0 223 0.6 160 0.4 77 0.3+ 77 0.2 173 1.5 112	CDI 2.04 1.81 ACI 1.23 AAI 1.93 1.40 AAI 1.66 1.26 ACI 1.55 ABI 1.64 1.42	1.47 1.13 1.54	2.21 2. 1.48 1.80 1.22 1.69 1.85	1 27. 5. 5. 5. 12.	4 0.12 20 0 0.10 2 6 0.08 3 3 0.11 3 7 0.09 1 6 0.09 1	9 WAUCOBA SPRING 2 LAST CHANCE RANGE 9 AMARGOSA FLAT 8 AMARGOSA FLAT 3 DELAMAR NN 4 HIKO NE
25 16:28: 3 25 21:19: 2 26 11:48:51 26 12:37:11 26 18: 3: 4 26 19: 11: 3	37.696 37.501 36.699 37.855 37.225 36.648	115.060 116.363 116.220 116.138 115.110 116.267	0.3 0.2 0.2 0.2 0.5 0.5	5.89 0.84 6.39 0.50 5.99 5.51	1.3 112 0.3 130 0.4 86 0.4 106 1.4 189 0.6 66	ACI 1.34 1.19 ACZ 1.55 1.31 ABI 0.55 ACZ 1.66 ADI 1.57 ABI 1.75 1.28	1.66 0.98 1.79 1.81	1.32 1. 1.21 0.40 1.80 1.65 1.54 1	.7 11. 21. 6. 20. 9. 5 6.	9 0.08 1 2 0.07 2 7 0.08 2 4 0.07 1 3 0.09 1 5 0.10 3	4 HIKO NE OQUARTZITE MTN 7 SPECTER RANGE NW 4 REVEILLE PEAK 8 LOWER PAHRANAGAT LAKE 3 STRIPED HILLS
27 4:19: 2 27 6:49:2 28 17:11:1 28 20:39:1 29 9:42:1 29 15:54	2 37.143 5 36.649 8 37.739 9 37.350 3 37.419 9 36 605	116.289 116.267 114.858 117.880 117.764 116.388	0.2 0.2 0.3 0.5 	7.68 5.54 5.87 7.00 29.92 2.78	$\begin{array}{cccc} 0.3 & 63 \\ 0.7 & 66 \\ 1.1 & 194 \\ 1.1+ & 199 \\ & 120 \\ 0.7 & 228 \end{array}$	ABI 1.62 1.23 ABI 1.56 1.17 ADI 1.92 1.67 ADI 1.45 1.41 CDA 1.64 ADI	1.26 2.43 1.43	1.30 1.13 2.26 1.51 0.65	8 5 11 8 12 6	5 0.09 4 5 0.09 2 9 0.07 1 6 0.10 1 7 0.48 3 0.06	7 AMMONIA TANKS 6 STRIPED HILLS 5 PAHROC SPRING NE 7 SOLDIER PASS 4 SOLDIER PASS 7 LATHROP WELLS SW
29 15:33.4 29 15:48: 29 15:49:1 30 1:14:3 30 3:23:2 30 9:34:4 30 9:34:4	5 36.587 4 36.589 6 37.319 3 36.583 7 37.702	116.245 118.251 117.535 116.258 114.155	0.2 0.5 0.3 7.6 0.2	-0.99 -1.86 4.11 -1.04 0.83• 5.17	0.3 82 0.3 167 2.1 84 0.3 174 	ACZ 1.39 1.24 ACZ 1.01 BCI 1.00 ACI 1.40 1.07 DDA 1.86 AAI 1.59 1.10	0.78	1.10 1.67 0.85 0.93 1.14 1	10 19 13 10 52 .6 4	.6 0.09 3 .1 0.08 1 .8 0.10 1 .1 0.08 3 .5 0.09 .7 0.08 3	54 SPECTER RANGE SW 16 LATHROP WELLS SE 14 MAGRUDER MTN 22 LATHROP WELLS SE 16 ***QUAD. NOT LISTED*** 33 STRIPED HILLS
30 20: 3:3 31 9:15:4 FEB 1 6: 3:4 1 18:54:2 3 21:57:3 4 13:24:5 5 9:25:5	0 37.888 3 36.790 2 37.510 7 36.436 2 37.144 6 36.556	116.118 116.256 116.541 117.508 116.293 116.255	0.7 0.3 0.2 0.7 0.2 0.2	-1.50 -0.46 11.47 2.10 8.63 0.51	1.3 113 0.4 70 0.9++ 74 2.3 240 0.4 80 0.3 95	ACZ 1.71 ABI 1.57 0.91 ACI 1.11 BDI 1.47 AAI 1.58 1.17 ACZ 1.69 1.14	 7 7	1.60 0.99 1.40 1.40 1.30 1.10	21 9 23 31 8 12	.3 0.11 .8 0.12 .1 0.08 .1 0.10 .3 0.09 .5 0.09	9 REVEILLE PEAK 23 JACKASS FLATS 21 MELLAN 19 DARWIN 29 AMMONIA TANKS 27 LATHROP WELLS SE
5 7:58:4 6 6:17:2 6 16: 6:2 6 16:15:3 6 20: 55:3 6 20: 45:3	3 37.147 4 37.275 3 37.215 2 37.215 1 37.346	116.273 116.418 117.603 114.879 117.241 117.240	0.6 0.7 0.5 0.9 0.3 0.4	8.87 15.05 5.45 10.98 -0.35 -0.39	0.4 193 0.8 213 0.7 160 1.9 243 0.3 71 0.3 134	ADI 0.99 ADI 1.35 1.4 ACI 0.8 ADI 1.57 1.1 ABI 1.73 1.6 ABI 1.73 1.6	9 3 7 2 1.80 9 1	0.71 1.17 1.09 1.81 1.79 1.20	8 10 26 5	.7 0.07 .7 0.11 .3 0.09 .0 0.08 .2 0.11 .3 0.10	18 AAMONIA TANKS 17 SILENT BUTTE 11 LAST CHANCE RANGE 8 DELAMAR 3 NW 22 SCOTTYS JUNCTION SW 13 SCOTTYS JUNCTION SW
7 8:12:2 7 11:48: 7 16: 4:1 8 1: 9:1 8 5:36: 8 6:59:	24 37.517 38 37.872 53 36.893 25 36.716 48 36.409 16 37.345	116.541 116.126 116.449 116.060 116.998 117.239	0.2 0.7 0.3 0.4 0.4 0.4	10.36 0.00 7.03 -0.78 1.93 -0.20	0.7 53 1.1 110 0.4 118 0.5 128 1.0 94 0.3 134	AC1 1.67 1.3 DCI 1.28 1.7 AD2 ACT AB1 2.04 1.4 AB1 1.3	3 8 2 1	1.53 1.62 1.10 0.61 1.57 1.39	22 20 10	.6 6.05 .5 6.17 .8 6.04 .7 6.11 .6 6.11	26 MELLAN 12 REVEILLE PEAK 10 TOPOPAH SPRING NW 14 CAMP DESERT ROCK 22 FURNACE CREEK 17 SCOTIYS JUNCTION SW
8 10:44: 9 5:17:	22 36.806 48 37.338	115.860	0.5 0.4	4.74 0.59	2.5 153 0.2 101	BCI 0.9 ABI 1.21 1.2	5 9	1.16 1.32	1.	3.2 0.11 3.3 0.09	19 FRENCHMAN LAKE SE 16 SCOTTYS JUNCTION SW

Human

Hannand Hannand Hannand Hannand Hannand

4

• •

11311 ?)?3

1987 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

•

	DA		- TIME	LATITUDE (DEG N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KH)	AZ1 GAP (DEG)	000 125	MAGN		ESTIMA	TES	Ма	DEL- MIN (KM)	RMS RES.	∦N PH	U.S.G.S.
		(0		(000. 11)	(020)		(• (//)	(000)		mcu		- Ç/1		mtc	((()))	(300)		
1	FEØ	9	7:56:28	37.854	116.139	0.4	0.34	0.7	105	ACI		1.44		1.52		20.3	5 0.10	10	REVEILLE PEAK
		9	11: 9:22	37.864	116.138	0.5	0.55	0.8	107	ACI		1.43		1.51		20.5	0.15	16	REVEILLE PEAK
		9	18: 7:55	36.806	115.862	0.4	-0.85	0.5	177	ACZ		0.93		1.13		13.2	2 0.12	23	FRENCHMAN LAKE SE
		9	18:15:51	36.815	115.834	1.0	7.38	2.3+	192	BDI		0.91		1.12		13.6	9.15	18	FRENCHMAN LAKE SE
		10	0:43:32	36.569	114.852	1.1	6.98	1.7	242	BOI	2.09	1.81		2.18		28.	0.15	20	ARROW CANYON
		10	6:49: J	37.103	117.354	0.2	8.0/	0.0	109	ABI		1.05	1.16	1.10		17.5	0.05	17	UBEHEBE CRATER
		10	6:49:55	36.571	114.885	1.0	7.92	1.1	257	BD I	2.28	1.94		2.18	2.5	27.4	0.14	23	ARROW CANYON
		10	23: 1:15	37.192	115.871	0.3	0.68	0.2	198	ADI		1.30		1.32		13.6	0.04	14	PAPOOSE LAKE NE
		11	13:34:13	36.604	115.977	0.2	16.77	0.6	80	ABI	1.71	1.29		1.45		16.6	0.07	23	CHLORIDE CLIFF
		12	1: 0:34	37.229	116.445	0.7	-1.23	0.7	233	ADZ	2.12			1.24		26.5	5 0.08	16	SCRUGHAM PEAK
		13	0:36: 1	37.878	116.121	0.4	0.26	0.6	111	ACS		1.78		1.74		20.7	1 0.08	12	REVEILLE PEAK
		14	7:52:51	36.840	116.267	0.3	8.85	0.5	139	ACI	1.20	0.79		0.88		5.1	6.67	15	JACKASS FLATS
		14	19:18:50	37.874	116.127	0.4	-0.68	0.6	113	ACS		1.63		1.75		20.8	5 8.87	9	REVEILLE PEAK
		15	15:36:16	36.836	116.273	0.3	8.78	0.5	75	- 441		0.70		0.67		4.5	0.10	21	JACKASS FLATS
		15	18:28:37	36.463	115.743	0.3	0.27	0.4	101	ACZ	1.78	1.24	1.18	1.45		21.2	2 0.09	18	CHARLESTON PEAK
		15	19: 5:52	36.475	115.728	0.4	6.73	1.8	161	ACZ		0.97	1.11	1.40		21.	3 0.07	14	CHARLESTON PEAK
		16	21:51:34	36.609	116.257	0.2	7.27	0.6	79	ABI	1.57	1.15	1.28	1.25	1.0	8.4		23	LATHROP WELLS SE
		17	18:50:51	36.866	115.963	0.4	6.18	1.2	192	AD1	1.64	1.12		1.28		10.5	9 0.11	25	FRENCHMAN FLAT
		17	22:32:12	37,185	117.914	0.6	-0.70	0.5+	225	ADS	2.13	1.75		2.01		24.3	5 0.11	21	WAUCOBA SPRING
		18	8:42:31	37.187	117.909	8.7	-0.88	8.7	227	ADZ	1.78	1.47		1.65		23.0	5 0.10	14	WAUCOBA SPRING
		18	14: 6: 2	36.984	116.160	0.2	-1.53	0.3	98	ABT	1.93	1.58		1.74		8.4	. 0.11	30	MINE MTN
·		18	17:44:37	37.248	115.030	0.5	6.98	1.7++	205	ADI	2.06	1.87		1.88		16.5	5 8.07	12	LOWER PAHRANAGAT LAKE
		18	22:12:44	37.282	115.223	0.2	6.84	1.2	116	ABI	1.65	1.48		1.77		13.6	0.05	13	ALANO
		19	4: 0:24	37.282	115.222	0.3	7.00	1.4	116	ABI		1.41	1.82	1.67		13.6	8 8.87	13	ALAMO
		19	9:58:33	36.763	116.279	0.5	10.10	1.2	120	ABI				0.26		2.3	3 8.08	10	JACKASS FLATS
		20	5: 2:33	37.108	116.446	0.6	7.21	0.5	277	ADI				1.10		9.6	5 0.65	18	TIMBER MTN
		20	5: 2:39	37.107	116.446	0.8	6.77	6.8	286	10A	1.55	1.09		1.30		9.6	5 0.10	13	TIMBER MTN
		21	15:30:26	37.222	116.454	0.4	4.73	1.5	71	ACI	1.41			1.04		11.5	5 0.13	22	SCRUCHAM PEAK
		22	17: 6:35	37.395	117.227	0.2	-0.34	0.3	125	ACS		1.22	1.08	1.11		10.8	3 8.87	21	STONEWALL PASS
		22	21:33:29	38.221	115.909	0.2	7.88	1.4++	285	ADI	1.85	1.85		2.15		38.4	1 8,64	13	QUINN CANYON RANGE
		23	0:53:23	37.243	116.445	0.7	8.86	0.9+	211	AD1				1.38		11.3	5 0.07	15	SCRUCHAM PEAK
		23	4:50:50	36.442	116.557	θ.3	0.90	ð.5+	123	AB1	1.58	1.41		1.35		8.8	5 0.10	19	RYAN
		24	22:21:13	36.822	116.226	0.3	4.21	0.9++	72	ABI	1.59	1.10		1.32	1.6	8.3	5 0.12	28	SKULL MTN
		25	2:40:46	36.758	116.671	0.4	-0.23	0.3	124	AB I	1.39	1.29		1.06		5.8	5 0.11	20	BARE MTN
		25	10:24:37	37.407	117.213	0.2	0.09	0.3	129	ACI		1.28		1.45		12.4	1 0.08	25	STONEWALL PASS
		26	1:29:37	37.867	116.136	0.4	0.55	0 .7	108	ACI	1.92	1.65		1.87		21.0	0.14	15	REVEILLE PEAK
		27	12: 8:30	37.346	117.241	0.3	-0.11	0.2	114	ABI		1.04		1.15		5.3	3 0.09	18	SCOTTYS JUNCTION SW
		27	12:11:52	37.343	117.247	0.4	0.20	0.3	113	AB 1		1.15		1.03		4.8	5 0.10	17	SCOTTYS JUNCTION SW
		27	15:56:52	37.341	117.248	0.3	0.42	0.2	132	A31		1.22		1.26		4.5	5 8.89	18	SCOTTYS JUNCTION SW
		28	0:18:27	37.864	116,140	0.6	2.35	4.1	107	BC1	2.07	1.67		1.62	2.0	21.6	8 8.17	15	REVEILLE PEAK
		28	0:22:47	37.869	116.133	0.5	0.24	0.7	109	ACS	2.34	1.64		1.63	1.7	20.5	9 0.14	15	REVEILLE PEAK
		28	14:29:15	37.195	117.897	0.5	-1.99	0.5+	244	ADS	2.20	2.01		2.14	2.1	22.7	7 0.07	22	WAUCOBA SPRING
	MAR	3	8:10-21	35.584	116.990	0.2	10.44	0.7	99	184				0.95		19.4	8.68	22	CHLORIDE CLIFF
		3	8:14:37	36.401	116.969	0.3	11.85	0.5	119	ABI		1.13		1.12		10.5	5 0.09	22	FURNACE CREEK

ม ผู้นหาเ∺่ไห

#mm#ile

é.

1987 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

D	ATE - (U	- TIME TC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND AZI ERROR GAP Z(KM) (DEG	QQD 12S MAGNIT) Micio	UDE ES	STIMATES MLh MLV	MLc	DEL- RMS MIN RES. (KM) (SEC)	ј н РН.	U.S.G.S. QUADRANGLE
MAR	3 4 4 5 5	16:10:51 10:19:20 19:51:22 23:26:55 0:34:30 0:41:17	37.860 36.736 36.702 36.604 37.168 36.604	116.137 116.256 116.110 116.957 116.413 116.956	0.3 0.3 0.2 0.2 0.2 0.2	6.15 6.74 10.40 10.80 -0.40 9.35	3.6+ 107 0.3 124 0.7 109 0.9 80 0.3 92 0.7 81	BCI 1 ABI 1.38 6 ABI 1.38 6 ABI 1.94 1 ABI 2.35 ABI 1.80 1	.26 .78 .99 .20 .1	1.45 0.51 0.99 1.15 1.39 2.11 1.28	1.9	20.6 0.04 1.5 0.10 14.0 0.09 16.6 0.11 9.4 0.06 15.9 0.09	8 21 23 28 21 19	REVEILLE PEAK STRIPED HILLS CAMP DESERT ROCK CHLORIDE CLIFF SCRUCHAM PEAK CHLORIDE CLIFF
	5 6 7 7 7	20:23:53 1:38:13 2:26:42 2:38: 2 17:59:59 18: 0:59	37.194 37.840 36.694 37.866 36.487 36.471	117.897 116.502 116.293 118.130 116.304 116.328	1.1 1.9 0.2 0.4 0.2 0.4	-1,68 10.65 8.34 -0.76 6.96 6.34	1.2 223 2.4 173 0.3 83 0.7 108 0.8 76 2.2 ++ 194	BOS 1 BCI AAI 0 ACS 1.91 1 ACI 1.82 1 BDI	.25 .92 .76 1 .39 1	1.54 1.77 0.67 1.80 2.00 1.27 1.47	1.5	22.6 0.09 15.2 0.21 5.7 0.06 20.5 0.14 17.8 0.07 19.3 0.06	9 8 21 18 28 13	WAUCOBA SPRING STINKING SPRING STRIPED HILLS REVEILLE PEAK ASH MEADOWS ASH MEADOWS
	8 9 9 10 11	2:27:53 13: 9:14 14:58:49 21:30:52 12:51: 2 0:23:56	36.461 36.462 37.346 36.736 36.841 37.203	116.195 116.190 117.235 117.413 116.509 116.438	0.7 0.8 0.4 0.7 0.3 0.2	4.39 5.34 -0.16 1.97 3.32 0.50	3.1 184 2.5 182 0.3 78 0.9 186 0.5 83 0.7 66	BDI BDI ABI 1.23 1 ADZ 1 AAI 8 ACI 2.12 1	.35 .34 .64 .78	1.35 1.39 0.40 2.29 1.72		8.4 0.05 8.0 0.08 5.4 0.11 7.7 0.13 2.4 0.07 10.3 0.07	12 14 17 21 15 23	AMARGOSA FLAT AMARGOSA FLAT SCOTTYS JUNCTION SW MARBLE CANYON BARE MTN SCRUGHAN PEAK
	11 11 13 14 14 16	0:25: 1 0:57: 0 17:34:45 22:45:46 23:24: 1 15:23:37	37.199 37.158 37.861 37.074 36.733 37.841	116.438 116.272 116.132 117.220 115.857 116.139	0.2 0.3 0.4 0.3 0.3 0.3	-0.54 2.61 0.36 5.95 2.07 6.35	1.0 76 0.7+ 115 0.5+ 107 1.5 128 0.6 130 3.6 103	ACZ 2.02 1 ABS 1.39 1 ACI 1.73 1 ACS 1 ABI 1 BCI 1.57 1	.78 1 .15 .56 .15 1 .00 .43	1.72 1.45 1.01 1.83 1.03 1.15 0.96 1.66	1.6 1.1	10.2 0.05 7.8 0.09 20.3 0.12 14.0 0.08 6.0 0.08 19.7 0.07	17 20 13 13 13 20 1 9	SCRUGHAM PEAK AMMONIA TANKS REVEILLE PEAK BORNIE CLAIRE SW MERCURY NE REVEILLE PEAK
	16 18 18 18 19 19	18:33:17 0:33:26 1:19:57 5:45:60 6:19:48 16:56:34	37.397 36.645 37.867 37.007 37.857 36.016	117.630 116.383 118.135 117.156 116.135 116.084	0.7 0.3 0.4 0.5 0.6 0.6	-1.56 0.29 -0.54 7.00 0.73 7.47	0.5 214 0.2 111 0.6 108 1.7++ 88 0.9 106 0.8 237	ADZ 1 ABI 1.52 1 ACI 1.66 1 ACI 1 ACZ 1.86 1 ADI 2.08	. 16 . 19 . 59 . 12 . 42	0.84 0.86 1.79 1.32 1.58 2.15		18.3 0.05 3.9 0.11 20.9 0.12 17.0 0.09 20.3 0.15 13.9 0.09	7 27 16 19 10 16	MAGRUDER MIN LATHROP WELLS NW REVEILLE PEAK BONNIE CLAIRE SW REVEILLE PEAK STEWART VALLEY
	21 21 22 22 22 23	12:12:32 19: 5:31 16:49:20 17: 7: 9 17:17:54 4:20: 8	37.873 37.271 37.150 36.809 37.156 37.866	116.139 114.828 117.718 116.000 117.718 116.133	0.6 1.0 0.4 0.3 0.5 0.5	0.10 3.21+ -0.04 -0.21 -0.41 0.00	1.1 109 263 263 0.4 186 0.5 147 0.5 186 0.8 108	BCS 1 COZ ADI 1.62 ACS ADS ACI 1	. 40 . 58	1.47 2.50 1.81 1.43 1.51 1.73	2.6	21.6 0.18 24.9 0.08 11.2 0.09 14.5 0.09 10.6 0.08 20.7 0.14	14 10 15 10 11 12	REVEILLE PEAK GREGERSON BASIN LAST CHANCE RANGE CANE SPRING LAST CHANCE RANGE REVEILLE PEAK
	24 24 25 25 25 25 26	4: 7:17 12:41:12 1:38:41 11:43:12 20:12:42 16:57:56	37.869 36.798 37.200 36.803 37.280 36.812	116.133 117.519 116.437 115.995 114.818 115.981	0.4 0.6 0.2 0.2 1.2 0.3	0.14 6.62 1.59 0.64 4.27• 6.01	0.7 109 1.1 206 0.8+ 45 0.2++ 189 293 1.6+ 178	ACS 1.75 1 ADI 1 ACS ADI CDI 1 ACI 0	.60 .12 .22 2 .46	1.69 1.35 1.89 0.79 2.01 1.44 1.06		20.9 0.14 10.2 0.12 10.2 0.08 15.3 0.05 24.9 0.08 14.9 0.10	17 16 23 13 8 (16	REVEILLE PEAK DRY MTN SCRUCHAM PEAK FRENCHMAN FLAT GREGERSON BASIN FRENCHMAN FLAT
	26 28	18:36:38 2': 4:51	37.560 37.007	115.321 116.210	0.3 0.6	2.38 2.99	1.1 112 0.6 129	ACI 1 ABZ	. 23	1.30 0.38	1.6	13.6 0.06	10 I 14 1	MT IRISH TIPPIPAH SPRING

60

н^{ннын}и ннынын н

2 1.0 5 1 2 9 2 5

1987 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

15

 $\langle \cdot \rangle$

DATE	- TIME	LATITUDE	LONGITUDE	STAND ERROR	DEPTH	STAND ERROR	AZ I GAP	000	MAGN		ESTIMA	TES		DEL-	RMS	∦N PH. U.S.G.S	
(U	TC)	(DEG. N)	(DEG. W)	H(KM)	(KM)	Z(KM)	(DEG)		Mca	Md	MLh	MLV	MLc	(KM)	(SEC)	QUADRANGLE	
MAR 30	3:22:14	35.693	116.291	0.2	7.64	0.3	70	AA1	1.62	0.93		1.23		5.	7 0.09	32 STRIPED HILLS	
30	19:53:53	37.214	117.912	0.6	-1.15	0.6	219	ADS	1.79	1.84	1,69			23.	50.09	17 WAUCOBA SPRING	
31	19:57:24	37.858	116.124	0.5	2.37	2.2	185	BOI		1.70		2.13		41.8	5 0.11	17 REVEILLE PEAK	
APR 1	1: 1: 7	37.875	116.126	0.7	-0.42	1.1	110	BCS		1.49		1.46		29.	8 0.15	11 REVEILLE PEAK	
1	9:38:15	36.278	116.312	0.2	-0.12	0.4	96	ACZ	1.52	1.28		1.63		19.	8 0.08	17 ASH MEADOWS	
1	13:42:38	37.872	116,132	0.6	0.52	1.0	109	BC1		1.38		1.38		21.	0.15	10 REVEILLE PEAK	
1	15:46:22	37.164	117.353	0.2	7.65	0.7++	108	ACI	1.54	1.44		1.59		17.	4 0.08	23 UBEHEBE CRATER	
1	17:42:23	36.572	116.189	0.3	11.12	0.7	148	ACI		0.80		0.76		15.	7 0.07	13 SPECTER RANGE SW	
1	18:29:46	38.860	116.295	0.4	-0.31	0.4	78	M 1		0.61		0.54		1.	89.9	13 JACKASS FLATS	
1	21:43:25	37.091	116.310	0.2	9.15	0.4	62	VB1	1.92	1.54		1.77	2.1	9.:	2 0.10	43 BUCKBOARD MESA	
2	4: 7:33	37.155	117.477	8.9	3.10+		300	DDA		1.07				20.	8 8.89	6 UBEHEBE CRATER	
2	10: 5: 7	37.433	118.123	5.7	-1.02	10.6	294	DDA		1.57				71.	6 8.17	10QUAD. NOT LISTED	
2	12:15:19	36.778	116.279	0.8	6.01	1.3	223	ADA		0.90				10.	1 0.06	7 JACKASS FLATS	
2	14:17:30	37.464	118.105	8.6	7.60	3.1	222	DDA		1.64				68.	8 0.17	18 +++QUAD, NOT LISTED+++	
2	23:17:14	36.576	116.189	0.2	11.09	0.6	146	ACI		0.80		0.80		15.	5 0.07	16 SPECTER RANGE SW	
2	23:27:25	37.034	116.219	0.3	5.46	0.5	110	AB 1	1.36	1.10		1.19		1.	8 0.08	20 TIPPIPAH SPRING	
4	7:44:14	36.778	116.279	0.2	-0 .32	θ.2	72	- 441	1.21	0.73		0.47		4.	0 0.09	26 JACKASS FLATS	
4	20:22:33	36.436	117.005	0.4	10.08	0 .8	104	AB I				1.17		11.	1 0.10	15 ENIGRANT CANYON	
5	18: 2:27	37.436	115.579	0.3	6.12	1.6++	102	ACI		1.31		1.65		19.8	8 0.09	18 GROOM RANGE NE	
6	4: 1:36	37.040	115.154	0.6	6.15	0.9	252	ADI		1.25	1.70	1.36		14.	5 8.84	11 LOWER PAHRANAGAT LAKE ST	1
7	6: 1:25	36.813	115.952	0.4	6.67	0.8	218	ADI		0.79		0.85		16.	0.05	14 FRENCHMAN FLAT	
7	8:56:54	36.754	115.539	0.3	2.95	1.4	151	ACZ		1.27		1.63		25.	2 0.07	14 TIM SPRING	
7	20:30:13	37.882	116.138	1.7	2.22+		111	CCA		1.49				47.	0.28	9 REVEILLE PEAK	
8	6:36:49	37.871	116.134	0.7	5.00+		109	CCA		1.33				48.:	2 8.24	10 REVEILLE PEAK	
8	15:12:41	37.314	117.546	0.4	8.24	0.8	85	ABI	1.16	1.23		1.16		12.	7 0.08	11 MAGRUDER MTN	
8	18:22:35	36.908	117.461	0.3	8.75	0.6	169	ACI	1.99	1.64		1.90		12.	5 0.05	26 TIN MTN	
8	18:23:22	36.908	117.455	0.3	8.97	0.7	167	AC1		1.33		1.73		12.	3 0.08	17 TIN MTN	
8	19:40:12	36.909	117.460	0.4	7.62	0.7+	168	ACS				1.37		12.0	5 0.08	15 TIN MTN	
8	19:40:19	36.910	117.467	0.3	7.84	0.4	171	ACS	2.25	1.99		2.59		12.9	0.08	28 TIN MTN	
8	20: 2:38	36.909	117.462	0.3	8.96	0.6	169	ACI	1.72	1.63	1.88	1.82		12.0	5 0.08	24 TIN MTN	
8	20:12:59	36.907	117.461	0.3	9.75	0.6	169	ACI	2.05	1.64		1.85		12.4	. 0.08	21 TIN MTN	
8	20:13:55	36.908	117.465	0.3	7.93	0.8	171	ACI		1.37		1.69		12.	7 0.07	18 TIN MTN	
8	20:19:46	36.906	117.464	0.3	9.19	0.6	171	ACI	1.65		1.86	1.78		12.4	0.08	24 TIN MTN	
8	20:20:12	36.910	117.449	0.3	7.90	0.8	172	ACS			1.60	1.82		12.	3 0.04	9 TIN MTN	
8	20:36: 2	36.910	117.461	0.4	8.91	0.8	168	ACI		1.28		1.60	•	12.	5 0.09	14 TIN MIN	
9	0: 2:14	36.909	117.456	0.3	8.70	0.6	166	AC1	1.28	1.31		1.63		12.	5 0.08	19 TIN MTN	
× 9	2:45:15	35,950	117.043	0.4	0.63	0.3+4	260	AD I		1.47		1.75		15	0.07	18 MANLY PEAK	
ğ	14:33:12	36.950	117.462	0.5	0.34	0.7	161	ACZ		1.15		1.41		11	5 0.1A	12 TIN MTN	
ģ	18:19:53	37.868	116.132	0.6	~0.49	1.0	109	BCT	1,48	1.55		1.72	1.7	20	7 8.16	11 REVELLLE PEAK	
10	8:49:33	37.139	117.824	0.7	9.23	1.6+	212	ADI		1.40		1.59		18	8 8.11	14 WALKORA SPRING	
10	12:35:24	37.870	116.131	0.5	0.17	0.8	109	ACS	1.89	1.58		1.81		20	7 0.13	12 REVEILLE PEAK	
10	22:52:12	36.857	116.730	0.2	0.48	0.3	120	ACZ	1.22	0.88		0.47		11.	0.07	16 BARE MTN	
11	3. 7. 1	36 623	116 842	A 2	-1 50	ο .	111	ACC	1 42	1 21	1 07	1 96		10		10 COECTED DAVIDE OF	
11	3-12-50	36 621	116 895	0.1	-0 77	A 5	110	ACI	1.76	0 88	1.04	A 05		12.9	7 0.00	17 SPECIER RANGE DE	
	0.12.00				*					÷.00		v.30		• 4 • •		IN UTLUICH MUNUE 35	

61

03

H^{umunun}t H^{umunun}t H^{umun}t

? 7 ? 3 21051

1987 LOCAL HYPOCENTER SUMMARY - SGB EARTHOUAKES

	DATE (L	- TIME ITC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND AZI ERROR GAP Z(KM) (DEG	QQD 12S MAGNITUDE) Mca Md	ESTIMATES MLh MLV	MLc	DEL- RMS (IN MIN RES. PH. U.S.G.S. (KM) (SEC) QUADRANGLE
	APR 11 13 14 15 15 16	19:30:59 12: 0:59 15:20:17 18:33:22 19:56:12 2: 5:45	36.953 36.561 36.289 37.466 37.463 37.861	117.454 116.252 116.986 117.255 117.260 116.134	0.5 0.3 0.5 0.4 0.6	4.54 -0.05 0.17 1.39 -0.33 0.70	2.9+ 158 0.3 185 0.5 150 1.9 146 0.6 132 0.6 188	BCI 1.51 1.44 ADZ ACI 1.73 1.58 ACI 1.25 ACZ ADI 1.89 1.53	1.66 1.7 0.7 1.5 1.00 1.0 1.04 1.1 1.6	0 2 0 6 3 3	10.9 0.14 17 TIN MTN 12.2 0.06 16 LATHROP WELLS SE 9.8 0.10 20 FURNACE CREEK 18.3 0.13 14 MOUNT JACKSON 18.0 0.10 12 MOUNT JACKSON 20.5 0.13 15 REVEILLE PEAK
	16 18 18 18 19 19	5:50:42 1:48:47 4: 1:43 23:25:18 0:13:55 5:55:54	37.385 37.869 37.870 37.249 37.519 37.121	114.967 116.130 116.131 116.511 115.631 117.871	0.4 0.2 0.4 	0.62 0.47 0.20 -0.55• 8.22 6.71	0.5 179 0.7 109 0.4 109 63 253 2.9 260	ACT 1.09 ACI 1.88 1.55 ACI 1.77 1.75 CCA 2.21 ADA 2.13 DDA 1.84	1.1 1.6 1.8	8 31.6 3	7.8 0.07 9 DELAMAR NW 8 20.7 0.11 13 REVEILLE PEAK 20.8 0.09 20 REVEILLE PEAK 12.3 0.17 24 THIRSTY CANYON NE 97.9 0.01 4 TEMPIUTE MTN 77.4 0.17 7 WAUCOBA SPRING
	20 20 20 20 21 21	11:24:34 12:47:22 18: 7:22 18:21:21 5:21: 5 12:23:41	36.589 37.256 37.432 37.432 36.586 37.686	116.243 116.516 115.239 115.237 116.251 115.157	0.2 0.2 0.5 0.4 0.2 0.3	-0.90 -1.98 7.98 8.42 -0.67 0.94	0.4 81 0.3 47 2.8+ 86 2.0 110 0.5 169 0.5 102	ACI 1.91 ACZ 2.27 2.23 BCI 2.37 BBI 1.50 ACI 0.96 ACI 1.34 1.21	1.9 2.2 2.4 1.62 1.4 1.6 1.71 1.3	0 6 3 8 8	10.7 0.09 28 SPECTER RANCE SW 11.7 0.08 30 TRAIL RIDGE 16.9 0.10 13 ASH SPRINGS 16.7 0.11 11 ASH SPRINGS 10.3 0.07 20 LATHROP WELLS SE 10.8 0.08 12 FOSSIL PEAK
~	21 23 23 23 23 23 23	13:18:40 0: 6:18 4:44:48 4:46: 7 9: 4:12 10:15:22	37.004 37.869 37.863 37.009 37.007 37.870	117.577 116.133 116.138 117.564 117.576 116.131	0.6 0.2 0.6 0.4 0.5 0.2	2.70 0.21 0.71 2.99 4.44 1.23	2.8 182 0.3 109 1.0 107 2.8 178 6.5 181 0.9 109	BD1 1.39 ACI 2.12 2.18 ACI 1.53 1.34 BCI 1.99 1.80 CDI 1.31 ACS 1.91 1.69	1.52 1.4 2.22 2.8 1.6 2.1 1.3 1.8	18 18 2.5 13 19 18 1.5 14	20.6 0.12 14 LAST CHANCE RANGE 5 20.9 0.08 29 REVEILLE PEAK 20.9 0.14 11 REVEILLE PEAK 19.4 0.11 21 LAST CHANCE RANGE 5 20.4 0.11 13 LAST CHANCE RANGE 20.8 0.07 18 REVEILLE PEAK
	23 24 24 24 24 26 26	18:50:56 1:33:43 2:37:23 10: 5:59 7:29:58 15:29:31	37.863 37.861 37.290 36.722 37.861 36.645	116.138 116.136 117.297 116.139 116.134 116.323	0.2 0.4 0.5 0.3 0.3 0.3	0.97 0.32 -0.28 -0.07 0.07 2.94	0.3 107 0.6 107 0.4 81 0.5 123 0.5 107 0.3 131	ACI ACI 2.00 1.82 AAI 1.25 ACI ACI 1.84 1.63 ABI 0.72	1.4 2.0 1.1 0.5 1.9 0.6	4 33 1 66 94 66	20.9 0.02 7 REVEILLE PEAK 20.6 0.13 20 REVEILLE PEAK 3.7 0.10 11 GOLD POINT 12.2 0.09 15 SPECTER RANGE NW 20.4 0.11 20 REVEILLE PEAK 1.5 0.07 14 STRIPED HILLS
	26 27 27 27 29 29	16:45:45 5:20:42 6:37:31 7:34:21 11:54:18 12:49:42	37.296 37.551 37.873 37.204 36.823 36.751	115.432 117.463 116.129 117.919 116.302 115.537	0.4 0.3 0.5 0.6 0.3 0.2	0.79 0.91 -0.12 -1.48 4.33 2.65	0.5 91 0.5 124 0.9 110 0.6 225 0.7 90 2.1 95	ACI ACI BCI 1.56 1.37 ADS 1.87 1.85 AAI 0.52 BCI 1.86 1.28	1.2 1.32 1.0 1.6 2.0 0.5 1.7	19 1.7 15 13 13 13 14	7 25.9 0.08 12 CUTLER RESERVOIR 12.7 0.07 11 MONTEZUMA PEAK SW 20.9 0.15 15 REVEILLE PEAK 24.4 0.08 17 WAUCOBA SPRING 4.7 0.09 16 JACKASS FLATS 25.3 0.08 19 TIM SPRING
	29 30 MAY 1 1 2 2	14:39: 0 13:49:38 2: 6:31 13:14: 9 6:54:47 9:32: 2	36.699 36.757 37.259 37.314 37.412 37.379	116.215 117.284 116.388 114.858 115.670 115.329	0.6 7.3 0.6 0.8 0.5 0.2	7.60 31.90 9.90 2.53 0.95 6.58	0.5 228 2.4 239 0.6 212 2.0 223 0.8 107 2.6 100	ADI DDA 1.41 ADS 1.21 ADS 1.76 1.67 ACZ 1.22 1.36 BC1 1.73 1.58	1.1 1.68 0.8 1.93 2.6 1.6 1.87 1.7	14 33 01 56 74 2.5	7.0 0.03 6 SPECTER RANGE NW 33.4 0.22 6 TIN MTN 7.6 0.07 13 SILENT BUTTE 19.9 0.06 10 GREGERSON BASIN 12.6 0.11 14 BALD MTN 5 24.8 0.07 16 HANCOCK SUMMIT
	3	3:12: 1 3:16: 4	37.858	116.137 116.136	0.6 0.4	5.29 0.78	6.8 106 0.7+ 107	CCI 1.60 ACI 1.88 1.74	1.7	78 71	20.5 0.12 8 REVEILLE PEAK 20.7 0.12 14 REVEILLE PEAK

62

1 44.60 V

71351 ÷) ? 7

1987 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

DA	TE - TIME	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND AZI ERROR GAP Z(KM) (DEG)	000 125 I	MAGNITUDE Mico Mid	ESTIMAT MLh	ES MLv L	IL C	DEL MIN (KM)	RMS RES.	IN PH. U.S.G.S.
MAY	3 3:16:34 4 21:43: 9 4 22:39:32 5 10:36:12 5 21:16:30 7 5: 8:29	37.853 37.853 37.865 36.700 36.540 37.002	116.137 116.146 116.133 116.274 117.057 116.201	0.2 1.0 0.4 0.2 0.3 0.7	1.90 7.09 0.66 0.96 11.13 5.06	0.7 105 4.5++118 0.5 108 0.4 55 0.6++1/9 0.8 203	ACI BCI ACI AAI ABS ADS	1.28 1.38 1.63 1.16	2.42	1.41 1.49 1.43 1.29 0.55		20.2 20.8 20.6 4.7 21.2 4.6	0.04 0.06 0.09 0.09 0.05 0.05	6 REVEILLE PEAK 6 REVEILLE PEAK 11 REVEILLE PEAK 27 STRIPED HILLS 11 STOVEPIPE WELLS 11 TIPPIPAH SPRING
	7 20:31:40 8 11: 0:32 8 11:19: 2 8 13:11: 0 8 15:36:45 8 18: 5:54	37.358 37.042 36.706 36.624 37.102 37.455	117.283 116.139 116.564 116.268 116.269 115.425	0.4 0.2 0.2 0.2 0.2 0.2 0.2	2.38 0.01 7.54 5.07 3.58 6.00	0.8 162 0.3 116 0.6 140 0.5 148 1.1 104 1.7+ 100	ACI ABZ ACI ACI ABI ACI	1.05 1.23 1.14 0.76 1.11 1.35 1.19 1.03 0.96	0.90	1.16 0.63 0.75 0.76 0.82 1.32	1.2	6.8 8.1 11.2 6.9 8.0 26.0	0.07 0.06 0.07 0.06 0.05 0.05	15 GOLD POINT 22 TIPPIPAH SPRING 21 BIC DUNE 18 LATHROP WELLS SE 16 BUCKBOARD MESA 12 CRESCENT RESERVOIR
	9 10:58: 3 9 11: 4:27 9 22:18:54 10 7:17:27 11 13: 1:19 11 13:56:37	37.253 37.239 36.980 37.384 37.863 37.001	115.011 115.003 116.159 117.132 116.131 116.197	0.6 1.7 0.2 0.2 0.4 0.2	4.73 3.16• -1.20 0.43 1.34 2.99	$\begin{array}{cccc} 3.1 & 197 \\ \hline - & 237 \\ 0.2 & 92 \\ 0.3 & 82 \\ 1.6 & 108 \\ 0.4 + & 85 \end{array}$	BDI CDI ABI ACZ ACS AAI	1.68 1.77 1.69 1.43 1.00 1.28 1.80 1.58 1.12	1.64	2.10 1.59 0.73 1.30 1.74 0.51		17.4 46.3 8.2 14.4 20.4 5.0	0.13 0.19 0.07 0.09 0.12 0.06	15 ALAMO SE 10 LOWER PAHRANAGAT LAKE 17 MINE MTN 23 STONEWALL PASS 14 REVEILLE PEAK 15 TIPPIPAH SPRING
	11 19:18:32 12 8:28:5 14 2:39:7 15 7:53:1 15 18:16:19 16 12:3:44	37.856 36.373 37.270 37.243 37.317 37.133	116.129 117.488 117.865 114.972 116.290 116.261	0.5 0.8 0.6 0.7 0.9 0.4	0.56 1.62 7.03 8.94 2.67+ 7.39	0.8 106 3.1 240 1.8 206 1.8 164 	ACI BOI ADI ACA CDS ADS	1.78 1.58 1.52 1.34 1.68		1.74 1.20 1.48 1.62		19.8 35.7 17.6 19.5 32.4 11.0	0.14 0.08 0.10 0.12 0.07 0.03	14 REVEILLE PEAK 14 PANAMINT BUTTE 14 SOLDIER PASS 13 DELAMAR 3 NW 13 DEAD HORSE FLAT 8 AMMONIA TANKS
	17 7:37: 0 17 13:16:17 18 7:57:39 18 7:57:39 19 19:41:59 20 5:33:45	37.226 37.277 37.111 37.115 36.781 37.111	116.949 116.113 117.238 117.243 116.093 117.231	0.2 0.4 0.3 0.7 1.2 0.2	11.76 -1.39 8.11 10.78 5.76 7.40	0.7++139 0.7 108 1.5 124 1.2 146 1.6 295 0.9 75	ACI ACS ACI ACA BOZ ACT	1.71 1.34 1.17 1.31 2.56 0.97	0.71	1.47 0.93 0.84 0.83	1.8	21.7 12.1 21.2 20.7 10.6 16.1	0.09 0.10 0.06 0.11 0.04 0.07	29 SPRINGDALE 11 OAK SPRING BUTTE 12 BONNIE CLAIRE SW 10 BONNIE CLAIRE SW 6 CANE SPRING 19 BONNIE CLAIRE SW
	20 15:53:23 21 12:40:21 21 12:40:44 21 23:15:53 22 20:2:55 23 5:14:15	37.245 37.397 35.980 37.686 37.337 37.517	117.492 117.299 117.286 116.662 115.174 114.583	0.2 0.1 1.7 0.2 0.1 0.9	-0.06 -0.07 2.70 9.42 7.77 4.55	0.4 110 0.2 114 4.9 261 2.4++ 128 0.5 129 3.6++ 281	ACZ ACI BOS 1 BCI ABI BDI 2	1.18 0.92 1.60 1.35 1.29 1.16 2.34 2.00	1.12	0.93 0.96 1.49 1.58 1.42 2.63	2.3	13.8 11.3 37.8 43.8 13.4 16.9	0.09 0.05 0.11 0.06 0.02 0.08	16 UBEHEBE CRATER 20 MOUNT JACKSON 11 TRONA 18 MELLAN 9 ALAMO 11 CALIENTE
	24 19:52:59 25 22: 8:51 26 7: 2:30 26 7:14:56 26 26 7:39:43 26 26 8:30:14 30:14	36.774 37.377 36.955 36.956 36.957 36.957	116.166 117.140 117.522 117.521 117.519 117.518	0.2 0.5 0.3 0.4 0.4 0.4	5.52 4.68 5.56 6.28 4.45 5.12	0.4 144 2.3 133 1.8 192 2.0 178 3.2 177 2.3 177	ACI BCI ADI ACI BCI BCI	1,14 1,12 1,13 1,17 1,16 1,11	0.93	0.53 1.19 1.55 1.29 1.39 1.29		8.9 13.4 16.4 16.3 16.0 16.0	0.05 0.13 0.05 0.09 0.09 0.08	14 SKULL MTN 21 STONEWALL PASS 9 DRY MTN 11 DRY MTN 14 DRY MTN 14 DRY MTN 14 DRY MTN
	27 0:55:13 27 23: 2:16	37.855 37.398	116.136 115.061	0.5 0.5	0.43 2.48	0.8 106 0.4 153	ACS ACI 1	1.41 1.69 1.80	1.81	1.66 1.84		20.2 1.3	0.14 0.10	13 REVEILLE PEAK 12 ALAMO NE

63

á

۰.

۰.**۱**

/

٠

1987 LOCAL HYPOCENTER SUMMARY - SCB EARTHQUAKES

DATE (I	- TIME JTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 12S	MAGNI Mga	I TUDE Md	ESTIMA MLh	TES MLv	MLc	DEL- MIN (KM)	RMS RES. (SEC)	PH.	U.S.G.S. QUADRANGLE
MAY 27 28 28 29 29 29 29	23:58:36 7:50:23 8:29:37 4: 9:15 9:34:14 10: 3:34	36.607 36.781 36.785 37.856 36.634 36.634	116.269 116.129 116.124 116.138 116.320 116.321	0.4 0.3 0.2 0.5 0.4 0.2	7.56 9.62 8.62 0.52 2.34 1.90	0.7 0.7 0.9 0.9 0.3 0.4	163 87 89 106 167 63	AC1 AA1 AB1 AC1 AC1 AA1	0.98 1.31 1.68 1.50	0.45 1.08 1.06 1.53 0.68 1.17	0.85	0.78 1.05 1.07 1.63 0.52 1.15	1.3 1.3	7.7 8.9 8.7 20.4 2.1 2.1	0.06 0.09 0.09 0.11 0.08 0.09	14 25 25 12 20 31	LATHROP WELLS SE SKULL MTN CANE SPRING REVEILLE PEAK STRIPED HILLS STRIPED HILLS
30 30 JUN 1 3 4	6:15:41 22:32:20 11: 3:35 13:11:42 4: 4:58 17: 7:16	36.436 37.227 36.894 37.328 37.336 37.380	117.075 116.620 116.466 114.874 115.176 117.139	0.6 0.1 0.2 0.8 0.2 0.2	13.42 9.76 4.94 9.23 6.05 -0.10	0.9 0.3 0.3 0.9 1.6 0.3	147 68 151 216 128 134	BCI AAI ACZ ADS ACI ACZ	1.46 1.60 0.74 1.63	1.15 1.26 0.70 1.58 1.33 1.17	0.83	1.52 1.34 0.07 1.51 1.25 0.94		9.7 7.4 1.2 17.9 13.6 13.8	0.15 0.06 0.04 0.07 0.05 0.05	23 29 14 8 10 14	EMIGRANT CANYON THIRSTY CANYON NE TOPOPAH SPRING NW GREGERSON BASIN ALAMO STONEWALL PASS
5 6 7 7 7 7	13:45:18 20:50:22 5: 1:52 15:52:24 18:25: 4 22:13:55	37.383 37.238 37.264 37.377 37.873 37.582	117.142 114.914 115.137 117.140 116.126 116.377	0.1 0.5 0.4 0.4 0.5 0.2	0.25 7.20 0.03 -0.51 0.00 1.73	0.2 2.2++ 0.6+ 0.4 0.9 0.9+	134 174 160 197 110 89	ACI BCI ACI ADI BCS ACI	2.41 1.76 1.80 1.91	1.18 2.30 1.81 1.07 1.83 1.80	1.12 2.12 0.90 1.52	1.10 2.14 1.83 1.00 1.96 1.95	1,7	13.7 22.3 11.5 13.5 20.7 17.7	0.06 0.04 0.05 0.07 0.19 0.08	20 11 15 18 25	STONEWALL PASS DELAMAR 3 NW ALAMO STONEWALL PASS REVEILLE PEAK QUARTZITE MTN
8 9 10 10 10 11	11:18:58 4:17:31 7:27: 1 23: 5:52 2:53: 9 5:41:59	37.389 37.372 37.378 37.265 37.269 36.828	117,134 117,146 117,141 116,387 116,387 117,461	0.2 0.3 0.2 1.2 0.7 0.6	0.28 -1.17 -0.47 8.42 8.36 9.04	0.3 0.4 0.4 1.7 1.0 0.5	131 178 133 217 221 188	ACI ACI ACI BDI ADI ADI	1.28 1.79 1.41	1.21 1.16 1.22 0.97	1.24 1.01 0.97 2.19 1.21	1.07 0.86 0.79 1.36 0.95 1.29		14.7 12.7 13.4 7.9 8.3 5.6	0.07 0.06 0.06 0.05 0.05 0.07 0.10	16 13 16 10 15 18	STONEWALL PASS SCOTTYS JUNCTION SW STONEWALL PASS SILENT BUTTE SILENT BUTTE TIN MTN
11 11 11 11 11	5:50: 0 5:50:15 7:10:33 7:37:12 7:45:41 10:55:17	37.380 37.372 37.385 37.389 37.386 37.282	117.141 117.142 117.136 117.141 117.136 117.535	0.4 0.5 0.1 0.2 0.1 0.4	-0.65 -0.84 0.65 0.63 0.58 7.61	0.5 0.2 0.2 0.2 0.2 0.7	180 201 82 131 83 82	AD1 ADS ACI ACZ AC1 AB1	1.51	1.04 0.97 1.32 0.89 1.35 1.06	0.98 0.71 1.29 1.01	0.94 0.86 1.16 0.95 1.34 1.04	1.4	13.5 12.9 14.2 14.2 14.4 7.8	0.07 0.07 0.06 0.04 0.06 0.10	12 9 24 13 26 16	STONEWALL PASS SCOTTYS JUNCTION SW STONEWALL PASS STONEWALL PASS STONEWALL PASS MAGRUDER MTN
11 11 11 11 11 12	11:42:28 14:24:35 23:12:46 23:58:31 23:58:34 0: 1: 2	37.030 36.859 37.392 37.389 37.385 37.385 37.380	116,731 116,739 115,010 117,138 117,135 117,143	0.2 0.3 0.2 0.2 0.2 0.2 0.3	0.42 3.93 0.45 0.90 0.24 -1.21	0.4 4.3 0.1 0.4 0.3 0.5	73 108 219 131 83 133	ACI BCI AD1 ACI ACZ ACZ	1.40 1.88	1.36 1.02 1.96 1.13		0.85 0.67 1.21 1.86 1.08		13.0 12.2 4.0 14.5 14.3 13.4	0.09 0.10 0.01 0.05 0.08 0.08	24 18 7 16 23 14	THIRSTY CANYON SW BARE MTN ALAMO NE STONEWALL PASS STONEWALL PASS STONEWALL PASS
12 12 12 12 12 12	0:35:32 7:27:57 7:28:44 8: 4: 4 8:20:20 12:56:58	37.390 37.380 37.379 37.117 37.864 37.370	117.141 117.143 117.143 116.587 116.134 114.997	0.3 0.2 0.2 0.7 0.3	2.08 -0.69 -0.65 11.16 -0.39 -0.66	0.6++ 0.3 0.3 0.6++ 1.2 0.2	206 133 133 79 108 176	ADI ACZ ACZ ABI ACI ACI	1.54	1.12 1.12 1.38	1.01 1.00 1.02	0.88 1.07 1.05 1.10 1.42 1.31		14.3 13.5 13.3 12.7 20.6 6.2	0.05 0.06 0.07 0.08 0.12 0.07	13 16 21 26 10 11	STONEWALL PASS STONEWALL PASS STONEWALL PASS THIRSTY CANYON SE REVEILLE PEAK DELAMAR LAKE
13 14	5:12:16 8:15:52	37.103 36.136	116.245 116.608	0.1 2.0	7.15 7.00•	0.3	104 246	AB1 DDA		1.22		0.93		7.4 47.4	0.04 0.08	22 5	TIPPIPAH SPRING FUNERAL PEAK

64

3

9 1 8 5 1 2 **2 9**

1987 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

	DATE (- TIME UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (КМ)	STAND ERROR Z(KM)	AZ I GAP (DEG)	000 125	MAGN Mc a	I TUDE Md	ESTIMA MLh	TES MLV	MLc	DEL MIN (KM)	RMS RES. (SEC)	PH.	U.S.G.S. QUADRANGLE
	JUN 15 15 16 16 16	13: 6: 4 13:21: 8 7:26:40 13:18:26 15:40:11 22:47:57	36.283 37.868 35.865 37.865 37.322 37.235	116.761 118.141 116.720 116.134 114.863 114.912	0.7 0.9 0.3 1.1 0.3	7.00•• 3.13• 4.63 1.34 5.55 10.40	3.3 1.3 1 6.4 1.2	142 108 249 108 220 175	BDA CCA BDI ACS CDI ACI	1.98 2.61	2.18 1.44 1.33 1.96 1.72	1.92	1.35 2.26 1.58 2.80	2.3	13.6 48.1 17.2 20.7 19.1 22.7	0.24 0.18 0.09 0.13 0.06 0.05	4 14 11 24 7 13	FURNACE CREEK REVEILLE PEAK CONFIDENCE HILLS REVEILLE PEAK GREGERSON BASIN DELAMAR 3 NM
	16 16 17 17 19 21	22:55:34 23: 1:46 0: 0:51 1:45:38 17:38: 4 17:13:16	37.234 37.234 37.097 37.861 37.204 37.263	114.90ð 114.913 115.274 116.136 117.610 115.513	0.3 0.7 0.3 0.4 5.4 1.0	4.95 6.12 7.93 0.06 2.46• 16.24	2.4 3.2+ 1.0 0.6 3.2	213 213 127 107 302 152	BDI BDI ABI ACS DDI BCI	2.43 2.07 2.56 1.80	1.97 2.32 1.64 1.50 1.63	2.16 4.18	2.60 1.95 2.79 1.72 1.07		23.0 22.8 11.1 20.6 32.6 30.8	0.04 0.06 0.11 0.11 0.12 0.12	11 10 24 12 11 8	DELAMAR 3 NW DELAMAR 3 NW DESERT HILLS SE REVEILLE PEAK LAST CHANCE RANGE GROOM RANGE SE
	21 22 23 23 24 24	17:14:37 22:10:25 6:10:49 22:22:45 4:25:13 7:55:54	37.260 37.862 36.586 35.675 36.579 36.648	115.506 116.135 116.235 116.564 116.251 116.289	0.6 0.4 0.2 1.5 0.2 0.3	14.84 -0.49 -2.03 12.02 -1.82 2.34	2.8 0.7 0.3 0.5 0.5 0.6+4	62 107 133 269 173 122	BCI ACS ACZ BDI ACZ ABI	1.91 1.39 2.69 1.29	2.13 1.71 1.09 1.20 1.32	2.98	1.85 1.22 1.04		30.1 20.6 11.4 42.3 10.8 4.5	0.09 0.13 0.06 0.13 0.07 0.07	11 14 19 30 17 18	GROOM RANGE SE REVEILLE PEAK SPECTER RANGE SW LEACH LAKE LATHROP WELLS SE STRIPED HILLS
γī	24 24 25 25 25 25	14:27:59 16:40:42 6: 1:59 13:58:16 16:43:32 15:37:56	36.825 36.578 36.795 37.688 37.155 36.778	117.595 116.256 115.954 115.089 115.533 117.715	0.4 0.3 0.1 0.2 0.9	-1.32 -1.61 -0.23 0.92 -0.22 5.69	1.0 0.5 0.4 0.2 0.3 3.8	192 176 162 102 119 236	ADS ACZ ACI ACI ACZ BOI	2.27 1.37 1.39 1.62 1.55	2.23 1.04 1.19 1.51 1.30	2.12 1.87 1.58	2.54 1.13 1.42 1.44 1.30 1.17	1.9	17.1 10.6 14.9 14.0 29.1 27.8	8.09 9.06 9.08 9.03 9.03 9.08 9.08	32 12 22 12 17 11	DRY MTN LATHROP WELLS SE FRENCHMAN FLAT HIKO NE FALLOUT HILLS NE DRY MTN
	26 27 28 28 29 30	23:57: 2 1:41:52 0:58: 2 4:47:18 14:30:53 16: 5: 0	37.262 37.379 37.713 37.352 37.268 36.995	115.513 117.140 115.053 116.356 117.592 116.054	0.2 0.3 0.2 0.4 0.5	0.73 -0.14 6.34 0.42 2.69 -0.34	0.3 0.3 1.1 0.3 0.8+ 0.8	93 180 118 107 79 123	ACS ADI ABI ACZ ABI ABA	1.86	1.53 1.19 1.10 0.98 3.16	1.98 1.05	1.63 1.06 1.12 1.03 0.97	1.7 1.2	24.3 13.5 12.3 25.2 6.2 6.9	0.09 0.04 0.07 0.07 0.10 0.09	22 12 12 16 15 15	GROOM RANGE SE STONEWALL PASS HIKO NE DEAD HORSE FLAT MAGRUDER MIN YUCCA LAKE
	JUL 1 2 3 3 3 4	19:23:20 0:32:47 7:10:14 14:48:38 14:48:59 4:35:51	37.435 37.848 38.369 37.686 36.907 36.815	115.233 115.759 115.775 115.094 117.478 115.986	0.2 8.1 1.2 0.4 0.3 0.5	5.71 0.40 -0.45 1.46 11.11 8.51	1.1 0.3 1.1 1.2 0.5 0.9	156 99 236 100 176 197	ACI ACS BDI ACS ACI ADI	2.12 2.69 1.35 1.86	0.93 1.91 1.17 1.77 0.67	1.47 2.05	1.23 2.28 2.50 1.33 2.09 1.06	2.7 1.8	16.4 19.1 45.9 14.3 13.0 14.4	0.04 0.05 0.11 0.05 0.09 0.09	9 17 12 9 28 15	ASH SPRINGS THE WALL SE HIKO NE TIN MTN FRENCHMAN FLAT
	5 5 5 5 6 6	11:24:47 16:43:40 16:58: 0 23: 3:12 17:23:35 22:42:51	37.370 37.193 37.518 37.196 36.812 37.173	117.224 114.826 115.737 117.415 115.828 116.448	0.2 €.8 0.6 0.2 0.3 0.5	-0.64 -0.41 5.75 6.24 -1.25 7.53	0.2 0.8 2.0 1.0 0.9 1.6	138 228 146 136 127 120	ACI ADS ACS ACS ACS ABI	2.00 2.16	1.38 1.76 1.08 2.04 1.38	0.98 2.15	1.36 1.38 1.81 1.18 2.03 0.83	2.3	8.2 31.0 12.3 18.2 13.1 12.0	0.07 0.07 0.07 0.04 0.10 0.09	20 10 11 11 24 15	SCOTTYS JUNCTION SW DELAMAR 3 NE TEMPIUTE MTN UBEHEBE CRATER FRENCHMAN LAKE SE SCRUCHAN PEAK
	હે 6	23:17:52 23:31:38	37.386 36.824	117.13 0 115.757	0.2 0.5	0.57 8.44	0.3 1 0.8+	83 † 264	ACS ADI	0.95	0.99	0.94	1.06 0.93		14.7 15.2	0.08 0.05	16 13	STONEWALL PASS FRENCHMAN LAKE SE

ç

· M_{H (1}) ⁽¹¹⁾

и<mark>нныйсс</mark>и иннийсси истрания истрания истрания

1987 LOCAL HYPOCENTER SUMMARY - SCB EARTHOUAKES

DA	TE -	TIME	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND AZ ERROR GAI Z(KM) (DEI	I 000 P 125 G)) 5 MAGN Mco	ITUDE Md	ESTIMAT MLh	IES MLv	MLc	DEL- MIN (KM)	RMS RES. (SEC)	PH.	U.S.G.S. QUADRANGLE
	-	c. 0.16	16 711	116 843	0 1	4.74	0.7 13	9 AC	1 1.37	1.20		0.98		10.9	0.05	22	CAMP DESERT ROCK
JUL	4	6: 0:40	36.733	115 816	9.5	4.45	2.8 10	5 BC	1 1.57	1.29		1.52		13.6	9 0.15	25	FRENCHMAN LAKE SE
	<u> </u>	19:24: 3	30.011	115.010	1 3	8 59	1.9 25	7 BD	Ś	1.18		1.00		12.4	1 0.14	16	FRENCHMAN LAKE SE
	<u>′</u>	19:53:37	36.003	115.755	A 3	5 95	4.6+ 17	2 BC	1 1.76	3 1.71		1.83		42.2	2 0.09	20	CACTUS PEAK
	7	21:29: 9	37.991	110.933	0.5	8 62	2 8 18	8 BD	1 2.07	7 1.95	1.83	2.00		13.2	2 0.13	24	FRENCHMAN LAKE SE
	8	3:28:59	36.812	115.707	2.7	5 97	5 8 22	9 80	S .			1.68		63.3	3 0.18	6	GEORGES CANYON RIM
	8	3:51:41	38.253	116.702	2.2	5.07	5.0 22	0 00									
		11.60.65	37 230	114 916	0.6	0.51	0.6 23	1 AD	S 1.35	5	1.65	1.20		22.	1 0.07	10	DELAMAR 3 NW
	0	10.41.50	37 866	118 152	0.2	7.71	0.7 11	9 AB	1			1.01		7.0	5 0.06	13	TIPPIPAH SPRING
	0	10.41.00	37 864	116.152	0.3	7.10	0.8 11	1 AB	1 1.26	ð 1.3 0		1.14		7.5	5 0.09	19	TIPPIPAH SPRING
	0	10:42:22	17 079	116 167	0.4	8.35	0.7 14	9 AC	I			0.76		7.3	20.06	12	TIPPIPAH SPRING
	8	20:07:40	37.070	116 150	0.2	8.62	0.6 11	1 AB	1			1.02		7.0	5 0.06	18	TIPPIPAH SPRING
	0	20:00:20	37,004	114 008	0.3	0.64	0.4 17	'5 AC	1 1.74	4		1.71		22.0	8 0.05	11	DELAMAR 3 NW
	8	21:43:55	57.250	114,300	0.0	••••											
	9	20:10:39	38.376	115.777	0.9	3.63+	23	57 CD	1 2.0	5 2.12		2.22	2.7	40.	/ 0.11		THE WALL NOT LISTED
	ă	21:31:48	36.913	117.453	0.3	10.18	0.5 16	54 AC	1			0.97		12.	/ 0.00	12	TIN MIN
	11	2 . 2 . 1	37.391	117,156	0.4	1.27	1.7 13	34 AC	S		0.83	1.17		13.	5 0.00	12	SIONERALL PASS
		14. 9.3	36.922	117.798	1.1	2.45	4.0 24	19 80	IS	1.14	1.26	1.31		37.	0 0.13	5 12	WAULUBA WASH
	12	10.14.22	37 188	117.400	0.1	-0.03	0.2 11	15 AC	S 1.1	6 1.28	0.70	1.00		17.	8 0.04	19	UBEHEBE CRATER
	12	15.53.12	36 971	117.981	1.2	2.74	4.1 24	48 BD	01 2.2	4 2.14	5 2.41	2.39		41.	6 0.14	20	WAUCOBA WASH
	12	10:00:12								1 00		1 67	,	10	e o o		WALLCORA WASH
	12	16:26:38	3 36.991	117.959	1.4	1.44	1.4 24	43 BC	5	1.29		1.5/		30.	7 0 0	2 10	STONEWALL DASS
	13	8:52:59	37.385	117.129	0.2	0.60	0.3	83 AU	1 1.2	9 1.30	5 1.52	1.41			7 0.0	2 4 1	STONEWALL PASS
	13	9:39:48	3 37.387	117.132	0.3	0.41	0.4 8	83 AC	;S	1.24	1.07	1.12		14.	1 0.00		STUNEWALL FASS
	13	14:13:54	37.122	117.424	0.4	6.38	1.7 14	49 AC	111.1	6 1.23	5 1.05	0.89		15.	3 0.10	2 13	CTONOMALL DASS
	13	20:10:15	5 37.387	117.133	0.2	0.36	0.4	BJ AC	1 2.2	5 2.14		2.40		14.	/ 0.0	3 2/	STONEWALL PASS
	13	20:18:15	5 37.382	117.135	0.2	-0.07	0.2 1	58 AC	:5	1.30	5 1.00	1.10	,		1 0.0	5 13	STOREMALL PASS
				117 132	0.3	0.07	0.5	83 A(21	1.14	4 1.11	1.03	5	14.	6 0.0	9 15	STONEWALL PASS
	13	21:22:20	0 37.303	116 453	A 1	-0.76	0.2	61 AC	35 1.8	5 2.00	9	1.88	3	12.	6 0.0	8 38	SCRUGHAM PEAK
	14	10:56:1	/ 3/.100	110.433	A 1	0 13	0.1 1	58 AG	CS		0.93	0.88	3	14.	1 0.0	3 14	STONEWALL PASS
	14	13:13:1	1 37.303	117.130	0.1 0.1	10 10	1 2++ 1	23 AC	ά. 1.€	6 1.39	9 1.48	1.38	3	27.	3 8.6	8 21	FALLOUT HILLS SW
	14	19:21:3	2 37.080	115.740	0.5	1 70	1 4 1	11 AC	ci 1.6	9 1.3	7 1.53	1.60)	28.	3 0.0	8 22	FALLOUT HILLS SW
	14	20:31:2	7 37.069	115.743	0.2	-0.45	1 4 1	68 AC	cs.	1.5	2	1.37	7	20.	9 0.1	3 11	REVEILLE PEAK
	15	1:50:4	8 37.867	116.135	0.0	-0.45	1.0	•••						_			
	16	13.50.7	1 36 406	117.006	0.5	9.30	0.6 1	77 A(21			0.93	3	8.	2 0.0	5 14	ENIGRANI CANYON
	10	7. 4.5	9 37 386	117 132	0.2	0.29	0.4	83 A(CI 1.5	57 1.5	3	1.54	6	14.	6 0.0	8 15	STONEWALL PASS
	10	10.31.	9 37 615	117 663	0.3	-0.82	0.5 1	17 A	CS	1.4	3	1.53	3	16.	.7 0.0	9 11	LIDA WASH
	10	12:31:	0 37.015 0 37 396	117 139	0.2	0.20	0.3	83 A	CS 1.8	34 1.6	7	1.89	9 1.'	9 14.	.7 0.0	8 22	STONEWALL PASS
	10	17:20:3	1 16 606	116 355	A 2	7.22	1.5	99 A	CI 1.3	39 1.3	6	0.84	4 1	4 16.	9 0.0	7 18	S LATHROP WELLS SE
	19	10:51:5	6 17 861	116 129	0.4	-0.18	0.7 1	08 A	CI 1.5	92 1.7	4	1.78	8	20	.2 0.1	3 15	5 REVEILLE PEAK
	20	8: 5:1	0 37.003	110.725	•••	••••											
	20	19:48:5	7 37.238	114.813	0.6	0.13	0.5 2	48 A	DS 1.9	97 1.7	0 1.90	1.56	0	28	. 2 0.0	0	CTAIDHALL DACC
	21	7: 8:5	6 37.384	117.133	0.2	-0.36	0.3 1	36 A	CS 1.0	69 1.6	/	1.7	9	14		0 13 ¢	SIUNEMALE FADD
	21	7: 9.4	0 37.215	117.600	0.4	4.66	0.7 1	78 A	CS .			0.8	5		.5 0.0	5	LASI CHANCE KANGE
	21	17.27.	3 37 221	117.878	0.7	4.40	4.4+ 2	144 B	01	1.4	1	1.3	1 1.	7 20		a 1.	I WAUCUBA SPRING
	22	12.10.3	3 36 954	117.553	0.6	8.54	1.9 1	82 A	DI	1.2	6	1.4	2	19	.2 0.1	Z 1	UKT MIN
	23	1:30:3	3 36.971	117.908	0.5	5.57	5.1 2	250 C	DI 2.	08 1.8	6	2.3	0	37	.20.0	7 23	Z WAUCOBA WASH
										90.1.6	7 1 08	1 7	5	34	4 8 1	2 2	2 WAUCOBA WASH
	23	1:32:4	9 36.984	117,877	0.6	6.04	4.47 2	()/ U	01 1.0		0 1.30		å		0 0 0	5 1	S MACRINER MTN
	23	6:27:2	2 37.262	117.688	0.2	-1.14	0.2 1	179 A	65	1.5	2 1.20	1.1	3	•	. 9 0.0	5 11	

66

7 1 3 5 1 2 **3** 1

1987 LOCAL HYPOCENTER SUMMARY - SGB EARTHOUAKES

1		- TINE			STAND		STAND	AZI	000)						Dire			
			CATTIODE	LONGITUDE	ERROR	DEPTH	ERROR	GAP	125		TUDE	ESTIN	ATES			RMS DCC			
	- U	0177)	(DEG. N)	(DEG. W)	H(KM)	(KM)	Z(KM)	(DEG)		Mca	1000	LUI N	MIC3		HIN .	RES.	нн	. U.S.G.S.	
		.			. ,	• •	-(/	(020)			-	m(n	MIL V	MLC	(KM)	(SEC)		QUADRANGLE	
10	L 24	3:38:15	37.096	117.353	0.2	-0.23	A 1	174	100										
	- 24	10:21:20	37.099	117.349	8 2	A	0.5	127	103		1.23		0.99		10.1	8 0.06	-14	UBEHEBE CRATER	
	25	1:25:27	37.169	117 387	9.6	-1.45	0.5	110	ACI	1.72	1.50		1.65		11.	1 0.09	-24	UBEHEBE CRATER	
	25	1:37:16	37.168	117 305	0.0	-1.43	1.0	118	ACS				0.89		18.0	6 0.14	11	UBEHEBE CRATER	
	25	2:41:48	37 269	116 364	0.2	7.24	0.8	121	ACI				0.86		19.3	2 0.06	13	URFHERE CRATER	
	25	2:57.6	37 370	110.304	0.5	9.67	0.5	234	ADI	1.55		2.04	1.36		7.	1 0.07	18	DEAD HOPEE ELAT	
		2107. 0	57.520	114.819	0.7	9.91	1.7	230	ADI	1.60	1.43	1.51	1.60		22 1	6 6 69	12	CRECEDOON DIAN	
	25	7.50. 4														0 0.00	14	GREGERSON BASIN	
	2.5	7:50: 0	37.620	117.509	0.1	0.73	0.2	119	ACS		1 21		1 18						
	20	0:4/:45	37.247	114.995	1.3	0.66	A A	237	BUC			1 20	- 1.10 - 77		19.1	0.04	12	LIDA WASH	
	27	10: 3:29	37.418	115.515	0.5	3.11+		70	- CC 4		1 07	1.23	0.//		18.4	0.04	7	DELAMAR 3 NW	
	27	17:0:7	35.736	116.191	0.2	4 71		13			1.97				23.9	0.14	15	GROOM RANGE NE	
	28	16:44:55	36.497	115.384	8 E	16 10		03	ABI	1.72	1.62	1.34	1.82		7.3	5 0.08	29	SPECTER RANGE NW	
	29	5:22:30	38.131	116 407	0.0	10.50	1.1	136	ACI		1.40		1.44		20.1	0.09	12	CORN CREEK SPRINC	N 2
				110.407	0.4	0.00	0.5	139	ACS	2.04	1.66		1.77		11.7	7 0.04	9	WARM SPRINCS IN	
	29	6:25.15	17 405	116 007													-	G MINUS NI	
	29	21.0.50	37 400	110.203	0.2	8.17	0.5	85	ABS	1.34	1.27	1.20	1.19		11 2	a ar	20	WHEEL BADOON DEAL	
	10	4.37.37	37.402	116.200	0.2	8.00	0.5	64	ABS	1.57	1.46	1.73	1 62	1 0	11 2	0.00	20	HILELBARROW PEAK	NW .
	10	4:27:27	37.508	117.555	0.3	2.92	1.0	79	ABS		1 69	1 85	1 41	• • •			~~	WHEELBARROW PEAK	NW .
	30	5:39:37	37.405	116.202	0.2	8.25	0.6	85	ARS	1 37	1 10	1 10	1.01		9.6	0.12	15	LIDA WASH	
	- 31	0:54:35	37.211	116.448		2 91		241	202	1.37	1.00	1.10	1.22		11.1	0.08	20	WHEELBARROW PEAK	NW
	31	3:45:30	37.216	116.326		4 77		101	DUA		1.29				20.3	5 0.19	- 4	SCRUCHAM PEAK	
						4.77		202	AUA		1.14				0.2	2 0.09	4	AMONIA TANKS	
	31	4: 6:19	37.281	116 372	5 6	4													
	31	4:29: 0	36 657	116 306	5.0	4.274		266	DDA		1.07				8.6	0.08	6	DEAD HORSE ELAT	
	31	4:57: 2	36 670	116 365	1.3	1.66	3.0	219	BDA		0.79				4.2	0.10	ġ.	ATHON WELLS AM	
	31	11-20-33	37 101	110.301	10.1	0.73	9.4	193	DDA		0.15				3.4	8.65	- 7 -	STRIPED VILLE	
	31	11-24-45	37.353	110.202	0.3	-0.71	10.1	155	CCA		1.92				12 1	A AA	á.	WEELD MILLS	
	31	16. 0.07	37.400	116,199	0.4	8.11	0.8	143	ACS		1.40				11 1	0.04		MIELBARROW PEAK I	NW
	21	10: 8:23	37.205	114,722	1.7	9.75	7.0	268	CDS		1 30		1 61	1 7	11.3	0.00	14	HEELBARROW PEAK I	NW
													1.31	1.7	30.7	0.10	8	VIGO NW	
AUG		4:25:28	37.385	117.139	0.1	0.26	8.2	135	AC7		1 35								
	1	7:36:37	37.403	116.202	0.2	8.26	A 5	13	ART	1 60	1.00		1.43		14.1	0.04	18 :	STONEWALL PASS	
	1	8:58: Ø	37.189	115.180	0.6	6 93	a 7	166	201	1.00	1.23		1.31		11.3	0.08	21 1	HEELBARROW PEAK N	W
	1	19:34: 8	36.668	116.359	8.2	2 27	0.7	130	ACI	1.00	1.24	1.87	1.70		2.4	0.09	16 1	OWER PAHRANAGAT I	AKE
	1	21:28:17	37.610	115 077	8.2	2.2/	0.3	101	ABS	1.29 6	8.94		0.81	1.2	3.1	0.06	17 :	TRIPED HILLS	2416
	2	5:41:57	37.403	116 203	0.2	2.10	0.6	119	ACI	1.16	1.12		1.09		13.3	0.06	12 1	IKO SE	
				110.205	0.2	8.50	0.6	85	ABI	1	1.43	1.31	1.18		11.3	0.07	18 1	HEELBARROW DEAK	
	2	6:56:22	37 385	117 136															144
	2	20.11.41	37 406	117.130	0.1	0.45	0.1	152	ACI	1	.36	0.94	1.19		14.2	0.03		TONEWALL DAGE	
		A. 1.10	37.400	110.202	0.2	8.71	0.6	85	ABI	1.52 1	.35	1.34	1.37		11 0	A A7		NEEL DADOOM DEAL	
	ž	10.27.50	37.400	116.203	0.1	9.44	0.8	125	ACI			1.21	1 21		21 8	0.07		HEELBARROW PEAK N	W
	3	10:27:59	37.404	115.201	0.3	8.60	0.6	85	ARI	1.63.1	45	1 78	1 62		49.0	0.04	2.	HEELBARROW PEAK N	W
	7	4:21:55	37.391	116.197	0.3	0 .12	0.4	159	ACS	1 70 1	50	1 61	1 67		11.2	0.10 2		HEELBARROW PEAK N	M
	•	11:50: 1	37.198	117.638	0.4	11.71	9 7	186	ADI	1 22 0		1.05	1.57		20.7	0.06	8 1	HEELBARROW PEAK N	W
							•	.00	\sim	1.22 0	. 99		1.22		3.9	0.10 1	14 L	AST CHANCE RANGE	
	4	13:16:53	37.398	110.201	0.3	0 00	A 2	106	401 7		74								
	5	14:33:15	36.637	116.274	8 4	6 62	0.2	100		2.11 1	.12		2.18	2.2	27.5	0.06 2	14 W	HEELBARROW PEAK N	NW .
	5	20:14:59	37.862	116.131	A X	-0.16	0.5	134	ABZ 1	1.18 1	.15	1.14	0.95	1.4	6.0	0.07 2	1 S	TRIPED HILLS	••
	6	7:37:52	36.432	117 034	0.J	-0.30	0.5	107	ACS 1	1.83 1	. 61		1.78		20.3	0.10 1	3 R	EVEILLE PEAK	
	6	8:57:43	37.396	116 107	0.5	11.55	0.4	124	AB(1	1.87 1	. 38		1.43		9.7	0.09 2	7 5	MIGRANT CANYON	
	6	13:15:35	36 951	116 136	0.5	12.12	1.0	98	ABI				0.83		23.1	8.69 1	4 1	HEFI BARROW DEAL	
				110,150	0.3	7.54	0.5	89	ABI	0	.95		0.84		7.6	0.07 7	2 1	THE NTH	π
	6	13-16-3	36 056			_											- 11		
	ě.	13-17-14	36 040	116.148	0.2	7.41	0.4	166	ACI				8.24		74			1485 4754	
	•			116.138	0.2	7.58	0.5	91	AB1	ĩ	. 18		8 62		7.4				
										•	•				1.0	0.00 2	두 원	INC. MIN	

67

.

9 1 0 5 1 2 9 3 2

1987 LOCAL HYPOCENTER SUMMARY - SCB EARTHQUAKES

D	ATE - (U	- TIME TC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	QQD 12S MAGNIT Mic a	UDE Md	EST[MA] MLh	TES MLV	MLc	DEL- RMS MIN RES (KM) (SEC	∦N . PH	. U.S.G.S. QUADRANGLE
AUG	6	13:25:34	36.951	116.137	0.3	7.26	0.5	147	ACI 1.38 1	. 08		1.07	1.2	7.7 0.0	26	MINE MTN
	6	13:59:37	37.387	117.130	0.1	0.88	0.2	83	ACI 1.50 1	. 65		1.75	1.3	14.8 0.0	5 27	STONEWALL PASS
	6	14:33:34	37.405	116.200	0.3	8.78	0.6	85	ABZ 1	. 36	1.20	1.37		10.9 0.0	7 15	WHEELBARROW PEAK NW
	7	18:30:31	37.750	116 414	0.9	3.28+	<u> </u>	208	CDI			1.46		53.5 0.0	13	MUD LAKE
	7	1:13:34	37.938	115.492	0.2	5.42	1.0	161	ACI 2 17 2	08		1.30	25	10 1 0.0	2 20	SCRUCHAM PEAK
	•				•••	••••						2.52	2.5	10.1 0.0		
	8	2: 8:35	37.379	117.143	0.4	2.94+		133	CCA 0	.78				13.4 0.0	5 10	STONEWALL PASS
	8	15:13:20	36.712	116,170	0.6	14.11	1.0	161	ACS 1	.24				9.7 0.0	9	SPECTER RANGE NW
	8	15:13:20	36.713	116.168	0.4	15.48	0.7	159	ACI 1	.21				9.8 0.6	59	SPECTER RANGE NW
	3	10:04:20	30.404	117 619	0.2	0.07	0.8	132	ACS 1.48 1	.15	1.06	1.21		17.7 0.0	21	ASH MEADOWS
	10	2.58.4	37 402	116 205	0.2	6 30	0.2	50	ACZ 1.30 1	.33	1.20	1.54		24.9 0.0	200	MULEIBADDOW DEAK NW
			.			0.00	0.0	5.		. 34	2.50	2.13		11.5 0.0		
	11	7: 9:42	37.371	115.113	1.1	8.96	1.3	142	BCI Ø).64	0.81		1.1	6.8 0.0	77	ALAMO SE
	11	9: 5:14	37.340	117.473	0.2	0.67	0.3	114	ACT		0.72	1.10		11.4 0.0	5 12	GOLD POINT SW
	12	1:12:20	37.733	117.240	1.0	1.23	2.8	181	BDZ	1,96		1.30		13.3 0.1	5 13	GOLDFIELD
	12	7:50:55	37 615	117 572	0.5	9.42	0.8	152	ADI 1	1.21				16.5 0.0	5 10	SPRINGDALE
	11	11.18.55	37 862	116 126	0.0 0.5	-9 47	9,5	110		65		1.10		10.00.1	5 9 5 0	DEVELLE DEAK
		11,10.00	07.002		0.5		0.7		AC3 1			1.59		19.9 0.0		REVEILLE FRAN
	13	11:46: 9	37.011	116.360	0.2	8.67	0.3	47	AAI 1.85 1	.29		1.36		3.5 0.0	7 36	BUCKBOARD MESA
	14	4:11:59	37.012	116.361	0.2	9.07	0.4	70	AAL 1.73 1	.40		1.33		3.5 0.0	3 32	BUCKBOARD MESA
	14	11:16:14	37.564	115.008	0.2	2.43	0.4	113	ACT 1	.10		0.96		11.5 0.0	1 10	HIKO SE
	15	11:43:40	30.988	110.733	0.3	5.96	2.0	113	BCI Ø	.76		0.63		17.7 0.0	16	BARE MIN
	10	A-34-52	37 838	110,407	95	2.23+	6.0	311		1.11	1 10	2.20		30.9 0.0	3 9	LAST CHANCE PANCE
		0.04.02	07.000	117.527	0.5	4,44	0.0	100		. 25	1.30	1.21		10.4 0.1		
	16	0:35:31	37.029	117.535	0.6	5.23	4.3	181	BD I			1.24		17.2 0.0	9	LAST CHANCE RANGE
	16	22:16:49	37.377	117.144	0.2	-0.11	0.2	133	ACZ 1	.40	1 20	1.37		13.1 0.0	11	STONEWALL PASS
	16	23:13:49	37.249	116.728	0.3	4.53	0.7	196	ADI 1.30 1	.15		0.94		9.1 0.0	5 22	THIRSTY CANYON NW
	1/	13:36: 6	37.673	115.055	0.4	1.54	1.4	105	ACI 1	.16		1.00	1.2	10.7 0.10	2 11	HIKO NE
	20	10: 5:25	37 149	117 320	0.0	0 36	0.0	229	AUS	. 7	1.59	1.25		21.1 0.0	10	UELAWAR J NW
	20	10110134	37.103		0.2	3.00	0.5	104	001 1	/	1.07	1.10		12.4 0.0	, 41	VOLNEDE UNATER
	20	10:32:53	36.456	116,175	0.3	1.68	0.7	146	ACI 1	.13		1.32		6.6 0.0	7 18	AMARGOSA FLAT
	23	23:18:58	35.902	117.034	1.3	7.53	1.0+	263	BDI		3.07		4.0	16.5 0.13	2 27	MANLY PEAK
	24	12:11:33	37.201	117.365	0.2	-0.54	0.3	102	ACZ 1	. 25		1.13		14.6 0.0	5 17	UBEHEBE CRATER
	25	1:35:19	35.931	117.009	0.1	7.13	0.2	280	ADI 0	.93		1.25		13.3 0.0	7	MANLY PEAK
	20	11:30:23	30./02	110.251	0.2	5.61	9.5	85				0.63		4.8 0.0		JACKASS FLAIS
	23	11:43:34	30.071	110.330	0.2	0.00	0.5	70	WI 1.23 1	.34		1.19		5.5 0.0	29	LATHRUP WELLS NW
	26	0:53: 6	37.805	117.255	1.1	10.93	1.1	245	BDI 1	.93		1.56		16.3 0.0	3 11	ALKALT
	26	11:19:52	37.133	117.940	0.7	8.54	2.7	238	BDI 1.83 1	.61	·	1.82	2.0	28.3 0.1	15	WAUCOBA SPRING
	26	15: 3:25	37.331	117.208	0.5	6,48	0.5	160	ACI		0.36	0.49		5.5 0.0	5 8	SCOTTYS JUNCTION SW
	20	10:23:59	37.201	114 013	0.5	0.00	0.5	83	AAL 1.21 1	. 31	1,09	1.25	1.7	6.8 0.0	<u>, 17</u>	MAGRUDER MIN
	27	5:90:3/	37 188	117 465	0.0	7.03+ 8 Ag	0.8	134		.00		1.18		24.0 0.0	5 0 1 1 4	UNEUERSUN BASIN
	21	5.21. 1	57.100	117.403	U.2	0.03	0.0	134		. 91		0.30		10.3 0.0	, 14	VOLNEDE UNATER
	27	10:45:15	37.411	116.841	0.2	6.54	1.5+	+ 107	ACI			1.26		22.2 0.09	20	TOLICHA PEAK
	28	1: 6: 6	37.764	117.239	1.0	7.26	2.1	188	B01 1	.86		1.33		14.6 0.18	\$ 17	MUD LAKE

89

H_{Un} Hunk

Hermunitte

Hanniitta Hanniitta Hanniitta Hanniitta

^{или}и, ^{или}и, н_{ор}ний н_{ор}ний ^{или}ний 9 1 3 3 1 2 9 3 3

1987 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

	DATE	- TIME	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERPOR H(KM)	DEPTH (KM)	STAND AZI ERROR GAP Z(KM) (DEG)	QQD 12S MAGNITUDE Mco Md	ESTIMATES MLh MLv	MLc	DEL- RMS IN MIN RES. PH (KM) (SEC)	I. U.S.G.S. QUADRANGLE
A	UG 29 29 30 30 30 30	18:34:35 19:37: 3 0:54:17 7:56: 9 11:19:15 12:46: 8	37.861 36.659 37.356 37.322 37.237 37.176	116.131 115.779 115.164 114.862 116.512 117.215	$ \begin{array}{r} 0.3 \\ \hline 1.7 \\ 0.8 \\ 0.3 \\ 0.3 \\ 0.3 \end{array} $	-0.16 -1.17 -1.14 1.91 6.23 0.09	$\begin{array}{rrrr} 0.5 & 107 \\ & 306 \\ 1.1 & 7.36 \\ 1.0 & 220 \\ 1.2 & 161 \\ 0.5 & 90 \end{array}$	AC1 1.77 1.75 ADS BDZ 1.16 ADI 1.53 AC1 1.45 1.32 AC2 1.34 1.36	1.8 0.6 1.52 0.9 1.65 1.5 1.70 1.1 1.5	5 0 8 1 6 2	20.3 0.12 17 4.8 0.01 4 11.5 0.05 7 19.1 0.06 8 12.9 0.07 21 14.3 0.10 2	Y REVEILLE PEAK MERCURY NE ALAMO GREGERSON BASIN THIRSTY CANYON NE BONNIE CLAIRE NW
s	30 31 31 EP 1 1	17:59:17 10:34:59 19:12:38 4:10:40 15:31:18	37.272 37.060 36.625 37.227 37.501	116.327 116.022 116.778 117.581 117.228 114.960	0.4 0.1 1.2 0.4 0.2 9.9	-0.35 -0.51 8.29 1.13 0.20 0.91	0.2 218 0.2 119 1.6 197 0.9 136 0.3 157 5.5 231	ADI 2.01 ACI 1.23 1.27 BDA 0.88 ACI 1.14 ACZ 1.29 DDZ	1.9 1.67 0.8 1.11 1.1 1.14 1.3 0.92 1.6	8 38 4 36 96	6.4 0.04 1 15.4 0.05 1 1.5 0.09 (5.8 0.07 1 22.4 0.05 1 18.9 0.03	3 DEAD HORSE FLAT 3 YUCCA FLAT 3 CHLORIDE CLIFF 7 LAST CHANCE RANGE 5 COLDFIELD 6 PAHROC SUMMIT PASS
	2 3 3 4 4	2:46:28 3:54:38 23:35:35 1:35:35 3:44:38	3 36.467 5 36.471 9 37.185 1 37.108 9 36.907 5 37 303	117.969 118.000 116.279 116.036 117.816 116.520	0.9 0.9 0.4 0.4 0.6 0.5	10.07 8.96 1.11 2.71 2.94 7.24	0.9 259 0.8 246 1.2 182 0.6 114 2.4 244 2.4 11 262	ADI 1.84 ADI 1.77 ADI 1.57 ACI 1.59 1.35 BDS 1.40 1.39 BDI 1.15	2.6 2.6 1. 1. 1. 1.	00 03 29 21 1.9 59 10	62.8 0.11 1 64.9 0.11 1 19.1 0.08 1 10.3 0.09 2 38.3 0.08 1 32.9 0.05 1	7 KEELER 9 ***QUAD. NOT LISTED* 5 AMAONIA TANKS 2 YUCCA FLAT 7 WALCOBA WASH 3 BLACK WTN NE
69	5 5 5 5 6	4:23:24 4:39:44 17:30:33 21: 8:33 5:52:33	38.142 37.741 5 36.734 2 37.466 5 37.453 9 36.734	115.091 114.858 116.191 117.879 117.885 116.311	2.4 0.3 0.4 0.3 0.5 0.2	2.46 6.22 4.26 7.58 10.50 4.80	8.2 264 0.7 194 0.5 225 0.4+ 165 0.6 161 0.3 163	CDS 1.85 ADI 1.99 1.85 ADI 1.22 ACI 2.06 2.07 ACI 1.38 ACI	2.36 2.4 2.02 0.4 2.1 1. 0.4	42 64 23 2.2 37 59	28.9 0.08 12.0 0.04 1 7.3 0.07 1 5.1 0.07 2 3.7 0.06 5.6 0.03 1	7 TIMBER MIN PASS NE 8 PAHROC SPRING NE 9 SPECTER RANGE NW 8 SOLDIER PASS 9 SOLDIER PASS 4 STRIPED HILLS
	6 7 7 7	8: 3: 0:47:1 1:36:1 11:34:4 11:46:3	5 37.394 9 37.366 2 37.372 4 37.366 0 37.295	116.074 116.050 116.047 116.046 114.911	0.5 0.5 0.5 0.6 0.6 0.6	1.12 0.09 -0.66 -0.84 11.01 -0.58	1.7 249 0.5 210 0.5 212 0.6 219 0.6 216 0.7 190	ADI 1.73 1.55 ADI 1.78 1.56 ADI 1.78 1.56 ADI 1.90 1.53 ADZ ADZ 1.47	1.27 1. 1.31 1. 1.37 1. 1.35 1. 7 1.97 1.	21 74 2.0 20 34 33 85	22.2 0.06 1 18.8 0.09 1 19.4 0.08 1 18.7 0.09 1 17.6 0.06 28.8 0.11	2 WHEELBARROW PEAK NE 7 OAK SPRING BUTTE 4 OAK SPRING BUTTE 1 OAK SPRING BUTTE 8 DELAMAR LAKE 9 MULE DEER RIDGE NE
·	8 8 8 9 10	13:25:4 5:48: 14:39: 20:50:4 11:10:1 5:55:5	6 36.927 4 37.161 6 37.181 4 37.113 8 38.111 9 37 935	115.052 117.371 117.263 114.906 115.103 115.220	0.5 0.2 0.3 1.8 2.1 3.2	-0.19 10.60 0.66 18.17 2.00 -1.54	0.6 171 0.5 115 0.4 92 3.3 1 183 6.1 259 1.2 195	ACZ ABI 0.93 ACI BDI 1.72 1.76 CDI 1.65 1.73 CDZ 1.65 1.64	1.93 1. 2 1. 1.22 1. 3 1. 3 1.	83 12 35 93 78 58	29.4 0.10 1 18.1 0.07 1 13.2 0.08 1 25.8 0.15 1 25.5 0.06 14.5 0.45	1 MULE DEER RIDGE NE 4 UBEHEBE CRATER 4 UBEHEBE CRATER 9 DELAMAR 3 SW 6 TIMBER MIN PASS EAST 6 OREANA SPRING
	1 1 1: 1: 1:	1 3:10:1 1 5:18:1 2 11:43:3 2 12:52:3 2 15: 8:5	1 37.329 5 36.702 32 36.711 33 37.090 58 37.315	116.351 116.306 116.277 115.271 116.315 117.636	1.0 0.2 0.3 0.3 0.2 0.7	6.23 5.14 6.83 7.34 0.19 5.49	1.6 269 0.2 112 0.3 186 0.7 158 0.4 88 6.7 266	BD1 ARI 1.28 1.0 AUI 1.25 0.8 ACI 1.75 1.6 ACI 1.62 1.4 CDI 2.24 1.9	1. 4 1. 7 0. 6 1.82 1. 7 1.39 1. 8 2.	30 08 68 62 2.2 17 1.1 46 2.4	13.0 0.05 5.4 0.05 3.5 0.06 11.5 0.06 11.3 0.05 54.4 0.11	10 DEAD HORSE FLAT 18 STRIPED HILLS 19 STRIPED HILLS 14 DESERT HILLS SE 22 DEAD HORSE FLAT 28 COSO PEAK
	1.	3 7:25: 3 19:26:1	8 36.581 10 36.867	115.562 115.979	0.3 1.0	0.71 1.48	0.6 81 2.0 185	ACZ 2.04 1.3 BDZ	5 1. 0.	49 60	25.6 0.11 9.9 0.19	20 INDIAN SPRINGS SE 16 FRENCHMAN FLAT

69

Н_{аса}ния Населения НинийНи

Natania

0 5 1 2 7 3 4 21

...

. W

1987 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

						STAND		STAND	AZI	000						DEL-	RMS	₽ N	
	DA	TE -	- TIME	LATITUDE	LONGITUDE	ERROR	DEPTH	ERROR	GAP	125	MAGN	ITUDE	ESTIMA	TES		MIN	RES.	PH.	. U.S.G.S.
	•••	ີ້ໃນລ	(D)	(DEG. N)	(DEG. W)	H(KM)	(KM)	Z(KM)	(DEG)		Mca	Md	MLh	MLv	MLc	(KM)	(SEC)		QUADRANGLE
			,	((,		v	· ·	• •										
1	SFP	14	9:11:4	37.212	117.337	0.2	7.13	0.6	93	ABI	1.23	1.31		1.43		12.	1 0.07	24	UBEHEBE CRATER
		14	19.34.32	36 631	116 343	9 2	2.79	0.4	101	ABS	1.40	1.23		1.16		1.	6 0.08	21	STRIPED HILLS
		15	6.42.16	37 155	116 286	a 2	7 22	0.3	81	ABS		1.29		0.84		7.	4 0.06	23	AMMONIA TANKS
		15	15.17.10	37 106	117 385	Q.1	-0 36	A 2	189	ACZ			0.96	0.90		16.	3 0.04	14	UBEHEBE CRATER
		15	10. 7. 6	37.130	117.000	0.1	2 04	2 1	236	BOI	1.85	1 84		2.84		31.	1 0.07	16	PANAMINT BUTTE
		10	19: 7: 0	30.414	117.473	0.0	2.34	2.1	157	~~··	1 57	1 54		1.69		20	8 0.15	18	REVEILLE PEAK
		10	19:37:44	31.903	110.130	0.5	4.04	1.5	137										
				10 001					170	401				A 61		14.	5 0.05	11	BARE MIN
		10	23:17:22	36.883	116.749	0.5	0.34	0.0	170	~~		A 28		0.01			A A 20	14	MINE MIN
		17	12:29:30	26.338	116.231	2.6	7.00+		1/2			1 00				1.9	R A AR	1.	CRADEVINE DEAM
		17	13: 8:42	36.975	117.140	1.0	1.4/	3.7	100	BUA		1.00		0 00		10.		20	DIO NINE
		17	23:21:35	36.725	116.738	0.2	1.52	0.7	110	ACI	1.55	1.05	4 70	0.90			0 0.00	20	DIG DONE
		18	16:55:17	36.181	117.619	0.9	1.03	2.7	265	BOS		1.80	1.79	2.10	2.0	່ວວ.	0 0.10	10	CUSU PEAK
		19	14:14: 0	37.270	116.654	0.3	-0.13	0.3	188	ADZ	1.43	1.40		0.64		30.	0 0.0/	15	BLACK MIN SW
		19	23:26:48	36.635	116.336	0.7	12.46	0.7	296	ADI				0.71		1.	2 0.10	16	STRIPED HILLS
		20	22:38:51	37.328	117.684	0.3	6.89	0.8	136	ACI	1.60	1.62	1.37	1.74		11.	1 0.09	25	MAGRUDER MTH
		22	16: 3:58	37.073	115.763	0.2	10.13	1.2+	+ 107	ACI	1.78	1.65		1.97		26.	5 0.09	30	PAPOOSE LAKE SE
		22	18.21.28	36.589	117.642	1.1	-1.02	0.8	275	BDZ		1.25		1.62		32.	0.06	11	UBHEBE PEAK
		22	19.26.13	36 672	116 333	89	4.46	1.4	156	ACI				0.28	1	3.	0 0.11	10	STRIPED HILLS
		27	4.58 34	37 276	114 586	1 1	7 44	3 7	278	801	1.38	1.81		1.35		38.	9 0.05	10	ELGIN
		žJ.	4.10.34	57.270	114.000		4	0											
		23	6.31.60	38 666	116 384	a 4	6 97	8 A	286	ADI		0.85		0.57	,	4.	6 0.06	12	LATHROP WELLS NW
		23	7.90. 6	37 000	114 620	1 1	-1.02	1 4	272	807		1.12	1.18	1.37	,	36	8 0.06	9	ELGIN
		23	7:20: 3	37.200	114.020	1.5	-1.02	0.0	74	ACS	1 69	1.44	1.51	1.34	1.3	5 10	9 8.88	34	DEAD HORSE FLAT
		23	23:15:4/	37.312	110.313	0.2	-1.00	2.2	146	- ACC	1.05	••••		1.49	,	13	5 8.14	10	GOLDFIELD
		25	23:59:20	37.744	117.242	1.0	3.6/	2.0	1 1 1 2 2	101		1 17		1.31		14	2 8.88	15	FRENCHMAN FLAT
		24	0:54:38	36.788	115.970	0.3	0.00	0.97	T 132		1 66	4 74		1 71		17	1 8 80	26	IRFHERE CRATER
		25	20: 8:46	5 37.211	117.455	0.3	8.37	0.9	104	AU I	1.00	1.74		1.75		•••			
											1 59	1 33		1 46		17	1 8 87	22	URFHERE CRATER
		25	20:49:21	37.211	117.456	0.2	7.97	0.0	112		1.00	2 20	2 08	2 06		25	1 8 88	11	DELAUAR 3 SW
		26	1:56:22	37.085	114.923	0.6	15.79	1.37	- 102		1.33	1 60	2.00	1 60		1 16	0 0 00	24	LIDENEDE CDATED
		26	19:17:54	37.213	117.457	0.2	7.66	6.8	103	ACI	1.02	1.03		1.03		5 10.	3 0.00	47	OBEREBE CRATER
		26	22:52:31	37.228	116.370	0.3	-0.35	0.3	40		1.94			1.00				22	AMMUNIA TANKS
		27	7:48:18	35.849	116.748	1.2	1.69	1,6	260	BDS	2.25			2.30	2.4	+ 16.	/ 0.09	18	CONFIDENCE HILLS
		27	9:50:38	37.647	116.792	0.2	0.21	0.3	111	ACZ		1.56		1.52		37	/ 0.00	19	CACTUS SPRING
		27	9:52:48	36.634	116.330	0.6	4.11	0.34	297	AD I		0.99		0.96		1.	5 0.07	15	STRIPED HILLS
		27	15:29:30	36.618	117.124	0.1	0.43	0.2	112	ACZ		1.42	1.39	1.58	5	14.	2 0.05	23	STOVEPIPE WELLS
		28	3:24: 9	37.494	117.583	0.3	-0.06	0.6	80	ABI				1.17		9.	.5 0.09	14	MAGRUDER MTN
		28	8-43-42	37 015	116 223	0.3	3.64	0.4	133	ABI		1.26		0.75	5	2	6 0.09	20	TIPPIPAH SPRING
		28	15. 0.11	37 223	117.458	0.2	8.81	0.7	115	ABS	5		1.20	0.97	7	16	.8 0.07	' 14	UBEHEBE CRATER
		28	21.49.30	37 865	116 131	0.3	0.70	0.5	108	ACI		1.33		1.52	2	20	.5 0.09	13	REVEILLE PEAK
			£1.73.03	07.000	1101101	0.0	0.70												
		20	1.16.20	37 148	115 326	A 4	8.86	0.5	163	ACI	1.76	1.44	1.79	1.46	5	12	.5 0.08	14	DESERT HILLS NE
		20	11.40.23	37 202	117 616	A 7	5 11	4 5	238	BO	1.53	1.71	-	1.74	•	25	.5 0.09) 14	SILVER PEAK
	007	1	18. 0.1	7 36 047	116 156	J ./	7 00		246	00/	1	2.35	.			92	.1 1.50	5 3	MINE MTN
	~ 1		20.20.1	5 18 710	115 482	<u> </u>	7 88	2 0	103	ACI	2.59					29	.8 0.0	27	BLACK HILLS HW
			20:20:13	J JO./JY	110.402	0.2	6 10	2.U g 6	23	10			3.43			29	1 0.19	35	PAPOOSE LAKE SE
		4	E 11110	5 37.072	117 705	0.0	5,10	2.3	200	800	, ; 1	1 30	1.35	1.5	5	29	9 0.1	18	DRY MTN
		3	5:14:2	5 30.00/	117.725	0.1	4.00	2.0	203	003					•				
		7	7.40	E 18 00F	116 630	~ ~	E 07		150	AC 1			1 79	1.36	3	10	4 0.1	16	FUNERAL PEAK
		5	7:40:4	5 36.095	116.639	0.3	6,2/	1.4	100				1 63	1 27	,	10	3 8 4	11	FINEDAL DEAK
		- 3	7:41:2	1 36.097	116.636	0.3	6.12	0.9	149		l i		1.05		,				I VIILAAL I'LAA

Ċ.

0, 1⁰⁰1

∦unnullu

สุขางมีสม

H^{terrorged}H #⁰¹¹⁰⁰¹⁰⁰³⁰⁰H

> 1 > 5 1 - 2 **3 5**

1987 LOCAL HYPOCENTER SUMMARY - SCB EARTHQUAKES

₹,

DATE - TIME LATITU (UTC) (DEG.	STAND DE LONGITUDE ERROR N) (DEG.W) H(KM)	STAND AZI DEPTH ERROR GAP (KM) Z(KM) (DEG)	QOD 125 MAGNITUDE ESTIMATES Mga Md MLh MLV MI	DEL- RMS (N MIN RES. PH. U.S.G.S. .c (KM) (SEC) QUADRANGLE
OCT 4 11:56:15 37.3 4 13:39:11 36.8 5 0:26:42 36.6 5 20:26:41 36.9 5 21:10:42 37.3 6 9:45:44 37.9	116.413 0.7 12 116.105 0.2 17 116.249 0.2 15 116.084 0.3 8 115.078 0.2 9 115.762 0.2	4,71 1.9 249 9.84 0.6 123 5.44 0.7 127 10.40 0.6 196 -0.11 0.3 167 2.59 1.9 108	ADI 0.72 ABI 1.42 0.87 ABI 1.10 0.68 ADI 1.25 0.63 ACS 1.40	14.9 0.07 9 SILENT BUTTE 0.0 8.2 0.08 25 CANE SPRING 8.1 0.07 23 SPECTER RANGE NW 14.7 0.06 14 YUCCA LAKE 1.7 10.1 0.02 8 ALAMO SE 26.8 0.10 31 PAPOOSE LAKE SE
6 17:29:28 37.7 8 20:36:49 37.2 9 4:53:10 37.0 10 10:12:42 37.8 11 0:37: 7 37.7 11 0:43:24 37.7	7 117.634 0.5 11 116.374 0.3 11 15.762 0.3 38 116.138 0.5 13 114.514 1.5 94 114.530 3.2	6.77 1.4 186 0.31 0.2 81 7.29 2.3++ 152 -0.44 0.8 108 1.45 3.4 304 4.20• - 327	ADI 1.46 AAI 1.40 1.61 0.75 BCI 1.73 1.46 1.75 1.82 ACS 1.60 1.55 BDS 1.59 CDI 1.69	14.9 0.07 10 LIDA WASH 4.9 0.09 22 AMMONIA TANKS 26.4 0.08 22 PAPOOSE LAKE SE 21.1 0.14 13 REVEILLE PEAK 25.0 0.09 6 CHIEF MIN 21.3 0.07 5 CHIEF MIN
11 1:27:50 37.1 11 2:43:31 36.6 11 3:16:16 37.1 11 5:24:30 36.7 11 8:42: 9 37.2 12 0:10:20 35.9	97 116.306 0.3 34 117.057 0.1 77 117.428 0.4 41 116.220 0.2 74 115.845 0.3 37 117.022 0.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AAI 1.37 1.38 1.01 ACI 1.09 1.11 1.37 0.98 ACI 0.81 0.81 ABI 1.19 1.28 0.78 ABI 2.64 2.57 2.68 ADZ 1.28 1.43	1.6 2.4 0.10 25 AMMONIA TANKS 19.8 0.04 19 STOVEPIPE WELLS 20.4 0.11 15 UBEHEBE CRATER 4.6 0.09 21 SPECTER RANGE NW 2.8 9.2 0.13 30 GROOM MINE SE 14.2 0.07 13 MANLY PEAK
12 0:19: 5 35.9 12 5:22:40 37.4 12 5:23:32 37.2 12 5:36: 4 37.1 12 14:53:45 37.2 12 19:29: 0 37.8	35 117.024 0.7 96 117.961 0.4 64 116.404 0.5 94 116.304 0.3 14 116.381 0.2 64 116.131 0.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ADS 1.11 ADZ 1.40 ADI 1.67 ABI 1.40 1.29 ABI 1.39 6.95 ABI 1.39 1.43 ACI 2.05 1.94	14.5 0.06 10 MANLY PEAK 9.2 0.05 13 SOLDIER PASS 9.0 0.06 10 SILENT BUTTE 2.9 0.09 20 AMMONIA TANKS 5.1 0.07 23 SCRUGHAM PEAK 20.4 0.10 21 REVEILLE PEAK
13 7:34:44 37.1 13 18:42: 8 36.5 14 23:56:43 37.3 15 1:56:51 37.2 15 13: 8:29 36.3	16 117.329 0.4 83 115.597 0.3 08 115.341 0.2 31 116.334 0.8 23 117.478 0.6 13 117.495 0.7	7.31 0.7 190 11.81 1.1 149 10.88 1.7++ 136 6.17 0.7 231 -0.72 0.5 241 5.69 5.2 244	AD1 0.86 0.76 AC1 1.45 AC1 1.30 AD1 1.55 AD1 1.55 AD2 1.84 AD2 1.84 0.92 1.84 1.74 1.68 1.74 1.68	13.1 0.02 6 UBEHEBE CRATER 22.7 0.08 12 INDIAN SPRINGS SE 20.6 0.04 7 BADGER SPRING 2.1 0.07 9 AMCNIA TANKS 1.8 37.1 0.08 17 PANAMINT BUTTE 38.7 0.10 20 PANAMINT BUTTE
15 21:40:45 36.2 16 2: 7:32 37.6 16 20: 5: 3 37.6 16 20:36:22 37.6 17 8:53: 8 37.6 17 8:53: 8 37.6	09 116.857 0.2 71 115.699 0.2 65 116.130 0.2 20 117.541 0.5 71 116.119 0.5 71 116.488 0.4	9.24 1.0 128 0.96 0.3 176 0.58 0.4 108 5.81 2.1 237 1.60 2.1 164 0.71 0.5 145	ABS 0.97 0.83 ACS 1.10 1.17 1.38 ACI 2.04 1.66 2.10 2.16 BOI 1.42 1.42 1.42 1.13 ACI 1.22 1.37 1.13 1.13	17.0 0.05 10 BENNETTS WELL 15.4 0.03 8 WORTHINGTON MINS 20.4 0.09 21 REVEILLE PEAK 17.5 0.08 10 LAST CHANCE RANGE 20.0 0.03 7 REVEILLE PEAK 14.6 0.10 15 CANE SPRING
17 22:27:55 37.4 18 20:51:37 36.4 19 21:15:24 37.3 20 16:16:40 37.4 20 20:22:27 37.4 21 0:26: 5 37.4	65 117.259 0.3 31 116.253 0.4 91 117.805 49 116.981 1.1 47 116.974 1.7 74 116.335 1.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BCI 1.12 1.31 1.34 ADI 1.32 0.87 0.65 CDA 1.43 0.56 BDA 0.50 0.50 BDS 1.79 1.39	18.2 0.07 17 MOUNT JACKSON 6.7 0.07 11 JACKASS FLATS 8.5 0.37 3 RHYOLITE RIDGE 8.9 0.09 6 SPRINGDALE 9.0 0.05 5 SPRINGDALE 6.7 0.06 12 DEAD HORSE FLAT
21 23:59:17 36.	62 116.949 0.2	6.83 1.0 132 1.49 0.5+ 102	ACI 0.88 1.12 ACI 1.21 1.22	16.4 0.05 19 FURNACE CREEK 18.2 0.09 12 LIDA WASH

71

1987 LOCAL HYPOCENTER SUMMARY - SCB EARTHOUAKES

÷.

				STAND		STAND AZI	- 00	D					DEL-	RMS	₽N.	
	****	LATITUDE	LONCITUDE	FRROR	DEPTH	ERROR GAP	12	S MAGN	ITUDE	ESTIMA	TES		кім	RES.	PH.	U.S.G.S.
DATE -	- IIME	LATTICUE			(KM)	7(KH) (DEG	:)	Mco	Md	MLh	MLV	MLc	(KM)	(SEC)		QUADRANGLE
(01	(C)	(DEG. N)	(DEG. #)	II (NM)	(1,1,1,1)		· /						(,			
											2 46		20.2	0 00	10	REVELLE PEAK
OCT 22	19:42:13	37.862	116.129	0.2	-0.25	0.4 100	S AC	1.30	1.70		2.00		20.2	0.03	15	NET AVIAD 3 NE
22. 22	14-45-33	37.183	114.819	0.7	8.47	2.2++ 193	5 80	1 1.91	2.07	2.18	2.07		32.2	0.12	15	
24	7.67.12	17 154	117 356	0.2	8.05	0.7 111	AC	1 1.47			1.56		17.2	0.07	20	UBENEBE CRATER
25	3:37:12	37.134	114 005	A 1	3 56	0.9 97	AB 1	I 1.49	1.48	1.47	1.45		6.0	0.06	11	PAHROC SUMMIT PASS
23	10:40:12	37.624	114.333	0.5	8 02	0 5 140	A C	c i i i			6.89		14.3	0.05	14	CAMP DESERT ROCK
23	17:12:12	36.731	116.090	0.5	0.92	0.0 143		Ŧ			1 22		22 1	8 87	12	HEAVENS WELL
24	6:33:37	36.672	115.564	0.8	12.00•	299		•			1.22		****	•.•.	••	
																A AND NOT LISTED.
25	1.53.30	37.563	118.005	0.4	4.69	1.6 256	5 AD	I			1.52		17.5	0.00	17	SECOND. NOT LISTED
2.5	0.50.00	37 749	117.341	6.3	8.94	0.7 151	I AC	1 2.42	1.72	1.39	1.61		6.6	6.10	22	MONTEZUMA PEAK
25	2:52:5	37.743	116 016	AA	3 63	1.5 259) AD	S 2.29)		2.41		45.0	6.06	9	QUAD. NOT LISTED.
25	4: 3:28	30.49/	110.000	0.0 0.0	7 61	1 044 269	a 80	1 2 74					43.7	0.05	7	•••QUAD, NOT LISTED+
25	4:4:1	38.484	116.050	2.2	7.01	0 644 264		1 7 64				4 2	43.7	0.09	15	OUAD, NOT LISTED.
25	8:10:49	38.476	116.042	1.2	7.95	0.011 231		1 2.04	'a		1 66	1 0	15 7	0 00	23	URFHERE CRATER
25	16:30: 1	37.198	117.370	0.2	8.66	0.6 10/	/ AB	•	1.40		1.90	1.9	1.0.1	0.00	20	
																LOWER DALEALINGAT LAKE
0.0	1. 2. 5	37 133	115 119	1.4	9.92	3.8++ 222	2 80	1		1.96	1.54		31.6	9 0.12	9	LUWER PAHRANAGAT LANE
20	3: 2: 3	37.100	116 113	A 5	7 00	8.3 109	9 CC	1	1.43		1.52		48.4	6 0.10	13	REVEILLE PEAK
26	13:48: 3	31.003	110.100	0.5	4 55	9 4 12	5 00	\$ 1.5	1.26	1.46	1.46		27.5	5 0.12	21	PAPOOSE LAKE SE
27	3:28:52	37.069	115.754	0.5	4.00	7 7 10		1	1 44		1 45		48 1	5 0.10	15	REVEILLE PEAK
27	7:52:20	37.868	116.134	0.4	7.00	7.2 100					4 70		19		21	INFHERE CRATER
27	8:37:23	37.176	117.392	0.1	0.12	0.3 11	/ M	, 2 1.3	2 1.20		1.30		10.		2.	DEVELLE PEAK
27	10.42.16	37.871	116.127	0.2	0.16	0.3 10	9 AC	S 2.0	3 1.75	5 1.97	2.13		20.	0 0.0/		REVEICLE FEM
41	10.42.10															
		77 960	116 137	0 A	7.00	7.8 10	8 CC	21	1.47	7	1.60)	48.	30.10	14	REVEILLE PEAK
27	12:39:52	37.003	110.137	0.1	G 42	A 4 10	R A(1 1 7	9 1.82	2 2.21	1.83	5 2.6	20.	4 0.11	26	REVEILLE PEAK
28	6:0:3	37.864	116.131	0.5	6.92	2 6 10				2 85		27	20	8 0 08	27	REVEILLE PEAK
28	17:25: 9	37.869	116.132	0.2	5.8/	2.0 10	3 0	. 2.5	, , , -	2.00			20	e A A7	10	PEVELLIE PEAK
28	17.41. 6	37.861	116.136	0.3	0.60	0.6 10	/ M	15	1.4/		1.70		20.	5 0.0/		CVULL LILLE I DAV
20	1.37.51	16 860	116.170	0.6	6.22	0.5 21	2 AI	01 1.1	7 0.79	3	0.54	•	θ.	/ 0.00	10	SKULL MIN
23	1.37.31	16 961	116 170	0.7	6.57	0.5 21	3 AL	01 1.2	2 0.87	7	0.63	3	Θ.	7 0.08	11	SKULL MIN
29	2:47:21	20.001	110.170	•												
					0.54	A 8 23	a 🗚	11 1 8	8 1 74	4	1.94	L	30.	2 0.09	19	DARWIN
29	6:10:13	36.442	117.501	0.9	0.34	0.0 25	3 ~ 0			5	1.5	i	20	3 8 14	14	REVEILLE PEAK
29	6:19:30	37.865	116.128	0.6	-0.61	1.0 10	0 0		1.40			Ś	21	1 0 17		PEVELLE PEAK
30	0.39:17	37.877	116.128	0.3	-0.44	0.5 11	1 A	25 1.9	1 1.73	5 2.03	1.94	-	21.	1 0.1.	20	
10	10.17.49	16 953	115.271	0.5	12.64	2.3 14	7 8	CS			1.4	>	25.	1 0.1		BURKU DASIN
30	13:17:40	17 270	118 199	2.0	0.43	1.5 30	5 8	DI			1.19)	- 31.	1 0.07	11	+++QUAD. NOT LISTED.
30	22:23:40	37.270	117 719	0 4	-0.52	0.8 16	5 A	DA	0.7	2			10.	5 0.02	2 5	MAGRUDER MIN
31	12:46:23	\$ 37.300	117.710	0.4	0.00	•••										
			447 007		2 72	21	7 🔺	DA	0.7	5			6.	0 0.0	54	SOLDIER PASS
31	13:26:21	37.374	117.887		4.14	0 E 16	5 2		J ./	-	1 00	3	12	6 8 8	1 12	SPECTER RANGE SE
31	17:20:27	7 36.574	116.052	9.3	12.75	0.5 15	<u> </u>			•	6 6	r K		8 0 0'	, 1	BARF WIN
31	23: 6:59	36.751	116.533	0.3	1.52	1.2 17		62 1.4	2 0.9	1	0.0	-	5.	2 0.0		LATHON WELLS NW
	£.19.3	36 713	116.399	0.6	4.75	2.1 15	60 B	CS 1.0	5 0.9	3	0.3	5	9.	2 0.0	5 1	LAINKOP WELLS IN
NUV I	5.48.0	16 614	116 332	0.9	3.97	9.7 28	30 A	DZ	0.6	1	0.7	7	1.	4 0.1	1 1.	SIRIPED HILLS
1	5:48:2	2 30.034	116 250	0.7	-1 40	0.2 14	8 A	CZ 1.1	5 0.8	7	0.4	6	4.	9 0.0	5 13	5 JACKASS FLATS
1	12:48: 4	\$ 26.765	110.209	v. 4												
					26.04	97 11		nr			1.7	2	37.	4 0.0	4 10	B RYAN
1	13:59:3	2 36.420	116.651	5.0	25.84	2.7 31				,	2.4	- -	1 15	1 8 1	1 1	BALD MIN
1	18:47:4	6 37.420	115.638	0.3	0.97	0.5	/ 4 ^		0 1./	<i>'</i>	4.1	υ <u>κ</u> .		0 0 0		FICIN
	19.33.1	37.271	114.545	0.8	13.86	1.0++ 23	58 A	DI 1.6	0 1.7	9	1.7	ى ب	40.	y U.U		I LLUIN
	13.00.1	1 17 865	116.135	0.4	0.81	0.7 10	38 A	CZ 1.7	8 1.7	2	1.9	1	20.	8 9.1	3 1	S REVEILLE PEAK
2	22: 0:3	4 17 170	115 408	0.4	3.21.	12	24 C	CI 1.9	6 1.7	3	1.9	7	27.	7 0.1	32	Z DESERT HILLS NW
2	23:38:1	- 37.170	116 179	Å 7	A AA	1.2 11	10 Å	ci	1.7	0	1.3	7	21.	0 0.1	5 1	3 REVEILLE PEAK
3	3:18:5	2 37.8//	110.120	U./	0.00					-						
		_			~ 7.		12 5	C7			1 4	8	21	4 8 1	7 1	6 REVEILLE PEAK
3	8:59:1	8 37,883	116.127	0.5	-0.71	11 6.9	12 13	~~			1.0	ž	20	0 0 1	ć i	2 REVELLLE PEAK
	0. 2.4	9 17 878	116.132	0.6	0.77	1.0 10	89 A	65	1.5	0	1.4	+	20.		у 1	a nataless form

H. HIMAN

21331 2 9 3 7

1987 LOCAL HYPOCENTER SUMMARY - SC8 EARTHQUAKES

D/	ATE (UI	· TIME IC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	OOD 125 MAGN1 Mcd	ITUDE Mid	ESTIMA MLh	TES MLv	MLc	DEL- RMS MIN RES. (KM) (SEC)	∦ N PH	U.S.G.S. QUADRANGLE
NOV	۲.	17. 3.17	36 651	116.546	0.2	4.18	2.2	174	BCI 1.16	1.01		0.71		15.8 0.00	5 18	BIG DUNE
	3	20:38:50	36.862	116.157	0.2	1.77	0.4	92	ABT 1.34			1.07		1.4 0.08	20	SKULL MIN
	4	18:41: 9	37.376	117.207	0.1	-0.10	0.2	144	ACS	1,16		1.23		9.5 0.03	3 15	STONEWALL PASS
	5	0:34:46	37.855	116,132	0.6	0.00	0.9	106	BCI	1.59		1.69		19.9 0.10	5 14	REVEILLE PEAK
	6	4:45:42	36.421	116.311	0.2	4.02	2.5	103	BCI 1.64	1.00		0.96		15.1 0.0	5 15	ASH MEADOWS
	6	12:31:32	37.878	116.138	0.8	-0.32	1.0	199	ADI 1.97	1.71		1.73	1.7	21.9 0.12	2 9	REVEILLE PEAK
	_							180	404	1 18				24 7 9 9	เด	PAPOOSE LAVE SE
	6	14:20: 2	37.094	115.772	0.6	16.86	1.4	100		1.10	1 85	1 04		10 1 0 00	18	OAK SPRING BUTTE
	6	15:52:35	37.292	116.028	0.4	4.36	1./	100	ACTIVIS		1 14	1 40		10.5 0.0	1 1 8	OAK SPRING BUTTE
	6	15:57:53	37.297	116.J29	0.2	0.45	0.4	07			1.14	1 21	1.6	14 9 9 9		HIKO NE
	6	22:49:53	37.677	115.092	0.4	1.01	1.7	97	001	1 47		1 51	1 7	48 6 0 00	15	REVETILE DEAK
	7	3:41:38	37.868	116.131	0.5	7.00	7.0	113	407	1.47		0 78		7 3 6 6	17	ERENCIAIAN LAVE SE
	7	6: 0:34	36.758	115.791	0.3	0.01	0.5	128	AUZ			0.70		7.5 0.0		FRENCHMAN LARE SE
	7	E · 15 · 57	37.869	116,132	0.2	1.16	0 .8	109	ACS	1.61		1.87	1.7	20.8 0.0	9 19	REVEILLE PEAK
	Å	14.27.57	37.484	114.446	2.2	-1.54	1.6	293	BDZ	1.55		1.66		29.2 0.0	4 8	+++QUAD. NOT LISTED+
	ă	10.14.49	36 813	117 474	0.7	1.93	1.4	156	BDI	1.24		1.44	1.5	6.3 0.1	5 22	TIN MTN
	ŏ	23.32.58	37 696	114 963	0.2	1.93	0.5	141	ACI 1.50	1.49	1.68	1.60		5.4 0.0	38	PAHROC SPRING
	10	11.44.28	35 934	117 014	0.5	4.84	1.5	278	ADS 2.01	1.30		1.50		13.7 0.0	4 10	MANLY PEAK
	11	4.41.35	37 051	116 317	0.2	2.65	0.2	102	ABI	0.88		0 .65		6.4 0.0	5 17	BUCKBOARD MESA
	••	4.41.00	07.001	110.01.												
	11	8: 3: 1	37.139	114.815	0.6	5.33	4.9+	210	801 1.83	1.86	2.01	1.81		33.2 0.0	5 11	DELAMAR 3 NE
	11	11:56:43	37.694	114.964	0.5	0.63	0.8	140	ACI 1.34	0.88		1.07		5.2 0.10	9 9	PAHROC SPRING
	11	12:32: 4	37.694	114.963	0.3	1.91	0.6	141	ACI	0.93		1.05		5.2 0.0	5 10	PAHROC SPRING
	12	22:10:20	36.771	116.265	0.2	-1.70	0.3	149	ACZ 1.12	1.09	1.81	0.61		3.2 0.0	7 21	JACKASS FLATS
	13	4:15:46	37.866	116,135	0.5	7.00	8.7	108	CCI 1.77	1.61		1.74	1.7	48.7 0.1	2 15	REVEILLE PEAK
	14	7:56:45	35.897	117.237	1.0	3.11+		280	CDI 1.71	1.35		1.61		34.2 0.1	9 9	MANLY PEAK
	• •	16.27.21	37 867	116 132	A 2	5 76	3.1+	108	BC1 2.58		2.78	2.77		20.7 0.1	1 30	REVEILLE PEAK
	17	22.40.59	37.855	116 133	0.L	4 51	5.4	133	CC 1	1.44		1.94		20.0 0.0	B 11	REVEILLE PEAK
	15	1.17.40	37.033	116 127	a 4	A 99	9.6+	109	AC1	1.49		1.68		20.3 0.0	9 12	REVEILLE PEAK
	15	3:37:40	37.000	116 126	0.7	7 84	3 7	109	BC1 2.25		2.61	2.71		20.5 0.1	9 20	REVEILLE PEAK
	15		37.070	116 137	0.5 a 5	7 43	2 9	205	BDI	1.30		1.59		20.2 0.0	4 7	REVEILLE PEAK
	15	0.05.22	37.033	116 115	3.1	2 12.		244	CDA	1.63				50.7 0.1	5 11	REVEILLE PEAK
	15	9:25:51	57.875	110.115	5.1	2.02.		••••								
	15	14: 7:50	37.850	116.118	2.2	2.58•		250	CDA	1.24				49.4 0.1	8 6	REVEILLE PEAK
	15	14: 8:37	37,916	116.111	3.5	2.06.		208	CDA	1.98				53.3 0.2	37	REVEILLE PEAK
	15	15:14:29	37.866	116.136	1.5	2.13.	<u> </u>	199	CDA	1.64				51.7 0.1	B 14	REVEILLE PEAK
	15	16-26-11	37 853	116,105	1.5	8.96	1.9	201	BDA	1.54				48.6 0.1	ð 14	REVEILLE PEAK
	15	18-43-60	37 848	116.124	3.6	2.47•		248	CDA	1.80				49.7 0.2	1 14	REVEILLE PEAK
	15	20:56:19	37.381	115.492	0.6	2.77+		94	CCA	1.96				25.4 0.1	4 15	CRESCENT RESERVOIR
								107	PC.	1 89				28 9 8 1	7 18	REVELLLE PEAK
	.16	0:50:16	37.863	116,139	0.6	1./1	3.0	107		1.00		1 00		20.30.1	4 12	DEVELLE PEAK
	.16	17:58: 3	37.858	116,134	0.5	-0.15	0.9	10/	000	1.01		1 71	1.0	20.0 0.1	- 14 7 A	PEVELLE PEAK
:	.16	17:58:52	37.851	116,140	0.5	2,46	3.3	105	401	1 16		1 84		20.5 0.0	, 0	REVEILLE PEAK
	16	21: 3: 4	37.856	116.135	0.6	2.00	1.01	100	ADI	1.50		1.00		18 1 6 0	. .	REVEILLE PEAK
	16	23:29:47	37.860	116.102	0.6	-0./8	0./	213	CO1 2 A1			2 12		11780		
	18	2:31:50	35.924	117.215	1.9	2.62	5.7	200	CDI 2.03			4.14		51.7 8.0	- 10	
	18	9: 6:34	37.741	115.014	0.4	0.68	0.5	139	ACI	0.89		1.16		12.0 0.0	59	HIKO NE
	18	21.14.32	17 601	114 064	8 6	1 77	1.5	17.0	ACI					5.1 0.0	9 11	PAHROC SPRING

1

73

9105100/2927

1987 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

DATE	TIME L)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	OOD 125 MAGNITUDE Mca Md	ESTIMA MLh	TES MLv M	Lc	DEL RM MIN RE (KM) (SE	S (N S. PH C)	U.S.G.S. QUADRANGLE
NOV 19 19 19 19	1: 1:48 15:45:23 15:53:49 23:30:57	36.867 37.037 37.524 37.875	116.798 117.405 114.566 116.138	2.1 0.4 0.5 0.4	7.16 -0.56 4.30 -0.37	5.4 0.4 2.7 0.5	246 134 301 201	CDT ABZ 1.43 BDI 1.91 ADI	1.19	0.71 1.26 1.75 1.52 1.52		17.1 0. 6.7 0. 17.7 0. 21.6 0. 8.9 0.	08 8 12 15 08 6 06 9 08 19	BULLFROG UBEHEBE CRATER CALIENTE REVEILLE PEAK UBEHEBE CRATER
19 20	23:55:40 8:27:53	37.080 37.863	117.349 116.139	0.3 0.4	1.62 0.06	1.1	107	ACA 1.17	1.07			20.9 6.	08 10	REVEILLE PEAK
21	10:10:35	37.010	116.211	0.2	3.74	0.4	82	AI 1.71 1.01		1.24	2 1	3.4 0.	05 19 07 22	TIPPIPAH SPRING
21	19:37:52	37.868	116.132	0.2	1.39	0.7	108	AC1 2.01 1.09	3 84	2.00		20.5 0.	11 24	REVEILLE PEAK
21	19:50:46	37.868	116.130	0.2	6.06	2.8	109	001 2.55	1.77	1.67		12.1 0.	08 10	HIKO NE
21	21: 5:27	37.737	115.023	0.4	5.39	1.0	108	BC7 1.43		1.65		20.6 0.	15 13	S REVEILLE PEAK
21	23:26:35	37.867	116.132	0.0	0.91	9.5	100	ACI 2.06		2.31	2.3	20.6 0.	12 26	B REVEILLE PEAK
22	16:55:10	37.009	110.150	0.5	0.00	0.0								
22	22. 0.50	37 866	116.132	0.5	2.98	4.1	108	UC1 2.03 1.69	1.73	2.02		20.6 0	17 1	PEVELLE PEAK
22	22.18.28	37.865	116.137	0.6	2.48	4.8	108	BC1 1.39		1.62		20.9 0	06 1	DEVELLE PEAK
22	23:50:24	37.876	116.127	0.4	15.45	2.0	112	AC1 1.47		1.58		13 4 8	95 1	R ALANO
23	18:14:16	37.287	115.154	0.4	2.23	1.2	147	ACZ	1.40	0.97		649	67 2	1 SKULL MTN
24	0:23:34	36.789	116.230	0.2	-0.38	0.2	69	ABS 1.35 1.09		1 72		28.6 8	14 1	B REVEILLE PEAK
27	7:22:39	37.867	116.131	0.4	-0.38	0.7	108	ACS 1.44	•	1.74				
					e		109	DCT 1 67 1 81		1.94		20.70	15 2	7 REVEILLE PEAK
27	7:38:38	3 37.864	116.135	0.3	5.40	3.7	100	ACI 1.39	1.64	1.52	1.4	17.9 0	.06 2	1 UBEHEBE CRATER
27	11:21:50	3 37.155	117.397	0.2	7.10	0.7	121	ACI	1.37	1.15		17.9 0	.07 1	9 UBEHEBE CRATER
27	11:24:21	37.155	117.395	0.2	7 19	0.3	110	ACI 1.18	1.56	1.43		17.9 0	.06 2	O UBEHEBE CRATER
27	11:25:56	3 37.150	116 131	0.2	A A2	0.5	108	ACI 1.57 1.77		2.02		20.4 0	.15 2	5 REVEILLE PEAK
2/	12:5/:14	1 J/.007	116 133	0.3	0.12	0.6	109	ACS 1.78 1.73	1.93	2.07		20.90	.15 2	S REVEILLE PEAK
27	14:51:10	5 57.005	110.100	0.0	••••	••••								
27	19.37.	4 37.864	116,133	0.4	0.60	0.6	108	ACI 2.01 1.86	5 2.24	2.11		20.00	.1} 1 07 1	2 BEITED PEAK
27	19:36:5	8 37.683	116.225	0.4	3.35+		120	CDI 1.85	5	1.52		52.00	10/1	1 PAHROC SPRING
28	4: 0:2	4 37.698	114.960	0.6	1,79	1.7	143	ACI 1.72		1.4/		5.50		A PAHROC SPRING
28	14:53:1	7 37.698	114.959	0.7	1.75	1.6	143	ACI 1.80 1.37	/ 1./6	1.09		1640	.03 68 1	1 MOUNT JACKSON
28	16:28:10	B 37.442	117.313	1.3	0.49	0.8	209	B01	1.33	1.19	1 6	10.40	85 2	9 MERCURY SW
28	18:29:4	4 36.503	115.964	0.1	7.06	0.5	58	ACI 1.92 1.50	•	1.75	1.0	, ,,,,,,,		
								100 1 66	1 76	1.83		22.9 8	.07 1	9 WAUCOBA SPRING
28	23:20:1	8 37.219	117.903	0.6	-1.89	0.7	223	AUS 1.00	,	0.89		11.5 0	.09 1	7 YUCCA FLAT
29	1:27:	2 37.029	116.099	0.3	5.75	1.5	130	ACT	•	0.92		11.5 0	.88 1	6 YUCCA FLAT
29	1:35:2	0 37.030	116.100	0.3	1.55	1.0	100	ACS 2.28 1.5	5	1.94		20.4 0	.10 1	8 REVEILLE PEAK
29	11:35:4	7 37.866	116.129	0.3	2,43	0.5	100	ACI 1.36	9	0.85		11.2 6	.08 2	4 BARE MTN
29	18:13:3	1 36.860	116,723	0.2		0.7	173	ACS 0.8	5	1.11		6.7 6	.85 1	5 LATHROP WELLS SE
29	21:42:4	1 30.333	110.233	0.5	-0.35	0.0								T LACYARE FLATS
30	12.18.4	9 36 785	116.295	0.6	-0.77	0.5	133	ABI	2.13	1.00		5.1 6		IS JACKASS PLATS
	12.10/7	1 37.028	116.095	0.3	4,86	2.7	178	BCI 1.38 1.2	7	0.84		11.90	111	A YINCA FLAT
30	13:40:4	1 37.025	116.104	0.3	5.94	1.2	115	ABI 1.51 1.2	1	1.32		11.2 0	111	6 YUCCA FLAT
34	15:52:1	0 37.026	116,105	0.4	4.52	2.2	116	PCI 1.2	9	1.00	2	2 24 7 4	.08	23 REVEILLE PEAK
30	23:49:1	4 37.867	116.132	0.2	1,46	0.8	168	ACI 1.74 1.7	А.	1.33	2	1 20.7	.15	21 REVEILLE PEAK
30	23:53:1	9 37.865	116.134	0.4	0.40	0.6	108	ACI 1.78 1.6	2	2.00	••			
-						<i>.</i> .		CC1		1.58		30.6 (. 06	15 BLACK HILLS NW
DEC 1	3:42:1	4 36.742	115.473	0.2	4,91	0.4	104			1.32		31.2 (9.11	14 BLACK HILLS NW
1	5 - 1.3 -	5 36 748	115.466	0.4	4.89	11.5	100							

74

H., H., H., H.

) 1 0 5 1 2 3 7

2

1987 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

	DA	TE (U	- TIME TC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125	MAGNITU Meg b	JOE 4d	ESTIMA MLh	TES MLv	MLc	DEL- MIN (KM)	RMS RES. (SEC)	PH	U.S.C.S. QUADRANGLE
l	DEC	1 1 2 2 3	8:42:16 15:49:33 22:28:18 10:23:11 21:12:52 18:30:17	36.730 35.826 35.817 37.058 37.868 37.866	115.451 116.915 116.885 116.124 116.130 116.129	0.5 1.2 0.6 0.2 0.2 0.2	4.00• 1.18 1.15 0.26 1.40 0.00	2.1 0.7 0.3 0.7 1.0	169 274 319 100 109 108	CCI BDZ ADT ABZ ACS BCI	2.26 2. 1.71 1. 1.81 1. 1.	. 0 2 . 44 . 75 . 51	2.10	1.54 2.23 1.14 1.54 2.00 1.63	2.8 2.3	32.4 15.9 16.4 9.6 20.6	0.09 0.12 0.04 0.07 0.07 0.07 0.07	13 14 7 27 21 13	BLACK HILLS NW WINGATE WASH WINGATE WASH YUCCA FLAT REVEILLE PEAK REVEILLE PEAK
		3 3 4 4 4	19:36:31 22: 8: 6 6:59:35 7: 6:42 7:59: 3 9:43:48	37.869 37.850 36.725 36.712 37.093 37.547	116.127 116.143 115.474 115.713 116.984 115.380	0.2 0.2 0.4 0.5 0.3 0.4	3.63 6.07 -1.81 -1.14 -0.41 -1.06	5.9 1.9 0.5 0.4 0.4 0.5	109 104 165 186 122 167	CCI ACI ACZ ADI ACI ACI	2.47 1. 1.99 1. 1.68 1. 1.	17 35 46 11	3.04 1.40	1.82 1.59 1.47 1.41 1.38		20.4 20.4 30.2 8.9 13.1 17.6	0.11 0.02 0.09 0.12 0.09 0.10	35 6 14 15 18 12	REVEILLE PEAK REVEILLE PEAK BLACK HILLS NW INDIAN SPRINGS NM SPRINGDALE MT IRISH
		5 5 5 5 6	7:14: 4 8: 9:57 10:15:14 13:15:24 14:11:60 14:12: 0	36.816 37.610 36.813 36.812 37.382 37.380	115.806 115.075 115.791 115.796 117.136 117.135	0.6 0.4 0.8 0.5 0.3 0.5	2.74 6.63 9.41 7.53 0.21 4.66	1.7 1.3 1.9 1.0 0.3 1.8	179 95 213 210 199 198	ACZ AB1 BDS AD1 AD1 AD1	1.85 1. 1.48 1. 2.10 1, 1.35 1. 1.	.42 .42 .83 .26 .26	1.47 2.36	1.85 1.53 2.17 1.62 1.27 1.27	2.2	13.6 13.1 13.2 13.2 14.6 14.6	5 0.09 1 0.09 5 0.15 2 0.09 8 0.06 0 0.10	27 13 19 21 16 16	FRENCHMAN LAKE SE HIKO SE FRENCHMAN LAKE SE FRENCHMAN LAKE SE STONEWALL PASS STONEWALL PASS
u r		7 7 8 8 8	11:17:13 11:27:35 21:47:10 1:27:0 6:24:35 23:30:12	36.674 36.671 37.462 37.319 37.874 37.836	116.184 116.187 115.514 115.182 116.125 116.143	0.2 0.2 0.3 0.5 0.3	6.01 5.70 15.36 6.22 -0.51 15.89	0.8 0.6 1.0 1.9 0.5	70 94 100 131 110 213	ABI ABI ACI ACZ ADI	1.89 1. 1.71 1. 1.50 1. 1.61 1. 1.	74 37 28 27 55	2.82 2.38 1.16	1.88 1.71 1.50 1.41 1.42 1.24		11.0 11.0 20.0 15.1 20.7 19.7	0.08 0.05 0.08 0.07 0.08 0.07 0.08 0.00	39 21 13 12 13 4	SPECTER RANGE NW SPECTER RANGE NW GROOM RANGE NE ALAMO REVEILLE PEAK REVEILLE PEAK
	1 1 1	9 9 10 10 10	15:49:10 17:16:22 2:35:17 2:37:23 10: 8:56 13:31:59	36.842 37.866 36.737 36.741 36.344 36.748	116.268 116.128 116.189 116.194 116.808 116.260	0.3 0.2 0.6 0.2 0.3	10.29 0.29 4.82 4.53 0.15 0.96	0.5 0.3 0.8 0.8 0.3 0.3 0.1	107 108 69 221 157 75	ABI ACI ABI ADI ACI AAI	1.83 1. 2.12 1. 1.58	72 45	2.31 2.47	0.56 1.97 2.42 0.53 1.19 1.11	2.2 2.3 1.2	5.0 20.3 7.4 7.0 21.5 1.2	0.06 0.07 0.10 0.09 0.06 0.09	13 20 38 14 17 22	JACKASS FLATS REVEILLE PEAK SPECTER RANGE NW SPECTER RANGE NW FURNACE CREEK STRIPED HILLS
	1 1 1 1	11 12 12 12 12	19:38:45 1:29:26 1:32:34 1:32:35 1:33:29 1:54:39	36.586 37.857 37.854 37.851 37.854 37.854 37.860	117.083 116.141 116.139 116.134 116.145 116.136	0.9 0.3 0.3 0.3 0.4 0.2	6.03 4.70 9.48 10.56 12.49 0.33	5.9 4.1 1.5 1.6 1.7 0.3	159 106 105 105 105 107	CCI BCI ACI ABI ABS ACZ	1.	50		1.04 1.59 1.88 1.76 1.58 1.58		18.6 20.7 20.3 19.8 24.3 20.5	0.07 0.06 0.05 0.06 0.05 0.05 0.03	6 11 9 10 7 8	STOVEPIPE WELLS REVEILLE PEAK REVEILLE PEAK REVEILLE PEAK REVEILLE PEAK REVEILLE PEAK
		12 12 13 13 13	3:53:10 4: 8: 9 0: 6:11 5:45:49 10: 4:21 6:42: 8	36.735 36.735 36.718 37.056 38.678 37.860	116.192 116.193 116.274 116.121 116.309 116.135	0.3 0.2 0.5 0.2 0.2 0.2 1.3	4.95 4.45 5.12 0.88 6.68 3.05+	0.9 0.9 0.4 0.4 0.2	157 68 214 126 113 176	ACI ABI ADI ABZ ABI CCA	1.54 1.68 1. 1.56 1.	34 09 34	2.22	0.73 1.42 0.63 1.05 0.90	1.3	7.2 7.1 3.0 9.9 4.4 20.4	0.09 0.09 0.05 0.04 0.06 0.13	19 34 13 9 19 6	SPECTER RANGE NW SPECTER RANGE NW STRIPED HILLS YUCCA FLAT STRIPED HILLS REVEILLE PEAK
	1	14 15	19:57:\7 13:33:19	37.865 35.825	116.129 116.910	0.2 1.9	-0.13 -0.16	0.4 10.8	108 276	ACS CDI	1.80 1.	69		2.10 2.28		20.4 15.9	0.07 0.05	14 7	REVEILLE PEAK WINGATE WASH

tamid

2 1 0 5 1 ··· 2 2 4 J.

,÷

1987 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

DATE (U	- TIME ITC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	00D 12S	MAGN Mea	ITUDE Md	EST IMA MLh	TES	MLc	DEL- MIN (KM)	RMS RES. (SEC)	∦N PH.	U.S.G.S. QUADRANGLE
DEC 15	14: 4:26	35.837	116.908	1.7	-0.43	1.4	275	BDZ		1.52		1.91		14.5	5 0.06	9	WINGATE WASH
16	8:50:21	37.074	115.752	0.2	2.01	1.6	109	ACI	1.70)	1.43	1.60		27.3	8 0.07	22	PAPOOSE LAKE SE
16	8:50:36	37.077	115.755	0.4	11,36	1.0	190	ADI			1.17	1.20		26.9	0.04	9	PAPOOSE LAKE SE
17	16:27: 7	36.452	115.738	0.6	11.23	1.2	151	ACI	1.46	1.12		1.38		19.9	0.08	15	CHARLESTON PEAK
17	21: 6:58	36.445	115,760	0.3	-0.08	0.4	93	ACI		1.15		1.37	1.5	20.8	8 0.11	23	MT STIRLING
17	23:33:29	36.449	115,759	0.3	0.26	0.4	93	ACI	1.76			1.74	1.5	21.1	9.12	24	MT STIRLING
18	0:19:16	36.635	116.334	0 .6	3.76	0.5	273	ADZ		0.59		0.84		1.3	0.08	16	STRIPED HILLS
18	1:12:22	36.446	115.758	0.3	-0.38	0.4	93	ACZ	1.34			1.35		20.7	0.12	23	MT STIRLING
19	7:10: 5	37.868	116.130	0.4	-0.03	0.6	109	ACI		1.65		1.74	1.7	20.6	6.13	15	REVEILLE PEAK
20	4:50: 2	36.446	115.760	0.2	0.12	0.3	93	ACI	1.68	1.44	1.61	1.46		20.9	0.09	24	MT STIRLING
20	11:19:25	37.696	115.0.9	0.2	1.43	0.7	115	ACS		1.11		1.14		11.0	0.03	9	HIKO NE
20	22:45:57	36,742	116.008	0.2	-1.00	0.4	108	ABI	1.83	1.17		1.24		10.6	0.09	24	CAMP DESERT ROCK
21	3: 5:33	37.850	116.143	0.8	9.39	2.8	104	BCI				1.25		20.4	0.07	7	REVEILLE PEAK
21	10:57:37	37.011	116.187	0.2	1.83	0.4	91	ABI	1.36	0.87		0.92		4.8	0.07	20	TIPPIPAH SPRING
21	11:51: 4	37.231	116.373	0.2	-0.82	0.2	73	AAS	2.20	1		1.75		4.8	9.07	23	AMONIA TANKS
21	15:33:22	37.016	116.191	0.2	1.88	0.5	92	ABI	1.29	1.26		0.90	0.9	4.1	80.0	16	TIPPIPAH SPRING
22	1:28:44	37.013	116.186	0.2	2.59	0.4+	82	AA I	1.64	1.23		1.19		4.1	0.09	24	TIPPIPAH SPRING
22	1:38:47	37.014	116.173	0.6	3.58	1.0	210	ADI	1.20	0.80		0.82		5.0	5 0.08	15	TIPPIPAH SPRING
22	14:54:48	37.016	116.173	0.4	3.74	0.8	210	ADI	1.41			0.98		5.6	6.08	19	TIPPIPAH SPRING
23	9:36:20	37.020	116.212	0.8	2.56	0.7	261	ADI				0.25		2.4	0.02	5	TIPPIPAH SPRING
23	14: 7:32	37.010	117.961	1.3	11.93	4.2++	- 242	BDI	2.26			2.66	2.3	37.3	0.12	12	WAUCOBA SPRING
24	16:12:21	36.252	117.212		5.44		254	ADA		2.12				44.1	0.10	4	EMIGRANT CANYON
24	19:31: 9	37.312	115.894	0.6	5.97	1.0	184	ADS	2.04			2.31	2.7	11.0	0.09	19	GROOM MINE SW
25	1:33:27	37.106	116.868	0.2	-0.38	0.3	150	ACS	1.88			1.93		13.4	0.06	22	SPRINCDALE
26	22:28:32	37.576	117.782	0.5	0.59	0.9	139	ACI		1.42	1.72	1.59		15.6	0.08	10	PIPER PEAK
27	12: 1:52	37.013	116.188	0.2	1.75	0.5	138	ACI	1.36	1.24		0.85		4.5	0.07	16	TIPPIPAH SPRING
27	16:40:25	37.888	116.123	0,7	0.22	0.6+1	251	ADI	2.08		2.59	2.60		59.€	0.10	17	REVEILLE PEAK
28	5:29:40	36.414	117.534	0.4	4.92	0.8++	224	ADS		1.21		1.44		44.8	0.06	16	DARWIN
28	6:42:26	37.867	116.129	0.9	3.96+		274	CDI		1.51		1.80		67.6	0.06	14	REVEILLE PEAK
29	1:49:12	36.499	115.125	1.4	14.46	1.2	249	BD I		1.47		1.81	2.0	3.2	0.14	14	GASS PEAK NW
30	19:31:46	36,111	115.364	1.1	2.16	3.1	295	BDS				1.83		30.6	6.09	12	BLUE DIAMOND SE
30	22:50:42	38.450	116.056	1.6	11.28	0.7	261	BOI	2.87		4.35			83.6	0.11	32	SGBasin
31	3:27:18	37.843	116.142	0.9	2.53	3.7	238	BOS				1.64		65.2	0.07	12	REVEILLE PEAK
31	8:12:57	36.494	115.114	0.7	16.43	0.5	242	ADI	2.12			2.03		4.4	0.09	18	GASS PEAK NE
31	13:37:51	36.500	115.127	0.8	15.47	0.6	240	ADI				1.58		3.6	0.08	13	HAYFORD PEAK

1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

1

ì

· · · ·

D	ATE (U	- TIME TC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND AZ ERROR GAI Z(KM) (DEC	I 000 P 125 G)) 5 MAGNITUDE Mco Mol	ESTIM/ MLh	NTES ML¥	MLc	DEL- RMS MIN RES. (KM) (SEC)	IN PH. U.S.G.S. QUADRANGLE
JAN	1 1 2 2 2 2 2	15:38:38 22:51:39 8:19:41 11:15:60 13: 9:53 15:48:30	37.853 37.855 37.853 37.456 37.127 38.480	116.128 116.129 116.132 115.424 115.101 116.040	0.4 0.5 0.3 0.3 1.0	-0.25 0.00++ 0.72++ 11.57 6.08 3.10+	0.7 10 0.9 10 0.5 10 1.9++ 10 1.0 109 259	6 AC1 6 AC2 6 AC2 9 AC1 9 AB1 5 CD1	1.43 1.82 1.77 1.35 1.91 1.83	1.96 1.10	1.49 1.70 2.16 1.12 1.35 2.11	1.2	19.5 0.12 19.7 0.11 19.8 0.23 26.0 0.08 10.9 0.68 44.1 0.10	13 REVEILLE PEAK 13 REVEILLE PEAK 25 REVEILLE PEAK 10 CRESCENT RESERVOIR 20 OAK SPRING 9 +++QUAD. NOT LISTED+
	2 2 3 3 3 3 3	19:38:45 23: 7: 1 8:36:30 9: 5:44 10:12:21 22: 8:56	37.854 37.317 36.677 36.676 36.736 36.435	116.132 115.066 116.339 116.339 116.188 115.767	0.4 0.0 0.3 0.3 0.2 0.4	0.62 -0.79 10.72 10.40 3.73 -0.94	$\begin{array}{c} 0.7 & 100 \\ & 171 \\ 0.2 & 132 \\ 0.3 & 132 \\ 1.0 & 105 \\ 0.4 & 175 \end{array}$	6 AC2 1 AD2 2 AB1 2 AB1 5 AB1 5 AB1 3 AC2	2.09 1.34 1.18 0.95 0.83 0.52 1.30 0.96 1.01		0.37 9.63 9.82		19.9 0.12 10.0 0.00 3.5 0.65 3.4 0.05 7.6 0.08 20.5 0.05	19 REVEILLE PEAK 5 ALAMO SE 21 STRIPED HILLS 17 STRIPED HILLS 24 SPECTER RANGE NW 18 MT STIRLING
ı	44465	11:14:49 15: 5:39 15:49:56 20:50:1 2:41:46 5:19:4	37.851 37.018 37.928 37.848 37.852 37.937	116.132 116.460 117.620 116.137 116.136 116.152	8.4 9.2 9.7 9.5 9.6	1.45 10.48 1.95 0.80 3.15• 3.16	1.3 105 0.5 132 3.4 218 0.9 104 241 241 274	5 9C2 2 AB1 5 B01 4 BC2 1 C0A	1.56 1.45 1.16 0.88 1.58 1.70 1.58 1.70 0.96 1.00	1.55 1.67	1.81 0.79 2.64 1.93	1.0 2.3 2.2	19.7 0.17 6.8 0.66 28.7 0.07 19.9 0.15 20.0 0.63 27.2 0.48	17 REVEILLE PEAK 19 TIMBER MTN 11 SILVER PEAK 17 REVEILLE PEAK 5 REVEILLE PEAK 4 REVEILLE PEAK
I	6 7 8 8 8	8:21:55 10: 6: 8 13:57:27 16:33: 8 20: 1: 8 20:27:50	36.573 37.129 37.860 37.076 37.852 37.490	115.613 115.224 116.138 115.762 116.131 115.770	0.5 1.0 0.3 0.4 0.5	3.14 8.89 -0.25 0.53 0.28 0.74		7 ADA 3 ADI 7 ACI 3 ACI 3 ACI 3 ACI	0.57 1.31 1.28 2.23 1.84 1.60 1.74 1.52	1.72 2.35 1.43	1.52 1.38 2.21 1.86 1.64		28.1 0.09 5.5 0.08 20.7 0.14 26.5 0.10 19.6 0.13 16.5 0.12	4 INDIAN SPRINGS SE 11 LOWER PAHRANAGAT LAKE 8 REVEILLE PEAK 28 PAPOOSE LAKE SE 18 REVEILLE PEAK 11 GROOM MINE NE
	8 9 9 9 9	23:16:53 3:44:16 11:31:53 16:40:58 16:54:51 18:51:33	37.332 37.293 37.589 37.857 36.192 37.313	116.469 114.814 115.680 116.148 115.498 114.657	0.2 1.4 2.8 	0.08 10.76 1.29 0.37 14.15 -0.23	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	ACZ BDA CBA ADA ADA ADA	1.58 2.26 1.23 6.92 6.92 1.77 1.45	1.75	1.11 1.82		15.8 0.98 24.5 0.10 3.0 0.27 21.2 0.13 16.3 0.00 33.3 0.04	24 SILENT BUTTE 8 GREGERSON BASIN 6 TEMPIUTE MTN 4 REVEILLE PEAK 4 LA MADRE MTN 8 ELGIN SW
	11 12 12 13 13 14	2:13:53 13:46:20 14:53:20 9:35:20 20:29:43 2:23:55	37.032 36.268 37.185 38.591 38.428 36.765	116.248 117.408 115.793 117.097 115.703 116.066	0.3 0.6 0.3 0.3 0.3 0.3	5.78 1.18 8.03 8.07 7.10 8.97	0.7 65 2.0 236 0.9 102 1.1++ 117 1.0++ 98 0.6 135	5 AAI BOI 2 ACI 4 ACI 5 ABI	2.07 1.61 1.52 1.38 1.74 1.50 1.85 1.62 1.51 1.14 1.11	1.30 1.36	1.63 1.60 1.66 1.99 1.45 1.10	2.0	1.8 0.12 32.0 0.68 16.5 0.09 17.3 0.09 15.7 0.07 13.5 0.09	31 TIPPIPAH SPRING 17 PANAMINT BUTTE 30 PAPOOSE LAKE NE 28 STOVEPIPE WELLS 20 CHARLESTON PEAK 22 CANE SPRING
	14 14 14 14 14 14	2:54: 6 5:16:33 5:29:56 5:46: 8 5:49:16 7:35:11	38.677 38.681 36.680 36.681 36.764 36.679	116.339 116.328 116.329 116.328 116.066 116.323	0.3 0.2 0.4 0.2 0.4 0.4	10.49 9.98 10.10 10.06 9.32 10.56	6.3 131 6.3 47 6.4 157 6.3 54 8.7 146 9.5 169	ABI AAU ACI AAI ACI ACI	0.86 3.95 1.68 0.75 1.78 1.66	2.59 1 .96	0.86 2.09 0.92 1.30 0.80 0.70		3.5 0.07 4.1 0.08 4.0 0.06 4.1 0.07 13.6 0.08 4.0 0.07	19 STRIPED HILLS 44 STRIPED HILLS 15 STRIPED HILLS 34 STRIPED HILLS 17 CANE SPRING 13 STRIPED HILLS
	14 14	7:35:55 9:27:18	36.681 36.683	116.328 116.329	0.1 0.3	10.08 10.22	0.2 54 0.4 155		1.81 1.75	2.36	2.01 0.40		4.0 0.06 4.3 0.04	42 STRIPED HILLS 9 STRIPED HILLS

77

.

.

) |)] | 29 4 2

1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

DATE (- TIME UTC;	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZ I GAP (DEG)	000 125	MAGN I Mag	TUDE Md	ESTIMA MLh	TES	MLc	DEL- MIN (KM)	RMS RES. (SEC)	∦N PH.	U.S.G.S. QUADRANGLE
JAN 14 14 14 14 14 15	9:27:27 14:59: 3 19: 8:52 21:38:59 22:17:39 11:22:33	36.678 37.854 36.677 36.682 36.681 36.682	116.335 116.129 116.331 116.330 113.331 116.334	0.3 0.6 0.3 0.4 0.3 0.3	10.34 0.00++ 10.23 10.02 9.94 10.04	0.3 1.0 0.3 0.4 0.3 0.3	144 108 158 155 154 147	AC1 AC1 AC1 AC1 AC1 AC1	1.31	0.68 1.34 1.28 0.68 1.17		0.77 1.64 0.71 0.78 0.77 0.72	1.2	3.7 19.6 3.6 4.1 4.0 4.0	0.06 0.14 0.04 0.05 0.04 0.04	16 14 13 12 11 13	STRIPED HILLS REVEILLE PEAK STRIPED HILLS STRIPED HILLS STRIPED HILLS STRIPED HILLS
15 15 15 15 15	11:30: 1 11:47:38 18:56:43 19:46:56 21:42:30 4:29:20	36.686 38.686 36.682 37.334 36.675 36.679	116.340 116.337 116.332 117.766 116.341 116.328	0.3 0.3 0.4 0.3 0.3 0.3	9.16 9.36 10.01 -0.84 10.49 10.13	0.3 0.4 0.4 0.6 0.3 0.3	138 141 151 158 136 114	AC1 AC1 AC1 AC2 AC1 AB1		0.94 0.98		0.88 0.89 0.73 1.31 0.99 0.79		4.6 4.5 4.1 15.5 3.3 3.9	0.05 0.05 0.04 0.09 0.05 0.05	14 14 9 11 17 13	STRIPED HILLS STRIPED HILLS STRIPED HILLS SOLDIER PASS STRIPED HILLS STRIPED HILLS
16 16 17 17 18 18	5:53:26 14: 0:40 3: 5:38 9: 7:32 3:30:11 4:12:60	38.680 38.517 37.855 37.191 37.851 37.225	118.329 115.782 118.129 117.398 116.135 114.997	0.2 0.5 0.2 0.5 1.3	10.10 0.66 0.00++ -1.18 0.27 8.32	0.2 0.8 0.6 0.3 0.8 2.3	116 184 186 114 185 243	ABI ADI ACZ ACZ ACI BDI	1.57 1.86	1.08 0.61 1.79 1.02 1.58	1.15 2.01 1.16	1.11 1.11 2.19 1.67 1.67	1.5	3.9 22.6 19.7 17.4 19.9 18.0	0.06 0.07 0.13 0.04 0.15 0.06	20 11 23 13 17 6	STRIPED HILLS MERCURY SE REVEILLE PEAK UBEHEBE CRATER REVEILLE PEAK DELAMAR 3 NW
18 18 18 18 18	6: 6:52 6:12:52 6:23:28 6:24: 5 6:47:31 23:52:38	37.239 37.236 37.232 37.239 37.238 36.307	117.305 117.313 117.319 117.320 117.314 117.119	0.3 0.5 0.4 0.4 0.4 1.0	8.37 6.97 4.43 5.86 6.92 7.93	0.5 1.0 1.3 0.9 0.8+- 0.8	85 83 85 84 190	AA1 AB1 AB2 AB1 AB1 B01	1.47	0.97 1.07 1.17	1.42	1.37 1.45 1.27 1.12 1.59 1.09		8.0 8.7 9.4 8.9 8.8 6.7	0.05 0.11 0.11 0.09 0.10 0.57	11 15 19 10 17 7	UBEHEBE CRATER UBEHEBE CRATER UBEHEBE CRATER UBEHEBE CRATER UBEHEBE CRATER EMIGRANT CANYON
19 19 20 20 20 20	8:32:8 15:1:24 7:55:12 18:50:26 21:22:31 10:50:9	36.873 37.226 37.896 36.674 36.743 36.814	115.973 117.322 116.411 116.337 115.822 115.380	0.2 0.4 0.2 0.5 1.1 0.6	1.96 4.28 0.17 8.73 4.05 -6.72	0.7 1.8 0.3 0.5 1.8 1.6	125 87 81 276 226 127	ACI ACI ABZ ADI BOZ ACZ	1.65 1.48	1.09 1.07 1.13		1.34 1.51 1.23 1.00 1.06 1.62	1.5 1.1	17.5 10.1 7.1 9.5 5.5 39.5	0.88 0.09 0.86 0.84 0.85 0.12	21 11 19 9 10	FRENCHMAN FLAT UBEHEBE CRATER TIMBER MTN STRIPED HILLS MERCURY NE DOG BONE LAKE SOUTH
23 23 23 24 24 26	5:57:34 11:40:21 17:52:17 5:16:48 12:48:44 11:50:35	37.815 37.852 37.392 37.849 36.819 38.442	115.353 116.131 117.231 116.133 115.799 114.861	0.3 0.4 0.6 0.5 4.3	2.36 0.53 2.06 0.26 4.59 7.00	1.2 0.7 1.9 1.1 2.6 1.6	99 105 124 105 182 273	ACZ ACZ ACA ACI BOI COI	2.00 1.55 1.90	1.80 1.70 0.99 1.68 1.78	1.82 3.17	2.15 1.83 1.83 1.99 2.96	2.1 2.1 3.1	10.3 19.6 10.3 19.7 13.9 64.8	0.11 0.14 0.10 0.15 0.10 0.19	20 18 9 14 22 14	REVEILLE PEAK STONEMALL PASS REVEILLE PEAK FRENCHMAN LAKE SE •••QUAD. NOT LISTED•
26 26 26 26 26 26 26	11:57:33 12:18:10 12:18:15 18:17:22 19: 7: 6 23:54:10	36.445 36.994 37.234 37.190 36.422 37.852	115.759 117.884 117.648 116.746 116.936 116.131	0.2 0.9 8.2 0.2 0.3 0.3	6.23 6.21 6.68 12.20 6.74	0.3 0.8 2.5 0.5 1.1 0.6	93 241 157 69 117 106	ACZ ADI DCZ AAI ABI ACZ	2.08 1.95 :	1.17 1.35 1.27 1.29 2.05	1.13 2.41 1.32 2.22	1.37 1.41 6.98 2.14 1.20 2.12	2.1	20.8 33.9 6.2 5.2 14.3 19.7	0.09 0.08 2.16 0.09 0.10 0.13	22 11 11 38 17 24	MT STIRLING WAUCOBA WASH LAST CHANCE RAHGE THIRSTY CANYON NW FURNACE CREEK REVEILLE PEAK
27 27	5:59:54 12:23:23	37.271 36.443	116.305 115.758	1.1 0.2	2.95 0.04	0.6 0.3	267 94	BOI AC1		1.03	1.43	1.09		6.5 20.6	8.88 9.88	12 21	DEAD HORSE FLAT MT STIRLING

78

H_{aad}haan N

1191391

H^{is} and

21051 2 9 4 3

1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

DATE - TIME (UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG, W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	OOD 125 MACHITUDI Mcg Md	E ESTIMU MLh	ATES MLV	MLc	DEL- I MIN I (KM) (S	RMS RES. F SEC)	N H. U.S.G.S. QUADRANGLE
JAN 27 17:37:46 27 22: 5:47 28 14:58:53 28 16:47:12 30 1:38:11 30 6:57: 6	37.865 37.549 38.402 36.770 38.387 37.853	116.134 117.562 114.895 115.558 114.878 116.12)	0.4 0.4 3.4 0.7 4.2 0.4	-0.29 -0.51 0.00** 3.27* 6.96 -0.08	$ \begin{array}{r} 0.7 \\ 0.5 \\ \overline{3.5} \\ \overline{3.4} \\ 0.8 \\ \end{array} $	108 185 269 97 269 106	ACI 1.60 1.73 ADZ CDZ 2.48 CCA 1.36 CDZ ACI 2.23	3 1.55 1.32 2.69	1.86 1.22 2.65 2.55	2.4	20.7 (13.3 (59.7 (24.1 (58.5 (19.6 (0.13 1 0.09 1 0.16 1 0.16 1 0.15 1 0.15 1	7 REVEILLE PEAK 2 LIDA WASH 1 •••QUAD. NOT LISTED• 1 TIM SPRING 0 •••QUAD. NOT LISTED• 5 REVEILLE PEAK
30 16: 4:14 30 18:38: 6 FEB 1 15:50:51 1 18:37:48 3 15:47:22 3 21:13:22	37.516 36.447 36.996 38.738 36.703 36.800	118.025 115.757 116.071 116.429 115.844 115.803	1.0 0.2 0.2 1.5 0.4 0.8	5.29 0.25 0.84 7.78 -1.53 -1.02	2.2 0.3 6.4 6.8 6.8 1.0	256 93 133 302 146 211	BOI 1.78 ACI 1.07 ACI 1.45 1.03 BOI ACI 1.73 1.42 ADZ 1.76	2	1.88 1.01 1.19 3.02 1.38 1.32	1.9	14.5 (20.7 (15.5 (110.6 (11.5 (21.0 (8.08 1 8.08 1 8.05 1 8.05 1 9.08 1 8.09 1 8.09 1	0 •••QUAD. NOT LISTED• 6 MT STIRLING 2 YUCCA LAKE 4 •••QUAD. NOT LISTED• 6 MERCURY NE 2 FRENCHMAN LAKE SE
4 4:59:25 4 4:59:32 4 23: 6: 2 5 0:36:29 5 11: 6:55 5 11:18:46	38.368 37.995 35.966 35.947 37.792 35.940	114.946 115.326 116.763 118.770 118.152 116.774	2.4 4.7 3.5 1.0 5.2 1.1	-1.54 7.60+ 4.94 2.99 2.58+ 6.07	$ \begin{array}{r} 1.6 \\ 11.8 \\ 4.0 \\ \hline 2.0 \\ \end{array} $	264 194 197 212 307 218	BDZ 2.05 1.51 DDI 2.05 1.44 CDA 1.56 BDI 2.18 DOI 1.52 BDI 2.18 DOI 1.52	2.12 1.88	2.63 1.62 2.13 1.78 2.13	2.0 2.3	55.0 23.5 9.4 9.8 31.9 8.9	B.10 1.53 5.19 5.11 1 5.11 1 5.11 1	7 SILVER KING WELL 7 7 WINGATE WASH 2 WINGATE WASH 2 •••QUAD. NOT LISTED• 2 WINGATE WASH
5 11:58:55 5 11:53: 1 5 12:28: 8 5 13:43: 5 5 22:43:38 6 2:58:36	37.782 37.804 37.799 35.948 35.939 37.214	118.135 118.192 118.150 116.768 116.804 116.487	5.2 1.2 5.2 0.9 5.5 0.2	-0.18 3.49+ 1.50+ 3.21+ 2.69+ -0.23	4.0 0.3	303 310 300 306 313 105	DOI 1.76 COI 1.46 DOI 1.37 DDI 1.44 ACZ 1.67		1.94 1.59 1.44 1.44 1.43 1.10		30.2 (35.6 (31.9 (27.8 (29.8 (14.5 (0.10 1 0.07 0.07 0.07 0.07 0.09 0.09 2	0 •••QUAD. NOT LISTED• 7 •••QUAD. NOT LISTED• 8 •••QUAD. NOT LISTED• 8 WINGATE WASH 6 WINGATE WASH 6 SCRUCHAM PEAK
6 8:12:48 6 12:58: 3 6 18:48:33 7 6:23:42 7 13:47:18 7 16:47:42	35.954 36.376 35.950 35.942 35.936 37.054	116.778 117.476 116.774 116.782 116.793 116.656	1.4 0.8 1.1 1.0 1.0 0.4	4.97 5.95 5.57 3.22 5.39 4.51	3.3 5.6 2.5 1.8 6.4 3.0	267 238 210 218 291 112	BDI 2.04 CDI 1.39 BDZ 1.89 1.60 ADZ 2.18 CDI 1.51 BCI 2.11	1.95 2.39 2.10	2.10 1.62 1.87 2.21 1.43 1.98		8.2 0 48.0 0 8.6 0 8.1 0 29.8 0 13.5 0).11 1).11 1).16 1).14 2).11).22 3	3 WINGATE WASH 7 PANAMINT BUTTE 0 WINGATE WASH 2 WINGATE WASH 9 WINGATE WASH 8 YUCCA FLAT
7 17:18:32 8 4:30:33 8 7:52:47 9 10:32:33 9 11:28: 5 9 11:29:22	37.364 37.865 37.101 37.226 36.681 36.679	115.445 118.131 118.015 117.566 118.324 118.329	0.2 0.4 0.3 0.4 0.2 0.3	0.58 0.34 4.95 9.54 9.40 9.85	0.2 0.7 1.0+ 0.7 0.4 0.5	130 108 191 133 56 70	ACZ 1.86 1.32 ACI 1.56 AOI ABI 1.55 AAI 1.62 AAI 1.49	1.17	1.29 1.60 0.95		29.3 0 20.5 0 10.8 0 7.2 0 4.2 0 3.9 0).64 1).13 1).67 1).69 1).68 2).67 1	1 CUTLER RESERVOIR 5 REVEILLE PEAK 3 YUCCA FLAT 9 LAST CHANCE RANGE 7 STRIPED HILLS 8 STRIPED HILLS
9 11:52:40 10 6:21:18 10 15: 1:39 10 17:22:55 10 17:24:53 10 17:26:11	36.681 35.887 36.828 35.946 35.954 35.954	116.339 116.768 116.749 116.768 116.768 116.779 116.765	0.4 8.7 0.5 1.0 1.5 3.2	9.37 7.00 2.60 5.41 5.76 5.00++	0.5 7.2 0.9 2.1 2.9 9.5	140 288 307 213 207 215	ACI 0.65 DDA 1.08 ADI BDI 2.14 BDI 2.43 CDA 1.69	2.14	8.84 2.84 2.89	2.3	3.9 6 12.4 6 11.4 6 9.2 6 8.1 6 9.5 6	.65 1 .52 .65 1 .65 1 .12 1 .29	© STRIPED HILLS 5 WINGATE WASH 4 BARE MTN 0 WINGATE WASH 5 WINGATE WASH 7 WINGATE WASH
10 20:43:58 10 20:44: 2	35.955 36.163	116.768 116.621	2.2 2.0	9.52 7. 00	2.8 1.5	288 203	Zow		1.18 0.84		27.0 0 5.0 1	.16 .26	7 WINGATE WASH 7 FUNERAL PEAK

79

H_{an}ghat

2944 7 1 0 5 1

1988 LOCAL HYPOCENTER SUMMARY - SCB EARTHQUAKES

	DATE (E	TIME C)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125	MAG Mc d	INITUD Ma	EE	STIMA' MLh	TES MLv	MLc	DEL- MIN (KM)	RMS RES (SEC)	, PH	U.S.G.S. QUADRANGLE
_	·		£. 9.3£	35 040	116.767	5.6	2.18•		210	DDA		1.0	4				9.	2 0.2	1 8	WINGATE WASH
r	11	1	18:42:51	38.002	115.295	3.1	1.76	7.5	199	CDA		1.6	6				23.	9 0.2	5 Y	NT SCH7DER SE
	11	i 3	22:32:15	36.298	116.066	9.3	-1.02+		215	DOZ			~		1.10		10.	1.J	R 18	DELAMAR LAKE
	12	2	8:54:53	37.336	114.930	0.5	1.46	0.9	201		,	1.0	8	1.31	1 31		9.	2 8.8	7 8	MERCURY NE
	12	2 '	19:25:47	36.651	115.859	1.2	-1.21	2 4 4	110	801	•				1.26		16.	4 8.8	5 9	LIDA WASH
	13	3	14:12:25	37.576	117.740	0.5	1.42	2.07												
		-		38 447	115.764	0.2	13.37	0.6	168	ACI				88.0	0.97		21.	3 8.0	4 12	MT STIRLING
	1.	ວ ຈໍ	17:17:45	36.710	118.292	0.5	-0.22	0.3	185	AD I		0.5	8	1.86	0.47		4.		4 11	SIRIPED HILLS
	1	3 7	18-48: 6	37.207	117.587	0.7	4.72	1.3	161	ACI					0.87	1.3	6.		2 13	CTOTOFT HILLS
	1.	3	19:52:39	36.702	116.297	0.3	7.67	0.4	178	ACI					0.74		5.		2 10	MAGRIDER MIN
	1	4	8:52:15	37.291	117.625	0.3	-1.37	0.3	147	ACI				0.88	9.00		40	4 8.1	8 15	LEACH LAKE
	1	4	3:23:54	35.668	116.608	1.6	14.65	0.5	275	BOI	L							• ••••	• ••	
						• •		8.3	73	ABI	r				1.40		8.	5 8.1	0 12	MAGRUDER MTN
	1.	4	11: 5:42	37.482	117.579	0.4 0 0	7 88	3.4	192	801	i 1.	69 1.4	41		1.50)	27 .	1 0.0	9 9	DELAMAR LAKE
	1	5	6:31:40	37.330	116 195	0.4	-0.31	9.4	105	A81	1 1.	57 1.6	93		1.14	1 2.6	5 6.	2 0.1	1 20	SKULL MIN
	1	2	13.84.51	30.002	116.320	ē.2	8.77	0.4	71		I 1.	61			1.3	2	2.	3 0.6	7 2	
		5	29.51.4	36.679	116.330	0.2	10.20	0.2	117	AB1	11.	42 0.9	92		1.10	5	3.		10 11	
	i	5	21:28: 8	36.680	116.326	0.2	10.30	0.2	111	AB	11.	44 1.0	07		1.00	>	-			
	•	-							707	~		A 3	76				18.	5 8.6	5 5	S STRIPED HILLS
2	2	19	4:29: 2	36.677	116.331	2.5	1.23		367	803	7	1.5	52				13	4 0.6	6 (S STRIPED HILLS
, ,	2	20	5:12:47	36.726	116.357	1.5	~1.0/ 6 A7	3.7	188	BC	Ĩ.	i.i	85				13.	2 0.6	7 1	VUBEHEBE CRATER
	2	20	12:33:3	37.11/	116 218	0.0 A 4	8.53	0.4	129	AB	Î	0.1	96				5	2 0.1	<u>H 1</u>	SKULL MTN
	2	20	22: 3:5	1 38 650	115 686	0.4	-1.28+		136	CC/	Ā	2.	1R				11.	.8 0.1	0 1	TINDIAN SPRINGS NW
	2	(1 22	7.33.1	37.808	115.808	0.3	6.38	0.4	143	AC	Z	1.	44		1.4	5 1.	7 13	.2 0.1	50 11	
	4		7.00.1										~~				7 12	9 8.6	37 1	B HIKO NE
	2	22	11:32: 0	9 37.710	115.063	0.3	8.06	1.2	113	AB	1].	42 1.	29	1.55	1 8	J 1. A	17	.7 8.0	8 1	7 TIPPIPAH SPRING
	2	22	20:43:3	9 37.078	116.163	0.2	1.73	9.8	105		21.	50	84				20	.3 0.0	89 1	2 WAUCOBA SPRING
	2	22	23:32:4	8 37.243	117.913	1.0	1.1/	1.7	343	 	â	1.	48				65	.0 0.1	20	5 + + + QUAD. NOT LISTED +
	2	23	7:33:3	3 36.610	118.091	5.0	0.83	A 1	130	AB	ī	••			9.7	7	6	.7 8.	25 1	5 SPECTER RANGE NW
		24	20:11:5	9 36./1/	116.203	0.1 A 4	2.64	0.7	123	AB	i				.9	2	8	.4 0.	11 1	7 YUCCA LAKE
	2	25	3:41:5	1 30.993		•••										-	• •			A DELAMAR LAKE
		25	23: 0:2	8 37.307	114.939	0.3	0.59	0.3	207	AD	Z 1.	.39	• •	1.47	1.2	1	14		67 1	1 CAMP DESERT ROCK
		26	13:34:1	2 38.733	116.102	0.2	-0.63	0.4	112	X	Z 1.	52 0.	94		1.1	3 8 1	۲, r	.4 0.	17 2	2 SKULL MTN
		26	15:33:	9 36.862	116.244	0.4	1.79	1.3	81	66		.04 1.	18			0 I.	Ŭ Š	.4 8.	09 I	8 SKULL MTN
		26	16: 1:1	6 36.860	116.245	0.2	-0.32	0.2	407	AD	12 1. ST	. 29 1.	11		0.6	š	6	.4 0.	10 1	4 SKULL MTN
•	:	26	16:18:2	3 36.851	115.240	0.4	2.90	0.0	225	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~)i 2	.27 1.	85		2.0	1 2.	4 20	.4 0.	08 1	7 WAUCOBA SPRING
	2	26	.18:38:	2 37.242	117.922	0.3	10.01	v. 7									<i>.</i> -			A MARINO DA MACIA
		~ 7	A. 8.1	400 AF A	117.867	1.2	2.22	3.7	229	BO	DZ 1.	.82 1.	.79		2.0	9	46	.3 0.	14 1	A WAUCUBA WASH
		∡/ 28	21 011	8 36.793	116.233	0.5	0.89	0.7	171	AC	1	Ø.	.78		0.0	2		.0 U. 2 P	00 88	7 LOWER PAHRANAGAT LAKE
		29	0:45:3	6 37.244	115.104	4.4	8.95	2.9	183	co	21	1.	. 05	1.42	· 1.1	1.3 LA	21		84	9 ELICN NE
		29	12:30:2	7 37.433	114.577	0.4	6.50	1.9	278	AD	21	1.	.24		1.5	ura Lira	20	.6 0.	14	8 REVEILLE PEAK
		29	13:23:4	0 37.871	116.127	0.8	0.00	·• 1.4	109	AU 40		1.	. 40	1.11	1.3	Ně –	31	.5 0.	87 1	1 ELGIN SW
	MAR	1	8:26:4	6 37.281	114.733	0.8	6,12	1.5	TT 234	~						-				
			47,74.		114 580	3.8	-1.54		279	CC	DZ	2.	.24		2.6	94	51	.2 0.	64	6 MOAPA
		1	17:34:4	57 38.69R	114.957	5.0	2.21		227	α	DI	2.	. 19		1.8	32	28		40	B AROUN CANTON

80

٤.

1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHOUAKES

DA	ITE (L	- TIME UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125) 5 MAGN Mica	IITUDE Md	EST IM MLh	ATES MLv	MLc	DEL MIN (KW)	RMS RES. (SEC)	∦N PH	. U.S.G.S. QUADRANGLE
MAR	1	20:15:10	37.291	116.290	0.4	0.08	0.4	203	A D7	,		1 80						
	2	11:42:46	37.845	116.137	0.3	0.21	0.6	184	ACI		1 95	1.00			9.0	0.04	11	DEAD HORSE FLAT
	2	20:21:29	36.710	115.226	0.3	10.17	0.5	85		1.00	1.05		1.03		19.7	0.12	19	REVEILLE PEAK
	3	7:33:56	36.960	114.493	1.1	5.67	1.2	247	801				0./1		5.5	0.08	-14	SPECTER RANGE NW
	3	18:43:48	36.787	116.270	0.3	4.66	0.8	132	ARI		A 58		0.00		65.9	0.09	16	QUAD. NOT LISTED.
	3	23:28:23	37.209	117.282	0.4	0.51	0.6+	+ 81	ACT		1 25		0.20		3.0	0.0/	13	JACKASS FLATS
											1.43		0.97		10.4	0.13	12	UBEHEBE CRATER
	4	0:16:11	37.210	117.285	0.4	-1.60	0.6	82	AC7	•	1 53		1 21					
	4	3: 9:48	37.210	117.287	0.5	-0.22	0.8	82	ACT		1 32		0.78		10.4	0.12	13	UBEHEBE CRATER
	4	4: 4:29	37.227	115.073	1.4	-1.44	1.6	202	BD7	1 93	1 32	1 60	9.70		10.4	0.10	11	UBEHEBE CRATER
	4	7: 5:59	37.253	115.202	3.3	10.58	1.9	216	CDI		1 89	1.00	1.17		12.0	0.13	<u> </u>	LOWER PAHRANAGAT LAKE
	6	3:48:55	36.444	115.758	0.2	0.14	0.4	93	ACI	1.97	1.64		1.21		¥.5	0.03		
	6	3:49:59	36,444	115.759	0.2	-0.08	0.3	94	ACI		1.71		1 68		20.0	0.00	21	MI STIRLING
															20.0	3.00	40	MI STIKLING
	6	4:38:31	36.421	117.248	0.4	0.92	0.4	193	ADZ		1.53		1.78		25.2		17	SUICEANT CALMON
	0	16:21: 9	36.501	116.590	0.6	2.39	2.1	173	BCI		1.07		1.11		15 4	8 87	14	DIC DINE
	2	23:20:48	37.324	115.115	0.8	16.61	0.2	191	ADI			1.29	1.40		18 9		'7	
	1	21: 6: 5	36.004	114.916	5.2	0.13	10.5	298	100			3.47			59.8	8 14	15	NENDERSON
	ö	/: 0:50	37.093	115.130	9.2	4.23+		314	DO I		0.96		0.76		9.8	8 82	Ř	I OWER RANDAMACAT LAVE
	ð	13: 7: 0	36.536	115.061	0.2	11.70	0.J	72	AAI	1.60	1.27	1.19	1.18		11.3	8.86	22	SPECTER RANGE SE
	8	14-14-59	17 161	117 850														
	R	21. 1.27	36 233	117.039	0.5	9.37	1.5	214	ADI	1.50	1.64	1.74	1.69	1.9	20.4	0.09	16	WAUCOBA SPRING
	Ř	21.14.13	35.233	116.393	3.5	-0.82	3.1	228	DDZ				0.78		19.7	1.36	8	EAGLE WTN
	ă	3. 1.30	37 184	117 956	1./	3.440		295	CDZ				1.28		60.1	0.05	6	CONFIDENCE HILLS
	ő	3.34.37	37.100	118 433	0.0	8.4/	1.3	271	ADI		1.48		1.37		19.4	8.07	12	WAUCOBA SPRING
	9	6:47:47	37 492	115 127		-1.01	1.8	238	BOI	2.36	2.12		2.55	2.9	18.3	0.15	11	+++QUAD, NOT LISTED+
	•	••••••	07.002	110.127	0.4	5.51	0.5	247	AD I				1.50	1.3	10.0	0.02	8	LOWER PAHRANAGAT LAKE
	9	16:40:47	37.647	114.867	0.5	2 76	A 7	107	40.1							_		
	9	17:23:23	37.256	117.583	0.3	8.63	8 6	81		1 60			0.81		6.2	0.03	7	PAHROC SPRING NE
1	11	13:49:44	37.844	116.142	0.0	1.90	A 1	101		1.08	1.75		1.74		6.2	0.09	19	MACRUDER MTN
1	12	23:11:50	36.838	116.190	0.3	2.49	0.4	160	AC7				0.01		20.1	0.00	5	REVEILLE PEAK
1	13	1:15:54	37.495	117.220	0.3	-0.90	1.0	73	AC7	2 17	1 90		0.91		2.7	0.04	10	SKULL MTN
1	13	15:28:51	37.870	116.132	0.5	-0.30	9.8	189	ACT	2 85	1 82		2.2/	2.5	21.9	0.11	30	STONEWALL PASS
			·						~~.	2.05	1.04		1.04	1.8	20.9	0.15	16	REVEILLE PEAK
1	3	19:57: 7	37.494	117.223	0.2	0.22	0.3	143	ACI	1.56	1.92		1 81		21 7		••	
1	3	20:27: 6	37.850	116.127	1.3	1.62	2.2	191	BDA		1.32		1.00		10 3	0.0/	29	DIUNERALL PASS
. 1	3	22:48: 2	37.864	116,134	0.6	-0.22	1.0	108	ACI				1 24		20 7	0.1/ A 11		STATULE PEAK
1	3	23:38: 1	37.268	115.330	0.4	2.08	4.7	165	BC I				2 34		45 7	A 14 -		
1	4	0:22:43	36.983	116.339	0.1	0.73	0.2	94	ABZ	1.17	1.40		0.70		7 2	0.11 . 0 08 ·	41 I 77 '	CODODAN SODING
1	4	1:13:23	36.981	116.339	0.1	0.63	0.2	93	ABI		1.06		0.67	•.•	7 3	A AS	54 21 ·	TOPOPAN SPRING
•		1.41. 7	70 400													••••		ororan arking
	7	1:43: 7	37 201	116.975	0.3	0.24	0.5	148	ACZ		1.29		1.35		31.3	e.13 :	22	URNACE CREEK
	7	4:20:33 6:12:60	37.201	116.019	6./	7.00	11.3	221	DO 1		1.43		1.08		0.2	4.10		AK SPRING
	Ă.	17-25-17	38 074	118 474	U.0	-0.25	1.2	109	ACI	1.93	1.86		1.65		21.1	0.15	13 I	REVEILLE PEAK
1	Ĭ.	10-38-34	37 BEE	110.0/4	V.0	7.00+		218	C01	2.15	2.40	2.39	2.67	2.6	81.1	0.08	13 1	ULE DEER RIDGE NE
	š	1.27.52	37 882	118 135	U.Y	2.13	3.9	105	BCA		1.49				20.8	D. 15	8 1	EVEILLE PEAK
•	-		07.002	110.100	v .J	-0.31	v .5	157	9CI	1.65	1.93		1.67	2.2	28.5	0.1 8 1	16 F	EVEILLE PEAK
1	5	8:21:38	37.831	116.139	2.1	1 87	4 0	231	004									
1	5	15:50:37	36.990	116.340	0.3	5.12	4.8 A 7	101	ADI		1.33		• • •		19.2 (9.09	5 F	EVEILLE PEAK
							•./	101	<u>~01</u>		1.02		U.42		8.5	9.06 1	7 1	'OPOPAH SPRING 💦 🖉 🖉
ί.								/	· •									

81

91051002945

) 1) 5 1 2. 1. 4. 6

1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

D	ATE	- TIME	LATITUDE	LONGITUDE	STAND	DEPTH	STAND	AZI GAP	000 12S	MAGNI	TUDE	ESTIMA	TES	111 -	DEL-	RMS RES.	JN PH.	U.S.G.S.
	(0	10)	(DEG. N)	(DEG. W)	H(KK)	(KM)	2(106)	(020)		MCG	MK)	181 L U	MLV	MLC	(Ka)	(320)		QUADRANGLE
MAR	27	8:50: 1	37.426	117.241	0.6	11.84	1.1	147	ACI		1.39				14.0	0.13	13	STONEWALL PASS
	27	18: 5:30	37.239	116.450	A.3	7.10	1.3	167	ACI		1.88				11.5	0.05	13	SCRUGHAM PEAK
	27	19:15: 8	37.320	116.337		7.00++	—	301	ADA		1.11				11.8	86.0	- 3	DEAD HORSE FLAT
	27	19:35:59	37.332	116.311	11.1	5.00++	7.3	295	DDA		1.53				13.2	. 6.68	- 5	DEAD HORSE FLAT
	28	4:19:53	37.302	118.292	0.3	4.12	2.3	78	BC I		1.61				10.2	2 0.07	12	DEAD HORSE FLAT
	28	9:59: 0	36.701	116.294	0.4	1.47	1.1	191	ADI		1.21				14.2	0.08	14	STRIPED HILLS
	28	13:19:32	37.310	116.289	0.2	0.77	0.6	127	ACI		1.10				11.1	0.03	8	DEAD HORSE FLAT
	29	3:28: 7	36.382	116.994	0.7	0.69	0.7	208	ADI		1.54				34.1	0.08	14	FURNACE CREEK
	29	5:49:28	37.848	116.149	1.0	1.50	2.1	193	BOA		0.93				20.7	0.08	- 5	REVEILLE PEAK
	29	13:52:26	37.851	116.138		2.73		241	ADA		1.21				20.2	2 0.03	- 4	REVEILLE PEAK
	30	7:49:58	37.935	116.548	1.4	-1.02	1.9	155	BCZ				1.74	2.0	34.5	5 0.20	6	STINKING SPRING
	30	7:50: 1	37.867	116.138	0.5	-0.45	1.5	158	BCI		1.88				21.1	0.16	12	REVEILLE PEAK
APF	2 1	5:56:55	35.697	117.036	1.0	14.25	0.4	289	B01	2.30	2.15		2.63		33.3	5 0.07	16	WINGATE PASS
	1	17:10:48	37.851	116.138	0.5	0.36	0.9	105	ACI				1.21		20.1	1 0.10	8	REVEILLE PEAK
	2	0:55:54	36.417	117.937	8.0	-1.92	6.1	297	DDA	•	1.71				64.2	2 0.19	8	KEELER
	2	3:52:21	36.088	114.950	2.4	7.00	2.2	268	BDA	1	1.80				50.0	.08	10	HENDERSON
	2	5: 7:34	37.220	115.049		7.00••	—	212	ADA		1.44				13.5	5 0.02	- 4	LOWER PAHRANAGAT LAKE
	2	5:28:17	37.861	116.133	0.4	0.00	2.0	107	BCZ		2.28				20.4	6 0.11	15	REVEILLE PEAK
	2	23:31:28	37.310	116.280	0.3	2.52	1.1	128	ACI	1.89	1.81	1.78	1.35		11.3	3 0.11	23	DEAD HORSE FLAT
	- 4	2:33:46	37.206	114.832	0.9	7.08	6.8	252	COS	5			1.30		29.5	5 0.84	6	DELAWAR 3 NE
	- 4	2:39:41	37.658	114.881	0.3	5.97	0.4	148	ACI				0.75		5.0	0 0.05	8	PAHROC SPRING
	4	2:41:38	36.849	116.250	0.2	10,00	0.3	46	AAI	1.71	1.30		1.57		5.3	3 0.00	29	JACKASS FLATS
	- 4	18:30:31	37.862	116.133	0.5	8.00++	0.8	107	BCI	1.67	1.82		1.64		20.	5 0.16	17	REVEILLE PEAK
	5	18:52:68	37.027	116.106	8.4	0.75	0.8	134	ACZ	1.55	1.27		1.25		11.0	0.10	13	TUCCA FLAT
	5	20:37:29	37.031	116.108	0.5	8.60	0.8	172	AC7	!	1.49		0.76		10.8	8 8.87	12	YUCCA FLAT
	5	23: 4:34	37.035	116.112	1.4	4.07	3.7	199	80Z		1.41		0.59		10.5	5 0.09	10	YUCCA FLAT
	6	0:45:54	37.863	116.135	0.1	1.68	0.2	157	ADI				0.92		20.0	5 0.00	5	REVEILLE PEAK
	7	1:25:13	37.923	116.123	8.4	3.03+		264	DOA	•	1.33				24.	3 0.22	5	REVEILLE PEAK
	7	17:10:17	37.861	116.131	1.2	-0.01	1.9	157	BCI				1.31		20.	2 0.12	6	REVEILLE PEAK
	7	18: 1:21	36.425	116.960	8.5	14.52	1.0	82	**1	1.79	1.80		2.02		12.3	7 0.14	22	FURNACE CREEK
	7	20:22:11	37.029	116.108	0.2	0.18	0.4	115	ACZ	2.38		2.31			10.5	9 0.07	24	YUCCA FLAT
	8	0: 3:16	37.029	116.103	0.2	0.30	0.3	117	ACI	1.33	1.33		0.95	•	11.	3 0.00	17	YUCCA FLAT
	8	2:58:48	37.870	116.132	€.6	0.22	1.0	161	801		1.47		1.71		20.1	5 0.10	14	REVEILLE PEAK
	8	4:16:29	37.028	116.105	0.2	-0.14	0.2	115	ACZ		1.45	•	0.94		11.	1 0.00	10	YUCCA FLAT
	8	5:47:23	37.336	115.259	1.1	4.08+		150	001		0.90		0.73		19.0	5 9.00		BADGER SPRING
	8	6:58:49	37.851	116.160	2.7	4.39+		205	CDI	l			0.90	•	23.0	0 4.0 3) 3	REVEILLE PEAK
	8	22:32:37	38.325	116.503	2.0	2.49	8.7	232	CDI	1			1.98)	65.	6 0.12	10	GEORGES CANYON RIM S
	8	22:33:42	2 38.320	116,468	3.8	-0.42	2.6	284	CDZ	2			1.98	5	10.	0 0.00	9	TYBO
	9	2:31:20	37.279	117.588	0.3	8.19	0.6	80			1.37		1.30	1	7.	3 0.00	16	MAGRUDER MTN
	9	7:50:53	5 36,853	118.244	0.3	0.13	0.3	163	I BA	0.49	0.50		0.42		6.	5 0.05	15	SKULL MTN
	9	13: 2:56	37.026	116.106	0.3	-1.20	0.6	134	ACZ		1.34		0.85		11.0	0 0.00	13	TUCCA FLAT
	9	21:15:43	3 37.410	117.443	0.3	5.84	0.8	58	ABI	1.72	1.91		2.02	5	5.	0 0.13	22	LIDA
	10	3:54:14	37.709	115.054	0.3	5.54	1.5	115	ACZ	2	0.99	_	8.94	•	12.	1 0.05	5 8	HIKO NE
	10	5:23:37	7 37.076	115.761	0.3	9.43	1.84	+ 123	ACI	1.89	1.61	1.71	1.70)	26.	3 0.09	23	PAPOOSE LAKE SE

H. H. H.

N^{HENNED}N H^{HENNED}N H^{HENNED}N

Harran Har H^{armann}M

82

0

.

0 1 3 5 1 2 9 4 7

1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

DATE - TIME (UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	оертн (км)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125 MACH Mco	ITUDE : Md	ESTIMAT MLh	IES MLv	MLc	DEL MIN (KM)	RMS RES. (SEC)	₽H.	U.S.G.S. QUADRANGLE
MAR 15 16:26: 5 15 20:59:21 15 21:36:57 16 19:11: 2 17 4:12:13 17 11: 1: 5	37.869 37.864 37.303 36.691 36.735 36.144	116.128 116.139 116.282 116.302 116.225 115.042	0.4 0.0 0.4 0.5 0.4 5.7	0.56 0.82 0.40 7.20 4.66 5.00+	0.8 0.4 0.5 1.0	159 157 230 189 141 269	ACI 2.11 ADZ ADZ 1.60 ADI ACI DOA	2.14		2.18 1.91 1.38 6.33 0.63	2.4 2.0	20.5 21.0 10.6 6.1 4.3 41.5	0.14 0.00 0.04 0.05 0.09 0.39	20 5 10 10 12 14	REVEILLE PEAK REVEILLE PEAK DEAD HORSE FLAT STRIPED HILLS SPECTER RANGE NW LAS VEGAS NE
17 19:28:31 18 0:21:26 18 2:49:30 18 9:21: 0 18 12:53:13 19 8:50:36	36.447 37.351 38.678 36.817 37.881 36.836	114.761 115.069 116.446 115.813 116.139 117.477	3.3 0.3 7.4 0.5 1.3 1.7	-1.54 6.00 9.10• 0.99 -1.82 5.36	2.6 6.6 0.5 2.5 2.3	280 162 111 202 111 201	CDZ ACI 1.91 DCI ADZ BDA BDA	2.30 1.72 1.48 1.21 0.50	1.71	1.68 1.67 1.66 1.93		36.3 6.4 49.4 13.6 22.1 7.3	0.10 0.07 0.12 0.09 0.09 0.09	10 13 10 17 5 6	DRY LAKE ALAMO SE QUAD NOT LISTED FRENCHMAN LAKE SE REVEILLE PEAK TIN MTN
20 16:25:18 20 16:49:58 21 12:34:30 22 1:52: 8 22 4: 9:20 22 4:46:12	3 36.986 3 36.980 5 37.879 3 37.873 5 37.313 2 37.252	116.329 116.330 116.138 116.131 116.288 116.258	0.4 6.4 0.2 0.4 4.5	4.31 6.65 -0.98 1.22 0.24 5.00**	$ \begin{array}{r} 2.2 \\ 1.5 \\ \hline 1.2 \\ 0.8 \\ 11.5 \end{array} $	90 † 93 202 118 128 231	BCI ABI ADA ACI ACI DOA	0.97 1.19 1.04 2.44 1.42 1.10				10.0 11.0 21.9 21.0 11.4 7.2	0.06 0.08 0.10 0.09 0.10 0.09	11 13 4 25 15 6	TOPOPAH SPRING TOPOPAH SPRING REVEILLE PEAK REVEILLE PEAK DEAD HORSE FLAT DEAD HORSE FLAT
22 5:12:38 22 5:12:45 22 6:13:24 22 17:1:39 22 26:48:46 23 3:35:66	36.223 36.648 37.306 37.849 37.285 37.059	117.646 117.280 116.292 116.136 116.279 116.949	2.6 7.7 0.4 0.7 2.8 0.4	3.28+ 0.03++ -0.18 -0.71+ 0.53 0.20++	3.4 1.0 2.4 6.4	280 192 84 105 324 154	CDI DOZ ACZ CCA CDI ACA	1.72 1.60 1.3÷ 2.09 1.22 0.82				57.4 0.2 10.6 19.8 8.9 11.5	0.23 1.56 0.12 0.15 0.15 0.06	11 11 16 11 8 13	COSO PEAK MARBLE CANYON DEAD HORSE FLAT REVEILLE PEAK DEAD HORSE FLAT SPRINCOALE
23 3:36:32 23 8:4:5 23 8:20:42 23 14:2:1 24 9:59:6 24 11:2:25	2 37.059 5 36.440 2 36.448 1 37.310 9 37.866 5 37.307	116.951 115.738 115.763 116.288 116.136 116.282	0.2 1.8 1.8 0.2 0.6 0.3	6.20++ 3.21+ 9.62 2.45 6.60++ 6.64	0.2 3.6 0.9 1.2 2.0	165 309 305 80 198 81	ACA CDA BDA ACI ACZ ABI	0.82 0.98 0.88 1.62 2.12 2.05				11.4 31.6 29.5 11.1 20.9	0.02 0.12 0.09 0.07 0.14	8 9 22 12 25	SPRINCOALE CHARLESTON PEAK MT STIRLING DEAD HORSE FLAT REVEILLE PEAK DEAD HORSE FLAT
24 12:10:49 24 16:12: 2 25 20:49:32 25 23:46:17 26 0:56:49 26 6:34:30	9 36.777 2 35.988 3 36.715 7 37.423 9 36.850 8 37.858	115.783 116.976 116.280 116.771 117.031 116.138	4.4 4.4 6.6 1.5 0.3	11.47 2.16• 5.54 5.66•• 26.14 -1.19	6.4 	271 259 89 133 259 195	CDA CDA AAI BCA BDI ADI	0.93 1.50 1.50 1.09 1.73 1.37				9.5 64.4 3.1 18.7 14.6 20.5	5 6,16 0.22 0.16 7 0.11 5 0.11 5 0.12	6 16 18 7 11	FRENCHMAN LAKE SE WINGATE WASH STRIPED HILLS TOLICHA PEAK GRAPEVINE PEAK REVEILLE PEAK
26 12:29:0 26 13:8:20 26 13:45:5 26 14:22:3 26 18:37:11 27 5:8:43	37.332 37.865 36.788 37.327 37.856 37.319	115.079 116.136 115.776 115.082 116.138 115.901	2.3 1.6 2.2 1.2 1.3 0.4	4.15 3.10• 13.19 -0.22 0.91 7.80	3.9 2.4 0.9 1.6 1.1	163 197 253 163 194 80	BCI CDA BDA BCI BDA ABI	0.99 1.26 8.97 1.12 1.62 2.00				8.7 20.8 10.9 9.3 20.4 11.5	7 0.15 3 0.14 9 0.17 3 0.08 9 0.08 9 0.08	8 6 11 7 6 19	ALAMO SE REVEILLE PEAK FRENCHMAN LAKE SE ALAMO SE REVEILLE PEAK GROOM MINE SW
27 5:37:53 27 5:56:55	3 36.995 7 37.039	118.232 118.210	4.7	0.68 6.23	4.4	158 266	ADA CDA	0.36 0.47				4.7 1.7	7 0.00 7 0,10	4 5	MINE MTN TIPPIPAH SPRING

83

21331 ?) 3 1

1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

	DA	TE (U	- TIME TC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125 MAG Mca	NI TUDE Md	ESTIMA MLh	TES	MLc	DEL- MIN (KM)	RMS RES. (SEC)	∮ N PH.	U.S.G.S. QUADRANGLE
	APR	10 11 11 11 12 13	18: 2: 5 6:59:35 16:26:54 16:54:48 8:18:21 12:48: 8	36.636 37.097 37.366 36.565 37.249 37.031	116.339 116.207 117.907 115.488 115.044 116.102	0.2 0.3 0.0 1.1 0.5 0.3	4.18 6.39 7.32 -1.02* 0.18 2.20	0.4 1.0 0.9 	69 95 231 176 2 00 137	AAI 2.1 ABI 1.5 ADI CCZ ADU ACU	5 1.46 7 1.44 1.54	2.32 1.61 1.12	1.57 1.24 1.32 1.26 1.22 0.86	1.1 1.8	1.8 6.9 6.5 28.6 15.8 11.4	0.08 0.08 0.11 0.07 0.03 0.07	28 16 11 8 8 14	STRIPED HILLS TIPPIPAH SPRING SOLDIER PASS BLACK HILLS SW LOWER PAHRANAGAT LAKE YUCCA FLAT
		13 15 15 16 16	18:29:43 7:59:42 12:26:49 7:22:55 20:10:33 21: 0:42	36.469 37.471 37.321 36.870 36.865 36.798	114.516 115.112 115.219 115.995 115.998 116.648	1.8 0.3 0.6 0.3 0.2	-1.22 9.33 2.30 -0.97 -1.35 7.00**	1.8 0.3 2.2 0.3 0.2	280 206 113 177 141 324	BOI 2.2 ADU BCU 1.2 ACZ 1.5 ACZ ADA	2.3€ 2 3 1.41 1.29 8.70	2.76 1.12 1.35	2.16 8.78 1.19 1.12 8.65	2.2	57.9 9.0 17.1 8.7 8.9 1.9	6.11 0.03 0.07 0.06 0.04 0.14	16 19 19 13 3	MUDDY PEAK ALAMO NE ALAMO FRENCHMAN FLAT FRENCHMAN FLAT BARE MTN
		18 18 18 18 18 18	3:30:14 7:12:42 17:47:47 18: 5:30 18: 5:48 18: 6:37	36.072 35.714 36.864 36.673 36.673 36.673	117.751 117.417 116.000 116.307 116.308 116.307	2.1 5.3 0.2 0.2 0.4 0.2	-0.26+ 15.95 -1.38 7.17 7.27 7.37	1.5 0.2 0.4 0.2	277 285 141 123 123 123	CDA DOA ACI ABI ABI ABI	1.57 2.73 0.98	1.58	0.87 1.01 0.86 0.98		68.5 80.5 9.0 4.2 4.2 4.2	0.08 0.18 0.04 0.06 0.06 0.06	18 23 13 18 18 28	HAIWEE RESERVOIR SEARLES LAKE CANE SPRING STRIPED HILLS STRIPED HILLS STRIPED HILLS
84		18 19 19 19 20 21	19:18: 1 2:51:26 4:44:35 9:24:48 18: 9:25 4:40: 0	36.675 37.032 36.877 36.588 36.519 36.820	118.311 118.102 116.003 118.049 118.582 116.223	0.2 5.1 6.5 6.5 6.2 6.5	7.31 0.78 5.51 9.67 5.63 8.19	0.2 0.3 1.2 1.1 1.2+ 0.8	128 118 176 136 61 239	ABI ACI 1.6 ACI ACZ ACI ADI	1.15 8 1.34		1.07 1.41 1.11 0.78 1.48 0.57	1.3 1.7	4.1 11.3 7.6 11.3 16.5 9.6	8.06 9.06 9.07 9.08 9.06 9.05	20 23 9 13 20 15	STRIPED HILLS YUCCA FLAT YUCCA LAKE SPECTER RANGE SE BIG DUNE SKULL MTN
		21 22 22 22 22 23	23:27:32 3:56:41 7:43:16 9:50: 4 18:49:14 1:11:23	37.356 36.898 37.857 37.797 36.417 37.032	114.975 116.729 116.131 114.931 116.946 116.095	1.3 0.4 0.5 0.4 0.8	1.69 4.32 -0.25 6.06 12.29 2.54	3.2 5.1 7.3 2.6+ 0.9 1.0	185 99 156 193 87 249	BOZ CCI BCI 1.5 BOI 1.6 ABI 2.0 ADI	3 1.85 0 1.50 5 1.65	0 35	0.96 0.80 1.82 1.49 1.79 0.66		8.7 14.5 20.0 15.5 14.2 11.6	0.05 0.13 0.17 0.09 0.11 0.04	6 19 15 8 24 9	DELAMAR LAKE BARE MTN REVEILLE PEAK WHEATGRASS SPRING FURNACE CREEK YUCCA FLAT
		23 24 25 26 27 27	18:48:17 23: 0:47 7:31:43 12:27:21 0:59:60 7:49:39	37.431 36.595 37.203 36.760 37.794 37.437	116.665 116.047 117.973 117.762 114.943 115.115	0.2 0.3 1.4 1.0 0.5 0.4	-1.21 10.12 2.26+ 1.19 3.66 -0.55	0.5 9.6 3.5 5.5 0.4	141 134 242 226 188 73	ACI ABI CDA BOZ 1.5 COI ABI	1.84 7 1.49		0.99 0.95 1.66 1.21 1.14		15.6 10.6 25.3 32.2 14.9 6.6	0.05 0.07 0.08 0.15 0.06 0.05	16 18 9 20 6 8	BLACK WITH NW SPECTER RANGE SE WAUCOBA SPRING WAUCOBA WASH WHEATGRASS SPRING ALAMO NE
		28 28 28 29 29 30	4:44:22 6:16: 9 23:56: 3 8:42:15 11:20:24 11:52:14	36.815 35.572 36.904 38.137 37.878 35.934	116.231 116.349 116.276 115.334 116.134 114.851	0.3 3.1 0.3 1.1 0.7 3.7	8.82 4.11 9.34 -1.02 0.00** 2.84*	0.5 1.2+ 0.4 0.8 1.1	152 +292 59 254 110 293	ACI CDZ 2.0 AAI BOZ BCI CDI 2.5	6 7	4.05	0.39 0.44 1.40 1.46 2.69		7.1 54.0 5.4 28.5 21.6 69.2	0.07 0.11 0.07 0.05 0.16 0.08	16 16 18 9 12 11	SKULL MTN AVAWATZ PASS TOPOPAH SPRING REVEILLE PEAK BOULDER CITY
	MAY	2 2	8:14:49 23:59:16	37.064 37.576	116.732 117.785	0.2 0.5	-1.56 4.15	0.3 8.3	89 141	ABI 1.9 CCI	1		1.75 1.26		9.1 15.5	0.08 0.05	25 9	THIRSTY CANYON SW PIPER PEAK

Mau Haal Mau Haa

9 1 0 5 1 2 9 4 9

¢

1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

DA	TE			1010171PC	STAND		STAND	AZI	000						DEL-	RMS	₿N	
04	΄΄ (υ	TC)	(DEG. N)	(DEG, W)	ERROR H(KM)	DEPTH (KM)	ERROR Z(KM)	GAP (DEG)	125	MAGN	ITUDE Mid	ESTIM	ATES	Mie	MIN (KM)	RES.	PH	U.S.G.S.
						()	-()	(,							()	(300)		GONDRONGEE
MAT	2	0:53:14	37.864	116.132	0.4	0.09	0.6	108	ACI		1.97		1.95		20.5	0.13	18	REVEILLE PEAK
	2	J: ¥:40	30.563	115.458	0.2	7.74	0.8	104	ABI		1.20		0.78		14.7	0.04	16	LATHROP WELLS SW
	4	7:30:23 8-15. 5	37.703	115.103	1.0	4.11	8.2	135	122				0.83		13.3	0.15	9	WHITE RIVER NARROWS
	1	8.51.28	36.304	110.400	0.2	7.38	1.0+	+131	ABI		1.02		1.65		14.5	0.05	16	LATHROP WELLS SW
	4	7:32:53	37 859	118 141	0.4	3.81	1.4	113	A01				0.02		4.5	0.12	12	JACKASS FLATS
	•		07.000	110.141		0.00		190	~02				1.00		20.9	0.00	4	REVEILLE PEAK
	4	11:57: 1	37.405	115.144	0.3	3.68	0.4	205	ADI			1.06			8.2	0.02	7	ASH SPRINGS
	÷.	21:11:54	36.645	116.333	0.6	3.46	0.4+	246	ADI				0.67		8.6	0.04	7	STRIPED HILLS
	2	10:41:31	37.678	118.267	9.9	7.82	11.5	353	DDA		1.34				42.4	0.05	- 5	QUAD. NOT LISTED.
	Å	8-34-20	30.423	116.954	0.4	13.68	0.9	84	BAI	2.22	2.05		2.19		13.6	0.15	34	FURNACE CREEK
	Ř	16. 8.58	30.430	110.003	0.2	5.02	2.3	97	BCI	1.89	1.71	1.58	1.39		20.2	0.87	20	FURNACE CREEK
	Ŭ	10. 0.00	57.651	110.144	0.9	3.50+		209	ωı			1.55	1.00	1.7	51.4	0,85	8	REVEILLE PEAK
	7	17:35:38	37.867	116.141	0.3	8.78	0.5	163	ACI	1.81	2.01	2.14	2.08		21.3	0.12	24	REVEILLE PEAK
	8	2:54:59	37.419	115.226	6.7	7.21	2.7+	126	BCI	1.28		1.23	1.11		15.6	0.18	8	ASH SPRINGS
	9	7:34:49	37.478	115.120	0.3	8.30	0,9	75	ABI	1.61	1.68		1.59		18.0	8.67	13	ALANO NE
	×	14:29:19	37.290	116,397	0.2	6.45	0.5	58	ABI	1.73	1.50	1.39	1.12		10.7	0.05	22	SILENT BUTTE
	10	4.03.40	37.004	116.132	0.3	0.37	0.5	188	ACI	2.08			2.07		28.5	0.12	19	REVEILLE PEAK
		7.20178	30.073	115.969	0.0	2.43	1.1	145	BCZ	1.51	1.38		1.12		8.8	● .17	15	FRENCHMAN FLAT
	10	4:33:23	38.074	117.772	2.4	2.11	8.2	283	CD1		1.98		2.09		39.9	0.18	18	BLATE JUNCTION
	10	14:22:18	37.057	116.144	0.2	5.17	1.0	115	ABI	1.47	1.35		1.33	1.5	7.9	8.88	21	TIPPIPAH SPRING
	12	0:42:60	37.408	117.440	0.8	5.13	1.1	170	ACI				0.79		6.4	8.89	18	LIDA
	12	23:59:54	37.120	117.946	1.0	-1.02	1.1	262	BOZ		1.52		1.48		29.4	8.85	9	WAUCOBA SPRING
	13	12:23:22	30.404	117.018	0.5	8.18	2.5+1	F194	BOI		1.25		1.16		33.4	0.87	14	ENIGRANT CANYON
		10.10.21	57.651	116.165	0.2	-0.20	0.4	117	ACZ	1.59	1.39		1.38		11,2	0.65	21	YUCCA FLAT
1	14	3:54:31	37.224	117.314	0.3	8.34	0.5+	85	ABZ			0.76	0.93		9.9	8.68	18	UBEHEBE CRATER
1	14	11:39:20	37.860	116.148	1.4	0.00++	2.7	186	BCI		1.45		1.44		28.8	0.18	9	REVEILLE PEAK
	14	20:25:47	37.773	118.224	1.0	5.64	6.1	114	CCA		1.04				14.3	0.16	7	REVEILLE PEAK
	13	23:21:13	38.124	115.209	1.6	7.00	8.1	271	COI				1.64		29.6	0.14	7	TIMBER MTN PASS WEST
	16	10-33-61	37.201	117.978	2.8	-1.54	2.7	262	CDU		1.55		1.59		25.7	0.87	8	WAUCOBA SPRING
			57.104	114.505	1.2	3.70+		242	ωı	1.72	1.00	1.72	1.77		50.3	0.07	7	VIGO NE
1	17	0:37:51	38.116	115.211	1.4	9.73	4.0	258	BOI	1.66	1.37		1.84		28.8	0.15	9	TIMBER WITH PASS WEST
	17	3:54: 1	37.387	115.103	0.6	6.82	0.7	133	ABI						5.1	0.89	11	ALANO NE
	17	15: 5:46	37.884	116.133	0.5	-0.88	0.8	168	ACI		1.75		1.81	2.4	20.5	0.14	13	REVEILLE PEAK
	17	18: 2:35	37.201	117.404	0.5	6.31	3.3	112	BCA		0.95				17.1	8.69	8	UBEHEBE CRATER
	17	19:30:33	37.04/	110.09/		7.00++		304	ADA		1.34				40.4	0.82	4	REVEILLE PEAK
		20.20.30	57.500	117.070	—	0.00**		192	AU1				1.40		15.9	6.13	3	PIPER PEAK
1	17	20:40:43	37.849	116.111	0.8	1.96	2.1	189	ĐOA		1.18				18.1	0.09	6	REVEILLE PEAK
1	18	19:59:21	36.633	115.481	0.6	-1.75+		133	CCA		1.65				30.2	0.13	15	BLACK HILLS NW
	19	U:12:36	37.838	116.109	0.2	4.29	1.0	132	ACZ	1.51	1.38		0.83		10.8	9.64	11 '	YUCCA FLAT
	20	18:30:30	37.862	116.130	0.7	-0.52	1.1	108	ACI		1.75		1.67	1.7	20.3	0.15	10	REVEILLE PEAK
	20	21:23:12	37.345	117.231	0.3	-0.21	0.3	72	ABI	Z.83	2.11		2.11		5.8	0.12	28	SCOTTY'S JUNCTION SW
4		a	J/ J7J	117.200	0.5	-0.18	ช.4	71	ABT	1.74	2.84		1,78		5.5	0.15	15 :	SCOTTY'S JUNCTION SW
2	21	5:32:26	37.130	117.327	0.5	6.64	1.2	191	ADI			8.68	0.69		14.6	0.05	11	UBEHEBE CRATER
2	21	8: 0:58	36.998	116.362	0.3	10.96	6.4+	105	184				0.92		4.7	0.05	17	TOPOPAH SPRING

58

ъ.

1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

.

				STAND		STAND	AZI	000						DEL	RMS		
DATE	- TIME	LATITUDE	LONGITUDE	ERROR	DEPTH	ERROR	GAP	125 M	UCNI	TUDE	ESTIMA	TES		MIN	RES.	PH	. U.S.G.S.
(U	ITC)	(DEG. N)	(DEG. W)	H(KM)	(KM)	Z(KM)	(DEG)	1	lc a	Md	MLh	MLV	MLc	(101)	(SEC)	•••	OLIADRANGI F
				• •	• •	•••	• •			_							
MAY 22	1:20:33	36.992	117.722	0.7	0.25	8.7	215	ADI		1.32		1.52		27.5	5 8.18	13	DRY MTN
22	1:44:26	37.288	116.389	1 5	8.84+		234	cot				1.31		18.6	A 65	à	STIENT PUTTE
22	16: 9:26	35.884	118.937	1.3	5.44	2.14	269	801.2	37			2 45		18 0	A 13	18	WINCATE WACH
22	18:38:23	35.904	116.922	2 8	-0 54	2.2	288	COI -		1 76	2 40	1 04					WINDATE WACH
22	18:45:14	35.888	116 928	a š	2 45	1 0	274	407		1.70	1 02	1.87		50.0		-11	WINGATE WASH
22	21:42:21	37.519	117 702		0.90	3.0	111	001			1.84	1.0/		- 30.4		2	WINGALE WASH
		07.010		•.•		J.#	135	001				1.24		14.0	9.11	0	PIPER PEAK
23	6.30. 7	37 823	116 130		a				-								
21	7.53.39	36 096	110.139	0.5	2.40	0.5	114	AUL 1	. 32	1.41		0.79		8.2	0.08	18	TIPPIPAH SPRING
23	7.00.00	36.900	117.728	U.D	1.2/	3.3	203	801.2	.26	2.0/		2.34		28.4	0.12	25	DRY MTN
20	0.10.14	30.903	117.731	0.9	7.00	4.2+	+ 203	901		1.66		1.83		28.7	0.12	13	DRY MTN
23	9:34:1	30.992	117.723	0.8	4.80	8.7	201	COI		1.66		1.69		27.6	0.11	11	DRY MTN
25	9:30:4/	30.989	117.726	0.7	5.17	6.8	202	COI 1	.96	1.81		1.94	2.0	27.9	0.13	17	DRY MTN
25	9:58:28	30.984	117.725	0.7	0.94	0.8	202	ADI 1	. 80	1.83		1.99		28.5	5 0.12	16	DRY MTN
	44.74.00	70 007															
23	11:31:26	36.98/	117.726	0.7	0.16	0.9	202	ADI				1.49		28.1	0.08	10	DRY MTN
23	11:36:17	36.921	116.687	8.2	7.00	0.3	1.0	18A				0.82		3.2	2 0.85	16	YUCCA LAKE
23	11:57:57	36.999	117.711	8.8	9.12	2.0+	+ 199	ADI		1.48		1.62		26.0	5 8.88	9	DRY MTN
23	12: 4: 5	36.991	117.728	0.7	-0.05	8.9	201	ADZ 1	. 64	1.80		1.88		27.0	5 8.11	15	DRY MTH
23	16:13: 2	37.852	118.139	0.1	2.84	0.5	185	ACI				1.33		28.2	2 0.63	7	REVEILLE PEAK
23	17:41:49	37.857	116.142	0.2	0.91	0.3	106	ACZ				1.55		28.8	0.82	Ż	REVEILLE PEAK
23	19:57:53	36.994	117.717	1.2	8.80	1.0	200	80 I				1.44		27.2	0.12	9	DRY MIN
24	16:49:22	36.988	117.731	2.1	2.42	8.3	251	cot				1.65		28.2	. 12	ž	DRY MTN
24	20:42: 4	36.712	116.666	0.7	7.89	6.9	162	ACT				6.77		18.6	A.67	13	BIG DING
24	21:33:15	36.843	116.250	0.3	4 05	1.6	116	ART								1.	JACYASS SLATE
25	4:57:56	36.994	117.712	8.7	2 90	1.1	100	201				1 48		27 1		11	DEV LON
25	8:49: 8	37.408	115.852		11 20		177	801			1 61	1.10			0.00		
								001			1.01			0.4		5	ACANO NE
25	23:52:58	37.400	114.671	8 6	10 30	1 3	288	ADI				1 17		23.4			SI TOY MEN
26	1:46: 7	36.740	116.236	A 1	3 43	A	115	AC7				A 53		10.0		1.	SPECTED DANCE IN
26	2:21:4	36 741	116 233	A 1	1 70	A A H	100	AAT		1 40		4 17				10	SPECIER RANGE NW
28	3-56-40	36 988	117 722		3.70	2.41	105	001 0		1.40	4 91	9.3/		3.3		13	SPECIER RANGE NW
26	4. 8.58	38 088	117 718	1.0	4.22	4.97	190	401 2		<u> </u>	7.21	A 47	~ ~	40.0	0.13	20	DRT MIN
24	4. 0.80	34 002	117.710	1.0	0.92	1.2	201			2.20		2.4/	4.4	27.8	0.14	10	URT MIN
20	4. 8.00	30.891	11/./14	0.9	1.75	4./	200	801				1.00		27.5	0.13	13	DRY MIN
28	4.20.15	35 011	116 023	1 4				001				· · ·		~ ~			
20	4.43.31	38 092	110.023	1.0	-0.73	1.0	234	801		1.64		2.12		20.0	0.11	14	TECOPA
24	4.40.7	36.001	117.728	v .o	3.044		203		. 22	2.10		2.30		28.8	0.12	15	DRY MTN
20	4:49:7	30.993	117.711	1.0	0.00++	1.2	265	801 2	.83			2.38	2.2	27.2	0.15	14	DRY MTN
20	4:00:41	30.990	117.725	0.7	8.35	2.8+	215	BOI				1.80		27.8	0.10	11	DRY MIN
20	0:30:43	30.993	117.719	0.7	9.54	3.1	201	BOI		1.55		1.86		27.4	0.68	8	DRY MTN
26	0:40:15	36.993	117.733	0.8	6.85	0.7	236	ADZ		1.71		1.77		27.7	0.66	10	DRY MTN
				. .		_			_								
26	6:52: 3	37.441	115.138	0.4	-1.73	0.4	2 0 9	ADZ 1	. 53		1.04			8.6	0.04	7	ASH SPRINGS
26	7: 2:19	36.980	117.736	0.8	2.11	3.6	284	BD1 2	. 00		2.02	1.97	2.0	29.2	8.12	18	DRY MTN
26	7:29:57	36.993	117.723	1.6	0.31	1.4	252	60Z				1.61		27.4	0.08	8	DRY MTN
26	9:47:41	36.991	117.723	8.8	0.07	1.0	201	801 2	. 03	1.91		2.25	2.3	27.7	0.15	22	DRY MTN
26	15: 7:20	37.239	115.364	0.4	-1.19	0.9	97	ACI 1	. 68	-	1.91			17.6	0.08	10	DESERT HILLS NF
26	15:49:38	36.981	117.720	1.0	7.00	5.6	202	CD I				1.98		28.7	0.11	12	DRY MTN
							-							/ /			
26	19:52:55	37.660	117.492	ð.2	0.90	0.3	142	ACI		1.84	1.72	1.70		10.5	0.05	14	SPLIT MTN
26	21: 1:40	36.992	117.716	0.7	7.00	3.9+	200	BOI		1.79		1.81		27.4	0.12	12	DRY MTH
						•											

98

0

1988 LOCAL HYPOCENTER SUMMARY - SG8 EARTHQUAKES

	DA	דב - (ע	- TIME IC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	depth (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	OOD 125 MAGHITU Mica M	IDE ESTIMA Id MLh	TES MLV MLC	DEL- MIN (KM)	RUS # RES. PI (SEC)	N 1. U.S.G.S. QUADRANGLE
	MAY	27 27 27 28 28 28	8:16:38 13:37:34 22:58:6 1:26:27 6:29:28 10:51:14	37.261 37.195 37.273 36.771 37.864 35.873	115.008 115.787 117.233 115.429 116.130 114.785	0.4 0.5 0.3 0.7 0.5 3.8	-0.34 8.29 5.91 -1.96 -0.17 3.62	0.5 3.0 0.4 0.6 1.1 1.8	197 51 65 188 168 282	ADZ 2.69 BBA 1. AAI 1.84 1. ADZ 1. BCI 1. CDA 2.	90 56 11 77 82	2.16 1.65 1.64 1.80	16.7 15.5 3.7 35.1 20.4 77.9	0.05 1 0.18 1 0.09 1 0.11 1 0.15 1 0.12 1	3 ALAMO SE 9 PAPOOSE LAKE NE 8 SCOTTYS JUNCTION SW 8 DOG BONE LAKE SOUTH 4 REVEILLE PEAK 7 BOULDER CITY SE
	JUN	28 29 31 31 31 1	16:39:31 18:20:29 0:31:34 9:34:53 13: 6: 3 5: 8:26	37.227 36.986 37.239 36.710 37.866 37.348	117.281 117.734 117.271 116.453 116.131 114.943	0.4 1.9 0.4 0.2 0.7 0.5	-0.50 3.38• 7.05 6.73 0.59 -1.09	0.4 0.5 0.7 1.2 0.6	78 237 92 121 188 195	ABI 2.16 CDA 1. ABI ABI 1.54 1. ACI 1. ADI 1.34	41 28 0.29 79	1.96 2. 0.92 1.67 1.73 1.14 1.	2 8.4 28.5 6.9 8.9 20.6 5 11.6	0.09 1 0.14 0.08 1 0.06 2 0.14 1 0.04	7 UBEHEBE CRATER 9 DRY MTN 3 UBEHEBE CRATER 9 LATHROP WELLS NW 1 REVEILLE PEAK 8 DELAMAR LAKE
		2 2 2 3 3 3 3	3:40:25 5:26:58 12:38:14 15:59:7 16:57:27 18:55:22	37.878 36.731 36.707 36.801 37.100 37.123	116.125 116.215 116.263 115.362 116.731 115.555	0.8 0.2 0.5 0.2 0.5	0.00++ 5.29 4.63 3.49+ 0.05 0.67	1.4 0.5 0.3 	111 92 73 178 55 124	BCI 1.54 1. ABI 1.40 1. AAI 1.49 1. CCI ABA 2. ACZ 2. 3.000	.87 .27 .35 1.94 .40	2.01 2. 1.14 1.12 1.52 1.37	1 20.9 5.3 4.0 41.9 5.2 30.3	6.17 1 0.07 2 0.06 2 0.09 1 0.09 3 0.85	2 REVEILLE PEAK 2 SPECTER RANGE NW 2 STRIPED HILLS 2 DEAD HORSE RIDGE 4 THIRSTY CANYON SW 9 SOUTHEASTERN MINE
87		4 4 4 4 5	1:24: 1 16:42:59 18:11:41 22:44:12 23:15: 0 0: 5:45	36.934 36.606 37.265 36.604 37.184 36.603	116.156 116.191 116.397 116.200 116.421 116.202	0.3 0.2 1.0 0.1 0.7 0.3	1.49 -0.49 1.59 0.77 1.39 6.13	2.9 0.5 2.2 5.2 1.0 1.9+	153 84 246 153 268 137	BCI ACZ BDI ACI ADI ACI		0.65 0.96 0.98 0.93 0.83 0.93	5.9 14.0 8.6 16.7 16.8 13.2	0.05 0.07 1 0.02 0.02 1 0.04 0.04	B MINE MTN 5 SPECTER RANGE SW 5 SILENT BUTTE 8 SPECTER RANGE SW 7 SCRUGHAN PEAK 8 SPECTER RANGE SW
		5 5 5 7 8	0:25:57 10:40:49 13:17:21 18:37:35 7:47:38 18:39:18	36.802 37.191 38.202 37.129 36.049 36.448	116.204 117.947 116.500 117.831 115.525 114.409	0.8 2.8 9.1 1.3 2.1 5.0	-1.64 -1.30* 1.61* 10.90 1.99 3.37*	1.5 4.8 6.7	164 236 253 215 289 270	ACI CDA 1. DOA 1. BOI CDU CDI	39 29	0.72 1.66 1.93 2.30	16.7 26.3 7.0 20.1 30.6 67.6	0.08 0.13 0.19 0.11 0.11 1 0.14	7 SPECTER RANGE SW 5 WALCOBA SPRING 8 STONE CABIN VALLEY 8 WALCOBA SPRING 1 MOUNTAIN SPRINGS 9 ***QUAD. NOT LISTED*
		8 9 10 10 10	21:24:19 22: 9:53 16:59:10 3:11:21 3:18:34 3:19: 4	37.115 36.545 36.987 37.246 37.244 37.252	115.548 115.185 117.750 114.943 114.959 114.956	0.5 2.1 1.3 0.8 0.3 0.5	0.00++ 15.48 7.60 -1.07 8.88 6.61	0.7 1.7 5.9 1 1.4 0.3 2.8+	137 145 255 207 222 166	ACI BCI 1. COI ADI ADI BCI 2.55	.16 2.00	1.33 2. 1.47 1.64 2. 1.51 3.06	 31.4 4.9 28.7 20.2 19.8 19.1 	0.07 0.09 0.03 0.10 1 0.03 0.10 1	8 SOUTHEASTERN MINE - 7 HAYFORD PEAK 5 WAUCOBA WASH 4 DELAMAR 3 NW 8 DELAMAR 3 NW 8 DELAMAR LAKE
		10 10 11 12 12 12	15: 1:34 22:32:35 1:48:44 0:43:28 6:45: 5 7: 1:52	37.488 37.583 37.259 37.002 36.910 37.248	117.227 117.211 114.988 117.495 117.552 114.963	6.4 6.9 6.3 1.1 6.3	0.73 7.54 10.27 1.92 2.65 0.40	0.7 1.5 1 1.3 1.1 7.8 0.4	143 + 187 211 162 186 220	ACI ACI 1.80 1. ADI 1.79 ACI 1.74 CDI ADI	82	1.64 1.60 1.49 1.71 1.54 0.78 1.	20.9 20.2 17.3 13.3 17.5 4 19.4	0.06 0.07 1 0.07 0.10 2 0.14 1 0.02	9 STONEWALL PASS 4 COLDFIELD 7 DELAMAR LAKE 1 UBEHEBE CRATER 1 DRY MTN 7 DELAMAR 3 NW
		12 12	8:13:34 8:46:52	38.164 37.489	115.328 114.595	1.6 2.9	0.00** 0.67	1.4 2.3	225 280	BDI 1.79 1. CDI 1.67	.85	1.94 2. 1.56	3 30.8 18.1	0.10 0.06	D COAL VALLEY B ELIGN NE

Hannieller Hennieller

มีแกรมมีพ

.

1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

DATE (UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZ1 GAP (DEG)	QQD 125 MAGN Mca	NI TUDE Ma	EST INA MLh	TES	MLc	DEL- MIN (KM)	RMS RES. (SEC)	∦N PH	U.S.G.S. QUADRANGLE
JUN 12	9: 6:17	37.492	114.619	3.8	-1.02	2.9	296	CD7	1 36		1 07		18.4	• • •	7	ELICH NE
13	4: 2:29	36.877	115.994	0.5	7.35	2.7	144	BCI	1.00		1.0/		10.4	0.04		ELIGN NE
14	10:44:45	36.821	116.020	0.3	0.57	9.4	127	ACI	1.44		1.20		20.9	0.11	13	PLUTUNIUN VALLET
15	4:12:55	36.688	115.684	0.8	-0.72	A G	196	ADI	1.01		1.03		10.0	0.0/	13	LANE SPRING
15	4:32:51	37.113	115.542	0.4	1.08	24	128	807 1 87	1.30		1.33		11.3	0.13	10	INDIAN SPRINGS NW
15	6:23:40	37.233	116.364	0.4	0.13	0.3	74	AAT 1 94			1.43	• •	31.9	0.09	13	SUDTHEASTERN MINE
						•.•		Mit 1.31	·		1.57	1.0	4.4	0.05	19	ANNUALLY LANKS
15	8: 4:50	37.870	116.128	0.3	-0.67	0.6	169	ACI 1 79	1 81		1 08		28 8	A 12	21	PEVETILE DEAK
15	12:15:15	37.862	116.132	0.5	-0.32	0.8	107	BCI	1 80		1 97		20.0	A 16	15	REVEILLE PEAK
15	18:54:52	37.387	115.119	0.6	3.12	1.0++	124	ARI	1.00		1 82		20.5 8 A	A 1A		
15	19: 9:49	37.392	115.124	0.3	5.31	0.6	116	ARI		1 43	1.04		6 7	A A4	''	
15	22:40:55	36.681	116.421	0.2	9.07	0.5	73	AAT 1 0A	1 54	1.40	1 12			0.07	77	
16	9:50:34	37.745	114.998	0.6	1.18	2.8	147	BCI 1 49	1.54		1 16		11 7	0.0/		DAUDOO SDOTHO
								001 1.43			1.10			V . 11	0	PARKUG SPRING
17	0:43:23	37.245	117.624	0.6	7.00	0.9	79	AAI 1.32		1.36	1.63		2.4	0.13	14	LAST CHANCE RANGE
17	11:33:51	36.875	115.997	0.4	-0.11	0.6	143	ACZ 1.54	1.51		1.06		8.2	8.69	15	PLUTONTUM VALLEY
17	12:50:43	37.532	117.457	0.5	1.46	1.4	172	ACI			1.26		10.8	A 07	12	MONTEZIMA PEAK SW
18	2:28: 9	35.903	116.354	0.7	-0.63	0.6	222	ADZ	1.42		1.68		30.8	8 89	12	SHOSHONE
18	10:29:22	37.358	115.724	0.3	5.79	1.2	139	ACI 1.93	1.94		1.93	1.8	5 1	A 11	22	GROOM LAKE
19	1:26:32	37.251	114.957	1.4	5.72	3.7+	272	BD1 1.67		1.78	1.32		19.2	0.08	7	DELAMAR LAKE
															-	
19	4:22:44	36.884	116.187	0.6	6.38	0.6	187	ADI	0.68		0.70		3.7	0.09	16	MINE MTN
19	16:45:33	37.530	117.226	1.2	2.14	9.0	154	CCA	1.44				23.6	0.20	9	GOLDFIELD
20	5:49:20	37.441	117.198	1.1	4.55	9.4	138	CCZ	1.56		1.22		16.5	0.17	9	STONEWALL PASS
20	23: 2:14	37.097	116.243	0.2	6.92	0.5	105	ABI 1.58	1.41		1.28		6.7	0.09	21	TIPPIPAH SPRING
21	7:11:42	37.063	116.177	0.3	4.07	0.9++	100	ABI	1.53		0.93		5.4	0.07	16	TIPPIPAH SPRING
21	11: 8:19	36.949	116.108	0.3	2.85	0.5	95	ABI	1.22		1.16		5.1	0.09	16	YUCCA LAKE
21	20.46.20	37 317	116 292	• •	11 17	a a										
22	0.94.35	37 109	116.202	0.4	11.47	2.0++	194	AUT			1.21		31.9	0.05	11	DEAD HORSE FLAT
22	1. 1.56	37 111	116 734	0.5	0.30	0.2	111	ABZ 1.64	1.55		1.25	1.2	4.3	0.08	20	THIRSTY CANYON SW
21	0.46.46	36 774	116.704	0.5	0.00	0.4	114	ABI 1.60	1.66		0.83		4.1	0.08	15	THIRSTY CANYON SW
23	3.97.30	36.774	116.105	0.4	5.0/	1.7	167	ACI 1.45	0.96		1.06		10.6	0.07	12	CANE SPRING
23	10. 9.42	37 600	110.729	0.2	9.34	1.0	1/3	ACI 1.31	0.91		1.00		19.1	0.06	18	BARE MTN
25	10: 0:42	37.092	113.094	0.4	5.80	1,9	101	ACI 1.40	1.01		0.95		14.5	0.08	9	HIKO NE
23	12:32:15	37.848	116.134	8.4	A 60	A 7	114	407	1 40						-	
24	3: 8:20	37.075	117.023	0 3	A 10	A 5	117	AC1 2 08	1.49		1.90		19.7	0.04	~	REVEILLE PEAK
24	16:12:27	37.658	116.929	A I	-1 23	1 1	110	ACT 2.00		1.55	1.04		27.0	0.10	24	BONNIE CLAIRE SE
25	3: 9: 3	37 386	115 887	a 7	4 76	0.5	113	ACZ		1.05	1.10		49.2	0.12	11	CACTUS SPRING
25	18.28.27	37.851	116 130	A 5	4.70	0.5	2/0	ADI			6.97		3.9	0.05	.7	ALAMO NE
25	13:45:18	38.701	116 538	12 3	1 86.	0.0	103	ACI DOA	1.61		1.46		19.5	0.14	15	REVEILLE PEAK
20	10.10.10	000.	110.000	12.5	1.00*		521	DUA	1.39				52.7	0.13	5	+++QUAD, NOT LISTED+++
26	1:19: 9	37.781	116.238	1.4	2.98.		206	CDA	2 30					A 16	••	
26	13:55:28	37.881	116.134		2 35		255	ADA	1 00				13.3	0.10	10	REVEILLE PEAK
26	14: 2:47	37.879	116.128	0.6	2.51-		111		2.40				21.0	0.03		REVEILLE PEAK
26	16:27:30	37.884	116,139	2 1	3 22-		256	CDA	2.49				21.2	0.15	12	REVEILLE PEAK
25	17:53:27	35.923	117.218	1 1	2 92	4 1	200		1.03		0.30		22.3	0.11	2	REVEILLE PEAK
28	28.29.17	36 874	116 723	A 2	-9 01	7.1	200				2.36		32.0	9.10	21	MANLY PEAK
20	********	JV. UI 7	110.723	0.2	-0.01	0.4	108	AUZ	0.49		0.57		12.2	0.05	14	BARE MTN
27	7: 2:50	36.411	117,006	0.3	5,28	0.0	91	ART	1 66		1 14			a	24	SHICDANT CANNON
27	14:30:39	36.862	116.002	0.3	-1 28	A 1	168	101 1 #4	1.00		1.30		0.0	0.03	44	CHIGRANT CANTON
				v.v	-1.20	0.0	100	- MUL 1.34	1.47		1.13		9.0	0.05	18	CANE SPRING

88

H_{ujo}Hunn Hunn**ii**Hu

) |) | | 2 **3** 5 3

4

.

1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

DATE (U	- TIME JTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125 MAC Mcc	NITUDE Md	ESTIM MLh	ATES MLv	MLc	DEL MIN (KM) (RMS RES. (SEC)	₽H.	U.S.G.S. QUADRANGLE
JUN 28 28 28 29 29 29 29	5:39:43 15:46:25 20:47:46 0: 4: 6 2:34:10 3:19:28	37.880 37.752 36.052 37.887 37.251 37.244	116.134 114.980 114.932 117.471 115.063 115.037	0.4 0.5 2.5 0.4 0.6 0.5	-0.86 2.64 5.99 6.06 5.63 -0.52	0.6 0.6 1.2 1.7++ 1.8 0.3	111 156 278 235 194 227	ACI 2.6 ACZ COI ADI ADI 2.2 ADZ	4 2.15 0.93		2.18 0.96 2.12 1.20 1.73	2.3	21.7 11.8 54.4 22.1 14.3	0.14 0.03 0.11 0.05 0.09	24 6 13 9 13	REVEILLE PEAK WHEATGRASS SPRING HENDERSON PAYMASTER CANYON ALANO SE
29 29 29 29 29 29	4:14:45 5:40: 3 5:51:16 9:34:21 12: 8:28 18: 9:14	37.237 37.191 37.873 37.875 37.661 37.875	117.313 117.402 116.134 116.135 114.870 116.137	0.2 0.1 0.8 0.8 0.5 0.5	6.97 0.70 -1.26 0.31 5.39 -0.42	0.4 0.2 1.3 1.4 0.8 0.9	82 115 109 110 154 110	ABI ACI BCZ BCI ACI BCI 1.9	1.41 1.75 9 2.05	0.97	1.39 1.02 1.52 1.57 1.30 2.15		8.6 17.7 21.2 21.4 6.0 21.6	0.67 0.62 0.16 0.20 0.07 0.18	21 10 11 14 7	UBENEBE CRATER UBENEBE CRATER REVEILLE PEAK REVEILLE PEAK PAHROC SPRING NE REVEILLE PEAK
29 30 30 JUL 1 1	22:54:27 0:14:14 3: 3: 0 11:13: 9 2:43:15 3:45:44	37.297 37.657 37.856 36.698 37.268 37.283	115.189 114.891 116.133 116.138 115.105 117.557	2.8 0.5 0.4 0.3 0.4	4.26 6.45 6.00** 1.47 12.29 8.20	8.3 1.2 0.7 0.9+ 0.8	210 145 106 113 172 109	CDI ACI 1.8 ACI 1.9 ACI ADI ABI	1 1.68 9 1.94 1.01 1.17	0.78 1.95 1.22	1.12 1.71 2.17 0.82 1.28 0.88		14.3 4.1 20.1 13.0 13.2 9.7	0.08 0.11 0.13 0.07 0.00 0.07	6 11 18 16 5 10	ALANO PAHROC SPRING REVEILLE PEAK SPECTER RANGE NN ALANO SE MAGRUDER MTN
1 2 2 3 3	23:30:57 2:31:53 10:40:14 20:51:22 2:58:58 3:29:57	37.768 37.680 37.104 37.104 36.978 37.852	115.016 116.137 116.732 116.732 116.414 116.132	1.0 0.3 0.2 0.2 0.5 2.3	0.16 -0.94 -0.08 -0.26 10.51 0.00++	1.3 0.6 0.2 0.2 0.8 4.1	156 111 42 117 125 185	ACZ 1.4 AC1 2.0 AAI 2.1 ABI ABI BCI	3 1.05 4 9 1.06	2.08	1.11 2.10 2.34 1.08 6.64 1.25		13.5 21.9 4.8 4.8 6.8 19.8	0.10 0.14 0.10 0.06 0.11 0.15	7 26 45 19 15 7	WHITE RIVER NARROWS REVEILLE PEAK THIRSTY CANYON SW THIRSTY CANYON SW TOPOPAH SPRING NW REVEILLE PEAK
3 3 4 4 4	18: 9:10 18:13:34 4:27:46 4:29:32 10:56:53 12:28:51	37.028 37.029 37.841 37.845 35.884 36.481	116.375 116.377 116.140 116.141 114.769 117.432	0.2 0.4 0.5 3.6 2.8	7.37 7.28 2.00 1.68 -1.24 3.24•	0.3 0.5 1.2 1.2 6.4	73 124 103 104 281 248	AAZ 1.3 ABI ACA ACA CDA CDA	9 1.32 1.19 0.98 3.14 1.22		1.06 0.45	0.8	1.3 1.1 19.7 20.0 77.4 23.0	0.07 0.09 0.05 0.06 0.12 0.33	21 1 14 1 6 1 15 1 12 1	TIMBER MIN TIMBER MIN REVEILLE PEAK REVEILLE PEAK BOULDER CITY PANAMINT BUTTE
4 4 5 5 5	12:40:31 16:40:38 20:41:32 9:14:25 15:44:20 18:18:48	36.558 37.851 37.849 37.296 37.859 36.417	115.229 116.136 116.140 115.183 116.132 118.049	1.3 1.0 0.2 0.4 0.3 0.7	0.40• 0.00•• 7.00 7.18 0.20 6.00	1.6 1.6 1.0 0.6 1.1	142 105 151 167 107 73	CDA ACI ADI ACI ACZ 2.40 BCS	1.98 1.59	1.20 4.44	1.68 1.23 2.80		8.5 20.0 20.2 14.1 20.1 37.3	0.09 0.09 0.01 0.04 0.12 0.19	5 F 7 F 9 J 28 F	HAYFORD PEAK REVEILLE PEAK REVEILLE PEAK ALAMO REVEILLE PEAK WENS VALLEY
6 6 6 6 6 6	0:28:41 3:24:13 3:50:22 7:26:48 7:56:38 7:56:48	37.334 36.629 36.834 35.889 37.492 37.490	114.649 115.924 116.260 114.789 117.227 117.233	0.9 0.3 1.8 0.2 0.3	12.26 1.61 3.45 4.10 0.16 -0.31	0.5 0.9 1.0 0.3 0.4	250 146 112 280 142 141	ADI 2.74 ACI ABU BDI 2.45 ACI ACI	2.33	1.27	1.03 0.28 2.56 1.39 1.45		31.2 4.8 6.0 76.1 21.4 21.1	0.08 0.65 0.07 0.18 0.07 0.07	19 E 18 L 12 J 23 E 24 S	ELGIN SW AERCURY JACKASS FLATS JOULDER CITY STONEWALL PASS STONEWALL PASS
6 6	8:26:26 9:40:57	37.070 37.844	117.936 116.137	0.9 0.5	-1.02 0.93	0.8 0.8	265 104	ADZ • ACI	1.47 1.42		1.41	1.9	31.4 (19.6 (9.06 1 9.08	10 W 7 R	AUCOBA SPRING IEVEILLE PEAK

68

N₀₂1000

......

Harnand Har Harnand Har

1 0 5 1 2 7 5 4

1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

D	TE - (UI	- TIME IC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125	MAGN) Mgg	I TUDE Md	ESTINA MLh	TES MLV	MLc	DEL- MIN (KM)	RMS RES. (SEC)	∦N PH	U.S.G.S. QUADRANGLE
JUL	6 6 7 7 7	13:40:19 14:43: 5 19:21: 3 7:17:28 11: 0:15 20:18:57	37.855 37.025 37.838 37.854 36.755 37.846	116.131 116.373 114.813 116.133 116.032 116.139	0.5 0.3 0.8 0.7 1.2 0.3	-0.12 7.26 3.05• 0.00•• 4.32 7.00	0.8 0.3 1.3 5.7 3.0+	106 123 242 106 194 104	ACI ABZ CDI BCI CDI BCI	2.07	1.74 1.24 2.00 1.56 0.89		1.75 0.75 2.10 1.66 0.74 1.47		19.9 1.7 23.6 19.9 12.3 26.6	0.13 0.07 0.10 0.15 0.15 0.12 0.04	15 16 18 12 10 7	REVEILLE PEAK BUCKBOARD MESA DEADMAN SPRING SE REVEILLE PEAK CANE SPRING REVEILLE PEAK
	8 8 8 8 8 8	5:17:15 7:29:37 7:29:46 21: 0:40 23:51:42 23:52:12	36.688 37.847 37.844 37.844 37.879 37.585	116.301 116.136 116.132 116.140 116.128 116.493	0.2 0.5 0.9 0.4 0.4 0.9	2.41 0.84 0.00** 0.94 -0.28 -0.99	0.3 0.8 1.5 0.6 0.7 1.7	115 104 104 103 111 99	ABI ACZ ACI ACI BCI BCZ	2.03	1.08 1.62 1.36 2.05		0.35 1.54 1.76 1.43 2.41 2.31		5.9 19.8 24.8 19.9 21.2 20.6	0 0.04 0 0.05 0 0.14 0 0.05 2 0.16 0 0.15	13 8 7 8 26 9	STRIPED HILLS REVEILLE PEAK REVEILLE PEAK REVEILLE PEAK REVEILLE PEAK QUARTZITE MTN
	9 9 10 10 10	0: 8:51 0:10:56 0:53:37 4: 3:58 8:48:20 11:37: 0	37.579 37.593 37.581 37.853 37.136 37.251	116.508 116.511 116.490 116.136 115.097 115.006	0.2 0.4 0.5 0.8 0.3	-1.06 12.25 17.48 0.10 -1.93 -0.50	0.5 1.6 0.8 0.8 0.9 0.5	98 104 212 105 174 158	ACZ ABI ADI ACI ACZ ACI	1.77 1.54 1.98 2.55 2.57	1.61 1.42 1.54 1.80		1.51 1.41 1.31 1.74 1.96 2.70	2.6	21.1 20.1 43.4 20.1 8.8 17.1	0.07 0.09 0.05 0.05 0.13 0.09 7 0.10	19 16 13 12 9 27	MELLAN MELLAN QUARTZITE MIN REVEILLE PEAK LOWER PAHRANAGAT LAKE ALAMO SE
	10 10 10 10 10 11	11:59:31 12:14:12 17:17:52 17:41:28 19:47:20 3:59:14	37.247 37.243 37.584 37.397 36.655 37.062	115.024 114.997 116.497 114.563 116.894 117.951	1.4 0.7 0.4 0.2 1.1	8.79 -1.01 17.44 10.39 8.41 -1.02	1.9 0.7 1.4+ 1.1 0.5 1.1	207 214 184 269 128 231	BOI ADZ ADI ADI ABI BDZ	1.96 1.89 1.78	1.85 1.84 1.06		1.61 1.68 1.30 1.90 1.03 1.36		16.8 18.8 52.8 27.8 10.1 33.1	3 0.06 3 0.07 5 0.05 3 0.03 1 0.07 1 0.11	9 11 10 9 14 11	LOWER PAHRANAGAT LAKE DELAMAR 3 NW QUARTZITE MTN ELIGN NE CHLORIDE CLIFF WAUCOBA SPRING
	11 11 12 12 12	6:33:29 11: 5:51 15: 8:14 7:42:31 14: 4:59 19:37:27	37.879 37.852 36.741 37.470 37.368 37.320	116.127 116.132 115.487 114.601 115.155 114.328	0.4 0.6 1.1 0.8 2.0	-0.89 0.00** 16.27 7.71 9.66 10.08	0.7 0.9 2.5 1.5 1.7	111 105 232 299 236 282	BC1 AC1 B01 AD1 B02 AD1	1.78 1.80	1.80 1.68 1.46 1.67	1.39 1.77 1.61	1.83 1.69 1.60 1.59 1.31	2.2	21.2 19.7 29.4 19.4 10.2 21.5	2 0.15 7 0.13 6 0.08 6 0.03 2 0.18 9 0.00	19 11 6 9 4	REVEILLE PEAK REVEILLE PEAK BLACK HILLS NW ELIGN NE ALAMO GREGERSON BASIN
	12 12 13 13 13 13	19:37:30 23:20:51 2:14:11 2:14:16 2:35:51 3: 0: 2	37.330 37.858 37.760 37.608 37.853 37.853 37.848	114.825 116.133 114.435 114.740 116.134 116.136	0.2 0.3 0.5 7.7 1.1 0.8	4.34 -0.45 3.28• 0.00•• 0.00• 0.74	2.0+ 0.6 2.5 1.9 1.3	279 106 311 185 106 104	801 AC1 C01 D01 BC1 AC1	1.56 2.37 1.92 1.92 1.69	1.51 1.45 1.20 1.60	1.56	1.62 2.36 1.58 1.02 1.40 1.62	1.6	21.7 20.2 31.7 0.2 19.8	7 0.02 2 0.12 7 0.02 2 1.84 9 0.12 3 0.14	7 23 6 6 8 19	GREGERSON BASIN REVEILLE PEAK ***OUAD. NOT LISTED*** CHOKECHERRY MIN REVEILLE PEAK REVEILLE PEAK
	13 14 14 14 14 15	7:33:31 1:27:17 4: 8:24 9: 0:32 15: 9:50 11:14:15	37.238 37.858 37.206 37.472 37.863 37.856	115.011 116.132 116.536 114.690 116.136 116.134	1.4 0.3 0.1 0.5 0.5 0.5	4.71 -0.56 -0.13 9.39 -0.20 -0.22	7.7 0.6 0.3 0.9 0.9 0.9	213 107 57 273 107 106	CDI ACI ACZ ADI ECI ACI	1.80 2.26 2.08 1.24 1.77 1.98	1.69 2.13 1.01 1.95	2.38 1.69 2.01	1.41 2.28 1.72 1.04 2.07 1.97	2.0 2.0	17.4 20.1 13.3 15.4 20.7 20.1	0.12 0.05 0.05 0.03 0.16 0.15	9 25 30 7 18 18	LOWER PAHRANAGAT LAKE REVEILLE PEAK THIRSTY CANYON NE SLIDY MIN REVEILLE PEAK REVEILLE PEAK
	15 15	11:24:28 23:44:32	37.856 37.849	116.132 116.134	0.5 1.7	-0.34 0.20	0.9 2.3	106 105	BC1 BC1	1.81	1.83		1.86 1.62		20.0 19.7	0.16	16 6	REVEILLE PEAK REVEILLE PEAK

90

₩_{₩₽}₩₩₩₩ ₩₩₩₩₩₩₩ ſ₩₩₩₩₩₩₩

.

2

1988 LOCAL HYPOCENTER SUMMARY - SCB EARTHQUAKES

	DATE (U	- TIME ITC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125 M	IAGNITUDE Ica Md	ESTIMA MLh	TES MLV M	/Lc	DEL- R MIN R (KM) (S	NS Es. Ec)	JN PH. U.S.G.S. QUADRANGLE
J	UL 15 16 16 16 16 16	1:18:48 4: 9:15 4: 9:58 4:14:52 15:28: 7 15:38:45	37.851 37.294 37.579 37.578 36.478 36.450	116.136 116.216 116.508 116.504 116.577 116.579	1.5 0.2 0.4 0.2 0.3 1.0	-0.32 8.51 0.85 -1.53 2.25 12.26	2.3 1.1 1.7 0.5 1.1 1.8	105 112 98 77 119 197	BC1 ABI ACZ ACZ 1 ACZ 1 BOI 1	1.72 1.32 1.39 .88 1.99 .52 1.23 .50 1.17	1.52	1.76 1.08 1.20 1.65 1.37 1.08		20.0 0 13.1 0 21.1 0 21.2 0 12.7 0 10.9 0	.14 .09 .09 .09 .09 .18	6 REVEILLE PEAK 16 QUARTET DOME 11 MELLAN 25 MELLAN 17 RYAN 16 RYAN
	16 16 16 17 17	15:39:27 19:59: 4 22:38:13 6:16:20 7:28:21 15: 7: 6	36.469 37.837 37.846 36.463 36.478 37.854	116.578 115.059 116.137 116.578 116.573 116.136	4.1 0.9 0.5 0.9 0.4 0.7	1.32• 7.36 0.89 7.52 -0.83 0.36	1.9 0.8 3.9+ 1.0 1.2	185 143 104 132 123 105	CDI 1 ADZ ACZ BBI ACZ ACI	.30 1.07 1.30 1.20 1.61	9 	0.87 1.08 1.46 0.75 1.17 1.71	2.4	12.1 0 5.1 0 19.7 0 11.7 0 12.5 0 20.1 0	. 12 . 03 . 09 . 16 . 13 . 13	10 RYAN 5 WHITE RIVER NARROWS 8 REVEILLE PEAK 14 RYAN 18 RYAN 11 REVEILLE PEAK
	17 18 18 19 19 19	15:56:59 4:41:39 22:22:40 2:58:59 6:50:15 6:52:41	37.856 37.105 37.409 37.105 36.863 37.857	116.131 116.241 114.703 116.247 116.222 116.130	0.3 0.2 0.4 0.3 0.7 0.3	-0.08 6.58 9.63 5.91 1.51 -0.12	0.5 0.5 0.9+ 0.7 4.4 0.5	106 104 277 103 165 106	ACI 1 ABI ADI 1 ABI BCI ACI 2	.72 1.87 .31 1.27 1.39 2.25 1.97	2.31	2.04 6.96 6.77 6.86 6.77 2.22		19.9 8 7.6 8 22.1 8 7.6 8 4.9 8 19.9 8	. 12 . 07 . 02 . 05 . 05 . 11	20 REVEILLE PEAK 17 TIPPIPAH SPRING 6 SLIDY MTN 15 TIPPIPAH SPRING 8 SKULL MTN 26 REVEILLE PEAK
	19 19 19 20 20	9: 8:27 12: 0:23 12: 7:58 13:47:33 15:14:45 19:33:12	37.883 37.856 36.454 37.816 37.428 37.844	116.134 116.133 117.932 116.862 114.724 116.136	0.9 0.3 3.5 2.7 0.5 0.6	0.00 -0.26 2.45. 5.0C 8.08 2.90	1.6 0.6 7.9 1.3+4 4.0	111 106 272 237 269 104	BCI ACI 2 CDA CDA ADI 1 BCI 1	2.34 2.14 2.10 1.18 .51 1.51 .48 1.52	2.38	1.39 2.29 1.72 1.46		47.1 8 20.1 8 61.2 8 21.3 8 19.7 8 19.6 8	.17 .12 .12 .14 .03 .10	10 REVEILLE PEAK 23 REVEILLE PEAK 9 KEELER 8 CACTUS PEAK 7 SLIDY MTN 7 REVEILLE PEAK
	21 21 21 21 22 22	1:49:0 11:3:40 17:59:11 18:32:10 11:22:58 19:24:7	37.858 37.848 37.780 37.769 37.294 37.857	116.130 116.137 115.255 115.242 117.343 116.132	0.0 0.8 0.5 0.7 0.3 0.3	-0.83 0.30 0.14 -0.05 0.48 -0.31	0.9 1.5 0.6 1.2 0.4 0.6	107 104 174 189 75 106	ACZ ACI 1 ACI 2 ACI 1 ABZ ACI 2	1.73 .32 1.63 .11 1.18 .69 1.50 .45	2.57	1.60 1.72 1.26 1.14 1.53		19.9 8 19.9 8 11.5 8 16.6 8 7.6 8	13 19 03 11 09 13	11 REVEILLE PEAK 8 REVEILLE PEAK 6 COAL VALLEY 7 SEAMAN WASH 19 COLD POINT 28 REVEILLE PEAK
	23 23 23 23 23 23 23	2:18: 6 2:56: 7 10:59:41 13: 7:39 16:18:18 18:35:27	37.845 36.732 37.002 37.843 37.331 37.846	116.136 116.270 116.357 116.138 117.295 116.134	0.5 0.2 0.3 0.2 0.3	2.76 4.23 10.88 1.74 9.72 0.84	3.2 0.3 0.7 0.1 0.9	184 122 187 183 198 198	BCI ABZ 1 ABI 1 ACI ADI ACI 2	1.40 .27 0.92 .23 0.94	1.20	1.56 0.64 0.98 1.22 1.09 1.94	0.8 1.7	19.7 0. 1.2 0. 4.5 0. 19.6 0. 4.7 0. 19.5 0.	.10 .05 .04 .04 .01 .15	8 REVEILLE PEAK 18 STRIPED HILLS 15 BUCKBOARD MESA 6 REVEILLE PEAK 6 GOLD POINT 12 REVEILLE PEAK
	23 23 23 24 24 24 24	20: 2:37 20:20:47 21:15:56 1:24:55 4:46:57 4:55:10	37.509 37.294 37.300 37.294 37.297 37.300	114.611 117.347 117.344 117.343 117.338 117.342	0.6 0.3 0.4 0.3 0.4 0.4	10.37 0.00 4.94 4.84 5.84 5.48	1.1 0.3 1.0++ 1.0++ 0.9 0.8	298 76 95 75 113 96	ADI A3Z A8I ABI ABI ABI 8	1.15 1.29 .94 1.31	1.24	1.19 1.12 0.95 1.32 1.17 6.96		15.5 0. 8.0 0. 7.7 0. 7.7 0. 7.2 0. 7.5 0.	.03 .12 .07 .10 .07 .10 .07	6 CALIENTE 15 GOLD POINT 11 GOLD POINT 17 GOLD POINT 10 GOLD POINT 10 GOLD POINT 10 GOLD POINT
	24 24	5:39: 8 5:40:10	37.019 37.020	116.370 116.370	0.2 0.3	10.37 10.30	0.3 0.3	51 124	AAI 1 ABI 1	.43 1.13		1.09 8.57		2.3 0. 2.2 0.	87 2 85 1	7 BUCKBOARD MESA 3 BUCKBOARD MESA

16

9 1 3 1 2 9 5 6 1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

DATE - (U	- TIME TC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125	MAGN I Mc o	TUDE Md	ESTIMA MLh	TES MLV	MLc	DEL MIN (KM)	RMS RES. (SEC)	∦ N PH	U.S.G.S. QUADRANGLE
JUL 24 24 24 24 24 24 24	6:12:27 6:56: 3 14:17: 8 14:37:54 17:42:55 22: 3:33	37.020 37.283 37.301 37.302 37.857 36.732	116.371 117.356 117.345 117.341 116.130 116.259	0.3 0.7 0.4 0.4 0.4 0.5	10.36 0.25 4.55 5.31 -0.14 1.53	0.4 0.5+ 1.2 0.9 0.6 0.4	76 216 96 133 196 \86	AA1 AD1 AB1 AB1 AC1 AD1	1.28 1.01 0.96 2.00 0.91	1.03 1.31 1.23 1.92 1.06	1.19	0.95 1.15 1.12 0.73 2.11 1.07	0.8 2.4	2.2 9.6 7.8 19.9	0.09 0.03 0.06 0.05 0.13 7 0.05	24 8 9 19 15	BUCKBOARD MESA COLD POINT COLD POINT GOLD POINT REVEILLE PEAK STRIPED HILLS
24 25 25 25 26 26	23: 1:34 1:36:48 7:22:36 23:31:27 4:55: 4 6: 4:39	36.737 36.734 37.484 37.404 37.856 37.195	116.256 116.271 114.568 117.441 116.129 115.212	0.9 0.6 0.7 0.5 0.8	1.65 0.83 9.73 4.22 -0.24 8.08	0.5 0.2 1.7 0.8 1.1	178 177 307 99 106 127	ACZ ACZ ADI BBI ACI ABI	0.82 1.17 1.95	1.08 1.26 1.44 1.58 1.31	1.20 1.32	0.76 0.54 1.49 1.44 1.88 1.36	1.7	1.1 1.0 20.2 6.0 19.0 3.0	5 0.10 0 0.08 2 0.00 5 0.16 3 0.14 5 0.05	14 9 5 13 16	STRIPED HILLS STRIPED HILLS ELIGN NE LIDA REVEILLE PEAK LOWER PAHRANAGAT LAKE NW
26 26 26 26 26 27	6: 5:32 7:22: 4 15:29:41 18:56:31 22:47:17 4: 7:51	37.861 37.229 38.156 37.844 36.478 37.839	116.134 117.894 115.205 116.132 116.523 116.142	0.8 0.6 1.7 0.8 0.2 0.6	-0.37 2.99 5.32• 2.25 8.16 6.10	$ \begin{array}{r} 1.2 \\ 2.7 \\ \hline 2.4 \\ 0.5 \\ 9.9 \\ \end{array} $	107 220 266 104 152 102	BCI BDI CDI BCI ACI CDA	2.43 1.88	2.20 1.65 1.02 1.03		1.66 2.42 1.96 1.33 0.97	2.4	20.4 21.1 32.4 19.1 9.1	6 0.16 5 0.16 5 6.16 2 0.13 5 0.04 5 0.05	10 39 9 7 15 5	REVEILLE PEAK WALCOBA SPRING TIMBER MTN PASS NW REVEILLE PEAK RYAN REVEILLE PEAK
27 27 27 27 27 27 27	4:19:2 9:38:59 9:59:48 15:52:19 16:16:57 17:39:48	37.840 37.847 37.878 37.303 37.297 36.485	116.135 116.144 116.132 117.342 117.343 115.796	1.3 0.5 1.0 0.5 0.2 0.2	2.18 4.78 0.30 0.17 2.87 9.03	2.5 6.4 3.0 9.4 0.4 1.1+	188 192 111 133 95 + 91	BDA CDA BCA ABZ ABI ACI	1.25	1.51 1.02 1.73 1.49 1.66		1.36 1.58 1.81	i 1.8 1.5	19. 20. 21. 7. 23.	3 0.13 4 0.06 5 0.21 5 0.11 6 0.08 3 0.10	6 12 16 25 28	REVEILLE PEAK REVEILLE PEAK REVEILLE PEAK GOLD POINT GOLD POINT MT STIRLING
27 28 28 28 28 28 28	18: 4:51 0:39: 9 0:39:44 0:47:44 2:13:15 3:20:10	37.858 37.299 37.315 37.294 37.858 37.302	116.129 117.320 117.312 117.348 116.130 117.340	0.5 0.2 0.3 0.2 0.3 0.3	-1.05 8.72 9.69 0.65 0.00** 4.55	0.9 0.3 0.4 0.3 0.4 0.9+	107 134 159 124 107 + 97	ACZ ABI ACI ABI ACI	1.79 1.05 2.07	1.72 1.27 1.24 1.24 2.22 1.34	1.66 2.32	1.79 1.06 1.09 1.28 2.33 1.36) ; ; ;	19. 5. 5. 20.	9 0.12 5 0.02 1 0.03 9 0.04 9 0.13 4 0.09	10 9 10 29 14	REVEILLE PEAK GOLD POINT GOLD POINT GOLD POINT REVEILLE PEAK GOLD POINT
28 28 28 28 29 29	9:40:14 9:48: 7 17:59:39 18:21:20 12:53:30 20:43:10	37.841 37.680 37.268 37.506 37.859 36.397	116.133 115.047 117.238 114.612 116.128 115.162	1.5 0.4 0.4 9.8 0.9 12.2	0.00•• 1.40 1.13 9.68 -0.78 10.82	2.6 1.1 0.9 1.4 1.5 3.2	103 197 112 278 107 236	BC I AD Z AB I AD I BC I DD Z	1.59 1.79 1.31 2.26	1,43 1,71 1,79	1.64	1.70 0.79 1.25 1.70 1.50 1.82	2.2 5 5 2 2.0	19. 10. 15. 15. 19.	2 0.25 2 0.03 0 0.11 7 0.05 9 0.15 1 0.78	8 20 8 10 13	REVEILLE PEAK HIKO NE SCOTTYS JUNCTION SW CALIENTE REVEILLE PEAK GASS PEAK NW
29 29 30 30 30 30	20:55:50 23:51: 1 1:35:40 1:46:14 10:32:38 10:35:18	36.883 37.190 37.856 37.843 37.138 37.138 37.512	116.016 117.417 116.129 116.137 118.019 115.289	1.2 0.3 0.1 0.3 0.7 0.8	2.85 7.25 0.74 1.63 0.00** 11.53	1.7 1.2 0.2 0.8 0.5 2.9	171 119 148 103 242 121	BC1 AC1 AD2 AC1 AD1 BB1	1.73	1.52 1.63	0 .72	0.72 0.85 1.25 1.32 1.67 0.95	2 5 5 2 7 5	6. 18. 41. 19. 33. 18.	4 0.12 7 0.08 4 0.01 6 0.07 4 0.09 5 0.12	11 13 5 8 16	YUCCA LAKE UBEHEBE CRATER REVEILLE PEAK REVEILLE PEAK ***QUAD NOT LISTED*** MT IRISH
30 30	14:52:39 15:55:43	35.689 3 36.449	116.307 116.174	0.2 0.3	2.20 7.56	0.3 0.7	178 186	AC I AD I	1.37	1.00 1.14		1.03	3	5. 6.	7 0.04 3 0.07	17 19	STRIPED HILLS AMARGOSA FLAT

92

2 9 5 7 01051

,

1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

				STAND		STAND	AZI	ေသ						DEL-	RMS			
DATE	- TIME	LATITUDE	LONGITUDE	ERROR	DEPTH	ERROR	GAP	125	MAGN	I TUDE	ESTIM	TES		MIN	RES	PH	U S C S	
(L	IC)	(DEG. N)	(DEG. W)	H(KM)	(KM)	Z(KM)	(DEG)		Mco	Md	MLh	MLV	MIC	(KM)	(SEC)	• • •		
•-	,	(*****	(********		()	- (/	(/							()	(320)		CONDICATOLE	
.00 30	10.51.30	37 300	114 884	12 2	2 51.		313	1 00	1 50	A 87			• •	• • •		-		
31	2.30. 6	36 714	116 975	0.2	6 83	A 1	64	441	2 06	1 40				17.9	0.02		UELANAR NW	
	2:30: 0	30./14	110.275	0.1	0.02	0.5	000	- 221	2.00	1.43			2.2	3.1	0.0/	40	STRIPED HILLS	
31	9:29:25	37.307	114.015	0.5	0.50	0.0	233	AUI				0.98		15.4	0.01	5	CALIENTE	
31	4:45:28	37.507	114.610	1.2	9.99	2.4	266	BD I		1.64		1.20		15.7	7 0.04	- 5	CALIENTE	
31	6:13:48	36.708	116.265	0.8	8.46	0.8	233	ADI				0.66		3.8	3 0.06	13	STRIPED HILLS	
31	7: 1:47	37.505	114.611	0.9	8.51	2.2	299	BDI		1.01		1.03		15.8	8 0.05	6	CALIENTE	
																-		
31	7:31:32	37.858	116.126	0.5	-0.48	0.8	113	ACI				1.74		19.7	7 A AA	٩	REVENUE DEAN	
31	18:47:18	37.843	116 133	8 6	3.70	3.8+	134	BC I				1 66		10 1	1 0 00		REVELLE PEAK	
31	21.56.25	37 103	117 619	A 6	0 4 0	A 8	162	ACT				A 99			0.05		REVEILLE PEAK	
AUG 1	1.45.34	37.135	116 611	0.0	11 25	0.0	135					0.00		3.3	0.13	14	LAST CHANCE RANGE	
~~~ i	1:40:04	37.045	110.011	0.4	11.23	0.0	133					1.01		15.4	0.06	16	THIRSTY CANYON SE	
	1:40:20	37.039	116.618	0.3	11.42	0.7	130	ART				1.05		15.3	<b>0.05</b>	15	THIRSTY CANYON SE	
1	2:39:58	37.171	118.005	2.6	2.60	9.5	250	CDA		1.71				29.5	5 0.15	8	+++QUAD. NOT LIST	ED+++
1	9:59:2	36.481	116.928	0.8	14.91	3.6	165	BCA		1.20				40.1	0.13	10	FURNACE CREEK	
1	15:42:58	37.239	115.350	0.8	6.16	4.8	102	BCI				1.36		16.4	0.11	13	DESERT HILLS NE	
2	0: 4:29	37.219	117.886	2.6	4.44+		218	CD1	1.39	1.45		1.33		21.4	8.22		WALLCORA SPRING	
2	0:25:16	37.857	116.131	0.4	0.78	0.7	114	ACT	1.91			1.60		20 6	A 44		REVELLE DEAK	
2	0.38.14	37 860	116 129	8 2	-0 14	A 8	107	ACT	2 72		3 29			20.0		10	DEVELLE FEAN	
	1.30.15	37 250	115 000	A 7	-9 31	A A	200	407	1 76		1 61	1 34		17 6		20	ACVEILLE PEAK	
+	1.00.15	57.250	113.003	v.,	-0.51	0.0	203	~~~	1.70		1.01	1.54		17.0	0.03	•	ALAMU SE	
2	4-21-48	37 859	116 129	A 2	0 17	04	107	ACT	2 99			1 99		20 0		20	POIELLE DEAN	
	11-25-28	37 854	116 118	A 4	-0 72	A A	104	ADI	1 00	1 84		1 81	2 2	10.0	0.07	20	REVEILLE PEAK	
-	12.30.11	37 603	114 614	1.0	11 20		270	201	1.30	1 31		1.01	4.4	10.3	0.03	13	REVEILLE PEAK	
	12:33:11	37.303	114.014	1.0	11.20	1.7	270	~~~	1.72	1.51		1.55		15.8	0.08	9	CALIENTE	
2	13:31:24	37.037	110.119	0.5	-0.32	0.4	192	AUZ	1.93	2.05		1.09		19.1	0.04	9	REVEILLE PEAK	
2	14:50:40	36.733	116.2/4	0.2	6.22	0.5	176	ACZ	1.13	0.97			1.0	1.0	0.04	16	STRIPED HILLS	
3	1:38:34	37.848	116.141	0.3	7.94	1.8	104	ACT		1.78		1.65		20.2	0.06	11	REVEILLE PEAK	
•	0.48.34	17 001									• • •							
2	2:45:51	37.863	116.131	0.5	-0.27	0.0	168	ACT	1.64	1.91	2.18	1.96		20.J	0.13	19	REVEILLE PEAK	
3	6:33:59	36.672	117.240	0.9	14.65	2.5	178	BCA		2.12				20.9	0.07	9	STOVEPIPE WELLS	
3	10:41: 1	37.828	116.132	4.3	2.78•		226	CDA		1.88				23.9	0.26	7	REVEILLE PEAK	
3	13:24: 8	37.432	117.148	0.3	5.00++	2.8	111	BCA		1.68				17.5	0.13	9	STONEWALL PASS	
3	14: 0:44	37.836	116.151	1.9	4.32+	-	294	CDA		1.30				22.8	0.18	5	REVELLLE PEAK	
3	22:22:31	37.277	116.346	1.5	0.90	1.4	277	BDZ	1.84			1.25		7.2	0.04	12	DEAD HORSE FLAT	
4	14:34:29	37.841	116.139	0.3	5.17	3.5+	183	1CH	1.52	1.97		1.83	1.7	19.7	0.10	16	REVEILLE PEAK	
4	15:33:22	37.857	116.120	0.9	-0.52	1.4	112	ACZ				1.19		19.2	0.09	7	REVETLLE PEAK	
4	21:21:57	37.843	116.138	0.5	0.78	0.7	103	ACI				1.45		19 7		÷.	REVETILLE DEAN	
4	22:32:30	37.840	116.142	11.9	1.88+		235	001	1.31			1.60		10 8	A 60	š	PEVETILE DEAV	
4	22:45:26	36 832	116 644	8.5	-0.81	8 5	110	ART	1 44	1 36		A 74		4 7		š	REVERELE FEAR	
5	2. 9.38	37 412	117 418	A 4	5 74	A 7	67	ARI	1 68	1 37		1 17	1 3		0.00		LICA	
Ų	2. 3.30	37.412	177.400	0.4	5.74	0.7	07	701	1.00	1.57		1.57	1.5	0.4	0.11	10	LIDA	
5	3:43: 3	37.853	116,134	0.9	-0.32	1.5	106	ACI	1.76	1.56		1.55		19 9	8.12	A	REVETILE DEAN	
5	6: 3:45	37.843	116,140	0.3	1.60	0.9	103	ACT	1.46	1.86		1.84	1 8	10 .	0 09	17	DEVELLE PEAK	
5	6:27:39	36.484	116 307	0.2	7 99	8 7	64	ACT	1 54	1 57	1 20	1 48	1.8	18 4	A 07	75	ACH NELLE PEAK	
, , , , , , , , , , , , , , , , , , ,	4.17.15	37 840	116 139	a 3	7 80	2 0	101	101	1 20	1.6/	1.23	1.70	+.0	10.0	0.0/	43	ASTI NEADUWS	
, i i i i i i i i i i i i i i i i i i i	4.47.50	37 941	110.100	0.3	6 34	4.0	103		1.20	1.34		1.02		19.5	9.63	12	REVEILLE PEAK	
0	414/109	37.041	110.134	0.3	0.34	6.9	103	001	1.0/	1.01		1.69	• •	19.2	0.65	14	REVEILLE PEAK	
0	0:00:13	31.003	110.132	0.4		0.0	160	ACT	1.03		1.94	1.83	2.1	20.4	0.13	19	REVEILLE PEAK	
2	15.58.91	37 840	116 139	A 3	8 65	1 3	181	ACT		1 62		1 60		10 -		•		
, i i i i i i i i i i i i i i i i i i i	16. 0.49	37 961	116 112	a «	0.00 0.95	a o	105	BC7	1 07	1.02		1.08		13.2	0.00	Å.	REVEILLE PEAK	
0	10: 3:40	57.031	110.132	0.3	0.00	<b>V.</b> ¥	103	<del>0</del> .2	1.3/	1,94		1.78		19.7	V.16	15	REVEILLE PEAK	

93

1988 LOCAL HYPOCENTER SUMMARY - SCB EARTHQUAKES

DA	.TE - (U1	- TIME IC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125	MAGN I Mic a	I TUDE Md	ESTIMA MLh	TES MLV	MLC	DEL- MIN (KM)	RMS RES. (SEC)	PH.	U.S.G.S QUADRAN	ĊLE	
AUG	6	17: 0:44	37.841	116.132	0.3	7.00	1.8++	103	ACI	1.41	1.84		1.76	1.7	19.	1 0.10	15	REVEILLE	PEAK PEAK	
	6	20:41:44	37.839	116.135	0.5	1.52	1.7	103			1 54		1.65		20.	2 0.05	11	REVEILLE	PEAK	
	6	22:18:12	37.844	116.144	0.3	18 55	1.0	142	ADZ		1.0.		1.91	l	17.	6 8.13	5 4	REVEILLE	PEAK	
	a a	22:34:40	37.010	116 134	<del>0</del> .1	3.12.	-	120	CC1				1.96	<b>i</b>	50.	0 0.03	8	REVEILLE	PEAK	
	6	23:23: 6	37.836	116.142	8.5	3.13+		127	CDA		1.20				19.	5 9.84	5	REVEILLE	PEAK	
	-														28.	3 8.22	2 11	REVEILLE	PEAK	
	7	4:41:50	37.851	116.140	0.9	2.04	3.9	105			2 35				19.	6 0.10	5 9	REVEILLE	PEAK	
	7	4:42:18	37.851	116.131	0.9	3.01.	1 0	103	ADA		1.45				20.	2 0.08	5	REVEILLE	PEAK	
	7	4:5/:23	37.844	110.14.0	1.0	1 77	1.0	189	ADA		1.46				19.	8 0.16	5	REVEILLE	PEAK	
	4	5:10:50	37.830	116 142	A 7	4.21.		189	CDA		1.21				19.	8 6.00	5 5	REVEILLE	PEAK	
	<b>'</b>	5:37:42	37.849	116.146	1.8	2.07	3.0	193	BDA	•	1.19				20.	6 0.11	5	REVEILLE	PEAK	
	•	0.0													10	1 4 1		DEVETILE		
	7	6:40:27	37.842	116.134	1.8	3.06•		189	CDA		1.15				13.	5 8 8 8	9 14	UBEHEBE	CRATER	
	7	7: 9:68	37.073	117.307	0.4	4.56	5.6	104	CCA		1.28				19	4 8.1	9 5	REVEILLE	PEAK	
	7	7:31:41	37.835	116.140	1.5	2.76	6.9	187	CDA		1.03				20	5 0.1	57	REVEILLE	PEAK	
	7	8:13:47	37.852	116.142	1.3	3.06+		193			1 88				19.	7 0.1	2 5	REVEILL	E PEAK	
	.7	8:27:20	37.843	116.138	1.0	3.00+	2 2	190	BCA		1.52				19.	6 0.1	59	REVEILL	E PEAK	
	/	10:10:40	37.639	110.139	0.7	1.35	4.4	100		•										
	7	10.32.54	37 841	116,142	0.8	2.35	3.6	190	BDA	ι	1.18				19.	8 0.0	65	REVEILLE	PEAK	
	ź	11: 1: 1	37.840	116.145		2.20		235	ADA	۱	1.02				20.			REVEILLE		
	7	12: 3:55	37.843	116.139	1.1	3.09+		190	CDA		1.38				19.	1 8 7	7 / A 18	REVEILLE	PEAK	
	7	12: 6:45	37.845	116.142	1.3	1.44	2.3	191	BOA	N.	1.81				10	2 8.2	1 8	REVEILL	PEAK	
	7	13:56:29	37.837	116.136	1.1	1.91	3.4	102	BCA	<b>\</b> 	1.30		1 9	A	19	5 0.1	0 14	REVEILL	E PEAK	
	7	17:57:31	37.842	116.137	0.3	0.80**	0.4	103	AUI	1.30			•••	•						
		0.00.55	17 858	116 131	a 2	-0 08	0.4	107	ACI	2.56	•	2.78	2.8	3	20	.0 0.1	1 33	REVEILL	E PEAK	
	0	0:22:00	37 855	116 126	8 J	-1.01	8.7	106	ACI		1.70	)	1.7	4	19	.4 0.1	3 15	REVEILL	E PEAK	
	- 0 - 0	16.50.30	37 262	116.251	0.2	7.39	0.6	109	ABI	1.20	1.28	\$	1.1	8	8	.4 0.0	8 23	DEAD HO	RSE FLAI	
	8	17.48.6	37.837	116.146	1.0	9.07	2.7	102	BCZ	Z	1.23	5	1.3	3	19	.90.2	5 10	REVEILL	L PEAK	
	8	23: 1: 9	37.494	117.035	0.3	0.00+	0.4	155	ACI	1		1.65	1.3	9	29	.10.0	/ 10		DEAM ION I	
	9	3:48: 6	37.857	116.126	Ø.6	-0.64	0.9	107	ACI	I 1.98	3		1.5	4	13		4 19	, KEVEILE		
						- ···							14	7	20	.2 0.0	8 12	REVEILL	E PEAK	
	9	6:50:24	4 37.845	116.143	0.3	8.41	1.6	103		1 1.44 7	1 24	5 1 88	1.3	4	17	.8 0.0	8 24	UBEHEBE	CRATER	
	9	6:53:	0 37.175	117.381	0.2	-0.55	0.3	102	201	L 1	1 49		1.7	è	43	.1 0.1	7 15	5 LEACH L	AKE	
	9	7:34:4	7 35.699	116.520	1.1	3.3/•	1.0	160	BC	• 1	1.39	<u>.</u>	1.2	3	11	.6 0.0	9 8	SEAMAN 1	WASH	
	9	9:20:	9 37.789	115.129	0.0	3.31	5.2	100	001	1 2.14	1 2.17	,	2.0	7	49	.0 0.1	8 14	IQUAD	. NOT LIST	ED•••
		21:27:	8 37.303 A 17 110	110.434	1.3	4 78+		281	CD	i			1.5	4	43	.1 0.0	)4 (	S VIGO NE		
	10	2:57:2	0 37.239	114.373		4.704				•				_						
	10	23:40:2	8 36.561	115.413	1.2	-1.02	2.8	153	DC	Z		_	1.5	9	23	.4 0.8	10 11	BLACK H	ILLS SW	
	11	1:16:5	9 36.813	116.274	0.4	5.78	0.94	- 115	AB	1	0.9	3	0.5	90 10	10	.0 0.0	10 1	R DEVETII	FPFAK	
	11	3:46:5	4 37,837	118.140	0.7	2.27	1.1	183	AD	I	1.7	1	1./		2 17	2 0.0	2	R WHITE P	IVER NARPO	WS
	11	8: 4:2	3 37.773	115.062	0.8	4.71	7.2	126	00	1.4	۰. ^د		1.5	/1 ∡. (K	10	3 8 1	2	6 REVEILL	E PEAK	
	11	18:42:5	7 37.841	116.134	1.2	2.23	2.5	188	BD	1	1.0	1 4	1 7	15	19	.6 0.1	4	6 REVEILL	E PEAK	
	11	21:27:2	8 37.846	116.135	1.4	1.63	2.4	191	RD	2	1.5	5					•••			
				114 005	1 0	-0 59	1 6	194	BD	Z		1.32	2		10	.5 0.6	97 :	5 DELAMAR	LAKE	
	12	1:37:2	0 36 517	115 010	0.7	13 92	A 6	241	ÂD	1 2.2	3	2.48	3 2.2	26	12	.2 0.1	11 2	3 HAYFORD	PEAK	
	- 12		3 33.33/		v./															

94

H_{UB}HUM

n N^{anana}n N^ananan

 $\overline{}$ 

<u>) | ) | | 2759</u>

.

1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

	DA	TE - (U1	- TIME IC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125	MAGN I Mg g	TUDE Md	ESTIMA MLh	TES ML <del>V</del>	MLc	DEL- MIN (KM)	RMS RES. (SEC)	∦N PH.	U.S.G.S. QUADRANGLE
	AUG	12 12 12 12 12 12	3:18:11 6:34:34 13:47:22 13:47:23 21:42:39 22:44:22	36.508 37.822 35.948 36.003 36.813 37.229	115.018 117.384 114.821 114.884 116.033 116.511	0.9 1.2 1.5 2.1 0.5 0.3	15.36 0.72 -0.93 -0.90 6.08 1.81	$   \begin{array}{r}     0.7 \\     1.4 \\     2.8 \\     \hline     2.3 \\     0.8 \\   \end{array} $	244 264 763 282 132 109	801 801 801 001 801 801 A01	2.34 1.86 1.47	1.53 1.48	2.48	2.32 1.32 1.95 1.91 1.46 1.11		12.7 38.9 6.0 113.2 13.0	0.15 0.12 0.10 0.15 0.15 0.05	21 11 9 8 21 18	HAYFORD PEAK PAYMASTER RIDGE BOULDER CITY HENDERSON CANE SPRING THIRSTY CANYON NE
		13 13 13 13 13 13	0:25:29 5:39:29 6:28:14 7:55:11 9: 9:18 12:14:45	36.810 36.634 36.845 36.020 36.617 36.619	116.026 116.362 116.260 114.757 116.347 116.353	0.2 0.6 0.2 1.0 1.0	-0.96 8.45 8.42 7.00** 8.58 9.20	$   \begin{array}{c}         0.3 \\         0.5 \\         0.4 \\         \hline         0.6 \\         0.6 \\         0.6 \\         \end{array} $	160 138 46 245 300 313	ACZ ACI AAI ADI ADZ BDI	1.58	0.84 1.22	1.23	0.99 1.02 1.09 0.54 0.80 0.73		13.7 2.4 5.4 10.9 3.1	7 0.04 6.10 6.09 0.13 2 0.06 6.97	9 15 30 3 7 8	CANE SPRING STRIPED HILLS JACKASS FLATS BOULDER BEACH LATHROP WELLS SE LATHROP WELLS SE
		13 13 13 14 14 14	13:48:25 20:22:19 20:51: 7 8:12: 7 13:45:54 18:22:39	36.811 37.864 37.861 35.971 37.815 37.231	116.028 116.132 116.134 114.804 114.687 117.593	0.7 0.6 0.8 4.7 1.3 0.4	6.20 -1.00 -0.48 16.40 3.13 9.29	2.1 0.5 0.8 6.0 3.3 0.5	170 189 188 203 269 112	801 AD1 AD1 D01 B02 AB1	1.80	1.71 1.12 1.33	1.97	0.85 1.65 1.58 1.98 1.15	2.0	13.4 20.5 20.5 32.4 23.0 4.6	6.09 5 0.09 5 0.09 5 0.10 5 0.00 5 0.00 5 0.10	9 11 8 7 8 15	CANE SPRING REVEILLE PEAK REVEILLE PEAK ELDORADO VALLEY THE BLUFFS LAST CHANCE RANGE
5		15 15 15 15 15	5:53:60 10:34:49 11:30: 8 17:16: 2 18:44:49 18:49: 6	37.411 37.861 37.205 37.868 36.637 37.385	117.439 116.135 116.534 116.135 115.199 115.201	0.4 0.8 0.2 1.5 0.5 0.3	5.04 0.12 0.22 -1.20 15.34 -0.22	0.8+ 1.0 0.3 1.3 0.8 0.4	+ 58 188 42 189 145 125	ABI ADI ACZ BDZ ACI ACZ	2.54 1.84 2.03 1.57	1.36 1.38 1.70	2.36 1.98	1.21 2.46 2.05 1.58 1.85 1.40		5.2 20.5 13.5 21.0 15.0 13.0	2 0.12 5 0.14 5 0.08 5 0.08 5 0.09 5 0.09	20 14 33 7 12 7	LIDA REVEILLE PEAK THIRSTY CANYON NE REVEILLE PEAK HAYFORD PEAK ASH SPRINGS
		15 15 16 16 16	18:59:36 19:36:31 2:13:59 5:45:6 6:46:45 7:52:26	37.384 37.384 37.272 37.566 36.809 36.818	115.183 115.193 116.353 117.207 116.035 116.038	0.6 0.4 0.9 0.3 0.2 0.4	7.80 4.65 0.05 -0.33 -0.06 2.94+	1.5 2.5 0.4 0.6 2.4	165 100 243 121 130 195	ACI BCI ADI BCI ACZ CDA	1.44 1.62 1.68 2.03 1.45	1.73 1.33 1.86	1.57 1.67 2.33	1.25 1.54 1.12 2.32 1.24	1.5	12.0 12.1 7.0 21.3 12.5	0 0.08 0 0.09 0 0.11 7 0.17 0 0.00 5 0.00	7 19 15 33 18 12	ASH SPRINGS ASH SPRINGS DEAD HORSE FLAT GOLDFIELD CANE SPRING CANE SPRING
		16 18 16 16 17 17	7:54:48 9:15:48 10:35:33 11: 3:39 7:28:13 8:10:38	36.813 37.258 37.206 37.204 37.829 37.218	116.036 117.869 116.533 116.558 116.145 116.540	1.0 1.7 0.2 10.8 1.1 0.5	1.98 9.43 4.87 6.38• 0.87 8.13	$   \begin{array}{r}     1.5 \\     3.3 \\     1.4 \\     \hline     1.2 \\     1.4   \end{array} $	243 209 41 197 186 139	ADA BOA ACA DDA BOA ACA		1.24 1.38 2.42 0.83 1.25 1.18				12. 18. 13. 12. 19.	7 0.11 3 0.12 5 0.08 1 0.12 5 0.13 1 0.09	8 26 5 6 16	CANE SPRING SOLDIER PASS THIRSTY CANYON NE THIRSTY CANYON NE REVEILLE PEAK THIRSTY CANYON NE
		17 17 17 17 18 18	11:14:35 11:20:10 12:10:58 16: 9:36 3:12: 2 21:30:27	5 37.843 9 37.848 3 36.626 9 36.493 2 36.378 7 36.618	116.139 116.141 115.252 116.577 116.930 115.963	0.9 1.3 3.7 0.3 0.4 0.3	2.27 3.63* 7.00* 0.18 10.56 10.45	2.7 0.6 0.9 0.6	103 192 249 63 163 155	BCA CCA CDA ACI ABI ACI	1.69	1.34 1.10 1.37	1.45	1.45 1.33 1.11		19. 20. 50. 13. 15. 4.8	7 0.17 2 0.34 5 0.14 9 0.12 5 0.13 5 0.65	8 6 19 23 15	REVEILLE PEAK REVEILLE PEAK WHITE SAGE FLAT RYAN FURNACE CREEK MERCURY SW
		18 18	22: 4:12 22:22:40	2 37.864	116.127 116.286	0.8 0.3	2.20 0.17	2.7 0.8	108 80	BCI ACI	2.21			1.57 2.07		20.1 10.3	0.14 0.11	7 27	REVEILLE PEAK DEAD HORSE FLAT

95

٠

1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

DATE (UTC	TIME C)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125	MAGN [ Mc a	TUDE Md	ESTINA MLh	TES MLV	MLc	DEL- MIN (KM)	RMS RES. (SEC)	∦n PH.	U.S.G.S. QUADRANGLE
AUG 18 2 19 19 19 19 19 19	22:25:59 0:26:34 2:57:43 3:56:45 14:27:14 15: 1:58	37.301 37.251 37.856 37.570 37.567 37.567	116.289 115.031 116.130 117.208 117.200 117.202	9.3 0.4 0.4 0.4 0.6 0.5	0.44 5.56 -0.13 8.94 0.22 0.15	0.8 1.6+ 0.7 1.6 0.9 0.9	79 195 106 125 125 124	ACI ADI ACI ACI BCI ACZ	2.05 2.17 1.79	2.09 1.89 1.31 1.60	2.25 1.96 0.77 0.92	1.85 1.93 2.01 1.09 1.32 0.99	2.2	10.1 16.6 19.9 21.3 22.1 21.9	0.11 0.07 0.13 0.08 0.15 9.11	23 10 20 14 14 11	DEAD HORSE FLAT ALAMO SE REVEILLE PEAK GOLDFIELD GOLDFIELD GOLDFIELD
20 20 20 20 1 20 1 20 1 20	1:14: 0 7:57:39 10:58:37 11:26:29 14:18:55 14:31:15	37.566 37.568 37.854 37.447 36.629 36.636	117.205 117.207 116.131 117.898 116.368 116.295	0.7 0.5 0.5 0.7 0.2 0.3	0.68 7.00 0.37 9.69 2.52 0.99	1.1 2.9+ 0.8 0.9 0.5 0.3++	124 124 106 177 132 142	ACI BCI BCI ACZ ABZ ACI	1.44 1.53	1.75 1.37	1.14	1.37 1.12 1.85 1.58 0.98 0.80		21.8 21.5 19.8 2.5 3.4 4.1	0.13 0.10 0.16 0.07 0.07 0.05	10 12 17 10 25 13	COLDFIELD GOLDFIELD REVEILLE PEAK SOLDIER PASS STRIPED HILLS STRIPED HILLS
20 1 20 1 20 2 20 2 21 21	15: 2:29 18:13:58 18:34:23 23:48:24 7:58:21 9:46:48	36.845 37.566 37.574 37.571 37.851 37.714	116.258 117.203 117.208 117.208 116.129 115.024	0.3 0.5 0.4 0.4 0.7 1.0	8.61 0.68 10.72 7.09 0.00++ 8.73	0.6 0.7 1.7 2.2++ 1.1 3.1	103 124 126 123 105 127	AB1 BC1 AB1 BC1 AC1 BB1	1.39	1.78 1.76 1.47	1.26	0.51 1.30 1.24 1.63 1.82 1.32		5.5 21.9 20.9 21.3 19.5 10.3	0.08 0.16 0.08 0.09 0.12 0.14	16 15 13 16 9 6	JACKASS FLATS GOLDFIELD GOLDFIELD GOLDFIELD REVEILLE PEAK HIKO NE
21 1 21 1 22 22 22 22 22	13: 8: 1 13:22:40 4:32:40 5:25:50 8:13: 5 11:35: 1	37.161 37.671 37.857 37.853 36.713 37.858	115.017 115.044 116.133 116.138 117.280 116.131	5.1 0.7 0.4 0.3 8.3 0.7	19.92 -1.84 2.85+ -0.88+ 11.05+ 3.51+	10.2 0.9	247 108 106 185 133 107	DD I ADZ CCA CCA DBA CCA		2.51 2.27 1.61 1.97	1.21	1.37 0.85		15.1 9.7 20.1 20.2 7.5 20.0	0.13 0.05 0.12 0.11 2.51 0.34	5 5 13 12 9 12	LOWER PAHRANAGAT LAKE HIKO NE REVEILLE PEAK REVEILLE PEAK MARBLE CANYON REVEILLE PEAK
22 22 23 23 1 23 1 23 23 23	22:44:31 22:53:16 14:23:38 14:46:12 19: 5:15 20:37:38	37.855 37.841 36.108 37.209 37.295 35.900	116.127 116.128 114.676 116.543 116.318 114.847	0.8 0.6 2.3 0.3 1.4 5.3	0.00++ 0.73 1.16 5.60 2.86 2.67+	1.3 0.9 7.8 1.0 1.0	106 104 220 70 274 208	ACI ACZ CDI ACI BOZ DDI	2.58 1.45 1.55			1.52 1.34 2.05 1.21 0.83 2.22		19.5 18.8 21.8 12.6 9.0 8.6	0.10 0.10 0.05 0.09 0.08 0.10	8 7 10 25 9 10	REVEILLE PEAK REVEILLE PEAK HOOVER DAM THIRSTY CANYON NE DEAD HORSE FLAT BOULDER CITY
24 24 24 24 24 24 1 24 1	5: 3:33 7:35:26 7:59:48 9: 4:11 10:20:18 11:57:24	36.662 35.931 35.942 35.929 35.931 35.934	116.060 116.976 116.972 116.972 116.978 116.978	0.4 1.5 3.0 2.8 1.1 1.0	6.85 5.17 0.54 2.42 5.95 5.30	1.1 2.7 2.5 9.0 1.4 1.8	144 267 266 274 268 264	AC1 BD1 CD1 CD1 BD1 BD1	2.11	1.63 1.58	1.65	0.75 1.96 1.84 1.75 2.06 2.37		8.9 10.4 38.3 39.4 10.6 10.0	0.08 0.07 0.09 0.07 0.10 0.11	12 8 9 14 16	CAMP DESERT ROCK WINGATE WASH WINGATE WASH WINGATE WASH WINGATE WASH WINGATE WASH
24 1 24 1 24 1 24 1 24 1 24 1	12: 8:13 14:13:24 14:27:38 14:38:23 14:39:35 14:56:24	36.293 37.858 37.858 35.922 35.927 35.952	116.776 116.130 116.127 116.981 116.993 116.981	4.1 0.4 0.7 3.6 1.0	7.00 -0.39 -0.60 6.15 -0.01 0.21	10.9 0.7 0.8 1.4 3.0 0.9	149 107 107 266 269 265	DC1 AC1 AC1 AD1 CD1 BD1	1.72 2.17	1.84		1.32 2.06 1.92 2.38 1.35 1.19	2.2	15.3 19.9 19.8 11.3 12.1 10.3	1.03 0.13 0.13 0.08 0.08 0.04	10 17 15 14 7 6	FURNACE CREEK REVEILLE PEAK REVEILLE PEAK WINGATE WASH WINGATE WASH WINGATE WASH
24 1 24 1	15:36:37 17:45:44	35.946 35.926	117.003 116.978	1.8 0.8	2.94+ 6.59	<u></u> 1. <del>0++</del>	328 275	1 00 1 0A				1.22		12.4 10.8	0.05 0.07	5 9	MANLY PEAK WINGATE WASH

.

1.45

96

H., H., H., H. H., H., H., H. H., H., H., H. H., H., H., H. H., H., H. H. H., H. H. H.

1 1 E S E E E D 6 1

. .

1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

	DATE - TIME (UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	QOD 125 MAGNITU Mcc M	DE ESTII d MLh	MTES MLV	MLc	DEL- RMS MIN RES. (KM) (SEC)	N PH. U.S.G.S. QUADRANGLE
	AUG 25 2: 6:31 25 3:30:53 25 6:33:34 25 10:50:40 25 12:26:47 25 13:11:14	36.327 37.626 37.852 37.853 35.954 35.902	116.812 115.972 116.140 116.140 116.973 116.996	8.1 2.3 2.0 1.9 2.9	5.41• 2.35 5.41• 7.15• 5.90 ~0.14•	7.4	145 175 193 194 271 268	DCA         1.           CCA         1.           CDA         1.           CDA         1.           BDA         1.           CDA         2.	69 41 14 23 37 34			20.2 0.99 14.7 0.12 20.3 0.15 20.4 0.14 37.5 0.27 43.0 0.14	7 FURNACE CREEK 10 WHITE BLOTCH SPRINGS 5 REVEILLE PEAK 5 REVEILLE PEAK 4 WINGATE WASH 12 WINGATE WASH
	2514:14:502516:59:582517:29:522517:45:572518:10:402520:57:15	35.925 37.337 35.930 36.701 37.320 37.339	116.976 117.631 116.982 115.736 115.208 117.626	1.0 0.2 1.3 0.2 3.2 0.2	€.27 0.51 5.18 11.69 7.05+ 0.01	1.4++ 0.4 2.3 0.5 	275 105 275 170 220 102	ADI 1.21 ACZ 1.69 BDI 1.1 ACI 1.97 1.3 DDI ACI	11 31 1.58 1.09 1.12	1.15 1.74 1.28 1.60	1.4	10.7 0.07 11.7 0.07 11.0 0.07 6.7 0.06 16.9 0.09 11.9 0.06	8 WINGATE WASH 23 MAGRUDER MTN 7 WINGATE WASH 22 INDIAN SPRINGS NW 6 ALAMO 14 MAGRUDER MTN
	26       2: 7:25         28       2:32:20         28       3:59:28         28       5:56:58         28       10:48:49         28       16: 8:39	35.989 37.280 37.863 35.879 36.721 37.858	114.728 115.462 116.123 115.074 115.969 116.126	1.7 0.7 0.2 0.8 0.2 0.2	4.11 -1.02 -1.29 3.26• -0.51 -0.94	$   \begin{array}{r}     1.6 \\     0.9 \\     0.4 \\     \hline     0.3 \\     0.4 \\     \hline   \end{array} $	255 126 108 223 120 107	BDZ 2.01 ACZ 1.43 ACI CDI ABZ ACI	1.19	2.25 1.49 1.70 1.32 0.75 1.72		7.8 0.05 27.4 0.12 19.8 0.04 29.1 0.07 6.8 0.08 19.7 0.04	6 RINGBOLT RAPIDS 9 CUTLER RESERVOIR 10 REVEILLE PEAK 8 SLOAN 17 MERCURY 10 REVEILLE PEAK
5	29 2:27:27 29 2:51:35 29 4: 1:28 29 4:25:10 29 10:13:41 29 12:51:10	37.884 36.695 37.263 36.678 37.786 37.134	116.116 115.588 115.198 116.078 115.164 117.540	0.2 1.2 2.4 0.3 1.7 0.3	-1.11 9.78 -1.02 0.36 4.58 9.18	0.3 4.2 2.7 0.6 11.5 0.9	113 153 160 108 178 153	AC1 BC1 DC2 AC2 1.2 CC1 1.45 AC1 1.85 2.1	0.84 8 0 2.75	1.65 1.41 0.73 0.77 1.14 2.10	1.9 2.1	20.8 0.04 19.9 0.28 10.5 0.64 10.6 0.10 13.5 0.16 14.4 0.10	11 REVEILLE PEAK 14 HEAVENS WELL 7 ALAMO 18 CAMP DESERT ROCK 7 SEAMAN WASH 26 LAST CHANCE RANGE
	29 13:46:59 30 2:30:32 30 2:46:43 30 3:33: 4 30 11: 4:10 30 13:53: 8	36.708 37.857 37.859 37.850 37.834 37.840	115.583 116.135 116.130 116.132 116.142 116.145	0.6 0.2 0.4 0.8 0.7 1.1	-1.50 0.42 -0.95 0.00•• 4.32 3.18•	0.9 0.5 0.7 1.3 11.1	86 106 107 105 187 190	BCZ ACI 2.42 ACZ ACI CDA 1.3 CDA 1.6	2.65 4 1	1.49 2.72 1.77 1.43	1.7	20.4 0.17 20.3 0.11 20.0 0.12 19.6 0.13 19.5 0.08 20.1 0.15	16 HEAVENS WELL 33 REVEILLE PEAK 12 REVEILLE PEAK 9 REVEILLE PEAK 6 REVEILLE PEAK 8 REVEILLE PEAK
	30         15:28:19           31         2:49:51           31         2:59:29           31         3:19:25           31         9:22:56           31         12:45:39	37.207 37.843 37.850 36.812 37.854 36.728	116.539 116.137 116.134 116.262 116.130 115.941	0.2 0.7 0.4 0.6 0.4 0.1	-0.01 2.29 -0.06 6.28 -1.06 4.30	0.3 2.0 0.7 1.2 0.7 0.7	132 103 105 126 106 132	ACZ ACI ACI 1.89 ABI ACI 1.75 ABI 1.85 1.55	2.23 1.68	0.82 1.49 2.16 0.47 1.91 1.48	2.4	12.9 0.06 19.7 0.13 19.8 0.15 7.5 0.12 19.7 0.13 7.7 0.05	16 THIRSTY CANYON NE 8 REVEILLE PEAK 21 REVEILLE PEAK 11 JACKASS FLATS 15 REVEILLE PEAK 23 MERCURY
	31         14:55:39           31         18:20:15           31         19:27:52           31         19:27:58           31         23:45:19           SEP         1           31:0.8	37.243 36.726 36.699 36.662 37.258 37.512	115.021 115.938 115.542 115.963 115.434 114.623	2.1 0.2 3.0 4.8 0.4 1.5	4.96 4.10 1.40 7.00 0.74 13.27	7.9 0.8+ 10.4 3.1 0.8 1.9	209 132 278 146 101 297	CD1 Ab1 1.82 0.99 CD2 1.00 DC1 0.93 AC2 1.61 B01 1.22	1.87 5 1 3 1.46 2	1.04 1.34 1.19 0.86 1.54 0.93		16.9 0.07 7.5 0.05 37.7 0.12 0.2 1.96 24.0 0.08 14.5 0.08	8 LOWER PAHRANAGAT LAKE 15 MERCURY 9 HEAVENS WELL 9 MERCURY 13 CUTLER RESERVOIR 6 CALIENTE
	1 9:24:16 1 9:24:35	37.300 37.292	117.339 117.346	0.4 0.3	5.18 0.41	0.9 0.3	112 88	ABI ABZ 1.22		1.10 1.52		7.2 0.10 7.9 0.11	13 GOLD POINT 17 GOLD POINT

97

Ċ,

-

sr ∦ummentin

1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHOUAKES

:

.

D	ATE - (U1	- TIME TC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	QQD 125 MAGNI Mcg	TUDE Md	ESTINA MLh	TES MLV	MLc	DEL- MIN (KM)	RMS RES. (SEC)	∦N PH.	U.S.G.S. QUADRANGLE
SEP	1 1 2 2 2	9:26:29 9:38:30 21:55:21 6:59:19 14:12:56 21:14:24	37.296 37.295 37.492 37.878 36.988 37.843	117.339 117.346 117.032 116.128 116.013 116.138	0.3 0.4 0.3 0.5 0.2 0.7	4.76 0.12 0.81 0.02 -0.20 0.74	0.9 0.5 0.6 0.8+ 0.2 1.0	91 114 109 111 152 103	ABI ABZ ACI 1.84 BCI 1.73 ACZ 1.54 ACZ	1.96		1.37 1.08 1.93 1.86 1.25 1.34	1.7	7.5 7.5 29.1 21.1 7.2 19.7	2 0.10 9 0.11 1 0.11 1 0.16 2 0.68 7 0.10	18 13 27 18 18 6	COLD POINT COLD POINT SCOTTYS JUNCTION NE REVEILLE PEAK YUCCA LAKE REVEILLE PEAK
	2 3 3 4 4 5	21:46: 6 11:53:19 17:47:50 13:20: 2 22:13:29 3: 5:54	36.562 37.147 37.861 37.428 37.852 37.852	116.341 116.304 116.130 116.524 116.133 116.131	0.2 0.3 0.5 0.2 1.9 0.5	7.99 -0.08 -0.21 8.49 -1.02 0.04	1.0 0.3 0.8 1.0 4.7 0.9	100 74 107 102 154 107	ABI 1.99 ABI ACI 1.51 ACI 2.08 BCZ ACI 1.91		2.27 1.96 1.73 1.94	1.94 0.80 1.84 1.64 1.60 1.91	2.2	9. 7. 20. 18. 20. 20.	3 0.09 7 0.08 2 0.14 3 0.07 0 0.14 3 0.14	28 18 15 27 6 15	LATHROP WELLS SE AMMONIA TANKS REVEILLE PEAK BLACK MTN NE REVEILLE PEAK REVEILLE PEAK
	5 6 7 7 7 7	11: 2:25 18:42:54 0:51:45 7:36:11 18:14:31 18:58:20	37.661 36.729 37.238 35.859 36.096 36.100	114.875 115.931 116.945 114.784 114.652 114.706	0.5 0.5 0.3 0.6 1.2 6.2	6.24 4.91 13.16 3.06 ~1.57 1.27•	1.1 0.8 1.2 0.6 1.5	152 223 149 312 220 205	ACI 1.28 ADI ACI ADI 2.59 BDI 2.65 DDI 2.74	1.75	1.55	1.63 1.31 1.20 2.15 1.99 2.19	1.7	5. 8. 27. 79. 21. 20.	8 0.09 1 0.07 7 0.08 3 0.03 4 0.09 3 0.07	10 20 17 9 12 8	PAHROC SPRING MERCURY SPRINGDALE BOULDER CITY SE HOOVER DAM HOOVER DAM
	8 8 9 9 11	8:59:51 19:20:10 20:7:3 12:49:58 18:29:50 7:24:2	36.810 37.850 37.216 36.899 36.946 37.856	116.027 116.133 116.544 116.817 117.607 116.129	0.3 0.6 0.2 0.4 1.3 0.4	-1.16 0.60 8.40 0.00** 6.70 0.00**	0.4 0.9 0.5 1.0 1.7 0.7	171 105 136 121 202 106	ACZ ACI ACI ACI BDI ACI 1.66	U.89		0.93 1.27 1.04 0.93 0.90 1.80		13. 19. 12. 20. 23. 19.	6 0.07 7 0.06 9 0.04 4 0.09 9 0.67 5 0.13	14 7 15 15 6	CANE SPRING REVEILLE PEAK THIRSTY CANYON NE BULLFROG DRY MTN REVEILLE PEAK
	11 12 12 12 14 14	15:18: 2 1:43:49 7: 7:55 17:47:39 7:58: 1 11: 1:44	37.503 37.848 37.861 37.729 37.845 37.218	114.609 116.135 116.130 115.158 116.136 116.539	0.8 0.6 1.1 0.3 2.0 0.9	8.87 0.74 -0.56 6.00 3.03• 7.32	$   \begin{array}{r}     1.2 \\     1.0 \\     2.0 \\     1.4 \\     \hline     2.8 \\   \end{array} $	300 104 107 132 190 139	ADI ACI BCI ACI CDA BCA	0.99 0.85		1.44 1.46 1.32 0.89		16. 19. 20. 12. 19. 12.	1 0.04 7 0.12 2 0.15 0 0.06 6 0.12 1 0.10	7 9 8 9 5 9	CALIENTE REVEILLE PEAK REVEILLE PEAK FOSSIL PEAK REVEILLE PEAK THIRSTY CANYON NE
	14 14 15 15 15	16:34:32 20:53: 4 1:48:30 2:32: 4 6:14:34 11: 4:44	37.043 37.607 37.519 37.196 37.180 36.046	116.474 114.465 115.384 115.208 116.087 114.850	0.1 4.2 0.1 0.5 0.8 5.6	-0.74 15.77 0.87 8.57 -0.40 4.59	0.1 1.3 0.2 0.6 1.0 12.0	125 353 153 106 99 155	ABI 1.13 CDI ACZ ABI 1.86 BBI DCZ	1.16		0.38 1.01 1.11 1.96 1.66 1.83		7. 24. 19. 3. 6. 16.	8 0.02 1 0.04 9 0.02 6 0.11 6 0.15 2 0.17	11 6 11 17 14 6	TIMBER MTN ***QUAD. NOT LISTED*** MT IRISH LOWER PAHRANAGAT LAKE N QAK SPRING BOULDER BEACH
	15 15 15 16 16	11:41:33 11:41:35 15:53:58 5:31:56 14:32:21 18:25:45	37.848 37.850 37.319 36.597 37.281 37.844	116.128 116.127 114.865 116.303 115.064 116.133	0.8 0.4 1.4 0.5 0.6 ¢.4	0.17 -0.11 -0.32 9.18 5.46 0.96	1.9 0.8 1.7 0.5 0.9+ 0.7	105 119 220 194 + 182 104	ACI ACI BOI ADI ACI ACI		1.16	1.20 1.60 1.60 0.70 1.20 1.13		19. 19. 19. 6. 14. 19.	2 0.09 3 0.00 1 0.12 3 0.00 0 0.04 3 0.07	6 7 13 9 7	REVEILLE PEAK REVEILLE PEAK GREGERSON BASIN LATHROP WELLS SE ALAMO SE REVEILLE PEAK
i	16 15	18:35:11 18:36:12	36.885 36.882	116.817 116.813	0.6 0.5	0.36 1.21	2.0 1.9	128 127	AC1 ACI			1.08 0.86	1	19. 19.	6 8.09 1 0.16	) 14 ) 11	BULLFROG BULLFROG

86

. .

1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

D	ATE (U	- TIME JTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000	MAGN I Mca	TUDE Md	ESTIMA MLh	TES MLv	MLc	DEL- HAM MIN RE (KM) (SE	5 /N 5. PH C)	U.S.G.S. QUADRANGLE	
SEP	16 16 17 17 17	20:56:60 23:24:43 6:41:11 6:42:11 6:44:15 7:27:31	37.846 37.307 36.837 36.839 36.840 36.841	116.138 115.363 117.501 117.492 117.498 117.493	0.3 0.1 0.6 0.7 0.5 0.8	1.72 3.22+ 1.78 1.55 1.95 2.35	$\frac{1.0}{1.1+}\\1.0+\\1.3\\1.3$	104 236 187 186 186 186	ACA COI ADI ADI ADI ADI	1.53	1.45	1.70	1.11 1.69 1.30 1.70 1.28		19.9 0. 21.8 0. 9.2 0. 8.7 0. 9.2 0. 8.8 0.	06 8 01 6 13 19 10 12 12 19 12 13	REVEILLE PEAK BADGER SPRING DRY MTN TIN MTN TIN MTN TIN MTN TIN MTN	
	17 18 18 18 18 18	23:42:23 0:51:51 2:11:37 8:29:7 8:49:26 18:4:43	37.857 37.860 37.861 37.859 37.192 37.857	116.130 116.135 116.130 116.138 115.202 116.132	0.4 0.6 0.6 1.3 0.4	0.00. 0.00. 0.00. 0.00. 0.00. -0.38 -0.22	0.7 1.5 1.0 1.3 1.3 0.6	107 107 107 108 123 106	ACI ACI BCI BCI B81 ACI	2.40	1.51 1.40 1.53	2.62	1.65 1.63 1.66 1.77 1.35 2.30	1.7 2.8	19.9 0. 20.4 0. 20.7 0. 20.6 0. 2.9 0. 20.0 0.	14 16 14 12 15 13 16 14 12 8 14 24	REVEILLE PEAK REVEILLE PEAK REVEILLE PEAK REVEILLE PEAK LOWER PAHRANAGAT REVEILLE PEAK	LAKE NW
	18 18 18 19 19	18: 7:18 18: 9:24 18:10: 8 18:55: 6 4: 0:18 4:22:48	37.849 37.844 37.837 37.857 37.857 37.961 37.410	116.137 116.141 116.142 116.131 116.130 115.212	0.9 0.2 0.5 0.5 0.5 0.3	0.19 0.96 9.59 -0.39 -0.70 -0.38	1.6 0.3 3.5 0.9 0.9	105 103 127 106 107 124	ACI BOI BCI ACZ ACZ	2.19	1.83 1.45	1.30	1.48 1.88 1.59 2.96 1.51 1.47		19.9 9. 19.9 0. 19.7 0. 20.0 0. 20.1 0. 14.3 0.	12 7 05 10 03 5 16 15 13 13 06 10	REVEILLE PEAK REVEILLE PEAK REVEILLE PEAK REVEILLE PEAK REVEILLE PEAK ASH SPRINGS	
,	19 19 19 19 19	7:17: 3 11:13:56 12:23:16 16:49:23 20: 0:27 22:50:56	36.900 37.854 37.421 37.848 37.679 37.679	116.067 116.131 115.313 116.133 115.035 116.183	0.2 1.0 0.4 0.3 0.6 1.3	2.59 0.03 5.13 0.53 0.44 5.30	0.3 1.7 6.0 0.5 1.1 1.4	118 105 97 121 115 282	AB1 AC1 CC1 AC2 AB2 B01	1.66	1.33 1.54	1.70	1.01 1.44 1.34 1.50 1.39 0.84	1.3	3.8 0. 19.8 0. 23.3 0. 19.5 0. 9.2 0. 6.2 0.	06 14 11 8 09 13 04 7 09 8 10 9	YUCCA LAKE REVEILLE PEAK HANCOCK SUMMIT REVEILLE PEAK HIKO NE TIPPIPAH SPRING	
	20 20 20 20 20 20 21	1: 0:30 2:31:15 5:34:14 8:20:44 15: 1: 8 1:38:56	37.353 37.411 37.412 37.852 37.844 37.352	117.244 115.197 115.193 116.132 116.133 117.246	0.4 0.7 1.3 0.9 0.2 0.3	-0.95 7.32 10.45 0.55 1.88 -1.06	0.4 2.5+ 3.1 1.4 0.7 0.4	168 120 119 105 124 71	ACI BBI ACI ACI ADI	1.59	1.61 1.45	1.41 1.41	1.44 1.28 1.45 1.77 1.18		6.0       0.         12.9       0.         12.6       0.         19.7       0.         19.3       0.         5.8       0.	06 10 16 11 17 9 12 9 03 0 10 10	) SCOTTYS JUNCTION ASH SPRINGS ASH SPRINGS REVEILLE PEAK REVEILLE PEAK SCOTTYS JUNCTION	i sw
	21 22 22 22 22 22	15:45: 5 1: 7:21 2:57:58 3:43:25 4:51:56 7:17:25	37.355 36.716 37.527 37.306 37.857 35.938	117.243 116.220 115.329 114.824 116.127 114.837	0.3 0.2 0.4 0.5 0.3 2.5	-1.24 7.43 0.24 5.02 -0.25 -0.53	0.3 0.4 0.8 4.2 0.5 0.7	72 88 86 232 107 192	AB1 AA1 AC2 B01 AC1 B01	2.21 1.62 2.00 2.17	1.43 1.21 1.51	*.93 1.55 2.23	1.29 1.22 2.13 1.42 2.30	1.1	6.2 0. 5.5 0. 17.3 0. 23.0 0. 19.7 0. 7.6 0.	07 11 07 20 09 11 04 5 12 22 11 11	SCOTTYS JUNCTION SPECTER RANCE M MT IRISH GREGERSON BASIN REVEILLE PEAK BOULDER CITY	<b>SW</b> 
	22 22 23 23 23 23	14:58:34 22: 8:55 6:20:24 12: 8:30 17:36:13 21: 6:33	37.856 37.679 37.672 37.679 37.679 37.847 37.348	116.135 115.041 115.052 115.035 116.136 117.272	1.4 0.4 0.3 6.4 0.3 0.6	0.76 0.50 1.89 0.60 7.10 15.16	2.3 0.6 0.4 0.7 2.7 1.3+	106 113 106 115 104 + 225	801 A81 A01 807 A01	1.57	1.49 1.30	1.23	1.30 1.23 0.95 1.85	5 5 5	20.2 8. 9.7 8. 10.4 8. 9.2 8. 19.7 8. 39.3 8.	12 ( 06 8 03 ( 07 1) 03 ( 06 13	8 REVEILLE PEAK 8 HIKO NE 8 HIKO NE 9 HIKO NE 9 REVEILLE PEAK 8 GOLD POINT	
	25 25	0: 9.2 4: 1: 2	3 36.337 2 36.524	117.243 116.306	0.5 0.2	5.26 6.96	1.2 1.1	214 110	AD1 AB1	[ 1.57			1.43	) )	14.2 <b>0</b> . 13.7 <b>0</b> .	09 19 06 21	EMIGRANT CANYON LATHROP WELLS SE	:

that we have

Sec. 18. 18. 18.

.

N., 1⁰¹¹N N., 1⁰¹¹N N., 1011

2951 9 1 0 5 1

1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

	DA	TE - (UI	- TIME IC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125	MAGNIT Mca	UDE Md	ESTIMA MLh	tes MLv	MLc	DEL- MIN (KM)	RMS RES. (SEC)	∦N PH.	U.S.G.S. QUADRANGLE	
	SEP	25 25 25 25 25 25	4:32: 2 5:20:57 6: 5:28 14: 2:20 16:12:53 19:37:43	37.346 37.219 36.526 37.351 37.190 37.676	117.250 117.599 116.303 117.240 116.447 115.044	0.3 0.2 0.2 0.8 0.2 0.2 0.2	-0.28 10.12 5.72 -0.48 5.15 -0.96	0.4 0.3 1.4 0.4 0.7 0.2	70 130 109 183 102 112	A31 A81 AC1 A01 AC1 AD1	1.84 1.86 1 1.86	.96	2.20 1.76 1.16	1.99 2.21 1.11 1.22 1.33 1.15	1.9	5.1 4.4 13.6 5.8 11.2 9.8	0.11 0.07 0.06 0.10 0.05 0.01	25 28 16 9 20 5	GOLD POINT LAST CHANCE RANGE LATHROP WELLS SE SCOTTYS JUNCTION S SCRUCHAM PEAK HIKO NE	244
		26 26 26 26 26 26	4:52:34 19:25: 3 20:37:17 23:46:38 23:52:21 23:52:50	37.641 37.288 36.860 37.350 37.349 37.349	114.880 117.618 116.260 117.250 117.247 117.243	0.6 0.2 0.2 0.4 0.1 0.2	5.46 6.63 9.30 -0.71 -0.11 0.00	0.9 0.4 0.4 0.3 0.1	183 99 90 71 181 259	ADI ABI ABI ADI ADI	1.21		1.10	0.78 1.18 0.46 1.50 1.06 0.82		5.2 6.6 5.8 5.5 5.5 5.5	0.04 0.03 0.03 0.10 0.01 0.01	6 9 11 13 8 7	PAHROC SPRING MAGRUDER MIN JACKASS FLATS GOLD POINT SCOTTYS JUNCTION S SCOTTYS JUNCTION S	5W 5W
		27 27 27 27 27 27 27	2:23:54 3: 7:41 3:57:31 4:55: 1 5: 3: 6 7:37:49	36.626 37.342 37.346 36.995 36.567 37.343	116.377 117.254 117.249 117.731 115.208 117.257	0.5 0.6 0.4 0.7 0.9 0.2	6.07 0.15 -0.02 5.39 13.41 0.18	0.4 0.3 0.3 5.1 1.1 0.2	274 178 118 236 140 153	ADI ACI ABI CDI BCI ACI				0.82 1.11 1.23 1.41 1.56 1.07	2.3	4.0 4.6 5.1 27.4 8.1 4.7	0.05 0.07 0.09 0.06 0.18 0.64	12 9 12 9 14 10	LATHROP WELLS NW GOLD POINT SCOTTYS JUNCTION S DRY MTN HAYFORD PEAK GOLD POINT	<b>2</b> W
•		27 28 28 28 28 28 28	8:56: 7 2:42: 5 5:13:14 6: 8:29 10:54:45 11:29:15	37.355 37.852 37.354 37.296 37.291 37.342	117.238 116.137 117.255 117.335 116.415 114.676	0.5 0.8 0.6 0.3 0.7 1.2	-0.84 1.86 -1.55 0.28 7.94 7.00	0.3+ 2.4 0.6 0.3 0.8 5.8	184 105 163 128 226 258	ADI BCZ ACI ABZ ADI CDI	1	. 22 . 67		1.08 1.18 1.10 0.91 0.84 1.58		6.2 20.1 5.9 6.9 11.7 29.8	0.08 0.14 0.11 0.05 0.09 0.08	9 8 10 10 14 8	SCOTTYS JUNCTION S REVEILLE PEAK GOLD POINT GOLD POINT SILENT BUTTE ELGIN SW	2 <b>W</b>
		28 29 29 29 29 29 29	22:58:12 5:56:43 9:43:31 13: 5:57 14: 7: 2 14:59:42	36.903 37.844 37.825 36.679 37.257 37.856	117.582 116.133 115.740 115.760 115.061 116.134	0.7 1.1 1.1 0.8 2.1 0.7	5.35 2.80 6.36 -0.15 11.02 -0.13	6.0 8.3 6.1 0.7 2.4 1.3	191 104 149 202 192 106	CD1 CC1 CCZ AD1 BD1 AC1			1.53	1.48 1.06 0.82 1.37 0.71 1.56		19.2 19.4 19.4 4.8 14.9 20.2	0.13 0.11 0.13 0.14 0.06 0.12	12 7 6 12 7 9	DRY MTN REVEILLE PEAK WORTHINGTON MTNS MERCURY NE ALAMO SE REVEILLE PEAK	
		29 29 29 30 30 30	15: 1:29 19:53:51 21:36:36 1:11: 4 7:15: 4 10:51:14	37.858 37.112 37.857 37.679 36.868 36.965	116.129 114.911 116.126 115.035 116.197 117.592	0.4 2.0 0.6 0.4 0.5	-0.32 3.03• -0.53 -0.08 4.64 5.38	0.7 1.0 0.8 1.0 3.6	107 269 107 116 139 186	AC1 CD1 AC1 AB1 AC1 BD1	1	.79 .40	1.28	1.94 1.14 1.69 0.71 0.52 1.64		19.9 25.3 19.6 9.2 2.9 22.2	0.12 0.15 0.14 0.06 0.10 0.13	15 6 12 7 11 16	REVEILLE PEAK DELAMAR 3 SW REVEILLE PEAK HIKO NE SKULL MTN DRY MTN	
	ост	30 1 2 2 2 2	22:34:56 9:54:8 4:37:4 6:24:17 17:25:29 19:6:34	37.844 37.398 36.730 37.852 37.346 36.853	116.138 115.356 116.048 116.137 117.248 116.222	0.2 0.3 0.5 0.4 0.3	2.97 9.57 -1.39 -0.20 -0.27 10.35	1.6 1.3 0.5 0.9 0.3 0.5	113 162 139 105 102 45	ACI ACI ACI ACI ACI AAI	0 1 1.31 1	. 89 . 44 . 22		1.44 1.31 1.05 1.53 1.31 0.99		40.1 27.0 10.9 20.2 5.1 4.8	0.04 0.04 0.09 0.13 0.09 0.10	6 8 16 13 12 25	REVEILLE PEAK HANCOCK SUMMIT CAMP DESERT ROCK REVEILLE PEAK SCOTTYS JUNCTION S SKULL MIN	<b>W</b>
		2 2	19:16:24 19:19: 5	36.851 36.849	116.227 116.221	0.3 0.3	9,48 11,98	0.6 0.4	41 119	AA I AB I	1.72	.78	1.24	1.83 0.67		5.3 4.7	<b>e</b> .12 <b>e</b> .85	32 16	SKULL MTN SKULL MTN	

۰.

100

. Hug<u>hin</u>k

Hunniitte

H^{anna}h H^{anna}h H

. Human Ha N^{bernera}H H^{anaana}H

đ,
1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

	DAT	E - (UT	· TIME C)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM) (	AZI GAP (DEG)	000 125 MAC Mcc	IN I TUDE	ESTIMA MLh	TES MLV	MLc	DEL- MIN (KM)	RMS RES. (SEC)	∦N PH.	U.S.G.S. QUADRANGLE	
00	т	3 3 3 3 3 4	4:55:46 9:45:59 21: 9:11 21:54:13 22:10: 8 17:17:38	37.244 36.735 37.855 37.879 37.877 37.884	115.180 115.555 116.128 116.018 116.017 116.012	0.1 0.4 0.0 0.6 0.1 0.3	5.66 3.05+ 0.01 5.17 6.19 5.97	0.3 0.9 4.2 0.8 2.1+	166 92 106 116 116 118	ACI CCI 2.1 ACI BCI ACI BCI 2.2	1 1.35 1.69	0.97	1.00 2.08 1.68 1.60 1.82 2.62	2.5	8.4 23.3 19.6 15.1 14.9 15.4	0.00 0.15 0.12 0.13 0.02 0.02	6 26 12 10 10 20	LOWER PAHRANAGAT L HEAVENS WELL REVEILLE PEAK REVEILLE PEAK REVEILLE PEAK REVEILLE PEAK	AKE NW
		444555	19:37:18 19:46:14 20:16:35 0:19:57 1:16:29 9:34:33	37.868 36.871 37.876 37.647 37.384 37.228	116.011 115.797 116.018 117.670 114.973 117.301	0.3 0.7 0.3 0.8 0.1 0.5	7.86 12.61 6.52 8.87 3.72 8.79	0.8 0.9 2.3 3.1 0.3 0.8	163 257 115 134 178 103	ACI ADI BCI 1.5 BBI ACI ABI	5 1.75	1.52 1.10	1.26 1.36 1.81 1.17 0.83 1.28		13.7 19.7 14.8 14.9 7.3 8.9	7 0.03 7 0.08 8 0.08 9 0.12 8 0.01 9 0.10	7 14 13 9 8 13	REVEILLE PEAK FRENCHMAN LAKE SE REVEILLE PEAK LIDA WASH DELAMAR NW UBEHEBE CRATER	
		5 5 5 6 7 8	14:14:36 17:29:12 17:31:54 13:18:35 14:21:40 2:58:24	36.811 37.874 37.875 37.848 37.202 36.872	116.458 115.041 116.018 116.139 116.449 116.205	0.4 0.2 0.9 0.4 1.1	2.31 -1.05 6.26 0.99 7.92 0.82	0.4 0.4 1.3 1.3 0.8 1.1	98 111 115 104 143 144	ABU ABI ACI ACZ ACI BCI	1.33	1.19	-0.16 1.19 1.59 1.44 0.90 0.57		3.9 9.5 14.7 20.0 11.2 3.8	0.08 0.05 7 0.05 0.15 2 0.06 3 0.05	9 6 12 8 13 8	TOPOPAH SPRING SW HIKO NE REVEILLE PEAK REVEILLE PEAK SCRUCHAM PEAK SKULL MTN	
		8 8 8 9 9	5:36: 9 7:35:31 9:26:12 20:41:36 14: 5:18 14:35:28	37.856 37.141 37.317 36.854 37.849 36.252	116.128 117.336 114.902 117.662 116.131 117.470	1.0 0.2 0.6 0.8 0.7 4.6	0.00 0.23 5.96 0.00 2.03 4.77.	1.8 0.3 2.0++ 1.5 3.0	106 107 205 206 105 270	BCI ACZ ADI 1.8 ADI 2.3 BCA CDA	1.48 1.44 36 33 1.81 1.61	1.35	1.53 1.47 1.73 2.28	2.6	19.7 15.7 16.5 23.6 19.5 36.6	7 0.15 7 0.06 5 0.08 5 0.12 5 0.17 5 0.23	9 17 12 21 12 6	REVEILLE PEAK UBEHEBE CRATER DELAWAR LAKE DRY MTN REVEILLE PEAK PANAMINT BUTTE	
	1 1 1 1	9 0 1 2 2	14:37:11 20:58:32 22:19:50 11: 4:57 22:30:29 23:33:14	36.849 36.594 36.732 37.507 37.875 36.657	117.663 115.956 116.033 117.191 116.020 116.272	1.3 0.2 0.4 0.4 0.2 0.4	0.65+ 13.46 8.73 4.83 7.16 -0.08	0.3 0.7 7.9 1.3 0.4	206 168 144 126 115 110	CDA ACI ACI CCA ACI 1.5 ABI	1.54 1.10 1.60 54 1.70		0.68 1.13 1.81 0.78	1.2 1.9	23.6 7.4 10.2 23.6 14.8 6.2	5 0.11 6.03 7 0.07 5 0.08 5 0.08 5 0.05 2 0.09	9 9 13 8 12 16	DRY MIN MERCURY SW CAMP DESERT ROCK GOLDFIELD REVEILLE PEAK STRIPED HILLS	
	1 1 1 1	2 3 4 5 6	23:36: 1 0:17:33 1: 7:19 1:18:40 11:46:10 4: 3:46	36.659 37.872 37.035 37.441 37.311 37.251	116.268 116.018 116.147 115.017 115.312 117.554	0.4 0.2 1.0 0.9 0.3	0.15 8.27 2.80 7.40 9.85 9.84	0.5 1.3 0.5+ 1.5 3.5 0.6	127 114 112 164 114 136	AB1 AB1 AB1 BC1 BB1 AC1	1.48	0.92 1.31 1.01	0.72 1.45 0.92 0.83 1.06 1.03	1.2	6.6 14.4 7.3 4.9 19.3 8.4	5 0.05 5 0.04 5 0.07 9 0.05 5 0.15 6.05	14 8 17 7 9 10	STRIPED HILLS REVEILLE PEAK TIPPIPAH SPRING ALAMO NE BADGER SPRING MAGRUDER MIN	
	1 1 1 1 1	6 17 17 17	16:35:35 19:57:56 6:53: 1 14:38:51 18:27:38 19:20:17	37.440 37.577 37.341 37.214 37.154 37.205	117.208 117.488 115.081 114.939 115.793 116.542	0.3 0.9 1.8 0.4 0.3	-0.91 0.62 4.49 19.79 10.63 -0.36	0.4 0.5 1.1 2.9 2.0 0.4	136 99 160 172 93 129	ACZ ACI ACI BCI BBI ACZ		1.16	1.44 1.18 1.38 1.81 1.18		16.0 15.1 7.7 22.6 20.5 13.0	0.07 0.07 0.04 0.09 0.12 0.09	12 10 7 8 19 14	STONEWALL PASS MONTEZUMA PEAK SW ALAMO SE DELAMAR 3 NW PAPOOSE LAKE NE THIRSTY CANYON NE	
	· 1	7 8	22:14:28 4:14:10	37.312 37.258	117.267 115.156	0.3 1.3	0.42 8.51	0.1 2.5	65 152	AAZ 2.2 BCI 1.8	28 31	1.89	2.07 1.20	2.3	1.5 10.3	5 0.09 5 0.11	24 8	GOLD POINT ALAMO	

 $C_{j}$ 

Honnille

#mmille

• •

101

.

01051 2 9 5 5

1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

C	ATE (L	- TIME ITC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	оертн (км)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125	MAGN I Mc a		ESTIMA MLh	TES	MLc	DEL- MIN (KM)	RMS RES.	/N PH	U.S.G.S.
ост	18	16:19:19	37.445	117,969	0.7	6.56	1.0	241	401						(,	(000)		AND NOTE -
	18	19:28:17	37.176	117.404	0.1	-0.05	A 3	108	A01	1.82	1.01		1.79		5.	9 0.12	16	SOLDIER PASS
	18	21:19:26	37.177	117.403	0.3	-0.11	A 4	117	101				1.46		19.	0 0.05	-19	UBEHEBE CRATER
	19	0:29:28	36.561	116.463	0.3	9.71	1 1	114				1.25	1.14		18.	9 0.06	11	UBEHEBE CRATER
·	20	1:27:32	36.743	115.600	1.0	5.37	2.5	318					1.02		14.	5 0.05	-14	LATHROP WELLS SW
	20	19:14:34	37.513	116.530	0.3	7.80	2.0	75	BCA		1.58		1.35		23.9	5 8.87 5 8.84	-14 	HEAVENS WELL MELLAN
	21	3:19:30	37.337	117.256	0.4	0.46	8 2	176	401								-	
	21	5:32:32	37.338	117.259	0.6	0.24	A .	176	101				1.00		4.	8 8.84	- 9	GOLD POINT
	21	11:41: 4	35.768	114.838	9.8	11.87	9.4	280	007				0.00		4.	1 0.05	8	GOLD POINT
	21	12:19: 5	36.624	115.502	0.5	-1.54	a	107	407				1.90		18.	7 0.25	7	BOULDER CITY SE
	22	3: 5:28	36.777	115.698		2 47	0.5	280	402				1.38	٠	28.	5 0.10	8	INDIAN SPRINGS SE
	22	19:39:15	37.164	115.065	0.4	1.85	1.3	270	ADI	1.85		1.44	1.33		13.0	5 0.00 5 0.01	4	QUARTZ PEAK SW
	23	20:57:58	36.834	116.059	1.0	13 07	A 0	212	00.1								·	COMER PARAMONT DAVE
	23	23: 1:59	36.699	115.460	9.4	8 65	A 0	110	BUI				0.59		10.0	0.09	11	CANE SPRING
	23	23:27:51	35.951	114.827	8.8	A 36	1 4	150	ACT				0.62		9.9	9 0.09	17	LATHROP WELLS NW
	24	6:-18:13	37.095	115 137	A 7	1 33	1.7	163	ACI	2.42			2.06		7.:	2 8.88	11	BOULDER CITY
	24	14:30:49	37.395	115.058	A 5	A 42	0.2	240	ADI				1.36		9.3	3 0.07	10	LOWER PAHRANAGAT LAKE SW
	24	21:41:25	36.082	114 725	A 0	-0.72	0.2	154	ACI	1.36			1.34		1.9	5 0.08	10	ALAMO NE
					0.3	-0.90	0.0	208	ADZ				1.60		18.0	8 0.05	8	HOOVER DAM
	25	6:23: 3	37.779	115.101	0.4	3.97	3.3	107	BCI	2.19		2 84		15		7 8 87	10	WHITE DIVER MARRIE
	25	15:35:52	36.953	116.112	1.4	0.31	1.7	162	BCI				A 77	1.5			10	WHITE RIVER NARROWS
	25	16:27:27	37.562	117.210	0.5	7.00	2.7	120	BCI	1.37			1 40	1 0	21.0			TULLA LARE
	25	20:41: 4	37.043	116.177	0.2	5.00	0.4	132	ARI				1 07	1.3	21.9		12	
	26	3:22:25	37.154	117.356	0.3	-0.66	0.4	161	AC7				1 16				13	TIPPIPAH SPRING
	26	7:16:14	36.816	116.159	0.4	0.64	0.3	78	MI	1.45			1.33		4.3	5 0.07	19	SKULL MTN
	26	12: 2:16	37.179	115.176	0.5	7.31	0.6	140	ACZ	2.34			2 10		• •		••	
	26	20:21:15	37.513	116.529	0.2	7.60	1.6++	68	ACT	4.04			1 66		1.3	0.12	19	LOWER PAHRANAGAT LAKE NW
	26	21:20:49	36.679	116.083	0.3	9.92	0.9	188	ARI	1 71			1.00		23.0	0.09	20	MELLAN
	27	12:46:32	37.561	117.207	0.5	-0.43	8 9	120	BC I	1 80			1.04		11.0	0.03	20	CAMP DESERT ROCK
	27	21:13:52	37.858	116.127	0.3	0.00	6.6	187	AC7	2 18			1.00		22.0	0.1/	19	GOLDFIELD
	28	20: 2:50	37.515	116.527	0.3	10.86	0.8	54	ACI	2.49		3.40	2.78	2.5	23.6	0.14	20 48	REVEILLE PEAK MELLAN
	28	20: 4:35	37.842	116.134	0.4	1.45	1.1	103	ACT				1 00		10 4			
	28	20:17:44	37.528	116.528	0.3	13.31	1.0	80	ART	1 76			1.30	1.0	19.9	0.05		REVEILLE PEAK
	28	20:19: 2	37.516	116.531	0.2	10.50	0.9++	68	ACT	1.70		1 01	1.3/		22.0	0.08	16	MELLAN
	28	20:19:58	37.513	116.536	0.2	-0.23	0.3	122	AC7	1 85	1 02	1.30	1.79	<b>.</b>	23.2	0.09	21	MELLAN
	28	21:29:23	37.516	116.529	0.2	10.05	A QLL	55	ACI	2 42	1.92		1.38	2.1	23.2	0.07	14	MELLAN
	28	21:30:58	37.517	116.538	0.2	10.94	0.6	122	ĂĈI .	1.69		1.69	1.47	2.2	23.4	0.09	30 15	MELLAN MELLAN
	28	21:53:17	37.514	116.535	0.2	-0.69	8.4	67	AC7				1 8.0					
	29	6:37:18	37.518	116.530	0.2	8.30	1.4++	54	ACT	2 26		2 27	1.00		23.1	0.09	20	MELLAN
	30	1: 7:56	37.858	113.128	0.5	-0.77	8.8	187	BCI			4.21	4.20	4.3	23.3	0.00	20	MELLAN
	30	10:31:17	36.818	116.281	0.6	3.64	2.1	186	881				1.3/	4.2	19.0	9.15	18 1	REVEILLE PEAK
	30	16:58:16	37.200	115.159	2.5	5.47	4 54	194	001				V.00		5.9	0.17	14	JACKASS FLATS
	30	22:44:31	37.563	117.206	0.7	0.00++	1.4	121	BCI	1.53			1.52		4.3	0.10	6 ) 15 (	COUDFIELD - DOBR AVE!
NOV	1	2:16:58	36.622	116.251	A 1	6 00	• •											voes. expl.
	1	5:29:46	37.745	114.584	0.J 0.B	8 67 8 67	1.4	125	ACZ	1.52			1.13		13.5	0.07	17 (	LATHROP WELLS SE
					0.0	0.0/	1.4	290	ADI				1.10		20.5	0.03	6 (	CHIEF MTN

102

1.1.1.

01031 2 9 6 7 1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

DATE	E – TIME (UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	QQD 12S MAGNITUDE Mca Md	ESTIM MLh	ATES MLV	MLc	DEL- RMS (N MIN RES. PH. U.S.G.S. (KM) (SEC) QUADRANGLE
NOV	7:44:57 11: 6:38 6:31:17 7:15:31 18:56:25 17:19:58	37.515 37.245 37.410 37.413 37.344 37.515	116.529 115.157 117.438 117.433 117.249 116.527	0.2 1.8 0.5 0.5 0.3 0.2	-0.84 4.38 5.48 4.80 0.08 5.66	0.4 8.3 0.8 1.3 0.2 1.2	68 155 107 107 70 69	ACZ CCI 1.62 ABI BBI AAI ACI 1.82	1.18 1.05 0.80	1.65 1.23 1.08 1.52 1.68		23.4 0.07 18 MELLAN 8.9 0.14 8 LOWER PAHRANAGAT LAKE NW 6.4 0.11 13 LIDA 6.6 0.15 14 LIDA 4.8 0.08 18 SCOTTYS JUNCTION SW 23.6 0.06 20 MELLAN
	18:46:36 19:11:55 8:28:32 5:28:58 5:56:4 21:59:11	37.684 37.426 37.030 37.271 36.906 37.501	115.137 117.430 116.235 115.048 117.582 115.310	0.7 0.5 0.2 3.5 0.7 0.5	0.94 8.47 8.69 11.53 4.85 0.52	1.3 0.6 0.4 3.7 7.2 0.7	86 178 60 191 190 127	BCZ ACZ AAI CDZ CDI 1.48 ACZ	1.20	1.58 1.02 0.93 1.11 1.47 1.22		12.5 0.16 12 FOSSIL PEAK 6.3 0.08 10 LIDA 6.0 0.07 24 BUCKBOARD MESA 15.1 0.07 5 ALAMO SE 19.3 0.15 16 DRY MTN 19.9 0.09 9 MT IRISH
5 5 7 8 8 8	5 5:17:56 28:29:22 15:18:28 10:30:18 2:26:35 1:21:59	37.514 36.103 35.924 37.131 37.519 37.864	116.531 114.673 114.833 117.375 116.533 116.132	0.3 2.0 1.9 0.4 0.3 0.3	9.67 -1.02 4.44 7.94 11.89 -0.18	1.5++ 1.4 2.7 1.0 1.1++ 0.6	75 222 189 171 68 108	ACI 1.23 BDZ BOI 2.37 1.96 ACI ACI ACI 1.84	2.38 2.21	1.20 1.64 2.29 1.10 1.55 2.12	1.5 2.0	23.4 0.07 11 MELLAN 21.4 0.14 7 HOOVER DAM 7.0 0.14 15 BOULDER CITY 14.8 0.19 15 UBEHEBE CRATER 5 22.9 0.09 20 MELLAN 9 20.5 0.14 23 REVEILLE PEAK
9 9 9 9 10 10	8:10:54 14:11:16 15: 8:35 21:21:57 7: 2:39 10: 5:32	37.854 37.776 37.785 37.854 37.207 37.856	116.137 115.099 115.106 116.129 116.539 116.131	0.5 0.4 0.2 0.8 0.1 0.4	-0.19 0.21 6.37 0.00** -0.15	0.8 0.9 0.9+ 1.6 0.2 6.8	106 108 145 186 131 106	ACI ACZ 1.86 ACI 1.33 BCI ACZ 1.34 ACI 1.80	1.60	1.68 1.49 1.21 1.67 1.09 1.82	2.1 1.7	20.3 0.14 14 REVEILLE PEAK 12.1 0.09 10 WHITE RIVER NARROWS 11.3 0.04 9 WHITE RIVER NARROWS 19.7 0.15 12 REVEILLE PEAK 13.0 0.05 19 THIRSTY CANYON NE 19.9 0.14 16 REVEILLE PEAK
1 ? 1 1 1 4 1 5 1 5 1 6	1:19:56 6: 7:42 15: 1:29 16:20:47 23:47:39 0:47:19	37.860 36.760 37.178 37.063 36.549 36.545	116.134 115.975 117.381 117.451 116.211 116.217	0.4 1.7 0.2 0.5 0.3 0.1	-0.37 9.12 8.59 1.75 6.38 6.72	0.7 2.8 4.6 1.3 1.4 0.7	107 224 113 153 93 176	ACI 1.83 2.01 BDZ ACI 1.50 1.46 ACA 1.29 ACI 1.50 ACI	2.20	2.18 1.15 1.66 1.32 1.00	2.3 1.2 1.1 1.4	20.4 0.14 19 REVEILLE PEAK 11.0 0.19 12 FRENCHMAN FLAT 17.5 0.06 22 UBEHEBE CRATER 11.7 0.05 7 UBEHEBE CRATER 15.4 0.08 22 SPECTER RANGE SW 15.5 0.04 21 SPECTER RANGE SW
16 18 18 18 17 17	4:27: 5 11:20:14 16:22:11 21:47:51 5: 7: 5 16:13:13	37.516 37.877 37.875 37.881 37.840 37.050	116.528 116.129 116.127 116.022 116.136 117.464	0.2 0.8 0.9 0.8 0.1 0.7	8.79 0.00** -0.54 5.45 5.25 0.05	1.1++ 1.5 1.6 3.3+ 1.8 1.0	69 111 110 190 103 157	ACI 2.01 BCI ACZ BDI 1.87 ACI ACZ	1.86	2.13 1.54 1.51 2.04 1.51 1.56	2.4	23.4 0.07 27 MELLAN 21.2 0.17 13 REVEILLE PEAK 20.9 0.12 9 REVEILLE PEAK 15.5 0.10 9 REVEILLE PEAK 19.4 0.01 6 REVEILLE PEAK 11.9 0.15 13 UBEHEBE CRATER
17 17 18 18 18	18:29: 2 19:43:31 20: 3:19 6:55: 5 20:29:36 20:29:48	37.878 36.215 37.304 37.855 36.928 36.930	116.126 114.975 116.330 116.130 116.558 116.555	1.1 2.2 0.7 3.4 0.2 0.2	-1.42 -1.54 1.66 -0.69 10.74 11.00	1.9 2.4 0.7 0.6 0.4	111 176 293 106 126 44	BCZ BCZ AJI 1.66 ACI 2.14 ABI AAI 2.25	1.65 2.34 1.56 1.81	1.41 1.50 1.20 2.19 0.98 1.91		21.0 0.12 7 REVEILLE PEAK 36.3 0.21 7 FRENCHMAN MTH 10.0 0.04 11 DEAD HORSE FLAT 19.8 0.13 16 REVEILLE PEAK 8.6 0.04 12 BARE MTN 8.7 0.06 27 BARE MTN
18 18	20:31:26 20:32:24	36.925 36.926	116.547 116.550	0.3 0.2	11.19 12.23	0.3 0.5	203 49	ADI AAI 2.12 2.06	1.56 2.03	0.82 2.12		8.0 0.05 18 BARE MTN 8.2 0.08 38 BARE MTN

103

٠.

16

	DA	TE -	- TIME	ļ	LATITU (DEG.	ЮЕ I N) (	LONG I (DEG .	TUDE W)	STAND ERROR H(KW)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125 M M	AGNI T Ica	UDE I Mol	EST IMAT MLh	IES MLV	MLc	DEL- M(N (KM)	RMS RES. (SEC)	PH.	U.S.G.S. QUADRANGLE
1	<b>IOV</b>	18 18 18 18 18 19 20	20:33 20:35 20:39 23:23 20:26	:46 :53 :35 :42 :13	36.92 36.93 36.92 35.94 36.88	27 31 28 36 34	116. 116. 116. 116. 114. 115. 117.	556 558 555 833 966 444	0.2 0.2 0.8 3.5 0.5	11.93 10.45 11.77 0.26 0.49 5.44	0.5 0.5 0.4+ 1.1 2.6 1.1+	83 85 83 169 296 + 91	AAI AAI AAI ACI CDZ ABI 1	.68 .60 .78			1.40 1.85 1.30 2.11 0.85 1.70	2.4	9. 8. 7. 9.	6 0.04 9 0.06 5 0.05 5 0.08 5 0.12 9 0.13	18 23 22 13 8 20	BARE MTN BARE MTN BARE MTN BOULDER CITY PLUTONIUM VALLEY LIDA
		20 20 20 21 21 21	9: 2 10:43 19:30 7:53 8: 7	: 7 : 55 : 18 : 12 7: 6	37.41 37.04 37.79 36.62 37.27	17 47 92 24 78	117. 117. 115. 116. 117. 117.	437 467 136 .338 .567 .463	0.9 0.5 1.2 0.3 0.7 0.4	6.18 5.48 5.30 4.96 5.96 5.36	0.9 2.8 5.0 0.4 1.5 2.3	180 158 165 104 146 147	ADI BCI BCI ABI ACI BCI	.89 1.97		1.08 0.94 2.48	0.94 2.07 1.01 1.08 0.73 2.05	1.7	6. 7 12. 11. 2. 4 8. 11.	1 6.09 0 8.12 6 8.12 4 8.99 7 8.11 7 8.11	9 14 8 20 10 19	LIDA UBEHEBE CRATER SEAMAN WASH LATHROP WELLS SE MAGRUDER MTN UBEHEBE CRATER
		25 25 25 25 26 27	8: 17: 19:44 4: - 2:3	3:49 3:12 4:12 4:60 5:8	36.8 37.4 37.1 36.8 37.1	30 10 99 25 04 03	116 117 115 116 116 115	. 697 . 430 . 069 . 054 . 105 . 698	0.2 0.4 0.9 0.3 1.2 1.1	0.00 0.56 8.01 9.14 -0.47 5.16	0.4 0.6 1.5 0.9 1.3 7.6	99 68 239 124 204 248	ABI ABZ ADI ABI BDI CDI	1.32 1.51		0.83 1.84 1.73 1.08	0.64 1.13 1.6 1.6	; ; ; ; ; ; ;	7. 7. 11. 10 10 22	.3 0.07 .0 0.13 .1 0.08 .7 0.08 .2 0.14 .8 0.0	17 14 14 19 15 18 11	BARE MTN LIDA LOWER PAHRANAGAT LAKE CANE SPRING LOWER PAHRANAGAT LAKE SE S SLIDY MTN
104		27 27 27 28 28 28	15: 19:3 22:3 3:5 9:4	3:47 5:39 6:53 9:44 3:51 7:31	37.8 37.2 37.2 37.3 36.7	154 165 164 191 153	116 117 117 117 114 115 114	.142 .696 .694 .629 .541 .825	0.0 0.4 0.3 5.8 0.3 0.8	<b>e.82</b> - <b>e.09</b> - <b>e.11</b> -1.02 <b>e.85</b> 2.90	0.6 0.4 5.1 0.8 3.5	194 160 ++ 160 265 95 238	ADZ ACI ACI DOZ ACI BDI	2.52 2.44 2.21		2.87 2.65 2.07	1.0 2.8 1.1 2.1 0.7	6 5 7 8 2. 9	20 5 25 1 24 22	.6 6.6 .7 6.1 .5 8.1 .7 6.1 .9 8.1 .1 8.8	9 5 5 34 5 34 1 6 4 26 7 6	S REVEILLE PEAK MAGRUDER MIN MAGRUDER MIN S SLIDY MIN S TIM SPRING S DEADMAN SPRING SE
		29 29 29 30 30	10:2 15:3 19: 4:4 8:	8:19 4:26 6: 2 4:43 3:19	37.8 37.8 37.8 36.7 36.7	361 360 340 779 772	116 117 117 116 116	134 464 473 680 680 675 7.884	0.4 0.5 0.5 0.5 0.3 1.6	-0.2+ 0.71 -1.00 1.49 1.77 8.60	0.5 0.7 2.1 1.2 0.8 4.9	107 156 160 95 98 230	ACI ACI BCZ ABZ ABI CDA	2.36 1.71 1.76	1.46		1.8 1.3 2.5 1.5 1.2	8 1 7 0 1. 2 1.	20 12 12 6 5 2 5 19	.4 0.1 .5 0.1 .2 0.1 .2 0.1 .1 0.0 .3 0.3	2 10 1 1 4 20 3 1 6 1 4	5 REVEILLE PEAK 1 UBEHEBE CRATER 9 UBEHEBE CRATER 7 BARE MIN 5 BARE MIN 5 WAUCOBA SPRING
	DEC	50 2 3 3	18:1 9:5 6:2 23: 4:	2:10 0:20 21:17 9:30	37.3 37.0 36.0 37.0 37.0 37.0	768 964 655 995 988	115 117 115 116 110	5.019 7.455 5.808 5.245 5.192 7.956	1.3 0.5 0.7 0.3 1.1 1.2	1.28 0.10 10.74 5.36 4.81 7.00	2.6 8.7 8.5 9.5 1.0 4.2	157 154 231 93 215 241	BCZ ACZ ADI ABI BDI BDI	1.61 1.69 1.36	1.75	1.40	1.2 1.1 1.1 1.3 0.9	5 5 7 8 1. 4 10 1.	13 12 4 .7 3 6 .9 29	.4 0.0 .0 0.1 .3 0.0 .9 0.0 .5 0.1	9 11 61 71 01 51	8 WHITE RIVER NARROWS 1 UBEHEBE CRATER 1 MERCURY NE 9 TIPPIPAH SPRING 2 TIPPIPAH SPRING 7 WAUCOBA SPRING
			9: 5 1: 5 8: 5 14: 5 20: 5 20:	8: 1 54:20 31:3 44: 1 50:2	38. 36. 37. 33. 36. 737. 737.	190 945 366 605 341 328	111 11 13 11 11 11	5.994 7.565 4.868 6.958 4.841 7.228	2.2 0.6 1.4 0.2 0.3 0.4	0.00 7.00 0.88 9.43 5.79 0.55	• 1.7 2.8 1.9 0.7 1.5	7 258 34 188 3 209 7 90 5++ 221 3 133	801 801 802 A81 A01 A81	1.43	1.3	0.79 1.69	1.4 1.4 1.5 1.0 1.0 1.0 1.0	18 16 51 51 51 57 1	42 20 10 10 20 .8		0 2 1 7 8 1 8 1 8 1 1 1	7 QUINN CANYON RANGE 5 DRY MIN 6 GREGERSON BASIN 5 CHLORIDE CLIFF 8 GREGERSON BASIN 8 SCOTTYS JUNCTION SW
		1	B 16: B 16:	17:1	4 36. 5 37.	758	11	6.139 7.318	0.3	7.54	0.1 C.1	7 117 9 102	ABI ACI	1.50	)	1.29	1. ) 1.	11 1 25	.3 1	1.0 0.( 4.6 0.(	06 1 06 1	4 SKULL MTN 1 UBEHEBE CRATER

Υ.

F

M_{H 2} HRDM MH 2 H M M

.

) | J = 1 - 2 ) J = 9

1988 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

DATE - TIM (UTC)	E LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125 MAG McG	NITUDE Md	ESTIMA MLh	TES	MLc	DEL- RMS MIN RES. (KM) (SEC)	∦N PH	U.S.G.S. QUADRANGLE
DEC 8 23:5 9 15:2 10 9: 0 10 12:4 10 13:1 11 21:	7:8 37.866 3:31 37.868 3:12 36.097 7:47 37.380 3:40 37.219 3:44 37.164	116.126 116.123 117.468 115.664 115.864 114.944	0.3 0.5 1.3 1.2 0.5	-0.77 -0.71 2.10 8.32 9.21	0.5 0.9 1.7 2.6 0.8	113 109 278 161 143 251	ACI ACI ADA BCA BCA ADI 2	1.73 1.97 2.44 2.03		1.76		20.2 0.00 20.1 0.05 72.5 0.08 16.9 0.10 13.8 0.15	10 9 4 12	REVEILLE PEAK REVEILLE PEAK MATURANGO BALD MTN PAPOOSE LAKE NE DELAURE TAKE NE
12 4:11 12 20: ( 13 10: 5 13 12:11 13 12:21 15 8:24	3:29 37.058 3:24 35.820 3:19 37.249 3:26 37.271 3:52 37.274 3:23 37.236	117.458 116.866 114.936 115.008 115.003 117.486	0.5 2.2 4.9 0.5 1.8 0.3	0.28 7.00 11.47 7.97 8.37 -0.47	0.7 1.8 6.5 1.2 3.3 0.4	155 276 213 202 202 104	ACI BOI COI ADI BOI ACZ		1.26 1.00	1.48 1.93 1.02 1.27 1.06 1.32	1.6	11.9 0.10 16.0 0.20 18.2 0.13 15.5 3.05 15.3 0.03 14.2 0.08	10 10 7 5	UBEHEBE CRATER WINGATE WASH DELAMAR 3 NW ALAMO SE ALAMO SE UBEHEBE CRATER
15 10:39 15 11:4 15 16:5 16 4:20 16 10:59 16 16:58	33       36.873         3:       5       36.870         2:29       37.423         3:36       36.819         3:46       37.448         3:48       37.393	115.814 115.789 116.776 117.519 117.832 117.486	0.4 2.3 1.4 0.5 <del>0</del> .7 0.6	0.98 10.34 -0.97 1.79 9.44 5.05	0.8++ 2.3 1.7 0.8 1.1+ 1.7	121 273 248 204 116 102	ACI 1.7 BOI BOI ADI ABI 1.9 ABA	73 18 1.82		1.75 0.98 1.04 1.05 2.15		19.9 0.13 19.6 0.04 18.9 0.05 10.3 0.07 7.1 0.13 5.4 0.12	24 7 7 14 20 9	FRENCHMAN LAKE SE FRENCHMAN LAKE SE TOLICHA PEAK DRY MTN SOLDIER PASS LIDA
17 8:15 17 13: 7 17 20:12 18 2:11 18 5:20 18 9:39	:33       37.882         :7       36.883         :42       36.702         :15       37.384         :23       37.788         :54       36.843	116.015 114.464 116.315 116.086 115.283 115.909	0.3 4.8 0.2 0.3 0.7 0.4	0.99 4.02• 8.34 7.49 1.76 0.10	0.5 0.3 0.8 2.0 0.7	117 253 107 69 113 91	ACZ 2.0 CDA ABI ABI 1.2 BCI ACI 1.7	8 1.79 5 4 1.28		2.10 0.93 1.62 1.06 1.27	2.2 0.9	15.3 0.11 75.0 0.32 5.9 0.07 11.4 0.11 12.2 0.11 16.3 0.13	18 19 29 19 8 23	REVEILLE PEAK •••QUAD. NOT LISTED••• STRIPED HILLS WHEELBARROW PEAK NE FRENCHMAN FLAT
18 20:26 18 20:26 19 5:56 19 9:13 19 21:13 20 8:18	:48       35.884         :59       36.476         :16       37.849         :42       37.164         :58       37.210         :40       37.248	114.824 115.263 116.139 115.569 117.845 114.951	8.6 3.9 0.5 0.4 0.8 0.8	-0.69 -0.20 -1.26 4.89 0.17 10.23	10.8 5.4 0.8 6.9 0.8 1.3	311 169 105 113 208 222	DDI DCZ ACI 1.4 CCI ADZ ADI 2.6	8 1.77 0	1.80 1.28	2.23 1.80 1.91 1.48 1.36 1.71		75.3 0.17 9.8 1.80 20.1 0.12 26.1 0.10 17.8 0.10 19.7 0.12	12 12 12 14 12 14	BOULDER CITY CORN CREEK SPRINGS REVEILLE PEAK FALLOUT HILLS NE WAUCOBA SPRING DELAMAR 3 NW
20 17:22 20 20:58 21 19:30 22 15:53 22 19:51 23 11:7	:38 36.675 :33 37.311 :47 37.191 : 2 37.189 :16 37.889 : 9 37.014	117.207 114.828 116.206 116.210 115.985 116.222	0.4 0.2 0.7 0.4 0.6 0.3	8.86 3.26• -1.19 -0.25 -0.64 1.72	0.7 0.8 1.5+ 1.0 0.5	80 230 87 87 119 73	AAI CDZ 1.3 BCI 1.9 ACI 1.9 ACZ 1.8 AAZ 2.1	7 2 8 8 1.92 8	1.61 1.79 1.63	1.41 1.44 1.40 2.42 1.89 1.67	1.2 2.0 1.9	7.1 0.09 22.4 0.01 10.8 0.18 10.5 0.14 15.2 0.14 2.6 0.10	15 6 15 26 14 31	STOVEPIPE WELLS GREGERSON BASIN RAINIER MESA RAINIER MESA TIPPIPAH SPRING
23 21:27 24 23:38 25 1:9 25 4:11 26 21:0 26 22:29	:31         37.208           :39         37.281           :20         37.215           :32         36.900           :43         37.361           :38         37.364	117.368 117.498 115.871 116.736 115.236 115.240	0.3 0.4 0.4 0.4 0.4 0.3	7.21 -0.72 5.70 1.94 5.11 0.01	1.1 0.5 2.2++ 0.6 4.2 0.6	101 91 113 236 96 98	ABI 1.4 ACI 1.7 BCI ADZ BCI 2.3 ACZ 2.0	3 1.39 3 7 5	1.50 1.89 2.03	1.06 1.60 1.42 0.81 1.63 1.84	1.5	14.3 0.12 14.2 0.09 15.8 0.10 15.1 0.05 17.1 0.11 17.4 0.09	19 16 14 8 12 13	UBEHEBE CRATER GOLD POINT SW PAPOOSE LAKE NE BARE MTN ALAMO ALAMO
27 4:9 27 7:0	:45 37.278 :33 36.972	117.499 116.178	0.4 0.2	-1.25 2.28	0.7 0.4	92 144	ACI 1.6 ACI 1.5	ð 5		1.78 1.02		14.0 0.12 6.4 0.05	17 15	GOLD POINT SW MINE MTN

105

Mun Head

H<mark>annits</mark>H Hannits

สู่แหน่มีสิต

## 7 1 9 5 1 ? ) 7 )

1988 LOUAL HYPOCENTER SUMMARY - SCB EARTHQUAKES

DATE -	- TIME	LATITUDE (DEG. N)	LONGITUDE (DEG, W)	STAND ERROR H(KN)	DEPTH (KM)	STAND ERROR Z(KM)	AZ 1 GAP (DEG)	000 12S	MAGN) Mga	ITUDE Md	ESTIMA MLh	TES MLV	MLc	DEL- MIN (KM)	RMS RES. (SEC)	PH.	U.S.G.S. QUADRANGLE
DEC 27 27 27 27 27 27	14:38:30 17:25:45 19:50:53 23:35: 3 23:54:40	37.388 36.728 36.454 37.882 37.884	115.114 115.992 114.508 116.125 116.121	0.6 1.0 0.7 0.4 0.4	1.64 11.25 -0.37 -1.38 -0.41 13.31	1.5 1.1 0.9 0.6 0.6 5.2	125 152 225 112 112 106	ABZ ACI ADI ACZ ACI CBI	1.68 2.11 1.46		1.68	1.58 0.89 2.13 1.65 1.47 1.51		6. 8. 58. 21. 21. 23.	0.07 0.07 7 0.07 3 0.12 1 0.07 9 0.12	7 8 11 13 10 2 7	ALANO NE MERCURY MUDOY PEAK REVEILLE PEAK REVEILLE PEAK CRESCENT RESERVOIR
28 29 29 29 29 30	e:19:25 12:56:17 3:38:45 8:20:54 22:13:59 1:40:2	37.442 37.260 37.379 37.128 37.182 36.789	115.473 114.538 115.111 117.341 117.923 116.252	1.0 0.2 0.8 0.8 0.3	5.10 2.23 9.09 -0.89 5.01 7.40	2.6+ 0.4 1.2 0.9 0.8 0.7	238 136 199 223 72 174	802 AC1 AD1 AD1 AD1 AD1 AD1	2.40 1.99 2.07 1.17 1.27		2.20 1.21 1.76	2.60 2.00 1.19 2.12 0.84 0.74	2.0	42. 6. 14. 25. 5. 8.	3 0.12 1 0.03 3 0.01 2 0.01 3 0.01 9 0.03	2 13 5 10 9 13 5 12 9 15 7 19	ELGIN ALAMO NE UBEHEBE CRATER WALCOBA SPRING JACKASS FLATS LATHROP WELLS NW
30 30 30 31	1:59:54 11:50:13 16:36:53 19:55:55 12:16:44	5 36.785 5 36.785 5 37.399 5 35.921 5 37.856 4 37.886	116.256 115.119 114.842 116.130 117.380	0.4 0.4 0.7 0.4 0.9	5.90 8.79 -0.71 8.46 -0.54	0.8 0.5+ 0.8 0.6 0.9	115 + 153 191 114 194	85 80 80 80 80 80	1 1.28 1 1 2.43 1 1	2		0.83 2.58 1.69 1.30	1. 2.	4 6. 6 7. 19 26	9 0.1 1 0.0 8 0.0 8 0.1 .2 0.1	0 15 6 7 9 18 1 13 2 10	JACKASS FLATS ALANO NE BOULDER CITY REVEILLE PEAK UBEHEBE CRATER

106

ч., ".». Нособия

ś

いたとういうというというでもあるとなるのはないないです

) 1 ) ; 1 2 9 7 1

1989 LOCAL HYPOCENTER SUMMARY - SCB EARTHQUAKES

DA		TIME	LATITUDE (DEG N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	QQD 12S MAGNITUDE Mica Mid	ESTIMAT MLh	ES MLV ML	[       	DEL WIN (KM)	RMS RES. (SEC)	IN PH. U.S.G.S. QUADRANGLE
JAN	1 1 1 1 2	0: 4:39 0:12:36 9:27:20 17:42:43 7:12:50	37.161 37.153 37.484 37.280 35.924	117.559 117.559 117.018 117.495 114.843 116.025	0.5 0.5 0.7 0.4 0.8	11.46 11.03 0.49 -1.51 0.00++ 1.71	6.6+ 6.9 6.8 6.7 1.7	198 202 150 119 212 191	ADI 1.60 ADI 1.36 1.58 ACZ 1.43 ACZ 1.39 ADZ ADZ	1.81 1.57 1.24 1.64	1.71 1.60 1.61 1.49 1.59 1.84		11.1 11.7 29.4 14.4 7.9 15.9	0.09 0.09 0.14 0.16 0.03 0.12	17 LAST CHANCE RANGE 14 LAST CHANCE RANGE 14 SCOTTYS JUNCTION NE 11 GOLD POINT SW 3 BOULDER CITY 10 REVEILLE PEAK
	2 3 3 4 4 4	7:33:15 21:39:12 10:22:46 11:50:23 16: 0:26	37.672 37.273 37.691 37.799 37.864	115.758 114.574 115.197 115.124 116.139	0.3 1.8 0.5 1.8 0.5	2.86 -1.02 3.76 3.20• 0.00•• 7.00•	2.3 1.4 2.2 0.8	108 279 130 143 107 267	BCZ 2.27 BOZ BB1 CCZ ACZ CD1	1.99 1.37 1.11	2.22 2 1.38 0.98 1.17 1.82 1.91	2.6	27.0 39.7 7.4 10.4 21.6 56.9	0.13 0.07 0.08 0.15 0.14 0.14	31 PAPOOSE LAKE SE 9 ELGIN 9 FOSSIL PEAK 9 WHITE RIVER NARROWS 14 REVEILLE PEAK 10 WINGATE WASH
	55566	2:55:14 5: 3:52 6:34: 1 17: 9:42 14:40:60 15: 0:1	2 37.113 9 37.857 2 37.267 9 37.856 4 37.704	115.161 116.128 115.429 116.133 115.203	0.5 0.6 0.7 1.2 0.6	2.94 -0.75 0.00+ 3.22+ 5.88 0.00+	$   \begin{array}{r}     1.0 \\     0.9 \\     \hline     0.9 \\     \hline     1.0 \\     1.8   \end{array} $	146 107 142 105 193 106	ACZ 1.89 BCI ACZ 1.35 CCA 2.14 ACI 1.54 ACZ	2.16 1.50 1.49	1.97 1.56 1.47 1.32 1.80		5.0 19.7 24.1 20.0 7.2 20.1	3 0.12 7 0.16 1 0.09 3 0.19 2 0.09 2 0.13	2 17 LOWER PAHRANAGAT LAKE 5 14 REVEILLE PEAK 5 8 CUTLER RESERVOIR 5 8 REVEILLE PEAK 5 11 FOSSIL PEAK 5 8 REVEILLE PEAK
	6 7 7 7 7	15: 1: 18:26:3: 11: 8:14 17:38: 19: 1:4 21:27:4	9 37.833 9 37.849 8 37.455 5 37.364 9 37.365 9 37.864	116.142 116.959 117.198 117.197 116.130	0.2 0.3 0.2 0.3 0.2	4.42 -0.66 -0.51 -0.59 -0.29 -0.85	3.9 8.6 8.2 9.3 8.3 8.5	184 82 84 123 188 111	BCZ ACZ ABZ ABZ ACI 2.05 ACZ	1.74	1.37 1.75 1.37 1.68 1.80 1.67	1.9	20. 30. 8. 20. 19.	4 0.02 4 0.13 5 0.05 9 0.05 3 0.05 9 0.05	2 7 REVEILLE PEAK 3 22 TOLICHA PEAK 8 20 SCOTTYS JUNCTION SW 8 12 SCOTTYS JUNCTION SW 8 15 REVEILLE PEAK 7 9 REVEILLE PEAK
	7 7 8 9 9	21:31:4 21:32:1 7:37:2 23:33: 5: 8:2 10:29:4	5 37.862 3 37.860 2 37.415 3 37.820 2 36.329 1 37.295	116.132 114.717 115.816 115.124 117.409	0.3 0.7 1.4 1.1 0.5 0.4	-0.13 5.59 6.22 7.22 -1.35	1.0 5.2 1.6 0.9 0.9	112 242 170 141 85 108	ACI CDZ BCZ BCI ACZ ACZ 1.65	3.45	1.44 1.39 1.31 1.33 1.94		20. 21. 13. 19. 13. 20.	2 8.12 3 8.86 2 8.18 9 8.17 4 8.87 8 8.17	2 7 REVEILLE PEAK 6 7 SLIDY MTN 8 10 7 32 VALLEY 7 8 GOLD POINT SW 2 15 REVEILLE PEAK
	9 9 9 9 9 9 9 9	10:57:2 14:13:4 14:34:3 19: 4:5 21:11:5 21:15:2	5 37.864 5 37.864 5 37.864 5 37.864 5 37.859 24 37.863	116.129 116.129 116.132 116.132 116.139 116.139	0.2 0.2 0.4 0.5 0.3	0.30 -1.05 0.98 -0.21 -0.87 0.00	0.4 0.3 0.5 1.0 0.5	108 111 112 112 111 107	ACZ 2.51 ACZ ACZ ACZ ACZ ACZ	2.72	1.67 1.57 1.82 1.79 1.63	2.1	20. 20. 19. 20. 20. 19.	3 0.01 2 8.07 4 0.01 2 0.11 2 0.01 8 0.1	8 23 REVEILLE PEAK 7 14 REVEILLE PEAK 6 7 REVEILLE PEAK 9 REVEILLE PEAK 8 12 REVEILLE PEAK 3 10 REVEILLE PEAK
	9 10 10 10	23: 7:: 23:13: 2:39: 5:15: 12:28: 12:50:	10 37.858 25 37.039 39 37.863 53 37.864 22 37.863	116.134 116.608 116.128 116.126 116.124	0.5 0.2 0.8 0.2 0.8	6.00 16.89 -1.51 -0.53 -0.55 -0.93	• 0.8 0.8 1.3 0.3 1.0 9.6	112 61 111 108 108 175	ACZ ABI 1.79 ACZ ACZ 1.76 ACZ ACZ		1.83 1.84 1.62 1.95 1.54 1.58	1.8	28. 3 15. 28. 29. 19. 20.	.3 0.0 .9 0.0 .1 0.0 .0 0.0 .9 0.0 .3 0.0	99 10 REVEILLE PEAK 97 26 THIRSTY CANYON SE 96 6 REVEILLE PEAK 96 14 REVEILLE PEAK 97 7 REVEILLE PEAK 93 6 REVEILLE PEAK
	19 10 18	17:50: 19:10: 23:20:	15 37.863 42 37.849 13 37.856	116.142 116.133	0.1 0.6	0.84 0.00	0.2 • 0.8	151 106	ACZ ACZ		1.71 1.34		20 20	.3 0.0 .0 0.1	2 7 REVEILLE PEAK 11 8 REVEILLE PEAK

107

2 1 3 5 1 2 9 7 2 .

.

1989 LOCAL HYPOCENTER SUMMARY - SCO EARTHQUAKES

DATE	T 1145			STAND		STAND	AZI	000					DEL-	RMS	<b>∦</b> N	
UATE		LATTIOLE	LUNGITUDE	ERROR	DEPTH	ERROR	GAP	125 MA	GNITUDE	ESTIM	ATES		MIN	RES.	PH. U.S.G.S.	
(0	10)	(DEG, N)	(DEG. W)	н(хм)	(KM)	Z(KM)	(DEG)	Mc	a Mid	MLh	MLv	MLC	(KM) (	(SEC)	QUADRANGLE	
													•••			
JAN 11	4:48:54	36.670	116.079	2.3	12.00	1.5	199	BDZ			0.94		10.6	8.28	18 CAMP DESERT ROCK	
11	15:25: 6	37.365	115.213	0.7	4.75	7. <del>0</del>	102	ccz		1.33	1.15		15.4	8 12	R ALANO	
12	3:48:11	37.862	116.130	0.7	-0.99	1.1	107	ACZ			1 82		28.2	A 1A	9 REVETILE DEAM	
12	12:38:42	37.470	115.420	0.4	-0.89	6.7	96	AC7		1 50	1 41		26 1		I OPECCIUE FEAR	
12	16:24:20	36.654	116.237	0.5	4.21	8.5	248	407		1.05			23.3	V. 10	IT CRESCENT RESERVOIR	
12	22: 3:33	35.722	115.554	5.6	2 13-		224	001		1.01	0.91		9.2	0.04	15 SPECIER RANGE NW	
. –				0.0	A. 10-		444	001			2.12		66.4	0.20	5 CLARK MIN	
13	7:28:26	37.218	115.083	14	13 22	<b>a</b> o	204	001								_
13	9.18.17	37 243	114 831	A 7	10.22		204	001		1.27	1.24		10.8	0.02	6 LOWER PAHRANAGAT LA	KF.
13	9.18.21	37 448	115 052	0.7	0.04	1.7	299	AU1			1.49		26.7	0.84	6 DELAMAR 3 NE	
11	17. 7.10	37 300	114.052		0.00**	2.0	96	DBZ			0.85		0.2	2.27	6 ALAMO NE	
		37.322	114.020	0.0	5.10	4.8	228	BDZ			1.32	1.4	21.9	0.05	7 GREGERSON BASIN	
13	21:35:55	37.865	110.128	0.5	0.00++	1.0	113	ACZ			1.65		48.8	8.88	7 REVEILLE PEAK	
14	15:27: 5	37.114	117.155	0.2	0.85	0.4	103	ACZ 1.	89	1.53	1.65	1.6	18.1	8.11	26 BONNIE CLAIRE SW	
14	18:46: 6	37.110	117.159	0.4	4.57	5.0	104	BCZ		1.07	1.33		18.0	8.89	12 BONNIE CLAIRE SW	
14	19:18:15	37.258	115.042	0.4	2.83	2.5	152	BCZ 2	35		2 51		16 3	. 11	19 ALAMO SE	
14	22:52:43	37.275	114.995	0.5	0.04	8.6	284	AD7	••	1 17			10.0			
14	23: 6:46	37.288	115.016	8.3	6 16		164	407 0	<b>A 1</b>	1.57			13.5	0.04	7 UELAMAR LAKE	
14	23: 8:58	37 283	115 817	A 5	8 72		104		23		2.59	2./	13.6	0.07	17 ALANO SE	
14	23.12. 9	37 288	115 025	0.5	0.72	9.0	193	AUI 1.	58		1.47		14.1	0.06	9 ALAMO SE	
		57.200	113.023	0.3	0.30	0.9	152	ACI 1.	97		1.79		13.4	●.07	13 ALANO SE	
15	3.41. 6	37 252	115 430	0 K	7 34				• •							
15	4.37. 8	37 205	115 039	0.5	7.51	1.4	200	AU1 2.	04	1.75	1.77		16.1	0.08	11 ALANO SE	
15	<b>E</b> . 1. 7	37.285	115.050	0.5	10.09	0.3+	188	ADZ 1.	34		1.37	1.6	12.5	0.02	6 ALANO SE	
15	5:1:7	30./14	110.215	0.3	1.60	1.2	90	ABZ			1.02		6.0	0.12	19 SPECTER RANGE NW	
15	6: 5:35	37.256	115.037	0.5	5.40	2.2	171	BCI 2.	44		2.21	2.3	16.5	0.11	16 ALANO SE	
15	7:19: 2	36.413	114.833	8.6	-1.90	0.6	183	ADZ			1.85		31.0	A 12	13 DRY LAKE	
15	7:27:47	37.285	115.015	0.5	9.07	0.8	195	ADI 1.	77		1.25		13.9	8.85	A ALANO SE	
														•.••		
15	19:38:21	36.754	115.920	0.3	0.84	0.5	155	ACZ			1.03		11 .	8 A 8	10 EDENCIALAN ELAT	
16	8:52:19	37.857	116.130	0.2	0.40	0.4	107	ACZ			1 74		10 0		17 DEVELLE DEAK	
17	10:34:28	37.865	116.129	Ð.3	-0.67	0.5	168	AC7 2 4	LA	2 42	2 74	24	78.4	A 11 4	TA DEVELLES FEAM	
17	12:10:15	37.862	116.132	0.4	-0.23	A 7	187	ACT 1	17	4.44	2.14	2.7	20.9	0.11	CO REVEILLE PEAK	
17	14:28:10	37.863	116,128	0.3	-4 58	Å Å	111	407 1.4			2.10		20.3	U.12	IS REVEILLE PEAK	
17	16:41:37	37 163	117 385	a 2	7 74	0.5		ACZ 1.0			1.78		20.Z	0.09	12 REVEILLE PEAK	
		07.100		0.2	1.75	0./	110	ACU 1.4	5		1.58	1.8	18.5	0.07	19 UBEHEBE CRATER	
17	16:47:37	37.162	117.388	A 2	R 91	<b>A B</b>	110	101 1 -				• •				
17	21:22:18	37.336	114 888	2 4	_1 02	17	113	- ML 1.	0		1.83	2.0	18.4	0.08	ZI UBEHEBE CRATER	
19	0.20.41	37 807	118 104	2.0	-1.02	1.7	200	BUZ 2.0		1.80	1.81	1.9	30.6	0.10	8 ELGIN SW	
10	2.14.47	37.03/	110.124	0.7	-1.39	1.0	115	ACZ	1.73		1.56		22.3	0.13	9 REVEILLE PEAK	
10	3:14:43	37.249	115.042	0.5	10.97	1.4	201	ADI		1.40			15.7	8.86	6 LOWER PAHRANAGAT LAN	KE
18	14:29:39	36.951	116.728	0.2	0.51	8.2	125	ACZ			0.87		19.4	0.05	A BARE WIN	
19	6: 7:31	38.324	115.113	0.4	-0.91	0.8	142	ACZ 1.7	19		1.70		28.6	0.69	A VALLEY	
19	7:42:55	37.285	114.846	1.2	4.82	9.1	232	CDZ			1.27		22.6	0.05	7 GREGERSON BASTN	2
19	7:43:27	37.208	116.397	0.9	5.83	1.8	151	ACA	0.98					AAR	A SCOUCHAM DEAK	
19	23:37:36	37.395	117.228	0.3	0.42	0.5	79	AC7		1 21	1 27		16.5		A CTONEWALL DACC	
20	3:15:58	37.114	117.160	0.4	6.84	2.4	105	BCI 1	1.6	1 20	1 6 5		10.0		A DOMERALL FASS	
20	5:20: 7	35.914	114,839	2.2	1.86	3.5	108	B07 3	i a	7 18	1.00		10.4	0.10 } • • •	DUNNIE GLAIKE SW	
20	10: 1: 1	37.115	117.155	0.3	1.69	1 8	101	AC7 1 5	17	2.13	2.23		7.0	<b>0.13</b>	2 BOULDER CITY	
				•••	1		.05	MUL 1.0			1.40	Z.V	15.2 (	0.09 2	Z BONNIE CLAIRE SW	
20	13:18:47	36.998	117.550	0.6	2.96	2.4	193	807 1 4			1 7/					
20	21:15:35	37.116	117.155	6 4	-0 68	A 4	01	1002 1.3		A 17	1.74		10.1	0.12 2	Z DRY MTN	
				<b>~</b> . <b>~</b>	0.00	0.0	a (	~~ Z		0.4/	0.62		18.3 (	0.10 1	Z BONNIE CLAIRE SW	

Hanna Hanna Hanna Hanna Hanna Hanna Hanna Hanna

H^{RENDER} N^{atara}nna N Un we

.

.

) 1 3 5 1 2 9 7 3

..........

H_{ito}H_{en}k Hennikhe

#1100018844 #110001807 #110001807

Hu, Hu, Hu, Hu, Hu, Hu, H Hu, Hu, Hu, H Hu, Hu, H

۰.

1989 LOCAL HYPOCENTER SUMMARY - SCB EARTHQUAKES

	DATE (U	- TIME (TC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(K≌)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125 MAGI Mco	NI TUDE Mo	ESTIMA MLh	TES MLV	MLc	DEL- MIN (KM)	RMS RES. (SEC)	∦N PH.	U.S.G.S. QUADRANGLE
	JAN 20 21 21 22 22 23	22:26:23 4: 8:24 23:55:38 11:39:50 12:52:14 17:52:17	37.748 37.740 37.390 37.883 37.085 37.396	115.041 115.045 117.773 116.129 115.523 117.229	0.7 0.2 0.9 0.7 0.3 0.2	4.21 -0.46 6.55 -0.89 1.27 -0.50	5.7 0.3 3.0 1.1 2.0 0.3	130 127 135 112 147 125	CCZ ACZ 1.12 BBI BCZ BCZ 1.65 ACZ	2	1.76 1.75	0.91 0.89 1.74 1.61 1.66 1.24		14.0 13.7 12.5 21.5 31.3 10.9	0.12 0.03 0.19 0.17 0.07 0.06	8 14 13 17 20	HIKO NE HIKO NE SOLDIER PASS REVEILLE PEAK SOUTHEASTERN MINE STONEMALL PASS
	24 25 26 26 26 26	9:31:34 17:36:34 0: 1:28 3:42:41 14:19: 1 17:47:52	37.633 36.759 37.424 36.745 36.098 37.114	115.071 118.537 114.313 116.198 114.639 117.155	0.4 4.4 1.0 0.2 1.5 0.3	2.14 22.47 8.80 9.25 3.11• 4.38	1.1 8.7 1.1 0.4 	109 141 246 115 231 90	ACZ DC1 BD1 2.77 ABZ 1.17 CD1 2.07 BCZ	2	1.11	0.74 1.01 2.69 0.75 2.11 1.24	2.8	12.0 6.8 42.0 6.7 22.2 18.2	0 0.07 1.72 5 9.12 7 0.05 2 0.07 2 0.08	8 9 17 17 6 15	HIKO NE BARE MIN ***QUAD. NOT LISTED* SPECTER RANGE NW HOOVER DAM BONNIE CLAIRE SW
	26 26 27 28 28 29	17:52:33 17:53:15 22:12:10 1: 2:40 16:47:11 5:16:38	37.114 37.111 37.438 36.887 36.766 37.111	117.154 117.159 114.095 116.814 115.554 117.911	0.2 0.4 2.1 0.5 0.6 1.1	0.65 4.40 9.73 0.20 5.85 -0.06	0.3 5.0 2.5 5.0 1.1	91 104 294 86 146 257	ACZ 1.6 BCZ BDI 2.3 CCA BCA BOI	7 2.18 1.82	1.21 0.49 1.74	1.35 0.81 1.65		18.1 18.1 59.8 19.4 24.2 27.1	6.08 6.06 6.06 6.10 6.10	18 8 7 11 11 10	BONNIE CLAIRE SW BONNIE CLAIRE SW •••QUAD. NOT LISTED• BULLFROG TIM SPRING WAUCOBA SPRING
109	29 29 30 31 31 31	15:21:35 18:55:36 9:30:23 16: 7:17 18:22:50 22: 9:16	37.048 36.562 37.396 37.253 36.701 36.964	116.030 116.619 117.230 116.364 116.115 115.606	0.4 1.2 0.2 8.2 0.2 0.4	0.89 7.00 -1.00 -0.14 0.53 0.00**	0.4 4.5 8.2 9.3 9.3 0.7	186 230 125 45 137 120	ADZ BOZ ACZ ABZ 2.35 ACZ ACZ 1.71	5	0.93 2 11	1.05 0.77 1.10 2.35 0.67 1.83	2.8	13.0 16.9 10.9 5.0 14.5 35.1	0.67 0.11 0.68 0.69 0.66 0.86 0.86	12 12 21 37 12 25	YUCCA FLAT BIG DUNE STONEWALL PASS DEAD HORSE FLAT CAMP DESERT ROCK QUARTZ PEAK
	FEB 1 1 1 1 3	3:27:34 3:28:25 15:33:16 16:37: 9 18:44: 8 17:25:30	36.715 36.733 37.530 37.457 36.455 36.720	115.519 115.545 114.638 115.482 114.486 116.137	0.9 0.7 1.3 0.6 1.0 0.3	12.85 0.00** 6.24 0.00** ~1.33 1.42	3.2 1.1 1.4 1.1 1.0 1.0	206 154 296 98 228 106	B01 ACZ B0Z BCZ B0Z 1.87 ACZ 1.44	1.59	1.34 1.34	1.53 1.12 0.77 1.50 1.99 1.20	1.5	44.3 24.1 12.2 22.2 60.7 12.3	0.15 0.12 0.06 0.16 0.14 0.14	13 8 6 12 11 18	HEAVENS WELL HEAVENS WELL CHOKECHERRY MTN CRESCENT RESERVOIR ***QUAD. NOT LISTED* SPECTER RANGE NW
	5 5 5 5 5 5	8: 9:17 10: 8:23 15: 1:22 19:57:46 21: 7:28 22:21:28	37.131 36.918 36.814 36.915 37.250 37.863	115.752 116.770 115.831 116.767 118.343 116.132	1.5 1.3 0.3 0.1 1.5 0.4	4.70+ 0.99 0.36 0.69 1.54 -0.92	1.1 1.2 0.2 3.5 0.7	163 293 167 151 278 108	CCZ BDZ ACZ ACZ 1.33 BDI 1.80 ACZ	1.44 1.24 1.54		0.89 2.15 1.83		22.0 18.5 13.5 18.1 43.2 20.5	0.12 0.86 0.87 0.84 0.13 0.12	10 13 14 19 13 13	PAPOOSE LAKE NE BULLFROG FRENCHMAN LAKE SE BULLFROG •••QUAD. NOT LISTED• REVEILLE PEAK
	6 6 6 7 7	0:42:18 9:16:57 15:23:58 19:28:52 11:29:10 22:18: 6	37.267 37.159 36.869 36.366 37.504 36.369	115.094 117.637 116.120 114.938 114.237 115.817	0.4 0.4 0.5 0.5 1.4 0.4	9.58 9.07 1.94 2.81 4.99 -0.24	6.8 9.7 5.8 1.6 6.7	177 170 109 176 283 124	ACI 2.12 ACI ABZ 1.22 BDI BDZ 2.37 ACZ 1.72	2 ) 7 2	2.42 1.39	1.56 1.38 0.79 1.63 2.39 1.52		13.7 8.2 4.6 25.2 45.7 21.3	0.06 0.10 0.11 0.03 0.10 0.10	11 15 18 5 10 19	ALAMO SE LAST CHANCE RANGE CANE SPRING DRY LAKE ***QUAD. NOT LISTED* MT STIRLING
	7 8	22:51:28 6:44:49	37.624 37.529	114.310 118.406	0.8 2.3	19.17 2.84•	<u>0.7</u>	311 312	ADI 2.10	•		1.79 1.83		37.8 45.6	0.03	6 9	•••QUAD. NOT LISTED• •••QUAD. NOT LISTED•

1989 LOCAL HYPOCENTER SUMMARY - SG8 EARTHQUAKES

D	TE - (UI	- TIME TC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125   1	MAGNITUDE Mog Mol	ESTINA NLh	TES ML <del>V</del>	MLc	DEL- MIN (KM)	RMS RES. (SEC)	∦N PH.	U.S.G.S. QUADRANGLE
۶EB	9	5:15:43	36.866	117.481	0.4	0.90	0.5	182	ADZ	1.52	1.76	1.44		9.1	5 0.11	21	TIN MTN
	8	16:17: 9	36.710	116.453	0.2	7.91	0.6	121	ABZ	1.68		1.23		8.1	0.09	27	LATHROP WELLS NW
	×	10:17:34	30.713	116.447	0.1	10.10	0.2	127	ABZ			0.86		8.1	3 0.01	9	LATHROP WELLS NW
	å	18.18.48	30.709	110.404	0.2	7.02	0.7	130	ABZ	1.29		0.76		9.0	0.06	15	LATHROP WELLS NW
	ŝ	16:20:17	36.709	116.453	0.2 A 2	7.25	0.0	130		1.25		0.83	1.4	9.1		18	LATHROP WELLS NW
	•			110.455	0.2	1.29	0.74	121	A02	1.01		1.12		¥.1		21	LAINTOP WELLS NW
	9	18:54: 1	38.068	117.686	1.7	5.95	1.6	246	BOI			1.59		40.8	5 8.18	11	DEVILS GATE
	10	2:49: 2	37.519	116.536	0.4	11.71	1.344	111	ABI	1.79		1.31		22.7	0.10	15	MELLAN
	10	14:48:38	37.266	118.107	2.9	11.06	4.4	275	CO 1			1.60		25.0	0.17	9	+++QUAD. NOT LISTED+
	11	18:14: 0	36.101	114.673	1.0	-1.95	1.6	214	BOZ	2.20		2.32		21.3	5 0.10	15	HOOVER DAM
	12	5:15:51	37.284	115.124	1.9	4.63	5.0	197	BOZ			1.39		6.8	3 0.14	7	LOWER PAHRANAGAT LAKE
	14	13:30:40	37.115	117.155	0.3	1.51	1.1	91	ACZ 1	1.73		1.16		18.2	2 0.35	16	BONNIE CLAIRE SW
	13	2:12:15	35.793	115.209	1.5	-0.12	8.8	223	BOT	1.81		1.76		43.3	5 8.12	17	SLOAN
	13	17: 3:16	35.887	116.541	3.3	15.19	4.9	266	coi			1.54		43.0	5 0.19	18	CONFIDENCE HILLS
	13	21:34:51	36.885	116.815	0.2	-0.37	0.4	104	ACZ	1.96		1.58		14.0	5 0.10	33	CANE SPRING
	14	13:43:37	37.237	115.031	1.2	2.71	5.4	209	COI		0.76	8.94		15.1	0.06	6	LOWER PAHRANAGAT LAKE
	14	22: 7:47	37.092	115.261	0.5	6.07	1.5	161	ACI		1.50	1.68	1.4	10.7	7 0.08	11	DESERT HILLS SE
	15	7:34:51	37.229	114.984	0.8	0.95	0.6	222	ADZ		1.05	1.17		19.3	2 8.07	7	DELAMAR 3 NW
	15	11: 8:41	36.784	116.307	0.2	0.80	8.4	82	487	1 43	2 32	1 11		5 3		27	STRIPPO HILLS
	16	0:25:56	36.078	115.421	0.2	-1.13	0.3	169	ADZ			1.62		52.5	0.85	10	BLUE DIAMOND
	16	4:24: 7	37.183	117.024	0.2	18.09	0.7	100	ACI	1.58		1.06		22.4	0.06	21	BONNIE CLAIRE
	17	8:16:32	38.488	117.019	0.5	11.25	9.7	93	B01 1	1.96		1.71		7.5	5 0.16	27	ENIGRANT CANYON
	17	16:47:18	37.264	115.097	0.2	9.94	0.4	177	ACI			1.29		13.3	5 0.03	9	ALAMO SE
	18	15: 8:55	37.843	114.613	5.1	0.94	4.1	312	DOI 1	1.73		1.20		11.7	0.10	7	CHIEF MTN
	19	15: 6:20	37.712	114.639	1.8	-0.54	1.6	288	807 1	1 72		1 46		14 7	-		CALLENTE NW
	19	16:52:36	36.691	115.544	0.6	8.00++	6.9	128	AC7			1.48		23.1	14	ă	HEAVENS WELL
	28	0:27: 7	37.118	114.900	0.7	14.36	0.8+4	160	ACI 2	2.52	1.94	2.01		26.2	2 8.12	17	DELAMAR 3 SW
	28	12:33:31	37.118	117.324	0.5	1.72	1.0	148	ACZ			1.28		13.4	0.11	14	UBEHEBE CRATER
	21	0:33:37	36.666	115.682	0.2	2.11	1.5	104	ACZ 2	2.23	2.55			11.5	0.05	27	INDIAN SPRINGS NW
	21	1:35:41	36.664	116.383	0.4	0.59	0.2	190	ADZ		0.77	0.69		4.4	8.04	15	LATHROP WELLS NW
	21	3: 2:24	36.798	115.939	A 2	A 38		147	107							••	
	21	13:41:37	37.256	118.144	1.8	-0.48	1.4	255	801 1			1 85		28 2	0.03	17	AAOUAD NOT LISTEDA
	21	18:57:27	35.764	116.575	2.7	-1.15	1.6	267	C07			1.54		34.5	6.17	16	CONFIDENCE HILLS
	23	2:25:28	36.670	115.889	0.4	-1.81	0.9	168	ABZ 1	. 69	1.81	1.69		2.6	0.10	13	MERCURY NE
	23	2:26:17	36.678	115.809	0.7	-0.83	0.7	159	ACZ			1.27		1.7	0.06	10	MERCURY NE
	23	4:12: 7	35.862	115.383	0.8	-0.63	8.5	210	ADZ			1.33		54.6	89.0	10	GOODSPRINGS
	23	7.12.41	38 671	115 811	• •	_1 01	• •	100	007			a a-				••	
	23	9:47:52	35.738	116 568	3 4	2 80	8 4	272	002		0.00	1 44		13.0	0.10	14	I FACH JAYE
	23	18:22:21	37.257	116.373	0.4	-0.63	0.4	97	AR7 1	1 33	1 64	A 04		- J/.1		11	DEAD HORSE FLAT
	24	3:54: 0	37.261	115.058	2.2	-0.92	1.9	192	801	1.20	1.04	0.95		15.3	6,11		ALANO SE
	24	10: 5:24	36.758	118.271	0.4	2.91	9.3	117	ABZ	1.16		0.78		1.7	0.89	17	JACKASS FLATS
	24	16: 8:58	36.758	116.272	0.3	2.70	0.4	73	AAZ			1.19		1.6	0.10	21	JACKASS FLATS
	9E	13.49.14	17 111	114 848		a		<u></u>	ne · -			• • •					
	25	13:46:57	37.345	114.860	6.6	1.97	2.5	215		(.4)		2,41	2.8	19.9	0.12	20	CREGERSON BASIN
					- · -											-	

-----

110

۰.

.

1989 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

	DAT	E - TIME (UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	OUD 125 MAGNITUDE Mice Mid	ESTIMA MLh	TES MLV 1	MLc	DEL- RMS MIN RES. (KM) (SEC)	IN PH. U.S.G.S. QUADRANGLE
	FEB 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 15: 4: 0 5 15:10:55 5 15:34:34 5 15:35:13 5 15:35:13 5 15:35:44 5 16:39: 1	37.345 37.346 37.336 37.345 37.341 37.339	114.859 114.860 114.857 114.855 114.858 114.858	0.5 0.5 1.0 1.6 0.6 0.4	1.99 1.77 3.91 1.49 4.09 2.30	1.1 1.2 9.6 4.4 5.5 0.9	216 215 218 272 217 217	ADZ ADZ CDI 1.64 BDZ CDI 1.81 ADZ 1.74		0.96 1.11 1.69 1.18 1.73 1.73		18.3 0.06 18.2 0.06 18.8 9.15 18.7 0.05 18.5 0.06 18.6 0.05	9 GREGERSON BASIN 9 GREGERSON BASIN 10 GREGERSON BASIN 7 GREGERSON BASIN 8 GREGERSON BASIN 9 GREGERSON BASIN
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 17:18:55 5 17:31:57 5 19:42: 8 5 19:59:44 5 20:44:43 5 21: 1: 0	37.336 37.344 37.342 37.340 37.346 37.346	114.852 114.858 114.856 114.857 114.860 114.858	0.5 0.5 0.5 0.5 0.5 0.5	1.88 1.84 1.70 2.04 1.84 1.96	1.0+ 1.1 1.0 1.0 1.2 1.0	219 216 217 217 215 216	ADG 2.13 ADZ ADI ADZ ADZ ADZ	1.45	2.48 0.88 1.35 1.63 0.93 1.18	2.7 1.5	19.3 0.07 18.5 0.05 18.7 0.05 18.7 0.05 18.2 0.05 18.4 0.05	13 GREGERSON BASIN 8 GREGERSON BASIN 9 GREGERSON BASIN 9 GREGERSON BASIN 8 GREGERSON BASIN 9 GREGERSON BASIN
		6         0:15:30           16         7:59:42           16         13:57:42           16         14: 0:19           16         19:11:44           7         3:47:28	37.343 35.898 35.926 35.912 36.778 36.970	114.855 115.388 116.953 116.951 116.270 116.139	0.5 3.8 1.9 1.1 6.2 0.2	1.85 0.02 7.20 7.40 -0.09 6.32	1.0 3.1 2.3 1.1 0.2 0.7	217 285 267 274 91 96	ADI 1.58 CDA 2.11 BDA 1.81 BOA 1.58 ABZ 1.65 1.11 ABZ		1.38 6.61 8.61	1.7	18.7 8.05 73.6 8.14 8.8 8.12 9.5 8.65 3.9 8.66 8.6 8.85	9 GREGERSON BASIN 14 GOODSPRINGS 8 WINGATE WASH 6 WINGATE WASH 15 JACKASS FLATS 11 WINE MTH
111	2 2 2 2 2 2 2 2 2 2 2	7 16: 5: 7 7 16:34:46 8 0:26:54 8 7:24:34 8 7:50:27 8 16: 7:38	37.245 37.236 37.233 37.342 37.176 37.001	115.021 115.009 115.057 114.857 117.462 117.600	0.4 0.4 1.1 0.4 0.4 0.8	0.16 0.98 6.58 1.65 5.84 0.68	0.4 5.4 3.5 1.0 2.4 1.0	208 214 225 217 139 183	ADZ 2.10 ADZ BOI ADZ BCI ADZ	1.40 1.20 0.89 1.05	1.39 0.78 1.47 1.23 0.86 1.19	1.5	17.0 0.05 17.5 0.03 13.6 0.07 18.6 0.03 17.5 0.10 22.6 0.12	13 LOWER PAHRANAGAT LAKE 7 LOWER PAHRANAGAT LAKE 8 LOWER PAHRANAGAT LAKE 7 GREGERSON BASIN 12 UBDHEBE CRATER 12 LAST CHANCE RANGE
	MAR	1 9:34:17 1 13:18:42 2 1:58: 8 2 10:17: 1 2 14:49:48 2 14:59:14	37.339 37.259 36.894 35.967 35.969 35.911	114.867 117.694 116.810 116.953 116.949 116.953	1.0 0.2 0.4 0.9 0.6 1.1	5.31 0.09 1.28 7.59 8.62 8.08	1.0 6.1 1.7 1.1 9.7 0.8	302 181 69 207 269 269	801 ADZ BCZ 2.19 AD1 2.28 ADA BOZ 1.94	1.25 2.17	1.34 1.28 2.31	2.7	17.9 0.87 5.2 0.85 19.6 0.16 10.0 0.11 9.5 0.04 9.8 0.07	9 GREGERSON BASIN 21 MAGRUDER MIN 26 BULLFROG 29 WINGATE WASH 7 WINGATE WASH 9 WINGATE WASH
		2 14:50:17 2 14:54:42 2 14:54:42 2 23:31:37 4 14:53:17 4 23:16:59	35.913 35.883 35.915 37.115 37.028 37.150	116.947 116.959 116.945 117.157 116.916 115.215	1.6 1.4 2.4 0.2 0.3 0.3	7.55 9.63 9.27 0.50 -0.11 3.83	2.9 1.2 1.3 0.4 <b>0.4</b> 2.1	268 268 268 87 109 127	BOZ 1.83 BOI 2.40 BOA 2.47 ACZ 2.41 ACZ 2.40 BCZ	2.17	1.92 2.64 2.15 1.16 8.95	2.5 2.2	39.3 0.07 12.2 0.16 2 8.9 0.65 18.3 0.10 3 11.8 0.06 1 12.0 0.09 1	6 WINGATE WASH 22 WINGATE WASH 6 WINGATE WASH 22 BONNIE CLAIRE SW 23 SPRINGDALE 3 RAINIER MESA
		5 22:31:13 5 22:58: 3 5 23: 1: 3 6 2:40:56 6 2:47:49 6 3:11:25	37.014 37.012 36.000 37.019 37.014 37.012	116.380 116.385 114.822 116.387 116.384 116.381	0.2 0.2 0.8 0.3 0.2 0.2	8.30 7.27 -1.95 8.78 7.72 8.52	0.3 0.4 1.7 0.3 0.3 0.4	73 83 153 147 86 73	AAI 1.56 AAZ ACZ 2.13 ACZ AAZ 1.44 AAZ 1.62	2.02	1.21 0.66 2.03 0.74 0.84 1.44		2.5 0.86 2 2.6 0.85 1 10.8 0.10 1 1.8 0.05 1 2.3 0.85 1 2.7 0.88 3	7 TIMBER MTN 8 TIMBER MTN 4 BOULDER BEACH 6 TIMBER MTN 8 TIMBER MTN 3 TIMBER MTN
		6 3:27:59 6 3:39:19	37.015 37.014	116.380 116.381	0.2 0.1	8. <del>00</del> 8.01	0.3 0.2	73 73	AAZ 1.47 AAZ 1.30 1.39		1.06 0.99		2.3 0.05 2 2.4 0.64 2	2 TIMBER WTN 3 TIMBER WTN

## 9 | 0 5 | 2 **9 7 6**

1989 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

D	ATE (U	- TIME TC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125	MAGNI Meg	TUDE Md	ESTIMA MLh	TES MLv	MLc	DEL- MIN (KM)	RMS RES. (SEC)	<b>∦</b> N PH.	U.S.G.S. QUADRANGLE
WAR	6 6 7 7 7	7:25: 4 18:58:30 20: 0:25 4:28:34 11: 4:27 18: 6: 6	37.013 37.908 37.339 37.858 37.706 37.906	116.384 1/6.137 114.846 114.990 115.011 116.136	e.2 9.5 9.6 9.8 9.4 9.4	8.13 0.67 0.32 7.21 6.68 0.35	0.3 0.9 0.7 1.2 0.9 0.7	107 116 220 237 129 116	ABZ BCZ ADZ ADZ AB1 BC1	1.22 1.47 1.65			0.83 1.60 1.44 0.97 1.13 1.95	2.2	2.5 24.6 19.6 7.5 8.9 23.7	6.07 6.15 6.68 6.07 6.66 7 6.15	21 14 18 7 9 18	TIMBER MTN REVEILLE PEAK GREGERSON BASIN WHEATGRASS SPRING HIKO NE REVEILLE PEAK
	8 9 10 10 11	6:32:24 19: 5:36 11:17:52 4:35:44 14:36:41 1: 4:45	37.013 37.905 37.868 36.807 36.822 37.140	116.380 116.141 116.138 116.008 116.24J 116.064	0.2 0.5 0.5 0.2 0.7 0.8	8.49 -1.03 2.71 0.45 5.42 -1.85	0.3 1.0 7.0 0.4 1.6 0.7	73 115 108 126 135 146	AAZ ACZ CCA ACZ ABZ ACZ	1.69 1.26 1.57	2.32 1.14		1.00 1.89 1.47 0.86 1.65		2.0 23.0 21.2 14.0 7.0 7.0	5 0.07 0 0.13 2 0.11 5 0.07 5 0.13 5 0.14	21 11 9 21 14 12	TIMBER MTN REVEILLE PEAK REVEILLE PEAK CANE SPRING SKULL MTN OAK SPRING
	11 12 13 13 14 14	12:21:46 8:53:46 4:33: 2 18:50:47 1:53: 8 6:34:32	37.879 38.394 37.112 37.926 36.494 37.260	116.009 116.462 117.156 116.101 116.573 115.067	0.7 1.9 0.2 1.4 0.2 1.8	7.14 -0.85 0.07 -0.21 -0.94 6.58	4.3 1.7+ 0.3 1.3 0.4 2.8	116 285 90 184 54 189	BCA BDZ ACZ BDZ ACZ BDZ	1.76 1.69	2.88 1.48	1.12	2.15 1.52 1.40 1.23 0.96		14.8 18.0 23.4 13.8 14.7	3 0.15 9 8.66 3 0.87 5 0.11 3 0.88 7 8.87	13 10 24 7 23 7	REVEILLE PEAK •••QUAD. NOT LISTED• BONNIE CLAIRE SW REVEILLE PEAK RYAN ALAMO SE
	14 14 14 15 15	18:51:56 23:17:46 23:18:48 23:23:18 2:34:42 3:44:28	38.465 37.241 37.254 37.335 36.689 37.250	114.493 115.003 115.036 115.108 116.170 115.037	1.4 0.4 0.4 14.1 0.2 0.8	-1.13 0.20 4.93 24.96• 4.92 4.51	$   \begin{array}{r}     1.2 \\     0.3 \\     2.0 \\     \hline     1.4 \\     3.1 \\   \end{array} $	240 236 200 191 99 202	BOZ ADI BOZ DOI ACZ BOZ	2.51 1.52 1.81	1.07	1.67	2.68 8.89 2.22 8.73		60.0 18.2 16.4 9.4 10.5 16.1	0 0.17 2 0.01 5 0.07 5 0.17 9 0.08 1 0.04	10 6 12 5 18 8	•••QUAD. NOT LISTED• LOWER PAHRANAGAT LAKE ALAMO SE ALAMO SE SPECTER RANGE NW ALAMO SE
	15 15 15 15 15	5: 6:39 5:10: 6 5:10:39 5:14:39 5:15:47 5:23: 4	37.244 37.246 37.254 37.251 37.238 37.253	115.018 115.020 115.044 115.024 115.003 115.023	6.2 0.8 0.5 3.4 0.4	3.82. 0.79 0.88 -0.83 4.07* 0.55	0.8 0.5 0.3 0.5	209 208 198 205 215 196	DDZ ADZ ADZ ADZ CDZ ADZ	2.14		1.07 1.48 1.54 1.21	1.06 0.84 1.40 1.17 1.92	1.3	17.1 17.1 15.9 17.1 18.0	2 0.08 1 0.07 9 0.05 1 0.04 9 0.10 5 0.05	5 8 18 6 12	LOWER PAHRANAGAT LAKE LOWER PAHRANAGAT LAKE ALAMO SE ALAMO SE LOWER PAHRANAGAT LAKE ALAMO SE
	15 15 15 15 15	6:13:22 7:58: 3 8:34:39 9:59:21 12:56:23 16:37:11	37.249 37.333 37.249 37.242 37.249 36.914	115.032 115.259 115.029 115.021 115.027 117.654	0.6 1.1 0.5 1.7 1.0 0.8	4.50 0.61 4.62 7.89 2.90 5.94	2.3 0.7 1.9 3.0 4.2 6.3	204 238 205 209 205 199	BDZ BDZ ADZ BDZ BDZ CDI	1.75 2.02 1.90		1.58 1.62	1.40 1.05 1.44 1.41 1.73		16.4 19.3 16.7 16.8 16.8	6.07 6.10 6.07 6.03 6.08 6.08 6.08 2 6.15	11 7 11 7 9 14	LOWER PAHRANAGAT LAKE BADGER SPRING LOWER PAHRANAGAT LAKE LOWER PAHRANAGAT LAKE LOWER PAHRANAGAT LAKE DRY MTN
	15 15 15 15 15	18:20:14 19: 9:55 19:11:24 19:44:11 21:44: 0 22:22:22	37.244 37.251 37.241 37.266 37.245 37.250	115.006 115.021 115.005 115.094 115.029 115.033	6.3 6.4 6.1 4.3 1.3 6.6	0.42 -0.89 0.70 8.62 9.57 4.33	0.4 0.4 0.1 4.0 1.8 2.2	212 206 213 178 206 203	ADI ADZ ADZ CCU BOZ BOZ	1.49 1.24 1.92	0.77	1.51 1.85 1.59 1.67	0.95 1.15 1.34		18.1 17.3 18.1 13.6 16.4	0.62 0.63 0.63 0.61 0.61 0.68 0.68	7 9 7 6 9 9	LOWER PAHRANAGAT LAKE ALAMO SE LOWER PAHRANAGAT LAKE ALAMO SE LOWER PAHRANAGAT LAKE ALAMO SE
	15 16	0:35: 7 2: 6:18	37.247 37.248	115.025 115.017	2.5 0.4	7.20 0.52	2.6 0.2	229 231	BOZ ADI			1.41 1.32	0.78 1.34		16.8 17.5	3 0.06 5 0.01	7 6	LOWER PAHRANAGAT LAKE

112

H_{Hall} H

. ManniiHa

FT H¹⁰³⁰⁴³⁵¹⁴¹¹ H²⁰³⁰⁴³⁵¹⁴¹¹ H²⁰⁴⁰⁴³⁵¹⁴¹¹ H²⁰⁴⁰⁴³⁵¹

> 1 > 5 1 2 9 7 7

1989 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

C	ATE	- TIME			STAND	DEPTH	STAND	AZI GAP	QOD 125 MACNITUDE	ESTINA	TES		DEL-	RMS RES.	IN PH. U.S.G.S.
	(U	IC)	(DEG. N)	(DEG. W)	H(KM)	((()))	2(101)	(026)	MCG MG	MLN	MLV	MLC	(101)	(SEC)	QUADRANGLE
MAG	14	4.17.27	17 100	115 178	14	8 50	1 0	205	BD7 1 67	1 37	1 35		14.6		6 AL ALCO
	18	4.28.29	37 247	115 026	1.2	4.95	2.6	229	BOI 1.78		1.34		16 7		9 LOWER PAHRANAGAT LAKE
	16	5:13:38	37.255	115.061	2.4	9.47	3.5	193	BDU	1.42	1.42		14.7	U. 66	5 ALAMO SE
	16	7:56:52	37.299	115.178	11.3	7.00+		205	001	1.38	1.33		14.5	0.12	6 ALANO
	18	8:13:58	37.252	115.034	1.4	0.15	1.0	202	BOI	1.58			16.4	0.67	7 ALAMO SE
	16	8:14:46	37.260	115.062	4.2	11.24	4.0	191	CDU	1.41			15.1	8.12	6 ALANO SE
	16	11:36:59	37.241	115.011	1.1	8 42	0.9	212	B0Z 1.35	1.74	0.95		17.6	6.06	7 LOWER PAHRANAGAT LAKE
	16	12: 0: 6	37.254	115.029	0.5	-0.89	0.4	203	ADZ 1.83	1.87	1.21		16.9	0.03	8 ALAMO SE
	16	14:34:60	37.254	115.046	2.7	8.70	4.2	198	CDZ 1.91	1.91			15.7	0.09	7 ALANO SE
	16	14:48:24	37.246	115.034	0.8	5.72	1.9	204	ADZ 1.85		1.45		16.1	0.09	12 LOWER PAHRANAGAT LAKE
	16	16: 9:55	37.242	115.003	3.0	4.34	11.7	236	CDI		1.26		18.3	0.10	7 LOWER PAHRANAGAT LAKE
	15	21: 4:33	37.248	115.028	0.5	-0.06	0.5	205	ADZ	1.68	1.13		16.7	0.83	6 LOWER PAHRANAGAT LAK€
	17	1:36:28	37.238	115.008	0.9	1.77	1.7	214	ADZ	1.65	1.04		17.7	0.05	7 LOWER PAHRANAGAT LAKE
	17	4: 2:27	37. <del>00</del> 9	115.978	0.9	2.40	1.4	228	ADZ 1.44		1.19		10.5	0.08	17 PAIUTE RIDGE
	17	6: 3:47	37.250	115.031	3.6	4.81+		264	CDU	1.32			16.6	8 0.07	5 ALAMO SE
	17	16: 7:33	37.022	116.525	0.2	9.20	0.7	102	ABZ 1.32		1.03		12.4	0.05	20 THIRSTY CANYON SE
	17	17:46:40	37.253	115.032	2.2	-0.77	1.3	225	BOZ	1.53			16.7	0.07	6 ALAMO SE
	17	17:54:10	37.249	115.024	1.4	8.44	2.0	200	BUT				17.0	<b>0.05</b>	8 LOWER PAHRANAGAT LAKE
	17	18:43:55	37.115	117.367	0.3	6.17	1.1	112	ACI 1.51	1.54	1.58		13.6	8.88	20 UBEHEBE CRATER
	17	22:25:25	37.242	115.008	0.3	6.14	0.3	212	ADZ	1.38			17.9	0.02	7 LOWER PAHRANAGAT LAKE
נ	18	2: 4:35	37.241	115.009	0.9	6.87	1.5	213	ADZ 1.79		1.34		17.8	0.10	11 LOWER PAHRANAGAT LAKE
	18	3:54:15	37.248	115.023	1.1	0.47	0.9	207	BOI 1.53	1.56			16.9	0.08	9 LOWER PAHRANAGAT LAKE
	18	5:50:35	37.150	116.067	0.5	-1.12	0.5	125	ABZ		1.55		7.0	0.08	13 OAK SPRING
	18	22:25:56	37.240	115.017	1.2	4.03	7.2	211	CDZ	1.48		1.4	17.0	0.05	7 LOWER PAHRANAGAT LAKE
	19	0: 1:19	36.983	116.714	0.2	0.60	0.3	87	ACZ 1.52		1.41		18.2	8.06	23 BARE MIN
	19	20:28:21	37.341	116.793	0.2	6.33	1.1	105	ACZ 1.84	1.76	1.60		14.6	0.05	24 TOLICHA PEAK
	21	12:38:40	37.074	116.228	0.3	7.76	0.6	114	ABZ		0.99		4.1	0.08	16 TIPPIPAH SPRING
	21	23: 7:39	37.115	117.362	0.3	0.13	0.4	111	ACZ 1.78		1.78		13.0	0.09	23 UBEHEBE CRATER
	22	12:20:21	37.106	115.193	0.7	2.16	0.8	194	ADZ	1.48	1.41		7.0	0.07	9 LOWER PAHRANAGAT LAKE
	22	17:40: 7	38.497	114.400	2.5	-1.02	1.7	283	COZ		2.06		68.1	0.10	8 + QUAD. NOT LISTED-
	22	18:29:60	35.952	115.221	1.5	0.00	1.8	187	BOZ		2.03		42.2	0.13	11 SLOAN
	23	6:31:34	37.440	114.508	2.8	-1.54	2.2	291	COZ 1.71	1.71	1.74		27.5	0.06	9 ELIGN NE
	23	21:39:59	37.343	116.795	0.2	0.50	0.3	105	ACZ 1.53	1.46	1.42		14.8	0.87	22 TOLICHA PEAK
	24	1:12:14	36.486	116.932	0.3	8.63	1.6	64	ACI 1.61		1.70		18.3	8.08	25 FURNACE CREEK
	24	6:54: 7	37.162	117.386	0.2	8.16	0.7	118	ACI 1.77		1.80	2.2	18.4	0.68	27 UBEHEBE CRATER
	24	6:57:52	37.162	117.382	0.3	7.23	1.0	118	ACZ 0.73	0.86	0.90		18.4	0.07	12 UBEHEBE CRATER
	24	8:57:52	37.056	117.475	4.0	19.71	3.1	198	CDZ 0.71		1.00		13.1	0.27	8 UBEHEBE CRATER
	24	18: 5:16	37.163	117.384	0.2	7.24	0.9	119	ACI	0.89	0.90		18.5	0.07	14 UBEHEBE CRATER
	24	10:12:15	37.162	117.383	0.2	5.91	0.6	131	ACI	1.00	1.01		18.4	9.84	14 UBEHEBE CRATER
	24	23:44:15	37.506	114.632	1.2	-1.02	0.8	293	BOZ 1.73	1.61	1.47		14.5	0.03	8 CHOKECHERRY MTN
	25	4: 8:55	37.250	115.048	0.6	2.29	1.0	195	AUU 1.68		1.63		16.0	9.68	11 ALANO SE
	25	6:14:27	37.243	115.000	1.3	<del>0</del> ./J	U.¥	214	800 1.19	1.68	1.17		18.5	<b>U.17</b>	8 LOWER PAHRANAGAT LAKE
	25	8:36:25	37.245	115.004	0.5	-0.04	0.5	212	ADU 1.39	1.74	1.21		18.3	0.06	10 LOWER PAHRANAGAT LAKE
	25	10:49: 3	37.070	116.219	0.3	5.58	0.8	85	AAU 1.40		0.87		3.8	0.08	15 TIPPIPAH SPRING
													_	_	

.

113

•

. ) 7 3 11311

1989 LOCAL HYPOCENTER SUMMARY - SCB EARTHQUAKES

I	DATE (L	- TIME UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z (KM)	AZI GAP (DEG)	QQD 12S MAGNITUDE Mica Mid	EST IM	ATES MLv MLc	DEL- RMS (N MIN RES. PH. U.S.G.S. (RM) (SEC) CHARGANCIS
MAI	R 26 26 26 26 26 26 28	2:59:56 5: 5:18 17:43:21 22: 2:18 23: 3:22 2: 0:38	37.116 37.160 37.280 37.075 37.241 37.053	117.159 117.384 117.699 116.227 115.016 116.050	0.3 0.2 0.8 0.5 2.3 0.3	5.98 6.47 -1.27 6.21 6.55 11.07	2.4 1.1 0.8 0.6 6.0 0.9	98 128 158 114 211 141	BCU ACU ACA 1.97 ABU CDU ACU	1.88	1.49 0.88 0.80 0.99 0.84	18.5 0.10 17 BONNIE CLAIRE SW 18.1 0.05 10 UBEHEBE CRATER 7.0 0.10 8 MACRUDER MTN 4.2 0.06 11 TIPPIPAH SPRING 17.2 0.05 6 LOWER PAHRANACAT LAKE 16.0 0.05 14 VICCA ELAT
	28 28 28 28 28 28 28	5:16:31 12: 5:19 12:12:41 12:18:12 12:41:19 12:41:32	37.129 36.650 37.162 37.163 37.161 37.163	117.154 116.453 117.384 117.334 117.387 117.382	0.4 0.3 0.2 0.4 0.3	5.20 13.67 7.95 8.33 8.50 7.80	2.6 6.8 1.1 6.9 1.6+ 8.9	94 175 119 118 167 117	BCI ACU 1.06 ACU ACU ACU ACU	1.34 0.94 0.69	1.30 0.82 0.71 0.77 0.80	19.4 0.14 20 BONNIE CLAIRE NW 10.1 0.05 11 LATHROP WELLS NW 18.4 0.07 10 UBEHEBE CRATER 18.5 0.06 12 UBEHEBE CRATER 19.3 0.06 9 UBEHEBE CRATER 18.5 0.07 13 UBEHEBE CRATER
	28 28 29 29 29 29	16: 7:18 17:59:36 5:53:22 5:55:16 18:18:26 23:16:40	37.163 35.923 37.692 37.690 37.116 37.162	117.384 114.829 115.051 115.052 117.849 117.384	0.2 5.0 0.3 0.2 0.5 0.2	7.46 4.23. 0.17 0.50 7.38 7.27	0.7 0.5 0.4 1.8 0.5	118 199 114 113 245 118	ACU CDI 2.05 ACU ACU ADI ACU	1.30 1.54 1.37	1.16 1.97 0.95 0.88 1.69 1.52	18.6 0.06 15 UBEHEBE CRATER 6.6 0.04 8 BOULDER CITY 11.0 0.07 10 HIKO NE 11.0 0.06 10 HIKO NE 22.2 0.04 9 WAUCOBA SPRING 18.4 0.06 15 UBEHEBE CRATER
APR	29 30 31 31 1 1	23:19:59 19: 2:22 2:29:25 22:42:36 17:21:10 23:34:31	37.165 37.419 37.643 37.876 37.664 37.689	117.382 115.637 115.049 116.022 115.745 115.053	0.3 0.6 0.7 0.0 0.3 0.2	7.01 9.10 7.72 6.20 -0.82 0.65	0.7 2.2 1.3 0.1 0.5 0.4	176 109 273 115 111 112	ACU BCU ADU ADU ACZ ACZ 1.37	1.53 1.77	1.52 1.57 1.26 1.23 1.28	18.7 0.04 10 UBEHEBE CRATER 20.7 0.14 12 BALD MTH 18.6 0.06 9 LOWER PAHRANAGAT LAKE SE 14.9 0.00 5 REVEILLE PEAK 28.5 0.06 10 FALLOUT HILLS SW 11.0 0.05 9 HIKO NE
	2 3 3 4 4	2: 1:43 0:58:17 8:59:59 19:48: 6 13:20: 6 13:20:10	37.698 37.279 37.008 37.105 37.657 37.645	115.051 115.117 116.034 115.737 114.492 114.740	0.3 0.8 0.5 0.3 4.4 3.2	0.93 13.14 -0.31 -0.55 2.12• 0.00••	0.4 1.3 0.8 0.4 5.5	267 184 146 152 384 226	ADI ADI ACZ ACZ 1.81 CDI 1.83 DOZ 1.83	0.35 1.51	1.02 1.11 0.68 1.46 1.41 0.98	11.3 0.05 9 HIKO NE 13.8 0.08 7 ALAMO SE 8.6 0.09 12 YUCA FLAT 25.6 0.08 15 FALLOUT HILLS SW 22.4 0.10 8 **•QUAD. NOT LISTED* 4.4 1.01 8 CALIENTE NW
	4 5 6 6 6	18:35:39 11:12:40 1:27:49 9:45:44 16:10: 5 22:30:45	38.186 36.713 36.576 37.869 36.001 37.863	116.073 116.046 115.906 115.715 114.742 116.131	0.5 0.2 0.4 0.8 0.5	2.75 2.74 12.84 -0.17 1.56 0.00++	2.4 0.6 0.5 0.6 1.6 1.0	199 131 102 144 198 165	BOZ 1.89 1.92 ABZ ABI 1.63 1.38 ACZ ADI 2.39 ACZ	. 36	2.02 0.85 1.48 1.65 1.83	32.3 0.06 10 ECHO CANYON 9.6 0.08 17 CAMP DESERT ROCK 10.6 0.08 20 MERCURY SW 16.5 0.68 10 WORTHINGTON MITHS 8.9 0.07 14 HOOVER DAM 20.3 0.14 14 REVEILLE PEAK
	7 7 7 7 8	0: 3: 6 9:54:25 16:42:18 21:38:35 23:55: 2 7: 1:56	36.890 37.161 37.448 38.807 36.896 37.260	116.813 117.386 117.895 116.083 116.811 116.375	0.4 0.2 0.5 0.3 0.3 0.4	0.87 6.48 9.70 6.98 -1.42 -0.84	10.5 0.9 0.6 1.1 8.2 0.4	55 118 172 187 84 96	CCZ 1.99 ACI ACZ AEI 1.34 1.38 CCZ 2.02 ABZ	1.95 0.84 1.81 1.72	8.97 1.12 1.08 1.03	19.6 0.13 25 BULLFROG 18.3 0.06 18 UBEHEBE CRATER 2.7 0.03 6 SOLDIER PASS 9.3 0.08 17 CANE SPRING 19.8 0.13 25 BULLFROG 6.8 0.09 13 SILENT BUTTE
	9 9	11:45:20 11:52·33	37.261 37.327	116.510 115.446	0.9 0.2	7.23 1.22	3.1 1.5	128 144	88Z ACZ 1.74	1.54	1.58 1.46	12.0 0.12 11 TRAIL RIDGE 28.9 0.03 10 CUTLER RESERVOIR

......

114

•

1989 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

D	ATE -	- TIME	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND AZ ERROR GA Z(KM) (DI	ZI AP EG)	000 125 MAGNIT Mco	UDE Ma	ESTIMA MLh	TES MLV	MLc	DEL- MIN (KH)	RMS RES. (SEC)	PH.	U.S.G.S. QUADRANGLE
APR	9 9 9 10 10	16:29:45 16:31:15 16:57:35 3:28: 4 9: 5:57 9:30:66	36.995 36.998 37.329 37.181 37.736 36.725	116.293 116.295 115.444 115.010 114.530 115.976	0.3 0.2 0.9 7.2 0.4	4.58 4.61 2.70 9.11 4.06• -0.92	$\begin{array}{c} \textbf{0.9+} \\ \textbf{0.7} \\ \textbf{1.2} \\ \textbf{1.2} \\ \textbf{2.4} \\ \textbf{1.2} \\ \textbf{2.4} \\ \textbf{2.4} \\ \textbf{1.4} \\ \textbf{2.4} \\ \textbf{2.4} \\ \textbf{2.4} \\ \textbf{1.4} \\ \textbf{2.4} \\ \textbf{2.4} \\ \textbf{1.4} \\ \textbf{2.4} \\ 2.$	58 17 43 06 96 20	ABI 1.93 ABI BCZ 1.68 ADI 1.72 DOI ABZ		2.97	1.81 0.92 1.92 1.75 1.32 0.79	2.0	7.3 7.3 29.0 15.8 23.3 7.3	5 0.09 5 0.05 5 0.05 3 0.08 5 0.29 5 0.08	27 15 11 11 6 12	TOPOPAH SPRING TOPOPAH SPRING CUTLER RESERVOIR LOWER PAHRANAGAT LAKE CHIEF MTN MERCURY
	10 10 10 10 10	13:11:30 13:12:11 13:21:44 13:28: 0 3: 5: 1 23:57:5	37.162 37.163 37.163 37.163 37.162 37.715 3.36.885	117.383 117.383 117.383 117.383 115.207 115.907	0.2 0.2 0.1 0.2 0.4 0.3	7.23 7.26 7.14 7.12 3.79 -1.18	0.9++ 1 0.9++ 1 0.6 1 0.9 1 1.2 1 0.6 1	19 18 18 18 41 34	ACI ACI ACI ACI ACI ACZ ACI 1.92		0.95 0.96 1.08	0.74 0.81 0.78 0.95 0.95 1.34		18.4 18.5 18.5 18.4 7.5	6 0.87 5 0.05 5 0.05 4 0.07 5 0.00 1 0.11	14 11 17 18 9 23	UBEHEBE CRATER UBEHEBE CRATER UBEHEBE CRATER UBEHEBE CRATER FOSSIL PEAK FRENCHMAN FLAT
	12 12 12 12 12	1:32:2 4:11:4 17:49:4 20:24:5 20:37:2	5 36.998 8 36.812 9 36.713 5 37.215 6 37.217	116.298 115.830 115.639 117.294 117.293 117.296	0.3 0.8 0.2 0.2 0.2	3.60 2.74 1.50 8.32 8.66 8.65	1.5 1 2.2 1 0.4 3 0.4+ 0.5 0.4	16 68 530 81 81 82	ABZ BCZ ADI ABI 2.55 ABI ABZ 1.95		2.99 1.75 1.88	0.76 1.26 1.44 2.00	5 5 5	7. 13. 15. 10. 9. 10.	6 0.05 2 0.13 5 0.01 1 0.10 8 0.00 2 0.07	5 13 5 15 5 48 6 48 7 21	TOPOPAH SPRING FRENCHMAN LAKE SE INDIAN SPRINGS NW UBEHEBE CRATER UBEHEBE CRATER UBEHEBE CRATER
- - -	12 13 13 13 13	20:59:5 3:21:2 14: 8:5 18:12:5 19:31:5	9 37.220 9 37.434 8 36.841 6 36.056 8 37.242 6 36.913	117.296 116.664 116.265 115.405 117.603 116.190	0.3 0.2 0.3 0.5 0.5 0.5	9.05 -0.87• 10.16 3.30• 5.89 6.28	0.4 0.4 0.6 0.5	81 142 107 172 134 94	APZ 1.65 CCZ ABZ CCI 2.08 ABZ ABZ	1.09	2.06 9.68	1.28 1.29 0.90 2.10 0.80	5 5 5 2	9. 16. 5. 33. 4. 6.	6 0.10 0 0.07 2 0.07 6 0.17 0 0.09 8 0.09	25       7     15       7     16       1     14       5     9       5     16	UBEHEBE CRATER BLACK MTN NW JACKASS FLATS BLUE DIAMOND LAST CHANCE RANGE MINE MTN
	14 15 15 16 17 17	20:49: 2:44:1 21:17: 5:45:5 13:32:3 19:39:2	5 37.339 5 37.339 8 36.802 2 37.110 9 37.519 8 37.307	115.068 116.090 117.159 115.296 117.751	0.3 0.3 0.4 1.0 0.8	6.76 9.35 6.52 4.41 -1.34 -0.13	0.7 0.5 2.2 11.9 1.1 0.3	165 90 104 121 180 119	ACI 1.84 ABI 1.69 BCI CC1 BOZ 1.53 ACZ	1.51	1.09 0.77 1.29 1.43	1.57 1.49 1.00 1.21 1.80	7 3 1 9	7. 9. 18. 17. 12. 18.	7 0.0 1 0.1 0 0.0 8 0.1 5 0.1 7 0.0	5 13 2 27 5 9 9 16 9 16 5 16	S ALAMO SE 7 CANE SPRING 9 BONNIE CLAIRE SW 9 MT IRISH 3 SOLDIER PASS 8 UBEHEBE CRATER
	18 18 19 19 19	11: 4:3 19:48: 9: 1: 9:26: 11: 0: 13:21:	52 37.062 52 37.062 52 37.062 1 37.163 6 37.629 58 37.576	116.951 116.951 117.384 115.077 117.746	8.2 8.2 9.2 9.2 9.2 9.2	0.82 0.43 7.08 4.60 0.28 3.95	0.4 0.3 0.4 3.0 0.4 2.4	45 93 119 113 121 139	ACZ 1.83 ACI ACZ BCZ 1.70 ACZ 1.22 BCI		1.70 1.09 1.49 3.59	) 1.8 1.3 ) 0.9 ) 1.2 1.5	9 3 3 3 3 3	11 11 18 12 16 17	.6 0.0 .7 0.0 .5 0.0 .7 0.1 .2 0.0 .0 0.2	9 31 8 23 6 17 9 17 2 4	I SPRINCOALE 3 SPRINCOALE 7 UBEHEBE CRATER 9 HIKO NE 7 LIDA WASH 3 ALAMO SE
	19 19 19 19 19	22:39: 22:47: 23:0: 23:15: 23:37: 23:48:	39         37.250           29         37.240           7         37.240           26         37.250           36         37.250           36         37.250           37         37.240           37         37.240           37         37.240           37         37.250           36         37.250	115.045 115.023 115.016 115.036 115.036 115.036	1.3 0.3 2.0 1.9 5.2	2.78 7.17 -0.88 -0.33 5.02 -0.92	3.5 0.5 1.3 0.8 	200 207 205 223 214 224	BDZ ADZ 1.58 BDZ BDZ DDI 1.28 ADZ		1.64 1.57 1.65 1.63	0.9 7 1.0 5 1.0 3 0.9	0  2 1.  4  9	15 17 15 18 18 18	.5 0.0 .0 0.0 .6 0.1 .5 0.0 .3 0.1 .8 0.0	19 14 11 15 15	7 ALAMO SE O LOWER PAHRANAGAT LAKE 7 LOWER PAHRANAGAT LAKE 6 ALAMO SE 7 LOWER PAHRANAGAT LAKE 7 ALAMO SE
	20	0:33:	45 37.29 49 37.23	115.174 114.992	12.7	7.00	•	203 202	DOI 1.26 ADZ 2.03		1.6	5 1.6 1.6	15 19	14 18	.5 8.1 .9 8.1	3	6 ALAMO 9 DELAMAR 3 NW

H_{er}yndN

1 0 5 1 2 9 8 0 5

1989 LOCAL HYPOCENTER SUMMARY - SCB EARTHQUAKES

÷.

DATE	- TIME	LATITUDE	LONGITUDE	STAN E ERRO	d R Depth	STAN	D AZJ	000 125 MACHITI				DEL- RMS	6 N
``	,	(DEG. N)	(DEG. W)	Н(КМ	) (Ю4)	Z(KM)	) (DEG			STIMATES	• • •	MIN RES	PH. U.S.G.S.
APR 20	4:25:39	37 248				- • •				ALN MLV	ML¢	(K№) (SEC	) QUADRANGI F
20	4:30:10	37 847	115.054	1.7	6.82	3.8	202	807					
20	5:19-28	37 280	117.327	0.3	9.85	0.4	108	ARI		1.2	4	14.3 0.0	5 7 LOWER PAHPANACAT LAWS
20	5-22-53	37.230	115.019	0.8	0.15	8.4	207	AD7 1 00		1.2		5.5 0.0	7 16 UBEHERE CRATER
28	5.12.53	37.257	115.059	9.5	11.60	5.3	103	02 1.00		1.3	3	17.5 0.0	4 9 ALAND SE
20	5.30.57	37,240	114.998	1.1	0.07	A 7	216	002	1	. 75		15.0 0.0	9 R ALAUD SC
20	0:09:08	37.243	115.011	1.0	8.85		210	BUZ	1	.43 0.8	5	18.6 0.0	
20	# . # 0 . no					•	411	802	0	.94 1.03	3	17.7 0.0	5 LOWER DAUDAULAUT
20	5:56:29	37.275	115.144	4.5	6.46	2 4	100						TO COMER PARECHAGAT LAKE
20	0: 3: 9	37.254	115.044	4.2	11 47	A	100	ω ₂	1	.34 1.21		12.4 8.60	
20	0:53:48	37.290	115.189	2.6	2 41	7.0	193	601		1.16	5	15.8 0 13	
20	0:00:31	37.244	115.329	4.0	4 844	4.1	210	COZ	1	.10 1.08		13.5	
20	/:19:30	37.243	115.020	1.2	7 60	~ ~	229	CDZ 1.1	93 O	.84 0.97	,	16.4 8 87	
20	8:15:45	36.876	116.720	8.2	1.00	4.4	209	BOZ 1.82		1.39		17.0 0.07	LOWER PAHRANAGAT LAKE
					v. 00	4.5	101	BCI 1.55		1.41		12 1 6 65	LOWER PAHRANAGAT LAKE
20	10:12: 1	36.735	116.292	A 3	A 04								AZ BARE MIN
20	18: 3:57	37.263	115.118	1.4	0.90	V.Z	95	ABI		0.67		2	
20	19:25: 0	37.244	115.666	2.0	10.71	2.3	172	CCZ	1	.51 1.15		4.4 0.14	19 STRIPED HILLS
20	19:28:11	37.283	115.131	4.1	7.00	4.5	212	BOI 1.37	1	96 1.24		12.3 0.0/	6 ALAMO SE
20	19:32:38	37.288	115 143	4.0	8.24	5.7	181	DOZ	1	.58 1 14		10.1 0.07	8 LOWER PAHRANAGAT LAKE
20	21:44: 1	37.238	115 015	4.5	10.73	1.4	188	COI	1	59 1 24		13.0 0.11	6 ALAMO
				2.0	4.45+		212	COZ	1	23 1 32		13.8 0.09	7 ALANO
20	23:21:52	36.321	118 601	• •					••	1.91		17.1 0.05	6 LOWER PAHRANAGAT LAKE
21	17:11:42	37 391	116 100	0.0	0.80	1.4	95	ABA 1.5	٩				
21	17:16:27	37 248	115.109	3.5	7.00	3.8	210	CD1	<b>•</b> 1	48 8 74		8.8 0.14	11 RYAN
21	18:42:45	37 260	115.013	0.5	0.02	0.3	209	ADZ		41 1 74		14.6 0.12	6 ALAMO
21	20:17: 1	36 934	113.062	2.5	9.27	3.3	191	807		41 1.04		17.8 0.04	8 LOWER PAHRANAGAT LAKE
21	22:26:35	37 242	117.562	0.5	5.11	3.1	186	BOT		51		15.0 0.08	8 ALAMO SE
		07.242	114.999	0.7	-0.27	0.9	214	ADT		1.70		19.7 0.12	18 DRY MTN
22	8:57:56	37 284							• •	-0		18.5 0.06	7 DELAMAR 3 MM
23	4:41:33	36 773	115.005	4.2	9.43	4.5	188	CD7					
23	5:21:38	36 744	115.351	1.0	1.21	4.0	184	807	•	0 1.01		15.3 0.16	8 ALAMO SE
23	5:31.13	17 141	115.272	1.8	3.16+		298	C07		1.72		45.2 0.17	16 DEAD HORSE RIDGE
23	5:32: 6	37 769	118.155	0.7	8,13	1.1	279	ADT		1.65		48.5 0.13	15 WHITE SAGE FLAT
23	11: 3:28	37 240	117.116	0.7	13.55	1.2	185	ADT	1.	- 1.97		23.9 0.08	14 +++QUAD, NOT LISTED.
			115.017	1.6	-0.83	1.1	231	807	•	2.05		24.4 0.05	7 MUD LAKE
23	12:55-44	37 268						001	1.4	•0 0.71		17.5 0.06	7 LOWER PAHRANAGAT LAVE
24	3-49-52	37 004	115.058	4.1	5.66	7.0	194	001					
24	6-38-13	37.034	115.151	0.5	-0.89	0.5	172	AC7	1.3			15.0 0.08	7 ALANO SE
24	15-14-55		115.338	2.5	3.94.		144		1.5	6 1.69		8.9 0.68	12 LOWER PAHRANACAT LANCE
24	21.55.45		115.924	0.9	9.22	2.2	239	207		1.68		18.6 9.09	5 BADGER SPRING
25	21.43.93	57.138	117.335	0.2	0.07	0.3	181			1.12		15.1 0.09	7 FRENCHMAN ELAT
	61.45:25	20.819	116.052	0.4	-0.11	A 5	174	ACZ 1.51		1.76	1.5	15.4 0.09	24 UREHERE CRATER
25 4	22.22.20					•.•	174	NC2		0.87		11.1 0.05	13 CANE SPOTUC
25 4	2123:30	0.752	115.540	0.5	11.57	2 🔺	147	001					in order orwing
28	3. 0.50	0.823	116.243	0.4	3.96	1 1	17/	001		1.70		25.1 0.09	10 TH SPOTNO
20	3: 8:58 3	57.244	115.030	2.3	5 18	1.J	134	A82		0.78		7.5 0.10	
20	1:39:17 3	7.093	115.157	0.3	-0.85	0.0	400 200	wi i	1.3	6 0.95		16.3 8.85	A LOWER DAVIDANCE
20 1	2: 1:59 3	7.244	115.022	6.6	A 29	4 4	400	AUZ	1.5	5 1.02		8.8 8.85	I LOWER DALEANAGAT LAKE
20 1	3:14:29 3	7.246	115.019	0.6	9.1.7 9 5.8	7.1	100	BUZ 1.90		-		16.9 A AG	B LOWER PATRANAGAT LAKE
			-		0.00	0.4	200	AUZ	1.6	8 1.81	,	17.3 0 04	O LOWER PAHRANAGAT LAKE
26 1	5:53:35 3	6.840	116.179	A 2	7 68					, in the second s			- LUMER PAHRANAGAT LAKE
26 2	1:6:21 3	7.251	115.025	A 7	7.00	0.3	69	AAZ 1.53 1.58		1.07	1.3	1 8 8 87 4	
				v.1	U. 90	0.7	205	ADZ 1.85		1.30	1	7.0 0.07 1	O SKULL MIN O ALAMO SE

.

۰,

#_{Pp}H^{ad}M

Hannan Ka

Hannaker Hannaker Hannaker

และเม่หม H<mark>arran Mart</mark> H

1 0 5 1 2 7 8 1

1989 LOCAL HYPOCENTER SUMMARY - SCB EARTHOUAKES

DATE	- TIME UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	0ЕРТН (Км)	STAND ERROR Z(KM)	AZI GAP (DEG)	QOD 12S MAGNIT Mcc	UDE EST	IMATES	MLc	DEL- RMS MIN RES. (KM) (SEC)	IN PH. U.S.G.S. QUADRANGLE
APR 26 26 26 26 27 27	21: 8:15 21:22:55 22: 0:15 22: 1:42 2:22:24 6:35:18	37.244 37.254 37.244 37.255 37.244 37.253	115.005 115.027 115.026 115.039 115.014 115.046	1,9 0,7 1,8 0,9 0,9 8,1	4.17 -0.52 0.91 -1.02 0.21 8.72	11.2 0.6 1.0 1.1 0.8 10.1	212 203 207 2 <del>00</del> 210 198	CDZ ADZ BDZ 1.71 ADZ 1.49 ADZ 1.27 DOZ	1. 1. 1.	44 1.43 55 0.94 1.28 1.36 38 1.29 27 1.24		18.2 0.08 17.1 0.08 16.6 0.10 16.3 0.05 17.5 0.07 15.7 0.09	8 LOWER PAHRANAGAT LAKE 9 Alamo Se 9 Lower Pahranagat Lake 7 Alamo Se 9 Lower Pahranagat Lake 5 Alamo Se
27 27 27 27 27 27 28	11:10:34 16:28:19 20:33:41 20:54:19 21:58: 3 7:38:10	37.260 37.149 36.527 36.344 36.758 35.768	115.051 115.266 114.913 114.964 116.251 116.574	3.2 2.4 0.4 0.8 0.4 1.5	11.47 -1.02 9.65 1.39 2.86 -1.02	2.8 1.4 2.3 2.0 0.4 1.2	194 164 175 162 178 266	CD1 BOZ BC1 2.02 ACZ ACZ BOZ 2.24	1.	26 1.26 1.58 2.33 1.72 8.44 1.74		15.7 0.11 7.3 0.06 22.3 0.09 25.1 0.06 2.5 0.08 34.3 0.12	8 ALAMO SE 5 DESERT HILLS NE 14 ARROW CANYON 7 DRY LAKE 10 JACKASS FLATS 13 CONFIDENCE HILLS
28 28 28 28 29 29	12:10:30 13:31:19 18: 0:13 21:50:34 6:20: 4 12:16: 7	37.436 37.872 37.258 36.382 36.778 36.636	118.202 116.021 115.063 114.901 115.995 116.254	2.1 0.2 2.4 1.3 0.7 0.2	2.85 6.07 6.91 -1.65 1.12 4.41	6.9 1.1 3.8 1.5 2.5 0.9	186 114 192 182 137 64	COI 1.60 1 ACZ BOI BOI BCZ ABI 1.88	.78 1. 2.	2.01 1.43 31 1.06 1.85 1.28 18 2.10		26.1 0.09 14.5 0.04 14.8 0.06 27.0 0.09 13.4 0.17 7.7 0.08	13 ••••QUAD. NOT LISTED• 12 REVEILLE PEAK 6 ALAMO SE 10 DRY LAKE 17 FRENCHMAN FLAT 27 STRIPED HILLS
29 29 30 30 May 1	13:36:52 15:33:45 22:47:47 8:29:32 8:54:43 1:33:23	37.848 36.637 36.729 37.365 36.849 37.350	115.482 116.257 115.900 114.914 115.969 115.566	0.6 0.3 0.4 1.0 0.2 0.2	11.75 4.75 -0.40 6.89 C.98 15.44	1.6 0.7 1.3 2.2 0.3 1.8	118 122 147 198 180 165	API ABZ 1.44 1 ACZ BOI ACI ACI	.27	0.87 0.94 1.25 0.69 1.56	1.3	17.7 0.08 7.4 0.08 8.9 0.09 13.0 0.05 12.0 0.04 43.3 0.03	8 24 STRIPED HILLS 12 MERCURY 7 DELAMAR LAKE 14 FRENCHMAN FLAT 7 GROOM RANGE SE
1 1 2 2 2 3	5: 6:49 11:36:47 0:45:49 9:59:31 14:49: 3 0:30: 9	37.160 36.570 38.292 37.275 35.998 37.255	116.328 115.975 116.515 116.139 114.733 115.039	0.3 0.3 2.5 0.5 2.0 4.8	5.08 3.96 0.37 0.91 0.55 9.47	0.5 2.0 2.3 1.0 2.3 3.9	66 151 262 75 2 <del>04</del> 222	ABI 1.51 1 ACZ 1.88 CDZ 2.42 BCZ 1.68 BOZ 2.26 CDI	.13 0.1 1.4	1.06 72 1.10 2.62 85 1.83 2.06 47 0.77	2.0 2.3	6.0 0.10 10.1 0.06 9.5 0.14 13.7 0.20 8.7 0.11 16.2 0.09	24 AMMONIA TANKS 13 MERCURY SW 13 GEORGES CANYON RIM S 20 GUARTET DOME 12 RINGBOLT RAPIDS 6 ALAMO SE
3 3 4 4 5 6	2:50:17 5:49:0 4:13:37 12:57:54 7:46:18 4:31:52	37.623 37.513 37.252 35.898 35.837 37.330	115.077 115.292 115.024 114.824 115.892 117.687	0.4 0.3 5.0 4.6 5.1 0.4	0.69 -0.84 10.85 11.49 2.51• 0.91	0.8 0.6 6.5 1.4 0.6	114 122 204 215 294 137	ACZ 1.64 CDI CDI DDI ACZ	.09 1.( 1.:	0.91 5 1.45 0.94 1.82 1.95 15 1.28	2.0	12.8 0.07 18.4 0.08 17.2 0.16 6.7 0.13 39.9 0.15 11.4 0.11	7 HIKO SE 12 MT IRISH 6 ALAMO SE 7 BOULDER CITY 11 HORSE THIEF SPRINGS 15 MAGRUDER MTN
6 9 9 9 9	4:49:49 6:16:60 12:24:57 20:43:43 23:30:29 23:35: 2	36.830 37.099 35.921 37.073 36.636 36.635	116.304 116.045 114.841 116.526 116.255 116.248	0.4 0.5 1.0 0.2 0.3 0.2	0.23 -1.70 -0.71 5.52 2.69 2.17	0.3 1.4 0.8+ 0.7 0.5 6.3	93 112 191 164 193 288	ABU ACZ BDI 2.19 ACZ ADZ 1.21 ADZ		1.05 1.29 2.23 1.15 0.69 0.45		3.9 0.06 11.4 0.12 7.7 0.05 13.1 0.04 7.6 0.05 8.3 0.02	9 JACKASS FLATS 18 YUCCA FLAT 19 BOULDER CITY 17 THIRSTY CANYON SE 11 STRIPED HILLS 8 SPECTER RANGE NW
10 11	14:12:39 2:39:48	37.289 37.883	115.147 116.017	10.8 0.3	0.01 1.81	2.0 1.6	19 <del>0</del> 117	DOZ ACZ 1.95	6.7	9 0.58	2.4	13.8 0.17 15.4 0.11	6 ALAMO 17 REVEILLE PEAK

117

1.

2 7 3 2 91051

1989 LOCAL HYPOCENTER SUMMARY - SCB EARTHQUAKES

	DA	TE - (U	- TIME TC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	QQD 12S MAGNITUDE Mca Md	ESTIMAT MLh 1	ES MLV MLO	DEL RA MIN RE : (KM) (SE	IS <b>(</b> N IS. PH IC)	. U.S.G.S. QUADRANGLE
	١Y	12 13 14 15 15 16	17:43:49 2:20:59 14:39:28 4:39:30 19:14:47 18: 7: 7	37.828 37.386 36.559 37.018 36.024 37.108	117.551 114.533 116.262 116.166 115.351 115.684	0.7 1.9 0.3 0.9 0.5 0.4	0.52 0.45 4.04 0.93 1.63 0.00**	0.8 1.5 3.8 0.7 4.3 0.7	185 284 94 238 177 125	ADZ 1.70 BOZ 1.91 BCA 1.78 ADZ BOU ACZ	1.91 2.28	1.90 2.31 8.67 2.01 1.59	20.4 0. 30.4 0. 11.8 0. 5.0 0. 54.9 0. 26.2 0.	12 19 06 11 07 13 09 14 09 12 05 11	SILVER PEAK ELIGN NE LATHROP WELLS SE TIPPIPAH SPRING BLUE DIAMOND SE FALLOUT HILLS SW
		18 18 18 19 19 19	2: 1:19 4:29:29 22:26:30 0:24:15 3:25:22 6:48:30	35.939 36.732 37.406 36.890 36.683 36.427	114.823 115.900 114.754 116.813 116.245 116.558	3.1 0.3 0.7 0.3 0.2 0.4	2.91 -0.13 -0.11 -1.13 6.49 -0.16	8.6 0.5 0.6 9.2 0.5 0.7	172 129 232 85 89 68	CCI ABZ ADZ 1.85 CCZ 2.02 ABZ BBZ	1.83 1.85	2.06 1.02 1.77 2.00 0.81 1.37	5.4 0. 9.0 6. 22.3 0. 19.6 6. 7.1 0. 8.0 9.	.04 8 .07 13 .07 12 .12 20 .06 18 .15 18	BOULDER CITY MERCURY DELAMAR BULLFROG SPECTER RANGE NW RYAN
		19 19 19 20 20 21	7:15:23 11: 3: 3 14:37:44 11:19:30 21:36:36 19:28: 1	37.286 37.215 37.254 37.127 37.255 37.813	116.343 117.293 115.050 116.393 115.073 117.711	0.2 0.2 1.0 0.5 1.5 1.9	1.39 8.39 2.97 9.17 3.00• -0.22	0.4 0.4 4.8 1.0 1.5	67 82 197 108 189 237	ABZ 2.42 ABZ 1.36 BOZ ABZ CD1 BOZ	2.11 1.66	2.30 2 1.53 1.22 0.54 1.03	.6 8.1 8 10.0 0 15.4 0 10.2 0 14.8 0 13.6 0	.67 21 .67 22 .68 7 .67 14 .69 5 .13 16	DEAD HORSE FLAT UBEHEBE CRATER ALAMO SE SCRUCHAM PEAK ALAMO SE SILVER PEAK
110		21 21 22 22 23 23	20: 6:35 23:53:53 6:22:55 15:54:46 1:11:38 4: 6:33	36.854 36.853 36.843 36.853 37.036 36.859	115.947 115.947 115.961 115.947 116.735 115.938	0.3 0.4 0.5 0.3 0.3 0.1	6.92 9.92 5.63 0.71 -0.88 8.37	1.5 1.4 2.5 0.5 0.5 0.5	129 100 89 129 98 159	ABI 1.85 ABA 2.58 BCA 1.73 ACZ ACI ACI 1.74		1.71 1 1.08 1 0.85 1.53	.8 13.8 13.8 13.8 13.8 13.8 12.3 13.2 0	.10 27 .11 21 .12 16 .09 20 .11 14 .03 15	FRENCHMAN FLAT FRENCHMAN FLAT FRENCHMANFFLAT FRENCHMAN FLAT THIRSTY CANYON SW FRENCHMAN FLAT
		23 24 24 25 25 25	17: 7:21 21:21:36 22:49: 5 14:46:23 16:28:13 3:35:57	36.341 37.507 36.661 37.293 37.394 37.243	114.848 116.532 115.764 116.430 117.909 115.008	7.3 0.6 1.4 0.1 6.8 2.7	7.00• 10.51 -1.32 1.40 7.00 0.00••	2.8 6.5 6.4 5.0 1.6	227 116 318 142 231 235	DOI 1.85 BCI BOZ ACI DDI 1.86 CDZ 2.22		1.87 1.37 0.94 0.92 1.79 1.22	33.4 1 29.2 0 5.5 0 12.8 0 3.5 1 18.0 0	.07 7 .13 13 .05 5 .03 16 .00 9 .10 8	DRY LAKE MELLAN MERCURY NE SILENT BUTTE SOLDIER PASS LOWER PAHRANAGAT LAKE
		26 26 26 26 26 26	3:41:21 3:48:15 6:28:55 6:43:39 10:13:38 13:37:51	37.248 37.322 37.341 37.260 37.305 37.422	115.013 115.219 117.003 115.044 115.189 115.209	1.5 1.7 0.3 0.4 11.7 0.4	-0.46 -1.46 -0.96 -1.23 7.00• 5.88	$   \begin{array}{r}     1.0 \\     1.4 \\     0.6 \\     0.2 \\     \hline     1.7 \\   \end{array} $	221 224 111 219 211 83	BOI 1.98 BOZ ACZ ADZ DOI ACZ 1.62	.30 1.51 0.68	1.58 0.98 1.13 0.90 1.32 1.84	17.8 0 17.3 0 23.0 0 16.2 0 15.1 0 14.1 0	.08 10 .11 6 .07 13 .01 5 .10 5 .07 9	LOWER PAHRANAGAT LAKE ALAMO SCOTTYS JUNCTION ALAMO SE ALAMO ASH SPRINGS
		26 26 26 26 26 26	14:37:35 14:38:24 16:48:14 19:57:41 20: 3:23 21: 8:33	5 37.420 4 37.421 4 37.307 1 37.422 5 37.421 5 37.255	115.220 115.209 117.761 115.209 115.214 118.191	0.3 0.4 0.4 0.4 2.3	0.81 7.19 -1.50 3.93 3.93 0.09	0.4 1.7 0.5 2.6 5.4 1.8	106 89 165 121 84 268	ACZ ABZ ACZ 1.79 BCZ 1.80 CCZ BOI	1.42 1.36	1.66 1.71 1.41 1 1.90	15.0 0 14.1 0 13.2 0 14.1 0 .8 14.5 0 31.5 0	.06 9 .05 8 .11 14 .04 9 .08 8 .13 16	ASH SPRINGS ASH SPRINGS SOLDIER PASS ASH SPRINGS ASH SPRINGS +++OUAD. NOT LISTED+
		27 27	0:25:35 4:21:58	5 36.572 3 37.228	115.219 117.603	0.4 0.5	12.58 6.45	0.6 0.8	140 140	ACI 2.07 ACI	1.50	2.08 1.14	8.6 0 3.9 0	.18 17 .88 11	HAYFORD PEAK LAST CHANCE RANGE

H_{at} H^{iss}H

и Иннании Иннании Иннании Иннании И

มูลสามมีหม H^{annanna}H

¢.

RTT

1989 LOCAL HYPOCENTER SUMMARY - SCB EARTHQUAKES

DATE - TIME (UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STANO AZI ERROR GAP Z(KM) (DEG)	QQD 12S MAGNITU Mco M	DE ESTIMATE d MLh N	ES Alv Mic	DEL- F MIN F (KM) (S	RAS (IN RES. PH. SEC)	U.S.G.S. QUADRANGLE
MAY 27 6:34:4 27 9:56:5 28 0:10:5 28 13:18:3 28 20:15:1 29 8:59:1	4 37.273 4 36.718 1 37.873 4 36.994 7 37.239 8 36.784	115.081 116.222 116.018 116.298 117.602 115.633	5.6 0.3 0.2 0.3 3.0	-1.25 0.67 5.59 2.66 10.86 0.55	1.2 202 0.4 95 1.7 115 0.4 112 0.3 178 2.4 264	DOZ ABZ 1.45 ACZ 1.4 ABZ ACZ CDA 1.	1.54 1.86 50 42	0.95 1.17 0.8 1.75 0.87 1.20	15.0 5.2 14.5 7.3 4.0 18.8	B.06 6 B.07 20 B.06 11 B.06 15 B.01 6 B.15 11	ALAMO SE SPECTER RANGE NW REVEILLE PEAK TOPOPAH SPRING LAST CHANCE RANGE QUARTZ PEAK SW
29 22:17:10 31 2:52:2 31 7: 3:11 JUN 1 7:45:4 1 11:25:3 1 17:22:4	37.055         35.909         35.926         237.204         36.785         737.233	115.236 116.743 116.750 117.573 115.650 114.792	0.4 1.7 1.0 0.5 0.3 1.5	5.11 3.26+ 0.12 4.81 0.24 13.52	2.0+ 138 	BCI 2.43 CDI ADZ 1.52 ACI 1.82 1. ADZ BDI	2.31 84 1.51	2.80 1.48 1.81 1.8 1.80 1.38 1.38	13.3 31.4 11.4 7.2 17.5 29.9	0.12 25 0.16 8 0.13 15 0.11 15 0.07 15 0.09 7	LOWER PAHRANAGAT LAKE CONFIDENCE HILLS WINGATE WASH LAST CHANCE RANGE QUARTZ PEAK SW DELAMAR 3 NE
2 4:45:4 2 6:45:5 4 18:46:1 5 20: 2: 5 22:33: 6 10:53:1	1 36.747 8 36.907 5 36.446 7 36.445 3 35.919 2 37.115	117.420 117.460 115.758 115.757 115.990 115.195	1.1 0.3 0.2 0.3 0.8 1.8	7.14 7.35 0.10 0.97 4.45 2.21•	0.6 228 0.6+ 169 0.4 93 1.2 93 6.2 234 206	BDZ ACZ ACZ 1.68 1. ACZ 1.81 CD1 1. CDA 2.	1.51 91 64 32	1.20 1.4 1.54 1.96 1.42 1.71	6.5 12.4 20.7 20.6 27.4 34.9	0.09 11 0.09 21 0.05 24 0.10 21 0.27 11 0.18 12	MARBLE CANYON TIN MTN MT STIRLING MT STIRLING HORSE THIEF SPRINGS LOWER PAHRANAGAT LAKE
6 17:53:3 6 22:52:3 7 7:33:4 7 10:11: 7 14: 3:2 8 12: 6:4	6 36.218 7 36.786 8 36.706 4 36.935 4 37.151 4 37.232	115.490 118.085 116.276 116.760 117.840 114.969	5.6 8.4 8.3 8.2 9.5 1.2	8.21 2.25 0.20 0.00++ 7.33 7.25	2.4 289 0.6 157 0.2 122 0.3 140 1.6++238 1.8++228	DOI ACZ A3Z ACZ ADI BOI 2.56	1.99	1.01 0.96 0.53 0.23 1.52	14.3 18.6 4.1 19.4 19.4 20.6	0.21 7 0.07 15 0.08 17 0.06 13 0.05 12 0.09 10	LA MADRE MTN CANE SPRING STRIPED HILLS BULLFROG WAUCOBA SPRING DELAMAR 3 NW
8 12: 6:4 8 15:36: 9 16:47:1 10 10:27: 12 1: 6:5 12 1:59:1	2 38.063 7 37.167 5 36.379 7 36.694 4 37.866 7 36.451	116.885 116.587 117.046 115.745 116.134 115.745	0.7 6.4 6.5 6.9 1.0 6.4	5.65 7.05 12.17 -0.29 2.57 8.46	8.6 192 0.7 178 0.6 126 0.4 212 7.6 159 1.5 148	CD1 2.47 AC1 AB1 AD2 1.66 CC1 AC2	1.84	2.62 1.03 1.42 1.3 1.64 1.49 1.31	43.7 12.5 5.2 5.8 20.8 20.8	0.13 19 0.09 14 0.10 15 0.12 20 0.15 7 0.09 13	BLACK BUTTE THIRSTY CANYON NE ENIGRANT CANYON INDIAN SPRINGS NW REVEILLE PEAK CHARLESTON PEAK
12 20:23: 14 15: 9:1 14 18:56:2 14 19:52: 15 3:14:1 15 16: 5:4	1 37.865 7 37.251 8 35.964 8 36.912 5 35.788 7 36.172	116.138 115.226 115.212 115.986 116.653 115.558	0.3 0.4 1.5 0.4 1.6 2.2	1.50 7.69 -1.54• -0.65 9.26 8.00•	$\begin{array}{cccc} \textbf{0.7} & \textbf{107} \\ \textbf{1.0} & \textbf{121} \\ \hline & \textbf{184} \\ \textbf{0.5} & \textbf{125} \\ \textbf{8.5} & \textbf{265} \\ \hline &  & \textbf{221} \end{array}$	ACZ 1. ABZ CDZ 2.11 ABZ CD1 CDZ	47 1.34	1.55 1.47 2.63 1.15 1.16 1.31	20.9 9.8 41.5 6.5 27.5 51.4	<ul> <li>e.e5</li> <li>e.t2</li> <li>t4</li> <li>t0</li> <li>e.e5</li> <li>t6</li> <li>t6</li> <li>t6</li> </ul>	REVEILLE PEAK ALAMO SLOAN PLUTONIUM VALLEY CONFIDENCE HILLS MOUNTAIN SPRINGS
15 16:22: 15 18:47:2 16 4:29:3 16 11:23:2 16 12:30:5 16 14:33:2	i1 36.798 2 36.765 36.802 29 36.979 36 36.844 22 37.011	116.080 116.164 115.730 115.127 116.269 117.920	0.4 0.2 2.0 0.7 0.3 1.7	0.12 8.07 1.80 13.07 10.57 0.00+0	8.4       197         0.5       125         2.0       264         1.8       138         0.4       62         1.6       245	ADZ ABZ BOU BCI 2.27 AAZ 0 BOZ 1	.92 .46	0.66 0.62 1.39 2.10 2.3 0.71 1.51	10.1 10.0 14.0 3 21.7 4.8 34.6	e.67 13 e.65 18 e.12 7 e.17 21 e.68 29 e.14 18	CANE SPRING SKULL MTN QUARTZ PEAK SW MULE DEER RIDGE NW JACKASS FLATS WAUCOBA SPRING
17 7.28:2	6 38.078 7 37.267	116.906 116.165	1.0	3.44+ 1.32	184 191	CDA 1. ADA 1.	.84 .21		44.6 15.3	0.15 12 0.05 4	BLACK BUTTE QUARTET DOME

2

119

N₁₁₂H²¹⁴N Numburka

и Иннини Иннини Иннини Иннин

**Н**ана<mark>йна</mark> Н<mark>айлани</mark>н

••

• •

91051 2 9 3 4

1989 LOCAL HYPOCENTER SUMMARY - SGB EARTHOUAKES

					STAND		STAND	AZ1	000						DEL-	RMS	<b>PN</b>	
		****			FRROR	DEPTH	ERROR	GAP	125	MAGNI	TUDE	ESTIMA	TES		MIN	RES.	PH.	, U.S.G.S.
	DATE		(DEC N)	(DEC W)	H(KM)	(104)	Ξ(KM)	(DEG)		Mca	Md	MLh	MLv	MLc	(104)	(SEC)		QUADRANGLE
	(ປ	TC)	(UEG. N)	(020. #)		()		<b>,</b> ,										
						_A 24	1.2	239	BDI	2.32		2.35	2.30		- 31.4	f 0.11	-15	LEACH LAKE
J	UN 18	5:16: 4	35.741	110.000	1.5	1 91	Å 0	118	AC7			_	1.04		14.3	0.65	9	YUCCA FLAT
	19	4:36:45	37.057	116.025	0.5	1.01		1	AC7				1.02		13.0	0.05	20	LATHROP WELLS SE
	19	13:40:38	36.543	116.269	0.2	0.40	0.5	101	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			1 44		1 5	26		5	HANCOCK SUMMIT
	20	5:58:54	37.393	115.354	4.9	-1.02	5.0	203	- 002			1.77	1 00			7 8 12	15	DELAMAR 3 NE
	20	10.1.13	37.211	114.839	0.9	1.74	3.7	225	BOI	2.14			1.88	2.0	20.		25	LA MADRE MIN
	20	14.47. 1	36 201	115.397	0.2	16.51	0.6	145	ACI	1.80			1.93	1	<b>Z</b> 1.	0.00	20	
	20	14:42: 1	00.201															ACTA LODGE FLAT
				116 354	<b>A A</b>	7.68	1.1	281	ADI				1.06	<b>,</b>	12.	2 0.11	12	DEAD HORSE FLAT
	20	20: 2: /	37.322	110.334	a 6	4 20	10 A	149	CCZ				1.12	2	20.	8 8.64	6	BADGER SPRING
	20	20: 3:35	37.283	115.301	0.5	9.20	3 7	187	CD7			1.63	0.97	1	14.	3 0.10	) 7	alamo se
	21	1:18:46	37.260	115.074	2.8	0.01	3.7	+77	007	;		1 61	6.92	,	13.	7 0.13	57	ALANO SE
	21	1:31:30	37.267	115.094	9.3	11.65	4.9					1.01	1 81		13.	2 8.07	7	HIKO NE
	21	2:18:37	37.728	115.051	0.4	8.74	1.3	121	A02				4 77		41			ANACHAD, NOT LISTED.
	21	5.39.26	37.385	114.367	1.7	15.02	3.8	321	901			1.01	1.75	,		• •.•		
	41	3.33.21	07.000											_				DCI ANAD T NW
				114 804	3.1	14.18	5.74	+ 253	C01	1			1.19		26.	1 0.0		DELAWAR 3 M
	22	4: 7:4	5 37.1/4	114.372	Å 2	11 88	0.4	77		Z 1.88			1.80	B	2.	3 8.0	7 28	BUCKBOARD MESA
	22	19:38:4	7 37.018	110.3/2	0.2	3 744		3/1	<b>CD</b>	1			1.91	9	86.	2 0.1		BOULDER CITY
	23	4:47:3	3 35.893	114.788	2.4	3.744		215	001	• 1		1.47	1.8	5	12.	1 0.1	1 (	ASH SPRINCS
	23	14:50:2	9 37.382	115.184	0.0	13.00	4.0	213	40	• •		••••	1.5	5	32.	6 8.8	1 5	ELGIN
	23	17:45:2	6 37.333	114.599	0.2	-1.25	0.2	273		1 7 68			2 8		4	7 8.8	5 7	BOULDER CITY
	23	28. 9:1	7 35.911	114.805	1.8	10.19	1.5	221	80	1 2.00			2.0	•			•	••••
														-				A A A A A A A A A A A A A A A A A A A
		E . 47.5	A 17 759	118.254	2.4	3.54+		314	CD	Z 1.95	•		2.3	,	40.			CTIVER KING WIN SW
	24	3:47:5	4 19 474	114 985	2.9	0.26	2.7	235	CD	Z			1.4	4	_ !/		2 4	
	25	1:57:2	0 30.024	117 348	A 3	1.78	0.8	99	- AC	7			1.3	5 1.	5 14	1 0.0	0 1	
	25	3:26:1	9 37.195	117.340	A 8	7 28	2.94	239	80	1 1.69	1	1.86	1.9	1	19.	7 0.1	0 1:	Z WAUCUBA SPRING
	25	5:45:3	4 37,135	117.031	0.0	9.73	A 6	116	AR	7			0.6	71.	4 9.	.1 0.0	4 1:	2 MARBLE CANYON
	25	23:23:5	9 36.727	117.204	6.3	0.72	2.0	284	<u></u>	ĩ			2.2	1	70	.1 0.1	2 1	3 ***QUAD. NOT LISTED*
	27	17: 4:5	8 36.519	114.378	3.3	-1.22	4.4	204	00	•								
									40	7			.7	8	12	.3 8.8	5 1	B HIKO NE
	27	19:25:4	6 37.717	115.050	0.2	7.36	1.0	118	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4				Ř	18		21	WALLCOBA SPRING
	28	0.3.4	1 37.146	117.826	1.1	2.62	5.3	212	cu	4				ž			ā 's	INFHERE CRATER
	20	14.40.5	5 37 227	117.396	0.7	10.09	0.9	169	AC	Z		1.01	1.0					DIACK BUTTE
	40	07.15.	7 18 861	116.892	0.5	0.97	0.5	197	- AD	Z 1.96	5		2.2	1 2.	2 49			
	20	23:15:	7 16 709	116 252	0.3	1.58	0.9	77		z		2.31	0.8	6		.2 0.4	<b>N</b> 1-	S SIRIPED HICES
	29	1:35:3	30.700	115 010	2 3	0.00	1.9	211	BO	1			0.8	15	17	.8 0.1	1	6 LOWER PAROMONAL CARE
	29	) 7:12:	1 37.245	115.010	2.0			-									_	
					1 4	a <2	1.0	211	80	1		1.21	0.7	'8	18		15	5 LOWER PAHRANAGAT LAKE
	29	) 7:22:2	2 37.245	115.009	1.0	U.JO 1 66.		150	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7			1.3	le l	- 31	.5 0.1	5	7 DOG BONE LAKE SOUTH
	29	) 7:40:3	50 36.788	115.478	9.5	3.30		105	- X	7			0.6	8	4	.6 0.6	12 1	1 STRIPED HILLS
	29	22:37:4	4 36.703	115.290	6.3	7.61	0.4	123	~~~~	·	1 2	٥	1 4	11	15	.3 0.0	7 1	3 UBEHEBE CRATER
	.00 3	18:49-1	2 37.197	117.371	0.2	-0.15	0.4	105	<u>,                                    </u>	/L	1.2	a		10	1	RAG	1 8	4 JACKASS FLATS
	VVL (	10.22.	39 36.752	116.285	0.3	8.05	0.5	127	AB	32			0.0				12 1	7 STRIPFD HILLS
		10.51.	19 16 748	116.262	0.5	1.33	0.5	101	AE	3Z 1.44	4		1.8	50	•			
	1	1 13:00:0																A TANCLE RIDGE
				115 881	0.5	0.83	0.9	151	AC	Z	1.6	1	1.3	54	12	.Z 0.		A LATIONO WELLS SE
		2 5:42:	51 37.213	116 111	Å 2	5.79	1.2	120		CZ 1.6	1		1.2	28	15	.9 0.0	<b>75</b> 2	TAINKUP WELLS SE
		2 19: 2:	50 36.504		a 🤉	2 74		RR	A	3Z 1.5	9 1.1	7	1.5	54	6	.7	68 2	Z SPRINGUALL
		2 22:44:	58 37.034	110.990	0.4	4 64	τ.	204	. Pr	1 1.6	6 1.3	14	1.3	36	16	.6 0.1	86	9 LOWER PAHRANAGAT LAKE
		3 3:40:	49 37.248	115.027	1.1	4.50		1. 241	5		0.9	5 1.3	8 1.	18	15	.4 0.	11	6 BADGER SPRING
		3 10:40:	48 37.294	115.262	4.5	11.11	5.0	T 491		7 4 9	<b>a</b> 1 4		1	87	17	.8 0.	88 1	e TWIN SPRINGS SLOUGH
		4 4:58:	33 38.216	5 116.234	0.5	Z.75	3.1	194	- 54	1.0	0 1.0							
														12	12		88 2	2 PAIUTE RIDGE
		4 R 7.	5 37,009	115.959	0.3	5.61	1.3	5 173	<b>A</b>	<b>41</b>	1.4			14	14	2 0	AR .	& PATUTE RIDGE
		- 0.7. 4 8.94.	12 37.01	115.937	0.8	3.56	•	- 248	) CI	DZ 2.0	5 1.2	(10		80	31			

 $\cap$ 

120

N_{H B}HH

Hummitte

#unnii Hu . H<mark>annin</mark>H H⁰⁰⁰¹²⁰⁰²¹H

21031 2 9 3 5

1989 LOCAL HYPOCENTER SUMMARY - SGB EARTHOUAKES

DATE · (U	- TIME TC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125	MAGN Mco	I TUDE Md	ESTIMA MLh	TES MLV	MLc	DEL- MIN (KM)	RMS RES. (SEC)	∦N PH.	U.S.G.S. QUADRANGLE
JUL 4 5 6 8 8	8:28:13 13:50:22 0: 5: 3 3:19:48 8:34:18 8:34:18	37.005 37.121 37.307 37.244 37.271 37.249	115.968 116.354 116.365 114.997 115.083 115.009	0.3 10.2 5.3 0.7 1.9 0.5	4.29 -0.47* 6.13 -1.40 0.45 -0.31	1.9 6.1 0.6 1.3 0.4	132 330 255 214 180 209	ACZ DDA DDU ADZ BC1 AD1	1.36	1.18 0.89 1.16 0.89	0.90 1.30	1.12 1.27 1.08 1.26 0.89		11.2 10.9 10.9 18.7 14.0 17.0	2 0.10 0 0.21 0 0.11 7 0.09 5 0.11 5 0.05	21 7 9 6 7 5	PAIUTE RIDGE BUCKBOARD MESA DEAD HORSE FLAT DELAMAR 3 NW ALAMO SE LOWER PAHRANAGAT LAKE
9 11 11 11 12	3:42:24 3:54:29 15:41:35 18:46:10 0:30:31	37.337 37.290 38.153 36.705 35.934	116.363 116.413 117.904 116.196 116.918 116.403	2.1 0.5 3.4 0.6 0.8 0.3	9.01 -0.21 3.31• 6.30 6.95 5.65	1.4 0.6 1.8 0.7 1.0	267 226 318 140 288 90	BOI ADZ CDA ACI ADI ABZ	1.46 0.99 1.28 1.64	3 1.26 1.35 1.91 1.05 3 1.38 4 1.53	1.52	1.18 1.16 0.72 1.10 1.29	1.3 1.2	14. 11. 49. 8. 5.	1 0.08 5 0.05 4 0.20 0 0.11 5 0.05 8 0.05	8 16 9 7 25	DEAD HORSE FLAT SILENT BUTTE ROCK HILL SPECTER RANGE NW WINGATE WASH SILENT BUTTE
12 12 13 14	10:38: 6 22:18:49 0:25:58 0:40:18 3:37:44	37.559 38.349 38.943 36.863 37.048	115.743 117.325 116.840 117.776 116.466 116.419	0.7 2.6 6.5 0.6 0.2 0.2	0.55 2.12 5.96 7. <del>00</del> 9.27 0.96	1.5 3.4 3.3+ 4.2 0.7 0.3	97 249 283 245 1 <del>00</del> 57	887 C01 001 801 A81 ACZ	1.1 2.0 1.2	7 1.29 7 2.03 1.75 8 1.34 1.08 6 1.64		1.24 2.35 1.72 0.80 1.65	0.9	9. 72. 139. 33. 7. 24.	5 0.17 2 0.19 2 0.16 8 0.05 2 0.05 5 0.05	11 13 13 13 13 14 28	TEMPIUTE MTN SAN ANTONIA RANCH ***QUAD. NOT LISTED* WAUCOBA WASH TIMBER MTN SILENT CANYON NW
15 15 16 17 17	0:13:49 9:51:59 5:19:53 0: 9:45 1: 3:29	37.442 37.595 37.466 37.512 37.200 37.200	115.312 114.740 117.574 115.108 117.399 115.041	0.5 2.0 0.4 0.3 0.2 0.5	0.00 4.31 1.49 4.38 -0.18 0.39	1.0 2.0 1.8 2.7 0.3 5.4	94 226 80 133 111 200	ACZ DOA ABI BCZ ACZ ADZ	1.8	3 2.04 1.68 1.63 2 1.64 1.41 5 1.62	1.25 1.21 1.77	2.83 1.87 1.49 1.17 1.20	i 1.9	23. 1. 7. 12. 16. 15.	5 0.09 2 0.51 2 0.13 8 0.05 8 0.05 9 0.06	) 12   5 5 16 5 16 5 16 5 16	HANCOCK SUMMIT CHOKECHERRY MIN MAGRUDER MIN HIKO SE UBEHEBE CRATER ALAMO SE
17 18 19 19 19 20	22:56:20 9:21:11 18:24:10 20:28:24 4: 9:11	37.232         8       38.762         1       36.970         8       37.178         4       37.290         9       36.771	117.108 117.517 117.242 116.406 115.816	2.2 0.5 0.2 1.2 0.5	3.66 1.45 9.74 4.58 6.24 6.84	1.3 1.3 0.4 3.6 0.9 1.4	276 174 120 174 173 228	801 ACZ AB1 BCZ ACJ	1.5	2.21 0 1.42 1.11 1.39 1.62 1.13	0.92 1.24 1.43	2.30 1.25 1.10	9 5 9	120. 15. 13. 11. 8. 6.	3 0.07 5 0.10 7 0.03 2 0.15 6 0.05	7 8 9 11 3 7 5 10 9 11	B 000QUAD. NOT LISTED DRY MIN BONNIE CLAIRE NW SILENT BUTTE FRENCHMAN LAKE SE MERCURY
20 20 20 21 21 21	10: 2: 4 23:39:1 23:51:5 0:55: 12:54:3 13:34:3	5 36.717 1 36.852 5 37.153 5 36.442 0 36.778 0 36.772 1 8 772	115.940 117.395 116.995 118.257 118.257	0.3 0.3 0.4 0.3 0.6 0.7	9.74 2.91 12.16 4.62 9.60 2.80	0.6 2.2 0.7 1.9 0.6 1.4	195 110 117 89 74 72	AD2 BC2 AB1 AC2 BA2 AD2	2 2 1.5 1 1.7	1.40 2 1.44 9 1.55 2.23 1.20 1.20	5 5 5 5 2	0.87 1.11 1.6	7 9 3	13. 17. 10. 11. 3.	5 0.0 6 0.0 8 0.1 1 0.0 6 0.1 4 0.1	5 14 5 10 5 20 5 10 5 10 5 10 2 10	FRENCHMAN FLAT BUBEHEBE CRATER FURNACE CREEK JACKASSFFLATS JACKASSFFLATS JACKASSFFLATS
21 21 21 22 22 22 22	13:35:1 22:24:4 23: 1:4 11:10:3 13: 4:4 13:27:	1 37.149 0 36.773 8 37.255 8 37.473 3 37.473 1 37.473	117.821 116.248 114.991 117.260 117.253	0.5 0.3 2.7 0.3 0.2 0.2	5.46 1.32 10.36 0.80 0.55 0.55	2.0 0.9 4.5 0.4 0.3 0.4	234 58 211 133 91 91	80 AA CD AC AC	I 1.5 Z 2.1 I Z 1.1 Z 1.1 Z	ig 1.39 6 2.13 1.23 1.23 1.40 6 1.33 1.60	2 2.63 2 1.48 6 1.53 3 1.55 6 1.60	1.2 0.9 1.3 1.5 1.4	7 7 9 9	18 4 17 19 19 19	.1 0.0 .0 0.1 .7 0.1 .0 0.0 .1 0.0 .2 0.0	8 1 1 3 1 6 1 5 1 5 1	3 WAUCOBA SPRING 9 SKULL MTN 6 DELAMAR LAKE 8 MOUNT JACKSON 5 MOUNT JACKSON 2 MOUNT JACKSON
22 22 22	13:27:4 14:47:2 20:47:4	2 37.473 1 37.269	117.253 116.374	0.2 0.5	0.72 5.76	8.4 8.7	91 188	AC AD	Z 1.2 Z 1.6	22 1.5	2 2	1.2 1.0	4 5	19 7	.1 0.0 .6 0.0	51 81	2 MOUNT JACKSON 6 DEAD HORSE FLAT

121

H_{U H}H^{HII}H

Hummiller

**H**earson Hea

9 1 0 5 1 2936

1989 LOCAL HYPOCENTER SUMMARY - SCB EARTHQUAKES

DATE - TIME (UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM) (	AZI GAP DEG)	QOD 12S MAGNITUDE Mco Md	ESTIMA MLh	TES MLV M	Lc	DEL- MIN (KM)	RMS RES. (SEC)	PH.	U.S.G.S. QUADRANGLE
JUL 23 2:30: 23 21:50: 24 15: 2: 24 16: 6: 24 20: 4: 25 12:32:	38       37.552         60       36.546         37       37.294         57       37.253         55       37.010         39       37.231	116.071 116.357 116.407 116.649 117.539 117.603	0.8 8.2 2.5 0.3 0.6 0.4	1.80 9.79 -1.30 0.26 8.81 7.54	6.0 0.9 1.2 0.2 2.6 0.5	105 96 231 112 172 134	CCZ 1.56 ABI 1.37 1.36 CDU ABZ 1.36 1.54 BCI 1.33 ABZ 1.18 1.32	0.90 1.11	1.85 0.97 1.16 0.87 1.34 1.34		25. 11. 11. 4. 17. 3.	4 0.17 2 0.06 5 0.05 4 0.05 2 0.06 8 0.07	11 17 5 11 6 13	BELTED PEAK LATHROP WELLS SE SILENT BUTTE BLACK MTN SW LAST CHANCE RANGE LAST CHANCE RANGE
26 0:52: 27 3:23: 27 4:16: 27 4:16: 27 11:46: 27 13:56:	31         37.250           15         38.700           39         37.023           40         37.017           53         36.650           50         37.233	115.032 116.306 116.379 116.375 117.157 116.065	0.9 0.6 0.2 0.5 0.5	-0.56 8.82 10.84 10.62 7.32 7.07	1.0 0.7 1.4 0.3 1.4 0.9	203 151 116 72 98 77	ADZ 1.72 1.51 ACZ 1.17 1.11 ABZ AAI 1.78 1.18 ABZ 1.13 1.36 AAI 1.41		1.39 0.59 0.91 1.26 1.05 1.23	1.5	16. 6. 1. 2. 16. 5.	5 0.07 5 0.08 5 0.03 2 0.06 8 0.08 7 0.12	8 14 6 25 13 11	ALAMO SE STRIPED HILLS TIMBER MTN TIMBER MTN STOVEPIPE WELLS OAK SPRING
29 3:32: 29 11: 1: 29 20:38: 29 23:36: 30 8:10 40: 1 9:15	55 36.695 29 37.280 39 37.206 31 36.668 26 37.191 52 37.828	116.296 115.307 117.333 116.408 117.795 115.156	0.2 0.3 0.4 0.6 1.2	0.13 0.00** 6.33 6.65 0.68 4.15	0.2 0.9 0.8 0.7 5.2	154 279 68 131 196 199	ACZ 1.10 ADZ 1.14 ABI 2.12 1.85 ABI 1.35 1.65 ADI 1.36 1.56 COZ	2.32	0.54 1.20 2.35 1.05 1.52 1.03		6. 16. 12. 6. 13. 9	8 0.04 3 0.01 5 0.07 6 0.07 9 0.09	11 37 19 7 13 3 13 3 7	STRIPED HILLS BADGER SPRING UBEHEBE CRATER LATHROP WELLS NW WAUCOBA SPRING SEAMAN WASH
3 16:45 3 18:44 3 18:45 3 19:11 3 21: 8	24 37.421 44 37.262 17 37.284 47 37.006 2 36.773 58 36.773	116.580 117.585 117.568 115.968 116.261 116.261	0.4 0.7 0.3 0.4 0.4	-0.35 10.42 -1.41 6.14 1.82 3.74	12.0 1.2 0.3 0.9 0.9 0.8+	132 157 83 132 73 69	CCA         1.81           ACZ         1.22           ABZ         1.24           ABZ         1.61           AAZ         1.33           AAI         0.87	9 7 3 8 3 9 0.71	1.11 1.63 1.56 1.33 0.96	1.7	15 6 9 11 2 3 3	.4 0.05 .4 0.05 .0 0.04 .2 0.10 .5 0.11	9 6 5 8 4 10 9 21 1 17 2 19	BLACK MTN NE MAGRUDER MTN MAGRUDER MTN PAIUTE RIDGE JACKASS FLATS JACKASS FLATS
4 4: 5 4 5:50 4 9:26 4 19: 5 4 23:16	:21 36.777 : 5 36.771 : 3 36.770 : 6 37.202 :22 37.005	115.644 116.264 116.258 116.724 115.958	0.3 0.4 0.4 4.8 0.5	-1 23 3.84 2.31 7.00• 0.60 6 24	0.8 0.8 0.7 	131 72 88 127 156 116	ACZ 1.54 1.4 AAI 1.22 1.1 AAZ 1.04 1.0 DGI ACZ ABI	3).20 2 4	1.38 0.42 0.82 0.70 0.63 0.63		17 3 12 22 3	.5 0.0 .2 0.1 .3 0.1 .4 0.7 .2 0.1 .9 0.1	6 18 2 15 1 13 6 9 2 12 0 12	QUARTZ PEAK SW JACKASS FLATS JACKASS FLATS THIRSTY CANYON NW PAIUTE RIDGE JACKASS FLATS
4 23:51 5 2:39 6 10:10 6 22:20 7 3:17 7 7:39	:43 36.776 :10 37.243 :33 36.769 :38 36.775 :0 37.275 :51 37.297	115.025 115.262 116.252 116.462 116.4510	5.2 6.4 6.5 2.0 1.9	4.84• 3.69 1.48 8.29 3.10• 2.42	1.7 1.6 2.8 0.5	208 118 76 300 346 300	DOZ 1.56 ABZ 1.1 AAZ BOA 1.4 CDA 1.3 DDA 1.4	1.40 0 3 9	1.18 0.26 0.63		16 3 4 14 31	.5 0.1 .0 0.0 .0 0.0 .1 0.0	4 ( 8 1) 9 13 6 ( 7	S LOWER PAHRANAGAT LAKE JACKASS FLATS JACKASS FLATS SILENT BUTTE 7 TRAIL RIDGE 7 TIMBER MTN
7 7:43 7 8:48 7 15:22 8 15:53 9 6:14 10 13:2	3:15 37.165 2:19 37.311 3:8 37.262 4:14 37.457 1:49 37.259	116.309 116.494 115.071 114.586 115.047	2.1 0.8 2.5 0.8 4.0	2.07 4.95 9.02 9.68 6.33 2.65	6.6 2.5 2.4 1.7 8.5 4.8	143 225 187 301 196 309	CCA 1.6 BOZ BOZ ADI CDZ 1.6 BOI	8 1.44 1.38 8 1.05	0.56 0.60 1.46 0.96 1.82		8 13 14 21 15 75	3.3 0.1 5.2 0.1 5.6 0.0 5.9 0.0 5.5 0.1	9 10 11 04 03 09 19 1	8 SCRUCHAM PEAK 1 SILENT BUTTE 6 ALAMO SE 6 ELIGN NE 5 ALAMO SE 1 RIDGECREST
10 14: ( 11 4:3) 11 5:1	5:33 35.721 2:46 37.150 7:9 37.303	117.820 117.820 116.448	9 0.6 9 0.2	5.87 1.33	1.7 0.7	210 139	AD1 1.1 ACZ 1.82 1.3	74 1.57 32	7 1.34	1.	17 3 14	7.9 0.0 1.8 0.0	99 1 97 2	4 WAUCOBA SPRING 1 SILENT BUTTE

H_{arphin}y Manadaha

9 1 0 5 1 2 9 3 7

1989 LOCAL HYPOCENTER SUMMARY - SCB EARTHQUAKES

.

.

Å.

					_			471	000						DEL-	RMS	₽N.		
					STANO		STANU	ALI	126 14	IT LICE	DF F	STIMAT	ES		MIN	RES.	PH.	U.S.G.S.	
	DATE -	TINE	LATITUDE	LONGITUDE	ERROR	DEPTH	ERROR	GAP	123 8			MIN	MLV M	ILc	(101)	(SEC)		QUADRANGLE	
	UNIC -	/	(DEC N)	(OFG. W)	H(KM)	(KM)	Z(104)	(DEG)	M	C0 M									
	(010	)	(000. 11)	(000)		•••									15 2	8 85	14	SILENT BUTTE	
					a 2	8 83	0.3	125	ACZ 1	.59 1	. 42		1.22			0.00	1	PANDOC SPRING NE	
1	WG 11	5:35:40	37.306	110.400	0.4	1 00		158	ADI	Θ.	. 94		0.84			0.00		EVANI	
	11 1	0:41:10	37.672	114.872		3.00		194	AD7	1.	. 21		0.79		15.3	9.00		RTAN	
	11 1	8:21:15	36.489	116.604	0.6	7.59	1.5	107	007	•		1.47	0.62		- 14.4	9.00	7	ALAMO SE	
		0.28.45	37.259	115.071	2.1	11.42	1.9	109	002		A7	••••	0.75		20.2	0.07	7	CHARLESTON PEAK	
		5.20.40	18 440	115 746	0.4	12.63	1.4	175	AGI		. 02		1 06		22.7	0.85	7		
	12	5:31: 2	30.440	116 330	0.5	3.13+		185	CDZ				1.00						
	12 1	7: 7: 5	37.942	110.000	•.•										20 0		17	INFHERE CRATER	
							8.2	110	ACZ	1	. 22	1.15	1.10		20.0			WALLCOOR SERING	
	13	7:13:35	37.179	117.431	0.2		1 8+*	1 224	ADI	1	. 62	1.54	1.30		17.1	0.10			
	13	8: 4: 8	37.148	117.616	9.5	0,40	4 4 4	248	807	1	. 60		1.52		37.5	0.05	11	ELGIN	
	14	8:14:22	37.306	114.541	1.2	0./4	1.1	008	001	1	23		1.30		- 17.0	5 9.05	6	CALIENIE	
	15	7.53. 2	37.506	114.583	2.4	13.17	2.9	200	001	•		1 89	1.30		26.1	0.17	7	DELAWAR 3 NE	
	13	7.60. 2	17 217	114.848	2.3	4.52+		243	<u>uu</u>		20		1 13	1.2	5.1	0.0	11	COLD POINT	
	10	2:52:23	37.207	117 319	0.5	6.13	0.8	75	<b>M</b> I	1	. 29			•••	•••				
	16	3:21:20	37.201	117.010	••••										10	1 A.1	7 13	TRONA	
						2 58	8.0	263	COU	1.67		1.82	1.70			5 U.I.		TRONA	
	16	3:40:50	35.975	117.303	2.0	A 68	1.5	26.8	BOZ	2.00			2.22		- <b>30</b> .			MANYARE ELATE	
	16	3:44:27	7 35.984	117.294	1.0	0.00		04	ABZ				0.13		5.	2 . 1	2 12		
	16	6:18:56	36.825	115.266	0.5	0.31	0.0	105	401	•	. 67		1.73	-1.8	3 19.	4 0.0	1 9	ELIGN NE	
	14	20.22.41	37.487	114.577	0.2	8.73	0.4	305	~	•			1.15		10.	7 0.8	2 16	FURNACE CREEK	
	10 .	7. 0.80	36 309	116.776	5.7	7.00+		143	0.1				0.52		8.	5 0.0	5 11	LATHROP WELLS NW	
	17	7: 9:51	38 712	118 435	0.6	7.19	0.8	274	ADZ.		0.01		•			•			
	17	A:27:26	0 30.712	110.400											19		7 7	ELIGN NE	
					1 2	0 00	2.2	286	BOI	1	1.43		1.52				é 7	THIKO NE	
	17	10:48:3	3 37.498	114.5/4	1.4	a 00	A .A	114	AC7	1	1.16		1.09					CONTINENALE	
	18	6:59: 4	8 37.694	115.050	0.4	0.00	A 7	80	ACZ	1	1.15		1.02		13.	<b>* •</b> .•		SPRINGUALE	
Η.	18	7:48:4	9 37.076	116.941	0.3	1.72	0.7	100	ADT	2 82		2.24	2.00		17.	9 0.0	3 14	ELION NE	
<u>~</u> .	18	11.11:2	9 37.496	114.590	0.3	8.00	0.0	200	607		1 29		1.34		8.	1 0.1	8 10	TEMPIUTE MIN	
	10	17.33.3	1 37.537	115.687	0.8	8.68	1.1		004			2 32	2.32		15.	3 0.1	2 2'	I REVEILLE PEAK	
	10	12:00.0	a 37 882	116.016	θ.3	0.85	0.6	117	M.Z	2.10									
	18	23:40:4	0 57.002	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									1 60		15.		1 9	REVEILLE PEAK	
					A A	5.06	4.5	116	BCI				1.00			2 8 1	3 2	3 YUCCA FLAT	
	19	0; 0:4	/ 3/.6/0	110.010	0.J	-1 794	· ·····	122	Ω	2.42		2.22			17	2 4 4	a i	A CLIARTZ PEAK SW	
	19	18:19:3	4 37.071	110.00/	0.7	E 74	2 🛋	135	BCI	1.71	1.66		1.01		- 12			T COLD BOINT	
	19	20:53:4	7 36.783	115.652	0.5	0.24	1.4	183	ABZ				1.22	3.	3 9.		1		
	19	21: 3:1	3 37.280	117.355	0.9	9.20		212	100			1.18	0.96		12.	.0 0.1	N .	B SILENI BUILE	
	10	23:12:	1 37.297	116.410	4.2	-1.53	1.0	171	001			1.61	1.17		18.	,10.6	)5 <u> </u>	9 BADGER SPRING	
	20	2.22.2	8 37 300	115.307	0.4	7.50	3.0	131	001								•		
	20	0.22.2						·	• سم م			1 87	8 85		13	.8 0.1	2	7 ALAMO SE	
			A 17 071	115 188	3.2	8.77	2.6	173	<u>a</u>			1.04	1 50	1	5 27	2 8.1	8 1	5 QUARTZ PEAK NW	
	20	17:51:1	0 37.271	115 872	A 8	-1.83	1.0	162	BCZ	2.01					17	1 8.4	3	A WALICOBA SPRING	
	20	19:55:1	8 30.913	113.072	å 5	6 22	0.9	279	ADI		1.42	1.30	1.10				3	B HIKO NE	
	20	23:21:4	3 37.140	117.007	0.5	0 10		162	ACZ				1.03		10		1.6 1.0	A ELICH NE	
	21	6: 2:	6 37.720	115.020	9.0	7 64	<u> </u>	301	ADZ				0.95		. 17	.Z	70		
	21	6:55:5	52 37.490	114.601		1.04		282	ADI		1.55	1.57	1.97	1.	8 16	.4 0.	53	O CALIENIE	
	21	6:56:	2 37.506	114.601	0.5	9.15	1.4	202	~~.										
						-					1 32		1.34	•	19	.1 0.	88	8 ELIGN NE	
		7. 2.	44 37 499	114.568	2.3	11.37	3.3	200	601				1 47	,	18	.7 8.	88	6 ELIGN NE	_
	<u><u>41</u></u>		11 17 40	114.574	2.1	10.81	3.2	287	601		1.04		4 1 1	l I	13	5 8.	87 2	21 THIRSTY CANYON N	ε
	21	/: /:	A 17 00	11£ RTE	A.2	-0.54	0.3	94	ACZ	1.50	1.55	)			12	R A	23 1	7 PAIUTE RIDGE	
	21	15:30:	4 37.204	110.000	4 4	30.20	0.8	68	BAZ	!			1.04					1 UREHERE CRATER	
	21	16:17:	45 37.09	110.900				106	ACZ	2			1.40	2	13		4.6	STATE STATE	
	22	0:16:	5 37.19	117.371	0.2	-0.2				1	1.11	ŀ	0.49	)	2		10)	12 UNUNNOG FUNIG	
	22	1:52:	32 36.76	5 116.266	5 0.5	. 4.28	, v./			•									
	**									r			1.16	5	17	.9 0.	61	5 ELIGN NE	
		9.18.	9 37.49	7 114.588	3 0.3	5 9,13	5 0.9	304			4 34		0.74	t	5	5.7 8.	11 1	10 MINE MTN	
	22	48.04	57 38 PT	7 116.241	0.0	; 2.46	5 1.1	147	NCI	2	1.30	,		•	-				
	22	19:21:	J, JO.0/	,															

H. H^{an}h 

Ċ,

91051 2 9 8 8

1989 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

÷.

DATE -	TIME	LATI	TUDE	LONG		STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125	MAGNI Mga	TUDE	ESTIMA MLh	TES MLV	MLc	DEL- MIN (KM)	RMS RES. (SEC)	<b>∦N</b> PH.	U.S.G.S. QUADRANGLE
(01	6)	(020	. "	(020)				- • • •	284	m		1.99		2.26		69.5	6 0.15	8	TY90
AUG 22	15:54:33	- 38.	362	116.	.497	4.3	5.1/*		177	007		1.86		1.42		9.3	2 4.56	8	QUARTZITE MIN
22	15:54:44	37.	744	116	. 383	4.2	0.00++	3.1	104	č		1.47	1.74	1.57		25.1	0.11	- 14	LAST CHANCE RANGE
23	3:40:58	37.	<del>0</del> 07	117	.662	0.6	5.03	0.1	267	801				1.48		43.1	3 0.17	12	CONFIDENCE HILLS
23	4: 6:31	- 35.	800	116	.567	1.7	3.93	2.5	207	001				1.22		18.0	5 0.99	12	EAGLE MIN
23	4: 6:36	36.	113	116	. 482	4.3	9,70	9.e	211	ADI	1.35	1.65	1.61	1.53		18.9	5 0.09	17	WAUCOBA SPRING
23	11:50:23	37.	142	117	.041	0.0	5.05									10			WORTHINGTON MINS
		37	814	115	525	0.1	2.89	0.7	143	ADZ		1.39		1.54			1 8 13	21	FUIGRANT CANYON
23	17.16.10	38	450	117	644	0.6	17.63	1.1	97	ABI	1.85	1.75		1.65		15	1 0 12	; <b>-</b> ;	GROOM RANGE SE
25	17:15:54	17	346	115	683	0.9	0.21	2.5	164	BCZ				1.48		13.	K Q Q	1 11	CAMP DESERT ROCK
24	7:00:01	- 37. - 18	718	118	124	0.4	-1.16	0.8	128	ACZ				9.93		24	2 8 1	í á	COLDETELD
24	20: 3:40	) 30.   17	525	117	223	0.7	0.26	1.2	108	ACZ				9.90	•	27.	0 0 1	íš	ANALIAD, NOT LISTED.
20	21:13:0	37	892	118	.011	10.5	-1.02	9.8	301	DOZ		1.66		1.55	•	201			
40	21. 7.3	•••				_			400	407	1 72	1 54		1.53	5 1.5	5 13.		7 22	THIRSTY CANYON NE
27	6: 4:	1 37	.228	118	.517	0.3	2.40	0.7	108	407	1.74	1.37	,	0.65	Ś	4.		4 17	TIMBER MTN
27	17:22:	1 37	.022	116	.429	0.2	6.90	0.4	100	ABZ		1.0/		1.24	í i	10.	7 0.1	1 15	TIN MTN
27	18:47:4	6 36	.873	117	.320	0.4	10.80	0.7	92	AB1	,	2 64		2.02	2	21.	0 0.1	0 18	B INDIAN SPRINGS
28	6:12:5	9 36	.573	115	5.631	0.4	0.98	0.6	123			2.00	í	1.6	5	10.	5 0.0	7 1	S FRENCHMAN FLAT
28	13:14:3	4 36	.755	115	5.951	0.3	0.90	0.9	125	AUZ				1.5	5	3.	5 0.0	8 2	I SCOTTYS JUNCTION SW
28	15:47:5	9 37	. 328	117	7,238	0.3	5.00	0.3	69	~		1	•		-		-		
							A 10	<b>A</b> 7	125	AC7	,	2.0	3	1.2	8	10.	6 0.0	7 1	5 FRENCHMAN FLAT
29	0:24:5	7 36	.756	11	5.952	0.3	0.30	0.7	202	im				1.4	8	- 48.	8 0.0	5	S NEW YORK BUILE
29	8: 6:5	7 36	.617	117	7.898	2.7	11.00*		240	BOU	11.83	5	2.02	2 1.9	4	25	8 0.0	8 1	GREGERSON BASIN
29	16:29:5	6 37	.288	114	4.801	0.9	8.90	3.1	115	ACI	1 1.12	2		1.1	9	14	3 0.1	2 1	3 BULLFROG
29	17:30:1	2 36	.936	110	5.835	0.5	-1.01	1.7	106	- CDA		2.1	5			50	.2 0.2	21	7 BURRO BASIN
30	7:41:5	1 36	.991		5.2/3	1.0	7.02*	A 6	225	ADI	2.10	5	2.78	3 2.1	0	58	,6 0.6	17 1	B MUDUT PEAK
30	16:37:	9 36	451	114	4.509	0.9	1.00	0.0	244										
						5 2	11 93.		168	DC1	1			0.9	9	12		ю 174	4 TIDDIDAU SPRING
30	17:17:1	1 30	. 188	11	8 187	<b>3. 1</b>	5 58	1.3	+ 140	ACI	1 1.5	3		1.2	1				A DAINIER MESA
30	18:21:2	4 3/	. 102		6 18A	A 0	2.54	1.7	150	ACZ	Z			0.9	8	14		17.4	1 INDIAN SPRINGS SE
30	20:40:4	9 3/	.144		0.100 8 807	1.8	-1 02	1.6	231	802	Z			1.4	4	23			A AAAOUAD NOT LISTEDA
31	12:43:0	0 3	0.004		J.JJ/ 0 031	2 4	5 84	2.5	297	800	U			2.7	7	100		0 1	A LA NADRE NTN
31	17:30:5	5 35	206	11	5 403	0.4	-1.79	0.5	144	AC	Z 1.9	7 1.8	4	1.7	9	20		12 1	S DA MODEL MIN
SEP 1	2: 4:	- 30			0				_		-					17		37	7 LOWER PAHRANAGAT LAK
1	3. 0.7	<b>4</b> 37	1.246	11	5.023	1.5	1.59	2.6	207	80.	<u> </u>		1.0	۰ ۱ A	2	16	.8 0.0	35	8 LOWER PAHRANAGAT LAKE
	A+11+	1 3	7.248	11	5.025	1.1	6.37	2.4	206	BO	Z 1.7	1		1.5		17	.4 0.0	84	9 LOWER PAHRANAGAT LAK
4	4.13.4	11 3	7.247	11	5.018	1.0	4.44	3.8	208	BO	Z 1.8	<u>/</u>			~	15	.3 0.0	85	6 ALAMO SE
4	4.57.	u 3	7.254	11	5.052	1.7	10.15	1.9	196	BO	Z 1.7	4	1.0	·		21		13	& HEAVENS WELL
4	4.59.	1 1	8 701	11	5.576	2.7	-0.15	2.5	5 240	CD	I					16	4 8.1	87	5 LOWER PAHRANAGAT LAK
2	5.10:	44 3	7.245	11	5.029	3.4	5.61	• •••••	- 206	CD	0		1.0	5 0.1				•••	
-													1.4	4		16	.2 0.	88	5 ALANO SE
2	5:16:	38 3	7.254	11	5.040	3.4	6.12	5.5	200					· 1.3	27	18	.9 0.	66	6 DELAMAR 3 NW
2	8:27:	20 3	7.220	11	4.985	1.5	12.33	2.	5 225		1	• •		1.3	38	23	.2 0.	<b>69</b> 1	16 MT STIRLING
	0:36:	8 3	6.452	11	15.846	0.4	0.00	•• 0.	95		1		í í	1.	50	13	.2 0.	<b>05</b> 1	11 ASH MEADOWS
	9:10:	2 3	6.401	11	6.329	0.3	7.36	0.1	96		). 	· · ·	. 1 8	.a		12	.4 0.	69	9 FOSSIL PEAK
	10: 4:	28 J	7.633	1	15.139	0.6	1.09	2.4	114	5 BC	.2 1.1	•		2	29	48	.e e.	10	8 ***QUAD. NOT LISTED*
	3 14:57:	28 3	8.665	1	16.461	2.8	-1.02	2.	5 268	s co	12								
		-							304	. m	11			1.	65	61	1.2 0.	22	5 LAS VEGAS SE
4	4 21:20:	46 3	6.032	1	15. <del>00</del> 8	9.2	11.95	• •••••	- 326			75		2.	39	23	2.9 0.	87	16 DELAMAR 3 NW
	5 20:12:	27 J	57.235	i 1	14.908	0.3	-0.64	1.	2 1/5	, ~					-				

124

M., #****

۲

Ģ

¢.

1 0 5 1 2 7 8 9

.* ..

4

1989 LOCAL HYPOCENTER SUMMARY - SCB EARTHQUAKES

DATI	E - TIME (UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM) (1	AZI GAP DEG)	000 125 MAG Mcc	NITUDE Ma	EST IM	NTES MLV	MLc	DEL- MIN (KM) (	RMS RES. (SEC)	JN PH. U.S.G.S. QUADRANGLE
SEP	5 22:58:21 7:30:25 18:13:21 10:19:47 18:54:9 5:22:26	37.261 37.024 37.206 37.190 37.203 37.233	114.973 115.571 116.447 116.455 116.442 114.928	0.C 0.3 0.2 0.7 1.0	8.34 1.78 8.44 0.32 10.02 0.68	4.7 0.6 0.4 1.3 1.0	213 145 146 102 145 230	ADI BCZ ACZ ACZ ACI ADZ 1.7	1.61 1.32 1.33	1.30	8.95 1.66 1.14 1.92 0.99 1.46	1.4 1.8	17.6 37.7 10.9 11.9 10.5 22.1	0.02 0.15 0.05 0.07 0.10 0.05	4 DELAMAR LAKE 13 SOUTHEASTERN MINE 13 SCRUCHAM PEAK 15 SCRUCHAM PEAK 11 SCRUCHAM PEAK 7 DELAMAR 3 NW
7 8 8 9 9 9	11: 0:40         3:29:18         15:48:39         21: 7: 5         0: 1: 9         8:34:43	37.071 37.227 36.745 37.511 38.178 36.747	116.201 114.907 116.047 116.530 116.089 116.040	0.3 0.5 0.6 0.2 0.4 0.5	9.01 -0.48 0.61 -0.42 2.67 0.96	6.6 9.5 9.6 2.3 9.7	91 236 147 74 195 188	ABZ ADI 1.6 ACZ ACZ 2.2 BOZ ADZ	1.02 1 0.99 3 2.28 1.73	1.72 2.19	0.82 1.29 0.86 1.96 1.58 0.52		4.4 23.6 12.1 23.7 31.1 11.9	0.07 0.02 6.05 0.05 0.05 0.06	14 TIPPIPAH SPRING 5 DELAMAR 3 NW 9 CAMP DESERT ROCK 26 MELLAN 9 ECHO CANYON 10 CAMP DESERT ROCK
9 9 9 10 12	<pre>13: 5:17 18: 3:19 20:55:52 23:53:43 5:58:11 3:17:28</pre>	37.271 36.938 37.126 37.264 36.023 37.333	114.571 116.757 117.529 114.539 114.772 118.263	1.1 0.3 0.5 0.9 6.8 6.0	14.45 0.21 9.52 9.67 0.22+ 2.21+	3.1 0.4 1.4 2.8++	28 <del>0</del> 162 187 284 224 294	801 ACZ AD1 BOI 1.8 DOI 1.8 DOI 1.8	1.45 1.04 4 1.82 4 1.91	1.16	1.40 0.56 1.15 2.04 1.79 1.96		40.0 22.3 15.7 41.9 11.3 33.2	0.03 0.05 0.08 0.05 0.06 0.16	6 ELGIN 10 BULLFROG 9 LAST CHANCE RANGE 12 ELGIN 8 BOULDER BEACH 9 ***QUAD. NOT LISTED*
12 12 13 13 14 15	12:24:55 22:30:42 3: 5:28 11:53:46 16: 7: 8 9:44: 5	37.359 36.743 37.246 38.440 36.648 36.454	114.867 117.586 116.360 115.388 116.340 116.988	0.3 1.5 0.6 1.3 0.4 0.6	5.86 5.32 0.15 -0.77 4.38 12.89	1.3 2 8.4 2 6.4 1 7.4 2 0.4 1 1.1	211 223 178 296 184 73	ADI CDI ACI 1.10 DDU 1.9 ABZ BAI 1.80	1.27 3 3 1.44	<del>0</del> .91	1.00 1.36 1.00 1.80 0.89 1.32		17.1 17.5 4.8 53.9 8.3 12.2	0.02 0.18 0.08 0.13 0.09 0.16	7 GREGERSON BASIN 10 UBHEBE PEAK 10 AMMONIA TANKS 7 FOREST HOME 16 STRIPED HILLS 19 FURNACE CREEK
18 16 16 17 17 18	11: 5:32 17:12:38 18:51:43 1:26:54 21:35:27 1:37: 7	37.241 37.191 36.590 36.424 38.399 38.379	115.621 118.258 117.094 117.217 116.198 116.203	0.4 2.9 0.3 0.4 2.2 0.9	-1.88 2.97 10.05 6.36 -1.23 3.24	$\begin{array}{c} 0.6 & 1 \\ 10.1 & 2 \\ 1.3++1 \\ 0.4 & 1 \\ & 2 \\ & 2 \end{array}$	45 285 99 58 44	ACZ 1.64 CDI ABI 1.74 ADZ CDZ 2.45 CDI 2.34	1.76 2.04 1.72		1.62 2.06 1.83 1.40 2.61	1.8	16.9 40.5 17.6 10.9 27.8 26.1	0.08 0.12 0.06 0.13 0.11	10 FALLOUT HILLS NE 11 ***QUAD. NOT LISTED* 21 STOVEPIPE WELLS 15 EMIGRANT CANYON 7 ***QUAD. NOT LISTED* 15 ***QUAD. NOT LISTED*
18 18 18 18 19 20	9:17:60 9:28:14 19:43: 4 22:10:53 12:28:10 0:42:52	37.176 35.787 37.010 35.591 37.250 37.285	117.377 117.130 115.129 117.606 117.634 117.572	0.4 3.5 4.2 6.5 0.5 0.3	7.56 -1.02 4.00* 5.91 1.44 -1.26	1.4 1 2.8 3 	13 61 61 99 81	ACI CDZ 1.73 CDU ODI ABZ 1.99 ABZ	1.21	2.84	0.96 1.91 1.14 2.20 1.32	2.2	17.5 30.8 18.3 78.6 2.2 8.8	0.68 0.64 0.11 0.15 0.12 0.67	10 UBEHEBE CRATER 10 MANLY PEAK 5 LOWER PAHRANAGAT LAKE 15 RIDGECREST 15 MAGRUDER MTN 14 MAGRUDER MTN
21 21 21 21 21 21 21	6:59:58 11:36:44 12:15:20 15:11: 0 21:17: 8 23:30:13	37.315 37.419 36.621 37.324 36.996 37.149	115.034 114.320 116.250 115.201 117.863 117.396	2.6 0.5 0.4 1.5 0.6	11.01 3.22• 4.53 0.07 1.02 1.68	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	81 ( 38 ( 56 / 29 ( 27 (	CDI 1.94 CDI ACZ ACZ 1.75 CDZ BCI	1.33	1.82 0.63	1.56 1.29 0.71 1.34 1.35 1.14		10.2 0 42.4 0 8.5 0 16.1 0 32.6 0 17.3 0	).03 ).02 ).03 ).06 ).12 ).17	5 ALAMO SE 5 ***QUAD. NOT LISTED* 4 LATHROP WELLS SE 8 ALAMO 9 WAUCOBA WASH 9 UBEHEBE CRATER
22 22	5:29:48 7:12: 4	36.483 37.065	116.307 116.950	0.1 0.1	8.95 ~0,14	0.7 1. 0.2 1	33 / 12 /	NB1 NCZ	1.60	1.21	0.41 1.23		17.8 0 11.9 0	.01 .03 1	6 ASH MEADOWS 0 SPRINGDALE

125

M.,, H^{HII}M

Harnandhat 

......

1989 LOCAL HYPOCENTER SUMMARY - SCH EARTHQUAKES

	<b>*</b> * * * *			STAND	DEDTH	STAND	AZI	000	MACH		FSTIMA	755		DEL-	RMS RES.	FN PH	U.S.G.S.
(L	тс)	(DEG. N)	(DEG. W)	H(KM)	(KM)	Z(KM)	(DEG)	123	Mea	Md	MLh	MLV	MLc	(101)	(SEC)		QUADRANGLE
SEP 22	14:45:18	37.150	117.821	0.7	5.05	2.1	210	BOI		1.59	1.66	1.50		18.0	0.07	11	WAUCOBA SPRING
22	17:43:50	36.478	116.582	0.4	-0.71	1.0	84	ACZ				1.29		13.1	0.10	13	RYAN
23	4: 0:58	37.242	115.614	0.4	0.96	8.4	211	ADZ	1.46			1.26	1.8	17.5	0.03	.8	LOWER PAHRANAGAT LAKE
23	10:40:49	37.306	115.378	0.8	-0.56	1.6	77	BCZ	1.79			1.67	2.0	22.0	0,20	12	SPECTER RANGE SW
23	20:41:25	36.621	116.222	0.2	-0.01	6.4	73	ACZ	1.39			1.11		10.9	8 89	13	SPECTER RANGE SW
23	20:43:11	36.621	116.220	0.5	-0.85	0.0	131	AUZ		1.14		0.05			0.00	•	
24	4:48:44	37.225	117.546	0.3	11.37	0.4	130	ABI		1.20	1.30	1.30	1.5	8.9	0.06	15	LAST CHANCE RANGE
24	8:34:31	37.434	115.322	0.8	1.20	2.9	145	BCZ			1.41	1.16		24.2	0.09		HANCOCK SUMMIT
24	10:41:27	37.221	117.548	0.5	11.83	0.7	135	ABI		1.33	0.54	1.00		8.5	0.05	-11	LAST CHANCE KANGE
24	12:34:17	37.267	115.189	0.8	11.12	1.4	133	ABI			1.44	1.65		10.9	0.10	.9	
25	4:27: 3	36.859	116.231	0.3	1.80	1.1	106	ACZ	1,49	1.43		0.85		11.0	0.00		LAST CHANCE DANCE
25	10: 0:39	37.224	117.544	0.3	11.30	0.5	131	ABI		1.52	1.66	1.50	1.0	¥.4		10	
26	16:26:19	37.228	117.545	0.3	11.63	0.3	128	ABZ			0.81	1.04		9.6	0.03	<u> </u>	LAST CHANCE RANGE
27	1:18:34	37.561	115.852	0.4	2.15	1.8	95	ACI				1.32		18.4	0.00		WHITE BLUICH SPRINGS
27	7:15:21	37.019	116.001	0.2	4.10	1.7	159	ACZ				0.85		10.7	0.04		TUCCA FLAT
27	7:15:23	37.017	116.006	0.3	0.68	0.4	144	ACZ	1.75			1.2/		10.3		10	MINCA FLAT
27	7:16: 8	37.016	116.007	0.2	4.55	1.5	123	ACZ	1.97			1.73		10.4	<u>(</u> 0.03	16	MICCA FLAT
27	7:16:48	37.017	115.007	0.3	5.84	0.8	123	ABZ				1.40		10.,	9 9.0/	13	
27	7:17:55	37.018	116.001	0.3	5.33	1.2	159	ACZ				0.81		10.0	5 0.07	1,4	YUCCA FLAT
27	7:18:23	37.020	116.002	0.2	6.03	0.6	159	ACZ				0.91		10.0	3 8.64	12	YUCCA FLAT
27	7:21: 3	37.016	116.005	0.3	5.72	0.9	124	ABZ				1.16		10.3	5 0.08	18	YUCCA FLAT
27	7:23: 8	37.017	116.001	0.3	5.96	8.9	125	ABZ				0.92		10.5	5 0.08	16	YUCCA FLAT
27	7:23:52	37.018	116.003	0.3	4.82	1.2	124	AC2				0.91		10.0	5 0.07	10	YUCCA FLAT
27	7:34:11	37.022	116.002	0.2	5.93	0.7	159	ACI				0.53	•	11.0	0 0.04	10	YUCCA FLAT
27	7:34:13	37.019	116.002	0.2	6.22	0.5	179	ACZ				8.88	1	10.7	7 0.03	9	YUCCA FLAT
27	7:38:34	37.021	115.996	0.2	5.51	.6	161	ACZ				0,68	1	11.	0.04	12	PAIUTE RIDGE
27	7:38:39	37.015	116.005	0.2	4.96	1.0	124	ACZ	: 1.75			1.69		10.3	Z 0.08	20	TUCCA FLAT
27	7:57:12	2 37.016	116.005	0.3	5.64	1.1	124	ABZ				0.85		10.2	Z 0.00	17	TUCCA FLAT
27	7:57:20	37.019	116.004	0.3	6.11	0.8	158	ACZ		1.28		1.29		10.			
27	16:38:43	36.897	117.479	2.7	-1.42+		189	CDA	•	1.85	1			12.3	2 0.13	) 3	114 min
28	16:39:54	37.178	115.204		0.00+		148	ADZ			1.20	1.13	5	1.8	8 8.00	) 3	LOWER PAHRANAGAT LAKE
29	8: 0:14	36.891	117.430	θ.7	-0.80	8.6	166	ACI				1.45	•	9.9	0.10	10	TIN MTN
29	8:16:35	5 37.574	115.849	0.2	4.33	3.1	99	BCI		1.48		1.53	<b>k</b>	17.0	8 0.00	11	WHITE BLOICH SPRINGS
30	2:37:55	5 37.739	114.967	0.4	1.89	0.6	230	ADZ	2			1.04	<b>b</b>	10.	1 0.04	7	PAHROC SPRING
30	14:44:53	3 37,148	117.390	0.3	-1.02	0.5	126	ACZ	1.74	1.92		1.81		17.0		19	UBEHEBE CRATER
OCT 1	19:40:45	5 35.927	116.639	1.7	1.26	4.3	218	BOZ				1.19	)	21.	1 0.15	) 12	CONFIDENCE HILLS
1	28:43:24	4 37.004	115.972	0.3	5.89	1.2	132	ABZ	1.91	1.67	,	1.64	•	10.	8 0.16	27	PAIUTE RIDGE
1	21:59:20	5 37.005	115.973	0.3	6.18	1.0	131	ABZ	-			1.13		10.	¥ U.08	10	PAIUL RIDGE
1	21:59:4	2 37.007	115.971	0.5	6.01	1.5	153	ACZ				1.30	5	11.		> 10 \ 14	BATHTE BIDGE
2	2:59:	5 37.006	115.967	0.4	6.18	1.4	133	ABZ		0.99		0.81		11.	2 0.03	7 IZ 1 14	DATITE RIDGE
2	21:15:5	9 37.005	115.970	0.3	6.46	1.1	132	ABZ		1.60	)	1.05	-	11.		, 10	DEVEILLE DEAK
3	5 2:31:5	8 37.876	116.128	0.9	0.00+	• 1.7	110	BCZ	<u>r</u>			1.97	,	21.	0 0.14		NETELLE FEAN
,	6:23:2	1 37.148	118.246	2.5	2.63	8.8	269	C01	2.40	3			2.6	8 43.	0 0.13	5 12	+++QUAD. NOT LISTED+
	9:31:4	6 37.141	116.289	0.3	2.31	6.7	63	AB2	1.85	5	1,62	2.00	3 2.3	28.	7 0.1	20	S AMAONIA TANKS

**1** 

a second sec

126

พูและมัสม ค_{นการมูกส}ม ค_{นการมูกส}ม

^{с со}лороди ^{С солороди ^{С солороди</sub> ^{С солороди ^{С солороди</sub> ^{С солороди ^{С солороди</sub> ^{С солороди</sub> ^{С солороди ^{С солороди</sub> ^{С солороди</sub>}}}}}}}}}} 2 2 3 9 1

.

и Исники Исники И

Hummila

Hunnida

1

127

1989 LOCAL HYPOCENTER SUMMARY - SCB EARTHOUAKES

DATE - TIME (UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 12S	MAGN Mgg	I TUDE Md	ESTIM MLh	NTES MLV	MLc	DEL- RAIS (IN MIN RES. PH. U.S.G.S. (KM) (SEC) QUADRANGLE
OCT 3 15:56:5 3 16:19:1 3 22:49:3 4 8:47:4 4 9:37:5 4 16:54:4	2 37.295 5 37.138 3 38.188 3 37.574 8 38.201 6 38.176	115.052 117.840 116.025 117.686 116.031 116.031	0.6 0.9 0.5 0.3 0.3 0.4	-0.73 2.44 3.50 0.99 3.63 2.70	0.4 4.0 2.2 0.5 1.1 1.9	182 216 203 97 207 199	ADZ BOI BOZ ACZ ADZ ADZ	2.05 1.76	1.61	1.53 1.43	0.95 1.51 2.21 1.38 2.19 1.59	2.1	12.4 0.03 6 ALAMO SE 20.1 0.12 11 WAUCOBA SPRING 36.3 0.06 10 ECHO CANYON 18.7 0.07 9 LIDA WASH 1 35.7 0.05 12 ECHO CANYON 36.1 0.05 9 ECHO CANYON
5 11:31:2 5 14: 2:2 5 20:40:4 6 11:11: 6 11:16:5 7 16:28:2	2 37.576 4 36.854 7 38.505 7 37.877 9 37.867 9 37.208	117.686 115.939 116.351 116.026 116.023 116.300	0.3 0.2 2.6 1.6 0.7 0.3	1.00 8.44 4.18 8.44 9.22 2.62	0.5 0.5 4.8 2.0 0.3	97 197 256 189 185 99	ACA ADZ CDI BOA BOA AB1	1.62	1.53 1.72 1.59	1.30	1.16 2.87 1.63	2.9 1.2	18.5 0.11 13 LIDA WASH 13.5 0.83 13 FRENCHMAN FLAT 84.7 0.16 13 ***QUAD. NOT LISTED* 15.3 0.22 8 REVEILLE PEAK 14.1 0.14 8 REVEILLE PEAK 2.2 0.68 17 AMMONIA TANKS
8 12:44:4 9 15:21:1 9 19:58:4 9 19:50:4 10 15:25:3 10 15:29:2	5 37.066 7 36.766 7 36.828 8 36.826 8 37.160 2 37.154	116.212 116.118 116.262 116.266 116.603 116.609	0.5 0.4 0.3 0.2 0.4	5.66 6.71 3.59 3.76 2.09 -0.46	0.8 0.9 1.3 1.24- 0.5 0.4	84 131 115 + 53 62 192	AAI ABZ ABZ ABI ACZ ADZ	1.32 1.59 1.98		1.79	1.25 1.14 0.20 1.17 2.00 0.68	1.0	3.5 0.11 14 TIPPIPAH SPRING 10.6 0.08 13 CANE SPRING 6.3 0.05 8 JACKASS FLATS 6.1 0.09 19 JACKASS FLATS 11.0 0.06 26 THIRSTY CANYON NE 28.2 0.07 12 THIRSTY CANYON NE
10 16:25:1 10 19:30:4 10 19:36:3 10 19:39:5 10 20: 0: 1 11 0:49:3	1 37.162 1 36.754 4 36.828 2 36.827 9 36.828 3 36.348	116.612 116.262 116.267 116.262 116.262 116.262 117.436	0.3 0.4 0.3 0.3 0.3 0.3	6.31 4.89 4.26 0.14 4.00 1.06	0.9 0.4 0.8 0.3 1.0 2.1	90 133 96 63 63 233	ABZ ABZ ABZ ABZ AB1 BOZ	1.48 2.36 1.65	1.61 1.33 1.69	2.76 2 14	1.13 0.13 1.22 2.25 1.39 1.45	2.4	10.2 0.06 19 THIRSTY CANYON NE 1.6 0.07 12 JACKASS FLATS 6.0 0.10 17 JACKASS FLATS 6.3 0.12 30 JACKASS FLATS 6.3 0.10 16 JACKASS FLATS 30.5 0.06 13 PANAMINT BUTTE
11 14:25:53 11 15:31:20 11 17:15:20 12 0:42:25 12 5:59:7 12 6:11:55	3       36.829         3       36.779         3       37.160         35.788       36.700         37.102       37.102	116.269 116.199 116.613 116.548 116.289 117. <del>00</del> 9	0.8 1.0 0.5 7.9 0.3 0.5	3.47 7.86 6.96 0.00• 4.90 11.41	$   \begin{array}{r}     1.6 \\     1.1 \\     1.3 \\     \hline     0.9 \\     4.7 \\   \end{array} $	109 221 175 292 73 114	ABZ ADZ ACI DOZ AAA BCA		1.74		0.63 0.39 0.69 1.47		5.7 0.11 9 JACKASS FLATS 7.7 0.09 7 SKULL MTN 10.1 0.04 7 THIRSTY CANYON NE 52.6 0.16 8 CONFIDENCE HILLS 4.9 0.09 19 STRIPED HILLS 31.2 0.07 9 BONNIE CLAIRE SE
12 7:14:47 12 7:15:58 12 7:18:30 12 7:29: 2 12 16: 8:55 12 18:25:33	36.689 36.695 36.688 36.684 37.503 36.414	115.831 115.812 115.827 115.825 115.825 118.049 116.980	2.8 5.3 4.0 2.2 0.7 0.7	0.65 -1.00 -0.65 -1.76 9.52 14.36	2.4 4.6 5.1 6.1 1.3 1.1	149 195 157 174 271 90	CCA DOA CCA CCA ADI BAI 2	2.14	1.50 1.40 1.34 1.55		1.50	2.0	2.0 0.41 8 MERCURY NE 0.2 0.24 8 MERCURY NE 1.7 0.31 7 MERCURY NE 1.7 0.12 6 MERCURY NE 15.3 0.07 8 •••QUAD. NOT LISTED• 11.1 0.15 21 FURNACE CREEX
13         6:16:39           13         10:31:10           13         11:59:10           14         16:39:40           14         21:37:17           15         21:37:26	36.777 36.868 36.543 37.255 35.932 36.373	113.540 116.728 118.044 115.171 116.795 117.496	0.7 0.2 1.7 2.5 0.6 0.9	7.58 4.66 10.10 -1.43 6.43 8.69	6.4 2.0 8.8 1.8 1.4 9.8	149 104 246 158 229 241	CCZ BCI BDI BCZ ADZ ADZ		·.	2.47 1.63	1.63 0.59 2.73 0.82 1.17 1.95		25.8 0.17 13 TIM SPRING 12.0 0.06 15 BARE MTN 64.0 0.17 26 ***QUAD. NOT LISTED* 9.7 0.19 7 ALAMO 7.5 0.01 5 WINGATE WASH 35.5 0.11 18 PANAMINT BUTTE
16 0:26:37 16 8:35:52	37.005 35.876	116.021 114.827	0.3	0.82 2.93	<b>0.6</b>	151 254	ACZ ADI				0.91 1.64		8.6 0.10 12 YUCCA FLAT 8.3 0.63 4 BOULDER CITY

2 9 9 2 91051

1989 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

DA'	- 31 נעד	TIME C)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM) (	AZI GAP DEG)	000 125 MACHIT Mcg	UDE Mo	ESTIMAT MLh	ES Mlv Mlc	DEL MIN (KM	- RMS RES. ) (SEC)	PH.	U.S.G.S. QUADRANGLE
OCT 1	16 17 17	10: 6:18 4: 0:14 11:28:18	37.140 37.052 36.707	117.365 116.123 116.041	0.3 0.4 1.6	6.80 0.72 2.70	0.8 10.9 3.5	119 110 160	ACI CBA 2 BCA 1 AP7 2 89	2.06 1.54	1.35	1.26	15 9 8	.7 0.07 .6 0.11 .7 0.13	16 14 11 22	UBEHEBE CRATER YUCCAFFLAT CAMP DESERT ROCK MINE MTN
	17 18 18	15:59:29 1:55:13 5:14:18	36.877 37.221 335.996	116.249 116.451 116.080	P.2 0.2 0.7	0.45 -1.01 1.92	0.7	49 241	ACZ 2.29 ADZ		1.51	2.11 1.80	11	.3 0.07	26 13	SCRUCHAM PEAK TECOPA
	19 20	9:48:53 1:53:10	3 37.201 3 37.287	118.279 117.375	0.7 0.3	9.96 -1.67 0.96	2.9++ 0.5 0.5	291 115 139	BOI ACZ ACZ			1.81 0.94 0.37	41	1.4 0.05 5.5 0.07 5.3 0.03	10	GOLD POINT SW TIMBER MTN
	20 20 20	6:32: 16:26:5 26:15:3 20:49:5	3 37.089 3 37.465 3 37.461 8 37.463	117.571 117.563 117.565	0.4 0.3 0.4	2.63 2.92 2.60	0.9 0.6 0.9	81 82 82	ABZ 1.56 2 ABZ ABZ	2.08 1.91	1.05 1.60	1.94 2. 1.23 1.76	<b>e</b> (	5.9 0.12 5.1 0.07 5.3 0.12	17 9 13	MAGRUDER MTN MAGRUDER MTN MAGRUDER MTN
	20	22: 7:1	5 37.453 4 37.461	115.654 117.561	0.3 0.5	5,49 4,55	1.7 <del>1 1</del> 1.3+	91 82	AC1 AB1	1,40 1,35		1.51 1.14 0.59	1	5.5 0.05 5.9 0.1 5.2 0.0	) 13   18   13	BALD MTN MAGRUDER MTN MINE MTN
	21 21 21	3:10:4 4:18: 5:12:2	1 36.880 1 37.432 2 36.861	116.249 114.649 115.997	0.1 1.0 0.5	-0.33 -1.02 0.79	0.1 0.8 0.9	105 261 175	ADZ ACZ		1.23	1.23 0.63 1.39	2	0.8 0.0 9.4 0.0 6.1 0.1	4 7 B 10 2 23	SLIDY MTN FRENCHMAN FLAT JACKASS FLATS
	21 21	22:54:1 23:20:4	9 36.828 9 37.281	116.264	0.3	-0.81	0.3	157 160			••••	1.37	1	7.2 8.8 2.9 8.8	5 10 6 13	MAGRUDER MTN 3 CANE SPRING
	22 22 23	1: 2:1 9:36:2 0: 9:	3 36.765 2 36.762 38 37.353	116.024 116.024 116.173	0.5 0.5 0.6	18.70 9.24 1.57	0.8 1.0 1.3+	158 101 233	ACZ ACZ AD1	1.79		0.67 1.37 1.19	1 1 1	2.6 0.0	6 13 1 8 9 13	B CANE SPRING BUTTE B CAK SPRING BUTTE 1 WAUCOBA SPRING B DUITONIUM VALLEY
	23 23	1:42:3	56 37.140 59 36.877	115.989	1.2	R.06	2.1 0.5	217 172	BOZ			0.72 0.81		9.1 8.6	• ( 6 1) 9 1)	B CANE SPRING
	23 24 24	8:23: 14:39:4	4 36.861 40 36.637 58 35.999	116.008 115.962 117.327	0.6 0.4 2.3	-0.44 10.93 1.55	0.9 0.5 6.7	164 71 268	ACZ 1.46 AAZ CDZ 1.67		1.86	1.05	.6.1	2.6 0.0	7 1 0 1 8 1	5 MERCURY 1 TRONA 8 QUARTZ PEAK SW
	24 24 25	17:48:	51 36.784 59 36.909	115.650 116.184	0.7 0.2	0.72 8.80	1.3	183 48	ADZ 1.82 AAZ 1.06			1.35		6.2 8.0 12.2 8.0	6 1 8 1	9 MINE MTN 8 RYAN
	25 25 26	7: 4: 14:10: 8:23:	46 35.477 19 37.347 39 37.482	116.570 116.370 114.632	0.5 2.2 1.2	2.25 6.96 13.69	1.9 1.9 1.6	94 269 269	AC2 601 801 801 2 51		1.46 1.24	0.86 1.32 1.97		15.4 0.0 16.6 0.0 18.7 0.1	9 9 1 12 1	8 DEAD HORSE FLAT 5 SLIDY WIN 9 DELAMAR 3 NW
	26 26 27	10:39: 15:37: 0:24:	53 37.210 44 37.864 40 36.519	114.983 116.137 116.582	1.2 9.3 0.2	8.62 0.74 0.29	2.9 0.4 0.8	230 107 51	ACZ 1.03 ACZ 2.46		2.57	1.21	:	20.8 0.0 16.5 0.0	93 99 3	6 REVEILLE PEAK 13 BIG DUNE
	27 27	1:13: 1:27:	31 36.517 11 36.360	7 118.584 5 115.828	0.2 0.2	6.07 9.58	1.3	51 125 121	ACI 2.00 ACI ABZ 1.68	)	2.41	1.98 1.32 1.23		16.4 0.0 22.2 0.0 6.9 0.0	86 2 85 1 88 1	25 BIG DUNE 13 MT STIRLING 16 YUCCA LAKE
	27 27 27	2:51: 12:36: 13:16:	16 36.979 31 36.51 2 36.51	7 116.100 7 116.586 6 116.589	0.4 0.4	7.75	2.0	105 106 147	BCA BCA ACI	1.5 1.4	51 19	0.88		16.5 C. 16.6 C. 16.7 C.	12 1 08 1 06	A BIG DUNE 11 BIG DUNE 8 UBEHEBE CRATER
	27 27 27	15:48: 16:4: 19:48:	18 37.51 53 37.12	6 117.205 7 117.251	5 0.1 1 0.1	5 -1.29 5 7.30	0.7	154 138	ACZ ACI		0.81 1.04	1.12	1.4	24.3 0. 16.5 0.	10 18	9 COLDFIELD 14 UBEHEBE CRATER

 $\cdot$ 

128

d

H_{ala}yang Hamilitè

H^{onnan}H Honnan

1989 LOCAL HYPOCENTER SUMMARY - SGB EARTHOUAKES

DAT				STAND		STAND	AZI	- 000	1					DEL-	RMS	#N	
UAT			LONGITUDE	ERROR	DEPTH	ERROR	GAP	125	MACH	<b>ITUDE</b>	ESTIN	ATES		MIN	RES.	PH.	. U.S.G.S.
	(010)	(DEG. N)	(DEG. W)	н(км)	(KM)	Z(KM)	(DEG)		Mca	Md	MLh	MLV	MLc	(KM) (	(SEC)		QUADRANGLE
OCT 2	5 11:50:33	36.729	115 470	<b>A</b> 5	-1.84		1.4.4	107							•		
21	3 12:25:41	37.031	116 623	1 1	9 71	0.0	104	AU2				1.70	2	29.9	0.11	11	BLACK HILLS NW
28	3 14:38:39	36.873	118.736	A 2	5 83	1 14.	100	0.2	1 86			0.90		18.4	8.88	9	YUCCA FLAT
28	3 16:50:42	36.869	118 741	<b>A T</b>	4 91	1.51	107		1.00	)	1.90	1.87		13.0	0.07	26	BARE MTN
29	9: 8:30	35.924	114 R40	1 4	-0.41	2.1	100	002				1.39		13.0	0.09	18	BARE MITH
	18:10:20	37.126	117 254	A 2	8 17	2.0	110	002	2.00			2.77	·	8.5	0.14	15	BOULDER CITY
(					0.17	0.0	110	~~~~	1.70	,		2.61		16.4	0.06	14	UBEHEBE CRATER
29	21:40: 9	37.085	115.388	0.5	8.12	8.9	100	AC7	2 41		2 41	1 75			• • •		
36	0:19:16	37.124	117.259	0.4	8.46	1.3	151	AC7		,	2.01	1.75		20.1	0.69	10	DESERT HILLS SW
30	4:35:29	36.770	116.222	0.4	-0.11	0.4	137	ACT				0.00		15.9	0.09	11	UBEHEBE CRATER
30	17:21:59	37.125	117.253	0.4	9.47	1.2	149	ACT			A 77	1 11		2.4	0.05	11	SKULL MTN
30	18: 9:49	36.864	116.743	0.3	3.87	6.9	108	007			0.77	1.1.		10.3	0.07	11	UBEHEBE CRATER
	5:18:10	36.867	118.740	0.3	4.87	2.9	107	BC7						12.0	0.09	13	BARE MTN
-								•••				0.04		12.0	9.63	17	BARE MTN
31	5:38:10	37.011	116.296	0.2	6.44	0.5	136	ACZ				1.03		6.6		16	BUCKBOARD MECH
31	15:33:60	36.874	116.736	0.2	4.47	1.7+4	58	ACI	1.96		1.75	2.03		13.6		27	BARE WIN
31	18:55:48	36.940	117.774	1.7	2.53	4.5	244	BOZ			1.23	1.56		34.3	. 1.	<i>''</i>	WARDOOA WACU
NOV 1	2:19:36	37.149	117.811	1.1	5.93	2.2	280	B01			1.33	1.40		17.3		16	WALKOODA RASH
2	2:40: 5	37.098	116.246	0.3	6.95	0.6	104	ABU				1.01		6.9		18	
2	4:44:16	36.868	116.744	0.2	6.33	1.4	168	ACZ						13.1	8.86	18	BARF MIN
,	5. 7.18	37 003	117 8/8														
ĩ	3.43.58	37 213	114 740	0.5	11.37	0.5	133	VAL			1.13	1.15		8.9	8.86	11	LAST CHANCE RANGE
ĭ	10.11.40	37.213	116 717	0.1	-0.50	0.2	125	ABZ	1.86	1.84		1.31		7.6	9.84	17	THIRSTY CANYON NW
ŝ	11.47.12	38 805	116.737	0.0	0.02	1.0	162	ACZ				0.70		13.2	0.10	13	BARE MTN
3	28.52.37	36 87A	116 740	0.3	0.03	0.3	203					0.42		5.3 (	Ð. 66	12 :	STRIPED HILLS
Ă	8:13:59	37 680	115 005	0.J	0.00	0.5	100	ACZ	1.78			1.24		13.3	8.08	16	BARE MTN
•		07.000	115.005	0.5	0.10	<b>v</b> .o	123	ABZ				1.19		6.8	.05	8 1	HIKO NE
4	0:42:31	36.866	116.742	0.3	5.54	2.7	168	BC7	1 59					12.0			
4	10:47:37	37.248	115.028	0.8	0.48	D.6	205	ADT	2.84			1 77		12.9		10 1	BARE MTN
- 4	13: 6: 9	37.288	117.381	0.4	-0.54	0.6	166	ACT				8 05		10.0	.00	12 1	LOWER PAHRANAGAT LAKE
- 4	13:13:47	37.825	115.006	0.7	1.45	1.6	177	ACZ	1.62			1 44			. 05		JOLD POINT SW
4	13:27:47	37.291	117.382	0.0	-1.27		165	ACZ				8.86		11 2 4			WITE RIVER NARROWS
- 4	13:51:17	37.247	115.029	1.1	2.86	2.6	205	BOZ			1.30		1.4	16.5.4			OWER RANDAMACAT LANC
	17.00. 1				<b>.</b>											•	LUNCH PARAMAGAN DAKE
7	17:20: 4	37:300	117.367	0.6	7.43	1.6	126	ABZ			ð.82	0.63		9.7 (	. 86	6 0	OLD POINT
	10:34:21	30.0/4	115.992	9.7	5.14	1.9	214	ADI				0.68		8.5	.10 1	IO P	RENCHMAN FLAT
	7: 7:40	30.1/9	116.030	0.2	2.96	1.5	200	ADZ	2.00			2.31	2.3	36.2 6	.03 1	O E	CHO CANYON
5	7:30:30	30.0/0	110.751	0.2	4.03	2.9	110	BCZ				0.76		13.7	. 85 1	14 E	ULLFROG
5	18.28.12	30.337	110.476	9.5	-0.96	0.7	96	ABZ				0.86	1.1	4.5 6	1.10	9 1	SH MEADOWS
5	10:23:12	37.251	115.052	9.8	0.67	7.9	243	DOA		1.72				17.3	.25	5 /	LAND SE
6	3:24:44	37.247	115,022	6.7	8.78	A 4	207	407	1 63					<b></b>		_	
5	8:34:23	38.177	116.031	0.5	1 11	20	204	P07	1.52		1.74	1.25		17.0 0	. 65	9 L	OWER PAHRANAGAT LAKE
6	11:57:39	36.776	115.918	8.7	-0.13	1 4	282	A07				1.00		36.1	.05	8 E	CHO CANYON
6	13:21:46	37.221	117.545	0.3	11.59	A A	iu	ARI				1.21		13.Z	.10 1	1 F	RENCHMAN FLAT
6	15: 2:47	36.974	116.112	0.2	8 87	A 3	188	ADT				1.75		9.1 0	.05 1	2 L	AST CHANCE RANGE
6	22: 1:14	37.809	115.078	0.9	5.64	2.9	135	897	1.04			1.01	1.3	5.90	.03 1	<u>4 Y</u>	UCCA LAKE
					2100	***						4.03		<b>5.1</b>	.12	8 W	HITE RIVER NARROWS
5	22:16:56	37.806	115.084	1.3	4.33	5.7	139	100	1.50			1.36		8.6.4	12		HITE BIVER MADO
7	J:28: 6	36.770	116.226	0.5	-0.09	0.5	99	ABI				8.47		5.1 A	.88 1	0 77 0 0	KILL MAN
																~ 3	NVEL MIN

129

ł

) 1 0 5 F 2 7 9 4

1989 LOCAL HYPOCENTER SUMMARY - SCB EARTHQUAKES

DA	TE (UT	TIME C)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125	MAGN] Mca	TUDE Md	ESTIMA MLh	TES MLV	MLc	DEL MIN (KM)	RMS RES. (SEC)	<b>f</b> N PH	U.S.G.S. QUADRANGLE
NOV	7	8: 5:41	36.867	116.742	0.2	4.66	2.5	108	BCZ				9.68		13.	0 0.07	18	BARE MTN CAMP DESERT ROCK
HO Y	7	14:51:47	36.678	116.070	0.2	0.97	0.4	125	ABZ				1.00		26	8 8.19	''ż	DRY LAKE
	7	20:49:33	36.392	114.895	1.3	-1.13	1.3	228	802	1.02		1.55	1 26		16.	7 8.86	ġ	LOWER PAHRANAGAT LAKE
	8	14:47:55	37.249	115.028	0.7	0.95	0.4	174	- DC1	1.45		1.00	0.82		14.	2 0.05	6	ALAMO SE
	8	14:55:28	37.273	115.096	1.5	10.44	1.27	156	BC7				0.67		8.	4 0.11	11	STRIPED HILLS
	8	16:22:12	36.625	116.250	0.8	4.40	4.4	100	~~									
	_				• •	A 9A	0.7	210	BOZ	1.23		1.42	1.35		17.	4 0.10	9	LOWER PAHRANAGAT LAKE
	8	18:48:51	37.244	115.010	A	-0.64	1.1	63	BCZ	2.03			1.76		10.	9 0.17	14	WHEELBARROW PEAK NE
	8	20:38:40	37.403	118 338	8.2	11.25	0.3+	166	ACZ				1.07		<u>.</u>	0 0.03	14	MERCURT
	<b>•</b>	21:10:40	36.720 38 721	115.923	0.6	12.14	0.9	163	AC1				1.02		<u>'</u> .	5 0.04		MERCURT
	8	21.70.10	38.724	115.928	0.4	11.62	0.4	163	ACZ				9.82		/.	2		MERCURY
	×	21:21: 7	36.730	115.932	0.3	18.27	0.8	167	ACZ				1.21		0.	2 0.00		
			•••••						~~ 1	1 70			1.89	2.9	24.	9 8.64		TIMBER MTN PASS WEST
	8	25:21:49	38.064	115.236	0.7	5.23	5.7	250		1./0		8 74	1.00		8	7 8.8	5 13	SPECTER RANGE NW
	9	2:43:13	3 36.629	116.245	0.3	4.23	1.9	134	AD1	1 10	1.19	• • • • •	0.87	,	6.	2 0.0	7 21	JACKASS FLATS
	9	5:6:3	7 36.829	116.262	0.2	3.79	0.04	212		1.00			0.6	5	6	.6 8.6	4 1	JACKASS FLATS
	9	5:25:5	1 36.825	116.261	9.4	2.8/	1.4	305	004		2.56	<b>j</b>			99	.8 0.1	5 3	ITTLE LAKE
	9	21: 2:3	5 35.772	117.947	/.¥		1.0	63	ACZ	1.78	)		1.6	9	17	.9 0.1	5 1.	S WHEELBARROW PEAK NE
	10	4:55:1	5 37.484	110.000	0.0									_	-			
			7 18 771	118 282	0.3	2.37	0.5	72		z 1.15	•		0.7	7	3	.5 0.0	9 1:	D JACKASS PLATS
	10	11: 0:4	7 30.773 8 37 827	117.645	0.5	0.91	0.5	187	AD2	Ζ			0.9	3	22	.0 0.0		
	11	12.3.1	8 37 309	114.913	8.5	8.72	0.6	212	AD 1	l		1.04	0.0		1 12		<b>4</b> • •	CAMP DESERT ROCK
		14:14:1	8 36.748	116.042	0.5	-1.11	1.0	150	ACZ	ζ	1.18	5	9.3	0 I. 2	1 14		1 1	CUTLER RESERVOIR
		17:12:4	2 37.304	115.424	0.4	0.30-	• 1.0	81	AC	Z 2.34	•		9.7	a 4.	12	.8 8.6	9 1	5 BARE MTN
	11	17:22:5	7 36.865	116.742	0.3	7.73	1.8	1 100	AB.	1			•	•			• •	
							• •		AD.	1 2.36	3				15	.5 0.0	7 1	2 ALAMO SE
	11	20:36:1	1 37.252	115.047	9.5	14 45	5.0	158	<u>.</u>	i	-		1.4	2	39	.1 0.2	0	9 BLACK HILLS NW
	11	22:16:5	5 36.731	115,495	1.0	1 46	4.3	185	BO	ī			1.3	8	17	.3 0.1	<u> </u>	6
	12	0:31:4	9 37.889	113./31	A 3	5.47	0.5	215	AD	Ž			0.7	6	7	.1 0.6	31	O MINE MIN
	12	6:50:	4 30.00/	115 453	1 0	6.42	10.3	218	CD	Z			1.3	6	45	.1 0.1	9	S BLACK HILLS NW
	12	13:19:3	7 36 780	115.968	0.2	8.77	0.9	129	AB	Z 1.6	3		1.2	4 1.	6 13	.2 0.0	1	O FRENCHMAN FLAT
	15	19:10:1	/ 30.700								-				1.	1	4	& CREGERSON BASIN
	13	19.37.	2 37.328	114.865	1.3	17.99	1.9	218	80	Z 1.5	2	1.5	<b>)</b> 1.3		10		8 1	2 WALCOBA SPRING
	14	0:12:1	8 37.014	117.984	1.9	4.94		245	 CD	A	1.0	• c			31	.3 0.2	0 1	2 CUTLER RESERVOIR
	14	4:44:4	0 37.310	115.420	1.0	7.00	11.9	142		A	1.8	, 174	1.3	1	28	.7 0.1	5	6 CUTLER RESERVOIR
	14	6: 0:4	5 37.312	115.428	1.7	6.004	• 2.4	100		2 1 9	4 1.7	2	1.8	ij j	18	3.5 0.0	9 1	5 QUARTZ PEAK SW
	14	19:33:3	32 36.786	115.638	0.5	2.10	1.0	001 07		7 1.6	8	1.6	9 1.5	5	20	5.0 0.0	99 1	CRESCENT RESERVOIR
	- 14	19:35:	6 37.483	115.417	0.4	10.0/	1.5	• • /	$\sim$		•							
						2 74		. 128		A	2.3	2			39	.8 0.	18 1	4 DOG BONE LAKE NORTH
	15	7:56:	13 36.878	115.42/	0.0	7 49	2.9	213	BO	1 1.6	1		1.4	15	11	.9 0.	17 1	4 FRENCHMAN LAKE SE
	16	2:38:	44 JE.800	110.791 118 888		6.82	1.2	100	i ĀČ	Z		1.4	3 1.5	52	15	5.3 0.	D7 1	Z FURNAUE UKEEK
	16	12:4/:	0 JO.207	115.249	1.1	10.84	3.0	114	) BB	3Z		1.0	0 1.1	18	10	5.3 U.	22 I 88	A LAST CHANCE RANCE
	10	1. 7.	43 37 228	117.724	0.4	-0.34	0.	5 196	5 AC	Z 1.5	4 1.5	9		51		0.¥ V.	50 58 '	a pointe claire se
	17	1+57+	13 37.113	117.036	0.3	0.23	0.4	l 164	i ac	Z 1.8	IS 1.2	.0 1.1	¥ 1.3	52	1.	₹.J U.	00	is muste opvine ge
	17	1.07.											1 1	5.8	2	a.5 e.	85	6 REVEILLE PEAK
	17	14: 0:	53 37.851	116.142	9.5	1.65	1.4	105		22		1 4	1 1	78	1	4.2 8.	09	13 BULLFROG
	17	19: 2:	21 36.944	116.883	5 0.6	-1.82	7.9	9 153	, u	.0					•		-	-

•

130

₩_₩₩<mark>₩</mark>₩₩ ₩₩₩₩₩₩₩

H^{HIMMANNA} H^{HIMMANNA} H^{MIMMANNA}

н Э^{рэнний}Н Н^{анции}Н

^{Ne}u Hank

Mu, August Mu, August

1989 LOCAL HYPOCENTER SUMMARY - SGB EARTHQUAKES

DATE - TIME (UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND AZI ERROR GAP Z(KM) (DEG)	000 12S MAGNITUDE I Mico Mid	ESTIMATES MLh MLV MLC	DEL- RMS #1 MIN RES.P1 c (KM) (SEC)	I. U.S.G.S. QUADRANGLE
NOV 18 0:26:15 18 10:31:26 18 23:38:38 18 23:41:35 18 23:41:58 19 0: 2:2	37.304 36.828 37.111 37.235 37.108 37.114	115.251 116.266 117.038 114.987 117.033 117.036	1.0 0.3 0.3 1.5 0.3 0.3	3.09* 0.54 7.84 1.05 7.11 7.36	217 0.6 95 1.5 103 2.9 219 0.8 173 1.7 104	COI ABZ ABZ BOI ACZ ABZ	1.33 0.73 0.97 1.19 1.05 1.02 0.95	21.1 0.06 1 6.0 0.08 1 14.3 0.10 2 19.2 0.04 1 14.0 0.06 1 14.6 0.10 1	5 BADGER SPRING 2 JACKASS FLATS 8 BONNIE CLAIRE SE 5 DELAMAR 3 NM 5 BONNIE CLAIRE SE 8 BONNIE CLAIRE SE
19 1:48:37 19 2:33: 3 19 7:34:44 19 16:56:44 19 17: 9:17 19 10:11:20	37.113 37.113 37.394 36.528 37.113 35.968	117.036 117.036 115.213 117.879 117.036 114.839	0.3 0.3 0.1 2.7 0.3 2.3	0.39 7.41 5.70 2.79• 8.06 -0.19•	9.4 104 1.8 104 9.3 175 266 1.6 104 171	ACZ 1.85 ABI 1.21 1.29 ACI 0.99 CDI 2.65 ABZ 1.44 CC1	1.09 1.15 1.22 1.11 1.45 0.77 2.49 1.24 1.99	14.6 0.09 2 14.6 0.10 14 14.4 0.01 52.3 0.14 1 14.5 0.11 2 9.1 0.05 1	1 BONNIE CLAIRE SE 8 BONNIE CLAIRE SE 8 ASH SPRINGS 3 NEW YORK BUTTE 9 BONNIE CLAIRE SE 1 BOULDER CITY
19 19:37: 7 20 3:33:11 20 5:22:2 20 6:17:33 20 18:56:38 20 20:22:44	7 37.113 5 37.114 5 37.120 5 36.760 3 37.151 3 36.121	117.036 117.037 116.438 116.259 117.357 117.040	0.3 0.4 0.4 8.4 0.5	7.91 8.21 -0.38 3.71 4.43 0.49	1.7 104 1.5 104 0.7 133 0.5 97 2.5 125 0.6 202	ABI         1.47           ABZ         1.81           ACZ         1.33           ABZ         1.33           BCZ         1.38           AOZ         1.38	1.25 1.61 0.95 0.40 1.14 1.32	14.6 0.11 2 14.6 0.11 2 19.5 0.05 1 2.2 0.05 1 16.8 0.05 1 23.4 0.05 1	1 BONNIE CLAIRE SE 4 BONNIE CLAIRE SE 0 TIMBER MTN 2 JACKASS FLATS 2 UBEHEBE CRATER 0 TELESCOPE PEAK
21 6:35:4 21 18:16:15 22 9:33:55 22 7:39:5 22 21:9:44 23 3:57:4	36.861 5 36.682 5 36.892 5 37.174 5 37.110 5 37.115	116.019 116.034 116.811 115.083 117.033 117.036	1.5 0.5 1.5 0.5 0.3	3.56 7.00+ -0.92+ 7.59 11.71 0.18	$\begin{array}{c} 8.6 & 156 \\ & 209 \\ & 79 \\ 2.0 & 234 \\ 1.5++ 103 \\ 0.4++ & 50 \end{array}$	CCZ 1.00 0.74 ADU 1.17 0.34 CCA 2.26 BDU 1.56 1.32 BBI BCZ 2.09 1.81	0.60 0.86 2.01 1.21 2.14	8.5 0.16 6.9 0.03 19.5 0.12 1 9.3 0.09 14.2 0.16 1 14.7 0.19 5	7 CANE SPRING 3 CAMP DESERT ROCK 2 BULLFROG 7 LOWER PAHRANAGAT LAKE 8 BONNIE CLAIRE SE 9 BONNIE CLAIRE SE
23 6:36:32 23 12:26:5 23 22:48:50 24 12:29:10 24 21:49:5 25 2:10:55	2 36.607 1 37.109 36.030 37.023 3 37.183 5 36.752	115.590 117.637 117.268 118.194 117.425 115.973	2.0 0.5 3.8 0.6 0.2 0.4	-1.02 8.50 0.84 6.15 -0.94 8.80	2.1 210 2.1 103 2.2 250 1.3++ 82 0.5 124 0.8 163	BDZ 1.70 1.54 BBI 1.47 0.76 CDI 1.34 1.17 BAI 1.54 1.13 ACZ 1.23 1.09 ACZ 1.37 1.17	1.43 1.59 1.14 1.52 1.39 1.65 1.25 0.90 1.02	21.9 0.27 1 14.0 0.17 2 36.8 0.31 1 3.5 0.22 2 19.8 0.05 1 10.1 0.10 2	5 INDIAN SPRINGS SE 6 BONNIE CLAIRE SE 7 MATURANCO 8 TIPPIPAH SPRING 9 UBEHEBE CRATER 2 FRENCHMAN FLAT
25 2:29:3 25 20:22:54 25 20:25:44 25 20:45:5 27 5:59:44 27 14:40:3	7 36.657 9 37.112 5 37.112 2 37.111 9 37.696 9 37.111	116.661 117.036 117.034 117.032 115.046 117.034	0.6 0.3 0.3 2.6 0.3	7.59 -0.38 0.00+ 6.60 1.72 7.51	1.5 167 0.6 104 0.4 104 1.0 125 11.2 116 1.3 103	ACZ 1.16 1.03 ACU 1.37 1.33 ACZ ACZ 1.20 1.14 CCZ 1.59 1.19 ABZ 1.62 1.25	0.72 0.98 1.18 1.10 1.34 0.89 1.40 1.24 1.30	11.2 0.10 1 14.4 0.07 1 14.4 0.09 1 14.3 0.08 1 20.6 0.17 14.3 0.08 1	9 BIG DUNE 5 BONNIE CLAIRE SE 4 BONNIE CLAIRE SE 1 BONNIE CLAIRE SE 7 HIKO NE 5 BONNIE CLAIRE SE
27 17:15:3 28 5:23:3 28 6:37: 28 13: 6:4 28 20:41:5 28 21: 7:3	6 37.176 7 37.114 7 37.240 4 36.337 1 35.958 1 36.895	117.504 117.633 117.323 116.864 115.204 115.353	0.2 0.4 0.3 0.7 2.0 14.1	<b>0.56</b> <b>0.68</b> <b>6.45</b> <b>7.81</b> <b>-1.02</b> <b>2.18</b> +	0.4       151         0.6       85         0.7       84         3.5       106         2.9       189         351	ACZ 1.17 ACZ 1.70 1.32 ABZ 1.37 1.26 BCA 1.60 BOZ 2.38 DOI 1.60 0.90	1.45 1.46 1.60 1.39 1 1.39 2	14.1 0.06 1 1.8 14.6 0.15 2 8.9 0.06 1 22.1 0.18 1 40.6 0.20 1 2.0 33.8 0.94	6 LAST CHANCE RANGE 8 BONNIE CLAIRE SE 5 UBEHEBE CRATER 4 FURNACE CREEX 1 SLOAN 5 BURRO BASIN
29 1:55: 29 8:10:1	3 38.605 8 36.869	115.364 116.744	1.6 0.3	7.00• 2.69	299 1.2 108	COI 2.22 1.44 ACZ 1.30	2.45 2.14 8.37	72.1 0.17 1 13.2 0.11 1	<pre>     ••••QUAD. NOT LISTED+     BARE MTN </pre>

.

1.

131

Mananga Mananga

и<mark>ннин</mark> И^{ннин}и И^{ннин}и

2 7 9 6 91051

1989 LOCAL HYPOCENTER SUMMARY - SCB EARTHQUAKES

DA	TE (UT	- TIME (C)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZ I GAP (DEG)	000 125	MAGN Mca	I TUDE Md	ESTIMA MLh	TES	MLc	DEL- MIN (KM)	RMS RES. (SEC)	<b>∦N</b> PH	U.S.G.S. QUADRANGLE
NOV	29 29	14:12:22 16:14:27	36.859 37.498	116.737 115.052	0.5	11.04	1.7	1 <b>8</b> 8 297	881 DO I	1.03	<del>0</del> .81		0.45 1.38		12.0	0.19	19 3	BARE MTN ALAND NE-DO CODVERSION
;	30	1:47: 9	37.511	118.077	1.9	0.72	1.5	262	BOI	1.99	1.92	1.94	2.22	2.0	17.8	0.26	37	+++QUAD. NOT LISTED+
	30	2:13:40	37.115	117.034	0.2	5.88	1.9	185	ACZ	1.71	1.50	1.83	1.55		14.7	0.09	21	BONNIE CLAIRE SE
DEC	30	19:43:27	36.978	115.109	0.4	0.39	0.7	194		1.72			1.24		7.1	0.06	13	YUCCA LAKE
DEC	1	0:23:22	20.868	117.427	1.5	1.15	9.5	224	802			1.43	1.20		12.3		D	IIN MIN
	1	14:46:58	37.347	118.243	1.1	6.02	5.1	288	CDI				2.16		31.6	0.20	9	+++QUAD, NOT LISTED+
	1	20:49:28	36.019	116.451	0.3	8.77	1.4	194	ADI		1.38		1.27		27.0	0.04	9	EAGLE MTN
	1	22:35: 0	37.107	117.037	0.4	-0.44	θ.7	90	ACA	i -	1.83				29.1	0.10	16	BONNIE CLAIRE SE
	2	1:12:60	36.052	117.767	3.4	2.69•		283	CD1	2.29			2.30		70.9	0.13	11	HAIWEE RESERVOIR
	2	7:58:45	37.306	115.192	3.4	7.00+		212	DOI			0.99	1.16		15.3	0.09	.7	ALAMO
	4	10:10:35	37.110	117.037	0.3	-10.110	0.4	102	AUZ		1.34		0.95		14.0		15	BUNNIE CLAIRE SE
	2	19:15:11	35.550	117.345	1.1	12.83	9.6	304	BDI	2.53					63.1	0.87	14	SEARLES LAKE
	2	21:48: 6	37.112	117.037	0.2	6.31	1.2	103	ACZ		1.47		1.27		14.4	0.07	18	BONNIE CLAIRE SE
	3	P: 5:59	37.256	115.102	8.9	1.75	1.0	178	ACZ			0.79	0.88		12.3	5 0.05	7	ALANO SE
	3	7:10:34	37.115	117.034	0.3	7.84	1.3	185	ABZ	1.82		1.13	1.08		14.7	7 0.89	18	BONNIE CLAIRE SE
	3	13:16:54	37.009	116.199	0.2	7.23	0.4	86	MZ		1.20		1.16	1.3	4.1	2 0.07	18	TIPPIPAH SPRING
	3	15:22:11	37.045	117.682	0.2	10.27	0.5	235	ADI			1.28	1.72		21.0	0.02	8	LAST CHANCE RANGE
	3	18: 6:43	36.452	116,956	1.2	5.00++	8.6	81	CCA		1.58				14.0		9	FURNACE CREEK
	3	23:22: 3	36.862	116.734	0.5	5.50	3.2	122	BCA		1.98				12.1	0.11	15	BARE MTN
	3	23:23:21	36.859	116.722	0.6	8.36	0.9	318	ADA		1.06				10.5	0.04	8	BARE MTN
	4	3:49: 3	37.107	117.039	1.0	7.01	2.6	211	BDA		1.57				13.9	0.09	10	BONNIE CLAIRE SE
	4	10:27:45	37.111	117.033	0.3	6.85	1.7	104	ACZ			1.05	0.99		14.3	5 0.10	17	BONNIE CLAIRE SE
	4	12: 1:58	36.884	115.996	<del>0</del> .8	12.85	1.2	192	ADI				<b>•</b> .73		15.7	0.05	11	PLUTONIUM VALLEY
	4	15:43: 4	37.229	117.552		9.32	·	289	AD7	1.13		1.06	1.16		27.3		4	LAST CHANCE RANGE
	5	12:30:22	36.866	116.744	0.3	5.09	2.5	108	BCZ				0.54		13.6	8.68	13	BARE WITH
	5	12:40:34	37.250	115.050	3.3	3.91+		197	CDZ	1.20		1.25	1.08		14.7	0.10	7	ALAMO SE
	6	6:18:15	36.209	115.452	0.5	0.60	ð.6	148	ACZ		1.34		1.23		17.3	0.07	13	LA MADRE WITH
	6	15: 6:41	37.255	116.364	0.4	0.23	0.4	88	ABZ				1.12		5.8	0.11	15	DEAD HORSE FLAT
	8	15: 9:12	36.873	116.758	1.0	2.38	1.2	259	BOZ				0.55		14.4	0.08	9	BULLFROG
	6	23:48:57	37.274	116.383	8.6	-1 67		275	ADI				1.38		8.5		12	STIENT BUTTE
	ž	1:15:50	38.172	115.947	0.8	-0.61.		194	cõi			2.80			37.6	0.14	15	OUINN CANYON DANGE
	7	1:36:20	38.143	115.958	0.4	0.74	0.4	196	ADZ		1.69		1.69		36.7	0.06	10	QUINN CANYON RANGE
	7	3:37:21	37.108	117.048	0.5	9.92	1.2	144	ACZ				1.20		14.0	0.08	10	BONNIE CLAIRE SE
	7	3:56:53	36.875	116.740	0.4	7.30	0.9	232	ADI				0.57		13.3	0.04	10	BARE MTN
	7	6:51:16	36.870	115.996	0.7	5.24	1.9	210	ADZ		1.23		1.12		8.6	0.08	9	FRENCHMAN FLAT
	8	2.18.32	37 245	114 577	A 3	1 20	1 2	281	407				1 22		42 5	1	5	VICO NE
	8	17:42:39	37.255	116.365	0.7	-0.08	0.3	212	AD7	1.59		1.47	1.88		5.8	8.89	14	DEAD HORSE FLAT
	8	23: 5: 7	37.228	116.415	0.6	-0.99	0.6	184	ABA		1.82				8.2	8.89	10	SCRUCHAM PEAK
	9	16:10:21	36.885	115.977	0.4	11.96	1.0	151	ACI	1.46			1.18		8.7	0.15	28	PLUTONIUM VALLEY
•	10	6:32:52	36.530	116.308	0.5	-0.31	0.8	107	9CZ		8.86		1.21		13.1	0.18	17	LATHROP WELLS SE
	10	10:11:39	37.233	116.401	0.4	-0.47	0.4	40	BBZ	2.22			2.12		7.2	0.17	37	SCRUGHAN PEAK
	10	19-17-43	36 782	115 R5R	1 7	7 22	τ	174	901	1 40			1 41		14 0			MIARTT DEAK SH
1	10	21:15: 1	38.866	118.741	0.4	7.85	2.5	168	887	1 10	0 6K		A 80		12.8		17	RARE MIN
	· <del>•</del>				<b>.</b>		a.v		000				÷				• •	

132

→ 1 → 3 1 2 9 9 7

1989 LOCAL HYPOCENTER SUMMARY - SCB EARTHOUAKES

55

DATE - TIME (UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (КМ)	STAND ERROR Z(KM)	AZI GAP (DEG)	GOD 12S MAGNITUDE Mca Md	ESTIMA MLh	TES	MLc	DEL- RMS MIN RES (KM) (SEC	<b>∦</b> N PH	U.S.G.S.
DEC 11 6:43:3 12 8:38:5 12 19:20:4 12 20: 6:3 12 21:48:2 12 22:15:4	2 37.493 1 37.504 3 37.472 9 37.310 1 37.137 7 37.137	117.972 115.152 115.102 115.449 117.335 117.332	1.4 1.3 0.9 7.8 0.3 0.6	12.16 6.92 2.35 0.00** 8.88 9.00	1.3 2.9 2.6 6.1 0.8 1.8	248 290 133 286 153 106	BOI 1.39 1.39 BDA 1.85 CBZ 1.20 0.94 DOZ ACI 1.23 1.02 BBI 0.97	1.16 1.26 1.25 1.34	1.70 1.01 1.25 1.04	1.8 1.7	9.5 0.2 22.3 0.0 8.6 0.4 28.0 0.3 15.3 0.0 15.4 0.2	14 6 5 6 5 5 12	SOLDIER PASS HIKO ALAMO NE CUTLER RESERVOIR UBEHEBE CRATER UBEHEBE CRATER
12 23: 3:5 13 0:42:3 13 12: 4:1 14 2:42:1 14 5:48:1 14 8:18:1	3 37.272 5 36.885 3 37.013 8 37.099 5 37.316 8 37.241	115.080 116.818 116.217 117.879 117.320 114.958	0.7 0.5 1.0 1.5 2.2 8.0	15.57 -7.22 4.24 -0.35 0.16 7.00•	0.5 1.3 1.0 1.7 1.8	180 127 188 218 127 256	ADZ ACZ 2.01 BOI 1.31 COI 1.78 1.58 CBZ 0.93 DOU 0.94	1.88 0.82	0.85 1.75 0.79 1.99 0.67 1.18		14.8 0.0 19.6 0.00 2.9 0.17 25.4 0.3 5.8 0.3 20.1 0.3	5 12 19 29 9	ALAMO SE DULLFROG TIPPIPAH SPRING WAUCOBA SPRING GOLD POINT DELAMAR 3 NW
14 12:36:5 14 23:41:1 17 2:27:5 17 18:33:5 17 22:29:2 18 0:12:2	8 37.393 8 35.636 1 37.855 6 36.538 5 37.144 6 37.117	115.440 115.546 116.009 117.831 116.295 117.037	5.0 2.2 0.4 3.1 1.0 0.3	3.37+ -1.13 2.46 0.00++ 8.32 7.87	3.8 1.9 2.7 1.6 1.6	190 221 111 230 172 87	DOZ 1.74 0.82 BOZ BCZ 1.68 1.54 CDZ 2.19 1.83 BCI 1.04 0.86 ABI 1.42 1.16	1.65	1.52 1.86 2.12 0.42 1.25		30.2 0.44 75.9 0.20 12.4 0.21 48.2 0.25 8.1 0.25 15.0 0.14	7 12 23 23 18 27	CRESCENT RESERVOIR CLARK MIN REVEILLE PEAK NEW YORK BUTTE AMAONIA TANKS BONNIE CLAIRE SE
18       18:56:         19       19:28:11         19       21:41:33         19       23:40:20         20       6:27:55         20       14:32:13	5 37.347 2 37.363 5 37.410 3 35.628 4 36.010 3 37.810	118.294 114.364 116.723 115.572 117.752 115.536	3.9 3.1 1.5 2.6 8.9 3.2	-1.02 12.27 1.78 2.14 0.00++ 1.58+	3.1 3.3 5.2 6.6	279 268 144 222 297 124	CDZ 1.70 CDI 1.76 1.48 CCZ CDI DDZ 1.94 DCI 1.22 0.94	1.53 2.05	1.69 1.74 0.76 1.15 1.25	1.9	35.4 0.24 42.7 0.23 15.0 0.20 76.4 0.21 72.4 0.15 19.7 1.00	14 10 8 10 9	•••QUAD. NOT LISTED •••QUAD. NOT LISTED BLACK MTN NW CLARK MTN HAIWEE RESERVOIR WORTHINGTON MTNS
21 1: 1:55 21 3:54:44 21 6:42: ( 21 8:22:44 21 18:58:25 21 19:30:44	5 35.580 36.869 37.269 38.530 38.543 37.467	115.539 116.738 116.509 115.364 115.338 116.552	3.0 0.4 0.3 3.7 2.1 0.4	3.13+ 7.83 -0.89 -1.23 7.00 3.22+	2.2 11.8 2.9 8.21	228 96 98 251 263 105	CDI BBI 1.52 1.40 CCZ 2.02 CDZ 2.41 2.09 CDI 2.20 CCI 1.77		1.39 1.41 2.40 2.26 1.30		80.3 0.29 12.7 0.16 11.9 0.13 64.1 0.29 66.2 0.41 21.0 0.09	13 22 10 19 22 14	CLARK MTN BARE MTN TRAIL RIDGE ***QUAD. NOT LISTED* **QUAD. NOT LISTED* BLACK MTN NE
21 19:37:19 21 22: 7: 7 22 1:16:20 22 11:34:30 22 21:33:54 23 0:21:21	37.470 36.035 37.199 38.528 36.949 36.032	116.560 116.963 116.422 115.377 116.888 117.908	0.6 0.2 1.3 - 3.7 - 0.8 2.2	0.00** 1.05 -1.73 -0.20 1.87 4.04	1.6 0.7 2.0 2.4 3.7 3.6	107 210 141 269 73 291	ACZ 1.49 ADZ CCI CDZ 2.45 BCZ 1.71 BOI 1.94	2.64	1.20 1.05 0.90 2.22 1.63 1.90		21.1 0.14 11.7 0.14 8.9 0.42 63.5 0.36 13.6 0.25 82.9 0.27	15 5 15 19 17 17	BLACK MTN NE BENNETTS WELL SCRUGHAM PEAK ***QUAD. NOT LISTED* BULLFROG HAIWEE RESERVOIR
23 1:54:47 23 3:30:22 23 4:34:37 23 17:27:56 24 9:42:15 24 9:42:20	38.595 38.602 37.525 36.952 35.881 36.188	115.344 115.342 116.880 116.649 116.751 116.672	7.0 2.1 0.3 1.7 10.8	0.60• 3.07• 1.84 0.14 1.40 0.00••	1.1++ 6.6 3.1	327 312 252 102 268 100	DOZ 2.23 CDI 1.90 Abz 2.49 ABI CDI 2.57 DCZ 2.57		1.93 2.25 0.92 0.66 1.50 1.31	2.5	82.7 0.31 72.3 0.18 33.5 0.14 15.1 0.07 34.6 0.16 0.2 2.35	6 ( 10 ( 15 ( 7 )	AND A CONTRACT OF A CONTRACT O
24 22:22.11 25 3:21:36	37.074 35.879	116.014 117.711	0.8 - 3.1 1	•1.23• 0.49	2.1	75 271	CCI 2.43 CDZ 2.74				13.9 0.23 76.8 0.23	22 1 30 1	NICCA FLAT IOUNTAIN SPRINGS CANTUR

133

.

Lumath

H^{BANAD} H^{BANAD} H^BBANAD

2 9 9 3 91051

1989 LOCAL HYPOCENTER SUMMARY - SG8 EARTHQUAKES

DATE - TIME (UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z (KM)	AZI GAP (DEG)	000 125	MAGNITUDI Mco Md	E ESTII MLh	MATES MLv	MLc	DEL RMS MIN RES. (KM) (SEC)	PH. U.S.G.S.
25 11:44:29 25 17:22:53 25 17:22:53 25 17:45:44 26 1:49: 5 26 2:21:13	37.236 36.418 36.647 36.911 37.116 36.643	116.406 118.032 116.344 116.758 117.032 116.351	0.4 1.1 0.3 0.4 0.3 0.6	-0.52 8.09 4.40 11.01 4.47 4.65	0.4 0.8 0.6 1.1 3.9 0.4	48 250 66 150 105 169	ABZ BOI AAI ACI BCZ ACU	1.99 1.80 2.55 1.80 1.09 0.91 1.19 0.38	3	1.46 1.14 0.58 0.74	2.9	7.7 0.13 70.7 0.21 0.5 0.10 17.3 0.08 14.9 0.13	26 SCRUCHAM PEAK 36 •••QUAD. NOT LISTED• 26 STRIPED HILLS 17 BULLFROG 21 BONNIE CLAIRE SF
26       8:47:32         26       15:11:6         27       22:2:25         28       0:31:34         28       0:32:16         26       5:28:29	36.905 36.431 36.507 37.647 37.365 37.283	116.759 117.998 115.677 114.745 115.446 115.171	0.3 2.9 2.0 6.8 5.5	8.48 -1.02 3.39 2.23• 0.80• -0.20	1.6 2.0 1.9 	105 262 233 288 309 349	ABZ COZ DOA DOI DOZ DOZ	0.43 1.83 2.03 1.43	2.16	0.96 0.86 1.79 1.30	1.9	1.1 0.12 16.8 0.10 68.7 0.20 7.5 0.52 41.5 0.28 31.6 0.10 17.4 0.10	17 STRIPED HILLS 17 BULLFROG 12 KEELER 10 HAYFORD PEAK 8 SUNFLOWER MTN 5 CUTLER RESERVOIR
26 8:24:46 26 8:24:54 28 22.22:44 26 22:23:17 28 23:31:45 29 1:22:53	37.560 37.539 37.420 37.417 37.332 37.333	118.482 117.909 116.729 116.898 115.353 115.350	9.0 5.9 4.6 	0.74 7.00 0.67 7.00•• 2.97• 11.65	6.7 9.9 1.7 <u></u> 3.0	318 206 243 266 143 143	DDU 1 DDU 1 CDA ADA CCA BCA	.82 .82 1.20 1.07 2.05 1.95				53.0 0.28 12.6 1.82 16.2 0.03 26.7 0.01 28.0 0.16 27 7 1	5 ALAMO 10 ***QUAD, NOY LISTED* 10 PIPER PEAK 5 BLACK MTN NW 3 TOLICHA PEAK 12 BADGER SPRING
29 1:50:26 29 6:48:18 30 22:57:15 31 10:40:57	36.050 36.069 36.967 38.481	117.896 117.875 115.995 115.372	2.2 5.0 0.3 3.7	7.00 8.02 8.61 -1.23	4.9 3.7 0.5 2.5	274 272 126 265	BDA CDA ABZ 1 CDI 2	2.27 2.54 .24 .17	2.47	1.05		81.0 0.21 78.4 0.15 6.6 0.05 58.7 0.30	14 BAUGER SPRING 11 HAIWEE RESERVOIR 8 HAIWEE RESERVOIR 15 PLUTONIUM VALLEY 14 EDREST HOUS

134

•

H^{ara}H^{had}M

аннын Ни

H^{boombil}H H

## Appendix B

Chemical explosion location data for the years 1987, 1988, and 1989

The southern Great Basin of Nevada is seismically active from both natural and man-made sources. Chemical explosion seismic data acquired by the SGBSN have been scaled to provide information on the accuracy of the crustal models and the validity of the location algorithm used by the SGBSN. These data should also be helpful in future research such as tomographic inversion of P-arrivals to determine crustal structure.

Employees from the following organizations have been contacted and have provided helpful information on source locations, times, and in some cases, TNT-equivalent source size:

(1) Bond International Gold, Denver, Colorado. Blasting at Ladd Mountain, Nev. (Bullfrog Hills quadrangle), approximately daily (weekdays, 4 PM to 5 PM).

(2) Chemstar, Inc., Las Vegas, Nevada. Blasting at two limestone quarries, one in the Dry Lake, Nevada, quadrangle, and one in the Sloan, Nevada, quadrangle.

(3) Cyprus Tonopah Mining, Tonopah, Nevada. Blasting in the San Antonia Mountains (San Antonia Ranch quadrangle), usually in the AM.

(4) Frehner Construction, North Las Vegas, Nevada. Blasting at limestone quarry in Sloan, Nevada, quadrangle.

(5) Saga Exploration Co., Beatty, Nevada. Blasting at Bare Mountain, Nevada usually early to late afternoon.

(6) U. S. Geological Survey, Menlo Park, California. Chemical explosions during January, 1988, in Amargosa Desert, Nevada, for seismic reflection feasibility survey See Brocher and others, Table 3 (1990), for shot information.

A number of other organizations are also known to be engaged in blasting in the southern Great Basin of Nevada, but have not been contacted.

Column headings for this Appendix are identical to those for Appendix A. The depth of all blasts is at the surface (plus < 100 feet, usually), but in many instances, hypocenters have been located with depth as a free parameter, to examine the location algorithm and velocity model. If the hypocenter depth is reported as -1.00, it was fixed at that value during hypocenter determination. All other depths are freely determined. If the letters "PB" follow the depth estimate, the event is a probable blast, but just enough ambiguity was present in the seismograms to prevent a certain judgment. Far more hypocentral data from chemical explosions than are presented in this Appendix have been detected and archived by the SGBSN, especially for years preceeding 1989. The decision was made in late 1988 to scale arrival time and amplitude data and to include all resulting hypocenters for known and probable blasts into the catalog, but to flag them as blasts (or probable blasts).



ار بالمعنية مارين. معرفة المارين المارين الم

n secola i

Figure B1. Preliminary epicenter map of blasts and probable blasts in the SGB, 1987 through 1989.

136

## 

2°53

÷.,

 $\mathbf{C}$ 

 $\square$
## 1987 LOCAL HYPOCENTER SUMMARY - SGB CHEMICAL EXPLOSIONS

DATE (U	- TIME JTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125	MAGN ( Mic o	I TUDE Md	ESTIMA MLh	TES MLV	MLc	DEL- MIN (KM)	RMS RES. (SEC)	PH.	U.S.G.S. QUADRANGLE
JAN 10	23:30:19	36.806	116.909	0.9	1.16P8	1.4	324	ADI		1.33		0.92		25.2	9.05	13	BULLFROG 20-12.
OCT 20	0:35:38	36.935	116.890	0.3	-0.288L	9.7	116	CCA		0.97				13.9	0.09	12	BULLFROG
NOV 8 16 18 19 23	18:13:57 20:40:35 0: 3:31 1: 1:47 0:49:29	36.944 36.891 36.939 36.882 36.889	116.883 116.824 116.894 116.814 116.812	0.4 0.4 0.3 2.0 0.2	0.18PB 8.44PB -0.91BL -1.23BL 0.21BL	0.8 2.4 0.4 18.3 0.6	113 150 116 252 126	ACI BC1 ACI CDI ACI	1.91 1.74 1.52	1.48	1.40 1.41	1.29 0.38 1.37 0.71 1.06		14.2 20.5 13.4 19.2 20.2	0.10 0.04 0.10 0.06 0.05	14 11 19 8 17	BULLFROG BULLFROG 20-7 BULLFROG 20-7 BULLFROG 20-7 BULLFROG
DEC 19 21	0:28:40 22:45:20	36.949 36.947	116.882 116.885	0.5 0.5	-1.138L -1.108L	0.7 9.7	85 125	BC1 CC1	1.48		1.61	1.62 0.93		14.1 13.9	) 0.16 0.08	19 11	BULLFROG 20-0 BULLFROG

۰.

Hannin Ha

) 1 0 5 1 : 0 0 2

1988 LOCAL HYPOCENTER SUMMARY - SCB CHEMICAL EXPLOSIONS

の行行

DATE - TIME (UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125	MACHITU Mcg M	DE EST	IMATES h MLv	MLc	DEL- MIN (KM)	RMS RES. (SEC)	<b>#</b> Н РН.	U.S.G.S. QUADRANGLE
JAN 10 23:15:19 12 22: 6:38 14 19:17: 4 15 18:58:18 15 19:18:47 15 19:28:16	36.888 36.945 36.939 36.544 36.571 36.572	118.816 118.886 116.888 116.338 116.374 116.372	0.4 0.3 0.9 0.4 0.5	-1.008L -1.008L -1.008L -1.008L -1.008L -1.008L	0.6 0.7 0.9 7.4 15.5 0.9	111 86 126 276 95 91	ACI ACI ACI COI CBI ABI	2.20 1.0	58 1.9	0.87 98 1.86 0.95 0.74 1.15 1.13		22.1 14.0 14.0 11.2 8.8 0.0	0.12 0.11 0.08 0.03 0.09 0.12	17 23 11 8 10 15	BULLFROG BULLFROG BULLFROG LATHROP WELLS SE LATHROP WELLS SE LATHROP WELLS SE
15 19:57:12 15 20:21:49 26 18: 7:36 FEB 7 19:24:51 7 19:27:26 11 2:65:11 12 22:20: 5	36.573 36.893 36.944 36.894 36.896 36.938 36.897	116.342 116.814 116.882 116.815 116.014 116.898 116.813	0.3 0.4 0.4 0.4 0.4 0.4 0.4	-1.008L -0.918L -1.008L -1.008L -1.008L -1.268L -0.508L	8.5 9.9 0.9 13.3 9.9 0.9	87 109 113 109 189 117 109	ABI ACI ACI ACI CCI ACI ACI	1.50 1.3 2.10 1.65 1.48 1.68	51	1.38 1.00 0.96 1.47 0.94	1.4	8.0 22.0 14.2 20.0 20.0 13.1 20.0	0.08 0.12 0.11 0.13 0.12 0.11 0.11	15 15 13 16 12 15 19	LATHROP WELLS SE BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
15 21:57:19 16 21:33:49 16 21:33:50 17 0:45:18 17 0:45:17 19 21:55:53	36.944 36.882 36.878 36.905 36.910 36.920	116.885 116.815 116.804 116.812 116.811 116.806	0.2 0.3 1.7 1.2 0.5 0.3	-1.008L -1.008L 20.108L -1.588L -1.008L -0.258L	6.7 1.9 2.0 13.0 2.3 1.1	114 111 176 156 154 163	ACI BCI CCI BCI ACI	1.73 1.7 1.95	78 43 24	1.25 1.43 2.67		13.9 19.3 23.6 20.5 20.7 25.6	0.09 0.09 0.09 0.09 0.11 0.04	13 15 10 11 15 8	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
21 1: 2:39 24 20:40:23 28 21:16:36 MAR 1 0:34:9 2 19:33:32 2 22:41:46	36.887 36.944 36.932 36.880 36.902 36.896	116.812 116.887 116.890 116.817 116.809 116.813	0.4 0.2 0.4 0.7 0.6 0.6	5.008L -1.008L -1.008L -1.008L -1.008L -1.008L	5.4 7.0 1.3 24.7 8.1 1.5	81 114 96 112 157 132	CCI CCI ACI CCI CCI ACI	2.0 1.34 1.72 1.0	95	1.39 1.74 0.97 0.95 1.66		22.5 13.9 14.0 22.5 20.1 19.9	0.16 0.11 0.10 0.11 0.10 0.11	15 12 15 8 11	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
4 23:38:7 6 6:58:3 7 21:33:3 10 20:14:58 14 16:3:36 15 1:38:23 17 20:32:31	36.934 36.892 36.912 36.909 36.891 36.890 36.941	116.888 116.814 116.809 116.815 116.823 116.823 116.814 116.894	0.4 0.4 0.2 0.3 0.3 0.3	-1.008L -1.008L -1.008L -1.008L 10.868L -0.958L -1.10P8	1.0 11.8 10.2 1.1 1.9 0.7 10.9	116 110 153 118 125 110 226		1.22 1.7 1.65 1.52 1.4	.3	1.53 1.41 1.20 1.25 8.84 0.82 1.50	1.3	14.1 19.8 20.7 20.8 20.5 19.6 27.4	0.12 0.13 0.09 0.05 0.09 0.11 0.09	15 15 9 13 16 16 12	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
21 1:50:16 21 22:51:41 25 1:53:15 APR 1 20:15:31 2 2:19:16 3 0:44:46	38.888 36.899 36.999 36.925 36.885 36.897	116.819 116.814 116.814 116.895 116.824 116.815	0.4 0.4 0.5 0.8 0.2 0.4	6.488L -0.858L -1.308L 3.68+ 0.13P8 -1.008L	4.2 0.5 1.0	111 110 84 87 127 121	BCI ACI OCI ACI ACI	1.60 1.6 1.51 1.5 1.5 1.4 1.3 1.72	5 5 4 5 5	1.28 0.83 1.50		20.0 19.7 20.2 14.0 20.1 20.2	0.13 0.12 0.15 0.17 0.64 0.13	17 15 14 14 13 16	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
3 21:12: 2 3 23:11:44 5 1:47:23 5 20:33:55 6 20:21:16 8 0:26:25	36.892 36.890 36.889 36.886 36.899 36.891	116.817 116.812 116.814 116.820 116.815 116.813	0.2 0.4 0.3 0.3 0.3	-1.008L -1.008L 0.56P8 -1.008L -1.008L -1.008L	0.3 0.8 0.9 1.1 16.2 9.9	123 109 110 128 121 110	ACI ACI ACI ACI ACI CCI	1.67 1.5 1.85 1.5 1.5 1.55 1.3 1.49 1.5	5 9 1 0 7	1.22 1.39 1.06 1.07 0.74		20.0 19.5 19.6 19.9 20.2 19.6	0.08 0.13 0.11 0.05 0.11 0.11	14 18 19 13 13 13	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
8 21:21:44 9 18:25:43	36.938 36.900	116.888 116.814	0.3 0.4	-1.00BL -1.003L	12.3	126 126	100 AC I	1.40		1.55 0.85		13.9 20.3	0.04 0.13	10   14	BULLFROG BULLFROG

138

H., (¹¹¹)

3 3 0 0 3 1 j | I

1988 LOCAL HYPOCENTER SUMMARY - SGB CHEMICAL EXPLOSIONS

C	DATE ()	- TIME UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125	MAGN I Mco	TUDE Md	ESTINA MLh	TES ML¥	MLc	DEL- MIN (KM)	RMS RES. (SEC)	IN PH.	U.S.G.S. QUADRANGLE
<b>АР</b> Я	10 10 11 13 13 16	15:51: 8 23:40:18 23:22:45 0:18:45 16:37:55 19:39:46	36.907 36.893 36.888 36.895 36.892 36.899	115.812 116.819 116.822 116.815 116.818 116.818	0.2 0.4 0.3 0.3 0.4 0.4	-1.008L -1.008L -1.008L -1.008L -1.008L -1.008L	0.8 1.2 0.8 0.9 1.2 1.1	118 130 126 122 110 120	ACI ACI ACI ACI ACI	1.56	1.20		0.77 0.91 0.68 0.72 0.83 1.00		20.0 20.2 20.1 20.1 20.1 20.1	0.07 0.05 0.08 0.12 0.88 0.12 0.08	12 9 10 13 13 14	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
	17 17 18 20 20	18:36:41 21: 3:20 23:38:11 16:34:10 21:52:52 22:49:22	36.889 36.882 36.878 36.941 36.882 36.935	116.818 116.832 116.821 116.885 116.818 116.888	0.5 4.2 0.9 0.4 0.4 0.4	-1.008L 10.68P8 5.00P8 -0.828L -1.008L -1.008L	0.9 9.7 4.7 1.1 6.9 0.8	129 184 168 114 126 116	ACI CDI BCI ACI ACI ACI	1.51 1.68 1.42 1.47	1.29 0.37 0.98 1.41	1.84	0.97 1.47 0.79 1.55		19.5 20.6 19.5 14.1 19.5 14.1	0.10 0.06 0.14 0.10 0.08 0.08	15 6 15 14 18	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
	22 22 23 25 25 25	15:28:46 20:32:37 17:34:23 18:51: 5 20:51: 6 8: 1:24	36.891 36.888 37.028 36.845 36.851 36.852	116.815 116.816 116.116 116.304 116.306 116.299	0.4 0.4 0.5 0.3 0.4	-1.008L -1.008L 0.45P8 -1.648L -0.938L -0.378L	1.4 18.6 0.4 0.8 0.4 0.3	79 124 195 164 78 80	8C1 CC1 AD1 A81 AA1 AA1	1.85 1.38	1.64 1.53		1.66 1.00 0.85 0.24 0.74 0.25	1.1	19.0 19.7 10.0 2.0 1.7 2.0	3 0.15 7 0.10 5 6.10 5 0.10 7 0.07 5 0.09	21 10 19 10 12 11	BULLFROG BULLFROG YUCCA FLAT JACKASS FLATS JACKASS FLATS JACKASS FLATS
	26 26 27 27 27 28	15: 5:36 21:47:19 1:49:55 15: 8:49 22:24:31 21:28:38	36.886 36.943 36.890 36.891 36.885 36.935	116.816 116.883 116.814 116.813 116.817 116.893	0.4 0.4 0.3 0.4 0.4 0.3	-1.008L -1.008L -1.008L -1.008L -1.008L -1.008L	1.3 1.3 9.5 1.4 1.4 12.7	111 87 110 110 128 97	AC1 AC1 CC1 AC1 AC1 CC1	1.60 1.51 1.61 1.56	1.44 1.53		1.85 1.57 1.87 1.87 0.98 1.30	• • •	19.0 14.1 19.0 19.0 19.0 13.1	5 6.12 2 0.11 7 0.11 5 0.13 5 0.07 7 0.13	16 17 15 16 10 12	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
MA'I	28 30 30 7 2 4 4	22:24: 6 1:38: 0 19:49:49 23:17:33 18:53:35 18:57:32	36.904 36.377 36.888 36.889 36.038 36.038	116.819 116.371 116.816 116.813 115.043 115.033	0.4 0.6 0.5 0.5 3.3 1.6	-0.858L -1.008L -1.008L -1.698L -1.008L -1.008L	12.6 10.8 1.2 0.9 11.5 1.5	120 198 111 110 279 277	CCI COI ACI ACI CDI CDI	0.99 1.50 2.75	1.45 2.49	0.74 2.29 3.21	1.24 0.98 1.10 0.87 2.45 2.83	2.9	20.8 9.0 19.1 19.5 52.1 72.0	3 0.10 3 0.11 7 0.14 5 0.13 9 0.22 9 0.49	14 12 15 15 18 20	BULLFROG ASH MEADOWS BULLFROG BULLFROG LAS VEGAS SE LAS VEGAS SE
	4 6 7 8 8	22:51:20 17:38: 5 0:19:56 17:19:58 15:37:22 19: 9:28	36.951 36.935 36.886 36.884 36.901 36.902	116.883 116.889 116.815 116.816 116.813 116.811	0.5 0.4 0.9 0.4 0.3	3.898L 1.73P8 -0.77P8 8.91P8 -0.59P8 1.54P8	8.5 1.0 0.8 3.7 1.4 9.8	106 118 128 111 61 107	CCI ACI ACI BCI ACI CCI	2.26 1.42 1.47 1.53	1.80		1.79 1.85 8.83 9.65 1.86 1.17		14.0 14.0 19.5 19.5 20.5	0.13 0.10 0.10 0.20 0.20 0.13 2.0.13	12 13 16 14 24 14	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
	9 10 11 11 11 12	20: 1:18 17:57: 0 17:52:16 19: 4:50 22:54:18 14:38:41	36.937 36.939 36.893 36.886 36.896 36.599	115.886 110.884 116.811 116.818 116.817 116.590	0.4 0.5 0.5 0.5 1.0	-1.09P8 -0.43P8 -1.56P8 -0.19P8 -1.02P8 1.87P8	0.9 1.2 1.4 1.8 1.3 2.6	88 87 109 128 124 169	ACI ACI ACI ACI BCI	1.54 1.65 1.54 1.66 1.21			1.58 1.59 0.98 0.98 1.19 0.93		14. 14. 19. 19. 19. 19.	2 0.10 3 0.10 3 0.12 7 0.00 9 0.12 9 0.10	18 17 14 12 15 12	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BIG DUNE
	12 15	16:11:12 15:58:33	36.939 36.939	116.886 116.882	0.4 0.4	-1.05P8 -1.20P8	1.3	87 87	ACI ACI				1.36	i 1	14. 14.	0.10 0.11	17 16	BULLFROG BULLFROG

139

иннини Иннини Инний Инний Инний Инний Инний Инний Инний Инний 

•

Hanna Hanna Hanna Hanna Han

#### 91051 3 7 0 4

1988 LOCAL HYPOCENTER SUMMARY - SCB CHEMICAL EXPLOSIONS

	D	ATE -	- TIME TC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	QQD 125 MAGNITUDE Mco Md	ESTIMAT MLh	TES MLV MLG	DEL- MIN (KM	- RMS RES. ) (SEC)	JN PH	U.S.G.S. QUADRANGLE
	MAY	20 20 20 21 24 31	17:38:54 21:28:36 21:31:15 0:20:35 20: 6:40 15:34:28	37.433 36.927 36.932 36.887 36.943 36.943	116.660 116.891 116.893 116.810 116.882 116.885	0.2 0.5 0.5 0.4 0.5 0.3	1.73P8 1.47P8 1.52P8 1.728L 1.06P8 1.74P8	9.1 1.0 0.7 3.0 1.2 0.7	76 118 117 110 117 131	CCI 1.53 ACI ACI 2.08 1.24 BCI 1.58 ACI ACI		1.50 1.19 1.50 1.38 1.27 1.01	15 14 13 19 14 13	.7 0.68 .2 0.69 .8 0.12 .2 0.13 .3 0.10 .6 0.64	20 12 16 18 13	BLACK MTN NW BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
	aug Sep	9 27 1 2 6 7	18:24:57 23:23:36 22:41:34 23:40:57 23:37:54 0: 8:49 23:52:47	36.936 35.923 36.822 36.895 36.935 36.892 36.896	116.886 115.124 116.683 116.81 116.892 116.824 116.825	0.5 2.2 0.4 0.5 0.7 0.3	-1.108L 0.008L 0.0098 -0.3998 0.5198 -1.538L 7.7298	$ \begin{array}{c} 1.0\\ 29.1\\ \hline 1.3\\ 1.4\\ 2.2\\ 3.6\\ \end{array} $	88 192 288 174 97 130 125	ACI 1.34 COI ACI ACI 2.12 BCI 1.63 BCI 1.85	1.82	1.86 2. 0.88 1.17 1. 1.99 1.57 0.99	14 1 33 5 6 26 13 26 20	.2 0.12 .3 0.12 .8 0.01 .4 0.09 .8 0.14 .5 0.11 .9 0.05	18 9 3 14 21 14 13	BULLFROG SLOAN BARE MTN BULLFROG BULLFROG BULLFROG BULLFROG
		7 8 10 12 12	23:54:55 20:17:26 23:59:31 18:49:36 17:43:29 23:35:31	36.899 36.883 36.899 36.885 36.885 36.942 36.892	116.822 116.820 116.817 116.818 116.894 116.829	0.4 1.0 0.4 0.3 0.9 0.5	11.74Pf 0.008i -1.81Pf -1.83Pf 1.67Pf 13.24Pf	2.8 2.6 3 1.1 3 1.8 3 3.1 3 3.4	123 155 110 125 115 127	881 801 ACI 1.42 1.04 ACI 1.45 801 2.22 801		0.89 0.88 0.84 0.56 1.85 2 0.92	26 16 16 19 19 19 20	0.8 0.08 0.7 6.11 0.9 0.61 9.7 0.61 3.4 0.21 0.9 0.11	14 16 13 15 15 17 2 13	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
140		13 14 15 15 17 19	23:41:42 e: 4:49 e: 7:31 22:19: 2 23:40:37 23:26:27	36.890 36.899 36.894 36.942 36.942 36.903 36.943	116.814 118.818 116.815 116.883 116.812 116.890	0.4 0.5 0.3 0.3 2.4	0.8391 6.958 1.488 1.858 1.138 4.74+	B 1.7 L 5.4 L 1.3 L 0.4 L 9.9	79 122 110 87 168 164	ACI 2.29 CCI 1.73 ACI ACI CCI 1.89 1.33 CCI		1.80 1.32 1.45 2 1.54 1.51 1.60	11 20 .0 20 14 20 1	9.7 0.1 0.5 0.1 0.0 0.1 4.2 0.0 0.3 0.6 3.6 0.6	3 21 9 16 1 15 9 16 5 11 5 10	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
		20 21 21 23 24 24	0:24:12 0:40:42 1: 9: 0 0: 9: 3 0: 3:14 0:50: 1	2 36.901 2 36.794 3 36.891 3 36.903 4 36.898 9 36.893	116.810 116.206 116.822 116.813 116.819 116.814	0.4 0.5 0.5 0.3 0.5 0.5	0.828 1.20P 0.008 1.188 2.918 3.108	L 9.9 B 0.3 L 1.2 L 8.7 L 30.0 L 30.0	169 140 177 169 122 110	CCI 1.58 ACI 1.02 ACI 1.22 CCI 2.01 CCI 1.66 CCI		1.90 1 0.81 1 1.44 1.42 1 1.57 0.90	.6 2 .0 2 .3 2 1	0.1 0.0 7.5 0.1 0.3 0.0 0.4 0.0 0.5 0.1 9.8 0.1	8 14 8 12 8 12 8 12 6 14 2 14 1 12	BULLFROG SKULL MTN BULLFROG BULLFROG BULLFROG BULLFROG
		27 28 28 29 30	23:48:1 0: 1:3 23:47:1 18:52:3 0: 2: 23:54:4	7 36.897 2 36.890 9 36.892 1 36.940 7 36.901 8 36.890	116.815 116.822 116.824 116.885 116.885 116.807 116.815	0.5 0.5 0.3 0.5 0.4 0.5	-0.548 8.448 -2.008 -0.918 -1.948 -0.588	L 1.3 L 5.4 L 0.7 L 1.3 L 1.5	109 126 125 87 83 110	ACI 1.30 CCI ACI ACI 1.48 BCI ACI	1.80	1.48 1 1.17 1.63 1.42 1.61	.8 2 2 1 .0 1	0.2 0.1 0.3 0.0 0.5 0.0 4.2 0.1 9.8 0.1 9.7 0,1	3 1 8 1 6 1 1 1 6 2 2 1	5 BULLFROG 3 BULLFROG 3 BULLFROG 5 BULLFROG 5 BULLFROG 3 BULLFROG
	OC.	T 1 3 4 5 5 6	0:24:5 16:25:3 0:34:5 1:10:3 23:51:1 0:21:	9 36.900 9 36.897 6 36.890 1 36.892 9 36.895 2 36.929	116.815 116.824 116.824 116.829 116.829 116.812 116.887	0.4 0.4 0.5 0.3 0.5 0.5	-0.806 7.007 10.42F -1.006 -1.76F -0.98F	3L 1.4 始 3.7 始 3.1 3L 11.9 始 2.7 始 1.5	58 124 126 124 109 95	ACI 1.94 BCI BBI CCI BCI 1.65 ACI		1.88 0.83 0.83 1.78 1.18 1.42	2 2 2 1 1	20.3 0.1 20.8 0.0 20.4 0.0 20.2 0.0 19.9 0.1 14.4 0.1	5 2 8 1 7 1 9 1 3 1 5 1	5 BULLFROG 8 BULLFROG 1 BULLFROG 5 BULLFROG 4 BULLFROG 5 BULLFROG
		6	23: 6:5	8 36.887	116.818 116.819	0.8 0.3	-1.03F -1.87F	28 11.1 28 1.5	149 125	CCI ACI		0.74 1.28	1	19.7 0.1 19.9 0.1	1 1 2 1	2 BULLFROG 6 BULLFROG

Hommitte

Humailu H^{REALING}

0,00000 0,000000 0,000000

1988 LOCAL HYPOCENTER SUMMARY - SCB CHEMICAL EXPLOSIONS

					STAND		STAND	AZI	000				•	DEL-	RMS	#N	
D/	<b>TE</b>	- TIME	LATITUDE	LONGITUDE	ERROR	DEPTH	ERROR	GAP	125	MAGNITUDE	ESTINA	TES		MIN	RES.	PH	U.S.G.S.
	U) (	TC)	(DEG. N)	(DEG. W)	H(KM)	(KM)	Z(KM)	(DEG)		Mca Md	MLh	MLV	MLc	(101)	(SEC)		OLIADRANGI F
							•••	•						·/	(/		
OCT	7	0: 8:45	36.898	116.813	0.4	-1.1198	1.4	108	ACT	1.65		1 80		20.0		10	DUIL LEDOC
	8	23:49:60	36.893	116.819	0.4	-1.6681	1 1	123	ACT	1 80		1 90		- 34		- 24	DULLEDOC
	ā	28.28.48	38 885	116 821	8.5	-4 5000		127		1.00		1.00		40.4		40	
	1.	23.45.17	38 000	116 818		-0.0070	14.1	14/				0./1		19.3		1.	BULLING
	**	17.94. 9	36 046	116 003	0.4	-1.000L	19.1	141		<b>•</b> • <b>•</b> • • •		1.20		20.5	0.09	12	BULLFROG
	11	17:24: 2	30.940	110.003	0.4	~0.35PB	12.0	186	CC1	2.07 2.16		1.69	1.5	14.1	0.11	16	BULLFROG
	12	1:35:50	30.892	116.825	•.7	6.85P9	5.1	130	CC I	1.60 1.65		1.89		20.0	6.09	15	BULLFROG
	12	23:52:60	36.895	116.815	0.5	3.23+		110	CC 1			1.46		20.3	6.14	17	BULLFROG
	12	23:56:39	36.901	116.816	0.3	~1.23P8	11.0	109	CC 1			8.58		20.5	8.68	1.	BULLEROG
	14	1: 8:48	35.891	116.821	0.3	-0.82+	-	125	CCI			1.89		28.2	8.85	17	BULLEROG
	14	23:50: 8	36.900	116.830	0.7	15.30PB	4.2	125	BBI			1 43		28	A 12	14	BUILLEROC
	15	0:24:59	35.891	116.815	8.4	0.00RI	1 1	123	ACT			1 11		10 1		12	
	16	8:47:41	36.893	116.817	.3	-1 6981	11	123		1 00		1 04					DULLFROM
	••	•••••			•.•			160				1.00	4.4	20.0	<b>A</b> .11	41	
	17	17:35:29	38,940	116.884	0.5	-1.8729	1.6	87	401			1 45					
	18	23:42:28	36.898	116 813	8.2	-1 6691	7 6	180	$\sim$ i			1.00			0.10	10	
	21	0.45.30	38 805	118 813		-1.4100	7.0	103				1.15		20.1	9.13	10	BULLFRUG
	<u><u></u></u>	0140108	30.000	110.013	0.5	-1.0170	9.3	1000	CC1	2.0/		1.99		19.0	0.13	22	BULLFROG
	21	22:30:40	30.939	110.005	0.4	-1.///18	1.0	87	ACI		1.43	1.42		14.2	2 9.11	22	BULLFROG
	22	0:28:42	30.8//	116.821	0.5	-1.93PB	1.4	113	ACI			0.65		19.5	5 8.11	-14	BULLFROG
	22	0:50:10	36.896	116.817	0.3	-1.38+		122	CC 1					20.2	2 0.09	-14	BULLFROG
	~~		74 007														
	22	0:50:13	30.897	110.018	0.3	0.0799	11.1	122	CCI			1.65		20.4	0.08	13	BULLFROG
	22	23:49:49	36.882	116.815	0.3	1.00BL	0.8	111	ACI			2.02	1.9	19.3	0.14	20	BULLFROG
	23	16:45: 9	36.885	116.816	0.4	-1.43P8	1.8	111	ACI			0.96		19.5	0.10	14	BULLFROG
	25	22:29: 2	38.940	116.883	0.5	-1.98PB	0.9	87	ACI		1.56	1.91		14.3	0.11	15	BULLFROG
	28	20:27:54	35.935	115.234	2.2	-0.77		214	CO 1	2.57		2.34		43.2	0.13		SLOAN
	28	23:50:33	36.899	116.812	0.3	-1.008L	7.2	78	cci	1.92		1.87		28.1	9.15	29	BULLFROG
								. –									
	27	23:40:36	36.889	116.817	0.3	-1.608L	9.8	124	CC1	1.80		2.15		19.8	0.11	19	BULLFROG
	27	23:53:10	36.943	115.903	8.8	10.92PB	3.1	128	<b>B</b> 81					12.5	0.64	7	BULLEROG
	28	17: 5:56	36.888	116.835	0.4	12,1998	2.4	130	BAI	1.66		1.55		20.6	8.85	14	BUILLEBOO
	29	8:48: 7	36.893	116.830	8.5	9.86PB	3.6	127	BCI	1 60		1 41		20.5	. 14	14	DUILLEDOG
	29	0:53:32	36.900	116.815	0.3	-1.13		128	č	1.00		1.41		20.0		12	DINIEROO
	29	23-44-19	36.889	116.819	8.3	-1 8001		78	ici				1.5	20.7	0.10	16	
		20111110			•.•			10	. ~~1			2.03		20.4	0.10	1.0	DULLFRUG
NOV	1	0:48:59	36.891	116.816	0.3	-1.008L	11.6	123	122	1.40		1.45		19.9	8.18	17	BULLEROG
	1	23:50:57	36.937	116.886	0.4	-1.24PB	6.6	88	ACT			2 11		14 1	A 1A	24	BUILI EROC
	2	16:33: R	36.896	116.814	A A	3 864		1.00	~			A 00		20 4		47	DULLEROOD
	-	A+42+18	<b>36 800</b>	118 817	<b>A A</b>	_1 8001	14 0	103				0.33		20.4	0.00	13	BULLPROG
	ž	22.19.23	14 010	116 900	0.7	-1.0000	14.8	121				1.8/	2.0	20.3	0.14	16	BULLFROG
	2	22:30:23	30.939	110.090	0.4	-1.5098	1.1	120	ACI			1.64		13.8	0.11	15	BULLFROG
	3	22:39:10	30.942	110.001	0.7	-1.48PB	1.9	113	ACI			1.55		14.4	0.65	6	BULLFROG
	4	8.47.4A	36.895	116 819	A 4	-1 0001	1 2	103	101			1 00					0
	ĸ	A.44.22	38 200	118 812		-1.0001	1.4	143				1.00		20.4	9.13	10	
	- <u>-</u>	10.97.44	36 600	118 805	0.7	-1.000L	1.7	100	ACI			1.60		20.1	. 14	18	BULLINO
	2	1812/198	30.000	110.023	0.0	9.0/20	4.9	127	BCI			9.93		20,4	0.09	12	BULLFROG
	ō	10:37:10	30.939	110.004	6.2	-0.2798	1.4	87	ACI			1.59	2.0	- 14.3	0.11	16	BULLFROG
	8	18:17:10	20.008	115.819	0.3	-1.008L	13.6	125	CC1			1.02		20.0	0.05	14	BULLFROG
	8	1: 1:52	35.884	116.827	1.8	0.50•		128	100			1.77	1.7	20.4	0.13	14	BULLFROG
	••	A. 40. FA	78 907	110 000			~ ~										
	11	0:40:09	30.09/	110.821	9.5	0.6898	9.6	123	CCI			1.63		20.6	0.11	12	BULLFROG
	11	0:40:00	30.090	110.013	0.3	~1.23PB	7.8	109	CCI			1.67		19.9	0.13	16	BULLFROG

1988 LOCAL HYPOCENTER SUMMARY - SGB CHEMICAL EXPLOSIONS

D	אדב . (ע	– TIME TC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125	MAGNITUDE Mca Md	ESTIMA ULh	TES MLV	MLc	DEL- MIN (KM)	RMS RES. (SEC)	∦N PH.	U.S.G.S. QUADRANGLE
-		15.50.80	76 002	118 800	A 5	2.55+		157	cc1			1.37		20.0	0.11	12	BULLFROG
NUV	11	15:50:52	30.902	116 889	0.5	-1.00BL	2.7	68	BCI	1.77	1.95	1.92		14.0	.15	21	BULLFROG
	18	23; 0:30 A.48.85	36 911	116.811	2.1	3.14+		161	CC1			0.81		20.1	5 8.89	8	BULLFROG
	18	- A.32.52	36.895	115.819	0.6	8.21PB	5.5	123	CC I			0.90		20.4		13	BULLFROG
	18	19:25:19	36.893	116.819	0.6	7.00PB	8.0	124	$\infty$ I		1.83	1.69		28.3	3 0.05	10	BULLFROG
	17	0:38: 8	36.890	116.823	0.4	-1.00BL	1.1	126	ACI	1.24		1.73		28.4	6 0.12	17	BULLFROG
								148	401			1.65		28.3	3 0.13	11	BULLFROG
	17	0:57:47	36.900	116.815	0./	0.000	1.0	117	- ACT			1.36		13.	9.0.11	10	BULLFROG
	17	23: 5:21	36.933	116.892	0./		1.0	174	~~i			1.57	2.	20.	0.07	10	BULLFROG
	18	0:43:26	36.893	116.617	0.0	-1.000L	11.0	142	~			6.51		28.	0.10	7	BULLFROG
	18	0:47:45	36.893	116.81/	1.0	2.00*		128	č			1.62	1.8	19.	8 8.09	12	BULLFROG
	19	0:37:50	36.887	116.817	0.0	-0.200	5.6	122	iñ			6.84		20.	4 8.00	12	BULLFROG
	20	1: 8:53	36.897	110.019	0.0	0.7000	5.0		<i>~</i> .								
	20	17.51.60	NR ROA	115.815	0.4	-1.00BL	1.1	122	ACI			1.59	1.7	20.	Ð Ø.09	14	BULLFROG
	20	A-48-48	36 891	116.824	0.6	7.85PB	5.9	126	$\infty$ 1			8.72	2	20.	4 0.08	12	BULLFROG
	21	28-12-56	36 893	116.817	8.4	-1.00BL	1.2	123	ACI			1.27	,	20.	1 0.10	12	BULLFROG
	22	A-33-23	36.964	116.815	0.3	-1.00BL	0.7	119	ACI			1.64	•	20.	6 0.09	16	BULLFROG
	21	A-36-46	36.897	116.810	0.3	-1.00BL	9.6	195	ΩCI			1.44		19.	7 0.13	13	BULLFROG
	23	22:22:59	36,955	116.911	0.4	-1.04P9	10.4	113	$\infty$ I			1.46	5	11.	5 0.07	9	BULLFROG
									~~1	1 14		1.62	,	19	9.8.13	13	BUILLEROG
	24	0:46: 5	36.896	116.812	0.4	-1.00BL	10.0	103		1.30		1 4		20	5 8.11	15	BULLFROG
	25	0:34:8	36.897	116.819	0.3	~1.00UL		123		1.00		1 67	,	28.		12	BULLFROG
	26	19:11:46	36.891	116.818	0.2	-1.008L		124				1 72	,	2	1 8.65	11	BULLEROG
	27	6:38:44	36.898	116.814		-1.000		133				6.71	•	19.	7 8.89	18	BULLFROG
	28	19:12:27	36.893	116.813	0.8	0.3000	1.0	104				1.85		19.	5 0.11	15	BULLFROG
	29	0:39:45	36.885	118.815		-1.0000	14.1	140	~								
	7.0	A. 48.48	FOR 85	116 817	0.4	3.0008	5.5	123	100			1.68	3	20.	0 0.12	16	BULLFROG
050	30	A.18. 0	34 897	116.816	6.3	-1.00BL	10.2	122	100	1.63		1.84	•	20.	2 0.10	18	BULLFROG
ULC	-	A. 18 . 5	36.895	116.815	0.3	-1.008L	8.6	110	132			1.86	) 1.9	20.	0 0.14	21	BULLFROG
	1	A-35-28	36.898	118.815	0.3	-1.00BL	9.3	109	$\infty$ 1			1.96	0 1.1	) 20.	2 0.13	20	BULLFROG
	Ř	A-38: 4	36.895	116.815	0.4	-1.00BL	16.7	122	CC I			1.43	5	20.	0 0.10	12	BULLING
	š	20:13:32	36.899	116.815	0.3	-1.00BL	8.8	109	Ω			2.03	5	20.	4 0.14	22	BULLIKOG
	-		78 807	448 914	A 4	-1 6601	14.7	121	<u>cc</u> 1			1.72	2	20.	1 0.05	14	BULLFROG
	7	0:40:22	30.087	116 845	A 3	-1 0000	7.6	155	100			1.97	7 1.7	/ 19.	9 0.11	14	BULLFROG
	8	0:42: 4	30.903	116 842	A 2	-1.0081	5.1	146	CCI			1.65	5.	22.	3 0.05	5 12	BULLFROG
	8	18:52: 0	36.038	116 804	1 3	-1.0081	19.8	203	C01			1.39	)	20.	3 0.43	58	BULLFROG
	8	22:27: 0	30.8/3	118 811	1.7	-1.0081	3.8	166	BCI			1.49	9 1.1	3 19.	9 0.16	9 10	BULLFROG
		0:32:1/	30.08/	116 683	8.5	-1.34PE	0.7	148	ACI	1.72		1.64	•	6.	9 0.07	7 18	OAK SPRING
	¥	10:10:0	J7.100	110.000									-				
	11	0:41:48	36.893	116.826	0.8	-1.0081	. 9.1	256	CD1			1.2	<u> </u>	- 20.	7 0.04	, 10	
	11	28: 9:27	36.901	116.833	0.9	-1.0081	. 11.2	208	<u></u>			1.5		21.		/ 14 E 44	
	13	0:39:14	36.894	116.807	0.5	-1.008	. 12.9	138	CCI			2.1		19.		J 11 1 44	BULLING
	14	0:42:34	36.900	116.827	0.6	-1.00BI	1.1	206	ADI			1.50	5	21.	4 0.0	0 14 0 44	
	16	0:32:30	3 35.894	116.816	0.5	-1.008	1.4	110	ACI			1.0		20.		6 10 8 44	
	17	0:36:4	36.889	116.816	G.3	-1.006	1.0	124	ACI	1.72		1.9	•	19	0 0.1	0 I X	DULLINU
				118 917	4 م	-1 000	12.7	189	CC 1			0.6	5	20.	0 0.1	1 10	BULLFROG
	19	22:46:3	2 30.89/	116 860	4 L	-1 849	9.5	168	001			1.6	5 1.	6 . 19.	5 0.1	5 15	BULLFROG
	7A	8:30:4	- JO.024	110.048	<b>v</b> , <i>v</i>	-1.000											

142

1988 LOCAL HYPOCENTER SUMMARY - SGB CHEMICAL EXPLOSIONS

ς.

i.

DATE - TIME (UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125	MAGNITUDI Mca Md	E ESTIMA MLh	TES MLV	MLc	DEL- MIN (KM)	RMS RES. (SEC)	∦N PH.	U.S.G.S. QUADRANGLE
DEC 20 17:34:15 20 21:30:44 21 0:38:49 21 18:40:39 23 0:30:21 23 22:28:52	36.941 35.923 36.891 36.898 36.893 36.940	116.885 115.220 116.815 116.813 116.812 116.886	0.5 1.5 0.3 0.3 0.4	-1.72+ 17.20PB -1.00BL -1.00BL -1.00BL -1.96PB	2.3 11.0 8.5 9.6 9.4	114 195 138 188 189 87	CC1 BOI CC1 CC1 CC1 CC1 CC1	1.72 1.51		1.28 1.44 1.59 2.01 1.95 1.34	1.3	14.1 41.9 19.8 20.1 19.7 14.1	6.10 6.18 6.11 6.14 7 6.13 6.69	8 18 14 15 15	BULLFROG SLOAN BULLFROG BULLFROG BULLFROG BULLFROG
24 0:35:54 27 0:47:11 29 0:36:43 29 23:19:53 30 0:31:57 31 0:42: 1	36.993 36.893 36.898 36.945 36.991 36.992	116.815 116.815 116.514 116.886 116.816 116.811	0.3 0.4 0.3 0.5 0.4 0.4	-1.008L -1.008L -1.008L -1.008L -1.008L -1.008L	10.4 13.7 7.4 1.2 10.6 17.1	169 122 79 113 170 142			1.66	1.41 1.70 1.90 1.75 1.99 1.95	1.7	20.0 19.9 20.1 13.9 20.5 20.2	6.10 6.09 6.14 9.11 6.10 6.07	15 14 29 14 15 14	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG

t) Trast

ฟ_{ม (}) มีน้ำคนไฟฟม

. .

1)03 9 1 3 5 1

1989 LOCAL HYPOCENTER SUMMARY - SGB CHEMICAL EXPLOSIONS

.

DA	ΤΕ (υτ	TIME C)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	QQD 12S MAGNITUDE Mca. Md	ESTIMAT MLh	ES MLV	MLc	DEL- MIN (KM)	RMS RES. (SEC)	<b>∦</b> N PH.	U.S.G.S. QUADRANGLE	
.14.51	1	0.46:43	36.894	116.814	0.4	-1.008L	10.3	174	CC1		1.62	· · ·	19.	9 0.10	16	BULLFROG	
9741	2	0:33:25	36,901	115.815	0.3	-1.00BL	11.5	143	CCI 1.91		2.10	2.2	19.	9 0.14	21	BULLFROG	
	4	0:46: 2	36.895	116.814	0.3	-1.008L	9.1	80			1.84		19.	6 8.13	12	BULLFROG	
	6	0:31:53	36.894	116.810	0.2	-1.008L	6.7	100			2.02	2.0	20.	2 0.12	19	BULLFROG	
	7	ð:43: 2	36.892	116.820	0.3	-1.00BL	. <b>9.</b> 0	190			1.95		19.	6 8.15	20	BULLFROG	
	8	0:35:10	36.893	116.812	0.2	-1.00BL	1.5	105									
								166	CC1		1.33		14.	0 0.10	7	BULLFROG	
	10	17:16:10	36.938	116.000	A 2	-1 000	6.6	109	100		2.17		21.	7 0.14	16	BULLFROG	
	11	0:48:50	30.09/	116 886	8.4	-1.00BL	10.2	114	100		1.72		14.	1 0.10	13	BULLFRUG	
	13	10:34: /	36 891	116.815	0.4	-1.00BL	10.8	57	CCI 2.04		1.91		19.	4 4 4	18	BUILFROG	
	15	A-39-42	36.900	116.816	0.3	-1.00BL	. 11.3	143	CC1		2.02		10	0 0 16	15	BUILEROG	
	17	0:41:48	36.892	116.816	0.4	-1.008L	. 11.2	175	CCI		1./.						
	••	•••••							001		1.41		14	3 0.12	2 13	BULLFROG	
	18	0:14: 3	36.938	116.884	0.4	-1.0081	. 12.4	121			1.65	5	20	.1 0.6	) 15	BULLFROG	
	19	0:45:45	36.897	116.815	0.3	-1.0000	G 8	87	CC1 1.75		1.64	•	14	.4 8.8	16	BULLFROG	
	19	22:39:54	36.941	116.882	0.4	-1.000	2.6	47	BCI		2.00	)	20	.2 0.1	26	BULLFROG	
	21	0:47:41	36.898	116.813	0.4	-1.000	13.6	114	CCI 1.65		1.54	•	14	.0 0.1	5 11	BULLFROG	
	23	22:23:30	36.941	110.007	0.4	-1.00B	9.2	79	CCI 1.99	2.05	2.27	7 2.	1 28	.1 0.1	3 28	BULLFROG	
	25	0:41:52	30.034	110.017	0.0		-								7 17	BUILLEROG	
	26	0.41.45	ADR AF	115.812	0.4	-1.00B	L 10.5	78	100	1.70	2.20	<b>)</b>	/ 19			BELL FROG	
	26	18. 6:41	36.827	116.791		-1.56PI	9 8	332	ADI		1.44	Ľ	10	7 8.1	2 17	BULLFROG	
	28	1: 2:38	36.891	116.813	0.3	-1.008	L 10.0	78	CC1		1.50	<b>`</b>	28		7 18	BULLFROG	
	22	1: 9:53	36.893	116.816	0.3	-1.00B	L 9.5	110					19	.6 0.1	4 30	BULLFROG	
	28	1: 0:40	36.892	116.812	0.3	-1.008	L 11.8	60		•	2.0	3	19	.9 0.1	4 27	BULLFROG	
	30	0:47:49	36.894	116.814	0.3	-1.008	L 10.3	02	~~~			-					
						-1 009	1 3.7	110	BCI		2.0	1 1.	7 19	.7 0.1	6 14	BULLFROG	.~
FEB	2	0:49:49	36.889	110.013	10.0	-1.008	1. 30.0	256	DCI		1.1	5	88	.3 0.0	5 0	MESQUITE VAL	LET
	3	0:35:51	35.303	116 816	0.4	-1.00B	L 10.3	79	CCI		1.9	Β.	20		5 18 7 18		
	3	8.59.39	36.899	116.810	0.3	-1.008	L 9.1	168	CCI 1.82	1.63		. 2.	2 1¥ 24	2 8 8	a 19	BULLFROG	
	Ā	8:52:4	36.898	116.814	0.3	-1.008	L 10.0	144		1.50	2 1	7	26		2 18	BULLFROG	
	ğ	0:43:44	36.893	116.816	0.3	-1.008	L 9.9	110	001 1.92		4.1	•					
						1 000		114	ACT		1.2	8	13	.9. 0.1	0 11	BULLFROG	
	9	22:47:2	3 36.943	116.887	0.5	-1.000	1.3	160			2.0	9	26	.1 0.1	3 20	BULLFROG	
	11	1: 4:5	3 36.897	115.814	0.3	-1 669	1 1 2	110	ACI 1.77		1.7	7	26	.2 0.1	3 2	BULLFROG	
	12	0:55:4	3 36.896	110.010	0.7 A 1	-1.000	10.1	58	100	2.07	2.2	7	26	.3 0.1	5 20	BULLFROG	
	- 14	1:25:	D JO.09/	116 886	0.3	~1.008	L 9.7	115	CC1 2.41	1.51	1.7	2	1	.2 0.1	21		
	14	22:20:1	8 35 584	115.576	0.9	-1.008	L 30.0	241	CD 1		1.7	6	71			CLARK MIN	
	15	0:37:4	0 00.004		•••						~ ~			7 8 1	3.9	BUILLEROG	
	16	A:58:1	1 36.893	116.813	0.4	-1.008	BL 10.9	62	I DD	1.61	2.0		11	.70.	4 1	BULLFROG	
	16	18:13:2	3 36.938	116.891	0.7	-1.005	BL 21.9	116	CCI 1.79	1 68	2 1	7 2	4		3 2	BULLFROG	
	18	1: 1:3	9 36.897	116.812	0.3	-1.005	3L 8.0	79	001 1.90	1 05	1.9	6	1		3 2	BULLFROG	
	19	0:57:3	7 36.895	115.812	0.3	-1.008	SL 9.7	57		1.87	•••	-	19	.8 0.0	8 1	5 BULLFROG	
	21	1: 2:3	8 36.893	116.813	0.3	-1.000	JL 11.2	122	001 1.84	2.10			2	0.	3 2	1 BULLFROG	
	23	1: 0:	7 36.894	116.816	<b>0.2</b>	-1.00	51 0.0	> 110					_				
				110 000	ء د	-1 780	PR 17 P	144	CD1		1.4	6	1	1.2 0.0	9	5 BULLFROG	
	23	22:26:	3 36.935	116 812	0.0	-1,000	3L 1.5	109	ACI 1.59	1.48	1.9	)6	19	<b>7 0</b> .	4 2	2 BULLING	

H. P. M.

91051 ; ) 0 9

1989 LOCAL HYPOCENTER SUMMARY - SCB CHEMICAL EXPLOSIONS

	DATE (1	UTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KW)	DEPTH (KM)	STAND ERROR Z(KM)	AZ I GAP (DEG)	000 12\$	MAGN [ T Mco	UDE Md	EST IMA MLh	TES MLv	MLc	DEL MIN (KM)	RMS RES. (SEC)	∦N PH.	. U.S.G.S. QUADRANGLE
	FEB 26 27 27 MAR 1 3	1: 2:32 1: 7:52 18: 7:35 18:16:28 1:28:42 0:57:36	36.894 36.895 36.939 36.942 36.891 36.891	116.815 116.813 116.881 116.884 116.814 116.814	0.7 0.4 0.3 0.4 0.4 0.4	-1.008L -1.008L -1.86P8 -1.008L -1.008L -1.008L	2.8 1.3 11.5 0.9 1.2	74 109 100 114 110 78	BCA ACI CCI ACI ACI	2.05	2.27	1.82	2.01 1.45 1.36 2.08	2 8	21.9 19.9 14.6 14.1 19.6	0.15 0.13 0.10 0.12 0.13	10 24 13 17 20	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
	5 7 8 9 9	1:56:37 1: 8:11 0:57:36 1: 5: 6 18:32:22 1:15:42	36.893 36.899 36.894 36.892 36.946 36.892	116.815 116.81v 116.812 116.815 116.885 116.885 116.813	0.4 0.4 0.4 0.4 5.2 0.3	-1.008L -1.008L -1.008L -1.008L -1.70P8 -1.008L	1.5 1.3 1.5 1.6 8.4 8.4	57 108 79 79 179 169	ACI ACI ACI ACI DCI CCI	1.69 2.06 1.83 2.10		1.79 1.99 1.56 1.74	1.97 1.94 2.11 1.91 1.18 2.12	2.0	20.0 19.9 19.8 19.8 19.9 13.9 19.0	0.14 0.13 0.14 0.14 0.14 0.14 0.14	28 20 24 20 5 21	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
	10 14 15 15 16 17	21: 9:43 1:38:36 0:58:32 22:20:42 0:57: 3 0:58:57	36.838 36.893 36.893 36.942 36.894 36.889	116.646 116.813 116.817 116.887 116.813 116.810	0.8 0.3 0.4 0.5 0.3 0.4	-1.91P8 -1.008L -1.008L -1.88P8 -1.008L -1.008L	0.6 1.6 11.2 8.6 13.6 1.3	220 57 123 148 122 78	ADI ACI CCI CCI CCI ACI	2.12 1.85		2.04 1.58 1.93	0.63 2.01 1.64 1.95		4.9 19.8 20.6 13.9 19.9	0.08 0.14 0.12 0.11 0.11 0.11	7 32 17 12 17 22	BARE MTN BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
162	18 19 20 21 21 22	22:22:51 0:57:20 22:37:13 1:37:4 18:31:38 1:13:36	36.940 36.894 36.940 36.891 36.944 36.894	116.887 116.813 116.891 116.813 116.885 116.812	0.4 0.5 0.7 0.3 0.4 0.4	-1.008L -1.008L -1.008L -1.008L -1.008L -1.008L -1.008L	8.9 1.7 14.3 7.9 10.1 1.3	88 79 166 110 102 109	CCI BCI CCI CCI CCI ACI	2.39 1.40 1 2.46 1.92	. 23	1.89 2.14 1.75	1.39 1.64 2.29 1.32	1.6 1.4	14.0 19.9 13.7 19.6 14.0 19.7	0.10 0.16 0.06 0.13 0.11 0.14	19 23 7 27 11 21	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
	23 23 24 24 25 26	1: 4:41 18:39; 9 0:58:39 22:24:35 1:11:56 0:47:57	36.891 36.940 36.893 36.944 36.896 36.895 36.893	116.813 116.882 116.815 116.885 116.885 116.812 116.815	0.4 0.4 0.4 0.5 0.5	-1.008L -1.008L -1.008L -1.008L -1.008L -1.008L	1.5 14.1 1.6 8.6 3.3 12.2	62 87 57 87 80 57	ACI CCI ACI CCI BCU CCU	1.88 1.60 1.84 1.64 1.83		1.78 1.88 1.58 1.76	1.90 1.44 1.80 1.44 1.87 1.92	2.1	19.6 26.9 19.9 14.0 19.8 19.8	0.12 0.09 0.14 0.05 0.16 0.15	26 14 25 13 19 20	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
	29 38 31 APR 1 3 4	0:56:14 1: 3:37 0:59:35 0:58: 2 24: 0: 3 20:51:40	36.895 36.893 36.895 36.895 36.895 36.895 37.274	116.819 116.811 116.813 116.815 116.812 116.812	0.3 0.3 0.3 0.3 0.3 2.1	-1.008L -1.008L -1.008L -1.008L -1.008L 8.37P9	10.9 8.7 9.3 6.3 8.8 3.9	123 79 57 57 57 57 214	CC CC CC CC CC CC CC CC CC CC CC CC CC	1.77 2.00 2.02 2.19 2.05		1.88 1.86 2.06 1.51	1.54 2.66 1.86 1.36	1.9	20.3 19.6 19.9 19.8 19.8 19.5	0.10 0.13 0.14 0.12 0.14 0.14 0.05	17 24 24 32 23 7	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG SILENT BUTTE
	4 6 8 11 12 13	21:44:15 0: 1: 2 21: 1: 0 0: 3:12 17: 6: 9 0: 4: 5	36.942 36.894 36.939 36.893 36.945 36.895	118.885 118.812 116.885 116.811 116.882 116.814	0.4 0.3 0.3 0.3 0.6 0.6	-1.008L -1.008L -1.008L -1.008L -1.008L -1.008L	11.1 8.1 9.7 9.8 12.4 10.7	114 79 114 109 152 57	133 133 133 133 133 133 133	1.61 1.95		1.99 1.82 1.88	1.31 1.56 1.18	1.5	14.1 19.7 14.2 19.6 14.2 20.0	0.10 0.14 0.13 0.15 0.10 0.14	11 23 12 20 8 23	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
	14 15	0: 4: 4 0:31: 2	36.895 36.895	116.813 116.814	0.3 0.3	-1.00BL -1.00BL	9.4 18.2	79 57	133 133	1.97 1.90		1.77	1.87		19.9 20.0	0.15	23 23	BULLFROG

Hummiter 

742

**u____**_____

Humanita

Hannah Ha

¥нолини И^{ноннин}И 1989 LOCAL HYPOCENTER SUMMARY - SCB CHEMICAL EXPLOSIONS

	DA	TE -	TIME					STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 125 M	AGNITUDE ca Mol	ESTINA MLh	TES MLV	MLc	DEL- MIN (KM)	RMS RES. (SEC)	<b>#</b> N РН.	U.S.G.S. QUADRANG	LE
	apr	(010 15 1 18 18 2 18 2 20	;) 0: 9:1 21:27:2 23:59:1 0:48:4	4 36 9 36 5 36 8 30	.945 .892 .937 .889 .889	116.8 116.8 116.8 116.8 116.8	883 815 884 813 813	0.4 0.4 0.4 0.4 0.4 0.3	-1.008L -1.008L -1.008L -1.008L -1.008L -1.008L	10.2 5.7 0.8 10.6 9.8	86 62 88 62 56 104	CC1 CC1 AC1 1 CC1 1 CC1 2 AC1	.60 .99 .23	2.05 1.59 1.83 2.04	1.28 1.51 0,89		14. 19. 14. 19. 19. 19.	0.11 0.14 0.16 0.16 0.12 0.13 7 0.11	15 25 18 20 26 12	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG	
		21 22 24 25 26 27	0:31:2 22:45:3 0:18: 0:18: 0:51:3	20 30 37 30 8 30 49 3 33 3	5.892 5.937 5.892 5.895 5.895 5.892	116. 116. 116. 116. 116. 116.	815 880 817 816 .815 888	0.3 0.5 0.5 0.4 0.3	-1,0081 -1,0081 -1,0081 -1,0081 -1,0081 -1,0081	L 9.9 L 15.3 L 1.3 L 2.8 L 10.2 L 2.1	79 99 123 62 57 88	CCI CCI ACI 1 BC1 CCI BCI 1	1.80	2.08 1.74 2.41	1.36 1.56 1.44	1.6	19. 14. 20. 20. 19. 14.	8 0.14 7 0.05 0 0.12 1 0.14 8 0.12 6 0.12	19 1 8 14 14 14 14 15 29 2 15	BULLFRGG BULLFRGG BULLFRGG BULLFRGG BULLFRGG	
	MAY	28 29 2 3 4	17:27: 0: 1: 1: 8: 0: 4: 1: 4: 22:40:	2 3 20 3 8 3 6 3 30 3 47 3	6.894 6.891 6.891 6.889 6.938	116. 116. 116. 116. 116.	.819 .813 .813 .812 .888	0.2 0.3 0.3 0.5 0.5	-1.008 -1.008 -1.008 -1.008 -1.008 -1.008	L 7.0 L 9.8 L 10.2 L 10.1 L 12.2 L 9.4	109 55 110 110 88 79	CC1 CC1 CC1 CC1 CC1 CC1 CC1	1.90 1.87	1.78 2.01 1.67 1.90 2.66	2.52	2.: 2 7	5 19. 19. 19. 19. 19. 19. 14. 19.	6 0.1 7 0.1 6 0.1 4 0.1 . 0 0.1	3 20 2 24 3 18 3 18 4 18 4 18 4 21	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG	
146		5 8 10 10 11 12	23:44: 23:58: 0:29: 17:17: 0:39: 0:9:	29     3       35     3       43     3       5     3       16     3       21     3	6.891 6.895 6.939 6.895 6.895	116 116 116 116	.813 .811 .892 .815 .813	0.4 0.3 0.6 0.3 0.3	-1.008 -1.008 -1.008 -1.008 -1.008 -1.008	L 1.7 L 7.7 L 1.5 L 9.4 L 8.2 BL 8.5	79 88 88 109 79 109	ACI CCI BCI CCI CCI CCI	1.70 2. <b>0</b> 5	1.82 1.95 1.79 1.61	2.39 1.44 1.54	9 6 1. 4	19 19 7 13 20 19 19	.7 0.1 .7 0.1 .6 0.1 .8 0.1 .8 0.1	5 22 4 18 5 14 2 1 3 2 2 2	2 BULLFROG 3 BULLFROG 4 BULLFROG 5 BULLFROG 7 BULLFROG 9 BULLFROG	
		12 13 16 16 17 17	23:50: 1: 9: 0: 0: 17: 5: 0:14: 23:54:	38 24 21 14 13	56.942 56.896 56.941 36.892 36.938	116 116 116 116 116	.882 .814 .881 .814 .884 .884	0.5 0.4 0.5 0.4 0.4 0.4	-1.000 -1.000 -1.000 -1.000 -1.000 -1.000	3L 13.1 3L 10.7 3L 11.9 3L 1.6 3L 1.6 3L 15.3 BL 1.3	113 57 87 79 101 109	CCI CCI ACI CCI ACI	1.78 1.88	1.54 1.83 1.59	1.2 1.8 1.3 1.0 2.1	4 7 3 5 6	14 20 14 19 14	.3 0. .0 0. .5 0. .7 0. .3 0. .7 0.	1 1  4 2  0 1  4 2  2 1  3 1	1 BULLFROG 1 BULLFROG 3 BULLFROG 0 BULLFROG 2 BULLFROG 9 BULLFROG	
		18 20 23 23 23 24	0:15 0:8 0:3 17:46 21:30 0:42	:48 :26 :25 :18 :24	36.891 36.893 36.946 36.947 36.894 36.894	116 116 116 116 116	5.815 5.809 5.881 5.882 5.882 5.815	0.4 0.3 0.7 0.7 0.3 0.3	-1.00 -1.00 -1.00 -1.00 -1.00 -1.00	BL 1.6 BL 10.0 BL 16.7 BL 14.2 BL 14.2 BL 10.2	79 108 125 2 152 2 110 79	128 123 123 123 123 123	1.78	1.85 1.70 1.70	5 2.5 1.8 1.2 1.2 5 8 8	50 33 23 91 83	19 19 14 14 14 19	.7 0. .5 0. .2 0. .2 0. .9 0.	15 2 14 1 19 1 09 13 1 13 2	4 BULLFROG 4 BULLFROG 2 BULLFROG 7 BULLFROG 8 BULLFROG 1 BULLFROG	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
		20 26 27 27 28	0: 0 0: 3 0: 3 22:46 1:10	:25 : 5 :33 :11 :13	36.894 36.939 36.895 36.944 36.894	5 110 5 110 5 110 5 110 5 110 5 110	6.813 6.887 6.813 6.883 6.883 6.811 6.882	0.3 0.4 0.5 0.5 0.5	-1.00 -1.00 -1.00 -1.00 -1.00	BL 9.9 BL 11.0 BL 9. BL 1.0 BL 1.0 BL 14.	9 79 9 115 1 79 3 86 8 109 7 103	CCI CCI CCI ACI CCI CCI	1.79 1.60	1.7( 1.6) 1.3 1.5	0 8 2.5 9 1.5 2 1.5 0.5	11 13 16 72 80	11 12 12 14 14 14	9.8 0. 4.1 0. 9.9 0. 4.1 0. 9.5 0. 4.2 0.	15 2 11 1 14 2 11 1 13 1 12 1	1 BULLFRO 6 BULLFRO 11 BULLFRO 12 BULLFRO 18 BULLFRO 14 BULLFRO	0000000
		30 31 31	0:39 21:22	):23 5:42	36.89	2 11 7 11	6.811 6.880	0.2 0.5	-1.00 -1.00	9BL 7. 9BL 1.	2 109 2 172			1.4	5	39	1 1	9.5 8. 4.4 8.	13 88	9 BULLFRO 9 BULLFRO	G

9 | 0 5 | 3 0 | 1

1989 LOCAL HYPOCENTER SUMMARY - SGB CHEMICAL EXPLOSIONS

D	ATE -	- TIME TC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	UQD 12S MAGNITUDE Mcg Md	ESTIMA MLh	TES MLv	MLc	DEL- RM MIN RE (KM) (SE	s    s. p  c)	I. U.S.G.S. QUADRANGLE
JUN	1 1 3 4 5 7	0:36:27 23:54:26 0:28:30 17:22: 0 0: 6:22 0: 4:19	36.895 36.893 36.894 36.945 36.893 36.893 36.891	116.811 116.812 116.814 116.888 116.889 116.817	0.3 0.3 0.6 0.4 0.3	-1.008L -1.008L -1.008L -1.008L -1.008L -1.008L	9.4 8.5 10.1 1.5 1.7 8.8	57 109 79 114 79 118	CCI 1.78 CCI 1.65 CCI 1.88 BCI 1.38 ACI CCI 2.02	1.93 1.56 1.77 1.51 1.86	2.12 2.68 1.14	2.6	19.7 0. 19.7 0. 19.9 0. 13.7 0. 19.5 0. 19.9 0.	14 24 12 18 17 23 19 11 12 19 14 23	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
	7 7 8 10 12	17: 1:43 21:45: 1 0: 1:34 17: 5:54 0: 2:28 22: 7:38	36.944 37.173 36.888 36.942 36.895 36.936	116.806 116.209 116.815 116.886 116.813 116.885	0.4 1.9 0.4 0.5 0.2 1.0	-1.008L -1.11PB -1.008L -1.008L -1.008L -1.008L	6.5 2.7 1.3 15.3 6.8 1.4	153 131 110 114 109 156	CCI BCI ACI CCI BCI	1.29 1.92 1.00	0.82 1.13 1.88 0.92 1.02		13.9 0. 11.2 0. 19.6 0. 14.0 0. 19.9 0. 14.3 0.	10 12 12 1 13 1 11 1 14 2 17 1	2 BULLFROG 3 RAINIER MESA 9 BULLFROG 9 BULLFROG 9 BULLFROG 9 BULLFROG
	13 14 14 14 14 14	0: 6:27 0:47:18 17:28:46 21: 2:18 21:24: 3 0: 3:21	36.893 36.895 36.943 37.615 36.949 36.896	116.813 116.815 116.891 116.177 116.882 116.815	0.3 0.5 0.2 0.4 0.4	-1.008L -1.008L -1.008L -0.97P9 -1.008L -1.008L	9.4 8.7 16.2 6.5 8.4 1.5	109 79 128 105 151 79	CCI 1.44 CCI 2.68 DCI CCI CCI BCI	1.81 1.61	1.62 2.29 1.15 1.84 0.96 2.01		19.7 0. 20.1 0. 20.1 0. 15.3 0. 14.1 0. 20.1 0.	13 1 16 2 09 1 17 1 09 1 15 2	7 BULLFROG 5 BULLFROG 9 BULLFROG 3 BELTED PEAK 1 BULLFROG 3 BULLFROG
	20 20 22 22 23 23	17: 7:29 23:58:20 0: 6: 1 17: 7:57 0:10:21 20: 7:60	36.943 36.893 36.962 36.932 36.891 37.611	116.884 116.812 116.811 116.892 116.812 116.581	0.7 0.2 0.4 0.5 0.3 0.5	-1.008L -1.008L -1.008L -1.008L -1.008L 2.92+	12.9 7.7 17.1 10.1 7.7	153 109 142 158 - 79 122	CC1 CCT CCT CCT 1.77 CCT 1.53	1.92 1.65	1.29 1.26 1.90 0.82		14.1 0. 19.7 0. 20.2 0. 13.9 0. 19.5 0. 16.9 0.	16 10 13 20 97 10 15 10 16 21 10 11	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG THIRSTY CANYON SE
	24 27 28 29 29 30	0:13:50 21:33:37 0: 1:17 0: 0:17 23:59:59 17: 9:51	36.890 36.947 36.895 36.892 36.893 36.935	116.811 116.884 116.810 116.813 116.813 116.888	0.3 0.6 0.3 0.3 0.2 0.8	-1.008L -1.008L -1.008L -1.008L -1.008L -1.008L -1.008L	2.0 71.7 9.7 8.8 7.4 11.7	79 152 168 169 169 164	CC1 2.02 CC1 CC1 1.80 CC1 1.96 CC1 CC1	1.89 1.65 1.74 1.77	2.41 1.13 2.41 2.17 2.56 1.16		19.4 0. 14.0 0. 19.7 0. 19.7 0. 19.8 0. 14.1 0.	14 2 09 1 12 1 13 1 10 1 09	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
JUL	7 8 10 10 11 11	23:43:21 22:54:52 22:24:25 22:47: 4 23: 1:42 12:35:32	36.894 35.589 38.334 35.529 35.642 36.896	116.813 115.572 117.307 115.604 115.573 118.811	0.3 2.2 0.2 9.1 1.7 0.5	-1.008L 3.50+ -1.02P8 5.07+ 0.008L -1.008L	$     \frac{8.6}{1.0}     \frac{30.6}{3.0}   $	57 226 246 263 220 108	CC1         2.32         2.18           CD1         1.56           AD1         1.77           DO1         1.37           CO1         1.39           BC1         2.62         2.16		1.98 1.67 1.68 1.43		19.8 0. 79.6 0. 70.7 0. 82.9 0. 75.2 0. 19.8 0.	13 2 13 9 92 1 12 9 87 1 15 1	5 BULLFROG 9 CLARK MTN 8 SAN ANTONIA RANCH 5 CLARK MTN 8 CLARK MTN 4 BULLFROG
	12 12 17 18 18 20	22:37:31 23:51:47 23:56:14 17:57:38 23:48: 8 6:48: 3	35.643 36.895 36.889 36.936 36.888 36.894	,115.543 116.816 116.813 116.890 116.814 116.816	6.9 9.4 9.5 0.8 9.5 0.3	0.008L -1.008L -1.468L -1.008L -1.008L -1.008L	30.0 10.7 13.8 15.3 1.5 9.1	228 119 85 156 118 85	DOI 1.64 CCI 2.11 2.69 CCA 2.13 CCI 1.97 1.39 ACI 1.95 2.66 CCI 2.14 2.33	1.96	1.81 1.88 1.41 2.66 2.69	1.7	75.2 8. 20.1 8. 19.5 8. 13.9 8. 19.5 9. 20.0 8.	33 14 1 10 1 10 1 15 1 12 2	S CLARK MTN 7 BULLFROG 9 BULLFROG 9 BULLFROG 9 BULLFROG 9 BULLFROG
	22 22	6:19:53 12:43:24	36.892 36.891	115.816 116.817	0.3 0.3	-1.008L -1.008L	9.2	118 124	CCI 1.87 2.06 CCI 2.32 2.16		1.65 2. <b>65</b>		19.9 0. 20.0 0.	13 1 11 1	5 BULLFROG 9 BULLFROG

147

Haal

ининия.

н<mark>аннын</mark>и Нанинин Нанинин Нанинини

N^{RENEWE}N . Цинни Им

Maral and H

1989 LOCAL HYPOCENTER SUMMARY - SG8 CHEMICAL EXPLOSIONS

	۵	DATE (l	— ТІМЕ ЛТС)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	000 12\$	MAGN) Mog	I TUDE Md	ESTIM MLh	TES MLv	MLc	DEL- MIN (KM)	RMS RES. (SEC)	∦N PH	. U.S.G.S. QUADRANGLE
	JUL	25 26 26 27 27 29	12:47: 4 23:46: 6 0:13: 8 22:39:10 23:56: 8 0: 2:24	36.891 36.889 36.904 35.593 36.896 36.894	116.812 116.816 116.811 115.568 116.823 116.811	0.4 0.3 0.5 2.9 0.3 0.3	-1.008L -1.008L -1.008L 0.008L -1.008L -1.008L	1.4 1.1 1.8 30.0 8.9 9.0	109 93 107 240 111 79	AC1 AC1 BC1 CD1 CC1 CC1	1.66 2.45 1.89 1.94	2.13 2.24 2.23 1.43 2.12 2.01	1.59 1.75	1.77 1.99 1.80 1.71 1.75		19.1 19.1 20. 79.1 20. 19.1	5 8.14 5 8.11 3 9.16 5 8.10 7 9.13 7 9.13	19 19 18 6 15	BULLFROG BULLFROG BULLFROG CLARK MTN BULLFROG BULLFROG
	AUG	5 1 2 3 4 5	12:47: 8 0: 8:34 0: 0:13 23:46:25 17: 6:50 0:36: 3	36.894 36.892 36.896 35.895 36.951 36.893	116.810 116.813 116.809 116.82 116.891 116.812	0.4 0.4 0.3 0.4 0.4 0.4 0.3	-1.008L -1.008L -1.008L -1.008L -1.008L -1.008L	1.6 1.4 7.6 13.3 13.7 1.4	109 110 108 124 109 57	AC1 AC1 CC1 CC1 CC1 AC1	1.85 1.90 1.66 1.94	2.08 2.33 1.95	2. <b>04</b> 1.81	1.95 1.91 2.08 1.77 1.66 1.88	2.5	19.0 19.0 19.0 20.5 13.1 19.7	8 0.12 8 0.13 8 0.13 8 0.13 8 0.11 8 0.10 7 0.13	19 18 16 15 11 25	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
		8 9 11 11 12	0: 3:13 0: 7:12 23:58: 1 20:18:32 23:44:17 17: 2:49	36.894 36.896 36.892 36.908 36.901 36.939	116.808 116.810 116.813 116.838 116.814 116.888	0.4 0.3 0.4 0.5 0.4 0.4	-1.008L -1.008L -1.008L -1.008L -1.008L -1.008L	1.6 7.4 1.5 8.4 1.5 14.3	108 108 79 159 78 115	AC1 AC1 AC1 AC1 AC1 AC1 CC1	1.94 1.70 1.61	1.39	1.70 1.93 1.52 1.86	1.89 2.03 0.69 1.58 1.12		19.1 19.1 19.0 19.0 20.1	5 0.14 7 0.13 5 0.14 6 0.11 5 0.14 9 0.12	20 18 21 11 19 13	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
148		12 14 15 15 17 17	23:56:21 23:52: 6 19:14:58 23:56:30 0: 1:59 21: 9:15	36.895 36.901 36.918 36.889 36.892 36.939	116.815 116.813 116.832 116.813 116.815 116.815 116.881	0.3 0.4 1.4 0.4 0.4 0.4 3.0	-1.008L -1.008L -1.008L -1.008L -1.008L -1.006L	8.1 12.2 11.2 2.5 1.5 27.3	109 78 162 85 85 102	CCI CCI BCI ACI CCI	1.81 1.91	1.04	1.44 1.81 1.80	1.55 1.98 1.60 1.38 2.24 1.37	1.6 2.5 1.9	20.1 20.2 19.4 19.5 19.5 19.5	0.12 0.17 0.10 0.13 0.13 0.12	16 18 7 17 22 7	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
		17 18 18 19 21 22	23:59:13 23: 3: 5 23:56:21 19:18:10 23:52:15 23:59: 4	36.894 36.906 36.893 36.909 36.898 36.895	116.816 116.660 116.812 116.836 116.815 116.815	0.4 0.5 0.3 0.3 0.4 0.3	-1.008L -1.008L -1.008L -1.008L -1.008L -1.008L	1.7 30.0 8.4 7.6 1.8 8.9	57 181 79 159 79 73	ACI CDI CCI CCI ACI CCI	2.08 1.65 1.77 1.71	1.54	1.98 1.80 1.54 1.60	2.09 1.52 1.98 1.36 1.86 2.25	1.8	20.1 12.5 19.6 19.5 20.1 19.6	0.14 0.05 0.13 0.10 0.14 0.14	24 9 19 11 21 18	BULLFROG BARE MTN BULLFROG BULLFROG BULLFROG BULLFROG
		24 24 25 27 28 29	0: 4: 6 19: 1:10 23:44:15 0:22:19 23:50:19 21:59:14	36.896 36.905 36.895 36.943 36.894 36.913	116.816 118.648 116.817 116.885 116.813 116.835	0.3 0.3 0.3 0.4 0.4	-1.008L -1.008L -1.008L -1.008L -1.008L -1.008L	9.8 0.6 10.2 10.6 10.5 9.3	109 159 79 69 57 157	CCI ACI CCI CCI CCI CCI	1.83 2.01		1.80 1.76 1.76	2.07 1.67 1.87 1.44 2.18 1.03	1.8	20.1 11.9 20.2 14.1 19.9 19.4	0.14 0.67 0.13 0.16 0.13 0.69	18 14 20 17 22 9	BULLFROG BARE MTN BULLFROG BULLFROG BULLFROG BULLFROG
	SEP	30 30 31 31 1 1	0: 0:19 23:58:19 17:16:2 21:15:53 0:22:59 22:34:23	36.896 36.893 36.937 36.907 36.897 36.908	116.815 116.811 116.889 116.839 116.815 116.649	0.3 0.3 0.4 0.3 0.3 1.3	-1.008L -1.008L -1.008L -1.008L -1.008L -1.008L -1.008L	8.4 8.4 2.0 9.8 9.0 1.2	85 85 112 109 252	CCI CCI BCI CCI CCI BDI	1.82	1.42	1.99 1.66 1.63 1.64	1.80 1.99 1.45 1.20 1.97 0.95	1.5 2.0	20.1 19.6 13.9 19.4 20.1 12.1	0.12 0.14 0.11 0.10 0.14 0.68	21 22 18 12 22 7	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BARE MTN
		1 2	23:49:13 23:52:15	36.898 36.895	116.809 116.812	0.3 0.3	-1.008L -1.008L	8.9 8.7	108 109	100 100	1.56			1.82 1.90	2.6 1.9	19.8 19.8	0.14 0.14	17 15	BULLFROG BULLFROG

<u>91051 3013</u>

1989 LOCAL HYPOCENTER SUMMARY - SG8 CHEMICAL EXPLOSIONS

	DA	TE (U	- TIME TC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZ 1 GAP (DEG)	000 125 k	AAGNITI Acq I	UDE Moi	ESTIMAT MLh	TES MLv	MLc	DEL- MIN (KM)	RMS RES. (SEC)	∦N PH.	U.S.G.S. QUADRANGLE
	SEP	3 5 6 8	0:38:52 16:57:11 23:14:18 0:25:22 21:10:54 0: 5:19	36.892 36.938 36.905 36.902 36.940 36.898	116.845 116.888 116.837 116.812 116.884 116.813	0.4 0.4 0.7 0.3 0.4 0.3	-1.008L -0.808L -1.008L -1.008L -1.008L -1.008L	9.9 8.0 1.8 8.6 9.9 9.0	115 167 160 108 87 79	CCI CCI CCI CCI CCI CCI	1	.56	1.71 1.56	1.38 0.82 1.19 2.25 1.43 2.11		19.0 14.0 19.0 20.2 14.3 20.1	0.09 0.06 0.09 0.13 0.09 0.14	12 11 10 21 13 23	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
		8 9 10 10 12	16:15:24 21: 8:39 0: 7:52 0:53:18 23:53:18 0: 7:57	36.906 36.908 36.900 36.906 36.890 36.897	116.837 116.832 116.812 116.837 116.812 116.813	0.5 0.7 0.3 0.5 0.3 0.2	-1.008L -1.008L -1.008L -1.008L -1.008L -1.008L	1.5 14.2 9.2 9.5 8.5 7.0	160 158 108 160 79 109	AC1 CC1 CC1 CC1 CC1 CC1	1.94 ¹	.97	2.06	1.21 9.96 1.85 1.11 1.76 1.89	2.6	19.0 19.5 21.8 19.0 19.5 20.0	6 0.10 0 0.11 6 0.13 6 0.10 6 0.13 0 0.13	12 6 16 14 23 21	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
		13 13 15 15 15	0:12:58 23:53:57 0:12:57 15:34:55 19:10:21 19:17:59	36.890 36.895 36.892 36.572 35.928 35.950	116.814 116.816 116.811 115.513 115.227 115.225	0.4 0.3 1.3 0.9 1.3	-1.008L -1.008L -1.008L -1.13• -1.56P8 -1.02P8	$   \begin{array}{r}     1.5 \\     10.1 \\     8.4 \\     \hline     1.2 \\     1.8 \\   \end{array} $	79 57 79 90 194 189	ACI CCI CCI ADI BOI	1.94 2.72 1.98		1.77 2.24 1.70	2.00 1.73 1.24 1.96 1.90	2.1	19.1 20.1 19.1 28.1 42.1 42.1	7 0.15 0.13 5 0.13 5 0.21 5 0.10 5 0.10	24 23 22 8 7 8	BULLFROG BULLFROG BULLFROG INDIAN SPRINGS SE SLOAN SLOAN
170		15 16 18 19 20 20	21:30:4 0:20:33 17:24:22 0:9:28 0:3:56 17:17:28	36.940 36.893 36.942 36.892 36.895 36.358	116.885 116.811 116.885 116.810 116.817 114.918	0.5 0.3 0.4 0.3 0.3 1.3	-1.008L -1.008L -1.000L -1.008L -1.008L 2.52•	¥4.7 8.2 9.8 9.6 7.7	87 85 87 79 110 179	CC1 CC1 CC1 CC1 CC1 CC1 CC1	î.94 1 1	. 52 . 69	1.70 1.60 1.17	1.41 1.97 1.56 2.12 1.85 1.84	1.6	14.1 19.6 14.1 19.5 20.2	2 0.10 3 0.12 1 0.09 5 0.14 2 0.12 5 0.11	13 22 13 19 18 7	BULLFROG BULLFROG BULLFROG BULLFROG DRY LAKE
		21 23 23 26 27	0: 4: 2 23:52:32 0:44:55 18:40:17 0:24:56 0: 4: 4	36.893 36.893 36.894 36.917 36.895 36.895	116.814 116.818 116.814 116.829 116.814 116.809	0.3 0.3 0.6 0.4 0.3	-1.008L -1.008L -1.008L 4.23+ -1.008L -1.008L	8.3 9.8 9.6 10.6 8.9	109 110 109 198 57 108	CC1 CC1 CC1 CC1 CC1 CC1 CC1	2 1.71 1.82 1.82	. 10	1.50 1.47 1.72 1.58	1.96 1.66 1.94 1.77		19.8 20.1 19.8 31.3 20.0 19.0	3 0.13 0.13 0 0.15 3 0.04 9 0.14 3 0.12	22 17 21 6 24 15	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
	ост	27 28 29 29 30 30	23:57:20 21:20:52 0:14:5 21:20:13 0:14:15 0:47:1	36.899 36.875 36.892 36.948 36.894 36.894	116.809 116.913 116.810 116.882 116.810 116.811	0.3 3.4 0.3 0.3 0.4 0.2	1.008L 17.88P8 1.008L 1.008L 1.008L 1.008L	8.8 6.5 8.4 6.6 1.5 6.6	81 181 79 151 56 79	133 133 133 133 133 133 133	1.46 1.73 1.88		1.19 1.47 1.60 1.71	2.28 1.08 2.00 1.11 1.65 1.94		19.9 27.0 19.9 14.2 19.0	0.13 0.18 0.18 0.14 0.14 0.14 0.14	15 9 20 8 22 18	BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG BULLFROG
		3 5 5 6 7 7	23:57:58 0: 9: 3 21:53:38 0: 9:10 6: 2: 5 23:37:36	36.894 36.891 37.155 36.893 36.896 36.891	116.815 116.813 116.193 116.810 116.808 116.822	0.4 9.5 0.3 0.5 0.4	-1.008L -1.008L 0.47P8 -1.008L -1.008L -1.008L	1.6 1.5 1.4 8.8 10.0 12.7	79 79 81 56 88 125	ACI ACI ACI CCA CCA CCA	2.16 1.91 1.59 2	2.35	1.97 1.76 1.58 1.55	2.11 1.11 1.63 1.99		19.1 19.1 13.4 19.0 19.1 20.3	0.15 70.14 0.12 0.13 0.13 50.12 50.10	27 23 16 24 14	BULLFROG BULLFROG RAINIER MESA BULLFROG BULLFROG BULLFROG
		7 12	23:52: 4 1: 3:52	36.942 36.892	116.880 116.815	0.4 0.4	-1.008L	9.1	86 57	001 ACI :	1 2.11	. 80	2.11	1.13		14.5 19.5	5 0.10 9 0.13	13 26	BULLFROG BULLFROG

149

.

8.0.0⁰⁰

H^{HADSKII}K H^{HADSKII}K H^{DHADSKII}K

ព្រះបាទីអំម អ^{្នរយោសដ}ម

.

1989 LOCAL HYPOCENTER SUMMARY - SGB CHEMICAL EXPLOSIONS

						STAND		STAND	AZI	000	FSTINA	ES		DEL-	RMS RES	JN PH.	U.S.G.S.
D	ATE -	TIME		LATITUDE	LONGITUDE	ERROR	DEPTH	ERROR 7 (KM)	(DEG)	Mca Md	MLh	MLV	MLc	(101)	(SEC)		QUADRANGLE
	(UT	(C)		(DEG. N)	(DEG. W)	H(KN)	(104)				1 73	2.59	1.9	19.	8 8.14	14	BULLFROG
		•. •	. 62	ROR BE	115.809	0.3	-1.00BL	8.7	108		1.83	1.90		20.	1 0.13	22	BULLFROG
001	12	11.4		36 897	115.814	9.3	-1.008L	9.2	57		1.91	2.44		19.	5 0.13	23	BULLFROG
	14	10.60	.50	36 898	116.812	0.3	-1.00BL	9.1	56		1.68	1.73		19.	5 0.13	22	BULLFROG
	14	10:00	180	34 891	116.811	8.4	-1.008L	1.5	85	ACI	1.00	1.30		14.	1 0.12	17	BULLFROG
	17	0:31	132	38 943	118.884	0.3	-1.008L	10.2	101		1 86	2.63	2.3	20.	2 0.14	25	BULLFROG
	11	21:12	: JA . 4	34 804	116.819	0.3	-1.008L	2.3	57	BCI	1.00	••••	••••				
	18	23:55		30.034		• • •					1 67	1.78		19.	4 0.14	21	BULLFROG
				708 37	115.889	0.4	-1.00BL	1.6	108	ACI	1.07	. 39		3.	3 0.10	8 (	JACKASS FLATS
	19	23:30	. 0.4	30.055	115 289	8.8	-1.68P8	0.7	157	ACI	1 73	•		19	9 8.13	5 19	BULLFROG
	29	10:40		34 804	116 815	8.4	-1.00BL	10.3	79	001 1.00	1.75	1 11		2	9 0.0	1 8	JACKASS FLATS
	20	23:50	1:52	30.004	116 361	0.6	-1.71P8	0.4	223	ADI			1.2	14	5 8.1	5 11	BULLFROG
	21	0:2	: 30	30.040	116 878	6.7	-1.00BL	20.6	186	CC1 1.99		1 81		19	.5 0.1	5 12	BULLFROG
	23	21:44	1:34	30,840	116 812	6.4	-1.008L	12.0	109	CCI 1.54		1.01					
	23	23:52	(: 5¥	20.031	110.012	••••						1 58		19	.8 8.1	2 6	BULLFROG
	-			78 044	118 752	8.9	-1.00BL	21.7	229	CDI		2 20	i i	26	.1 8.1	4 21	BULLFROG
	24	22:3	2:20	30.844	116 817	0.3	6.6081	9.8	88	CC1 2.09	1.91	1 07	,	19	7 8.1	2 19	BULLFROG
	24	23:5	7:10	30.084	114 807	8.2	-1.008L	7.9	88	CC1 1.70	1.75	1.74	•	28		4 22	BULLFROG
	25	23:4	5:59	20.044	118 814	A 4	-1.00BL	1.8	85	ACI 2.17	1.90	2 14		20	2 8.1	4 23	BULLFROG
	26	23:5	1:54	30.093	114 814	A 3	-1.00BL	9.6	79	CCI 1.86	1.90	2.10		17	3 . 1	<b>i</b> 14	BULLFROG
	27	23:5	5:51	36.090	116.010	<b>8</b> 5	-1.008L	10.7	87	CCI 1.62		1.14					
	30	23:1	4:43	36.942	110.004	0.0						4 74		26		2 18	BULLFROG
						A N	-1.00BL	9.9	109	CCI		1.1		10	7 8.1	4 20	BULLFROG
	31	0:4	8:38	36.896	110.013	0.J	-1.6081	1.4	109	ACI 1.58	1.60	1.0		- 12		2 1	BARE MTN
NO	V 1	0:4	3:42	36.894	110.011	2 1	2.8628		227	CO I		0.00	,	20	3.8.1	4 2	BULLFROG
	1	23:3	2:47	36.928	110.070	Â.	-1.0001	9.3	110	100	1.70	2.4		0 26	5 0.7	5 1	3 BULLFROG
	2	0:4	2:32	38.895	110.010	A A	-1.0081	12.5	101	DCI		1.11		1		8 1	BARE MTN
	- 3	0:1	6:33	36.930	110.775	1.5	7.3228	2.2	261	B01		1.3.	,	26		3 2	1 BULLFROG
	- 3	20:2	8:13	30.901	116.070	A 3	-1.0081	8.7	79	CCI 1.91	1.78	4.7	/	-			
	- 4	0:4	5:32	30.090	110.010	•.•							a	26	3.8.	1 1	B BULLFROG
					118 870	ο 4	-1.0081	. 13.4	124	CCI		1.0		1		2 1	6 BULLFROG
	7	0:4	3:3	36.894	116 885	A 4	-1.00B	1.5	115	ACI 1.51		1.4		1		4 2	2 BULLFROG
	8	0:1	6:24	36.934	110.000	0.4	-1.008	11.1	62	CCI 2.11	1.0/		•		2 1 8.	11 1	4 BARE MTN
	8	0:4	5:4	1 20.093	118 855	8 4	-1.00B	16.0	78	CCI 1.	99 1.54	1.0	4	1	4.4.0.	13 1	2 BULLFROG
	8	23:4	5:4	3 30.904	114 994	<b>A A</b>	-1.608	11.4	115	CC1		1.5	5	2	a 2 B.	11 2	BULLFROG
	9	0:1	1:3	1 30.930	116 918	6.3	-1.008	L 11.4	. 80	CCI		4.0	U	•		••• -	
	9	0:4	10:4	3 30.035	110.010	••••							٦.	1	1.0 0.	82	4 LATHROP WELLS SE
			<b>A</b> .		118.347		-1.008	ι —	132	ADI			•	2	8.1 8.	13 2	3 BULLFROG
	10	0:	4: : 17.1	6 38 804	116.817	0.4	-1.008	L 10.5	57	CC1	1.50	2.5	1 2	. 8 2	1.9 0.	13 2	BULLFROG
	10		3/;  11.8	5 30.007 5 38 805	116.815	0.3	-1.008	L 10.4	62	CC1 1.94	1 74	1.6		· ī	4.3 0.	12 1	8 BULLFROG
		1 93.	31:0 7.4	0 36 938	116.884	0.3	-1. <del>00</del> 8	L 9.9	68		31		•	2	0.0 0.	14 1	2 BULLFROG
	13	2J:	117 1215	A 38 894	118.815	0.5	-1.538	L 15.5	50		1 84	1.9	4	. 2	0.4 0.	11 3	2 BULLFROG
	17	. U.	18.7	5 36.895	115.820	0.3	-1.008	L 2.3	68 6	001 1.02							
	15	, v.		0 001000						001	1.64	5 1.6	33	1	2.0 0.	<b>87</b> '	18 BARE MTN
	1 .	5 23.	36:1	6 36,902	116.657	0.3	-1.008	L 8.1	84			1.5	7	2	0.4 0.	14 :	20 BULLFROG
	14	ά. Α.	36:	5 36.898	116.817	7 0.4	-1.008	L 11.9	الا د ••••			0.5	7	1	4.2 0.	12	9 BULLFROG
	14	19	14:5	8 36.943	116.983	<b>3 0</b> .7	-1.008	IL 21.2			1.6	9 2.2	26	1	9.5 .	07	7 BULLFROG
	17	γ A·	50 -	8 36.897	116.807	7 0.6	-1. <del>00</del> E	JL 16.0	5 1/0		1.6	1 2.0	88	1	9.8 0.	13	21 BULLFROG
	15	,	45:2	36.89	5 116.812	2 0.3	i −1. <del>00</del> 8	JL 8.	9 109		1.5	9 1.	79	1	2.2 0.	86	14 BARE MTN
	20	a 23:	31:	3 36.904	116.65	5 0.3	\$ <b>−1.00</b> 8	3L 10.7	/ 83				-				
										001 1 87		1.0	61 1	.4 1	4.1 0	11	18 BULLFROG
	26	0 23:	43:	52 36.939	116.88	5 0.4	-1.00	SL 10.4	- 00 - E4	1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	.94		2	.5 2	20.1 0	12	28 BULLFRUG
	2	1 1:	3:.	33 36.89	5 116.81	5 0.3	-1.00	JL /.9	<b>ب</b> ر و								

150

. K_{u (1}111) Numui An

и<mark>наныни</mark> И<mark>наныни</mark> И

Hummille

H^{ERENER}H H^{ERENER}H H^{ERENER}H

H₁₁₁₁H₁₁₁H H₁₁₁₁H₁₁₁H

* Numuella antistanua

••

 )
 1
 )
 1
 )
 1
 5

1989 LOCAL HYPOCENTER SUMMARY - SCB CHEMICAL EXPLOSIONS

DATE (I	- TIME JTC)	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZI GAP (DEG)	OOD 125 MAGNI Mca	TUDE Md	EST IMA MLh	TES MLV	MLc	DEL- MIN (KM)	RMS RES. (SEC)	<b>∦</b> N PH	U.S.G.S. QUADRANGLE
NOV 27	20:18:32	36.946	116.885	0.5	-1.008L	9.4	171	CC 1			1.63		13.9	9 0.08	7	BULLFROG
28	0:28:31	36.906	116.653	0.4	-1.00BL	13.5	83	CC I		1.36			12.	3 0.08	13	BARE MTN
28	0:43:21	36.899	116.810	0.4	-1.008L	12.3	188	CCI 1.75			1.70	1.8	19.9	9 0.13	-14	BULLFROG
28	23:36:18	36.712	115.731	1.0	-1.15P8	0.5	246	BOI			6.98		7.	4 0.05	. 6	INDIAN SPRINGS NW
29	0:57:39	20.833	115.815	0.4	-1.00BL	1.5	121	ACI			1.84		20.	3 0.11	14	BULLING
29	13:14:49	37.113	117.035	0.4	7.96PB	1.6	104	ABI 1.20	1.29		1.29		14.	D 0.12	22	BUNNIE GLAIRE SE
50	0:12:52	30,344	110.000	0.5	-1.0081	11.5	03	001 2.00					19.1	9 9.13	23	BULLING
30	0:45: 5	36.898	116.811	0.6	-1.00BL	19.1	188	CCI 1.89					19.	9 0.12	8	BULLFROG
30	19:17:37	36.890	116.814	0.3	-1.00BL	1.1	123	AC1 1.71		1.27	2.38		19.	7 0.11	19	BULLFROG
30	23:14:56	36.311	115.728	1.7	-0.98PB		157	CO1			1.40		12.	7 0.19	5	CHARLESTON PEAK
30	23:34:53	36.905	116.655	0.5	-1.008L	15.7	79	CC1					12.	3 0.12	15	BARE MIN
DEC 2	0:31:34	36.898	115.812	0.4	-1.008L	1.6	103	AC1 2.03		1.81	1.89		20.	• •.14	23	BULLFROG
	01.18.48	30.030	110.011	0.9	-1.0001	19.6	100		2.20				19.	¥ 7.13 1 8 18		BULLFROG BULLFROG
•	21:13:40	20.938	110.003	0.4	-1.00BL	10.0	87				1.34		14.	3 9.10	10	BULLINU
5	0:37:34	36.896	115.811	0.3	-1.00BL	8.9	168	CCI 1.78					19.	8 0.12	15	BULLFROG
6	0:16:47	36.939	116.885	0.5	-1.008L	11.5	87	cc i			1.48		- 14.	2 0.10	15	BULLFROG
8	0:40:34	36.895	115.820	0.3	-1.00BL	11.3	123	CC1		1.68	2.13		20.	4 0.11	18	BULLFROG
7	0:42:34	36.894	116.807	0.3	-1.80BL	8.5	188	100		1.64		1.9	19.	4 0.13	16	BULLFROG
9	0:48:37	36.891	116.821	0.3	-1.00BL	12.7	125	CCI 1.62		1.48	1.74		20.	2 0.11	19	BULLFROG
11	23:20:23	36.938	116.889	0.3	-1.008L	1.5	126	ACI 2.11			1.34		13.	9 0.13	13	BULLFROG
11	23:29:29	36.908	116.653	0.4	-1.008L	1.6	78	BCI					12.	4 0.23	18	BARE MTN
11	23:36:59	36.937	116.891	0.3	-1.008L	1.8	127	ACI 2.11				1.4	13.	7 0.10	10	BULLFROG
12	6:33:36	36.897	118.819	0.3	-1.098L	2.2	60	BCI 2.04					20.	5 0.10	23	BULLFROG
13	23:51:25	35.674	115.555	3.9	0.00BL	30.0	244	DDU	1.17		1.60		71.	8 0.26	5	CLARK MTN
14	22:11: 3	36.896	115.841	0.6	-1.00BL	1.3	115	BCU 1.63	1.15		0.90		19.	8 9.1/	14	BULLFROG
15	0:40: J	20.883	116.837	0.9	-1.0081	1.4	144	BCI	1.83				21.	<b>9 4.</b> 21	17	BULLFRUG
16	0:44:34	36.895	118.885	0.7	-1.008L	1.3	79	BCI 2.09	1.71		1.80		19.	3 0.28	15	BULLFROG
16	23:27:35	36.945	116.885	0.5	-1.000L	1.1	195	BCI 1.66	1.37		1.55		14.	0 0.18	-18	BULLFROG
17	23:45:8	36.902	116.827	0.6	-1.00BL	0.9	111	BCI 1.38	1.05		1.08		20.	6 0.19	18	BULLFROG
19	0:50:25	36.894	116.817	0.3	-1.008L	1.8	57	ACI 1.90					20.	1 0.12	22	BULLFROG
19	21:13:36	36.894	115.803	9.5	-1.008L	1.4	83	BC1 1.55			1.68		19.	U U.21	19	BULLFROG
20	22:44:42	20.988	116.829	0.0	-1.54PB	2.0	86	BCI 1.52			1.13		20.	0 0.1/	17	DULLPRUG
21	0:40:55	36.892	116.812	0.3	-1.008L	1.7	77	ACI 2.03	1.89		2.00		19.	7 0.13	28	BULLFROG
21	23:36:26	36.909	116.653	0.6	-1.00BL	1.2	78	BCI 1.30			1.44		12.	5 0.15	16	BARE MTN
21	23:36:50	36.892	116.811	0.5	-1.00BL	1.2	78	ACI 1.54	1.70		1.63		19.	5 0.15	18	BULLFROG
22	23: 5:43	36.913	115.580	2.6	-1.000L	30.0	226	COI 2.01					13.	7 0.12		BARE MIN
23	0:32:51	30.894	116.811	8.5	-1.0081	14.1	81	001			1.04		19.	/ 0.13		BULLFROG
23	21:30:20	30.903	115.528	9.3	-1.69PE	6.5	111	ACI 1.14			1.00		20.	4 W.11	10	DULLINU
26	20:22:52	36.886	116.819	8.4	-1.00BL	0.7	112	ACI 1.60			1.35	1.1	19.	8 0.15	21	BULLFROG
28	U:54: 3	35.894	115.814	0.4	-1.0081	1.3	47	BCI 2.29		2.22			19.	v v.15	-29	BULLFROG
28	1:50:59	35,943	115.887	0.4	-1.00BL	1.0	69	ACI		1.52	1.57		13.	5 8.14	25	BULLFROG
29	0:33:36	35.892	115.818	0.6	-1.028L	17.2	79	CCA	2.29				20.	1 0.14	11	BULLINUG
30	4:22:30	50.00/	115.814	0.5	-1.038L	18.8	81	UCA .	2.19				19.	4 U.49	ð	DULLIKUG

151

H., J., M., M.

. Huenninger

# Appendix C

Nuclear device tests and low-frequency shallow seismicity in the SGB, 1987 through 1989

Hypocenter data for announced Nevada Test Site nuclear device tests occurring in 1987, 1988, and 1989 are listed in Table C1 and corresponding epicenters are shown in map view in Figure C1. Hypocenter parameters are listed as they are reported to the National Earthquake Information Center (NEIC) by the Department of Energy. Magnitude estimates are provided by Berkeley Seismographic Laboratory or by the NEIC. SGBSN stations generally record nuclear detonation ground motions well beyond their dynamic range; thus, only initial P-wave arrival times can be reliably scaled from SGBSN seismograms of nuclear tests.

When observed travel times  $(OT_i)$  are compared with theoretical values  $(TT_i, \text{ corresponding to} source to station rays computed from the standard velocity model used to locate SGB earthquakes, shown in Appendix E), the resulting residuals or "delays" <math>(D_i = OT_i - TT_i)$  provide insight into the P-wave velocity structure of shallow crust. Figures C2, C3, and C4 are contour maps of percent velocity variation from the standard model, as implied by the delays observed for tests "Alamo," "Disko Elm," and "Kawich," respectively. The contour levels are interpolation  $z/extrapolations onto the entire SGB of <math>\Delta V$  (%) =  $-100D_i/OT_i$ , i = 1,55, where  $D_i$  is the *i*th delay (sec). for SGBSN station recordings of primary waves from a given nuclear device test. The reader is cautioned that the mapped patterns of velocity variation result from "heavy-handed" interpolation and extrapolation from a very limited station data base. Station coverage within the Nevada Test Site and at Yucca Mountain is many times better than elsewhere in the southern Great Basin with the consequence that patterns in the variation of shallow crustal velocity in the immediate vicinity of NTS are more reliable than those away from NTS.

<u>`</u>

Relatively high levels of ultra-shallow seismicity are regularly recorded by SGBSN stations for periods ranging from hours to days following NTS nuclear device tests. The seismicity listed in Appendix C consists of such events, which have characteristically lower-frequency seismic P coda and S coda than the vast majority of earthquakes in the SGB, and are designated "LFEs." Most of the LFEs can be associated with nuclear device testing at Pahute Mesa, Yucca Flat, and in a few instances, at Rainier Mesa. Some of these events may be identified as the collapse of a given test. The heightened level of post-test LFE seismicity often continues for days, with no single event having clearly greater magnitude, as determined from SGBSN seismograms, than many others in its vicinity. Data from the majority of these LFEs are archived onto magnetic tapes without being analysed by SGBSN staff. An unexamined assumption about the nature of these low-frequency northern NTS events is that all of them are ultra-shallow aftershocks resulting from anomalous local conditions generated during nuclear device tests.

Apart from the LFE seismicity, it is possibly true that the natural seismicity rate in the SGB also increases for several days following some NTS tests, especially if the time interval between NTS tests is several months. That NTS tests might trigger earthquakes for several days at distances on the order of 50 to 100 km is a hypothesis that the current catalog should be able to address. This topic is an area of current research.

A few low-frequency events that do not locate at NTS are included in Appendix C, because their seismic coda appears more similar to post-test, collapse-like seismicity than to earthquake coda. Many of these are undoubtedly blasts in unconsolidated alluvium or intensely fractured tuff. The verification that other explanations of these phenomena are invalid is left to future investigation.



Figure C1. Map of announced NTS nuclear device detonation epicenters for the period 1987 through 1989 (test epicenters are octogons), and of epicenters of a small subset of the low-coda frequency activity (aftershocks?, collapses?) that followed those UNEs (designated by "L" symbols).





from the standard model shown in Figure F1(a) for arrival time delays from the test "Alamo," from the standard model shown in Figure F1(a) for arrival time delays from the test "Alamo," detonated on July 7, 1988, 15:05:30.07 UTC, in the Silent Canyon Caldera.  $\Delta Vs$  from stations nearest the four corners of the map have been inserted at the map corners to suppress the formation of spurious contours near the edges of the map. (Interpolation of the  $\Delta Vs$  computed at SGBSN station locations to a 42 × 42 grid over the entire SGB is performed using the International Mathematical and Statistical Library routine "IQHSCV.")

Disko Elm dv 117W : %) 1164 115¥ H2 30 L 50 (L. .. Be's CONTOUR FROM -2 10 24 BY 2

12

Figure C3. Contour map of percent P-wave velocity variation from the standard model shown in Figure F1(a) for SGBSN station data from the tunnel test "Disko Elm," detonated on September 14, 1989, 15:00:00.10 UTC, at Rainier Mesa. The same data reduction was performed as in Figure C2.

Kawich veloc var 1174 1164 (Z) 115W H, 95 38% L., 00 - - 2 5. -1 74 36 CONTOUR FROM -3 TO 16 BY 1

 $\mathcal{A}_{\mathcal{A}}^{(i)}$ 

Figure C4. Contour map of percent P-wave velocity variation from the standard model shown in Figure F1(a) for SGBSN station data from the test "Kawich," detonated on February 24, 1989, 16:15:00.08 UTC, at western Yucca Flat. The same data reduction was performed as in Figure C2.

Table C1. Announced N	ITS Nuclear Device	Test Inform	ation for 1987, 1988,	, and 1989
YEARMODA HR MN SECND (UTC)	ML SRC LATITUE DEG. 1	DE LONGITUDE	DEPTH DOE TEST NAME (KM)	
19870203 15 20 00.08	2.2NEIC 37.181	-116.0484	-1.02 HAZEBROOK	
10878318 18 28 49 40	4.2DRK 37.010/	-110.044/	-0.91 TORNERU	
19878418 13 48 88 68	5 100V 17 2470	-116 5001	-1.63 MIDULE NUTE	
19870422 22 00 00.00	1 988X 36.9831	-116 6046		
19870430 13 30 00 09	5 388K 37.2336	-116 4231	-1 37 HAPOIN	
19870618 15 20 0.05	4.188K 37.1936	-116.0350	-1.14 BRIF	
19870620 18 00 00.09	3.5NEIC 37.220	-116.1778	-1.74 MISSION CHOST	
19870630 15 05 00.10	4.0BRK 36.9986	-116.0431	-0.90 PANCHUELA	
19870716 19 00 00.08	4.7BRK 37.1030	-116.0234	-0.61 MIDLAND	
19870813 14 00 00.09	5.58RK 37.0616	-115.0453	-0.64 TAHOKA	
19870924 15 00 00.05	5.48RK 37.2280	-118.3747	-1.47 LOCKNEY	
19871023 16 00 00.09	5.08RK 37.1419	-118.0787	-0.82 BORATE	
19871201 18 30 00.09	4.0BRK 38.9964	-116.0045	-0.90 WACO	
19871202 18 30 00.084	3.5NEIC 37.2347	-116.1634	-1.45 MISSION CYBAR	
19880215 18 10 00.09	5.38RK 37.3144	-116.4715	-1.43 KERNVILLE	
19880407 17 15 00.08	4. ONEIC 37.0132	-118.8443	-1.82 ABILENE	
19880513 15 35 0.10	4.9BRK 37.1244	-116.0721	-0.80 SCHELLBOURNE	
19880521 22 30 0.14	4.2BRK 37.0325	-115.9873	-0.85 LAREDO	
19880602 13 0 0.09	5.3BRK 37.2601	-116.4411	-1.39 CONSTOCK	
19880622 14 0 0.08	3.1NEIC 37.1662	-116.8722	-1.14 RHYOLITE-NIGHT	ENGALE
19880707 15 5 30.07	5.4BRK 37.2524	-118.3767	-1.39 ALAMO	
19880817 17 00 0.095	5.48RK 37.2972	-118.3065	-1.53 KEARSARGE	
19880830 18 00 0.09	4.8BRK 37.0859	-118.0685	-6.76 BULLFROG	
19881013 14 00 0.09	5.6BRK 37.0890	-116.0493	-0.66 DALHART	
19881210 20 30 0.06	5.0BRK 37.1990	-116.2094	-1.86 MISTY ECHO	
19890210 20 06 0.06	5.28RK 37.0768	-116.0085	-0.79 TEXARKANA	
19890224 16 15 0.08	4.58RK 37.1285	-116.1220	-0.97 KAWICH	
19890309 14 05 0.10	4.8BRK 37.1428	-116.0669	-0.8 INGOT	
19890515 13 10 0.09	4.4BRK 37.0176	-116.1209	-0.96 PALISADE	
19890526 18 07 0.02	3.7NEIC 37.8359	-116.0551	-0.86 TULIA	
19890622 21 15 0.09	5.2BRK 37.2829	-116.4123	-1.50 CONTACT	
19890627 15 32 0.02	4.88RK 37.2754	-116.3536	-1.4 AMARILLO	
19890914 15 00 0.10	4.0BRK 37.2359	-116.1629	-1.6 DISKO ELM	
19891031 15 30 0.09	5.38RK 37.2631	-116.4907	-1.27 HCRNITOS	
19891115 20 20 0.11	3.4NEIC 37.1065	-115.0134	-1.13 MULESHOE	
19891208 15 00 0.09	5.2BRK 37.2311	-115.4094	-1.40 BARNWELL	

~` ~`

• - •

NOTES: Coordinates of announced tests are supplied to the National Earthquake Information Center, Golden, Colorado (NEIC), by the Department of Energy. These coordinates have been rounded to the nearest 0.0001 degree in Table C1. The ML estimates (local magnitude) are provided by the Berkeley Seismographic Laboratory (BRK) or by the NEIC. Depth is the reported working point depth, relative to sea level (negative z above sea level).

157

•

) | ) ] | . ) ? ? ?

1987 LOCAL HYPOCENTER SUMMARY - SGB LOW-FREQUENCY PHENOMENA

3

DATE - TIME	LATITUDE (DEG. N)	LONGITUDE (DEG. W)	STAND ERROR H(KM)	DEPTH (KM)	STAND ERROR Z(KM)	AZ I GAP (DEG)	0.00 125	MAGNITUDE Mico Mid	ESTIMA MLh	TES MLV	MLc	DEL- RI MIN RI (KM) (SI	NS ( ES. F EC)	и ЭН.	U.S.G.S. QUADRANGLE
APR 30 13:39:36 30 13:40:52 30 13:57: 9 30 14: 5:47 30 14:11:24 30 14:11:24	37.225 37.245 37.237 37.629 37.204 37.257	116.442 116.474 116.390 116.177 116.338 116.399	$   \begin{array}{r}     0.7 \\     3.9 \\     1.0 \\     \hline     1.5 \\     0.4   \end{array} $	2.60• 7.00• 2.46• 29.02 24.61 8.58	3.8	133 123 130 200 125 206	CC1 CD1 CC1 AD1 B81 AD1	2.08 1.67 2.26 1.53 2.08 1.71 1.06	2.10	1.22		47.3 0 50.8 0 23.0 0 4.7 0 28.5 0 8.2 0	.09 .30 .19 .00 .17 .06	7 5 11 4 7 15	SCRUCHAM PEAK SCRUCHAM PEAK SCRUCHAM PEAK TIPPIPAH SPRING AMMONIA TANKS SILENT BUTTE
30 18:32:50 30 21:33:47	37.263	116.399	0.5 0.6	9.57 9.75	0.6 0.4	243 273	AD 1 AD 1	1,21 1,52	1.82 1.87	1.06		8.60 7.30	).07 ).05	13 11	SILENT BUTTE RAINIER MESA

1987 SGB LOW-FREQUENCY EVENTS WITHOUT HYPOCENTER DETERMINATIONS

MONTH	DA HR:MN	DA HR:MN (UTC)					
JANUARY	28 21:34		-				
FEBRUARY	04 23:58	<b>06 00:2</b> 7	12 23:00	17 28:26	23 23:13		:
MARCH	03 19:55 23 19:36	09 06:16	11 22:46	14 02:33	14 68:46	17 23:33	18 18:53
APRIL	06 18:39 17 12:01 24 14:43	69 17:68 18 14:63	10 04:43 18 14:05	10 10:47 18 14:30	14 01:34 18 17:04	14 16:07 21 08:27	15 20:41 22 23:43
MAY	89 87:36	15 18:16	30 08:29				
JUNE	68 12:26 23 04:12	10 16:43	11 12:31	12 06:18	22 18:13	22 22:13	23 00:18
JULY	16 17:29 30 17:02	16 19:05 30 22:27	15 1 <b>9:09</b>	16 19:18	16 19:22	28 05:37	28 06:09
AUGUST	22 20:31	24 17:13	30 17:59				
SEPT <b>EMBER</b>	01 09:58 13 20:37 24 16:38	09 90:48 15 03:45 24 16:46	09 16:30 24 15:09 27 01:15	10 04:44 24 15:16 27 02:48	11 63:10 24 15:46 27 15:04	12 18:53 24 15:54 28 <del>00</del> :44	12 11:43 24 16:28
OCTOBER	01 00:33 23 16:53	05 15:53 23 16:56	09 12:53	12 01:19	15 20:03	15 23:56	18 08:29
NOVEMBER	19 16:21	29 01:35					
DECEMBER	11 1:29	15 20:39	21 22:45				

159

# 

2

• • •

. ..

# 1988 SGB LOW-FREQUENCY EVENTS WITHOUT HYPOCENTER DETERMINATIONS

JANUARY	14 21:43	16 21:48					
FEBRUARY	15 21:44 26 15:42	18 00:12	16 01:00	16 01:53	16 03:09	16 84:35	16 05:38
MARCH	4 21:60 29 23:22	8 22:47 30 16:35	9 00:40 30 20:46	9 22:48	11 19:59	12 00:10	13 22:18
APRIL	1 10:29	7 17:19	7 17:27	7 17:29			
MAY	21 22:35	21 22:55					
JUNE	2 10:31	2 15:05	3 23:23	13 11:22	15 19:40		
JULY	6 23:18 7 17:37 7 20:10 7 20:55 7 21:25 7 21:57 7 22:17 7 22:47 1 7:20 18 18:44 1 18:52 17 18:47 17 21:86 23 18:66	7 15:11 7 17:44 7 20:14 7 21:01 7 21:27 7 21:58 7 22:19 7 22:49 11 8:47 19 21:09 3 21:17 17 19:08 17 21:18 23 21:02	7 15:20 7 17:52 7 20:21 7 21:06 7 21:33 7 22:07 7 22:23 7 22:51 11 23:56 22 0:47 15 22:23 17 19:46 17 21:19 23 22:51	7 16:62 7 18:05 7 20:29 7 21:10 7 21:11 7 22:11 7 22:27 7 23:04 13 18:00 25 20:53 15 23:08 17 19:48 17 21:46 24 9:20	7 16:10 7 18:15 7 20:35 7 21:16 7 21:45 7 22:12 7 22:32 8 1:07 14 14:43 29 15:15 16 23:28 17 20:19 17 21:53 17 23:38	7 17:01 7 19:08 7 20:40 7 21:17 7 21:49 7 22:13 7 22:35 8 9:37 18 1:10 29 21:26 17 18:14 17 20:32 17 22:00 29 23:41 30 18:50	7 17:32 7 19:11 7 20:42 7 21:20 7 21:52 7 22:15 7 22:44 9 2:18 18 6:39 17 18:20 17 20:49 17 22:21 30 18:16 18 57
	30 18:25 30 19:03	30 18:30	30 10:44	30 15,40	00 00.40	00 10.00	••
SEPTEMBER	10 23:43	10 23:45	11 00:40	11 0:55	20 20:43	26 18:34	
OCTOBER	13 14:42 13 15:58	13 15: 8	13 15:15	13 15:19	13 15:28	13 15:50	13 15:52
NOVEMBER	9 23:03	i					
DECEMBER	10 21:11	18 18:40	25 8:56	i			

? ? ?

 $\frown$ 

~

# 1989 SCB LOW-FREQUENCY EVENTS WITHOUT HYPOCENTER DETERMINATIONS

FEBRUARY	10 20:12	10 20:13	10 20:15	10 20:23	24 17:01	24 17:11	24 17:16
JUNE	22 21:20 22 21:53 22 22:51 22 23:48 27 18:06 28 14:04	22 21:23 22 21:58 22 22:57 22 23:52 28 4:53 29 4:29	22 21:26 22 22:67 22 23:69 22 23:54 28 9:14	22 21:29 22 22:20 22 23:15 22 23:59 28 9:58	22 21:32 22 22:22 22 23:28 23 8:53 28 10:52	22 21:36 22 22:26 22 23:35 27 15:49 28 11:27	22 21:38 22 22:36 22 23:40 27 16:24 28 11:37
JULY	1 10:27	1 11:19					
OCTOBER	31 16:47 31 17:43 31 19:19 31 20:50 31 21:34 31 22:47 31 23:30	31 17:05 31 18:03 31 19:21 31 20:52 31 21:39 31 22:56 31 23:43	31 17:07 31 18:06 31 19:28 31 20:58 31 22:05 31 23:04 31 23:49	31 17:11 31 18:08 31 19:36 31 21:67 31 22:69 31 23:22 31 23:59	31 17:16 31 18:34 31 28:29 31 21:14 31 22:11 31 23:23	31 17:27 31 18:48 31 20:31 31 21:20 31 22:28 31 23:28	31 17:38 31 19:16 31 20:37 31 21:28 31 22:31 31 23:28
NOVEMBER	1 0:12 24 8:48	1 0:23 24 15:29	1 0:26	1 0:36	14 22:32	17 17:58	23 4:33
DECEMBER	8 15:07 8 15:32 8 15:53 8 16:21	8 15:10 8 15:34 8 16:00 8 16:38	8 15:13 8 15:39 8 16:01 8 16:48	8 15:16 8 15:43 8 16:03 8 16:56	8 15:18 8 15:45 8 16:05	8 15:27 8 15:47 8 16:10	8 15:31 8 15:59 8 16:14

01

• ~

# 161

# 

استنبان

#### Appendix D

### Earthquake focal mechanisms 1982 and 1987 through 1989

The focal mechanisms of Appendix D were obtained by selecting the best-fitting solution(s) from the application of the computer program "FOCMEC" (Snoke and others, 1984) to the ray data generated by HYPO71, and in some instances, to amplitude data. We plot data on the lower focal hemisphere using the equal-area projection (Lee and Stewart, 1979). The symbols represent first-motion P-polarities, and their positions represent the points where the HYPO71-determined raypaths intersect the focal hemisphere. The darkened circles represent impulsive compressional arrivals, the + symbols represent emergent compressionals, the open circles represent impulsive dilitationals, the - symbols represent emergent dilitationals, and the × symbols represent indeterminate or nodal readings. The + symbol at the center of each mechanism is not a compression; it is a point of reference for readers who may wish to search for alternative solutions using a Schmidt net. SGBSN station names are printed adjacent to the first-motion symbol for many of the solutions presented in Appendix D. In the following figures the P and T symbols represent the pressure and tension axes, respectively. The X and Y symbols represent slip vectors for each nodal plane, and B is the null axis. Primed P and T symbols are the respective vectors for alternate (dashed) solutions when they are presented. Some mechanisms are composited using data from several events that are clustered in time and space. Composite solutions are noted in each figure. Several examples of focal mechanism solutions for relocated hypocenters at substantially different depths-of-focus are presented to indicate the effect these changes have on strike, dip, and rake.

 $\sim$ 

For several mechanisms, the information contained in P-wave polarities was not adequate to effectively constrain the nodal planes. In these instances, first motion P- and SV- amplitude data were gathered at selected stations, indicated by a large square around the polarity symbol. The observed and theoretical  $\log_{10}(SV/P)_x$  ratios and the difference between the logarithms of observed and theoretical ratios are computed for hundreds of potential solutions whose nodal planes conform to P-wave first-motion polarities. The theoretical values shown in each figure are for the "optimum" solution shown, having the lowest rms error and fewest polarity inconsistencies. If the difference between observed and theoretical values is greater than a specified limit,  $err_{max}$ , that station's amplitude data are not used in the solution and an asterisk is placed by its name in the solution table. We always set  $err_{max} \leq 0.3$ , corresponding to a maximum factor between theoretical and observed amplitude ratios of 2.0.

Kisslinger and others (1981 and 1982) and Rogers and others (1987) discuss several assumptions that must be satisfied for the (SV/P), amplitude ratio method to be valid. Their comments and observations are included herein by reference.



Figure D1. Oblique reverse-slip focal mechanism solution for an earthquake of March 16, 1982, with epicenter west of the northern end of the Death Valley fault.







Ņ 870490 11 24 T XS#RC E APKW AND JON NOP plunge azi P axis 215.00 50.00 T axis 35.00 40.00 SPECTER RANGE SW B axis 125.00 0.00 DATE&TIME: 870420 11 24 33.47 X axis 215.00 5.00 LAT: 33.588 LONG: 118.242 Ŷ axis 35.00 85.00 DEPTH, km: -1.19 +/- 0.5 ML: 1.9 rake strike dip DMIN (km) = 10.7Soln 1 125.00 5.00 -90.00 This focal mechanism indicates that the SCBSN has recorded microsanthquaks P-uave first notions that are best first notions that are best first notions that is sub-horizontal. If the hypocentar is corru-this sub-horizontal. If the hypocentar is corru-this sub-horizontal. If the hypocentar is corru-this sub-horizontal, is an exclosed at a const-sub-horizontal is not sub-horizontal for a sub-horizontal is a sub-horizontal for a sub-horizontal for a sub-sub-horizontal for a sub-horizontal for a sub-horizon wot.

Figure D5. A normal-slip focal mechanism solution having one sub-horizontal nodal plane for an earthquake of April 20, 1987, in the northern Amargosa Valley, Nevada (Specter Range SW quadrangle). The RMS-minimizing depth of focus is at the earth's surface.



~ ~

·

. . . .

Figure D6. A strike-slip focal mechanism solution on a sub-horizontal nodal plane for the same earthquake as in Figure D5, in which the focal depth is changed from surface to 6.65 km below sea level.



 $\sim$ 

1, 1987, at Yucca Mountain, Nevada, both of which are constrained by several  $SV/P_a$  amplitude ratios.





Figure D9. A predominantly strike-slip focal mechanism solution for an earthquake of July 13, 1987, 20:10:15, northwest of Scottys Junction, Nevada.

# 171

Sec. Sec. 6

× ...




ς÷ζ...

Figure D11. A peculiar normal-slip focal mechanism solution for an earthquake of October 2, 1987, 11:11:55 UTC, at Yucca Flat, Nevada Test Site, in which one nodal plane is sub-horizontal when the depth of focus is assumed to be about 5 km below sea level.

173





Figure D13. A strike-slip focal mechanism for an earthquake of October 28, 1987, in the southwest Reveille Range, Nevada, in which the depth of focus is assumed to be 0.65 km below sea level. A velocity discontinuity at 12 km below sea level was used for ray tracing when computing this preliminary hypocenter.





jų sigrafie

2

 $\overline{\cdot}$ C

1



Figure D16. A composite oblique normal-slip set of focal mechanism solutions for a pair of earthquakes on January 14, 1988, in the Striped Hills, about 20 km south of Yucca Mountain, Nevada.





Courses of

5 F C 5 1



Figure D19. Alternate focal mechanism solutions for the same earthquake as in Figure D18, in which one set of nodal planes dips sub-horizontally. For these solutions, the depth of focus is assumed to be 5.03 km below sea level.



Figure D20. Normal-slip focal mechanism solutions for an earthquake of May 26, 1988, 3:56:50 UTC, in the Fish Lake Valley, California (Dry Mountain quadrangle).

Ņ XXXXIA 핏 ·E CLR BCI T plunge azi P axis 341.68 64.54 AMMONIA TANKS 4.53 T axis 242.08 DATE&TIME: 880615 6 23 40.25 B axis 149.97 25.00 LAT: 37.232 LONG: 116.364 DEPTH, km: 0.12 +/- 0.3 X axis 40.44 35.63 0.3 ML: 1.8 Y axis 266.70 43.97 Silent Canyon calders event having norly dilational first notions. Nearest PH nuclear event preceding this eq cocurred on 889682 at 14:88 UTC. dip 46.03 strike rake -54.04 Soln 1 356.70 Soln 2310.00 35.00 -90.00

The shallou-focus phenomenon renains when all stations having spicentral distance greater than 68 km are not used.

Figure D21. Oblique normal-slip and predominantly normal-slip focal mechanism solutions for an earthquake of June 15, 1988, 6:23:40 UTC, at Silent Canyon Caldera, Nevada Test Site. For this earthquake, all SGBSN stations recorded dilatational P-wave first motions, as if the source were an implosion, a possibility which cannot be ruled out by seismic network data. A Pahute Mesa nuclear device test was detonated on June 2, 1985, about 10 km from the epicenter.



Figure D22. Strike-slip focal mechanism solutions for an Oasis Valley earthquake on July 2, 1988, 10:40:14 UTC, located using the velocity model shown in Figure F1(b). The source-to-station rays shown in this figure come from that hypocenter.

# 





Figure D24. Oblique strike-slip focal mechanism solutions for a composite Timber Mountain Caldera earthquake series on July 3 and July 24, 1988.



 $\sim$ 



Figure D26. Oblique normal-slip focal mechanism solutions for a  $M_L = 3.1$  earthquake at Cactus Flat, Nevada (Mellan quadrangle) on October 28, 1988, 20:02:50 UTC. That earthquake was the mainshock of a series that lasted nearly one month.



Figure D27. Oblique strike-slip & normal-slip focal mechanism solutions for one of the largest aftershocks in the Cactus Flat, Nevada series on October 29, 1988, 6:37:18 UTC.





×*

10 : -

~~

The Fixed-depth hypocenter for which data uses used for these focal mechanisms is at the miniscun RMS travel time residual using SGSN P and S arrival time data (RMS²0.17 sea for z=4 km below sea level).

Figure D29. Strike-slip focal mechanism solutions for a  $M_L = 3.5$  earthquake in the southern flank of Gass Peak, Nevada, about 10 miles north of Las Vegas. This earthquake caused slight damage at Las Vegas, Nevada (at least one instance of cracked windows). Focal mechanism solutions are derived from a fixed-depth hypocenter at 4 km below sea level, a minimum RMS-hypocenter.



en e sere

0. 0.

The Fixed-depth hypocenter for which data were used for these focal rechanisms is not at the sininum RNS travel time residual using SGSNP ond S arrival time data (RNS²8.23 sec for z at sea level).

Figure D30. Alternate, strike-slip focal mechanism solutions for the same earthquake as in Figure D29. Focal mechanism solutions are derived from a fixed-depth hypocenter at sea level, not a minimum RMS-hypocenter. The uncertainty or range in plausible strike of the nodal planes attains its maximum when computing focal mechanisms from this shallow-focus hypocenter. Initial P waves from this earthquake at all SGBSN stations except SHRG, the nearest station to the epicenter, display parabolic starts, characteristic of refracted arrivals, suggesting a very shallow source, notwithstanding RMS.





This Silent Conyon caldera sorthquaks is another excepts of an almost exclusively dilatational phenomenon, very skillar to the earthquaks of June 15, 1988, 26:15 UTC, whose focal nechanism is also shown in this report. Many, possibly nost, of the earthquakss of the northern half of the Silent Canyon Caldera (SCC) have skillar waveforms. These are shallow earthquakse, probably induced by nuclear device tests at Pahute faco. These northern SCC events should not be considered when using focal mechanisms to infer properties of the natural regional factoric stress field in shallow SCB orwstal rook.

Figure D31. Normal-slip focal m-chanism solution for a Silent Canyon Caldera, Nevada Test Site, earthquake on January 31, 1989, 16:07:17 UTC. The consistently dilatational first motions from SGBSN stations for this earthquake suggest that it may be an implosion rather than the doublecouple event shown in this figure. The nearest-in-time nuclear device test in the vicinity was the December 10, 1988, detonation of "Misty Echo" at Rainier Mesa.







0

 $\widehat{}$ 

Figure D34. Peculiar reverse-slip or strike-slip focal mechanism solutions for a  $M_L = 3.6$  earthquake in the Pahranagat Shear Zone, Nevada (Alamo SE quadrangle), having one sub-horizontal nodal plane. Constraint on the set of focal mechanisms consistent with first-motion data is increased by the inclusion of the data from ARUT, a station operated by the University of Utah Seismographic Laboratory. These solutions assumes a hypocenter depth 3.2 km below sea level. If the modeling assumptions are correct, this is another candidate for seismically active detachment faulting.



_____





# Appendix E

# Station codes, locations, and instrumentation

Appendix E contains a list of SGBSN station names, coordinates, and other descriptive information. Instrument codes refer to the seismometer, amplifier/VCO, and discriminator packages for each station. For the current network, codes 1 through 7 are valid. Any other codes are for systems having unknown frequency response, which are no longer operating in the SGBSN. The following table shows the major components comprising the seven current seismographic systems.

Table E1. Major components in seismographic systems comprising the SGBSN in the period 1987 through 1989. All seismometers have natural frequency,  $f_n = 1.0$  Hz. The (analog) output of the discriminators is digitized on a PDP 11/34 computer, with sampling rate = 104.167 sps/channel.

KIND	SEISMOMETER	Motion	Amplifier/VCO	Discriminator
· 1	Mark L4C	vertical	Tricom 649	Tricom 642
2	Teledyne S13	vertical	Tricom 649	Tricom 642
3	Teledyne S13	vert., horiz.	Teledyne Geotech 42.50	Teledyne 4612
4	Mark L4C	vertical	Teledyne Geotech 42.50	Tricom 642
5	Mark L4C	horizontal	Teledyne Geotech 42.50	Teledyne 4612
6	Teledyne S13	vertical	Teledyne Geotech 42.50	Tricom 642
7	Ranger RR-1	vertical	Teledyne Geotech 42.50	Teledyne 4612

Figure E1 shows the amplification curves (theoretical frequency response) for typical verticalcomponent (KIND=3) and horizontal-component (KIND=5) stations on Yucca Mountain, Nevada, with data telemetered to a PDP 11/34 computer in Golden, Colorado, that has 12-bit A-to-D converters with digital gain, 2048 counts per 5 volts input.



Figure E1. Upper curve, magnification (displacement response) for a typical seismographic system on Yucca Mountain, Nevada, with a vertical-component Teledyne-Geotech S13 seismometer and associated electronics (type = 3, amplifier gain = 84 dB), and digital-computer recording. Lower curve (dashed), magnification for north-south and east-west component seismographic systems on Yucca Mountain, Nevada, with horizontal-component Mark L4C seismometers and associated electronics (type = 5, amplifier gain = 60 dB), and digital-computer recording.

**C :** - :

: 0

### 21051 5 3 5 5

# STATION INFORMATION - SOUTHERN GREAT BASIN SEISMOGRAPHIC NETWORK

CODE	STATION	PERIOD OF OPERATION (YR/MO/DA-YR/MO/DA)	LATITUDE (DEG MINUTES)	LONGITUDE (DEG MINUTES)	ELEVATION (METERS)	SEISMOMETER MODEL/COMP.	CAIN (DB)	INST. CODE	S L
AMR	Amargosa, Cal.	78/07/24-present	36 23.85 N	116 28.56 W	698	L-4C	84	1	•
АРК АРК	Angels Peak, Nev.	75/06/15-81/03/21 81/03/21-83/08/04	36 19.17 N	115 34.46 W	2680	S-13 L-4C	84 84	2 1	
APKW APKW	Angels Peak, Nev.	83/08/05-88/08/10 88/08/11-present	36 19.19 N	115 35.25 W	2600	L-4C L-4C	84 84	1	•
BC8	Big Butte, Nev.	79/01/23-present	37 02.24 N	116 13.75 W	1730	L4C	84	1	٠
BLT	Belted Range, Nev.	79/05/30-present	37 28.98 N	116 07.41 W	1854	L-4C	84	1	٠
BMT	Black Mountain, Nev.	80/02/26-83/64/01	37 17.02 N	116 38.74 W	2191	L4C	84	1	
BMTN	Black Mountain, Nev.	83/04/01-present	37 17.50 N	116 38.41 W	2040	L-4C	84	1	٠
BRO	Bare Mountain, Nev.	78/11/28-81/04/08	36 45.76 N	116 37.52 W	920	L-4C	84	1	
CDH1 CDH1	Calico Hills, Nev.	80/02/05-81/11/18 81/11/18-present	36 51.82 N	116 18.97 W	1353	L-1-30S (vert.) L-4C	90 84	1	•
CDH5	Calico Hills, Nev.	80/02/06-81/11/18	36 51.82 N	116 18.97 W	1055	L-1-30S horznti	108	1	٠
СРХ СРХ	CP-1, Nev.	77/ <del></del> /80/03/01• 80/08/05-90/08/29	36 55.94 N	116 03.26 W	1258	NGC-21 L-4C	? 84	8 1	•
697	CP-1 Nev.	96/08/29-91/01/15	36 55.73 N	116 03.53 W	1368	L-4C	84 84	1	•
CPY	CP-1, Nev.	91/01/15-present	36 55.73 N	116 03.53 W	1368	L-40	07	•	•
CTS	Cactus Peak, Nev.	79/04/24-present	37 39.37 N	116 43 59 W	1868	L-4C	84	1	٠
DLM	Delamar Mountains, Ne	v. 78/06/08-present	37 36.35 N	114 44.27 W	1730	L-4C	84	1	•
EMN	Eldorado Mtns., Nev.	88/08/11-present	35 55.31 N	114 45.33 W	846	Ranger SS-1	84	7	٠
EPN	Echo Peak, Nev.	75/09/02-80/04/25	37 12.84 N	116 19.43 W	2260	5-13 L-40	84 84	2 4	•
EPN		90/09/26-present	37 13.57 N	116 20.08 W	2408	L-4C	84	•	•
EPNH HEPN	Echo Peak, Nev.	84/06/06-86/01/28 86/01/29-90/09/28	37 12.84 N	116 19.43 W	2260	L-4C horizonta L-4C horizonta	1 78 1 60	5 5 5	•
HEPM		90/09/26-present	37 13.57 N	116 20.08 W	2405				-
EPR	East Pohranagat Rng,	Nv 79/01/23-present	37 10.12 N	115 11.23 W	1305	L-4C	84	1	•
FMT	Funeral Mountains, Co	ol. 78/11/28-present	36 38.27 N	116 47.00 W	1025	L4C	84	1	•

A. 16.24

-

202

Mar Maria

# ) | ) 5 | 5 ) 5 7

GLR	Groom Lake Road, Nev.	75/11/20-present	37 11.94 N	116 01.01 W	1432	L-4C	84	1	٠
GMN	Gold Mountain, Nev.	79/07/13-present	37 18.04 N	117 15.44 W	2192	L-4C	84	4	٠
GMNH	Gold Mountain, Nev.	84/07/30-present	37 18.04 N	117 15.44 W	2192	L-4C horizontal	78	5	٠
GMR	Groom Range, Nev.	79/01/23-present	37 20.02 N	115 46.36 W	1528	L-4C	84	4	٠
GMRH	Groom Range, Nev.	84/09/09-present	37 20.02 N	115 46.36 W	1528	L-4C horizontal	78	5	٠
GVN	Grapevine, Cal.	78/11/28-present	36 59.94 N	117 20.78 W	812	L-4C	84	1	٠
GWV	Greenwater Valley, Cal.	78/07/24-88/02/16	36 11.11 N	116 40.22 W	1530	L-4C	84	1	٠
GWY	Greenwater Valley, Cal.	88/04/01-present	36 11.15 N	116 40.21 W	1540	L-4C	84	1	٠
HCR	Hot Creek Range, Nev.	81/07/21-present	38 14,01 N	116 26.20 W	2848	L-4C	84	1	٠
JON	Johnnie, Nev.	78/07/24-present	36 26.39 N	116 06.28 W	910	L-4C	84	4	٠
JONH	Johnnie, Nev.	84/86/22-present	36 26.39 N	116 06.28 W	910	L-4C horizontal	78	5	٠
KRN	Kawich Range, Nev.	79/05/30-80/04/22	37 42.37 N	116 20.07 W	2570	L-4C	84	t	
KRNA	Kawich Range, Nev.	80/04/23-present	37 44.53 N	116 22.89 W	1963	L4C	84	1	٠
LCH	Last Change Range, Cal.	79/07/13-present	37 13.95 N	117 38.78 W	1484	L-4C	84	1	•
LOP	Lookout Peak, Nev.	79/01/23-present	36 51.27 N	116 10.11 W	1648	L-4C	84	1	٠
lsm Lsm	Little Skull Mt., Nev.	79/12/13-84/07/20 84/07/20-present	36 44.55 N	116 16.33 <del>V</del>	1113	L-4C S-13	84 84	4 6	•
LSMN LSMN LSMN LSMN	Littie Skull Mt., Nev.	84/07/17-85/07/02 85/07/02-86/01-28 86/01/28-86/06/24 86/06/24-present	36 44.55 N	116 16.33 W	1113	L-4C horizontal L-4C horizontal L-4C horizontal S-13 horizontal	78 72 60 38	5 5 5 3	•
lsme Lsme Lsme Lsme	Little Skull Mt., Nev.	84/07/17-85/07/02 85/07/02-86/01-28 86/01/28-86/06/24 86/06/24-present	36 44.55 N	116 16.33 W	1113	L-4C horizontal L-4C horizontal L-4C horizontal S-13 horizontal	78 72 60 38	5 5 5 3	•
MCA	Marble Canyon, Cal.	79/01/23-present	36 38.77 N	117 16.69 W	270	L-4C	84	1	•
MCY	Mercury, Nev.	80/03/07-present	36 39.64 N	115 57.67 W	1303	S-13	84	2	٠
MGM	Magruder Mountain, Nev.	79/07/13-present	37 26.44 N	117 29.93 W	2075	L-4C	84	1	٠
мті	Mount Irish, Nev.	79/06/08-present	37 40.68 N	115 16.72 W	1540	L-4C	84	1	٠
MZP	Montezuna Peak, Nev.	79/07/13-present	37 42.03 N	117 23.10 W	2353	L-4C	84	1	٠
NMI	Nava Mountain, Nev.	78/11/28-83/11/01	37 04.85 N	116 49.09 W	1500	L-4C	84	1	

203

H_{an}H^{an}N Hanabida

HⁱⁿⁿⁱⁿH, HⁱⁿⁿⁱⁿH,

Ċ.

9 1 8 5 1 3 9 5 8

.

NOP NOP	Nopah Rang⊕, Cal.	78/07/24-00/04/25 80/04/25-present	36 07.63 N	116 09.26 W	911	L-4C S-13	84 84	1	•
NPN	North Pahroc Rg, Nev.	79/05/08-present	37 39.12 N	114 56.21 W	1668	L-4C	84	1	
PAN	Panamint Range, Cal.	88/04/01-present	36 23.59 N	117 06.05 W	1698	L-4C	84	4	•
PANH	Panamint Range, Cal.	88/04/01-present	36 23.59 N	117 06.05 W	1690	L-4C horizontal	78	5	•
PGE	Panamint Range, Cal.	78/11/28-88/02/13	36 20.93 N	117 03.95 W	1850	L-4C	84	4	
PGEH	Panamint Range, Cal.	84/10/11-88/02/13	36 20.93 N	117 03.95 W	1850	L-4C horizontal	78	5	
РРК	Piper Mountain, Cal.	79/87/13-present	37 25.51 N	117 54.42 W	1851	L-4C	84	1	
PRN PRN	Pahroc Range, Nev.	72/01/21-80/05/19 80/06/19-present	37 24.40 N	115 03.05 W	1482	NGC-21 S-13	? 84	8	•
PRNH	Pahroc Range, Nev.	84/08/28-present	37 24.40 N	115 03.05 W	1402	L-4C horizontal	78	5	
ocs	Queen City Summit, Nev.	79/06/08-present	37 45.39 N	115 56.58 W	1914	L-4C	84	1	
QSM	Queen of Sheba Mine, Ca	78/11/28-present	35 57.35 N	116 52.05 W	450	L-4C	84	1	•
SDH	Striped Hills, Nev.	78/07/24-present	36 38.72 N	116 20.38 W	1050	L-4C	84	1	•
SGV SGV SGV	South Grapevine Mts, Ca	78/11/28-81/06/15 81/06/15-82/06/16 82/06/15-present	36 58.92 N	117 02.11 W	1550	L-4C S-13 L-4C	84 84 84	1 2 1	•
SHRG	Sheep Range, Nev.	79/05/22-present	36 30.33 N	115 <del>0</del> 9.61 W	1598	L-4C	84	1	•
SPRG	Spotted Range, Nev.	79/05/28-present	36 41.64 N	115 48.03 N	1191	L4C	84	1 /	•
SRG	Seoman Range, Nev.	79/06/08-present	37 52.93 N	113 04.15 W	1640	L-4C	84	1	•
SSP SSP	Shoshone Peak, Nev.	73/10/10-80/05/25 80/05/27-present	36 55.53 N	116 13.28 W	2021	NGC-21 L-4C	? 84	8 1 (	•
SVP	Silver Peak Range, Nev.	79/07/13-present	37 42.89 N	117 48.20 W	2595	L-4C	84	1 (	•
TCN	Thirsty Canyon, Nev.	84/11/02-present	37 08.80 N	116 43.52 W	1469	L-4C	84	1 (	•
TMBR TMBR	Timber Mt., Nev.	82/02/19-87/05/05 87/05/05-nresent	37 02.11 N	116 23.21 W	1754	L-4C S-13	84 84	1 ( 6 (	•
ТМО	Tin Mountain, Cal.	78/11/28-present	36 48.29 N	117 24.30 W	2113	L-4C	84	1 (	
TPU	Tempiute Mountain, Nov.	79/06/08-present	37 36.27 N	115 39.06 W	1910	L-4C	84	1 (	
WCT WCT WCT	Wildcat Mountain, Nev.	81/04/08-88/01/05 88/01/05-88/03/11 88/03/11-present	36 47.79 N	116 37.62 W	930	L-4C L-4C L-4C	84 56 84	1 •	•
WRN	Worthington Mts., Nev.	79/06/08-present	37 58.89 N	115 35.58 W	1725	L-4C	84	1 4	

204

٠

 $\mathbf{v}$ 

H_{abhab}H Hasilte

H^{anna}h H^{anna}h

5 3 5 9 91931

4

YMT 1	Yucca Mountain, Nev.	81/03/05-present	36 51.22 N	116 31.86 W	1006	S-13	84	3	٠
YMT2	Yucca Mountain, Nev.	81/03/05-present	36 47.14 N	116 29.22 W	1006	S-13	84	3	•
YMT3	Yucca Mountain, Nev.	81/03/05-present	36 47.21 N	116 24.75 W	1869	S13	84	3	٠
YMT4 YMT4 YMT4	Yucca Mountain, Nev.	81/04/01-81/10/13 81/10/13-83/07/01 83/07/02-present	3£ 50.99 N	116 27.18 W	1248	S13 S13 S13	84 72 84	3 3 3	•
YM4N YM4S NYM4	Yucca Mountain, Nev.	84/06/29-85/05/23 85/05/24-86/01/28 86/01/28-prepent	36 50.99 N	:16 27.18 W	1248	L-4C horizontai L-4C horizontai L-4C horizontai	78 72 60	5 5 5	•
YM4E YM4W EYM4	Yucca Mountain, Nev.	84/06/29-85/05/23 85/05/24-86/01/28 86/01/28-present	36 50.99 N	116 27.18 W	1248	L-4C horizontal L-4C horizontal L-4C horizontal	78 72 60	5 5 5	•
YMT5 YMT5 YMT5	Yucco Mountain, Nev.	81/04/01-81/10/13 81/10/13-83/07/02(?) 83/07/02-present	36 53.91 N	116 27.25 W	1355	S-13 S-13 S-13	84 72 84	3 3 3	•
YMT6 YMT6 YMT6	Yucca Mountain, Nev.	81/04/01-81/10/13 81/10/13-83/07/02(?) 83/07/02-present	36 51.36 N	116 24.02 W	1090	S-13 S-13 S-13	78 66 84	3 3 3	•

NOTES: All instruments are vertical-component unless otherwise noted. If one horizontal-component instrument exists at a site, it has north-south polarity; if two horizontals exist at a site, they have north-south ana east-west polarities, resp. The polarity is suggested by the station name. A • in the final column indicates satellite-determined station coordinates. Elevations of stations with +s in the final column were obtained using altimeters collbrated against nearest USGS Senchmark. Locations are preliminary.

205

Hummilla R^{iterrand}H N_{MEDMI}N

## Appendix F

#### Input parameters to HYPO71

HYPO71.FOR, version 1.001, was baselined for use by the Yucca Mountain Project, with CID YMP-USGS/GDD0001.02, on October 22, 1990. This version of HYPO71 requires a minimum of three input files, (1), a header file, containing crustal velocity information, weighting scheme information, iteration-controlling parameters, and I/O-controlling parameters, (2), a station file, containing most of the information shown in Appendix E, above, and (3), a phase file, containing P and S phase arrival times and information for determining earthquake magnitude. The data of item (1) are presented in Appendix E, and will not be repeated here. The data of item (3) are too bulky for inclusion in this report, but are available on request.

One of two header files is used, depending on the source zone. For most earthquakes occurring in the SGB, the file nvhead.dat, having the velocity model shown in Figure F1 (a) is input. For earthquakes occurring in the immediate vicinity of Yucca Mountain, the file nvhead.ymt, having the velocity model shown in Figure F1 (b), is input. Copies of these two files are shown on the next page. For meanings of the "Control Card" parameters, the reader should consult Lee and Lahr (1975).

The	bela	w I	lines	or	• 0	list	ing	of m	rhead	l.dat	• 1	bee	63 (	an	iл	put	11	ie t	0 1	IYPO:	71.
HEAD																					
RESEI	r tes	Τ(	1)-	0	. 550	0															
RESET	r tes	T(-	2)-	20	. 000	9															
RESET	TES	T(-	3)-	0	. 500	9															
RESET	TES	ΤČ	4)-	0	. 050	9															
RESET	TES	٦٢.	5)⇒	5	. 000	9															
RESET	TES	τĊ	<b>5)</b> -	1.	. 000	9						•									• 5
RESET	TES	T(	7)-	-1	. 276	90															
RESET	TES	τČ	8)⊸	1	. 666	60															
RESET	TES	τĊ	9) <del>-</del>	0.0	8822	:7															
RESET	TES	τł	<u>ه</u> ره	100	. 000	0															
RESET	TES	TÌT	15-	12	. 000	0			1	mox	• •	of it		tie	ons	/10	lut	ion			
RESET	TES	τł	2)-	0	. 500	9															
RESET	TES	τÌ	35-	1	. 000	9															
RESET	TES	7/1	45-	-2	. 050	0															
RESET	TES	7/1	5)=	ē	. 000																i.
RESET	TES	$\tau$	5	ā	.852																
RESET	TES	771	55-	_	1.76	88															
	18666	000	F+01		. 000	0000	06+30	9													
	19000	000	5+01		100	0000	0E+0	1													•.
	51500	666			300	0000	PF+0	1													
	5000	000	FLAT		156	0000	05+0	2													
	59888	000	)F+01		246	0000	0E+0	2													
•	78000	000	F-01		326	0000	0E+0	2													
	00000	nac	AETOU		000	0000	10F+0	0													
÷'	10		770	1 7	1	3	6	-́р	e		7	0		1	111	1	0	0.0	0	0	0.00
,		•		1.7	•	5	•	-	-		•	-									
The	helo		Lines		• •	11=	tina	ofn	vhead	1. vat		used	63	an	i <i>:</i>	nput	fi	ie 1	lo 1	-TYPO	71.
											•										
HEAD																					
RESE	T TES	5T (	1)-	9	. 10	90															
RESE	T TES	iτ(	2)-	30	. 000	90															
RESE	T TES	it(	3)=	0	. 50	99															
RESE	T TES	;т(	4)=	Ð	. 85	90															
RESE	T TES	iτ(	5)-	- 5	.000	66															
RESE'	T TES	πĊ	E)-	1	. 00	96															
RESE	T TES	тċ	7)-	-1	.27	500															

. .

7		5.	96	э.	1.7	1	3	0	Ø	9	7	Ð	1	11	11	0	0.00	9	0.00
•	996	90006	90E-	H00		. 999	9996	0E+00	_									•	
•	738	99996	90E-	+01		. 320	9000	0E+02											
	656	90096	90E-	HØ 1		. 150	9000	0E+02											
	626	90006	90E-	Ю		. 400	9996	0E+01											
	576	9000	90E-	HØ 1		. 250	.000	0E+01											
	466	90006	90E-	HØ 1		. 050	9996	0E+01											
	326	00006	306	<del>1</del> 01		. 000	9000	0E+00											
RESE	<b>T</b> 1	TEST	(17)	)-	-	1.76	5												
RESE	T 1	TEST	(16)	)-	9	.852													
RESE	<b>T</b> 1	TEST	(15)	)-	0	. 000	3												
RESE	T 1	TEST	(14)	)	-1	. 200	3												
RESE	T 1	TEST	(13)	)=	1	. 000	3												
RESE	T 1	TEST	(12)	)	0	. 500	9												
RESE	<b>T</b> 1	TEST	(11)	)-	8	. 000	9												
RESE	T 1	TEST	(10)	)-	100	. 000	9												
RESE	T 1	TEST	(9)	)-	0.	0022	7												
RESE	<b>T</b> 1	TEST	(8)	)-	1	. 556	96												
RESE	T I	TEST	(7)	)-	-1	.276	96												

In this file, a slightly different weighting scheme with respect to distance is invoked than in nvhead.dat, above. In the former file, weights taper from 1, to 0, in a linear manner for epicentral distances between 10 and 220 km. In the latter file, weights taper from 1, to 0, for distances between 5 and 90 km.

9405400/3074

207

1.19



Figure F1. (a) Primary (P) and secondary (S) wave velocities as a function of depth  $(0.0 \pm \text{sea level})$  for the standard model used to locate southern Great Basin earthquakes. The interface at 15 km is optional. (b) P and S wave velocities as a function of depth for the Yucca Mountain region, being an idealization of the model proposed by Hoffman and Mooney (1984).

-U.S. GOVERNMENT PRINTING OFFICE 1992-0-473-207/50034