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ABSTRACT 

The use of intrinsic random function stochastic models as a basis for 

estimation in geostatistical work requires the identification of the general

ized covariance function of the underlying process, and the fact that this 

function has to be estimated from the data introduces an additional source of 

error into predictions based on the model. This paper develops the sample re

use procedure called the "bootstrap". in the context of intrinsic random

functions to obtain realistic estimates of these errors. Simulation results 

support the conclusion that bootstrap distributions of functionals of the 

process, as well as of their "kriging variance", provide a reasonable picture 

of the variability introduced by imperfect estimation of the generalized 

covariance function.  

KEY WORDS: regionalized variables, kriging, interpolation, sample re-use, 

nonparametric error estimates, confidence intervals.
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INTRODUCTION 

One of the most frequently cited problems with the geostatistical es

timation technique known as "kriging" is the necessity of using an estimated 

model*for the covariance function (semi-variogram, generalized covariance 

function). This problem is alluded to, for example, by Philip and Watson 

(1986), who cite in particular earlier work of Hardy (1977), and by Armstrong 

(1984a), among others. Brooker (1986) concluded that the kriging variance is 

"robust to most errors likely to be made in semivariogram model selection" for 

the class of models included in his parametric study and a particular regular 

block-sample geometry, with the exception that it could be quite sensitive to 

the incorrect choice of the nugget value. Diamond and Armstrong (1984) 

defined a metric on the space of variogram functions and provided estimates of 

the stability of the kriged estimates and the kriging variance relative to 

changes in the variogram function as measured by this metric. As their metric 

is based on the ratio between two variogram functions, less (absolute) 

variability is allowed within a 6-neighborhood of a given variogram where that 

variogram is small, and almost always it is smallest for separations near 

zero; this confirms the sensitivity of kriging results to the choice of nugget 

observed by Brooker.  

Motivated by this earlier work, this paper explores a technique for 

quantifying the error resulting from imperfect model estimation when the only 

data at hand are the sample observations. With the increasing availability of 

high-speed computers, a number of computation-intensive, non-parametric 

methods for addressing this problem have been developed in the statistical 

literature in recent years. These sample-reuse methods--the "jackknife", 

cross-validation and the "bootstrap"--are reviewed and compared by Efron

-3-

DR AF T



Campbell: Bootstrapped Models DRAFT

(1982). Applications in geostatistics include Chung (1984), Dubrule (1983), 

Campbell (1986) and Solow (1985). This paper expands on the preliminary work 

of Solow (1985) which applied the bootstrap, introduced by Efron (1979), to 

estimates of functionals of a stationary random process.  

INTRINSIC RANDOM FUNCTIONS AND KRIGING 

This brief review will serve to introduce the notation used in this 

paper. For greater detail the reader is referred to the seminal paper of 

Matheron (1973) and the more practical exposition by Delfiner (1979).  

The data, z = z(x) = (z(xl), . . . , Z(XN)), are samples at known points 

xi of one realization z(x) of a stochastic process Z(x). Probabilistic as

sumptions about Z(x) might include joint normality of the random variables 

Z(x) indexed by a spatial variable x (in d-dimensional Euclidean space) or 

some form of generalized stationarity. In this paper it is assumed that Z is 

an intrinsic random function of order k (a k-IRF), which means, first, that 

(at least locally) its drift E(Z(x)) is polynomial in x of order k, and 

secondly, that if a is a measure with compact support in d-space with the 

property that 

f p(x) da(x) = 0 

for every polynomial p(x) of order less than or equal to k, then aZ, defined 

by 

(aZ)(s) = f Z(tts) da(t) (1)

-4-
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is a stationary random process (indexed by s in d-space). Below only 

measures a with finite support ("k-increments") are considered, and it will be 

convenient to replace the integral notation of Eq. (1) with inner product 

notation: 

dfT 

f Z(t) da(t) < a , Z > def ai Z(ti), (2) i=I 

where {tI, . . , tT} contains the support of a. Second moments of aZ are 

assumed to exist, but no explicit normality assumptions are made. If a and 0 

are any two k-increments, and {t,, . . . , tT} contains the union of their 

supports, then the covariance of the random variables < a , Z > and < 0 , Z > 

is given in terms of the generalized covariance function K(h) of the IRF Z 

(defined for haO) by 

T j• ai #jK(Iti-t 1), (3) 

i,3=1 1 

where 1-1 denotes the usual Euclidean norm in d-space.  

The kriging problem is to estimate some functional f(Z) conditional on 

the observations z. Typical functionals are simply the identity evaluated at 

a point x0  (interpolation) or integrals of Z over a volume centered at x0 

(block estimation). Estimators of E { f(Z) I z(x) ) are restricted to be 

linear in the data, i.e., to be of the form 

N 
f i z(xi) = < >' , z >. (4) i=1

-5-
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In addition, the kriging algorithm provides an estimate of the "kriging 

variance" 

E ( (f - f(Z)) 2  I x . (5) 

If the generalized covariance function K were known, this problem would 

have a best (in the sense of minimizing (5)) linear unbiased solution fT' and 

the usual kriging algorithm would provide ýT such that fT =< X >, 

together with the associated 2 In practice, of course, K is unknown and 

must be estimated from the data, and the usual procedure is to use this es

timate K in place of K in the kriging equations to obtain a suboptimal 

solution fK (with weights XK) and a .  

Unfortunately, the estimation of the generalized covariance function K 

is highly problematic. There have been numerous efforts in recent years to 

improve on the method of Delfiner (1979) which was critically reviewed by 

Starks and Fang (1982). These include efforts at making the procedure more 

robust against non-normality of the data (see for example the discussion by 

Armstrong, 1984b) as well as other types of estimation procedures (e.g., 

Kitanidis, 1985). Nevertheless, all methods simulated by this author are 

plagued by problems of bias and large variability, even within an unrealistic 

simulation framework where the form of the true function is known and cor

rectly modeled. Under these circumstances, additional effort to quantify the 

error introduced by imperfect modeling seems worthwhile.  

A REVIEW OF THE BOOTSTRAP 

A readable introduction to the bootstrap is provided by Efron and 

Tibshirani (1986). The literature on the subject has grown rapidly since its
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introduction by Efron (1979), and widespread application has hardly awaited 

the establishment of more formal underpinnings such as provided by Bickel and 

Freedman (1981).  

The basic idea of the bootstrap is very simple. Let 8(y) be an estimate 

of a parameter (or parameters) u(F). (Here I employ the notation of Efron and 

Tibshirani, 1986.) This means that there is a well defined algorithm for com

puting 8, given observations y generated by a stochastic mechanism F 

characterized by unknown parameter(s) ju. The available observations y are 

used to generate an empirical estimate F of F (which can be, for example, the 

usual non-parametric empirical distribution function, a smoothed version of 

this, or some parametric form). Simulation from F is used to evaluate the 

properties of the estimator 8. Specifically, random samples are drawn from F 

(each is called a bootstrap sample, denoted by y ) and the algorithm is ap

plied to compute 8(y). (Fifty to two hundred bootstrap samples are sometimes 

recommended, but more are needed for computing bootstrapped confidence inter

vals.) The sample statistics of the 8(y) are then used to estimate the 

corresponding properties of the original estimator 8(y). For example, the 

bias of 0(y) may be estimated by 

E^ - (6) 
F 

where E, 8(y) is approximated by the mean of the bootstrapped values. The 

F 

standard error is approximated by the square root of the sample variance of 

the bootstrapped values.  

For the case of independently, identically distributed (i.i.d.) observa

tions y from an unknown distribution F the above program is easily carried 

out. For observations generated by a more complicated model, such as a
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regression model, modifications are needed to transform y to a nominally 

i.i.d. set of random variables so that an empirical F may be computed.  

Similarly, when the observations are generated by an intrinsic random function 

(including the possibility of non-constant drift) a method for reducing the 

correlated observations z(x) to an approximately i.i.d. sample must be found.  

This is of course exactly the same problem faced in the original work of 

Matheron (1973), and the reason for introducing the notion of k-increments.  

Details for the present problem will be given in the following section.  

What parameter(s) should be bootstrapped? As Diamond and Armstrong 

(1984) observe, it is not the estimate of the generalized covariance function 

K(h) which is of interest so much as the effect of misspecification of this 

function on prediction algorithms such as the kriging algorithm. Recall that 
A 2 

the kriged weights XK and the kriging variance aK depend on the data z only 

through K and the observation points x (as suggested by the notation of 

Eq. (5)), whereas fK' computed by inserting XK in Eq. (4) in place of X, of 

course depends explicitly on the observed values. Therefore, once the first 

problem of obtaining an empirical distribution F from which we can simulate is 

solved, F will be used to generate bootstrap samples z (x) (at the original 

observation points x) and the prescribed estimation procedure will be used to 
a * ^*2 

obtain K(z Then the usual kriging algorithm provides X and o based on 

K(z). However, the original z(x) will be used, together with X , to compute 

f via Eq. (4).  

In part the bootstrap procedure will be assessing a particular algorithm 

for obtaining K. Clearly a requirement for such an algorithm in the present 

context is that it be completely automatic; methods which rely on graphical 

interaction with the user are impractical. In this paper Kitanidis' (1985) 

"minimum-variance" estimator is used, constrained by quadratic programming to

-8-
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provide positive-definite estimates. (Thus constrained the estimator is no 

longer unbiased, of course; in fact simulation suggests considerable bias.) 

This estimator requires a preliminary estimate of K, from which the algorithm 

can be applied iteratively to move towards the solution K, which is a fixed 

point. Such a preliminary estimate could be provided by Delfiner's method 

(1979), and simulation experience suggests that convergence is fairly rapid; 

five iterations generally estimate the fixed point to three or four sig

nificant figures. In order to minimize computation in the nested simulation 

framework described below, however, the algorithm is started with a constant 

initial estimate, followed by a single step towards the fixed point. The 

bootstrap technique described here could similarly be used with any automatic 

algorithm.  

BOOTSTRAPPING A k-IRF 

Solow (1985) treated the simplest case of an intrinsic random function, 

namely a stationary process, for which the condition including Eq. (1) holds 

for all measures a with compact support; this is sometimes called an intrinsic 

random function of order -1. The mean is assumed to be zero. (In practice, 

the sample mean is subtracted from all observations.) The positive definite 

covariance matrix C of the observations Z = (Z(xI, , Z(XN)) can be 

decomposed into the product of a matrix 4 and its transpose, C = OT (Solow 

uses a Cholesky decomposition where # is lower triangular, but this is not 

essential), and the N components of the vector 4- 1Z(x) are uncorrelated with 

mean zero and common variance one. (In general, of course, this does not im

ply that they are independently identically distributed, without additional 

assumptions of normality.) To bootstrap estimates of parameters associated 

with the process, the unknown covariance matrix C is replaced by an estimate C

-9-
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- T and u(x) = I z(x) is used to generate an empirical distribution func

tion F. Bootstrapped samples z (x) are then obtained from random samples 

u (x) of F by the transformation z (x) = 4u (x) and used to generate 

bootstrapped covariance functions C and estimates of related functionals of 

the process.  

The situation becomes'slightly more complicated for an intrinsic random 

function of order greater than or equal to zero, because now there is, in ad

dition to correlation among the observations, the possibility of unknown 

polynomial drift, so the sample covariance matrix of the observations z can 

not be estimated directly. The solution, of course, is to work with k

increments a supported on the observation points x. If there are N 

observation points, then there are M = N - C(k~d,k) linearly independent k

increments supported on x, where C(m,m') denotes the binomial coefficient, the 

number of ways of selecting subsets of size m' from a set of size m. Let al, 

, aM be M linearly independent k-increments. Let A denote the MxN 

th th matrix whose (i,j) element is the j element (coefficient) of a i. Let K be 

the estimate of the generalized covariance function based on the original data 

z(x), and estimate the MxM covariance matrix with elements C. = 

Cov{ <ai,Z>, <aj,Z> } by using K in Eq. (3). Now, following Solow, factor C 
TA 

0 T and compute u = 1-(Az) to obtain M approximately independent and iden

tically distributed random variables u. These are used to generate an 

empirical distribution function F.  

To complete the bootstrap algorithm,-draw a random sample u of size M 
** u * A * 

from F and compute (Az) fu and finally z = A(Az), where A is any 
A* 

generalized inverse of A. Then, as outlined previously, compute K(z ), apply 

the kriging equations to get bootstrapped kriging weights W , kriging variance

-10-
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a*, and the bootstrapped estimate f* = <* ,z>. Of interest will be the 
* *2 

sample distributions of f and a 

SOME SIMULATION RESULTS 

The remarks in this section are based on a simulation study consisting 

of one hundred simulations of a first-order IRF with generalized covariance 

function K(h) = -lOihl. Thirty observations were generated for each simula

tion, at the points x1 , . . . , x30 shown in Figure 1 with solid symbols. The 

form of the Kitanidis algorithm previously descibed was used to estimate the 

three parameters of the general model 

K(h) = C0  a(h) - b1 1h1 + b3 1h1 3 , (7) 

(where a is the delta function), starting the iteration with C0 = 0, b1 = 1 

and b3 = 0. (As Kitanidis observes in his 1985 paper, what counts in the 

selection of the initial estimate is the ratio of the coefficients, so in fact 

the correct ratio is offered as a starting point. This does not keep the al

gorithm from converging rapidly to its biased fixed point, however.) For each 

simulation, the covariance matrix of twenty-seven k-increments Az, estimated 

using K, was factored and twenty-seven approximately independent and identi

cally distributed numbers u were computed as described above. The usual 

empirical distribution function, with mass 1/27 at each of these points, was 

used for F, and one hundred bootstrapped samples z were generated from F for 

each simulation. The same Kitanidis algorithm applied to each z yielded a 

bootstrapped estimate K 

The functionals of K that were considered were simply f(Z) = Z(xp) at 

the five points P = A, B, C, D and E shown in Figure 1 with open symbols.

-11-
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Point A is very close to one of the data points, B and C are surrounded by ob

servations, D is only partly surrounded, and E is well outside the observed 

area. For each point the following quantities were computed: 

fT' 2T' using the true generalized covariance function K(h) -1Oh; 

2K' aK' using the estimated generalized covariance function K; 

and one hundred values of 

f a using the bootstrapped generalized covariance functions 

(All thirty observations were used in the kriging equations.) 

As observed previously, the constrained Kitanidis algorithm (all of the 

coefficients in Eq. (7) must be non-negative) is not unbiased. Figure 2 is a 

histogram of the one hundred simulated values of the nugget effect CO; they 

range up to 13.3 and only about half are at or very close to zero. The linear 

coefficients b1 are shown in Figure 3; they have an average value of about 8.  

and include some zeros. This bias actually has very little effect on fK' 

which in most cases is very close to fT9 as shown in Figure 4 for point C.  

The effect on aK is more substantial (Figure 5); the kriged values 

deviate from the optimal values by up to a factor of five or six, and the al

gorithm has a downward bias.  

As an estimate of bias, however, the natural bootstrapped estimate 

;f * -% f f
B f = f - f K for B f = f K - fV(8)

-12-
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where the bar denotes the average over all bootstrap samples, is not very 

satisfactory. When Bf is practically zero, Bf is often relatively large; when 

Bf is significantly different from zero, Bf is as likely as not to have the 

wrong sign. Typical is Figure 6, a plot of Bf vs. Bf at point C. It might be 

thought that this apparent arbitrariness of sign is due to the influence of a 

few extreme values in the distribution of bootstrapped values; some bootstrap 

distribution, such as the one in Figure 7, have long tails or other non-normal 

behavior. However, if the median of the distribution is used in place of the 

mean in Eq. (8), the result is generally an estimate of bias that is of the 

wrong sign (Figure 8), so a more robust estimate of the center of the 

bootstrap distribution is of little help. In fact, the center of the 

bootstrap distribution is usually quite close to the optimal value, regardless 

of the bias of the kriged value.  

On the other hand, B , defined by 

Ba = log - log 0K, estimating B. = log -K log aT, 

is negative almost every instance, regardless of the sign of Ba; see Figure 9.  

This is a reflection of the bias of the algorithm remarked in Figure 5; just 

as the estimated kriging variance underestimates the true value on the 

average across simulations, so the bootstrap simulation underestimates the 

kriged value.  

Thus it appears that at least for this problem bias estimation is 

poor, and bias "correction" (i.e., subtracting the bias estimate from the 

kriged estimate) decidedly inadvisable. This agrees with a remark by Efron 

and Tibshirani (1986; p. 61).

-13-
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More interesting is the question of the increase in variability in the 

kriged estimate as a result of using an estimated generalized covariance func
"-2 

tion. Confidence intervals for fT and aT can be constructed for each 

simulation, and their predicted coverage compared with the observed coverage 

in the one hundred trials. One hundred bootstrap samples are considered in

sufficient to construct good confidence limits, according to Efron and 

Tibshirani. They recommend a minimum of 250 samples for the percentile method 

(described below), and 1000 samples for the more complicated bias-corrected 

percentile methods. These sample sizes are impractical in a simulation of 

this size. Nevertheless, some interesting observations emerge even with the 

smaller bootstrap samples used here.  

The first method for constructing confidence intervals is called the 

percentile method (Efron and Tibshirani, 1986; Efron, 1982). Here a symmetric 

100(1-2y)% confidence interval is constructed simply by taking as endpoints 

the yth and ( 1 -y)th quantiles of the empirical distribution of the 

bootstrapped values of the statistic in question. Table I shows the actual 

coverage of the one hundred 90% confidence intervals constructed using the 

percentile method for each of the estimated quantites, together with the num

ber of simulations for which the optimal value (i.e., fT or a) fell below or 

above the computed confidence interval. The confidence intervals for fT are 

extremely conservative, attaining at least 97% coverage at all five points.  

Confidence intervals for "2 are somewhat liberal and markedly nonsymmetric.  

One problem may be that the quantity bootstrapped was not approximately 

pivotal (see Hinkley, 1986), although the use of the logarithm of a2 was an 

attempt to move closer to a. pivotal quantity for this scale parameter. The 

second method for computing confidence intervals is a fairly automatic tech

nique for correcting this problem (Efron, 1982, p. 83). This "bias-corrected"

-14-
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percentile method involves making an adjustment for the fact that fK or K is 

not the median of its bootstrapped distribution. Table 2 shows the coverage 

of bias-corrected 90%-confidence intervals. The bias-corrected confidence in

tervals are now liberal for the point estimates fT' but fairly symmetric with 

respect to failures on the low and high sides. Failures, unsurprisingly, are 

associated with poor bias estimates. Bias-corrected confidence intervals for 

the kriging variance 2T have about the same coverage as percentile-method in

tervals and failures are slightly more symmetric, although the computed 

intervals still tend to be low. The bias-corrected intervals are also five to 

ten percent narrower than intervals computed by the percentile method.  

A third method for constructing confidence intervals mentioned by Efron 

and Tibshirani is a modification of the bias-corrected percentile method which 

uses an estimate of skewness based on the bootstrap distribution. As 

bootstrap distributions are frequently highly skewed, this further adjustment 

might correct the observed asymmetry of failures for the intervals for 2.  

More bootstrap samples smooth out the bootstrap distributions con

siderably and improve the estimation of tail percentiles, as well as the 

estimation of the percentile of the kriged value, which plays a central role 

in the bias-correction method. Rarely, a significant shift in the computed 

confidence interval can result, but more typically there is little change, as 

seen in a comparison of Figures 10 and 11.  

RANDOMIZATION 

There are a number of points in the procedure described above where ar

bitrary choices are made: in the selection of A (i.e., of M linearly 

independent k-increments), in the choice of a generalized inverse A-, and 

finally in the factorization of C: if U is any unitary matrix, uuT= I, then

-15-
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S TuuTT = ^,(,T C §U § .§ .(9) 

The choice -of a generalized inverse is immaterial because if At is 

another generalized inverse of A, then At(Az)* differs from A-(Az)* only by a 

polynomial of order k, and the algorithm for estimating K(h) should produce 

the same result using either z If B is another MxN matrix of linearly inde

pendent k-increments, then B = QA for some non-singular MxM matrix Q, and if 
^ - "TT 

CA = where CA is the estimated covariance matrix of Az, then CB = Q 

If this factorization of CB is used, then u = Q-(Bz) = (Az) as before.  

However, an alternative choice of the factorization will result in a different 

vector u and a different F.  

The magnitude of the effect of the choice of factorization was inves

tigated using a small simulation study and found to be comparable to the Monte 

Carlo sampling effect (i.e., the use of only a finite number of bootstrap 

samples from F). Therefore it might be neglected. However, it might also 

prove useful. At the expense of a slight increase in computation, randomiza

tion of factorization can be achieved by generating random unitary matrices U 

for Eq. (9) and redefining u =(§U)-1(Az) for each bootstrap sample, or, more 

reasonably, for each set of perhaps ten samples. The principal effect of this 

modification appears to be a widening of the bootstrap distribution and thus 

of confidence intervals; compare Figures 11 and 12. In this instance the up

per end of the 90% confidence interval was shifted just enough to cover the 

"true" value 

SUMMARY 

The Matheronian theory of k-increments as a tool permitting the estima

tion of the generalized covariance function of an intrinsic random function
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from a single realization has been applied here to reduce the observations 

from a single realization to an approximately i.i.d. collection of linear com

binations of the observations. These can be resampled to generate new sets of 

"bootstrapped" observations, with which the estimation procedure can be 

repeated. According to bootstrap theory, the distribution of the resulting 

bootstrapped estimates (be they the parameters of the estimated generalized 

covariance function itself or functionals of the estimated process such as 

kriged interpolations, block estimates or kriging variances) should ap

proximate the corresponding true distribution, and thus provide a non

parametric way to estimate such measures of error of the original estimator as 

bias or standard error, as well as generating confidence intervals for them.  

Qualitatively, the simulation results reported here support this theory, 

at least insofar as suggesting that the spread of the bootstrap distributions 

does indeed reflect the variability introduced by imperfect estimation of the 

generalized covariance function required for kriging. Bias estimation is un

reliable, but bias-corrected confidence intervals are only slightly too narrow 

(considering that the simulations used only one hundred bootstrap samples per 

simulation, compared to the minimum of one thousand recommended for this par

ticular type of computation). The arbitrariness of one step of the procedure, 

namely the choice of factorization for the covariance matrix of the k

increments used, might profitably be exploited to widen the computed 

confidence intervals slightly.
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^ ^ 2 TABLE 1. COVERAGE OF NOMINAL 90% CONFIDENCE INTERVALS FOR fT AND aT 

CONSTRUCTED BY THE PERCENTILE METHOD (100 SIMULATIONS) 

OPTIMAL VALUE 
MEDIAN 

BELOW WITHIN ABOVE WIDTH OF 
FUNCTIONAL INTERVAL INTERVAL INTERVAL INTERVAL 

fT at: A 0 99 1 .765 
B 1 99 0 .431 
C 0 100 0 .417 
D 1 99 0 .407 
E 0 97 3 1.455 

^2 at: A 5 95 0 1.396 
T B 1 86 13 .414 

C 1 84 15 .413 
D 0 84 16 .416 
E 0 92 8 .489

TABLE 2. COVERAGE OF NOMINAL 90% 

CONSTRUCTED BY THE BIAS

CONFIDENCE INTERVALS FOR f T AND (7 

CORRECTED PERCENTILE METHOD

OPTIMAL VALUE 
MEDIAN 

BELOW WITHIN ABOVE WIDTH OF 
FUNCTIONAL INTERVAL INTERVAL INTERVAL INTERVAL 

fT at: A 9 79 12 .440 
B 8 86 6 .327 
C 7 91 2 .335 
D 7 86- 7 .410 
E 7 82 11 1.380 

A2 
^2 at: A 17 81 2 1.276 B 2 88 10 .389 

C 3 86 11 .378 
D 3 84 13 .378 
E 2 90 8 .455
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FIGURE CAPTIONS 

Fig. 1. Thirty "observation" points used in the simulations are shown using 

solid symbols. Kriged estimates are computed at the five labeled points 

shown by open symbols.  

Fig. 2. Histogram of one hundred estimates based on simulated data of the 

nugget effect, CO. The true value, used to generate the simulations, was 

zero.  

Fig. 3. Histogram of one hundred estimates of the coefficient of the linear 

term, b 1. The true value was 10.  

Fig. 4. Histogram of one hundred values of the bias fK T of the estimate 

at point C.  
^2 ^2 

Fig. 5. Histogram of one hundred values of the bias log K- log aT of the 

kriging variance at point C.  

Fig. 6. The bootstrapped bias of the point estimate, computed as the average 

of f - fK over one hundred bootstrap samples, vs. the actual bias fK - fT 

at point C.  

Fig. 7. Histogram of the bootstrap values f at point B for one simulation.  

The optimal value fT and the original kriged value fK are shown as heavy 

lines.  

Fig. 8. The bootstrapped estimate of the bias of the point estimate, computed 

as the median of f - fK over one hundred bootstrap samples, vs. the ac

tual bias fK - fT at point C.  

Fig. 9. The bootstrapped estimate of the bias of the kriging variance, com

puted as the average of log - log a over one hundred bootstrap 

samples, vs. the actual bias log K- log OT at point C.  

Fig. 10. Histogram of one hundred bootstrapped values of the kriging variance 

at point C for one simulation. T and aK are shown as solid lines, and
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the boundaries of the bias-corrected 90% confidence interval are shown as 

dashed lines. The same factorization of the covariance matrix was used 

throughout.  

Fig. 11. Histogram of one thousand bootstrapped values of the kriging 

variance at point C for the simulation illustrated in Figure 10. The 

same factorization of the covariance matrix was used throughout.  

Fig. 12. Histogram of one thousand bootstrapped values of the kriging 

variance at point C for the simulation illustrated in Figures 10 and 11.  

A randomly selected factorization of the covariance matrix was used to 

generate each bootstrap sample.
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