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ABSTRACT 

In order to evaluate the safety of radioactive waste disposal underground it is important to 
understand the way in which radioactive material is transported through the rzck to the surface. If 
the rock is fractured the usual models may not be applicable.  

In thi• work we look at three aspects of fracture networks: connectivity, flow and transport.  
These are studied numericall, trv generating fracture networks in a computer and modelling the 
procev-..s %%hich occur.  

(onnectii it% relates to percolation theory. and critic.! densities for fracture systems are found 
in tso .nd three dimension, 

The permc;,ihii of tt'o-dimenional networks iý studied. The way that permeability depends 
on tracture densit . network -size ind spread of fracture length can be predicted using a cut lattice 
model 

Transport through the tracture network by conmection through the fractures and mixing at the 
intersections is studied The Fickian dispersion equation does not describe the resulting 
h-.drod,.namic dispersion 

Emtensions to the techniques to three dimensions and to include other processes are 
discussed 
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Chapter I Introduction 

Radioactive waste arises from a number of sources. These include the reprocessing of fuel from 

nuclear power stations. equipment used to handle radioactive materials, contaminated clothing.  

medical equipment. etc. If reprocessing is not done. it may also include unreprocessed fuel 

elements.  

This waste must be dealt with in a safe and reliable fashion. Because some of the radioactive 

constituents of the waste are long-lived the disposal option chosen should ensure long term 

isolation of the waste. Many options have been put forward. These range from exotic schemes 

such as disposal in outer space or at a subduction zone between tectonic plates to more practical 

schemes such as disposal into or under the sea or burial on land (Koplik et al.1982). In the United 

Kingdom the main focus of attention has been burial on land although some very low-level waste 

has been dumped at sea.  

Radioactive waste is categorised according to its activity, and the disposal option chosen will 

vary from category to category.  

Hich-level waste (HLW) is that which contains short-lived radioactive mate-iat. It arises from 

the reprocessing of fuel elements if this is done. or consists of the unreprocessed spent fuel 

elements themselves. In the T.K. above ground storae is used for the small amount of HLV 

produced. HLW emits large amounts of heat for the first 50-100 years. after this it can be dealt 

with more permanently. Once the short lived material has decayed the waste contains much longer 

lived materials, some with half-lives of over a million years. and so the final disposal must inolve 

lorg term isolation.  

Intermediate level waste I ILW) arises from reprocessing. The main difference between ILW and 

l.t.W is in the initial heat emitting stage. ILW emits only small amounts of heat and much earlier 

disposal is en~isaged. For ILW and HL\V long term isolatioi is required and so burial deep 

underground is indicated.  

The final category is low level waste. This consists of slightly contaminated clothing and other 

materials which hase come into contact with radioactive materials. It has low activity for its 

volume and can be buried in shallow sites on land or at sea.  

Whatever the type of waste we must ensure that the chosen disposal option is safe. At a 

technical level this involves modelling the repository and its surroundings from the time of disposal
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far into the future. One important component of any such model is the groundwater flow, which 

may carry radionuclides from the repository back to the surface and hence back to Man.  

The ty.pe of rock in the vicinity of a repository has not vet been decided, so we must be able to 

model the groundwater flow and transpon of radionuclides through any rock type. This work 

looks at the problems that arise if we must model groundwater flow and transport through 

fractured rocks.  

Historically the modelling of groundwater flow has been based on the Darcy Law (Darcy, 1856).  

This treats the rock as a continuum, taking the average flow rate in some representative 

elementary volume (REV). The REV must necessarily be larger than the length scale of the pores 

through which water flows. In small grained rock this presents no problems because the scale on 

which information on flow rates is needed is many orders of magnitude larger than the scale on 

which the flow occurs. In fractured rock however it is far from clear that Darcy's Law can be used, 

because the fracture spacing can be of the order of metres.  

The main advantage of using continuum models is that they can be solved fairly 

straightforwardly. For constant permeabilities and simple boundaries analytic solutions can be 

found, while for more complex problems numerical methods can be used. The finite element 

method is %%ell suited to this type of problem. The author has developed finite element codes for 

flow and tra.isport. The computer program NAMMU was written to solve the coupled heat and 

groundwater flow equations (Rae and Robinson.1979. Rac .zt al.1981,1983, Wickens.1981.  

Wickens and Robinson.1984). It has also been used to calculate the flow of groundwater in 

three-dimensional prob;ems tAtkinson et al. 1984). Figure 1.1 shows the grid used for one of these 

three-dimensional problems. A related program. NAMSOL (Dolman and Robinson. 1983) was 

written to solve transport equations for contaminant in groundwater flow. The contaminant can be 

convected. dispersed and sorbed, and can decay radioactively. Decay chains can be handled. The 

dispersion term in this program is intended to model hydrodynamic dispersion. For fractured rock 

the size of this coefficient is not well known and some best estimate must be used. It is hoped that 

tht work reported here may shed a little light on the validity of the continuum model and on the 

value of the dispersion coefficient.  

Even if Darcy's Law is valid as far as average flow rates are concerned the fracture geometry is 

crucial to the particle transport. Particles travel with the local flow. not with the averaged Darcy 

flow. They will be dispersed by the different paths that they take. Moreover phenomena such as 

sorption and diffusion into che rock matrix clearly depend on the rock structure.
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The aim of this work was to gain more information on the way in which the fractured nature of 

the rock might affect the modelling of the system. Results from models which keep the essential 

tractured nature of the rock are compared with the results from the usual continuum models.  

The approach that has been used is to develop computer models of fracture systems and to 

perform experiments on these systems, to see how they can best be modelled. At the same time 

theoretical prediction of the experimental results have been made, to help gain some insight into 

the behaviour of fracture systems.  

The study can be split into three areas. The first of these is connectivity, that is. do the fractures 

interconnect sufficiently to form large scale paths? This question is related to percolation problems 

in solid state physics.  

The second area is balk flow. that is the average flow of Darcy's Law. We look at the validity of 

the continuum approximation, and the relationship Jetweien the statistical properties of a fracture 

. stem and its permeabihty.  

The final area is contaminant transport. How do dissolved or suspended particles move through 

the fracture system? Can their spread be adequately modelled by a diffusion-like law? 

A real fractured rock consists of fractures of various sizes intersecting one another in a 

complic: "d three dimensional network. Each fracture has variable aperture. may or may not be 

pLanar. ma- be filled %kith minerals etc. Modelling such a s.,stem fully is clearly impossible.  

The continuum approach ignores the fractures completely, reducing the system to a number of 

parameters. permeability. porosity., retardation coefficient, dispersion coefficient and so on.  

These parameters are assumed to be experimentally measurable. This approach is not adequate by 

itself. The continuum model must be consistent with the fundamental processes which occur at the 

fracture le, el. The equations and parameters used in the continuum model must have their basis in 

":he fracture system. The parameters may not be measurable in practice. either because it would be 

too expensive, or take too lone. or because it would destroy the rock being investigated. An 

understanding of the physics at the fracture level may suggest small scale experiments from uhich 

the parameters can be deduced.  

In the end %e would wish to "ise a continuum model, because of its computational simplicity, but 

.e must he sure that it is appropriate, and that the parameters used are sensible. To do this Ae 

must look at the fracture level.
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The data available about fracture systems is very limited. This does not prevent us from studying 

idealised fracture systems. This is what we have done here. As data becomes available it may be 

possible to use more realistic fracture systems. In this work we are more concerned with the type 

of model that should be used than with making actual predictions. If a continuum model can 

describe the behaviour of an idealised fracture system it must be a good candidate for modelling a 

real system. If. on the other hand. it cannot model the idealised system there is little hope of it 

modelling the real one.  

We have studied idealised fracture svstems in two ways. A computer program has been 

developed to look at connectivity, flow and transport in fracture systems and some simple 

analytical models have been used to predict the results of this program. Most of the work reported 

here is for two dimensional systems. although connectivit" has ieen looked at in three dimensions.  

The extension of other techniques to three dimensions is tiscussed.  

The layout of this report is as follows. After this introductory chapter. chapter 2 describes the 

generation of the idealised fracture systems used throughout.  

Chapter 3 describes the work on connectivity, how it relates to percolation theory. how the 

computer program works and the results it produced. Some theoretical predictions are made and 

checked against the program.  

Chapter 4 looks at buik flow. the assumptions made. the computational details and the results.  

Some of thz results are compared with theoretical predictions made using a cut lattice model.  

Chapter 5 discusses some general aspects of contaminant transport. while chapters 6 and 7 

describe two different computational techniques for modelling it. and the results obtained.  

Chapter 8 describes some theoretical approaches to transport and compares these with the results 

from the computer runs.  

In chapter 9 we use a more general fracture system and look at contaminant transport in it.  

Chapter 10 presents some ideas on extending the techniques to three dimensions, and chapter 11 

looks at how other transport mechanisms could be included.  

Finally chapter 12 presents a summary and conclusions.

Introduction 1.4



Chapter 2 Statistical Fracture Networks 

In a real fracture system each of the fractures can be described by a list of properties. These 

include the size. shape, position, orientation in space. aperture. etc. Over all the fractures in a 

region these parameters have some sort of distribution. In order to generate an idealised, but fairly 

realistic, fracture system we specify the distributions and generate realisations from these. In a real 

system there may be correlations between some of the properties. One way in which this occurs is 

through fracture sets. Typically fractures in a single set have similar orientations, and were 

probably formed in a single geological event. The properties of one set may differ from those of 

another set. We allow the distributions to be given in terms of fracture sets. Within a set there may 

well be further correlations, between size and aperture for example. In our idealisation these 

cannot be included explicitly, however the idealised sets can be smaller than the real sets which 

allows the correlations to be included. For this reason it is useful to extend the definition of a 

fracture set and define it to be a collection of fractures whose properties come from a single set of 

probability distribution functions. The properties which we currently use to define the fractures 

and which can vary are orientation, length and aperture. This list could be extended to include 

other properties (e.e. roughness or sorption characteristics) should this become necessary.  

All the properties can be given distribution functions of the following types defined by two 

paramc :-rs u and s 

constant value - all fractures have value u 

uniform distribution - values anywhere between g.-s and p+s 

normal distribution - mean g. standard deviation s 

log normal distribution - logarithm has normal distribution with mean IJ standard devidtion s 

negative exponential - mean p1. standard deviation s. cutoff at 1-s 

Other distributions could easily be included.  

The fracture density for each set is specified. as the number of fracture centres per unit area.  

Because fractures whose centres lie outside the region of interest may enter it. care must be taken 

to generate fractures in a larger region. This must be chosen so that it contains the centre of any 

fracture which enters the region of interest. If the length distribution function has an infinite tail 

then the region must be chosen so as to make it unlikely that any fractures are missed. For most of 

the work reported here the fracture centres are uniformly distributed but the capability to have a
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non-uniform distribution exists. This is specified in terms of a mapping from the unit square to any 

region of space. Fracture centres are generated uniformly in the unit square. the mapping then 

produces the non-uniform distribution.  

From one set of statistics we can generate any number of networks. Each realisation of the 

statistics is generated as follows. A region is specified in which all the centres are to lie (either 

explicitly or in terms of the mapping). Inside this a solution region is placed. Only fractures which 

enter this solution region are of interest and any others are not recorded. For each realisation a 

random number seed is set, so that the realisation can be regenerated if required. The actual 

random number generator used depends on the computer being used. On the CRAY-IS, where 

most of the work was done. the RANF library routine was used for uniform random numbers.  

Normally distributed random numbers were obtained by summing twelve of these uniform 

numbers. On the IBM3081 we used the Harwell Subroutine Library routines FAO4AS and 

FAO5A.  

Fracture generation proceeds as follows. The total number of fractures to be generated is 

calculated from the sum of the fracture set densities. Fractures are then generated one by one. For 

each fracture the set to which it belongs is decided first. This is done. rather than generating 

fractures set by set. for two reasons. Firstly. when -e are looking for paths across regions the order 

of the fractures must be random and. secondly. the actual number in each set will vary slightly, as 

it would in a real system. Once the set is decided the centre position is found. The length and 

orientation are calculated and saved as a displacement from the centre to one end. Finally the 

fracture aperture is found. If the fracture enters the solution region it is added to the list of 

fractures. otherwise it is discarded. In this way the list of fractures for the rest of the calculation is 

generated.  

This generation of the fracture system can be bypassed if. for example. a specified fracture 

network is to be used. This method has been used to compare results with Schwartz's program. see 

chapter 7. It ,kas also used at an early stage to set up simple test cases to help debug the program.  

The collection and analysis of the data. that would be required to apply the techniques used here 

to real fracture systems, is beginning. For the purposes of this work a lack of data is not important 

since we are at the stage of developing an general understanding of the processes that are 

important in fractured rock. However this data will become important if we are to look at specific 

real systems. A study of Cornish granite (Heath.1983. Bourke et al.1981.1 9 82 ,19 84 . Heath and 
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Durrance.1984) has produced a iarge amount of data which is beginning to be analysed 
(Hodgkinson.1984) . This data includes fracture orientations from core logs. the results of 
pumping tests and tracer tests. From this information a picture of a real fracture system is 
beginning to emerge. Work has also been undertaken in Sweden (KBS.1983) and Scotland 

(McEwen and Lintern.1980).  
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Chapter 3 Connectivity

3.1 Introduction 

In order that water car. flow through a fractured rock mass the fractures must be sufficientis 

interconnected to form large.scale paths. The existence of such flow paths depends on the 

geometry of the particular fracture system in question. For a given set of fracture statistics some 

realisations will exhibit large-scale paths while others show only local connectivity. Clearly as the 

number of fractures in a given piece of rock increases the chance of large-scale paths gets greater.  

The purpose of the work described in this chapter was to quantify this increased probability and to 

find how it depends on the statistics of the fracture system.  

3.2 Relation to percolation theory 

The problem tackled here is related to percolation problems in solid state physics (Essam.  

1980). in fact it is closer to the initial work (Broadbent and Hammerslev. 1957) than to the current 

areas of interest in solid state physics.  

In a general percolation theory system we start with an infinite set of sites. Certain pairs of sites 

are connected by bonds. Two types of percolation model are discussed, site percolation and bond 

percolation. Site pe-colation involves a probability p") that any site is open. independently of 

other sites. Paths are then sequences of connected open sites. In bond percolation all the sites are 

open but there is a probability ptIB that each bond is unblocked, again independently of all other 

bonds. In this case a path is a sequence of open sites connected by unblocked bonds. In either case 

a cluster is a set of sites in which any pair is connected by a path. It is found that a critical 

probability exists in each c::-•" For the site percolation case if p S1 < pl-'1 only finite size clusters 

exist, but fot pqs) > p Sm..ite clusters appear. For bond percolation the position is the same. if 

pin) < pi"' Lhere are only finite size clusters while for pt18 > p,"' there arc infinite clusters.  

Generally the systems considered are lattices with bonds connecting neighbouring sites.  

Our case is in some sense a continuum limit of the site percolation model. Our sites are the 

fractures which can be in any position with any length and orientation. Two fractures have a bond 

between them if they intersect. The probability of a site being open has become the density of
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fractures (i.e. the number of fractures per unit area. or volume in three dimensions). A cluster is a 

set of connected fractures.  

Notice that it is more natural to make the association in this way than to associate fracture 

intersections with sites and fractures with bonds. This is because this latter association gives a 

correlated percolation model, since two sites being connected implies a fracture which increas's 

the probability of further connections along this fracture. By associating fractures with sites the 

independence is retained.  

Having made this association we are led to expect that there is a critical fracture den.ty above 

which paths will exist and below which the fractures will only be locally connected. The numerical 

calculations will show that this is indeed the case.  

3.3 The calculation of critical densities 

The critical density for an infinite fracture system is that density above which infinite clusters of 

fractures appear. This definition is of no direct use when the critical density is to be determined 

numerically. We must have a different definition for finite systems which becomes equivalent to 

the infinite system definition as the region size increas-s.  

There is no unique way of defining the finite size critical density. The definition we have used in 

most cases is the iollowine. We take a fixed size square region and generate fractures in and 

arourd it until a cluster which makes contact with all the sides has been formed. At this point we 

say that this system is percolating and record the number of fractures cent;ed in the region. This is 
done for many real'sations of the same statistics and the average density of fractures at percolation 

is taken to be the critical density. This is equivalent to taking an infinite fracture system and 

placing a square region randomly on it. We would then take the critical density to be the density at 

which half the squares had a cluster joining all four sides. In three dimensions the extension is the 

obvious one of a cube with a cluster connecting all six faces. A typical percolating fracture system 

is shown in figure 3.1. The percolating cluster from this system is shown in figure 3.2.  

One alternative definition is to require the cluster to connect either pair of opposite sides of the 

square. or any pair. of opposite faces in three dimensions. We have made a series of runs using this
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alternative definition and compared them with our usual definition. Except for small regions the 

difference is not very large. although the variation with region size is interesting. These results are 

described in §3.8.  

Another possible definition would involve forming a periodic network with the square region as 

the basic cell. The intersections for such a system could easily be found but finding the infinite 

clusters would be computationally quite difficult and so the definition has not been tried here.  

3.4 Computational technique 

The computational technique used to find critical densities can be outlined as follows. For clarity 

this description concentrates on the two dimensional problem. The three 2'imensional case is in 

most respects the same.  

For a given set of statistical distributions of fracture parameters we generate fractures one by 

one in the vicinity of a square region (so that any fracture which enters the region could be 

chosen i. As the fractures are generated we keep track of all clusters into which they form. Each 

new fract':,c that is generated can do one of three things. It can form a new cluster, extend an 

existing cluster or unite two or more existing clusters. Any cluster which has been altered can then 

be checked to see if it reaches all four sides. Once a cluster does reach all four sides fracture 

generation is stopped and the density of fractures (i.e number of fractures centered in region is 
area of region 

recorded.  

In order to find whether each new fracture intersects nought. one or more existing clusters we 

must find all the pre, ously generated fractures which it intersects. Given a pair of fractures it is a 

simple matter to determine whether they intersect. However for large fracture syste.-,-s we cannot 

check all possible pairs since this would be prohibitively expensive. In order to reduce the number 

of checks needed to manageable proportions a special algorithm has been devised.  

We start by covering the region with a regular grid. The number of grid blocks in each direction 

is an adjustable parameter which can be used to optimise the algorithm. The grid box 

corresponding to any point in the region can be found very quickly by dividing the coordinates by 

the box size. Now as the fractures are generated a list of all the fractures which pass through each 

grid block is maintained. This is done as follows.
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Each new fracture is split into "sublines'. with one subline for each box through which the 

fracture passes. If the fracture cuts diagonally across the boxes it can be time consuming to find 

%%hich boxes it actually goes through. In such cases it is better to ,nclude all possible boxes. For 

example if one end of a fracture is in box 4 IX. Myt and the other is in box i IX+i. IY+1i we 

%%ould include boxes ! IX.,- . MY and i IX. IY+1 . Now we create one new subline for each box 

in the list. For each subline we record the original fracture number and for each box crossed ",e 

update a linked-list structure which records which sublines belong to each box. Two arrays are 

used. the two-dimensional array IBXST records the last subline for each box and the 

one-dimensional array NEXT records the previous subline in the same box as this subline. So to get 

a full list of all sublines for box i IX. IY) we set ISUBL- IBXST (IX. IY) to get the first and then 

set I SUBL-NEXT I I SUBL) repeatedly to get all the others. terminating when a zero is reached. In 

order to add a new subline. NEWSL. to the list we just have to set 

NEXT NEWSLi -IBXSTtIX. IY and IBXST(IX. IY' -NEWSL.  

,ow .e need only check each new fracture for intersections with fractures which have sublines 

in the same erid boxes. To see how much this saves consider an example. With N fractures in a 

reccion R by R we would need to check IN(N -1) pairs of fractures if all possible pairs were taken.  

If •%c split the region into boxes of size h by h so that an average fracture passes through k boxes 

the n,,mber of checks becomes - , ,,vin, a reduction by a factor ---. In practice the cost 

,,A Cttin. tiu and maintaining all the box information beg:rms to dominate if too man% boxes are 

u.cdJ \\c h.;,. found that choosing the box size so that each fracture passes through t\%o or three 

•ox\s easce, the best results.  

In some special cases we can do even better. in particular in the case of two orthogonal fracture 

" it e.in u•'e the fact that t',o fractures in the same set cannot intersect. This we have done b\ 

keeping separate lists of horizontal sublines in boxes and of vertical sublines in boxes.  

I aine found all the intersections the cluster information can be updated. If the news fracture 

hls% no intersections it forms a new cluster. If it intersects with fractures from a single existine 

cluster it is added to that cluster. If it intersects with fractures from more than one existing cluster 

these clusters are all united to form a single larger cluster. This is done by recording the nces 

cluster number aeainst the initial cluster number. The cluster for each fracture is not updated. so 

that to find which cluster a fracture is currently in it is necessary to loop round starting with the
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initial cluster and going to the cluster which this became until the current cluster is found. This is 

identified by the new cluster number equalling the old cluster number.  

in order to check for percolation the sides which each cluster touches are recorded. As new 

fractures are added and clusters unite this is updated until one cluster reaches all the sides. This is 

then the percolating cluster and fracture generation stops for this realisation.  

It can be seen that this algorithm can easily be modified to deal with other definitions of 

percolation. for example if a connection between two opposite sides was deemed sufficient. It 

could also easily handle the percolation of shapes other than straight line fractures. It forMs the 

basis of the method used in later work on flow where the density is fixed and it is required to find 

all the intersections.  

In the three dimensional case with fractures represented as rectangles with any size. position and 

orientation it is not trivial to find whether two arbitrary fractures interse:-., The method used is 

described below.  

In three dimensions the positions and orientations of the fractures are kept internally as the 

centre c. and the displacements to the mid-sides r and s. The corners of the fractures are thus at 

c-r~s. Once a pair of fractures has been identified as possibly intersecting the following 

procedui: is used to determine whether they do intersect. The notation used is illustrated in figure 

We have two fractures defined Ly c, .r1 .s, and c .rz .sz.  

The normals to the planes are 

n, = rxs, and n. = r2 Xs,. (3.1) 

The line of intersection of two planes with these normals has direction 

t = n, Xn2. (3.2), 

One point on this line is at the end of a perpendicular from the origin and therefore has position 

p = On1 + Pn 2 . (3.3) 

Now p is in both fracture planes so 

(p-c 1)-n = 0 and (P-C2)-n 2 = 0. (3.4)
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Now using (3.3) and (3.4) we get an cquation for a and A

(3,°, ,",o,) = (°,*,c, 'n, n z-z/l n .¢/ (3.5)

This gives a and a3 and hence p. The intersecting line is then the locus of poirnts p--yt. We must now 
find the range of 7 for the interior of each fracture. In plane I we write

t = ur, +vsI. 13.6)

Since r, and s, are orthogonal mis gives

t -ri 
r, -r,

= 'SI 

-,.t"St
(3.7)

Similarly we write

p = CI +arI 6bsI

I p-c, l.r, 
r3 r2

b =(p-C, ).st 
si *51

p-".,t = Ca -t+a yr,-(b+.:%)sa.

There;orc the interior of the fractures is where

and !b+'tvi< !.

-hs ces four conditions on y I two for each fracture). If all can be satisfied the fractures intersect 
and the range of - over which the conditions are satisfied gives the line segment along which the 

i,,czzurc, meet. If no -Y %%ill satisfv all the conditions then the fractures do not intersect.  

It can he •ecn from this that in three dimensions it is even more important to avoid too many 

unnecc,,sary zhecks for intersection.

3j

wiath

(3.8)

13.9)

(3.11)
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3.5 Number of intersections

As we shall see later, the number of intersections for each fracture is an important variable. It 

can be calculated numerically as the algorithm proceeds. It can also be accurately predicteo .,r any 

fracture statistics from simple geometrical arguments.  

Note that the number of fracture intersections at percolation is the continuum equivalent of 

:pIS) where : is the number of bonds connected to each site in a lattice calculation. In lattice 

calculations it is found that as the coordination number. z. increases zp-S)--4.5 in two dimensions 

and zpS)--2.7 in three dimensions (Shante and Kirkpatrick.1971).  

In this section we show how density and average number of intersections are related in general 

and give the formulae for some cases. The general argument holds for any system in any number of 

dimensions.  

The sites (fractures) in the system are described by a set of parameters s. Two sites are 

connected by a bond if their parameters satisfy some conditions. b(s,,s,)= 1 say. where b(sl si)=O 

if there is no bond. The parameters come from some known probability distributions, ifs). The 

average number of bonds per site (intersections per fracture) is just the number of fractures times 

the integral over the parameter space of the function b times the probability distribution functions 

S= Nf dsJlsjb<s.s1 )-fisj).fisj) (3.12) 

For some of the systems we ate concerned with we can also say that the actual number of 

intersections on a particular fracture is distributed with a Poisson distribution with mean 1. so 

e= -- (3.13) 
P, r! 

This does not apply to cases with variation in fracture length.  

Consider an example. Take the system with fractures all of fixed length 21 oriented either 

horizontally or vertically with equal probability. The density is p so in a region of area A there are 

N=pA fractures. Any randomly chosen pair of fractures will intersect if they are orthogonal and if 

the centre of one lies within a square with side 21 around the other's centre. So. ignoring thie effect 

of the boundaries, the probability that the two intersect is p =!W Therefore the probability 

A 

that a given line intersects r other lines is
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p,= (N-1)f'N-2) (N-r) (l-p).¢_p,(l-p)_,(314 r!P ( P (3.14) 

As A. and hence N. tends to infinity this gives 

r! (3.15) 

So the distribution of the number of intersections is a Poisson distribution as claimed and has 

mean =p2P12 . The critical number of intersections per fracture for this case is therefore I4 = 2p rI 

Similar results can be derived for other fracture statistics. They are collected in the table 3. 1.  

Facture Statistics Number of Intersections per fracture 

Two orthogonal sets. All with length 21. Half oriented each• 2 
way. Total density p.  

Two sets with angle a between them. All with length . 2Plsmnn 
Half onented each way. Total densuty p.  

Uniformly dn•snbuted orientation. All with length 21. PI: 
"Density p. It 

Drientation uniformly distributed between -a and a All .- 2 
with length 21. Density p. 1 .12a-smn

An% cae tith lengths uniforml% distributed As for Cas4 with fixed length equal to average length. not I Pobison distrbution 

Table 3.1 
Relationship between density and number of intersections.  

In three dimensions we consider Just two cases. The first is the equivalent of the 

to-dimensional example just described. The fractures are all squares with sides of length 21 

parallel to the coordinate axes. One third of the planes are in each of the coordinate planes. The 

tot:-l densit, is p. Two planes will intersect if their centres are close enough together and they are 

not parallel. The volume in which the centre of one plane must lie has dimensions 41X21X21 and 

there is a factor cf since the two must not be parallel. Thus the average number of intersections is 

3 P " 

The second three-dimensional case is more difficult to calculate. In this case the fractures can 

have an% orientation with equal probability and are again squares with sides of length 21. The total 

density is p.  

When considering the probability that two fractures intersect we can choose our coordinate 

system so that one fracture is centred at the origin with its sides parallel to the x and y coordinate
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axes and its normal along the -- axis. The second fracture lies in a plane which makes an angle y 

with the xy-plane. The line of intersection between the planes containing the fractures cuts the 

x-axis at an angle a and the perpendicular distance of this line from one corner of the first plane is 

r. Figure 3.4 shows this notation. For fixed values of y. a and r the area on the second plane in 

which the fracture centre must lie if there is to be an intersection can be calculated, this is 

illustrated in figure 3.5. If one side of the fracture makes an angle A with the line of intersection the 

area is 412 +2sl(sinft+cos1) if s is non-zero or zero if s is zero. Averaging over A3 gives 412 + 8/s.  

Now we can vary r from 0 to 21(sinxt+cosa). Three ranges need to be considered. We have 

s=r(cotot+tana) 04rQl2sincr 
s-21sect 21sine¢r%21cosa (3.16) 
s=-21(cosecer+seca)-r(cote+tana) 2/cosaQrQ2/(cosa + sin*) 

Note that we can always take a, 4 by choosing the x-axis appropriately.  

Using the above formulae fcr s we can now integrate ovcr r to give the volume in which the second 

centre must lie for fixed ci and y. There is a factor of siny because of the slope of the plane. This 

integral gives a volume 

8j 3(cosoc+siner+ 4)siny (3.17) 

We can no% average over Q which is uniformly distributed to get 6413siny. Finalh. wt average over 

y. picking up a weight of siny to give a final result of 

I = 16pl 3 . (3.18)
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3.6 Estimation of critical densities

Exact results are known for some simple two-dimensional lattice percolation problems. In 

particular it is known that the cntical probability for bond-percolation on a square lattice isp• = 

We can use this result to estimate the critical density for two sets of fractures, oriented horizontally 

and vertically.  

We start by covering the coordinate plane with a regular square grid. The lattice bond problem 

is defined by sites at the centres of all the grid blocks. We aalow bonds between nearest 

neighbouring sites. Now each fracture in our fracture system is associated with the grid block in 
which its centre is positioned. If there is a fracture associated with one grid block which intersects 

with a fracture centred in a neighbouring block we say that the bond between the corresponding 

sites is open. It is clear that by making this association between the lattice and the fracture network 

we can calculate a density of fractures at which the lattice percolates. We claim that. as long as the 

grid spacing is chosen sensibly, this density will be a good approximatior. to the critical fracture 

densi:v. In choosing the grid spacing two conflicting requirements must be borne in mind. First.  

the spacing must not be so small that non-neighbouring grid blocks could be connected. Second.  

the grid blocks must not be so large as to require us to consider whether a block has connections 

right across it.  

The smallest blocks which do not allow connection between non-nearest neighbours are ot size 

half the fracture length. At this spacing the fractures conpL:telv cross the blocks so there should 

be no %%orrv about the second point. Note here that we are not considering cross-corner 

connections. This is hecause the existence of such connections is not independent of the existence 

of cross-side connections, the existence of a cross-corner connection with no corresponding 

cross-side connections is unlikely and so is ignored.  

The probability that a bond exists across an edge is calculated as follows. Two squares are 

connected if a fracture centred in one intersects a fracture centred in the other. Consider the case 

of two squares. A and B. with A to the left of B. There are two types of connection between A and 

B. First. %e could have a horizontal line in A intersecting a vertical line in B. and second we could 

have a verticai line in A intersecting a horizontal line in B. We will denote the probability of the 

first case PHI and that of the second PvH. By symmetry we have p.= P . There %,ill be a 

connection of the first type unless 

(i) there is no horizontal line in A
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or (ii) there is no vertical line in B 

or (iii) the rightmost horizontal line in A does not intersect the leftmost vertical line in B.  

We denote the probabilities of these three as p,. P: and p.1 . By symmetry we have p, = P.: 

Given these probabilities we can calculate PHV using 

PHV = (I-p 1)-(I-P 2 )'(l-P3) (3.19) 

and then the probability of connection P is given by 

P --(--PHv).(l--PVH). (3.hu) 

For total density p we have an average of It - 4d2 fractures oriented each way in each block.  

where I is the block size and 21 is the fracture length: The actual number is a Poisson distribution so 

that the probability of r fractures in one direction is 

-.- (3.21) 

This immediately gives p1 and p2 since both are equal to qD. that is e -'. In order to find P3 tWe 

need to know how the maximum of r values in the interval (0.1) is distributed. It is easy to see that 

Prob(max.X,1!.X) = X' (3.22) 

- i-i. ...  

so the probability distribution function is 

f,(X) =r- (3.23F) 

Now r has a Poisson distribution with mean It so 

fmax(X) = .e-X) X) = = (r--e1)!. (3.24) 

Similarly 

fm,,(X) = -1e-• (3.25) 

So 

i i 

P3 = $dx pe-Pew fdy Le-t - (3.26) 

0 z 
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We can now use these formulae to find pI when P = 4. We find that 1•=O.8W gives 

P1 = p:=0.4 23 and p. =0.120 givingpHV = pt.H =0.2 9 3 and P = 4. Recall that It -=p/2 and that 

. = 2p,.1 giving a predicted average number of intersections per fractire at percolation of 3.44.  

In three dimensions the position is very similar. The two-dimensional square lattice is replaced 

by the three-dimensional simple cubic lattice (with six nearest neighbours). We take the case of 

three orthogonal fracture sets. one normal to each of the coordinate axes. The fractures are 

squares with sides parallel to the coordinate axes. The lattice result is approximately p4B) = 0.247.  

Since the exact analysis is somewhat involved we have obtained the result numerically by writing 

the probability of connection 

P, ElM.i& ZI.'"P, (3.27) 

where u is the average number of fractures centred in ; box and P,1 is the probability of a 

connection given that therc are r fractures centred in c-ne box and s in the adjacent box. P,, was 

evaluated numerically by taking 10000 realisations for each rs pair. The boxes were taken to be 

equal to the fracture size. since smaller boxes would allow connections between non-neighbouring 

boxes. The value of u required to give P=0.247 was found to be 1.57 which corresponds to an 

average of 2.09 intersections per fracture at percolation.  

This is a %crv low result compared with the two-dimensional prediction. If ,we take a 

cross-section through this three-dimensional systcm the resulting two-dimensional network would 

hae an average of only 1.57 intersections per fracture. less than half the predicted percolation 

%alue.
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3.7 Relatoshil• between critical densities

We can predict relationships between critical densities for various fracture statistics by using 

some simple geometrical arguments. Most of these predictions are approximate. however the first 

is exact.  

If we consider a percolating system with two fracture sets. one horizontal and the other oriented 

at an angle cc to the horizontal we can show that the number of intersections at the critical density 

is independent of ct. This is done by transforming the system to the orthogonal system by applying 

a shearing transformation 

V. C i ec (3.28) 

This preserves the intersections and the uniformity of distribution of the fracture centres. The 

fracture length is unchanged because of the coseca term on the matrix diagonal. The density is 

changed by a factor sina. which is as it must be if the result given in §3.5 is to be satisfied. This has 

shown that there is a 1-1 correspondence between percolating systems in the angle 1 case and the 

orthogonal case with the systems having the same number of intersections, and so the critical 

average number of intersections I is the same for both systems. This result was also pointed out by 

Balberg ano Binenbaum (1983).  

Given the previous exact result it seems probable that 1, is appioximately constant over all cases 

with fixed length fractures and various orientation distributions. If this is the case then the results 

of §3.2 relating density and intersections can be used to estimate critical densities in these cases.  

If the fractures are not all the same length how does I1 vary? Consider an extreme example. with 

fractures that can have lengths 21 or 2L with L>>I. Let the probabilities of the lengths occurring be 

p, and PL- As long as PL is not too small it is clear that the small fractures play no part in 

percolation. Percolation will occur when the longer fractures are sufficiently dense. The required 

density will be the same as if all the fractures had length PL L. This is the root mean square fracture 

length in the network. We postulate that this is true for more general distributions of fracture 

length. It is true for the case just considered and for the constant length case. It implies that Ic is 

not independent of length distribution but that a weighted average should be used. with the weight 

attached to each fracture being the length of the fracture. This would lead to a definition of 

weighted average number of intersections as
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r number of intersections x fracture length 
all factr S fracture length (3.29) 

For the case of a uniform distribution of lengths with lengths in the interval 

(2/1,.(1-f)).2,.,(l+0)) this gives the relationship J I + 12).l. so if J.l is constant we would 

expect to find I, proportional to (1+0") -i. The results for this case are given in §3.8.  

3.8 Results of numerical experinments 

Numerical experiments have been carried out to determine critical densities for a number of 

different statistical fracture distributions. The results have been compared with the predictions 

given earlier in this chapter and with some previouwy puolished results by Pike and Seager (1974) 

and Balberg and Binenbaum (1983).  

First we look at the way calculated critical densities depend on the size of the region in which the 

fractures are generated.  

The case considered was for two orthogonal fracture sets oriented parallel to the sides of the 

region In all cases the fractures were of length 2 units, the region size ranged from 10 units to 400 

units. For each region size at least IME realisations were dcae. the actual number done in each case 

is geien in table 3.2. The number of fractures in the table refers to the number generated in an 

extended area around the region. I unit larger in each direction. This area was used since fractures 

centred within it could enter the percolation region. The time per realisation is given and the time 

per realisation divided by the average number of fractures. This shows that the algorithm used 

taKes a time which increases only linearly with the number of fractures. The sudden increase for 

the largest two region sizes is due to a change in algorithm to reduce the amount of Computer space 

used so that the code would fit into the CRAY-IS at Harwell.  

It can be seen that the calculated pc decreases vith increasing region size. We can attempt to 

predict the form of this decrease by using finite-size scaling arguments (Fisher.1971). The 

argument runs as follows. Let R be the region size. C be the correlation length (which diverges at 

the transition) and p be the density which has critical value p, in the infinite case. Then C is a 

function of p and R. For p near p, and infinite R the correlation length has the form
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RePoni Number Number of fractures Density Time per Time per 

Size of runs Average Sid. Dcv. Average Sid. D[v. run run per 

I j (secs) fracture 

(|sM) 

10 400 233 33.9 1.616 1 0.2355 0.0053 2-.77 
20 400 775 695 1.600 0.1436 0.0176 2-2.71 
30 400 1640 119.9 1.602 0.1171 0.0381 23.23 
40 400 2799 168.9 1.587 I 0.0958 0.0658 23.51 
50 500 4285 208.3 1.5 0.07M 0.101 23.57 
60 100 6102 284.1 1.587 0.0739 0.17 23-60 
70 100 8179 326.5 1.578 0.0630 0.194 23.72 
80 100 10627 418.0 1.580 0.0622 0.254 23.90 
90 100 13422 346.7 !.588 0.0410 0.319 23.77 
10o 200 16369 467.8 1.573 0.0450 0.391 23.87 
110 100 19807 609.6 1.5n 0.048 0.477 24.09 
120 100 23456 548.5 1.574. 0.0369 0.563 24.00 

130 10o 27326 668.7 1.568 0.0384 0.654 23.93 
14S 100 31544 -5'12 1.564 0.0373 0."54 23.90 
ISO 100 36216 98U.3 1.568 0.0361 0.877 24.17 
200 63896 1 M-5 0.0257 1.559 24.37 

1 s0 of) 99468 a1489.1 1.566 O 0.0235 2.414 24.2? 3(0 i :00 * 14.2310 [ 201o.0 V560 OM0.2_.0 -1.480 31.-42 

.tM 200 2-M212 Z 85.21_ 1.561 0.0177 1 7.952 31.51 

Table 3.2 
Results of region size variation run for orthogonal fracture sets.

C(pX)'(p-p) -" (3.30)

where v is the correlation length exponent. This is known to be I for two-dimensional lattices. In a 

finite system criticality is reached when R is some constant, i.e. when B(p-pc)3 is constant.  
C(P.-) 

So 

_!
(p-p,)-R v (3.31)

This gives a -elationship

p,(R) = p,(-)+aR-1 (3.32)

if the lattice value for v is assumed. The b,-st least squares fit to the results gives p,(-) = 1.556 

with a=0.505. This is shown on figure 3.6 with all the results. If the more general form

_( p,(R) = p,(-)+aR `
(3.33)
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is used with v allowed to vary we find v , 3.23. pr(=) - 1.531 and a - 0.184. This is also shown 

in figure 3.6.  

As the region size increases the standard deviation in the density at percolation goes down. it 

must be zero for infinite regions. In figure 3.7 we plot the logarithm of the standard deviation 

against the logarithm of the region size. The best fit line is shown. This gives the relationship 

or(R) = 1.3R -u'- which gives a very good fit. The exponent in this is very close to -1 suggesting 

that the variability in the percolation density is proportional to the discrepancy between the finite 

and inifinite critical densities. i.e. oa(R) - 2.57(p,(R)-p,(oc)).  

It is clear from the above investigation that small region sizes should be avoided, both because 

the calculated critical density deviates from the infinite value at small region sizes and because the 

variability is larger. In the calculations that follow we have tried to use region sizes which give at 

least ten thousand fractures at percolation. Doing large numbers of realisations for many fracture 

statistics would become prohibitively expensive for any much larger number. The finite-size effect 

must always be borne in mind when comparing percolation results, as it may be as significant as 

any variations caused by the statistics of the fracture distributions.  

The results of this example can be compared with the predictions of §3.6. In §3.6 we predicted 

that the critical density would correspond to 3.44 intersections per fracture. For the largest region 

size used in this example we had 1, = 3.1" and for the limiting value, with v = we would get 

/I = 3.11. Thus the predicted result is around 10% too high. possibly because of the way we 

ignored corner connections.  

As explained in §3.3 our definition of percolation requires a cluster to cross all four sides of the 

region. To see how much effect using a different criterion might have we have done some runs with 

a requirement that either pair of opposite sides be joined. This must give a lower value for the 

calculated critical densities. The fracture statistics were the same as for the previous example. For 

conenience some of the previous results are repeated in the table 3.2 together with the new 

results.  

It can be seen that the reduction in calculated critical density caused by changing the criterion is 

approximately equal to the standard deviation of the critical density. It is clear tha" the average 

between old and new densities is very nearly constant. suggesting that the two densities are tending 

towards this value at equal rates. The previous estimate, using the finite size scaling with v = J
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RevDon O (•ld denv1;v Nctn~n-eu dtnn '. Change in Ol d n• 

nit% 

Size 1 A'.rage Sid. Dcv. ,A'.t-C Sod Dew.. dcni'dtn 

0.0to 5200 ii ,707 11 Ich5 55:5 
~~~~ 54,A) .1T 

Io 15 M3 .i. 03 61 1.529 , U4443 II044 535141 
150 1 56$ :4 l(.361O 15-(1i i i II 1331 II III~i 5494)l 

1~ ~ 538...  
2(Xt) I 5b .o•1( 102.57 I.S3'1 I 4I34.!ll I II) l I2 55244 

xo 1.5604 0.0,220 1 539 ' ii215 i' 4121 I 5495 
c• , .1 I 

,,1.561 , 0.0177 I 546u-i ill S 15535 

Table 3.3 

Comparison of original percolation criterion and two-sided criterion.  

gave Pr = 1.556 'hich agrees very closely with this average value of 1.552. Figure 3.8 shows ail 

these results graphically.  

After these results had been collected the size of the CRAY computer was increased. This 

enabled larger systems to be used. For a region size of 590 units we did ter, runs. The average 

densities for two- and four-sided percolation were 1.551 and 1.556. On a'ciAge there werc over 

545.(XX1 fractures, and the time taken was 17.5 seconds per run. The average critical density 

Itwveen the tw•o criteria % as 1.5537. in good agreement %ith the previous results.  

We no%% present the results for four different fracture statistics. The first of these is for a %.stem 

".ith fractures of constant length. two units. and ,•ith orientations uniformlv distributed in the 

interal (-ca.a) . for a = 9go.80f.7W-60-.54f.4Iu.13 and 2.13. The 91' case corresponds to the 

uniformly distributed orientation of Pike and Seager 1979"1).  

T.bie 3.4 eic,, the results. the final column being from the formula deried in .4.  

D Dens.)', p Intersecwlons I A'.e I Ac. p 

Avera.ge Sid. De.. A'.rage Sid. Dcv.  

1.434 1 0.0624 
0 o 0.1568 " 4 

S4.52 0.0509 3 050 1331 2.514 :2514 

-t " i .9?4 0.4,ii U ; .615 0 .1091 2 413 2.413 

1612 0.0618 3C) 0.1433 2.237 1:40 

V 17-5 01.0767 1 "8 01559 1.96% 1997 

4W 2. 1 5 091 0.1481 3s$ 

30* 2.728 0.1301 3.607 .17 1.322 .32 

20" 44.(K2 01.1495 3 1 3. o.1417 36939 I i 91, 

Table 3.4 

Results for uniform distribution of orientations.  

The region size was 80 by 80 so that there were more than 9000 fractures in each case. The 
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results given are an average over 50 realisations. It can be seen that the average density and 
average number of intersections are related as predicted in U3.5 and that the average number of 

intersections at percolation is decreasing slightly as cr decreases. 't should he remembered that 

more fractures are present in the fixed size region for smaller a and so the finite-size effects 

account for some of this decrease. For the smallest a values the number of intersections increases 

again. We %ill -we in the next example that this occurs even when we know that it must 'e 

constant. It must therefore be due to the finite size region, and in particular the aspect ratio of this 

region as compared to the spread of angles. The region is effectively much wider at small a and so 

the calculated percolation density is increased.  

The a = 9W case is the case considered by Pike and Seager. They'obtain the result'!c = 3.635 

and p. = 1.42S. giving a ratio which agrees with the predicted figure of 2.546. Since they have only 

used I(MN) lines and have a percolation criterion based on two opposite sides being connected we 

would expect their result to be lower than ours. .XIso ,.iey hae taken just 10 realisations giving 

error bars of =0.03 for the density. Given all these differences our results agree %%ell with tiieirs.  

The second example was for the case with a fixed length of 2 units and orientations at ta from 

the horizontal. This is the case which we povcd in §3.7 had i independent of a. The results 

presented in table 3..5 are for .q) realisations with over iXXNX) fractures in each case.  

Dcn,,t, p Intersections I Ave. I Ae. o 25 n I.  
-%I.r.e- Sid Dcý -X'.rjec Sid Dc% 

I. I tic n 3-171 11131 1. N " IX'9 
It Il 1 3.175 .I.149 1%95 1971) 

I 13 I1 1111152 1 .76 1.879 
I -'35 I w,5 3.178 0).116I 1.732 1.732 

2I;" n25c, I,,,h 7 3 24R 4).11.14 I.2"6 1.2,86 

Table 3.5 

Results for bimodal distribution of orientations.  

Again the relationship betueen the average number of intersections and the density is as 
predicted in 03.5. 1, is constant. as predicted. except for the smallest angle. This is the same as for 
the pre% ious example. presumably being due to the effective width increase for small cc.  

Balbcrg and Binenbaum have looked at this case and obtained a critical density of 2.41 for 
a=45°. They have used systems of only 100 lines, so we must assume that their result is so different 

because of the effect of small networks.  
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The third example looks at the way variability in fracture lengths affects the critical density. The 

predicted result from §3.7 has been checked.  

In this example the fractures are oriented in uniforml. random directions and their lengths are 

uniformly distributed in the interval f2(l-A).2fl+0)) for a range of 0 between 0 and 1. The 

predicted behaviour derived in §3.7 was that density would be proportional to (I +402) -i.  

Denstavp I Interzon II Ave. I Ave. p + I@':) 

Aveta[g Sid. Dev. A., crllge Sid. De,.  

0.) I 1.44 00624 365tj W 2.545 1.434 

(.2 1.428 no0 3.60 0.132 2.549 1 .1•34 

0.4 1.370 U.0614 3.493 0.18W 2.550 1.443 
36 i.301 ) t00469 3 3-2 , 1.33 2.552 1.457 

11.8 1.207 1 0o0523 i 3.077 0.1318 2.-149 1 .4,4 

Vo I 1.095 I 33004 ...7m8 11,9+2 2.546t, I13.0 

Table 3.6 
Results for uniform distribution of fracture lengths.  

It can be seen from the results in table 3.6 that the average number of interse:tians over the 

density is consistently close to the theoretical value of 8 = 2.5-6. The predicted change in ciitical "3

dcnsity is close to the calculated value. giving an error of around 2%. For the laree values of 0 

there are less lines generated so the finite size effect will push up the calculated density and explain 

,ome ot the discrepancy.  

The fourth example takes a different line length variation. This time the lines have lengths 2 or 

21 with equal probability. I is taken between 0.0l and 1.2. In each case 50 realisations were done.  

The results are presented in table 3.7. The theoretical prediction is that p! is constant. its 

%alue is given in the final column.  

The 1=0 result here was not actually calculated separately but was deduced from the 1= 1 case.  

The theoretica! result again seems to work well in these cases. The least good results are for 1=0.2 

and 1=0.4 although even these are only 2% in error.  

These results have demonstrated that the formulae relating density and average number of 

intersections derived in §3.5 are correct. The predicted change in critical densities caused by 

introducing a variable fracture length gave a very good estimate for the calculated values. For the 

case of fractures oriented in one of two dircctions the critical number of intersections was found to
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Density p InieeCFlion$ I Ave. I/ Ave. p (1 +P) 

Av'erae Sid Dc, Aeratt Sid. Dev 

to 1 2.t. 0)S.Il d)636 1.434 
,) sit ito ON45 0.77 0917 1.461 
(IS..5 2.52,. 1102 1 1 .,t149 I 1.467 

"" 1,470 1) 1.6" 1 631) 1.447 
to A 1 64) 1397 :.063 1.433 

I) 1 4, 4 30,5o 4,1568 2.546 1.434 
l2 . l17.' ,, ;~UA3 3633 1) 1438 3.081 1.437 

Table 3.7 
Results for bimodal distribution of fracture lengths.  

be constant as predicted. although in this case and for the uniform angle case the finite size revon 

seemed to affect the results for small angles. In general it is clear that the finite size effect must be 

considered when comparing calculations for different fracture statistics.  

The calculations on critical densit" variation w•ith rgion size showed that the critical density 

decreases with increasing region size. The form of this decrease is consistent with the finite size 
scaling argument prediction of R - The spread of densities at which percolation occurred also fell 

a% R- . so that for the largest case considered 90% of the realisations percolated at between 

_-24 ixl and 257.21N) fractures, a range of only 4.2% of the average value.  

In three dimensions the computation becomes more difficult. With planes I unit by I unit n a 
region of .E) h% S,) bI ;0( there are o'er :YM)IXX) fractures. Again a special computer program to 

deal . uth ihe case ot three orthovonal fracture sets was %%rit'en. All the fractures had sides parallel 

to one of the coordinate axse% The effect of using difterent percolation criteria was tested b, 
culculatine the densit% to eve a cluster connecting any pair of opposite faces of the cube. as well as 

the density for a cluster connecting all six faces. Table 3.8 presents the results. In each case 100 
realisations were done. excep, for the largest cube for which 50 realisations were done. In all cases 

the time taken pc. plane per realisation was just less than b0.usccs.  

The pattern ol results is -imilar to the two dimensional case. with the two definitions of 

percolation giving results that get closer as cube size increases. The scaling arguments this time 
predicts a decrease % ,th C-. where C is the cube size. A least-squares fit to the results gives a 

limiting value of (.1874. in good agreement with the trend of the average results. This limit 

corresponds to an average Ptmber of int:rsections of almost exactly 2.0. This compares with the 

theoretical prediction in §3.7 of 2.09. Figure 3.9. shows all these results and the predicted 

behaviour.  
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Sixfaces Two facm 

Cube No. of Density Denutyv Difference I Average 

Size Fractures I Averaec Sid Dcv. Average Std. Dcv I I 

11) I3, t)" 0133 1842 I 0134 I 0222 I .1933 

15 6536 1995 00t37 1830 0091 0105 1 1913 

"o0 14593 2 970 0057 .855 .0069 0115 1913 
"Z5 278n2 .1940 U5, 1.45 0W63 LXU95 .1893 

30 43921 1927 -0039 .1853 -.0051 .0074 A.890 

35 7196 1916 003- 1856 .0040 .0060 i .1886 

430 105398 .1912 .0030 .1857 -0030 .0055 .1885 

45 18094 .1902 0024 -1854 .0027 . It,8 1878 

50 2019%6 .1903 .0022 .1856 .0028 0047 .1879 

Table 3.8 
Comparison between original percolation criterion and two-faces criterion.  

One other three dimensional case has been considered. This is the case of "niformly distributed 

orientations. Planes of size 1 unit square were used in a cube of side 20 units. The average over 100 

realisations gae an average critical density of 1.231 planes per unit volume with an average of 

2.461 intersections per plane. The ratio of 2.0 between these figures in as predicted in §3.5. As for 

the the tmo dimensional case the number of intersections at percolation is larger in the random 

case than in the orthogonal case. while the density is higher in the orthogonal case.  

3.9 Summary and conclusions 

The results of this chapter have shown that. in two and three dimensions, there is a critical 

density of fractures. dbove which large scale paths exist. The critical density occurs when the 

average number of intersections per fracture reacht±s a critical value. This average is weighted by 

fracture size. The critical value is around 3.1 for two dimensional systems and 2.0 for three 

dimensions.  

In the three dimensional case we can say that if we put a borehole through all three fracture sets 

then the system will be percolating if the sepaiation between fractures and the borehole is less than 

about I of the typical fracture size. So if we find a separation of ten metres we can say that the 

system percolates if the fractures are bigger than 14 metres across.  

In two dimensions the fracture separation is much less at percolation. Here the separation must
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he less than I of the fracture length. So with a scparation of 10 metres the fractures have to be over 

411 metres long for the systcm to percolate.  

From az purely percolation theory point of view the results have shown that the arguments from 

finite-sze sc aling can be used and correctly predict the critical density versus region size curves 

when usine the lattice critical parameters.  

The techniques devcloped to find the fracture intersections quickly are invaluable in the later 

work. They may also he useful in other percolation studies.

Connectivity 3.2"



Chapter 4 Flow

4.1 Introduction 

The modelling of groundiwater flow systems has been dominated by the use of Darcv's law. This 

lan. fi-st suggested by Darcy in 1856. relates the average velocity of a fluid through a medium to 

the pressure gradient. It is usuall. written 

u= (4.1) 

%%here u is the a~eraee %elocitt. VP is the pressure gradient. pa is the fluid .iscosity and K is the 

permeabilit% of the medium. This equation has been found to be valid for many porous media and 

can be derimcd theoretically under certain assumptions IBear. 197 •). The pressure referred to here 

is the non-h~drostatic pressure as It iý :hroughout this work.  

In the case ot tlov, through a fracturcd rock it is not clear %khether Ds:cy's law 6• ahld. In order 

to define an ae:daec , ocit% it is nec-arv to take a flux a eraed over some cro5s-sectionai area.  

rhis area must clc.,rlyv be larger than the microscopic scale o1 the medium ,ýo that it includes a 

representatise number of flo% paths- For a fractured rock the 'microscopic scale as far as 

eround%%atcr tlo%% i, concerned can bN se'eral metres or tens of metres (Bourke et al.1982). In this 

case the a~erages must be oter %er% large regions. Measured permeabilities of fractured rock %arv 

o% cr orders of magnitude i Brace. 19,%4).  

The purpose of the work presented in this chapter was to find under what conditions Darc% s law 

is vatid for a fractured medium and. when it is valid, to find how the permcability relates to the 

statistical properties of the fracture system. Long (1983 and Long et al.1982) has also looked at the 

permeability of fracture networks, concentrating on the question of directional permeability. It 

has not been possible to compare our results with theirs as yet. Some experimental work on lattice 

conductivit% has been reported (Last and Thouless. 197 1. Watson and Leath. 197-. Shankland and 

Waff. 1974). Koplik (1981) has looked at conductivity in a square lattice numerically.  
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4.2 The physial problem

The method we have used to address the question of flow through fractured rock is to generate 
two-dimensional fracture systems with given fracture statistics and to perform numerical 

experiments on these systems. The assumptions made about the flow were as follows. In each 

fracture segment. that is between each pair of intersections, we assume that the flux is 

proportional to the pressure gradient. The constant of proportionality is defined in terms of the 

effective aperture. At intersections we assume that there is no significant head loss. so that it is 

sensible to define a single pressure at the intersection. At each intersection there is mass balance.  

The assumption of proportionality between pressure gradient and flux within ea%,-4 fracture 

segment is reasonable for the cases of interest here where the flow is slow and so inertial effects 

can be ignored. If we think of the fracture segments as parallel sided planar openings then the 

relationship between flux and pressure gradient is given by 

12 I-PI q =" 12--- (4.2) 

where q is the fluid flux. r is the fracture aperture. I is the length and P, -P2 is the pressure drop in 
t3 the direction of flow. In this case the constant of proportionality is 1-L- We might alternatively 

121A 
think of the fracture as being full of some high permeability material, in which case it might be 

more appropriate to use Darcys law in the individual fractures. This would give a constant of tK 
proportionality -. where K is the permeability of the fracture filling. We could then define the 

effective hydraulic aperture to be the aperture which gives this value. So whichever way we think 

of fractures we can define an aperture for each one.
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4.3 ComputmatoMal technique 

A realisation of a given set of fracture statistics is generated within some region of the plane, the 

generation region. Then. for any particular flow calculation, a solution region is defined. The sides 

of this region can be designated as no-flow or specified pressure boundaries. For a no-flow 

boundary no intersections with the fracture system need be found. For a specified pressure 

boundary all the intersections with the fracture network must be located. The method for finding 

the intersections in the fracture network is essentially that used in the percolation calculations and 

described in §3.4. The difference is that slightly more information must be kept. After the 

intersections have all been found we have the following information for each fracture.  

- the number of intersections (including specified pressure boundaries) 

- the fractures (or boundaries) at these intersections 

- the position of the intersections.  

From this information we must form the matrix equation whose solu'ion t' .- the pressures at 

each interscction and hence the flows. The first thing that we do is to reduce the number of 

intersections invol ed in the calculation. This is done by removing dead-ends and isolated clusters.  

figure 4 I shows an example of each type of non-flo'-ing fracture and shows %•hich intersections 

%fan bc exclue:'d. The removal of dead-ends is straight forward. we simply run through the !ist oi 

fractures removing any which do not intersect two or more other fractures. If they intersected one 

other fracture then the corresponding entry for this is deleted. This process is repeated until no 

more fractures can be re-noed. The removal of isolated clusters is not so straight forward. It must 

be done however, not only to reduce the number of variables, but because they lead to singular 

submatrices. The v1ay these are removed is by finding which cluster each fracture is in. and which 

clusters touch a boundary. All fractures in clusters which do not touch a boundary or which touch 

a boundary in one position only are removed.  

There is one more class of non-flowing fractures shown in figure 4.1. these are in parts of 

clusters which are connected to the main flow system by a single fracture. These are quite difficult 

to find. requiring each fracture to be removed in turn and the clusters recalculated. The potential 

savings in terms of reducing the number of variables are not great enough to justify their removal.  

it is better to let the matrix solver calculate the zero fluxes in them.  

We now have a list of all intersections to be included in the matrix equation. This equation arises 

from the mass balance at each intersection
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where q,,is the flux from intersection i to intersection I 

% = o%,(P, - P,) 
(4.4) 

with a,, the conductivity of the link from i to j 

3 Oit 
12 , 14.5) 

t,, is the effective aperture of the link and I# is its length. P, is the pressure at intersection i.  
Combining (4.3) and (4.4) we have 

( • E,)P,- , = 0 (4.6) I j 

We also have boundary conditions on the specified 1.iessuie boundaries 

P, = P(X,.Y,) (4.7) 
so we end up with 

, Y: oi P,,," X,.y,) .14.8) 
all F tt-l ound.an,' I 

Becauz- any particular intersection can only have four neighbours the matnx is sparse, with at 
most five entries per row. In order to save space only the non-zero elements are stored. So for an% 
row we Store 

k, - the number of non-zero entries 

c,, .c,_. .,*, - the column numbers for the non-zero entries 

d ,V,..vr - the values of the non-zero entries 

bi - the right hand side.  
Because the matrix is so sparse it is tempting to use an iterative solver (e.g. Gauss-Seidel. Jacobi 

or SOR). However the matrix is very ill-conditioned. because it is only just diagonally dominant.  
and thesc methods all converge extremely slowly. We have also tried a semi-iterative solver, the 
pre-conditioned conjugate gradient algorithm (Jackson and Robinson. 1982). This performed 
much better than the classical methods but, while producing the solution, was still slower than we 
had hoped.  

Flow 
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Using a direct solver on the matrix as it stands would be very expensive and would require large 

amounts of computer space. We have found that by renumbering usinm, a method based on the 

Cuthil-McKee algorithm ICuthil and McKee.1969) the bandwidth can be reduced sufficiently to 

make a fast variable bandw'dth solver practical. In order to allow for ver. large problems an out of 

core version of this solver was also written. For both the in core and out of core versions significant 

speed gains have been made on the CRAY-IS at Harwell by using full vector facilities of this 

machine. The out of core solver will deal with systems of 20000 intersections and a reduced 

bandwidth of 160 in 13 seconds on the CRAY-IS (including the renumbering). Small problems 

with less than 4000 intersections are solved in less than one second.  

The renumbering algorithm can be described as follows. First the intersections along one 

specified pressure boundary are renumbered in sequence along the side to be the first variables.  

Then we run through each already renumbered variable and assign new numbers to all 

intersections connected to it that have not yet been reumbered. This results in the numbering 

running from the first side across the network to the opposite side. This can best he understood by 

an example. Figure 4.2 shows the original numbering for an example. this has a maximum 

bandwidth of 10. The renumbering proceeds as follows. First those intersections along the left 

hand edge arc renumbered starting uith the intersection nearest the bottom left corner. Next the 

mntersectio,,s connected with new intersection I are renumbered. followed by those connected to 

new intersection 2 etc. In each case if there is a choice of inteaiections for the next number the one 

with the lo,%est number originally is chosen. The final numbering is shown in figure 4.3. The 

maximum bandwidth is now just 3. For square regions the bandwidth %%ill be approximately the 

square root of the number of intersections. For rectangular regions the starting side should be one 

of the shorter sides. The initial. essentially random, numbering will have a bandwidth of the same 

order as the number of intersections. N. The time taken by the solver is proportional to the 

number of intersections times the bandwidth squared. and is therefore reduced by renumbering 

from order N" to order N 2. The space required to store the matrix is also dramatically reduced.  

meaning that the in core solver can be used for larger problems.  

Once the pressures have been found it is a simple matter to find all the fluxes. For the purposes 

of this chapter it is only the cross-side fluxes which are important. In the continuum approximation 

these would be equal and opposite on opposite faces, but for a fracture system this is only 

approximately true. The average velocity is calculated for each face and the average over the 

opposite faces is used to give the effective permeability tensor.
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Notice that the fact that we can define an effective permeability tensor for any particular portion 

of a fracture system does not imply that Darcy's law is valid for modelling a system with these 

fracture statistics and size. There is necessarily a linear relationship between pressure gradient and 

cross-side velocity, because there is a linear relationship in all the fractures. In order for Darcy's 

law to be sensible the permeability tensor must be a property of the statistics not of the individual 

realisation and must be independent of the scale of the problem.  

The computer program has been verified by checking against an independently produced code.  

This code also included transport and the comparison is reported in chapter 7. For small cases the 

code has also been checked by hand. The internal consistency of the program is constantly checked 

by calculating the total flux into the region. This should of course be zero. and is always found to 

be at least eight orders of magnitude down on the average flux. the error being caused solely by 

roundoff errors in the solver.  

4.4 Theoretical estimates of permeability 

%Ian% attempts hate been made to relate the permeability of porous media to the microscopic 

properties of the media In pcirous media some work on obtaining bounds on permeability by using 

correlation functions has been done (Beran.1968) but this is inapplicable to fracture systems. In 

fracture systems an infinite parallel plate model is often used (Snow.1 068. Caldwell.1972.  

Castiilo.1972). In this type model the fracture system is replaced by sets of infinite planar 

fractures. The aperture of the fractures is chosen to give the correct porosity. that is the correct 

amount of open space per unit volume. Within each plane the Pousseille flow law is used. In the 

scrt of two-dimensional system we are considering the fractures form an infinite regular lattice. In 

this section we use this type of model, with some extensions to predict the permeability of fracture 

networks. The first type of network we consider is ore in which the fractures are all either 

horizontal or vertical.  

As a first attempt to model this system we take the infinite square lattice shown in figure 4.4, 

with an aperture equal to the aperture of the fractures in the network. If the separation between 

t3 bonds of the lattice is d and the aperture is i the conductivity of each bond is -L-. If there is a
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pressure gradient parallel to one fracture set there will be a corresponding flow which implies a 
t3 

permeability of -L, The porosity of the system is 2 " and so we have the relationship 
12d* d 

K =(4.9) 
24 

where K is the permeability and 4 is the porosity. If the fracture network has two fracture sets.  

with all fractures having length 1 and aperture t and with a total density p. then the porosity is 2 pi: 

and hence the permeability predicted by this model is 213-. This is clearly going to b: an 

12 

overestimate, since it neglects the discontinwuties in the fracture system. It also has no cut-off at 

low densities, whereas we know that below the critical density there will be no flow.  

In order to get a better approximation we proceed as follows. We take the full infinite lattice 

with the appropriate aperture and porosity and cut some of the links at random, as shown in figure 

4.5. If we cut a proportion t of the links the *flowing porosity* will be less than the full porosity by 

a factor (I - r. By flowing porosity we mean the amount of space available for flow per unit area.  

For the fracture network we can also calculate a flowing porosity. The derivation and exact result 

is given below. but for fairly dense cystems the result is the full porosity times (I - ). where k. is 

the average number of intersections per fracture, and is given b% . = 2pl. We set E = and use 

effective medium theory I Landauer.1952. Kirkpatrik.1971) to give the reduction in permeability 

of the lattice. The factor for this case is simply (I-2E) or I -). This gives us a new estimate for 
p..  

the permeability 

K = 12--3( I- 4 

or K = (p- (1.10) 

We have already seen. in §3.8 that the critical density for this system is when X = 3.12. giving 
1.56 

PC = 1.5. •This approximation for the permeability cuts the axis when X=4 at a densiyv 20% 

above the critical density. This is improved somewhat if we use the full formula for the flowing 

porosity of a network which we will now derive.
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In the system above we showed in 13.5 that the number of intersections per fractures had a 
Poisson distribution with mean X=2p12 . The flowing porosity is given by the full porosity times the 

average proportion of each fracture available for flow. This proportion is zero if there are less than 
two intersections on a fracture and is given by the separation of the two extreme intersections if 
there two or more. We need to calculate the average separation of the extremes of r values chosen 

at random between 0 and 1. The probability that the maximum of the r values is less than X is 
given by X'. since all r values must be less than X. From this we find that the average maximum 

value is -L"-. Similarly the average minimum is 1 and the average difference is r-_. The r+I r+I r+1 
average proportion over all the fractures is therefore given by 

Ke - ( r I )(4.11) 

,•hich we can sum to give 

0- I(+2 (4.12) '. .A 

If %%e use this full formula for the flowing porosity we are led to set E = 2-e-"(1+::) Thiseives 

a zero permeabilit. at i. = 3.72 w.hich is sliehtlv closer to the true value than before. The accuracy 

of this predicted permeabilit%. will be seen in the next section. Note that we have stiW 
,'cere~timated the true flowing porosity since isolated clusters have not been taken account of.  
However the cut lattice model will contain isolated clusters too. so the prediction should not be 

grcatly affected.  

The analysis above used infinite lattices and was therefore only valid for large regions. In order 
to get some idea of the magnitude of the region size effect we now calculate the average 
permeability for very small regions. If we take a region a by a with a<<c then the average number of 
fractures crossing this region will oe approximately pal. The length of all the paths across the 
region will be a so the average permeability is pla-3. that is -- 1--. This is precisely the value given 

by the full network, as it must be since all the fracture space is used. It is higher than the large 

region value by a factor - giving a marked effect at low densities.  
X-4 

This small region size effect presumably decays away for regions whose size is larger than the 
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fracture length. To get some idea how region size affects the permeability over the whole range we 

can argue as follows. The important thing about small regions which increases the permeability is 

that the boundaries intersect fractures which would otherwise be dead ends. In other words they 

increase the average number of intersections. In order to estimate the size of this effect we can 

simply replace X in the previous formulae by K. the average number of intersections including 

boundaries. The number of fractures intersecting the left and right boundaries if the region size is 

R is given by 2piR. the new average is therefore 

K = 2p/2+2p/R (4.13) " pR2 

which gives 

= 2p2+-+ (4.14) 

Note that for large R we have K--k and for small R K--. These two limits give a result for the 

permeability which agrees with that already calcutated. For some fixed R the value of ). when 

permeability is zero is given by 

= 3.72-. (4.1.) R 

The permeabilit% predicted in this %%a% is compared to the numerical results in the next section.  

The above arguments can be generalised to cases with other orientation distributions. In all 

cases the coordination number. :. should be 4. since each intersection cannot be connected to 

more than four other intersections. In the effectivz medium analysis the factor multiplying the full 

lattice permeability depends only on z and on the proportion of missing links E. the general form 

be;ing I - -2" The things that do change are the flowing porosity. and hence E. and the full lattice 
z-2 

permeability. If we use a lattice which has infinite fractures in sets at orientations 0, and with 

separations d, a-,d apertures ri for i= 1..n then the porosity of the full lattice is given by 

y = ± d i i (4.16) 
i-i di 

and the permeability in the e = 0 direction is given by
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K I. Cost O~'i K d, (4.17) 

If all the t. and d, are the same then we have 

P -- n(4.18) 

K = n-Ccos0 (4.19) 
12d 

which gives 

K =-cosu. (4.20) 
12 

For the square lattice 0 was 0 or 'I and so c = ½. This value also applies for the case of 

uniformly distributed orientations. In fact it applies to all cases with fr-cture orientations equally 

spaced as a consequence of the identity 

cos: = 2 nar2. (4.21) n 2 

In all these cases therefore we have 

K - (422 24 

In the uniform distribution case with density p and lengths 21 we know that the average number of 
intersections k = •pi2. and so using the approximate result for flowing porosity we get 

K = - ) (4.23) 

As before we could use the full formula for E to give a slightly better result, and we could include 
the boundary effect by using x = X+-K. The accuracy of this result will be tested in he next 

section.  

As we pointed out in §3.5 the average number of intersections for cases with fracture length 
variation is the same as in the equivalent case with all lengths set to the average. However. the 
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distribution is not Poisson so the calculation of flowing porosity earlier in this section as not valid.  

For fractures of any particular length the number of intersections is a Poisson distribution so we 

can use the formula as before and average over lengths at the end. This giens us an averagt Seful 

length 

jIi A ).+e-'-I(I+ +.)1.I.f(I)dI (4.24) 

where W(I) = 2p 7 1.  

If we take a uniform distribution with I.. </<l/ with average 7 this gives a factor 

2 0 , • - 3 re - = -(X in =x + 3 )e " " 

1 - n.-X--m (4.25) 

where Xr = 2pT/,.ax, km," = 2pll..• = 2p 7 -. This implies a slight increase in permeability 

as the spread in fracture length increases. This will be seen in the experimental results reported in 

the next section.  

If we allou a variation in the fracture aperture then it is not clear how we can best predict the 

result. \Ve could allow a %ariation in the ccnductivity of the links in our lattice model but this is 

likel" to be unsatisfactory because It Ignores the fact that a % ide fracture is wide all the %ay along 

and not just between one pair of intersections. The result has been calculated to check that this is 

so We can see what sort of behaviour to expect it we argue as follows. At low densities there are 

sery f,-w paths through the network and so the various conductivities will occur in series. In this 

case then the permeability is likely to relate to the harmonic average of the incividual 

conductivities. and ;n particular if there are any very narrow fractures they will effectively block 

the paths and so produce a low permeability. At high densities the situation is 'Iifferent. Here 

there arc many interconnected paths and the permeability will depend more on the ar'thmetic 

average of the individual conductivities. Narrow fractures can easily be bypassed while wide ones 

will foin good flow paths and will push up the permeability.  

Below we calculate the effective medium. harmonic and arithmetic averages for the case of 

uniformly distribu:ed apertures.  

In terms of apertures the effective medium theory requires
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t +, t t 1 (4.26) 

'khere fit) is the probability density function for the apertures and t. is the effective medium 

aperture. The permeability calculated using t, from by this formula will have the missing link 

factor 1-2t in it.  

The harmonic average t. is given by 

I f B2t3 
(4.27) 

and the arithmetic average t, is given by 

1,3 f d jqt) dr. (4.28) 

For the harmonic and arithmetic average the miss.ng lir.k factor must also be included.  

Table 4.1 shows how these averages depend on the spread of apertures in the uniform distribution 

case. The effective medium case is given for three values of E. with the factor 1-2c removed to 

allow comparison with the other acmages.  

SII 
iii i u i D Ii I|i.i Itll 

"" ''9 I0 I99•5fl '.19933 411,9511) w"'tall.O 
I2x 1 2 I 9 IL4 Y)94111 019216 1 14 

713 1.95 I 492.42 1:X,' LAN 
of Ih 1 4 i92:6u u, 11 2 1) 7759 0.71056 1.16 
if 5 1.5 f) n17 x) 8036 11. 31, 0.5625 125 

1J4 I 6 0iI.'• 07310 1154.344 13 1 

17 11 819 0.6557 4134 0.2601 1 49 

1.9 o1 7527 , i513) h16 tt. 1t,_I .I 61I 
II I 1,1 J)I. 0 

Table 4.1 Effcctive medium, harmonic and arithmetic averages for uniform aperture distribution.  

As ihe density dccreases the effective medium theory predicts a sharper fall in conductivity for 
the variable aperture case cuinpared to the fixed aperture case. It will be seen how these averages 

compare with the experimental results in the next section.  
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4.5 Results of numerical experiments.

Numerical experiments have been carried out using the technique described in §4.3 for many 

different region sizes. fracture densities and fracture statistics. These have been compared to the 

predictions given in section §4.4 where possible. The first case to be considered was that of two 

orthogonal fracture sets with one set parallel to the pressure gradient. In this case all the fractures 

are of the same length and aperture. All that varies is the density of fractures and the size of the 

region used. The sides of the region parallel to the flow direction are no-flow boundaries in these 

cases, the effect of making them fixed pressure boundaries is investigated later. The fracture 

lengths are all 50 metres (1=25 metres) and the apertures 50 microns.

4.!3
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Table 4.2 
Results of .egion size and density varia.ion runs for orthogonal fracture sets, 

The critical density for this system is approximately 2.50x 10 - fractures pce unit area in each set.  

T.,il 4.2 presents the results for various combinations of densities between 2x 10-3 and 12×x 10
and recion sizes betueen 10 and 900 metres. The predicted permeability uses the formula derived 

in S4. 4

K I P - -_ + 2 e 
1i2 K 2 (4.29)

with

K - p12 +21 R p • (4.30)

It can he seen that this theoretical prediction gives good results for most case:. It breaks down 

for the %ery low density cases, because it fails to give the correct percolation value. For density 

4 10' the predictions are consistentjy 15-20% low. For densities above this the predictions are 

very good. with less than 5% error in most cases.  

If we concentrate on the variation of permeability with region size for a fixed density. we can see 

that there is a sharp decrease in calculated permeability initially and that. as the region size 

increases, the results settle down fairly quickly to a constant value. This value can be said to be the 
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infinite region permeability of the fracture system. Also. as the region size increases the variability 

in calculated permeability decreases. The standard devia'ton is given in the table. In order for the 

porous medium approximation to be useful the permeability on lkngth scales of interest must have 

reached the infinite region permeability and the variability at this scale must be small. If we say 

that a standard deviation of 10% or the average value is acceptable then we can see that for 

p = 4x 10 -- a region size of something over 600m is required as can be seen in figure 4.6. If the 

density is 6x I10 then this is reduced to less than 300m. as figure 4.6 again shows, while for higher 

densities regions of size less than 200m, are acceptable. At these region sizes the average value is 

within a few percent of the infinite region value, and the minimum and maximum values are within 

a factor of 2.0 of each other. The predicted average values of permeability are also shown in figure 

4.6 and it can be seen that these predict the overall behaviour fairly well.  

To see how well the predicted permeabilities do fit the -•alculated values for reasonably large 

region size we show in figu, e 4.7 the theoretical and exrerimental results for region size 40Ore with 

varying fracture density.  

In these runs the top and bottom boundaries were taken as no-flow boundaries. A series of runs 

have been done with specified pressure boundaries to see how much this affects the result!. In a 

real porous medium either boundary condition used here would give the same results. The results 

are set out in table 4.3. The permeabilitv perpendicular to the pressure gradient :omes from the 

net flux across the top and bottom faces. and indicates a local anisotropy. In these runs the density 

was fixed at 4x I0-1 

The first thing that can be said about these results is that the permeability is higher than with the 

fixed boundaries. This is because the number of flow paths has been increased - any fracture which 

cuts the top or bottom boundary is connected to any other fracture cutting the same boundary. For 

the large region size runs this increase is around 15% but for the small regions it is much greater.  

We can see that this increase in the average results more from an increase in the minimum than in 

the maximum. in other words the effect of open boundaries is to allow poorly connected networks 

to have significant flow.  

The second thing to say is that the net flow leaving the sides is quite significant. For all cases the 

a'erage was small but the range was large. with permeabilities up to 25% of the component 

parallel to the pressure gradient. This local anisotropy may well be significant in contaminant 

transport calculations.  
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Table 
4.3 

Results of region size variation runs for orthogonal fracture sets with specified pressure 
boundaries.  

The high permeabilities calculated are unrealistic because they allow flow to leave the top or 
bottom at one point and re-enter anywhere else. For this reason we have used the no-flow 

boundary condition for the rest of the calculations.  

We next looked at a uniform distribution of fracture orientations. The density was varied 
between -Ix 10-- and 8x 10-3 fractures per square metre. The region size was fixed at 4X0m and.  
exc-apt for the two largest densities. 100 realisations were done for each denhity. The fractures all 
had a fixed aperture of 50urn and a fixed length of -O5m. Th•e results are presented in table 4.4. The 
theoretical results given are from the full formula with boundary corrections. The results for the 
equivalent orthogonal case are given for companson. Figure 4.7 presents the same results 

graphically.  

The theoretical estimates in this case ar- all too high. and are not as good as in the orthogonal 
case. The netwcGk is acting as if there are effectively fewer iistersections per fracture. One possible 
reason for this is that when two nearly parallel kractures intersect they add more flowing porosity 
"without proportionately increasing the permeability. Whatever the cause of the discrepancy it is 
clear that the slope of the results is well modelled and that the difference between these results and 
the orthogonal case are small, except near the critical density. For the case of fixed length, fixed 
aperture fractures we can therefore say *hat the porosity permeability relationship 

K _(4.31) 
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Flow
4.16



Table 4.4 
Results of density variation runs for uniformly distributed fracture orientations.

gives a good estimate of the average permeability if p is the flowing porosity provided that the 

density is not too close to the critical density for the Frrticiuar orientation distribution.

We now turn to the case where either the fracture lengths or apertures or both are allowed to 

vary. We base these runs on the orthogonal case with a region size 4 00nm and density 6x 10-3 

fractures per square metre.

For the length vanation realisations we have taken a fixed aperture of 50m. The fracture length 

,as give. a uniform distribution with average 50m but with a spread ranging from zero to 50m.  

Table 4.;. resents these results, in each case 100 realistios were'done. Figure 4.9 presents the 

results graphically.

Table 4.5 
Results of fracture length variation runs for orthogonal fracture sets.

The predictions come from the result of the previous section including the boundary correction.  

The increase in permeability with length spread is predicted reasonably well showing that most of 

the change in the permeability is due to the increase in flowing porosity.

Flow
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The effect of varying the aperture is more difficult to predict. We argued that at high densities 

the arithmetic average of conductivities would be important while at low densities the harmonic 

average would dominate. The results presented in table 4.6. are for the fixed length 50m with the 

standard density 6x 10-3 fractures per square metre and with uniformly distributed apertures.

Minimum %Maximum Permeablhytv 
aperture aperture Ave. Min. Max.  

um mn 10" Ox 10'1 X 10" 6x 

50 50 7.89 6.51 8.86 
40 60 7.87 6.88 8.88 
30 70 7.87 6.75 9.0, 
0 s 7.84 6.60 9.12 

10 90 7.76 5.81 9.87 
0 100 7.71 5.02 10.32 

Table 4.6 
Rcsults of aperture variation runs for orthogonal fracture sets with fixed density.

In each case 100 reaiisations were done. The average permeability remains nearly constant.  

presumably this case falls between the high density and low density limits. The variability in 

permeability is greatly affected by the spread in fracture aperture. The region size required before 

the permeability settles down will therefore be somewhat larger when the fracture length varies.  

In order to see how the density affects the results we repeated the case with apertures bctween 

zero and l(0um for a range of densities. These results are given in table 4.7 and in fieure 4.9.  

i 
Denst. Permeability v Average, 

Ave. Min. Max. rixed aperture average 
lO-.ý X 10-16 X iO.16 X 10.16X 

4 1.56 0.19 2.86 0.54 
7.71 5.02 10.32 0.98 

8 16.13 12.46 19.04 124 
10 25.71 21.76 29.46 1.39 
12 375.71 32-., 40.61 1.52 

Table 4.7 
Results of aperture variation runs for orthogonal fracture sets with various densities.  

These results agree qualitatively with the prediction and although it is difficult to say whether 

the ratio is tending to zero for low density and 2.0 for high density the results certainly do not 

contradict this. The effective medium results shown in table 4.1 give the correct trend as density 
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increases but are out by a large factor. p,4x10- 3 corresponds to e=0.4 and here the difference is 

a factor of five. while at the high density end the factor is two.  

In a real system there is a strong possibility that fracture length and fracture aperture are 

correlated. In order to see how this might affect the prediction of the permeability of the system 

we have looked at the following case. Four fracture sets are present. two oriented parallel to the 

pressure gradient and two oriented perpendicular to it. In each direction one of the sets has length 

uniformly distributed between 2Orn and 50m. while the other has length between 50m and 80m.  

The apertures are also uniformly distributed. between 20jim and 50tim for the first set and 50Nm 

and 80pm for the second. The lengths and apertures are therefore correlated, with the shorter 

fractures being thinner, the correlation coefficient is 0.75. We will compare the results from this 

case with the uncorrelated case. where the full range of lengths and aperturec .. c-'" 

in any combinations.  

The general method for predicting the permeability u'ing a cut lattice model is as follows. Firt 

we set up a rectangular grid with the same !otal fracture length per unit area as the network. Then 

we remove some links at random to reduce the fracture length per unit area to the lowing fracture 

length in the network. Thus we have the separation between the lattice links and the propoftion 

cut. The aperture must then be fixed. This is done by taking a weighted average of the network 

apertures. me weight being the length of flowing fracture with a given aperture. The type nf 

aerage used w*ill depend on the degree of connectivity, as previously explained. For lo'A densities 

a harmonic average of the conductivities will be best. and at high densities an arithmetic average of 

the conductivities. At intermediate densities the best average is unclear, for our case we have 

taken an arithmetic average of the apertures. which emphasises neither the particularly low 

conductivity links nor the high ones.  

In our example. botn for the correlated and uncorrelated cases. the aboe prescription gives a 

latice separation of 6.67m and a proportion of cut links of 0.262. For the uncorreiated case we use 

the average aperture. 50am. For the correlated case we find that the average flowing length of the 

short fractures is 22.10m. and for the long fractures 51.68m. giving a weighted average aperture of 

56.01tm. The predicted permeabilities are therefore 7.431x×10-m" and 1.045xlO105m: for 

uncorrelated and correlated respectively. givirg a ratio of 1.41.  

The numerically calculated average permeabilities in the two cases were 8.38x 10-'m and 

1.28xl0'-m2 . which gives a ratio of 1.53. Thus the predictions are both too low, but the ratio is 
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quite reasonable. The ratio in the calculations is higher. implying that the wider fractures have a 

bigger effect than the lattice model predicts.  

4.6 Summary and conclusions 

The work presented in this chapter has shown that it is possible to calculate flow through large 

fracturc systems. We can predict the average permeability for such systems by using a cut lattice 

model. This gives the correct behaviour for the change in permeability with fractuat density.  

length spread and network size. The variability in permeability is reduced as the network size 

increases, reaching 10% of the mean value for networks larger than ten times the fracture length.  

The average value is also dcpendent on the network size. This dependence can be predicted by 

including the boundary intersections when calcuLsting the average number of intersection, and 

hence the flowing porosity.  

When the fracture aperture is allowed to vary the permeability is found to increase or decrease 

according to the fracture densit-. For well connected systems there are many interconnected paths 

and low aperture fractures are easily bypassed. while for poorly connected systems the paths are 

like chains and low aperture fractures cannot be avoided.  
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Chapter 5 Contaminant Transport

5.1 Introduction 

Once the flow of water through a fracture system has been calculated and a Permeability tensor 

deduced we have the parameters we need to set up a continuum model approximation to the flow.  

In many applications, including radioactive waste disposal. it is the movement of contaminants by 

the flow that is important. The major mechanism is advection. which is usually assumed to be 

related to the Darcy velocity through the relationship 

q (5.1) 

where q is the Darcy velocity. v is the average velocity for a contaminant particle and (p is the 

porosity. The next mechanism to consider is hydrodynamic dispersion. This is usually modelled by 

a diffusion-like equation with a dispersion coefficien measured experimentally. This coefficient 

may have components which depend on the local velocity. In this and thc foll,,wing two chapters 

we shall concentrate on advection and hydrodynamic dispersion. Other mechanisms include 

sorption and diffusion into the rock matrix, we d.*scuss these further in chapter II.  

Hvdrod% namic dispersion occurs as a result of differing path lengths in the fracture network. An 

individual particle oi contaminant will. to some extent. choose its path randomly and a group of 

particles vhich are initially close will be dispersed.  

There are two possible mechanisms ai work randomising the particles* paths. The first occurs 

%'ithin each fracture. here molecular diffusion will spread contaminant across the width of the 

fracture, and along the length of the fracture. The second mechanism occurs at intersections, here 

contaminant arriving from all inflowing fractures is mixed and flows out with equal concentrdtions 

in each outflowing fracture. The exact cause of the mixing is unimportant. We shall show in the 

following that molecular diffusion alone is sufficient to cause mixing but the roughness of typical 

fracture will also contribute.  

The molecular diffusivity will depend on exactly what contaminant we are concerned with. we 

denote it by K. If the typical fracture aperture is t. the typical velocity of flow in a fracture is u and 

the typical fracture length is I. then the distance spread by the contaminant in the time to travel 

along a fracture is d, given by 

"d 2K1 (5.2) 
f- 7
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If the fracture intersection is also of size t then the distance spread while passing through an 

intersection will be d, given by 

d:= _I. (5.3) 
U 

For the cases of interest to us we have K--2x lO-I m-is.t=5..qm.l-Ilrn and u between 10-7 mis 

and I0-' m/s. This gives d, between 6cm and 64km. and d, between 14O01m and 1.4mm. This 

implies that complete mixing occurs at intersections and that we can treat the concentration in a 

fracture as constant across the width. The contaminant in a fracture travels at the average flow 

velocity. that is the flux over the aperture. The aperture in this relation need not be the sasioe as the 

effective aperture used for hydraulic conductivity, but they are assumed equal in this work.  

In some cases %,e may wish to consider fracture zones, rather than single fractures. Then the 

intersections will be highly fractured. hydrodynamic dispersion will occur in the intersections and 

the complete mixing assumption is still reasonable.  

5.2 The diffusion equation approximation 

From the numerical calculations, of whatever sort. we obtain the output rate for a pulse input 

and for a step function input. From this we wish to estimate the c.efficients in the diffusion like 

equation used to model the system as a continuum. In order to do this we compare the results with 

th!! analytic solution of the one-dimensional diffusion equation 

--- ac a2 C (5.4) 
T x .3X 

The initial conditions for the pulse input are simply zero everywhere except for a dzlta function at 

the origin. The boundary conditions relevant to the continuum model are less clear. In the 

numerical calculation the concentration at the extremities is not constrained, so that the sides are 

effcctikely just monmtoring points, not boundaries. This leads us to take the boundary conditions at 

infinit% where the concentration and its derivative must be zero. The problem with boundary 

conditions is caused by the fact that we only have convection in the network and so only one 

boundary condition, whereas in the continuum we require two conditions.
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The solution to the diffusion equation is the gaussian

I I - Nil: 

C p x t) .P - .4 D t 
( 5 .5 ) 

At time t the mass which has passed x=l is 

5 Cp(x.t)dx = -C:erfc( (5.6) V4Otllu 56 

The rate at which this mass passes x=1 is 

qz-uUl 

dV4Dt = - (5.7) R di)= Va V4Dt 2t 

We can deduce D and u from a knowledge of the arrival rates using several different methods. If 

the diffusion equation exactly modelled the system all would give the same result. The difference 

between the results indicates how far from diffusion-like the system is.  

The first method is to obtain a least squares best fit to the arrival rate data. with the end of 

timesteps being the fitting points. This will tend to fit the peak of the arrival rate curve and ignore 

the tail. One disadvantagze of this method is that it cannot be used very easily if only :he arrival 

times of discrete particles are known.  

The second method uses the 25'. and 75% breakthrough times (any pair of percentages could 

be used). These are the times at which 25%o and 75% of the mass has arrived. The analytic solution 

gives us the formula for these times which, noting that erf(0.477) = •, we can write as 

I-ut S= ±0.477. (5.8) \, 4Dt 

So the breakthrough times tz. and r, are the roots of 

uzt2-(2ul÷0.91D)t+2' = 0 (5.9) 

which implies that 

t2 +t75 = 2/+0.91 D (5.10) 
U U 

and
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12 t 1?52t (5.11) 
U.  

from which we can readily deduce D and u.  

The final method involves calculating the average arrival time and other moments of the arrival 

time distribution. We write 

<In>= frRt)d (5.12) 

0 

and find that 

<,-1>= ().  

These results can be deri~ed by direct integration using the substitution: or byelatin 

<t" > to the n-th derivative of the Laplace transform of Rt,(t). The Laplace transform of Rl,(t) is 

R~)=(2Dcv-u)rt 

w he r,: 

a-u-(u2 -aDs)a 5.  
2D D.  

are collected below 

(i) from <t> and <+4i(> 

<1t 

D = I 2<t-'>-Iuf. (5.15) 
or D = u2 <t>-Iu 
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(ii) from <r> and <t-:>

I (4<t>--(3<t" > -_<t>- 

D -= u"<r>-lu (5.16) 

(iii) from <t-l> and <t-2> 

u = J(4<t t>_(3<t ->-2<i •>:):) 

D = i:<t-I>-u (5.17) 

For any arrival rate data we can use any of these meth6ds toderive values for the parameters D 

and u. If the data comes from a system which behaves exac.ly according to the diffusion equation 

then the method we use is irrelevant. By comparing the results of all the met'ods we can see how 

well the diffusion equation models the system.  

In the fracture systems we have assumed a linear relationship between pressure gradient and 

flow rate. and between flow rate and contaminant velocity. The coefficients D and u will therefore 

both be proportional to the overall pressure gradient. The ratio I"D) = D;i is independent of the 

pressure gr-.,iient. and so is a property of the network. The dependence of this parameter on 

fracture statistics and region size will be looked at in the numerical calculations reported later. The 

other ratio Ahich is onl.• dependent on the network is the ratio between it and the Darcy velocity.  

If q is the Darcy velocity we write (p = q/u. p is expected to be equal to the flowing porosity 

discussed in chapter 4.
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5.3 Transveire dipersio

Up to now we have been looking at the longitudinal component of dispersion, that is the 
component parallel to the flow direction. The tranverse component is also important, and can be 
obtained from arrival information in a similar way.  

For an infinitely wide system the arrival rate at x=l. with an initial pulse at the origin is 

RP(y.0 - Rr(:). V 4tDw (5.18) 

where DT is the tranverse diffusion coefficient. If the system is not infinitely wide. but has no flow 
boundaries at v = ±h the single multiplying factor is replaced by a sum, 

k• . x r','2kA): 

R~yj =R~). I 4...2A1 RpOy.t) = Rp(t). " -A- (5.19) 

For the cases -Ae are considering the boundaries are far enough away to allow the simpler form. in 
this case we have 

<Y-> = 2Dr<I> (5.20) 

and -o we can find DT from the spatial distribution of the arriving mass.  
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Chapter 6 Mass-Lumping Algorithm 

6.1 Introduction 

In modelline contaminani transport through a network the most natural technique is to follow 

particles through the network, allowing them to take random directions at intersections. This 

technique has been used and is discussed in the next chapter. In this chapter we discuss a different 

technique. which may provide a starting point for the inclusion of other mechanisms.  

To begin with we assume that we have set up a network and solved the flow equations, We 

therefore know the geometry of the network, the pressure at each intersection and the apertures 

and conductivities of each link.  

We wish to calculate the time dependent transport of some contaminant through the network. If 

phenomena such as sorption are to be included later we will need to know the concentration of 

contaminant at all positions at all times. In this technique we discretise in space and time so that 

the concentration is approximated b% a piecewise constant function in space and is calculated at 

the end of discrete timesteps. The important thing is that the length of the sections o' er which the 

concentration is constant is chosen so that on a single timestep contaminant moves from one 

-section to the next. The section lengths are therefore different in each link. but are always equal to 

the timestep multiplied by the flow, ,elocitv in the link. At intersections all arriving mass is split up 

so that the concentration in each outflowine fracture is the same.  

The advantage of this technique over particle following is that concentration is known 

everywhere. Sorption and rock matrix diffusion depend on this concentration. €o the model could 

be_ extended to include them. Finding local concentrations if particles are being followed is difficult 

unless, a huge number of particles is used. The disadvantage is one of cost. particle following can be 

made very fast. and while this method can be speeded up on the CRAY it is still comparatively 

rather slow.  

As stated above the algorithm seems straightforward. however there are a number of problems 

to be overcome.  

The first problem is hou to deal with intertections. We could treat them as points, with no mass 

of their own. through which the mass from inflowing fractures passes as it splits and goes to the 

outflowing fractures. Alternatively we could give them a finite size. so that mass resides at the 

fracture for one timestep before being split and moved on. There does not seem to be any strong
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reason for choosing one method over the other. We have chosen the second, mainly because it is 
easier to program.  

The second problem is that the fracture lengths are not going to be convenient multiples of the distance moved in a timestep. The number of sections along a fracture must be chosen to be the nearest integer to the true number. The error of up to half a timestep that this introduces will be of random sign and will therefore tend to cancel out after a few links. This is unlikely to cause any 
difficulties.  

The third problem is that some fractures will hzve very slow flow. In any network there are bound to be some fractures which just happen to take almost no flow. either because they are poorly connected to the main flow paths or simply by chance. The algorithm as it stands requires a large number of sections for these fractures, since the !ection length is proportional to the flow rate. Since there is very little flow we cannot afford to waste time calculating concentrations for all these sections. We therefore impose an upper limit on the number of sections allowed per fracture.  and if this limit is exceeded the fracture is treated separately. Any mass which moves into it is collected in a special lost mass section. As long as the amount of lost mass by the end of a run is small the overall results will noi be affected. If there is too much lost mass the run must be 
repeateu with a relaxed limit, or with longer timesteps.  

The final problem is at the opposite extreme. very fast flo%%ing fractures. If the time taken for flow between two intersections is less than half a timestep we must take some special action. The minimum time required by the normal algorithm is one timestep. and using that would lead to an error of up to one timestep which would accumulate as more fast flowing links werc encountered.  We get over the problem by jumping the mass around the in:ersection straight into the next fracture. This results in some intersections having mcre than three outputs. once the mixing which 
occurs at the jumped intersection has been taken into account.  

Figure 6. I shows the possible movements of mass on a single timestep.  
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6.2 Computationml detals

The implementation of the algorithm is more or less as stated above. except for a final stage 

which puts the information in a form which enables some of the fast library routines on the CRAY 

to be used. The sections are numbered so that. except at intersections, the mass in each section 

moves to the next higher numbered section. The other types of move are from section to 

intersection, intersection to intersection and intersection to section. Each of these types is dealt 

with in two parts. The first movement into any section or intersection is dealt with first, these can 

be done using the very fast GATHER and SCATTER routines on the CRAY. Subse-'ient 

movements into these sections require the mass to be added to that already present. these are done 

separately.  

The timestepping uses two sets of arrays to store masses. these are used on alternate steps. For 

steps at which processing. such as cross section plots, is required the mass -s dumped to backing 

store to be processed at the end of the run.  

Usually mass starts on one side of a region at time zero and is transported across to the far side 

where the rate of mass arrival is monitored. Timesteps are continued until no more significant 

amount of contaminant is arriving. If results are required for a continuous input, or any other 

input fun,.,on. they can be derived from the pulse input calculation. From the output rate the 

parameters for a diffusion like approximation can be deri,.ed as described in the previous chapter.
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6.3 Results

As an example of the use of the mass-lumping program we have done 20 runs with a region 200m 

square. The fractures are all of length 50m anJ have aperture 501am. There are two fracture sets.  

one horizontal and the other % ertical. with 2.5x 10 -- fractures per square metre in each. The 

pressure gradient imposed is IM) Pa/m and the viscosity 10- kg/m/s. The timestep was taken as I 

day with a check done at I day for one realisation.  

We first describe the results for a single realisation. The network for this realisation is shown in 

figure 6.2. The flow calculation gave a permeability of 5.087x 10- 16 m". slightly below average for 

these statistics. In the course of the mass transport calculations the fractures were divided into 

26185 sections. Of the 890 intersection to intersection links 20 had very low velocities (more than 

7MK) timesteps to move along them) 3nd were therefore designated as lost mass links, the others 

had an average of 30 sections each. 36 links were very fast (less than half a timestep) and the mass 

entering these moved directly into the next scctions. The initial PTival occurred after 161 

timesteps and after 1117 timesteps the algorithm was terminated. At this point 0.74% of the mass 

had gone into the lost mass section and 0.39% was still in the network.  

The breakthrough times are given in table o. 1.

NPrcentable i Timcidavs.  
A rvTia] 1-das timestep 4-dab timestep Least squares fit

.notsal [I't Mii t�i 50 
Iwo ::34i1 2337 201.26

[ 1"o :-13 -40 2:3.37 212 
-46'K- 257 50 24.24 

50%7S 3073 34)3.59 
-5°, 409 J4 4097.1 377.35 

3% -55 534.65 457.94 

Table 6.1 
Breakthrough timies for single realisation.  

The results from the half day timestep run are also shown, it can be seen that reducing the timestep 

has little effect showing that the one day timestep is short enough. The least squares best fit for D 

and is %%ere used to obtain the final column of the table. Figure 6.3 shows the full breakthrough 

curve with :his fit. It is clear that the tail is much longer than this fit predicts. We can use the other 

methods to calculate D and u. these results are shown in table 6.2.  

The results shown here are for the one day timestep. the half day timestep run gave almost 

identical results.

Mass-Lumping Algorithm
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Table 6.2 
Diffusion equation parameters using various methods:

We can also look at the mass distribution at a given time. This is shown after 80 days in figure 

6.4. The mass present in slices acoss the network running from top to bottom is plotted as a 

histogram with the least squares fit prediction as a solid line. Figure 6.5 shows the cross section 

after 160 days. just before initial breakthrough. It is clear in both cases that the fit is not good.  

underlining the fact that the dispersion is not diffusion like.  

The results for the twenty runs are given below. For these runs the I day timestep was used. The 

average lost mass was 0.56% and the average mass still in the network when the .-.gtithm stopped 

was 0.24%. Figure 6.6 shows the average arrival rate. This shows a sharp initial rise withi a very 

much longer tail. The D and u calculated from this curve show the same behaviour as for the single 

run. with the weight given to the tail determining the size of D. The breakthrough times for this 

a~erage curve are given in table 6.3.  

Percentage Tiiaetdays) 

Amvail v Averate Least squAres fit Minimum Maximum 

initial 134.00 - 134.00 195.95 

10% 212.42 195.80 193.06 270.49 

25% 245.26 2:,?.15 11. 76 305.79 

50% N98.01 ' 294.06 270.49 386.81 

75% 378.54- 364.63 334.03 523.73 

90% 48890 441.62 414.70 o77.55 

Table 6 3 

Breakthrou-h times for average arrival curve and minimum and maximum over 20 realisations.  

This table also gives the range of breakthrough times found over the 20 realisations. the range is 

fairly large presumably because these runs are for a low fracture density and small region. The 

effect of density and region size are looked at in the next chapter.  

The calculated D and u values have a similarly large range. and the average values follow the 

same pattern as the single run. as table 6.4 shows.
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Method u (mIs) D ml/s 

Least squares 7 6Q 7.421 
<t> and <i: > -4Z3 9.890 
<t> and <t-> ' 7 32S 7.735 

<1"'> and <1-1> 7.402 6.240 
t, and t. 7.493 f 7.790 

Table 6.4 
Average diffusion equation parameters using various methods.  

The value of u is determined mainly by the position of the peak arrival rate. it therefore -.-ries only 
a small amount according to the method used. D depends on the weight each method gives to the 

tail. and so varies much more.  

The dispersion length. pD, = D/u. has been calculated for the runs using the least squares fit. It 
has an average of 9.68m with minimum 6.25m anu maximum 18.18m. The ratio of Darcy velocity 
to it has an average of 7.05x 10-6 with a variation from 4.98x 10O- to 8.40x 10-6. The average 
porosity of the networks is 10-5 and the average flowing porosity 6x10-6 , in fairly good 

agreement with the velocity ratio.  

These results will be cross checked against the results of the particle following program in the 
next chapter.  

The computer time taken for the mass moving step in these runs was 2 seconds per run. This 
time will be proportional to the number of intersections. N. to the power 4. In these runs the 
average N was 0GO. so for a more realistic case with around 5000 intersections the time needed 
would be 50 seconds per realisation. We will see in the next chapter that a similar particle following 
run with 10000 particles would take less than I second. The algorithm described in this chapter is 
therefore not qui-k enough to use for large numbers of realisaions. It does howevcr have the 
potential to include the other mechanisms which the particle following method does not.
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Chapter 7 Particle Following Algorithm 

7.1 Introduction 

If the only output required from a contaminant transport model is the arrival behaviour at some 

point or points, and no mechanisms other than convection and mixing are to be included, then a 

particle following method is ideal. In this method the contaminant is transported in discrete 

particles of fixed mass. Convection is simply modelled by the motion of the particles along 

fractures and mixing is modelled by allowing each particle to go down any outflowing fracture ",.th 

probabilities proportional to the fluxes. For this approximation to complete mixing to be 

satisfactory a large number of particles must be followed.  

The way we have implemented the algorithm means the tne spatial distribution of contaminant 

at a given time is not readily available. The advantage gained in terms ',t computer time is 

substantial and was considered to outweigh the disadvantages. It is. in any casc. possible to modify 

the algorithm to produce the information if it is required.  

The basic method is as follows. At time zero the initial pulse input is divided among all the 

particles equally and they each start at an intersection. If input is along a side of the network then 

thc probability of each particle starting at a paricular intersection is proportional to the flux 

entering the network at that point. At each step the particles all move to a new intersection.  

according to a random number. The probability of going to each intersection is proportional to the 

flux fram the current position to the new position. The time taken by each particle is recorded and 

updated on each step. Once all the particles arrive at the far side of the network the algorithm 

terminates. The reason that the spatial distribution is not easy to obtain is that the time for each 

particle at the end of a given step is different, depending on the route taken by the particle so far.  

The advan~age of this is that the number of steps of the algorithm depends on the number of 

intersections on routes from side to side. This will be similar for all routes. including any with very 

slow flow. so the algorithm terminates in a predictable number of steps.  

The only information required by the algorithm about the network is the probabilities and times 

for moves from each intersection. So for eacn intersection we must calculate 

- the number of outflowing links 

- the intersections at the end of these links 
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- the probability of moaing down each link

- the time taken to move to the end of each link.  

By using some special CRAY library routines the whole process can be vectorised over the 
number of particles and the time taken reduced to just lI per particle per step. So 10000 particles 
can be followed through a network with paths of length 100 in I second. On the IBM 3081K the 
same operations are 10 times slower.  

The output from the particle following algorithm is a list of arrival times. These can be sorted so 
that a plot of mass arrived against time can be drawn and the percentage breakthrough times 
calculated. The averages <t>. <t: >. <f-1 > and <t-2:> can readily be found and the continuum 
parameters D and u can be calculated in a number of ways. as described in chapter 5. The 
discrepancies between these ways of calculating the parameters will indicate how well (or badly) 
the continuum approximation fits the data. By taking averages over many realisations the average 
parameter values and the variation in these values can be found. The dependence of both averages 
and variations on region size and fracture statistics can be investigated.  

7.2 Ve-ification 

The network flo,, and transport computer programs used throughout this work have been 
verified against an independently produced code. wvritten by Schwartz and Smith (Schwartz et 
al. 1983). The FORTRAN source was taken to the University of Alberta and run on the computer 
there. Because their program is less general than ours the comparison was done using a network 
generated by their program. The usual network generation routines in our program were bypassed 
and the network properties were read in directly.  

Their program uses a grid on which fractures lie. This caused two problems. First. their program 
modifies the fracture lengths so that fractures end exactly on a grid line. This can cause fractures 
which should not meet to do so. Second. if two fractures are generated on top of each other they 
count as in single fracture in their program. In our program this would not normally happen and 
the fractures are treated as if they were parallel, with a small distance between them. These two 
problems were overcome by some modifications to our program so that it mimicked theirs. After 
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these changes the two programs produced identical results for number of intersections, number of 

boundary conditions. flow rates and permeabilities.  

The two programs use different systems for generating the random numbers needed for particle 

following. The results were therefore not identical but the discrepancy in arrival times was well 

within the range of statistical fluctuations.  

This intercomparison verified that there were no significant errors in either program.  

7.3 Results 

First. in order to confirm that the algorithm produces results consistent with the mass lumping 

algorithm. the example run of the previous chapter has been repeated. using MO00O particles. For 

convenience some of the results given there are repeated here.  

The permeability calculated was of course identical. The particles had all passed through the 

network by 100 steps giving the arrival times shown in table 7.1.  

Percentage Timetdavsi 

Arnval I This rup% Mass lumping run 

inial 161 84 .61.50 

10% =3-81 223.37 

25% 257.87 257.50 

50% " 30675 '107.33 

75% 411.48 409.74 

90% 535.31 534.65 
100% 8810.25 

Table 7.1 
Breakthrough times for particle following and mass lumping.  

The agreement is almost exact, showing that both algorithms are behaving properly. The 

comparison of the calculated u and D show up discrepancies however, as table 7.2 shows.  

It seems that the reason for these discrepancies is that for the mass lumping runs the last 0.5% of 

the mass was inot allowed to arrive. This greatly affects the calculated <12-> and slightly affects 

<t>. The particle following run allows all the particles to arrive, the last one after 8810 days. The 

last few particles have a disproportionate effect on the averages and hence on D. and to a lesser 

extent on u. This again highlights the problem of using these averages to calculate D and u. in the 

rest of this chapter we have not used <t2 > at all.  
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Meth~d This run I Man lumping run 
uimis) D m:s u (ml$| D M.  

Ilf'* l<I "- + 0-**+ 111-' 

-t> and <i: 8.327 53..86 7.155 10.30 

6 > and <t - .817 11.404 7059 S.024 
-" nd .t: 7045 6.850 7.143 6.342 

t., and t. 7 106 A.565 7 126 8.499 

Table 7.2 
Diffusion equation parameters using various methods.  

In the following work we use three ways of calculating D and u, we use the notation 

u1  DI calculated from t,, and t,7 

u. D. calculated from <t> and <t-i> 

u4 D, calculated from <t > and <t 

Similarly we use 4p, 4p and iv for the porosities s.u. v/ti. and v%!u and 1 D1M. AD) and 40' for 

DI ui. D-,'u. and D1.j1 .  

We first looked at the effect of region size fr networks with two orthogonal sets of fractures. All 

the fractures had length 50m and aperture 50um with a density of 4x 10 --O fractures per square 

metre. The reeion size ranged from zero to 800m. 100 runs were done for each size.  

The permeabilty results for these runs were reported in chapter 4. where it was shown that tne 

permeabilit. a erage settles down to a constant value for regions of larger than 600m. At this 

region size the variations between runs were small. For the particle following runs reported here 

tnere are more things to consider. For some of the smaller regions there are cases with no flow. for 

these the various parameters cannot be defined so averages are taken over the flowing cases. The 

rumbCr of runs with no flow is indicated in Drackets in the tables.  

Table 7.3 shows the particle mean velocity. u. as calculated by the three methods. They clearlh 

settle down to a constant value at around 600m. in a similar way to the Darcv velocity. The 

discrepa;;cies between the three results are quite small and show some signs of reducing for the 

larger rezion sizes.  

The porosity results are given in table 7.4. These appear to be tending to a value sl;ghtly below 

the geometrically calculated flowing porosity. 6x 10'. For the low density used here a more exact 

calculation, taking account of isolated clusters, could well give the reduction needed.
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Table 7.3 

Diffusion equation parameter u using various methods for different region sizes.

Table 7.4 
Flowing porosity o using various methods for different region sizes.

We can look at the dispersion results in two ways. either as the coefficient D or as the dispersion 

length IID.) We first look at D, table 7.5 gives the results. D, and D3 become very similar as region 

size increases, while D, is always 40%/o higher. Each is settling down to a constant value, although 

not as quickly as the velocities do, a regii.n size of 1000m rather than 600m seems to be the size 

above which variation is small. The reason that D, and D., converge is that they both take little 

account of the tail of the arrival distribution. D, is derived from the 25% and 75% arrival times 

and so the tail has no effect and D3 uses <t-'> and <t-2> which gives very small weight to the

7.5
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tail. DA on the other hand uses <1> which is greatly affected by the tail of the distribution. These 
results show that. even at large region sizes, the dispersion is not fully diffusion like.

Region Number of I 
Size realisations Average 

II}-* e

lii 

IsNJ.  

211) 

430 

110.  400.  

?iX).  

tAX).

IiX)( 451 

101)(71 

100 

140 

100 

100 

;30 

2o5 
W5

IVOR 
h•.30 

734 

9.46 

899 

9.75 

10.03 

10.97 

11 07 

11.51 

11.35

D.

Sid. Dcv. Average 

10-' to10"

0.41 

4.92 

5-42 

4.32 

3.40 

3.42 

2.74 

2.88 

2.72 

2.36 

196

D, 
Sid. Dev. Average Sid. Dcv 

10--X x 10 -x 10"' X

0.2 0.64 

6.00 2.97 

8.67 480 

11.92. 7.46 

12.69 5.9D 
13.68 4.79 

13.98 3.82 

15.06 4.94 

16.57 7.72 

16.47 3.74 

15.79 3.10

0.09 

3.35 

4.98 

6.94 

7.98 

894 

9.55 

10.47 

10.90 

11.52 
1 1.33

I1.3

0.25 

1.49 

1.95 

2.03 

1.93 

2.09 

1.75 

2.07 

2.21 

1.92 
1.61
I 61

Table 7 5 
Diffusion equation parameter D using various methods for different region sizes.  

The dispersion length results show very similar behaviour to the dispersion cnefficient. Table 7.6 
shows the results. The standard deviation of IID) shows that not only does the tail of the 
distribution affect the average value but can cause large variations. This is due to occasional vert 

slow p•i•lcles.  

Recion Number of l, 

Size • reahisawon- Average Sid. Dev. Averate Sid. Dev. Average Sid. Dev.  

IM. 1U0(45) 006 0.31 0.14 0.41 006 0.15 
5n 100(12) 5.97 5.12 6.04 3.22 3.22 1.63 

100. 10)(7) 9.59 6.55 12.45 7.01 6.66 2.53 
21 100 15.07 10.19 23.46 19.97 12-29 469 
300 100 1o06 7.27 24.39 11513 14.46 4.25 
4-N1 140 18:2 836 27.24 13.36 17.12 5.57 
5(X) 100 1O I, 5.85 27.39 8.77 18.30 4,06 

1,4).0 21. 6.37 30.40 12.92 2063 , 33 
700 100 21.37 5.65 33.43 17.89 21_44 486 

, .~ 22.5• 4 98 33.42 8.75 21.99 423 
,-). 25 22.16 4.10 31.66 6.90 22.48 3.78 

Table 7.6 
Dispersion length 1 '0) using various methods for different region sizes.  

The next set of runs was for a fixed region size. 400m. with fracture densities up to 12x 10-3
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fractures per square metre. The other fracture statistics were as before, fixed length 50m and fixed 

aperture 50ttm. Some of the low density runs gave no flow. the numbe: of these is indicated in 

brackets in the tables. with the average given being over the flowing runs.  

We know from chapter 4 that the Darcy velocity depends on density through the equation

(7.1)-it-, (-2). LP Up * -

and that the flowing porosity is approximately 

wi = aty 

which gives a prediction for the particle velocity

t- pI-2 2JP 
24p p:-i ax

(7.2)

(7.3)

For this case the large density limit is 10.42x 10-" mrs. Table 7.7 shows the numerical results for 

particle velocity. They agree fairly well with the theoretical prediction. The discrepancy between 

the different methods is small but does not get smaller as the density increases.

Table 7.7 

Average particle velocity u using various methods for different fracture densities.  

The porosity behaves just as expected. the results are given in table 7.8.

Particle Following Algorithm

Density Number of u. u, u 

reahsations$ Aeraae Std. Dev. i Average Std. be"I. Average Std. Dev. I Predicted 

-10 - 10- 0I 10 10-'x 10-'x 10-x 10-x 

.00 40039) 3.21 00. 2.91 0.0 3.08 0.0 

2.50 4.0(13)! 325 090 1 2.95 0.86 3.17 0.87 I 

3.00 40(4) 3.55 0.86 3.17 0.78 3.47 0.82 

4.00 140 5.45 0.64 5.23 0.66 5.35 0.63 3.47 

5.00 40 6.76 0.48 6.39 0.48 6.66 0.47 5.52 

6.00 40 7.72 0.32 7.55 0.31 7.61 0.31 6.63 

7.00 40 8.23 0.33 8.05 0.33 8.11 0.33 7.33 

8.00 40 8.67 0.26 8.49 0.26 8.55 0.26 7.82 

9.00 25 8.88 0.25 8.69 0.24 8.75 0.25 8.17 

10.0 25 9.25 0.21 9.05 0.21 9.11 0.21 8.44 

11.0 25 9.34 0.20 9.13 0.20 9.20 0.20 8.65 

12.0 25 9.54 0.20 9.33 0.20 9.39 0.20 8.82
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Demv Numberof 0 `2 
Srealistious Average Sld. Dev. Average Std. Dev. Average Std. Dev. Predicted 

"10-1 x 10"x 10-Ox to0x 10'x t7 
.00 4(939) 0.74 0.0 0.82 f 0.0 0.77 0.0 1.0 50 A0N 13) 1.46 0.41 1 1.60 0.42 1.49 0.41 2.25 34ft 41 2.30 0.49 1 1 0.48 2.35 0.50 3.5 J(4) I 140 5.30 0.40 5.32 0.33 5.40 0.39 6.0 

500 40 7.83 0.27 8.02 0.25 7.94 0.26 8.5 el Uj 40 10.30 0.24 10.54 0.23 10.46 0.23 11.0 700 40 12.66 0.24 12.94 0.25 12.84 0.24 13.5 8,00 40 15.06 0.25 15.38 0.24 15.28 0.24 16.0 9,00 25 17.35 0.30 17.73 0.30 17.60 0.30 18.5 10.0 25 19.90 0.28 20.34 0.28 20.21 0.28 21.0 11.0 25 -21.16 0.30 22.67 0.28 22.50 0.29 23.5 25 24.52 0.28 25.06 0.26 2490 026 26.0 Table 7.8 
Flowing porosity qp using various methods fcr different fracture densities.  

The dispersion coefficient D is given in table 7.9. It appears to tend to a constant value, although 
there is no convergence of the three methods.  

Densiz% Number of !D, OD. D, !reahsations Average Std. Dev. Average Std. Dcv. Average Std. Dev.  

)" "'" • j 10""- 1 0-ý x 10I0 X× I - 10-'-• x 0o • 

0 -X391 6.76 0.0 13.12 0.0 6.04 0.0 
'9 505 17.85 8.53 903 4.62 I 5 4)(4) 11 95 5.49 21.41 11.45 9.68 2.79 

"4 IN) 14 -4O .75 3-42 13.68 4.79 ' 8.94 2.09 
04 jk4 4 1.93 10.98 1 08.25 1.45 

S40 

758 1.08 9.99 1.29 7-57 0.87 7.ft 40 7.92 1.36 10.25 1.60 7.73 0.93 800 40 7.71 0.76 10.08 0.90 7.70 0.54 
900 25 7.48 0.60 10.03 0.71 7-62 0.40 100 25 7.29 0.721 9.87 0.94 7.43 0.60 11.0 25 7ý45 0.42 10.35 0.59 t 61 0.29 12 0 25 7-29 41.42 993 0.56 i 7.51 0.32 

Table 7.9 Dispersion coefficient D using various methods for different fracture densities.  

So. the discrepancy between methods is unaffected by density, and we saw in the previous runs 
that it was not affected by region size. It must therefore be a genuine property of these fracture 
systems, showing that dispersion in fracture systems is not diffusion like.  

The dispersion length is also falling as density increases. In table 7.10 we can see that this fall off 

Particle Following Algorithm
/.6



is not as fast as the reduction in the separation between fracture intersections, which is inversely 

proportional to density. It is not clear whether the dispersion length is tending to a Finite constant 

or whether it will eventually reach zero.  

Dcnsitv Number of P0i1 ji 

realisations Average Sid. Dev. Average Std. Dev. Average Sid. Dev.  

10-1x 

2.00 40(39) 21.04 0.0 45.13 0.0 19.59 0.0 

2.50 40(13) 41.77 50.28 64.69 34.71 29.33 14.13 

3.00 40(4) 36.07 -20.46 70.87 37.81 29.01 9.16 

4.00 140 18.42 8.36 27.24 13.36 17.12 5.57 

5.00 40 12.58 2.96 16.77 4.00 12.45 2.40 

6.00 40 9.85 1.57 13.28 1.93 9.98 1.33 

7.00 40 9.64 1.80 12.77 2.19 9.55 1.28 

S.00 1 40 8.89 0.89 11.89 1.07 9.02 0.66 

9.00 25 8.43 0.71 11.54 0.83 8.71 0.52 

10.0 25 7.89 0.80 10.tV1 1.06 8.16 0.66 

11.0 25 7.98 0.49 11.34 0.68 828 0.35 

12.0 25 7.65 0.49 10.65 0.72) A 00 0.40 

Table 7.10 
Dispersion length I °D using various methods for different fracture densities.  

In order to look at the variation of dispersion length up to higher densities we used a smaller 

region size. 200m. This enabled us to go to densities of 24x 10-3. The dispersion length results are 

shown in table 7.11.  

Dtnsatv Number of 131D ,i) 

1 realisations Average Sid. Dev. Average Sid. Dev. Average Sid. Dev.  

4. 100 15.07 10.19 :-3.46 19.97 I 12.29 4.69 

8. 25 7.26 1.03 10.09 1.37 7.01 0.80 

12. 25 6.59 0.89 8.91 1.18 6.34 0.77 

16. 25 6.14 0.66 8.47 0.84 5.96 0.46 

20. 25 5.97 0.44 8.41 0.79 5.84 0.36 

24. 20 5.71 0.59 7.78 0.87 5.63 0.48 

Table 7.11 
Dispersion length 1(D) using various methods for different fracture densities for a smaller region.  

These results confirm that there is no convergence of the three methods but it is still difficult to 

be sure what the final value of I(D) is. We can be sure that the dispersion length does not only 

depend on the distance between fractures. The other lengths in the problem are the region size.  
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which is ruled out because of the results of the runs with varying region size. and the actual 
fracture length. This is constant and we shall see that there are some grounds for believing that it is 
this length that is important at high densities. this is discussed in chapter 8.  

We have looked at transverse dispersion as the fracture density changes. The fracture network 
statistics are the same as those used above, but instead of starting particles all along the side they 
are started from as near to the centre of the side as possible. This allows the transverse component 
to be found quite easily, but increases the variability of the results between realisations. The 
averages are still accurate enough to see the trends in values. In all cases the spread of particles is 
small compared to the width of the region used. which allows us to ignore the effect of the top and 
bottom boundaries. Table 7.12 summarises the results.  

Dcn•,lv Number of D, iD, Aptr D_,_ 

TabeAve D7 
irse htand Alonratlge Scd. Dp.n o Averaso t i d. Dev.  

WeIII c s mr that the-, t co poen d e X 
3.INI N 421 58+S 7,14 1.73 1.60 4 9€ 
4111, 5,, t .5. 5M 39+5 1.93 1.14 3 41 
etai i ie ) tha t t m en ten 1.03 I n f ic INI ) +6t 45 1 0.37 IS I I l-~5I,479 

SA N 119 

12to 1 7 13 o the3 1 1ai355 t. t12 a p t 
Table 7.12 

Trans, erse and longitudinal components of dispersion b or different fracture denssies.  

We can see from these results that the transverse component decreases rapidly as density, 
increases. This reduction is faster than the reduction in separation bertween fractures. which 
certainly implies that this component tends to zero as fracture density increases. In fact it is closer 
to the square of the separation. It is also clear froni these results th:•t any attempt to relate the two 
components by a simple ratio %% ill not work. the ratio between them depends •'rucialilv on the 

connectivit% of the network.  

Finally we looked at the effect of network orientation on both components of dispersion. Using 
the same fracture statistics as before with a fixed density of 6x 10-3 fractures per square metre and 
a region size of 400m. we rotated the wl-ole system through various angles while keeping the now 
direction constant. The results are presented in table 7.13. the angle is the angle between one 
fracture set and the flow direction.
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I0 

15 

20 

23 
30 
35 

40 

45

r of D, D, Ave D, 
Ave Dr 

Ions Average Sid. Dev. Average Std. Dev.  

6.66 4.50 1.03 0.37 6.47 

5.56 1.65 1.17 0.45 4.75 

5.03 1.61 1.16 048 1 4.34 

4.56 2.39 1.42 0.55 321 

3.92 1.50 1.39 0.45 2.82 

3.13 1.05 1.40 0.51 2.24 

2.47 0.83 1.70 0.66 1.45 

1.82 0.79 1.81 0.58 1.01 

1.83 1.22 1.86 0.50 0.98 

1.63 0.84 1.92 0.69 0.85

Table 7.13 
Transverse and longitudinal components of dispersion for different angles L.tween flow direction 

and fractures.  

As the angle to the flow direction increases the longitudinal dispersion coefficient falls quite 

rapidly, while the transverse component increaseS slowly. This is the same behaviour as for a full 

square lattice, where the maximum transverse component occurs at 45*. with the minimum 

longitudinal component. In the full lattice case bo:h components have minmum values of zero.  

whereas here the minimum values are determined by the connectedness of the network.
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Chapter 8 Theories of Dispersion

8.1 Introduction 

The theory of dispersion in porous media has a long history. When dispersion is modelled by a 

continuum equation it is usual to use a diffusion-like (Fickian) equation. So. for a one-dimensional 

flow. we would use 

S= 0 (8.1) 
3t ax 'x 2 

where C is the concentration at position x. time t. u is an average velocity and D is the dispersion 

coefficient.  

Many attempts have been made to show that (8.1) holds and to calculate D (Scheidegger.1972) 

Random wtalk models en, isage particles of contam"iant ,tndergoing a random walk through the 
porous medium. with the distance travelled and time taken for each step being random vanables.  
By using the central limit theorem the probability distribution function for particle position can be 
shown to tend to a Gaussian. We relate this probability density to the concentration in the real 

sstem and hence deduce 'alues for u and D from the mean and variance of the distribution.  

Scheidegger (1954) introduced the idea of dispcrsivity. or dispersion length. We write 

D = /D, (8.2) 

and call/i) the dispersion length. In models where the step duration scales linearly with a change of 

%elncit.. ID is a constant length, independent of the velocity and hence a property of the porous 

mediui•. This will not be true if molecular diffusion is significant or if the flow is turbulent.  

Saffman (1959.1960) uses a random walk model for hydrodynamic dispersion and molecular 

diffusion. His results rely on a maximum time for a step determined by the molecular diffusion. If 

:Ni:, is not imposed the second moment of the time-step !ength distribution is infinite and D is 

undefined. This model is discussed further later in this chapter. Saffman points out that it is the 

distribution of ! w, hich becomes Gaussian according to the central limit theorem, and not 

X- nT. % hich has third moment (X-t T) T.  

Fried and Combarnous (1971) review the historical developments in the area of dispersion in 

porous media and give some experimental results. They say that there is a systematic disagreement
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between theory and experiment. Scheidegger has suggested that the steps in the random walk 

%hould be correlated. He introduced an autocorrelation function for the velocity and derived a 

telegraph equation for the concentration 

+= A ( a (8.3) 

This leads to a sharp cut off in concentration which moves into the medium with velocity 2 and 

does not fit experimental results.  

Coats and Smith (1964) speculated that the discrepancy was due to dead end pores. in which 

only diffusion occurs.  

Simmons (1982) has argued that correlations can grea!ly affect the validity of the Fickian 

assumption.  

There is. then. no satisfactory theory of dispersion in porous media, and some doubt as to the 

saliditv of the Fickian continuum model. especialt% at small lengths.  

In fractured rock the random walk model looks sensible, it is easy to think of the steps of the 

,Aalk as the fractures. %%ith complete mixing at intersections before the next step. The number of 

steps taken may be small. again casting doubt on the validity of the Fickian assu~mption. The 

hypothesis that complete mixing takes place at intersections has been 'erified experimentally by 

Krizek et al (1972) for a range of flow v.elocities.  

We shall consider some random walk models and see what can be said about the effect of 

correlations between steps.
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8.2 A simple random walk model

We start with a simple case to show how random walk models behave. We take a random walk 

%%here all the steps are of the same length but take a time which is randomly distributed with 

probability densitymfit). The mean value of t is denoted 7 and the variance o2. The time taken for N 

steps is given by

= 

I-I
(8.4)

where the t, are independent samples of the distribution. It is clear that the average time is given 

by

TV-W (8.5)

and the variance by

M2 =VN) No-.

B.3 using Laplace transforms, or moment generating functions, we can say more.  

Let

and

f's) = fe-"f(t)dt 
4) 

f, (s) = feT. fV(tN)dTv 
0

We can see that 

fV (TV) = f 

that is 

f.V= 

where * denotes the convolution operation.  

Hence

jV. I *f
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fkQ(s) = (f(s)N.

The Laplace transform of a probability density function is called the moment generating 

function because

r-r
(8.12)

So

- • = V (8.12)

which, by equating powers of s. gives the relationships

= N(:-)oo 

... = N~t-7) = N,,.

TV. -7• 
The central limit theorem result is for C,. = *'o. We can see that N-'o

I (- N)
M C13

So for large N CT.-O and we have a normal distribution.  

For one particular f(t) we can explicitly calculate fv,(T,). If 

f(t) = oe 

then 

f(S) a 
a -ts

which implies

fQ,(s) = (a+s)N,
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and consequently

7N(T) M of 8e-=T T"-1 
(N-1)! (8.19) 

This does not look like the normal distribution when written in this way this but by using 

Stirling's formula for the factorial and setting C =wV-N an show that Ni 

AC 
.  

,,(C)- VIM (8.20) 

aTM-N 

We can see this in figure 8.1 where we plot V Rfl T,) against -N for N- 10 and N-S0, as 

well as the Gaussian. v, (T7:) itself does not tend to a Gaussian. For cc-,I the maximum arrival time 

is at N-I and the times after which 1% and 99% of the pa.-ticles have arrived differ from the 

Gaussian results by over one time unit for all N. as can be seen from figure 8.2.  

If there is a correlation between steps of the random walk this will affect the calculated 

dispersion coefficient and increase the number of steps before a Gaussian is reached. We again 

take the simple random walk with 

(11 -02 = (8.21) 

but now also assume that 

2- (8.22) 

where V = tjli-jI). If we take v(k) = Lk then we still have 

, = N7 (8.23) 

but now 

(T--7-)2 = No 2  "a ,- X 4- 0 (8.24) 

The number of steps required before the final value of the dispersion coefficient is reached 

depends on X. as does the final value.
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If we wish to predict dispersion coefficients we cannot ignore correlations between successive 

steps. If they are ignored the resulting prediction will underestimate dispersion. Even in a more 

complicated model we can getsome idea of the effect of correlations by multiplying the result of an 

uncorrelated model by . where X is the correlation coefficient between successive steps.  

8.3 Random direction models.  

In this section we look at a class of random walk models, where we assume that the probability 

distributions for direction.length and velocity of each stcp are independent of all previous steps 

but may be correlated with each other. The validity of this assumption is open to question. but we 

believe that the effect of correlations can be mimicked by varying the step le:.gth so that a step can 

include a number of correlated smaller steps. A wide range of models is covered by our 

assumptions. from simple random walks in one dimension to three dimensional random walks with 

any correlations within a step. Since the length scales involved can take any values the models can 

be used for flow in a fine grained porous medium or in a fractured rock.  

From tl.- statistics of the individual steps we deduce the distributions after a fixed time. and 

hence the dispersion coefficients. By doing this we are implicitly assuming that we can equate the 

probability density function for a single particle with the concentration. This seems to be a 

reasonable assumptiGn. If we solve the one-dimensional diffusion equation (8.1) for a pulse 

initially at the origin we get the gaussian curve, which we can interpret as a probability density 

function for our single particle, which at time T has mean 

•= uT (8.25) 

and variance 

= 2DT. (8.26) 

From these simple relationships we can deduce u and D.  

The basic model 

We suppose that the displacement on step j. (x1 .y .:,). and its duration t, are random variables 

with known probability dtnsity functions. The means and variances we denote by iL and o2 with 
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p suffices xy,z and t. The covariances we denote by a, etc. The random variables for each step are identically distributed and independent of all other steps. The first of these assumptions 
corresponds to statistical homogeneity of the medium, the second seems unavoidable and was 
discussed in the previous section.  

We denote the position after n steps by (X,,. Y,, .Z,) and the time T. We therefore have 

X,, = E, • y, z. = -, T. (8.27) J.- 
j 1i I 

After a large number of steps the joint distribution becomes multivariate normal. We 
concentrate on the joint distribution of X. and T. to simplify the analysis. Just how large n must be 
before we can use the normal we can estimate from the proof of the Central Limit Theorem given 
in section 8.2. from this we can see that we must have 

P3 (8.28) 

by taking the next term in the expansions we also have 

LA no 
(8.29) 

which is generally weaker than the previous condition but deals with cases where R3 is zero. In 
these formula we have used u3 and g to denote the third and fourth moments.  

Probability density for X given T 

If the above conditions hold for x and t we can write the joint probability density function of X 
and T, given n as 

P(X& 71n) -4 (8.30) 

where 

q I =no + 2 (X-n ,o(T-nI)/ (8.31) 

and 
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p = ar (8.32) 
0109 Oz0t 

is the correlation coefficient between x and 1.  

The probability density function for T alone, given n is 

_I1T-ftu,) 

P(71n) e (8.33) 
V/Sn ! 0, 

We are interested in the probability density function for X at given T. This is given by 

P ) ,P(X& 71n)P(n) 

P(XIT7) = PX =) n (8.34) 
P(X~ - P(7) !:P(71n)P(n) (.4 

All the P(n) are equal so. converting the sums to integrals we get the approximation 

f P(X&Tln)dn 

P(Al7) = " (8.35) 
f PA 1n)dn 

Evaluation of the integrals 

We wish to find the moments of this distribution, and so we must evaluate fX'P(X&Tin)dX.  
X 

To do this we write 

q (T2-no,) 2  (8.36) 

where 

W (X-n4,) (T-nu,) (8.37) W=v'VIvlp_,\ n~o. pn )(837 

We can then write 

f X'P(X&rn)dX = X'e-w dW P(fln) (8.38) 
x w
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where

X = vv5Pfl- 5 W+n"i +p !1 (T- npl) (8.39) 

for conciseness we will write 

a1  - a, = V1 ,I-PT a3  Pt (8.40) 0, 0 , 

and 

J= : f(aiT+azn'W+a3n) e-w (8.41) 
w 

J, is just a polynomial in n. since the range of W is -- to - and the . powers of n in the integrand 
always appear with odd powers of W. The first few values are 

0o = 
J, =a3n+a, T 
J, =.a7n+(a3n+at 7)2 (8.42) 
J3 =Ja-(a 3 n+a, 7)+(a3 n+a, T)3 

To evaluat, fJP( fln)dn and the denominator in (8.35) we need to evaluate 

,= fnPIf)d, (8.43) 
0 

for integtrp. This can be done by the substitution 

T-n (8.44) Vlo, n (.) 

by noting that 

,= 2+2GLv2 (8.45) 2 

n(v).n(-v)=T2 (8.46) 
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(8.47)
V _- -t4 r,((n(-r)P"*-n(lv))e-"" dv a, Vot(2p - 1 jf

Iftwe write I and s = -ET we find that 
1, PT

iv0 =I 

Ni =No•÷S--`sZ 

N, =N(=- 2 .. 3js2 +3s') 

N3 =No(- 3 +6Cn12 + I5•4s + 15S6)

(8.48)

Calculation of the moments 

We now have all the tools we need to calculate the various moments. The first moment is found 

to be

1110~; al 
,T+ Igo o 4• 91: lit (8.49)

which shows that for large T we have an average velocity u ---- as we would expect. The second 

moment turns out to be

= to -'--%'%" "-'U 

!A, .4: 1 Pr - 4, ,L +IL;
,•o: ,.o.o? ... :till- (8.50)

and so. for large T we have

D = (8.51)

Notice that the correlation between x and t has an effect on D which can be very significant. Finally 

we look at the third momen,

(xm+ f+_r+'-+!T• + ,2 tit, P,4/t (8.52)
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At large times this is proportional to T. so the distribution of X given T is not normal even though 

we have assumed normal distributions for X. and T,. However X does have a decreasing 

third moment. the rate of decrease depends on the statistics of the individual steps.  

General results 

The results above indicate that the probability distribution of a particle looks gaussian when the 

time is large enough, in the sense that the higher moments only increase linearly with time so that 

they become less important. There are two things which affect the time before we can say the 

distribution is gaussian. These are 

- the number of steps must be large enough to make the assumption that X. and 7, are 

distributed as a multivariate normal valid.  

- the time must be large enough for the skewness of the distribution to be unimportant.  

The first condition is given by (8.28) and (8.29) for both x and t. the second requires 

! -.--2. i << l•X'-.-• :-• (8.53) 

Examples 

In this section we look at some specific models for the individual steps. We start 'with the model 

we used 1-tfore and then move on to more complicated models with correlations.  

We use the model where all steps are the same length. 1. and the time for a step has probability 

density function ae-'. For this model we have 

1 -= 1 2 9 

2, = 0 l) = 0 l, =0 (8.54) 

This leads to the conditions 

n!>>2 

n>>6 

S>> 3 (8.55) 

The strictest of these is the last. requiring n» >>3. We saw before that by n =50 the gaussian looked 

a good approximation, which is in agreement with this. In the limit we find that
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D -. =(8.54

Saflmans' model 

Saffman (1959.1960) proposes a model for dispersion in porous media which, for the case of 

interest here. has Taylor diffusion equalising the concentration over the pore width and Poussei;:e 

flow in the pores. He takes fixed length pores randomly oriented. The flow in each pore is 

determined by assuming a constant pressure gradient in the x-direction. so flow is proportional to 

(cose) where 0 is the angle between the pore and the x-axis. As it stands this leads to an infinite 

o3 and so the Central Limit Theorem does not apply. Saffman points out that the diffusion time 

along a pore acts as a maximum for the time distribution, when this is taken into account a finite OT' 

is regained. He then has 

21 12 /. 3Uto ' 

21 12 
, = -3 o= =8 

, 42 

I:o 13 

,= -2 9£-., 
= 0 (8.57) 

12 

where I is the pore length. U is the average flow velocity. to L is the time to diffuse along a 

pore. with K the molecular diffusivity. In the limit we have 

( 3 Ut0  \858 
D = j~u log 3--l j (8.58) 

I 

If we take i=Icm. U=10--m/s we find that we must have the number of steps satisfying n-»>>17 

and a limitine value of D=6.78x 10- 8 m 2/s. If we take the larger values, more appropriate for a 

fracture system. 1= 10m. U= 10 -6M/s we find that we must have the number of steps satisfying 

n2>>500 and a limiting value of D=5.95x1O-Sm 2/s. In each case we have assumed
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K = 2x10-9m2 /s. The number of steps required here is very large because of the large cut-off 

time to.  

The dependence of the hydrodynamic dispersivity is a surprising result. It arises because of the 
way velocity is related to orientation. In a real system the fluctuations in pressure gradient would 

change this relationship and avoid the problem. In the next model we assume that four pores meet 
at an intersection, with random orientations, and that the flows are determined by the equilibrium 

state with the pressures at the far end of each pore satisfying the constant pressure gradient. In this 

way a pore perpendicular to the overall flow direction will still take flow.  

TIe random direction model 

Using the model proposed above we calculate the velocities in the pores by setting the pressure 
at an intersection to the average of the pressures at the far ends of the pores meeting there. These 
pressures are assumed to obey the constant pressure gradient. If the lengths or apertures of the 
pores were variable we would have to take an appropriate weighted average. The following 

calculation is for the two-dimensional case. If we again let U be the overall average velocity we 

find that the average for a pore at an angle 0 with x-axis is 

-(YCosO+0) (8.59)
a

where

3 1 a = 3+ 
8 t-2

(8.60)

The proportion of material going into any one pore is proportional to the flux, and hence to the 

velocity. The moments can therefore be calc, lated quite easily.

= 0.74820L 
U 

U, = 0.748201 

!3 
= 0.13744 U3 

OnL, = -0.08348
U

UZ.  

o; = 0.0652012 

= -0.5260513 

; -- 0.37500=2
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From this we find that we require nX>>32 and that the limiting value of the longitudinal dispersion 

coefficient is D = 0.24246/U. with transverse component D. = 0.250601U. This constant 

relationship between the two coefficients is not what is found numerically, implying that there is 

more to hydrodynamic dispersion in a fracture network than the random walk model can predict.  

The large n required implies that in real systems the gaussian approximation may not be good 

enough.  

8.4 Cut lattice model.  

The results from chapter 7 that need an explanation are that the longitudinal dispersion length 

seems to tend to a constant as the density increases. while the transverse component tends to zero 

faster than the separation between fractures. As the orientation varies the t.-anverse coeffi,.ient 

changes by a factor of two while the longitudinal component varies by a factor of four. At 450 the 

longitudinal component is 6 times the transver•. while at WY it is 20% less.  

In the work on flow through fracture networks reported in chapter -4 we found that the 

permeability of the networks could be predited quite well using a cut lattice. In particular the 

dependence of permeability on fracture density was predicted. using an effective medium 

approximation to the cut lattice.  

The success of this predictive tool there makes it a candidate for the prediction of dispersion 

coefficients. We look at the simp!est case. Aith fractures oriented -ither parallel to or 

perpendicutar to the flow direction, all with length 21. The fracture density is denoted by p. All 

fractures have the same aperture :. The cut lattice also has aperture t. and has separation distance 

d and proportion of missing links E.  

We relate the lattice parameters to the network parameters by equating the full and flowing 

porosities. Using the formulae for large densities we have 

2pi= 2 (8.62) 
d 

2p(1-2)= 21(1-E) (8.63) 

where X=2p1 2 is the average number of intersections per fracture. Thus we are led to set
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d (8.64) 

Piz, (8.65) 

We note in passing that 4=1. which means that the average uninterrupted path is half the 

fracture length.  

For the permeability we simply took the effective medium approximation, but dispersion is 
more difficult. There is no dispersion without the cut links, it is not simply a perturbation abou: the 
full lattice value. To try to get the dependence of dispersion on fracture density we might argue as 

follows.  

Suppose that each missing link affects only those particles which would have passed through it.  
and that it contributes to the variance of the particle positions by an amount 42oa. The d here is 
the scaling factor for different size lattices. "-nen the overall variance after moving a distance X 
across a network will be this time the number of missing links encountered. So 

S.d-o. = (8.66) 

The time taken for a particle to cross the distance X will be insensitive to the density at high 

densities, and so we have a dispersion coefficient 

D- 12. (8.67) 

Clearly the same argument applies for the transverse component. So this gives both coefficiernts 
going to zero very quickly, much more quickly than is observed in the longitudinal case, and 

slightly too quickly in the transverse case.  

To explain this we could argue as follows. Suppose that the distance dispersed by a missing link 
is large. so that there is interference between links causing a cut off in the interlink distance. We 

must replace dox by -!a-, since -- is the distance between missing links. If we work through the 

calculation we find 

D"-1. (8.68) P
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Even this falls faster than the observed longitudinal component. Clearly however this type of 

model could explain the transverse coefficient.  

We can get a constant D if we suppose that the important distance is the distance between 

o02d 2 

missing links in a single direction. In that case the variance for each missing link would be X, Eo 

and 

D = constant. (8.69) 

At this time it is not clear whether the correct behaviour can be deduced from a cut lattice model 

or if the network results are fundamentally different.
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Chapter 9 An Example of a Full Network 

In this chapter we present the results of transport calculations in a full network, that is in a 

network which might be taken to represent the fracturing in a large region around a potential 

repository. The example is not intended to represent any particular site but rather to indicate how 

a real site might be modelled, and to discover any unforeseen problems that arise.  

The transport calculations were done using a modified version of the particle following program 

described in chapter 7. The main modifications were 

- the top boundary is not straight 

- the fracture density casn vary from point to point 

- the fracture aperture can vary from point to point 

- the particles can start from any specifiecd positions 

- the output at each position against time is recorded.  

These have been implemented as follows.  

The height of the top boundary is given as a function of the horizontal coordinate. This funztion 

is used in all calculations of intersections with the boundary.  

The %ariation of fracture density is achieved by supplying a mapping function. This maps 

fracture centres from the specified generation region to the solution region. Any density variation 

can therefore be specified. Fracture sets can be mapped independently.  

Fracture apertures are made to vary by specifying a multiplication factor which is a function of 

position. The aperture of each fracture is chosen from the original distribution and then multiplied 

by this lactor. evaluated at the fracture centre.  

The particle start points can be anywhere in the region. The nearest intersection that is not a 

dead end is used. For each run any number of different points can be specified. with any number of 

particles at each.  

The particles will return to the surface at a boundary intersection. As each particle arrives the 

arrival intersection and time are recorded for later processing. In the example here we k.se this 

information to plot the spatial distribution of the first 10%. next 40% and final 50% of the 

particles.
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The example used initially had a top boundary with high ground at each end and a valley 

between. The fracture density was higher near the surface. and the fracture aperture was also 

higher there. It was found that the slight variation in surface height caused large flows near the 

surface. so that all the particles finally emerged at or near to the lowest point. In a real system 

there would generally be a layer of soil or highly fractured rock at the surface which equalises 

pressure differences. It is the arrival at this layer that is of interest, and so the example finally used 

has a totally flat valley bottom.  

Figure 9.1 shows the example used. The side and bottom boundaries are no-flow. There is a flow 

from each end to the centre. caused by the hills. Between 2400m and 25000m from the left end is a 

zone of wider fractures. In this zone the fracture aperture factor is constant while elsewhere it 

decreases with depth Four start points are indicated, in fact for each of these the particles were 

started from four points at the corner of a 100m squa-e. Full details of the problem are giver 

below.  

Region 0 to 7000 metres by -2500 to height(x) metres 

Height = 100+300cos -t x<20 0 0 

4000 

Heigh, = 100 2000<x<5500 

Height = l00+200cos:t7000-x x> 5-Wo 0 Oc 3000

Orientation 

Half-length 

Basic Aperture 

Basic Density 

Orientation 

Half-length 

Basic Aperture 

Basic Density 

Fracture mapping.

Fracture set I 

0(±80 to horizontal. Uniform distribution.  

mean 120m st. dev. 40m. -ye exponential.  

50gnm ±25pm. Uniformly distributed.  

10-4m-
2 . Into region 7300On by 3200m.  

Fracture set 2 

750±80 to horizontal. Uniformly disti ibuted.  

mean 120m st. dev. 25m. -ye exponential.  

50yurn -251tw.. Uniformly distributed 

8x10- 5 m- 2 . Into region 7300m by .'200m.  

x unaltered, y'=550-2000a+1200a2 where a 3200 a=3200"
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Aperture factor. I if 24 0 0<x<2500 or y>0. Otherwise 400--" 

For the particular realisation used here there were 3489 fractures, with 8758 intersections after 
dead.ends had been removed.  

Four start positions were used. The first run started 2500 particles at (1000.-500). (1000.-600).  
(I1K0.-50X)) and (-I l(X).--60(). The other runs also started particles in a 100m square. the top left 

comer being at 14(XX).-500). !11000.-1000) and (4000.-1000).  

For each run the arrival curve against time was plotted. These are shown in figures 9.2 to 9.5. In 
the first run particles arrive very quckly, after just two years. with 90% arriving by 15 years.This is 
because the flow is to the fracture zone and then up to the surface. In the other cases the particles 
take much longer to reach the surface. In case 2 this is because the start points are not well 
connected to the surface, and in the other cases because of the deeper start points. It seems that 
for case 3 there is no route to the surface via the fracture zone. presumat-:v because it is not well 
enough connected to take flow from -100(in to the surface. Case 4 takes only twice as long as case 
three despite the reduced fracture density and aperture at depth, the start points must be in a 
better connected zone than the a~erage for that Jepth.  

The positions at which the particles arrive are shown in figures 9.6 to 9.9. The arrival positions 
for the first 1000. the next -U4% and the final 50% are shown. The distances are the percentage 
distance across the rezion. the fracture zone is therefore 34 o 35. It seems that no particles arrive 
directl,. from the fracture zone. but the aperture increase is for fractures centred in the zone so 
there will be wider fractures for a few hundred metres either side of it.  

As Ae would expect, the positions where particles first arrive are generally the positions where 
most particles arrive in all: although for case 3 arrival position 43 takes non= of the first 10% and 
.et takes 36% of the total, while the three intervals taking 99.5% of tme initial arrivals take just 4% 
of the second half arrivals.  

"Ve note that in all cases there is very little lateral spreading of the particles.  
In general then Ae have shown that transport through large fracture systems can be calculated.  

with the system parameters tailored to the site in question. An indication of arrival positions can 
be gained. For the particular case used here there is little lateral spre2ding of the particles. In 
general the initial arrival points indicate where the most will arrive, with a notable exception in 
case 3.  
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Chapter 10 Network Models in Three Dimensions 

10.1 Introduction 

In this chapter we collect together some ideas on the extension of network models to three 

dimensions.  

In a real fracture system fractures are nearly planar openings in a three dimensional rock mass.  

The shape of the fractures in their plane can vary., they may have variable apertures. and 

channelling may occur. Even when we simplify this system and consider only planar parallel sided 

fractures. rectangular in shape. modelling is very difficult. Finding how such a system of fractures 

intersect does not present any great problems. it has been done for very larRe systems in order to 

look a. connectivity, see chapter 3. Once a flow field has been calculated. linding the paths of 

particles by a particle following method would not be very different to the two dimensional case 

and could be handled without much difficulty. The problem is finding the flow field. In two 

dimensions this required simply solving a set of conservation equations. one for each intersection.  

with pressure specified on the boundary of some region. In three dimensions the fracture 

intersections are line segments. and the fractures between them are two dimensional planes where 

complicated flows can take place. It is not simpla to relate pressure at intersections to fluxes and 

the two dimensional technique cannot be directly extended.  

Let u: examine what equations we need to satisfy.  

(iP At each intersection there must be conser.'ation of mass. This might apply point by point or 

for the intersection as a whole if there is flow down the intersection.  

(ii) Within each fracture plane we must satisfy the Navier-Stokes equations. which for our case 

of very slow flow leads to a linear relationship between pressure and flow.  

(iii) Pressure must be continuous everywhere.  
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10.2 Pressure formulatio

We could take pressure as the basic variable. just as we did in two dimensions. We assume that 

the head losses at intersections can be ignored so that each point along an intersection has a unique 

pressure. This pressure is then discretised. by finite elements say. so that the variation along the 

intersections is represented by a small number of nodal values. We could allow flow along the 

intersection, or not. as appropriate. If we assume no flow along the intersection ',e proceed as 

follows. Within each fracture we calculate the velocity field as a function of the nodal pressures.  

This gives the flux into or out of each point along each intersection. From these we can formulate 

a conservation equation for each intersection. The simplest way to do this would be to look at the 

fluxes at the nodes. It is better to take the flux along each intersection weighted by each basis 

function. This is because it gives true mass conservation. since the sum of all basis functions on an 

interscction is unity, and because it leads to a symmetric system of equations as we shall see later.  

The important thing that makes the method simple to implement is that tht. velocity and hence 

the Ilux., are linear combinations of the nodal pressure values. We write r,,'" for the integrated 

flux time•, the rth basis function when the pressure is unity at node s and zero at the other nodes.  

'hat r; the pressure is equal to the sth basis function. Here r and s are bo!h nodes on the same 

fracture From this ,e can see that the flux into the intersection times the rth basis function when 

the nodal pr,-Asures arc P is given bv 

S~(10.1) 

for fracture k. This leaos to an oserall set of equations for conservation 

V'F,,P, =0 for allr (10.2) 

where 

r,, =Y d'.(10.3) 

It is not immediately clear from this that F,, is symmetric. We shall prove that each PP is 

s\,mmctric tor a \ide class of fracture shapes. from which it follows that F,, is also symmetric. The 

example of section 10.4 will show the symmetry for one particular case.  

We have a number of lines in a region bounded by some no-flow boundary C. Each intersection
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has a number of nodes, with each node we associate some basis function. These basis functions are 

defined only along the lines. Usually they are piecewise polynomials which take value one at one 

node and zero at other nodes, but this is not relevant for our proof. We shall write *,(I) for the oth 

basis function at the point I on the lines. The pressure along the lines is denoted P(l) and the flux 

into the line y(l). These are related by a Green's function G(U.Y) through the equation 

P(1) f fG(l.l')y(l')dl' (10.4) 

where the integral is along the intersections. Here G(I.I') is the pressure at I for a unit sink at I' 

with a matching unit source at some other fixed point, subject to no-flow boundary conditions on 

the curve C.  

If P(I) = OJ(I) corresponds to a flux y,(1') we have 

0,(I)-= fG(I.y(')dI'. (10.5) 

Our definition offj is 

S= 54()7,(l,(),l. 10.6) 

Substitutinj (10.5) into (10.6) we eet 

,,= dlfd'G(l.,')y,(l')-,,(I). (10.7) 

Therefore in order to show thatf,, =f,, we need to show that G(i.I)=G(I.I). In order to do this we 

will use tne complex potential and conformal mappings.  

If the region bounded by the curve C can be conformally mapped onto the upper half-plane.  

with the curve C going to the real axis. then the result follows from the following argument.  

Let us have a point sink at a with a corresponding point source at infinity. Then the complex 

potential at z is given by 

- -(log z-a + log z-a). (10.8) 

The second term is from the image giving no flow across the real axis. The pressure is the real part 

of this, and is unchanged by switching a and z. since the real part of the logarithm is unchanged if 

the argument changes sign or is conjugated.
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So for this case we have the required result. When we do a conformal mapping the source at 

infinity will be mapped to a point on the boundary C. In all cases the total flux into the lines will be 

zero :o the strength of this source ',ill be zero 

It is a consequence of the Renmann Mappine Theorem i Nevanlinna and Paatero. 1964) that any 

region bounded b% a piecewise analytic Jordan curve can be mapped conformally onto the half 

plane. %ith the boundary being mapped continuously. The fracture matrix will therefore be 

symmetric for all likely fracture shapes.  

The symmetry of F,, means that (10.2) can be solved more quickly. and can be stored more 

efficiently. The solver used in the two-dimensional system could also be used here. This type of 

matrix equation is well known in finite-element analysis. Effectively each fracture is acting as a 

finite clement and the P,4' matrices are the element matrices which are assembled to give F, . If 

therc are a large number of nodes in total it may be sensible to use a frontal solver This does not 

asemble the full matrix at once. rather it bnngs in the element (or fractu,,:) matrices only %%hen 

the,. are needed and eliminates -,ariables once they are fully summed, that is once all fractures on 

v hich occur ha% e been included.  

With this formulation ue can include fixed pressure boundaries simply be replacing the 

corresmnding equation b% the assignment to the required value. Specified fluxes can also be 

included ,,uitc simpl%. by adding a term to the right hand side of the equations.  

It flov alone the intersections is to be included then]i', %ou~d be modified. Care would have to 

hc taken not to double count the effects of the intersection by including it in both fractures.  

The fracture matrices can be calculated in any way. without modification to the overall method.  

This alluAs the inclusion of the different fracture characteristics with little additional effort. The 

fracture matrices could be approximated crudely or calculated accurately with. say. a finite 

element scheme in ea;.h fracture. A library of matrices could be formed to allow quick calculations 

t.) be made. Evcn for approximate methods the fracture matrix should be made syinmetric. Also 

the overall conservation requires 

4' = 0 for all k. (10.S) 

Note that the smmmetric relationship 

Z., = f ) for all k (10.9)
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also has a physical interpretation. It says that there is no flow if all the nodal pressures are equal.

10.3 Flux formulation 

We could use the fluxes at the intersections as the basic variables. The advantage of doing this is 

that the analytic solutions within fractures are easier to obtain in terms of fluxes. However it would 

be impossible to specify pressure boundary conditions. We feel that this would be too big a 

handicap and will therefore not pursue this method further.  

10.4 An example of a fracture matrix 

To show one way in which the fracture matrix could be calculated we have used the finite 

element program NAMMU (Rae and Robinson. 1979) to calculate it for a simple case. VWe take a 

square fracture. 441m by -Ore. with two intersections. Taking one corner of the fracture at the 

origin thtse run from (10.10) to (10.25) and from 125.20) to (25.30). The pressure is discretised by 

linear functions. giving two nodes on each fracture which sre numbered as follows. Node 1 is 

atl 10.10) with node 2 at 110.2-5) and node 3 is at (25.20) with node 4 at (25.30).  

For flow between two parallel planes we can use the porous medium program with permeability 

h
2 

replaced by a transmissivity equal to j-. where h is the fracture aperture. The flux is given by h 

times the calculated Darcv velocity. We have taken the factor -h out of the fracture matrix in 
- te24s 

presenting the results.
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The pressure contours for each of the four cases are shown in figure 10.1. The resulting fracture 

matrix was

Flux for node I 

Flux for node 2 

Flux for node 3 

Flux for node 4

P-I at P-I at 

node I node 2 

-1.0311 0.3527 

0.3528 -1.2389 

0.4244 0.4290 

0.2534 0.4569

The sliaht lack of symmetry here is due to the approximate nature of the finite element method.  

The rou sums are all very small, because when the nodal pressures are all the same there is no flow 

in the finite element problem. The column sums are less good. because of discretisation errors 

from the finite element grnd.
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P-1 at 

node 3 

0.4249 

0.4293 

-1.2718 

0.4183

P= I at 

node 4 

0.2535 

0.4569 

0.4184 

-1.1286
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Chapter 11 Induding Other Transport Phenomena 

The models used in this work have looked simply at convective transport of contaminant in 

fracture networks. There are other important phenomena to be considered and the ways that these 

might be included are discussed in this chapter. The chapter is in three parts. In the first we give a 

description of the phenomena that we wish to look at. in the second the extension of the current 

models to include some of these is discussed, and finally, in the third section. we describe a 

different method which has the ability to model a wide range of phenomena.  

11.1 Transport phenomenm In networks 

The models used earlier deal with transport of corntaminant by convection. Within each fracture 

we might also wish to include 

- molecular diffusion or dispersion 

- sorption (equilibrium or kinetic) 

- matrix diffusion 

- radioactive decay (single species or chains).  

Each of these is discussed in turn. Throughout we use C to denote number of atoms per unit 

volume of water.  

Convection 

Contaminant is simply carried along with the flow. The governing equation is 

3C + ý-c= (11.1) 

~Tr J 
wher. u is the flow velocity.  

Molecular diffusion or dispersion 

We include here any mechanism which acts diffusively in the fracture. With convection the 

governing equation is
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+--3C + DLC (11.2) 

T a- x 

%here D is the diffusion coefficient.  

Sorption 

Sorption is the process by which contaminant becomes chemically attached to the fracture walls.  

The equation used depends on the rate of the chemical processes. If they are fast we use 

equilibrium sorption. otherwise we use kinetic sorption. For equilibrium sorption there is a 

constant ratio between the amount sorbed and the amount in the flow. while for kinetic sorntion 

the transfer rates are included in the equations. In each case S denotes the number of atoms sorbed 

per unit area of wall. In either case we have 
3C •C 1 3S 

c- --- .... (11.3) 
3a t x bax 

where 2b is the fracture aperture. The equation for sorpdion is 

Z-S bk, C - k,S 114 
zt 

k %%here k, and k, are the rates for sorption and desorption. If the rates are fast we have S= -- •C.  

We then %rite R= I -,. R is the retardation factor. and (! 1.) and (11.4) are replaced by 

R S - i--- =0. 11.5) 
31 aX 

Matrix diffusion 

The fracture wails are not quite impermeable. Some contaminant will diffuse into the pores in 

tw: walls. Alowing up the transport. We model this by introducing C., the concentration in the 

pores. which is a function of oosition in fracture. time and distance into the rock. %'. In the fracture 

we have convection with a source from the walls (Lever et al.1982. Lever and Bradburv.1983) 

R-.ýC D, - c= (11.6) 
3t 3x b Sw 

and in the rock we have diffusion 
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CE --2 -- = D, a'C: (11.7) 

where D, is the intrinsic rock diffusion coefficient and ap is the rock capacity factor, which may 

include a factor for equilibrium sorption in the rock matrix.  

Radloactive decay 

If we are concerned solely with the decay of a single species then we have simply 

a + - = -XC (.8) 

at ax 

where ). is the decay constant.  

If a chain is to be modelled then we have 

ac + ac( -- + y X -I7 = C, + )',_1C,_1119 

where C, is the concentration of the ith species in the chain and X, is the corresponding decay 

constant. For the first member of the chain the i.,-; C,0_ term is not present.  

Boundary conditions 

For each case we must have the appropriate boundary conditions. For first order equations we 

will require the concentration at one end. For second order equations the concentration at both 

ends. or concentration and its first derivative at one end is required. For the matrix diffusion 

equation (11.7) we can either have no diffusion beyond some set distance into the rock. or allow 

diffusion to infinity with zero concentration at infinity.  

Other time-dependent effects 

In certaip circumstances the parameters of the networks might be time-dependent. For example 

fractures may close-up as they are mineralised. or they may open up if a pumping test is done. If 

the waste is emitting heat then the viscosity may change. as well as sorption constants.
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t11.2 Extensio of current models

The inclusion of equilibrium sorption and radioactive decay for a single species presents no 
problems for any model. Equilibrium sorption leads to a scaling of the flow velocity by the 
retardation factor. Radioactive decay can be ignored until the end when all concentrations can be 

reduced by the appropriate amount.  

Kinetic sorption could be added to the mass-lumping method by introducing a second mass for 
each section. to represent the mass of contaminant on the wall. Mass could then be transferred 
between the two compartments on each timestep as required by (11.4).  

Matrix diffusion could be included in a similar way. except that more than one extra mass would 
be required for each section. representing the mass at various distances into the rock.  

Deca% chains could be added to mass-lumping or particle following. If sorption is also to be 
included with different retardations for the different nuclides then the p--ticle following method 

cannot be used.  

Molecuiar diffusion or sorption could be included in the mass-lumping method by transferring 
ma.ss to adjacent sections on each step. It could also be included in the particle following method.  
hb% introducing a random component into the travel times for each link.  

Other ,me-dependent effects come into tuo categories. those %% hich modify the flow. and those 
• hich affect only the transport parameters. If the flow is affec:ed then the n1o`, equations must be 
re-*olked from time to time. This will cause problems for both mass-lumping and particle 
tollo ki n. requiring major modifications in both methods. If only transport parameters are 
changing then both methods. if applicable to the fixed parameter case. could be modified quite 

'imply to copc.
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11.3 Modelling network transport using Laplace transforms

For many of the phenomena of interest we can write down a linear partial differential equation 

governing the transport of contaminant in a single fracture. Analytic solutions can be obtained, in 

many cases by using a Laplace transform. In general these solutions are complicated, requiring 

significant computational effort to evaluate. Moreover any attempt to chain together such 

solutions quickly becomes impractical. The technique proposed here inverts the Laplace 

transforms numerically, and can be used to find the solution for a single fracture or for a network 

of fractures.  

The method described below is for cases with no second order terms in the fracture transport 

equation. that is no diffusion in the fracture. This restriction means that the concentration value 

against time at one end of a fracture is sufficient to give the full solution.  

Description of the network.  

We assume here that the flow through the network has been calculated, either by the program 

described earlier or in some other way. A network can be described in terms of its intersections 

and the links between them. Some intersections will be linked to external sources or sinks. In 

general. the majority of intersections will be internal. recei~ing contaminant from from other 

"upstream intersections, mixing it and passing it on to the next 'downstream' intersections. The 

link.; through which the contaminant moves from intersection to intersection will have certain 

properties which are basically the coefficients of the differential equation governing transport. For 

the purposes of this section it is convenient to regard the water flow rate as a property, since it is 

known. The other properties will include length, aperture. sorption coefficient, rock matrix 

diffusion zoefficients. etc. There may be some global properties. such as decay rates. but these can 

all be included for each link. The network is fully described by the list of source intersections, the 

list of next downstream intersections for each intersection, the properties of each link, and the list 

of output intersections.  

Given the network description and the contaminant concentrations against time at the input 

intersections we wish to find the contaminant concentration against time at the output 

intersections.  
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The transformed problem

The method we use is as follows. Instead of using concentration 3g,'inst time we use the Laplace 
transform of this. This makes the problem tractable because the Laplace transform of 
concentration at the downstream end of a link is given by the Laplace transform at the upstream 
end times a transfer function. This transfer function depends on the properties of the link. but no* 
on the concentrations. If we write C,'*s) for the transform of the concentration at intersection i 
then we have 

S= v1,(,2 (s ,t1.lo) 

where TM() is the transfer function for the link fromj to i and is zero unless i is at the downstream 

end of a link fromj. If we let T,(s) = 1 Nwe can write 

rTs'(s) = 0 'or als i. (11.11) 

"The transfer functions here include the factor to take account of mixing.  

The problem can now be solted as foilovs. WV,- start with the transformed concentration. C . at 
each ,ource intersection. Then ,e simply cycle round, each time calculating C for every 
intersection %hose immediate upstream predeceý,sors have been dealt with. Eentua!lv we will 

hate cot the transform for e'erv intersection and in particular for the output intersections. We 
nom inmert the transforms to find the concentrazion against time at the intersection of interest.  

There are three things we need to know: the input transforms, the transfer functions, and how to 
invert the transforms.  

Input Transforms 

Any function could be used for the input but normally the input would be one of the following 
Delta-function C(t) = C,,6t(-f,) 

C(s) = Coe -' (11.12) 
Step-function C({) = 0 for t<r: 

C(s) = Co for i>10 

C'(s) =C - (11.13) 

S 
Decaying radioactive source C(t) = 0 for r<to 
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Finite length pulse

C(t) = Coe-" for t>to 

C'(s) = Co
S+k 

C(t) = 0 for t<ro or t>tj 

C(t) = C0  for to<t<tj 

C '(s) = C o s

Fracture Transfer Functions 

We give examples for the cases listed in section 11. In all cases we denote the fracture length 

by 1.  

(1) Pure convection 

For pure convection the governing equation is (11.1) and the corresponding transfer function is

__
T(s) = e " (11.16)

12) Convection with equilibrium sorption and matrix diffusion 

In this case the governing equation in the fracture is (11.6). with an additional retardation 
ZC 

factor. R. multiplying the =- term. The equation for the rock is (11.7). We take the rock 

boundary condition to be zero at infinity. The transfer function is then 

-) a T(s) = eU

of = SR + s 
b (11.17)

(3) Two radionuclides in a chain with different retardations 

In this case the equations are (11.9) with the addition of retardations. R, and R,.

iC, ac, 
R,_5f + u- -4-x = XIR 1CI - XR,C, 

act ac _ 
R "-7- + u -"" = XRC 

I X I

(11.18)
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Instead of a single transfer function we have a two by two array relating the output transforms to 

the input by 

C2 W0)=T, I () C I (s) + T., (s) C' In S)(1.9 

Since the output of nuclide 2 does not depend on the input of nuclide I T1:(s)=0. The other values 

are 

_-' 

T.,(j) = 

T.. (s) = e (11.20) 
--at 

T..zs) = -• -• 

"%%here a=(s+.,t )R, and J=(s-t.. R.  

ln,.ersion of the Laplace transform 

The imersion tormula for Laplace transforms is 

f Ir f e I.'..  .t(,) = j2.~e't'-- Bi•d 3  (1I1.21 ) 

here C is a con:our in the complex plane which runs to the right of all singularities of f (s). The 

contour used analvticallv is the Bromwich contour running from a-;% to a+ix where a is large 

enough to satisfy the condition on singularities. Numerically this contour is no use. The integrand 

oscillates and large errors are introduced. The curve C should be chosen to minimise tht 

oscillations. Talbot 11979) proposed a method which uses the best curve for one particular 

transform and applies it to all transforms. This works well in many cases and has been used to 

inlert some single fracture transforms (Lever et a!. 1982. Hodgkinson and Lever. 1982.  

Hodekinson et al. 1983). Unfortunately one class of problem that it cannot deal with is where 

there is a discontinuitv in the solution. In this case the method cannot be used for times before the 

discontinuitv. since the integrand of (11.20) does not go to zero at the ends of the contour C. For a 

network the solution will have many discontinuites. corresponding to the differing path lengths.
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and so the method does not work. It may be that similar methods could be developed that would 

be able to deal with this case.  

The hope is that a method can be found which gives the original function at any time from a 

small number of values of the transform. These values could be found in the way outlined in 

section 11.2. Until such a method is found this technique cannot be used.
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Chapter 12 Summary and Conclusions 

It is important that radioactive waste is disposed of in a safe and reliable fashion. When 

considering disposal underground the possibility of groundwater carrying waste back to the surface 

must be considered. Modelling this process has generally been done using continuum models, but 

for fractured rock it is not clear that these are valid. If they are valid then the parameters for them 

must be found.  

This study has looked at various aspects of flow through fractured rock. Its purpose was to 

develop a better understanding of the processes that occur in fracture systems. Statistical fracture 

networks were used to do this. In these the fracture properties are specified by probaoility 

distributions. Realisations of these distributions are generated and analysed numerically.  

Averages and variabilities between realiiations have been found and the effect of varying the 

statistical properties assessed.  

The study was in three main sections: connectivity, flow and transport.  

The connectivity of fracture networks is closely related to percolation theory. The %,ork.  

described in chapter 3. concentrated on finding critical densities for various systems. In order to 

find these a computer program was developed to run on the CRAY computer at Harwell The 

general program can deal with all distributions of orientation and length. A more specialised 

program %as developed from this to deal with the case of fixed length. orthogonal systems. This 

can analkse systems of 250.000 fractures in under 8 seconds.  

As a result of these studies it has been found that the critical density of networks varies %P ith the 

network size used to calculate them. By using finite-size scaling arguments the asymptotic critical 

density can be deduced. It has been discovered that the average number of intersections for each 

fracture at percolation is insensitive to the fracture statistics. In two dimensions the %alue is 

between 3.1 and 3.7 while in three dimensions values of 2.0 and 2.5 have been found. For cases 

where fracture length varies the average number of intersections is taken as a weigiited a'VeragC 

with weights proportional to the fracture length.  

A simple argument was presented to relate the critical densities in networks to the critical 

probabilities in lattices. The predictions that this makes agree well with the numerical results.  

In chapter 4 we looked at the flow of water through fracture networks. This was done by using 

another computer program. The techniques used in the connectivity program proved invaluable 
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for finding the intersections in large networks. The matrix equations for pressure at the 

intersections were solved using a specially developed variable bandwidth solver.  

By calculating the effective'permeability of many realisations of the fracture statistics the 

average permeabilities and their variabilities were found. The permeability depends on the size of 

the network, which implies that small scale expenments may be misleading. The network size har 

to be at least 10 fracture lengths for the variability in permeability to be less than 10% of the mean.  

The dependence of permeability on fracture density, length variability and aperture variability 

was investigated. It was found that the variation with density could be predicted by a cut lattice 

model, which also gave an indication of the permeability variation with spread of fracture length 

and with network size. The permeability change with aperture spread was more difficult to predict.  

It depends on the fracture density, because at low density the flow is predominantly along chains 

of fractures while at high densities there are many interccnnected paths.  

The transport of radionuclides in the groundwate: is of most importance to radioactive w.aste 

disposal. In this study we concentrated on the transport by convection in the flow with mixing at 

the intersections giving hydrodynamic dispersion. Two computer programs were developed from 

the flow program. One of these. the mass-lumping program described in chapter 6. was designed 

to be extendable to include other processes such as rock matrix diffusion and sorption. The other.  

the particle following program described in chapter 7. is specifically for convection and mixing. It 

is fast. enabling many realisations to be used. with large numbers of particles in each.  

Most of the work on transport was in the system vwith two orthogonal fracture sets. with fixed 

length and fixed aperture fractures. The effect of changing the fracture density and network size 

was investigated. In chapter 5 we derived a number of different ways of getting the continuum 

parameters from the particle arrival time data. The discrepancies found between the parameters 

derived in the different ways shows that dispersion in networks is not fully diffusion-like. The 

discrepancies were found to persist when fracture density and network size were increased. The 

origin of this discrepancy is the long tail of the arrival times, caused by some particles passing 

through fractures with very little, and hence very slow. flow.  

The average particle velocity was found to be related to the Darcy velocity by the flowing 

porosity, as calculated from geometrical considerations.  

The longitudinal dispersion coefficient was found to tend to a constant as fracture density 

increased, while the transverse component tended to zero surprisingly quickly.  
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Some models of hydrodynamic dispersion were looked at in chapter 8. Random walk models 

%ere studied and some general results obtained. These were applied to some particular cases.  

lrhc.s models were unable to predict the observed behaviour. The cut lattice model, which had 

succestullv predicted permeabilities. %%as considered. Some arguments which might explain the 

obsersed behaviour were put forward. The numerical results are still not understood.  

In chapter 9 the particle following method was generalised to handle a network model of a large 

rceion surrounding a potential repository. This indicated the son of results that could be obtained 

and the problems that arise.  

In chapter 10 the extension of the methods to three dimensions was discussed. It was snown that 

the fractures could be thought of a elements in a finite-element problem. with fracture matrices 

being assembled to form the overall matrix equation for the pressures. One such fracture matrix 

was evaluated.  

In chapter l I the inclusion oi other phenomena was discussed. Extensions to the existing models 

ecre conidered and a nem method based on Laplace transforms was proposed.  

In conclusion, this work has shown that connectivity and permeability of fr-cturc networks can 

he understood in terms of quite simple models. enabling critical densities and permeabiities to be 

estimated. Dispersion is much more complicated. even predicting the dependence on fracture 

densit% could not be done- At the ,•ame time the results have shown that interpreting experimental 

re'ults in terms of a diffusion equation Aill give misleadinv .alues for the parameters. It is clear 

that a better understanding of h,.drod'.namic dispersion in fracture networks is still required.  
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Figure 1'.. Finite element grid for typical three-dimensional continuum groundwater flow 

calculation. Only the surface elements are shown. The dark bands are fracture zones 

modelled by three ro',s of thin elements.



Figure -. 1. Typical percolating system. This example is from the case with uniformly distributed 

orientations and fixed length fractures.



Figure 3.2. The percolating cluster from the system shown in figure 3.1. All the fractures in the 
cluster which reached all four sides are shown.
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Figure 3.3. Notation for intersecting fracture planes.
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Figure 3.4. Notation for calculating the average number of intersections per plane in 
three-dimensional systems.
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Figure 3.5. Notation for calculating the average number of intersections per plane in 

three-dimensional systems.
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Figure 3.6. Criticai density versus region size. The fractures were all of length 2 units with 
orientations in one of two orthogonal directions. The solid lines show the best fit to the 
fiaite-size scaling curve with v=I and with v allowed to vary.
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gradient and half perpendicular to it. Thl solid lines show the theoretical predictions.

j-16 x 1

6I

I

I

,-J 4 

Ia 

a.
I.

K 
L21--

IL
1 -

f

0 0
I I

I I I I I A

9F

7

5 ý

31-

II



10-16 x 25 

20 

15

Uniform Orthogal 
froctures(.) fractures (xW 

IJ10

a.Theory Theory 

5

0 2 4 6 8 10 12x10- 3 

FRACTURE DENSITY (m- 2 ) 
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prediction.
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Figure 6.2. The network used for the mass-lun.ping example. The region is 200m square. Half the fractures were oriented parallel to the pressure gradient and half perpendicular to it. The 
fracture length was 50m.
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Figure 9.2. The number of particles arrived against time for starting position 1.
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Figure 9.4. The number of particles arrived against time for starting position 3.
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Figure 10.1. Pressure contours calculated by NAMMU for pressure set to one at each of the four 
nodes in turn as calculated durng evaluation of the fracture matrix for this fracture.


