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ABSTRACT

In order to evaluate the safety of radioactive waste disposal underground it is important to
understand the way in which radioactive material is transported threugh the rick to the surface. If
the rock 1s fractured the usual models may not be applicable.

In this work we look at three aspects of fraciure networks: connectivity. flow and transport.
These are studied numenically by generating fracture networks in a computer and modelling the
proces~ss which occur.

Connectivity relates 1o percolation theory. and criticz! densities for fracture systems are found
in two and three dimensions

The permeabihity of tvo-dimensional networks i< studied. The way that permeability depends
on tracture density . petwork size and spread of fracture length can be predicted using a cut lattice
maodel

Transport through the tracture network by convection through the fractures and mixing at the
intersections s studied  The Fickian dispersion equation does not describe the resulung
hdrodynamic dispersion

Extenvions to the techniques to three dimensions and to include other processes are
discussed
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Chapter 1 Introduction

Radioactive waste arises from a number of sources. These include the reprocessing of fuel [rom
nuclear power stations. equipment used to handle radioactive materials. contaminated clothing.
medical equipment. etc. If reprocessing is not done. 1t may also include unreprocessed fuel

elements.

This waste must be dealt with in a safe and reliable fashion. Because some of the radioactve
constituents of the waste are long-lived the disposal option chosen should ensure long term
isolation of the waste. Many options have been put forward. These range from exotic schemes
such as disposal in outer space or at a subduction zone between tectonic plates to more practical
schemes such as disposal into or urder the sea or burial on land (Koplik et al.1982). In the United
Kingdom the main focus of attention has been burial on land although some very low-level waste

has been dumped at sea.

Radioactive waste is categorised according to its activity. and the disposal option chosen will

vary from category 1o category.

High-level waste (HLW) is that which contains short-lived radioactive mate-ial. It arises from
the reprocessing of fuel elements if this is done. or consists of the unreprocessed spent fuel
elements themselves. In the U.~. above ground storage is used for the small amount of HLW
produced. HLW emits large amounts of heat for the first 50-100 vears. after this it can be dealt
with more permanently. Once the short lived material has decayed the waste contains much longer
lived materials. some with half-lives of over a million vears. and so the final disposal must involve

lor.g term isolation.

Intermediate level waste (ILW) arises from reprocessing. The main difference between ILW and
HISV 15 in the initial heat emitting stage. [ILW emits only small amounts of heat and much earher
disposal 1s envisaged. For ILW and HLW long term isolation is required and so bunial deep

underground is indicated.

The final category is low level waste. This consists of slightly contaminated clothing and other
matenals which have come into contact with radioactive materials. It has fow activity for its

volume und can be buried in shallow sites on land or at sea.

Whatever the type of waste we must ensure that the chosen disposal option is safe. At a

technical level this involves modelling the repository and its surroundings from the time of disposal
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far into the future. One important component of any such model 1s the groundwater flow, which

may carry radionuclides from the repository back to the surface and hence back to Man.

The tyvpe of rock in the vicinity of a repository has not vet been decided. so we must be able to
model the groundwater flow and transport of radionuclides through any rock type. This work
looks at the problems that arise if we must model groundwater flow and transport through

fractured rocks.

Historically the modelling of groundwater flow has been based on the Darcy Law (Darcy, 1856).

This treats the rock as a continuum. taking the average flow rate in some representative
elementary volume (REV). The REV must necessarily be larger than the length scale of the pores
through which water flows. In small grained rock this presents no problems becausé the scale on
which information on flow rates is needed is many orders of magnitude larger than the scale on
which the flow occurs. In fractured rock however it is far from clear that Darcy’s Law can be used.
because the fracture spacing can be of the order of metres.

The main advantage of using continuum models is that they can be solved fairly
straightforwardly. For constant permeabilities and simple boundaries analytic so'utions can be
found. while for more complex problems numerical methods can be used. The finite element
method is well suited to this type of problem. The author has developed finite element codes for

flow and trausport. The computer program NAMMU was written to solve the coupled heat and

groundwater flow equatioﬁs (Rae and Robinson.1979. Rac =t al.1981.1983, Wickens.1981.

Wickens and Robinson.i984). It has also been used to calculate the flow of groundwater in
three-dimensional probiems { Atkinson et al. 1984). Figure 1.1 shows the grid used for one of these
three-dimensional problems. A related program. NAMSOL (Dolman and Rotinson. 1983) was
writlen 10 solve transport equations for contaminant in groundwater flow. The contaminant can be
convected. dispersed and sorbed. and can decay radioactively. Decay chains can be handied. The
dispersion term in this program is intended to model hydrodvnamic dispersion. For fractured rock
the size of this coefficient is not well known and some best estimate must be used. It is hoped that
the work reported here may shed a little light on the validity of the continuum model and on the

value of the dispersion coefficient.

Even if Darcy’s Law is valid as far as average flow rates are concerned the fracture geometry is
crucial to the particle transport. Particles travel with the local flow. not with the averaged Darcy
flow. They will be dispersed by the different paths that they take. Moreover phenomena such as

sorption and diffusion into che rock matrix clearly depend on the rock structure.
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The aim of this work was to gain more information on the way in which the fractured nature of
the rock might affect the modelling of the system. Results from models which keep the essential

tractured nature of the rock are compared with the results from the usual continuum models.

The approach that has been used is 1o develop computer models of fracture systems and to
perform experiments on these systems. to see how they can best be modelled. At the same time
theoretical prediction of the experimental results have been made. to help gain some insight into

the behaviour of fracture systems.

The study can be split into three areas. The first of these is conncctivity, that is. do the fractures
interconnect sufficiently to form large scale paths? This question is related to percolation problems

in solid state physics.

The second area is bulk flow. that is the average flow of Darcy’s Law. We look at the validity of
the continuum approximation. and the relationship Letween the statistical properties of a fracture

svstem and its permeabibity.

The final area is contaminant transport. How do dissolved or suspended particles move through

the fracture svstem?” Can their spread be adequately modelled by a diffusion-like law?

A reul fractured rock consists of fractures of various sizes intersecting one another in a
complicz *2d three dimensional network. Each fracture has variable aperture. may or may not be

rlanar. may be filled with minerals etc. Modelling such a system fully is clearly impossible.

The continuum approach ignores the fractures completely. reducing the svstem to a number of
paramcters. permeability. porosity. retardation coefficient. dispersion coefficient and so on.
These parameters are assumed to be experimentally measurable. This approach is not adequate by
iself. The continuum model must be consistent with the fundamental processes which occur at the
fracture level. The equations and parameters used in the continuum model must have their basis in
the fracture system. The parameters mayv not be measurable in practice. either because it would be
00 expensive. or take too long. or because it would destroy the rock being investigated. An
understanding of the physics at the fracture level may suggest small scale experiments from which

the parameters can be deduced.

In the ¢nd we would wish to "1se a continuum model. because of its computational simplicity. but
we must be sure that it is appropriate. and that the parameters used are sensible. To do this we

must look at the fracture level.
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The data available about fracture systems is very limited. This does not prevent us from studying
idealised fracture systems. This is what we have done here. As data becomes available it may be
possible to use more realistic fracture systems. In this work we are more concerned with the type
of model that should be used than with making actual predictions. If a continuum model can
describe the behaviour of an idealised fracture system 1t must be a good candidate for modelling a
real system. If. on the other hand. it cannot model the idealised system there is little hope of it

modelling the real one.

We have studied idealised fracture svstems in two ways. A cbmputer program has been
developed to look at connectivity, flow and transport in fracture systems and some simple
analytical models have been used to predict the results of this program. Most of the work reported
here is for two dimensional systems, although connectivit: has veen looked at in three dimensions.

The extension of other techniques to three dimensions is uiscussed.

The layout of tkis report is as follows. After this introductory chapter. chapter 2 describes the

generation of the idealised fracture systems used throughout.

Chapter 3 describes the work on connectivity. how it relates to percolation theory. how the
computer program works and the results it produced. Some theoretical predictions are made and

checked against the program.

Chapter 4 looks at buik flow. the assumptions made. the computational details and the results.

Some of th2 results are compared with theoretical predictions made using a cut lattice model.

Chagter S discusses some general aspects of contaminant transport. while chapters 6 and 7
describe two different computational techniques for modelling it. and the results obtained.
Chapter 8 describes some theoretical approaches to transport and compares these with the results

from the computzr runs.
In chapter 9 we use a more general fracture system and look at contaminant transport in it.

Chapter 10 presents some ideas on extending the techniques to three dimensions. and chapter 11

looks at how other transport mechanisms could be included.

Finally chapter 12 presents a summary and conclusions.
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Chapter 2 Statistical Fracture Networks

In a real fracture system each of the fractures can be described by a list of properties. These
include the size. shape. position. orentation in space. aperture, etc. Over all the fractures in a
region these parameters have some sort of distribution. In order to generate an idealised. but fairly
realistic. fracture system we specify the distributions and generate realisations from these. In a real
system there may be correlations between some of the properties. One way in which this occurs is
through fracture sets. Typically fractures in a single set have similar orientations. and were
probably formed in a single geological event. The properties of one set may differ from those of
another set. We allow the distributions to be given in terms of fracture sets. Within a set there may
well be further correlations. between size and aperture for example. In our idealisation these
cannot be included explicitly. however the idealised sets can be smaller than the real sets which
allows the correlations 1o be included. For this reason it is useful to extend the definition of a
fracture set and define it to be a collection of fractures whose properties come from a single set of
probability distribution functions. The properties which we currently use to define the fractures
and which can vary are orientation. length and aperture. This list could be extended 1o include

other properties (e.g. roughness or sorption characteristics) should this become necessarv,

All the properties can be given distribution functions of the following types defined by two

paramc.ersuand s -
constant value - all fractures have value u
uniform distnibution - values anywhere between u—s and p+s
normal distnibution — mean u. standard deviation s
log normal distribution ~ logarithm has normal distribution with mean p standard deviation s

negative exponential ~ mean u. standard deviation s, cutoff at p~s

Other distributions could easily be included.

The fracture density for each set is specified. as the number of fracture centres per unit area.
Because fractures whose centres lie outside the region of interest may enter it. care must be taken
to generate fractures in a larger region. This must be chosen so that it contains the centre of any
fracture which enters the region of interest. If the length distribution function has an infinite 1ail
then the region must be chosen so as to make it unlikely that any fractures are missed. For most of

the work reported here the fracture centres are uniformly distributed but the capability to have a
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non-uniform distribution exists. This is specified in terms of a mapping from the unit square to any
region of space. Fracture centres are generated uniformly in the unit square. the mapping then

produces the non-uniform distribution.

From one set of statislics we can generate any number of networks. Each realisation of the
statistics is generated as follows. A region is specified in which all the centres are to lie (either
explicitly or in terms of the mapping). Inside this a solution region is placed. Only fractures which
enter this solution region are of interest and any others are not re_corded. For each realisation a
random number seed is set, so that the realisation can be regenerated if required. The actual
random number generator used depends on the computer being used. On the CRAY-1S, where
most of the work was done. the RANF library routine was used for uniform random numbers.
Normally distributed random numbers were ‘obtained by summing twelve of li:esc uniform
numbers. On the IBM3081 we used the Harwell Subroutine Library routines FAO4AS and
FAOSA.

Fracture generation proceeds as follows. The total number of fractures to be generated is
calculated from the sum of the fracture st densities. Fractures are then generated one by one. For
each fracture the set to which it belongs is decided first. This is done. rather than generating
fractures set by set. for two reasons. Firstly. when we are looking for paths across regions the order
of the fractures must be random and. secondly. the actual number in each set wili vary slightly. as
it would in a real svstem. Once the set is decided the centre position is found. The length and
onentation are calculated and saved as a displacement from the centre to one end. Finally the
fracture aperture is found. If the fracture enters the solution region it is added to the list of

fractures. otherwise 1t is discarded. In this way the list of fractures for the rest of the calculation is

gencrated.

This generation of the fracture system can be bypassed if. for example. a specified fracture
network is 1o be used. This method has been used to compare results with Schwartz’s program. see

chapter 7. It was also used at an early stage to set up simple test cases 10 help debug the program.

The colleciion and analvsis of the data. that would be required to apply the techniques used here
to real fracture systems. is beginning. For the purposes of this work a lack of data is not important
since we are at the stage of developing an general understanding of the processes that are
important in fractured rock. However this data will become important if we are to look at specific

real systems. A study of Comish granite (Heath,1983, Bourke et al,1981.1982,1984, Heath and
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Durrance.1984) has produced a iarge amount of data which is beginning to be analysed
(Hodgkinson.1984) . This data includes fracture orientations from core logs. the results of
pumping tests and tracer tests. From this information a picture of a real fracture system is
beginning to emerge. Work has also been undertaken in Sweden (KBS.1983) and Scotland

{McEwen and Lintern.1980).

Statistical Fracture Networks
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Chapter 3 Connectivity

3.1 Introduction

In order that water car flow through a fractured rock mass the fractures must be sufficiently
interconnected to form large-scale paths. The existence of such flow paths depends on the
geometry of the particular fracture system in question. For a given set of fracture statistics some
realisations will exhibit large-scale paths while others show only local connectivity. Clearly as the
number of fractures in a given picce of rock increases the chance of large-scale paths gets greater.
The purpose of the work described in this chapter was to quantify this increased probability and to

find how it depends on the statistics of the fracture system.

3.2 Relation to percolation theory

The problem tackled here is related to percolation problems in solid state physics (Essam.
1980). in fact it is closer to the initial work (Broadbent and Haminérsle_v. 1957) than to the current

areas of interest in solid state physics.

In a general percolation theory svstem we start with ar infinite set of sites. Certain pairs of sites
are connected by bonds. Two tvpes of percolation model are discussed. site percolation and bond

percolation. Site percolation involves a probability p*>!

that any site is open. independently of
other sites. Paths are then sequences of connected open sites. In bond percolation all the sites are
open but theie is a probability p'#’ that each bond is unblocked. again independently of all other
bonds. In this case a path is a sequence of open sites connected by unblocked bonds. In either case
a cluster is a set of sites in which any pair is connected by 3 path. It is found that a cnitical
probability exists in each ci~e. For the site percolation case if p'% < p:'“ only finite size clusters
exist. but for p‘S) > p“.s' ni.nite clusters appear. For bond percolation the position is the same. if

p'#' < p'B' (here are only finite size clusters while for p'® > p!8 there are infinite clusters.

3

Generally the systems considered are lattices with bonds connecting neighbouring sites.

QOur case is in some sense a continuum limit of the site percolation mode!. Our sites are the
fractures which can be in any position with any length and orientation. Two fractures have a bond

between them if they intersect. The probability of a site being open has become the density of
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fractures (i.e. the number of fractures per unit area. or volume in three dimensions). A cluster is a

set of connected fractures.

Notice that it is more natural 10 make the association in this way than to associate fracture
intersections with sites and fractures with bonds. This is because this latter association gives a
correlated percolation model. since two sites being connected implies a fracture which increases
the probability of further connections along this fracture. By associating fractures with sites the

independence is retained.

Having made this association we are led to expect that there is a critical fracture densitv above
which paths will exist and below which the fractures will only be locally connected. The numerical

calculations will show that this is indeed the case.

3.3 The calculation of critical densities

The critical density for an infinite fracture system is that density above which infinite clusters of
fractures appear. This definition s of no direct use when the critical density is to be determined
numerically. We must have a different definition for finite systems which becomes equivalent to

the infinite system definition as the region size increasss.

There is no unique way of defining the finite size critical density. The definition we have used in
most cases is the iollowing. We take a fixed size square region and generate fractures in and
arourd it until a cluster which makes contact with all the sides has been formed. At this point we
say that this system is percolating and record the number of fractures centred in the region. This is
done for many realisations of the same statistics and the average density of fractures at percolation
15 taken to be the critical density. This is equivalent o taking an infinite fracture system and
placing a square region randomly on it. We would then take the critical density to be the density at
which half the squares had a cluster joining all four sides. In three dimensions the extension is the
obvious one of a cube with a cluster connecting all six faces. A typical percolating fracture system

is shown in figure 3.1. The percolating cluster from this system is shown in figure 3.2.

One alternative definition is to require the cluster to connect either pair of opposite sides of the

square. or any pair of opposite faces in three dimensions. We have made a series of runs using this

Connectivity
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alternative definition and compared them with our usual definition. Except for small regions the
difference is not very large. although the variation with region size is interesting. These results are

descnibed in §3.8.

Another possible definition would involve forring a periodic network with the square region as
the basic cell. The intersections for such a system could casily be found but finding the infinite

clusters would be computationally quite difficult and so the definition has not been tried here.

3.4 Computational technique

The computational technique used to find critical densities can be outlined as follows. For clarity
this description concentrates on the two dimensional problem. The three limensional case is in

most respects the same.

For a given set of statistical distributions of fracture parameters we generate fractures one by
one in the vicinity of a square region (so that any fracture which enters the region could be
chosen). As the fractures are generated we keep track of all clusters into which they form. Each
new fract:rc that is generated can do one of three things. It can form a new cluster. ¢xtend an
existing cluster or unite two or more existing clusters. Anv cluster which has been altered can then
be checked to see if it reaches all four sides. Once a cluster does reach all four sides fracture

) is

rumber of fractures centered in region

generation is stopped and the density of fractures (i.e -
- area of region

recorded.

In order to find whether each new fracture intersects nought. one or more existing clusters we
must find all the prev.ously generated fractures which it intersects. Given a pair of fracturesitis a
simple matter to determine whether they intersect. However for large fracture systems we cannot
check all possible pairs since this would be prohibitively expensive. In order to reduce the number
of checks needed tol manageable proportions a special algorithm has been devised.

We start by covering the region with a regular grid. The number of grid blocks in each direction
is an adjustable parameter which can be used to optimise the algorithm. The gnid box
corresponding to any point in the region can be found very quickly by dividing the coordinates by
the box size. Now as the fractures are generated a list of all the fractures which pass through each

grid block is maintained. This is done as follows.
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Each new f{racture is split into ‘sublines’. with one subline for each box through which the
fracture passes. If the fracture cuts diagonally across the boxes it can be time consuming to find
which boxes it actually goes through. In such cases it is better 10 wnclude all possible boxes. For
«xample 1f one end of a fracture is in box (IX. IY) and the otheris in box (IX+1, 1¥Y+1) we
would include boxes ¢ IX+1. 1Y) and tIX. I1Y+1). Now we create one new subline for each box
in the list. For each subline we record the original fracture number and for each box crossed ‘ve
update a hinked-list structure which records which sublines belong to each box. Two arrays are
uscd. the two-dimensional array IBXST records the last subline for each box and the
one-dimensional array NEXT records the previous subline in the same box as this subline. So to get
a full list of all sublines for box 11X, 1Y) we set ISUBL=IBXST (IX, 1Y) to get the first and then
set 1SUBL=NEXT ( ISUBL) repeatedly to get all the others. terminating when a zero is reached. In
order to add a new subline. NEWSL, to the list we just have to set

NEXT (NEWSL) =IBXST(IX. 1Y) and IBXST (IX. IY* =NEWSL.

Now we need only check cach new fracture for intersections with fractures which have sublines
in the same grid boxes. To see how much this saves consider an example. With N fractures in a
regcion R by R we would need to check IN(N - 1) pairs of fractures if all possible pairs were taken.

1f we sphit the region into boxes of size & by h so that an average fracture passes through & boxes

-~

[RNY Ay A I

) N-h . . h-k .
the nember of checks becomes « ———— giving a reduction by a factor R In practice the cost

ol setting up and mamtmng all the box information beg:ns to dominate 1if 100 many boxes are
used. W have found that choosing the box size so that each fracture passes through two or three

hoxes gives the best results.

In some special cases we can do even better. in particular in the case of two orthogonal fracture
sels we can use the fact that two fractures in the same set cannot intersect. This we have done by

keeping separate lists of horizontal sublines in boxes and of vertical sublines in boxes.

Having found all the intersections the cluster information can be updated. If the new fracture
has noantersections it forms a new ciuster. If it intersects with fractures from a single existing
cluster 1113 added to that cluster. If it intersects with fractures from more than one existing cluster
these clusters are all united to form a single larger cluster. This is done by recording the new
cluster number against the initial cluster number. The cluster for each fracture is not updated. so

that to find which cluster a fracture is currently in it is necessary to loop round starting with the
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initial cluster and going to the cluster which this became until the current cluster is found. This is

identified by the new cluster number equalling the old cluster number.

In order to check for percolation the sides which each cluster touches are recorded. As new
fractures are added and clusters unite this is updated until one cluster reaches all the sides. This is

then the percolating cluster and fracture generation stops for this realisation.

It can be seen that this algorithm can easily be modified to deal with other definitions of
percolation. for example if a connection between two opposite sides was deemed sufficient. It
could also easily handle the percolation of shapes other than straight line fractures. It for™s the
basis of the method used in later work on flow where the density is fixed and it is required to find

all the intersections.

In the three dimensional case with fractures represented as rectangles with any size, position and

onentation it is not trivial to find whether two arbitrary fractures interse:t. The method used is

descnbed below.

In three dimensions the positions and orientations of the fractures are kept internally as the
centre c. and the displacements to the mid-sides r and s. The corners of the fractures are thus at
czrxs. Once a pair of fractures has been identified as possibly intersecting the following

procedui. is used to determine whether they do intersect. The notation used is illustrated in figure

Tas

3
We have two fractures defined by ¢, .r;.s, and ¢;.r,.5;.
The normals to the planes are
n, =r,Xs, and n, = r,Xs.. (3.1)
The line of intersection of two planes with these normals has direction
t=n0,Xn,. (3.2)
One point on this line is at the end of a perpendicular from the origin and therefore has position
p = om, +fn,. 3.3
Now p is in both fracture planes so

(p<,)n; =0 and (p-c;)'ny = 0.

Connectivity




Now using (3.3) and (3.4) we get an zquation for a and B
Py My \iay (PG

This gives a and 8 and hence p. The intersecting line is then the locus of poirits p++t. We must now

find the range of = for the interior of each fracture. In plane 1 we write
t = ur +vs,. {3.6)

Since ry und s, are orthogonal wnis gives

tr, ts,
U= — V= —— (3.7)
o s,
Similarly we write
P = ¢ +ar +bs (3.8)
with
ip-c,i.r ( ).s
ryn $i°%
SO
Pt = ¢ ~ia+pr, -(b+'{\'ls,. 13.10)
Thereiore the intenor of the fractures 1s where
a=-vu <1} and b+t (3.1

This gives four conditions on = (two for each fracture). If all can be satisfied the fractures intersect
and the range of -7 over which the conditions are satisfied gives the line segment along which the

itactures meet. If no v will satisfy all the conditions then the fractures do not intersect.

It can be secn from this that in three dimensions it is even more important to avoid 100 many

unnecessary checks for intersection.
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3.5 Number of intersections - .

As we shall see later. the number of intersections for each fracture is an important variable. It
can be calculated numerically as the algorithm proceeds. It can also be accurately predictea .or any

fracture statistics from simple geometrical arguments.

Note that the number of fracture intersections at percolation is the continuum equivalent of
2p! where : is the number of bonds connected to each site in a lattice calculation. In lattice
calculations it is found that as the coordination number. 2, increases zg!$'—4.5 in two dimensions

and zp,‘s’—~2.7 in three dimensions (Shante and Kirkpatrick,1971).

In this section we show how density and average number of intersections are related in general
and give the formulae for some cases. The general argument holds for any system in any number of

dimensions.

The sites (fractures) in the system are described by a set of parameters s. Two sites are
connected by a bond if their parameters satisfy some conditions. b(s, $)=1 say. where b(sl,s,)so
if there is no bond. The parameters come from some known probability distributions, f{s). The
average number of bonds per site (intersections per fracture) is just the number of fractures times

the integral over the parameter spaze of the function b times the probability distribution functions

1= N [ds, [as;pis, 5 fis ) fis;) (3.12)

For some of the svsiems we are concerned with we can also say that the actual number of
intersections on a particular fracture is distributed with a Poisson distribution with mean 1. so
eI

P = . (3.13)

r

This does not apply to cases with variation in fracture length.

Consider an example. Take the system with fractures all of fixed length 2/ oriented either
horizontally or vertically with equal probability. The density is p so in a region of area A there are
N=pA fractures. Any randomliy chosen pair of fractures will intersect if they are orthogonal and if

the centre of one lies within a square with side 2/ around the other’s centre. So, ignoring tie effect
. - . . (2n? .
of the boundaries, the probability that the two intersectis p = i%. Therefore the probability

that a given line intersects r other lines is
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P ')(l-p)'”"‘p'(l-p)". (3.14)

r

o (N=1MN-2) (N-
rt

As A. and hence V. tends to infinity this gives

!’EE!, P
P' = -" e . (315)

So the distribution of the number of intersections is a Poisson distribution as claimed and has

mean /=2pl*. The critical number of intersections per fracture for this case is therefore 1, =21 :

Similar results can be derived for other fracture statistics. They are collected in the table 3.1.

Fracture Statistics Number of Intersections per fracture
Two orthogonal sets. All with length 2. Half onented each| pV
way. Total density p.
Two sets with angle a between them. All with length . 2pisuna
Half onented each way. Total density p.
Uniformly distnbuted orientation. All with length 2. 8 ol
Density p. H X
Orientation uniformly distributed between —a and a. All‘ 2 2
with length . Density p. ! ol ot 2a-snla)
Any case with lengths uniformls distnbuted. As for case with fixed length equal to average length, not 4

) Poisson distnbution

i

Table 3.1
Relationship between density and number of intersections.

In three dnmensidns we consider ”]usl two cases. The first is the equivalent of the
mo-dimensional example just described. The fractures are all squares with sides of length 2/
paraliel to the coordinate axes. One third of the planes are in each of the coordinate planes. The
totzl density is p. Two planes will intersect if their centres are close enough together and they are
not parallel. The volume in which the centre of one plane must lie lias dimensions 4/x2{x 2/ and
there is a factor of ¢ since the two must not be parallel. Thus the average number of intersections is

_32
I—3 .

The sccond three-dimensional case is more difficult to calculate. In this case the fractures can
have any orientation with equal probability and are again squares with sides of length 2/. The total

density is p.

When considering the probability that two fractures intersect we can choose our coordinate

system so that one fracture is centred at the origin with its sides parallel 1o the x and ¥ coordinate
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axes and its normal along the z—axis. The second {racture lies in a plane which makes an angle vy
with the xy—plane. The line of intersection between the planes containing the fractures cuts the
x—axis at an angle a and the perpendicular distance of this line from one corner of the first plane is
r. Figure 3.4 shows this notation. For fixed values of y. a and r the arca on the second plane in
which the fracture centre must lie if there is to be an intersection can be calculated. this is
illustrated in figure 3.5. If one side of the fracture makes an angle B with the line of intersection the

area is 42 +2sl(sinB+cosB) if s is non-zero or zero if s is zero. Averaging over B gives 4 + .%“'
Now we can vary r from 0 to 2/(sina+cosx). Three ranges need to be considered. We have

s=r(cota+tana) 0<r<2sinx
s=m2Useca Usina=r<cosa (3.16)
s=2l(coseca-+seca)—r(cota+tana) 2lcosasr<2i(cosa+sina)

Note that we can always take a"z‘ by choosing the x—axis appropriately.

Using the above formulae fcr s we can now integrate over r to give the volume in which the second
centre must lie for fixed a and y. There is a factor of siny because of the slope of the plane. This

integral gives a volume

81’(cosa+sina+%)siny 3.17)

We can now average over a which is uniformly distributed to get 6—:—! Isiny. Finally we average over . -
v, picking up a weight of siny to give a final result of

1= 16pl>. (3.18)
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J.6 Estimation of critical densities

Exact results are known for some simple two-dimensional lattice percolation problems. In
particular it is known thai the cntical probability for bond-percolation on a square lattice 15 p. =+

We can use this result to estimate the critical density for two sets of fractures. oriented horizontally

and vertically.

We start by covering the coordinate plane with a regular square grid. The lattice bond problem
is defined by sites at the centres of all the grid blocks. We ailow bonds between nearest
neighbouring sites. Now each fracture in our fracture system is associated with the grid block in
which its centre is positioned. If there is a fracture associated with one gnid block which intersects
with a fracture centred in a neighbouring block we say that the bond between the corresponding
sites is open. Itis clear that by making this association between the lattice and the fracture network
we can calculate a density of fractures at which the lattice percolates. We claim that. as long as the
grid spacing is chosen sensibly. this density will be a good approximation to the critical fracture
density. In choosing the grid spacing two conflicting requirements must be borne in mind. First.
the spacing must not be so small that non-neighbouring grid blocks could be connected. Second.

the grid blocks must not be so large as to require us to consider whether a block has connections

right across it.

The smallest blocks which do not allow connection between non-nearest neighbours are ot size
half the fracture length. At this spacing the fractures compicizly cross the blocks so there sh'o‘uld
be no worry about the second point. Note here that we are not considering cross-corner
connections. This is because the existence of such connections is not independent of the existence

of cross-side connections. the existence of a cross-corner connection witl, no corresponding

cross-side connections is unlikely and so is ignored.

The probability that a bond exists across an edge is calculated as follows. Two squares are
connected if a fracture centred n one intersects a fracture centred in the other. Consider the case
of two squares. A and B. with A 10 the left of B. There are two tvpes of connection between A and
B. First. we could have a horizontal line in A intersecting a vertical line in B. and second we could
have a vertical line in A intersecting a horizontal line in B. We will denote the probability of the
first case py,. and that of the second p,.,,. By symmetry we have Py = Pyy- There will be a

connection of the first tvpe unless

(i) there is no horizomal line in A
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or (ii) there is no vertical line in B
or (iii) the rightmost horizontal line in A does not intersect the leftmost vertical line in B.

We denote the probabilities of these three as p,. p: and p,. By symmetry we have p; = p,.

Given these probabilitics we can calculate py,y, using

puv = (1=-p).(1-p,).(1-p3) (3.19)

and then the probability of connection P is given by
P = 1-(1=pyy)-(1=Pvy)- ‘ (3.2v)

For total density p we have an average of p = §|:>l2 fractures oriented each way in each block.
where ! is the block size and 2/ is the fracture length: The actual number is a Poisson distribution so

that the probability of r fractures in one direction is

q, = Lf"“ (3.21)

r

This immediately gives p, and p, since both are equal t0 g,. that is ¢ ™", In order to find p; we

need 10 know how the maximum of r values in the interval (0.1) is distributed. It is easy to see that

Prob(maxX,<X) = X' (3.22

1=l -
so the probability distribution function is
f0 = X! (3.23)

Now r has a Poisson distribution with mean u so

Nl il ’
Sl = 2, 5re 00 = 2(7%1—,’-’_""‘"’ = perer. (3.24)
r=l r=] .
Similarly
fom(X) = ue ™. (3.25)
So
| 1
py = _fdx pe HeW Idy pe W = pe H—e R4 (3.26)
0 x
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We can now use these formulae to find p when P =1 We find that p=0.860 gives
p, = p;=0.423 and p,=0.120 giving p,,, = p,.,,=0.293and P = | Recall thatp = ip!? and that

!l = Zp‘_I: giving a predicted average number of intersections per fracture at percolation of 3.4,

In three dimensions the position is very similar. The two-dimensional square lattice is replaced
by the three-dimensional simple cubic !attice (with six ncarest neighbours). We take the case of
three orthogonal fracture sets. one normal to each of the coordinate axes. The fractures are
squares with sides parallel to the coordinate axes. The lattice result is approximately p!® = 0.247.
Since the exact analysis is someu-hat involved we have obtained the result numerically by writing

the probability of connection

=z x . g
r s
P=D bl Nl up (3.27)
! s!
rul s=1
where u is the average number of fractures centred in & box and P is the probability of a
connection given that therc are r fractures centred in cne box and s in the adjacent box. P, was
evaluated numerically by taking 10000 realisations for each r.s pair. The boxes were taken 10 be
equal 1o the fracture size. since smaller boxes would allow connections between non-neighbouring
boxes. The value of u required to give P=0.247 was found to be 1.57 which corresponds to an

average of 2.09 intersections per fracture at percolation.

This 1s a very low result compared with the two-dimensional prediction. If we take a
cross-section through this three-dimensional systcm the resulting two-dimensional network would
have an average of only 1.57 intersections per fracture. less than half the predicted percolation

value.
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3.7 Relationships between critical densities

We can predict relationships between critical densities for varnious fracture staustics by using

some simple geometrical arguments. Most of these predictions are approximate. however the first

Is exact.

If we consider a percolating system with two fracture sets, onc horizontal and the other onented
at an angle « to the horizontal we can show that the number of intersecuons at the critical density
is independent of a. This is done by transforming the system to the orthogonal system by applying

a shearing transformation

(3116 coseca) ) (3.28)

This preserves the intersections and the uniformity of distribution of the fracture centres. The
fracture length is unchanged because of the coseca term on the matrix diagonal. The density is
changed by a factor sina. which is as it must be if the result given in §3.5 is to be satisfied. This has
shown that there is a 1-1 correspondence between percolating systems in the angle o case and the
orthogonal case with the systems having the same number of intersections. and so the critical
average number of intersections /_ is the same for both systems. This result was also pointed out by

Balberg anc Binenbaum (1983).

Given the previous exact result it seems probable that 1, is approximately constant over all cases
with fixed length fractures and various orientation distribntions. If this is the case then the results

of §3.5 relating density and intersections can be used to estimate critical densities in these cases.

If the fractures are not all the same length how does I, vary? Consider an extreme example. with
fractures that can have lengths 2/ or 2L with L>>1. Let the probabilities of the lengths occurring be
p; and p, . As long as p, is not too small it is clear that the small fractures play no part in
percolation. Percolation will occur when the longer fractures are sufficiently dense. The required
density wil! be the same as if all the fractures had length pi L. This is the root mean square fracture
lengih in the network. We postulate that this is true for more general distributions of fracture
length. It is true for the case just considered and for the constant length case. It implies that I is
not independent of length distribution but that a weighted average should be used. with the weight
attached to each fracture being the length of the fracture. This would lead to a definition of

weighted average number of intersections as
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L number of intersections X fracture length
i fraciures
J = =

€ fracture length (3.29)
ol fraciurey

For the case of a uniform distribuion of lengths with lengths 1n the nterval
(21,,(1-8).21, (1+0)) this gives the relationship J = (1+18%).1, so if J. is constant we would

expect to find I_ proportional to (1+8°) ! The results for this case are given in §3.8.

3.8 Results of numerical experiments

Numerical experiments have been carried out to determine critical densities for a number of
different statistical fracture distributions. The results have been compared with the predictions
given earlier in this chapter and with some previousty puvlished results by Pike and Seager (1974)

and Balberg and Binenbaum (1983).

First we look at the way calculated critical densities depend on the size of the region in which the

fractures are generated.

The case considered was for two orthogonal fracture sets oriented -parallel to the sides of the
region 'n all cases the fractures were of length 2 units. the region size ranged from 10 ﬁnits to 400
units. For each region size at least 100 realisations were dcae. the actual number done in each case
is given in table 3.2 The number of fractures in the table refers to the number generated in an
extended area around the region. 1 unit larger in each direction. This area was used since fractures
centred within it could enter the percolation region. The time per realisation is given and the time
per realisation divided by the average number of fractures. This shows that the algorithm used
taxes a time which increases only linearly with the number of fractures. The sudden increase for
the largest two region sizes is due to a change in algorithm to reduce the amount of computer space

uscd so that the code would fit into the CRAY-1S at Harwell.

It can be seen that the calculated p_ decreases with increasing region size. We can attempt to
predict the form of this decrease by using finite-size scaling arguments (Fisher.1971). The
argument runs as follows. Let R be the region size. C be the correlation length (which diverges at
the transition) and p be the density which has critical value p_ in the infinite case. Then Cis a

function of p and R. For p near p_ and infinite R the correlation length has the form
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Region | Number Number of fractures Density ) Time per Time per
Size of runs Average Std. Dev. | Average Sid. Dev. run run per
i (secs) fracture
1’ (usecs)
10 400 hi%] 33.9 L Lels i 0.2355 0.0053 nn
2 100 778 69.5 ! 1600 ;0043 0.0176 nn .
30 400 1640 1199 1602 ;0.7 0.0381 3.3
0 100 2799 1689 | 1587 | 00958 0.0658 23.51
0 | so0 1285 2083 | 158 | o070 0.101 23.57
60 l 100 6102 2841 ! 1.587 0.0739 0.144 23.60
70 100 8179 . 3.8 1.578 0.0630 0.194 3.7
80 100 10627 1180 | 1.580 0.0622 0.254 23.90
) 100 13422 3467 ' 1.588 0.0410 0.319 pxlre]
100 b, 16369 678 | 1.5M 0.0450 0.391 23.87
110 100 19807 096 | 1519 | 00486 0477 24.08
126 100 23456 585 1Ls™ | 0.0369 0.563 24.00
130 100 27326 6687 ' 1.568 | 0.0384 0.654 23.93
140 100 31544 12 ! 1.564 0.0373 0.753 23.90
150 10, 326 | 833 158 O 0.036] 0.877 24.17
200 W0 638% i 10505 - 1566 . 0.0257 1.559 24.37
250 100 99468 1489.1 1566 | 0.0235 2.414 24.27
0§ 00 ! 142310 0woe 1560 - 0.0220 4.480 e hl
o0 200 282120 28842 Crsel oM 7.952 31.51
Table 3.2

Resuits of region size variation run for orthogonal fracture sets.
Clp.=)x(p=p.) ™" (3.30)

where v is the correlation length exponent. This is known to be { for two-dimensional lattices. In a

finite system criticality is reached when C(f.z) is some constant, i.e. when B(p—p_)" is constant.
So
.1
(p=p)xR 7. (3.31)
This gives a relationship
P(R) = p (x)+aR ™ (3.32)

if the lattice value for v is assumed. The best least squares fit to the results gives p (=) = 1.556

with 2=0.505. This is shown on figure 3.6 with all the results. If the more general form

PR) = p,(=)+aR *
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is used with v allowed to vary we find v = 3.23, p_(=) = 1.531 and @ = 0.184. This is also shown
in figure 3.6.

As the region size increases the standard deviation in the density at percolation goes down, it
must be zero for infinite regions. In figure 3.7 we plot the logarithm of the standard deviation
against the loganthm of the region size. The best fit line is shown. This gives the relationship
o (R) = L3R 072 which gives a very good fit. The exponent in this is very close to —3 suggesting
that the variability in the percolation density is proportional to the discrepancy between the finite

and infinite critical densities. i.e. o (R) = 2.57(p_(R)—-p_(x=)).

It is clear from the above investigation that small region sizes should be avoided, both because
the calculated critical density deviates from the infinite value at small region sizes and because the
variability is larger. In the calculations that follow we have tried to use region sizes which give at
least ten thousand fractures at percolation. Doing large numbers of realisations for many fracture
statistics would become prohibitively expensive for any much larger number. The finite-size effect
must always be borne in mind when comparing percolation results. as it may be as significant as

any vanations caused by the statistics of the fracture distributions.

The results of this example can be compared with the predictions of §3.6. In §3.6 we predicted
that the critical density would correspond to 3.44 intersections per fracture. For the largest region
size used in this example we had J_ = 5.1Z and for the limiting value. with v = § we would get.
I, = 3.11. Thus the predicted result is around 10% 100 high. possibly because of the way we

ignored corner connections.

As explained in §3.3 our definition of percolation requires a cluster to cross all four sides of the
region. To see how much effect using a different cntenon might have we have done some runs with
a requirement that either pair of opposite sides be joined. This must give a lower value for the
calculated critical densities. The fracture statistics were the same as for the previous example. For
convenience some of the previous results are repeated in the table 3.2 together with the new

results.

It can be seen that the reduction in calculated critical density caused by changing the criterion is
approximately equal to the standard deviation of the critical density. It is clear that the average
between old and new densities is very ncérly constant, suggesting that the two densities are tending

towards this value at equal rates. The previous estimate, using the finite size scaling with v = {
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i
i !
Region l O1d density New denity - Changewn Average
) . .
Size ] Ascrage Std. Dev. Arerage std. Dev. , Jensity R Jensity
30 '| 1.3%8 i VAT ] 150 ! nua? ! nUns } ) §828
1w 'i 1.573 : 0.0450 : 1.529 g 1 U4K3 . TRIee] 1.5810
150 1568 Y goses ' 1.5%0 S il 0N 15490
i .
w | 1see 1 w07 boysam | wowe 0 oo 1 8530
e | 1,560 1 1> R 1839 TR L : w2l § 5498
[l \ R
wn 1.561 ' 0.0177 . 1 836 t. XU LY B 1 $83%
Table 3.3

Comparison of original percolation criterion and two-sided criterion.

gave p_=1.556 which agrees very closely with this average value of 1.552. Figure 3.8 shows ail

these results graphically.

After these results had been collected the size of the CRAY computer was increased. This
cnabled larger systems 10 be used. For a region size of $90 units we did ter runs. The average
densitics for two— and four-sided percolation were 1.551 and 1.556. On arcrage there werc over
45,000 fractures. and the time taken was 17.5 scconds per run. The average critical density

between The two criteria was 1.5537. in good agreement with the previous results.

We now present the results for four different fracture statistics. The fisst of these 18 for 4 vystem
with fractures of constant leagth. two umts. and with oricntations uniformly distributed in the
mtennal (—a.a) . for a = Q0P BU°.TUP 6 SUF UK 3U° and 2AF. The wr case corresponds to the

uniformly distributed orientation of Pike and Seager (1974).

Tabie 3.4 gives the results. the final column being from the formula derived in 83.5

o ! Density p { Intersections / lAve ! Ave.p l‘ A N
i \ ! . —;l-o—sm-al
i i l ;e
i Average $1d. Dev. : Average Std. Dev.
| ! i ' ' !
" -t 1.434 I 0.0624 : 1050 ; 0. 1568 . 2545 , 25
wr | oass2 L oose 1 3680 o1 boasa b s
S T o5 e a3 23
o | 1612 1 0oel | Reve 01833 .31 L L
i ! ' H
e | 1708 l 0.0767 : 3582 : 01559 ; 1.996 i 1997
w | L eems ) 3w Loogaam | rew 16w
30° \ 2728 v.1301 3.607 0.1700 l 1322 1322
wr | w2 | 0aes 363 oas17 | bew L oom

Table 3.4 ] ]
Results for uniform distribution of orientations.

The region size was 80 by 80 so that there were more than 9000 fractures in each case. The
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results given are an average over S0 realisations. It can be seen that the average density and
average number of intersections are related as predicied in §3.5 and that the average number of
intersections at percolation 1s decreasing slightly as « decreases. it should be remembered that
more fractures are present in the fixed size region for smaller a and so the finite-size effects
account for some of this decrease. For the smallest a values the number of intersections increases
again. We will see n the next example that this occurs even when we know that it must “e
constant. It must therefore be due to the finite size region. and in particular the aspect ratio of this
region as compared 10 the spread of angles. The region 1s effectively much wider at smail a and so

the calculated percolation density is increased.

The a = NP case is the case considered by Pike and Seager. They obtain the result 1. = 3.635
andp, = 1.428. giving a ratio which agrees with the predicted figure of 2.546. Since they havé only
used 1000 hines and have a percolation criterion based on two opposite sides being connected we
would expect their result to be lower than ours. Also hey have taken just 10 realisations giving

errar bars of =0.03 for the density. Given all these differences our results agree well with tieirs.

The second example was for the case with a fixed length of 2 units and orientations at ta from
the horizontal. This s the case which we proved in $3.7 had /. independent of a. The results

presented in table 3.5 are for 50 realisations with over 1000 fractures in each case.

a Denuny p Intersections / Ave. ! Ave o 2unla
1
Average Std Der " Average Sid. Dev
15 | 3e7 ) [FNUIS ) 371 LR R 1.998 ) 2.0
B L) [IXY 13 : 3.175 | 0.1i4y 1.965 N 1970
13 1 nnd ' iy : 3160 0 Jus2 1876 : 1.879
n | a3% } 1 OenS i 3178 ! w1160 : 1.732 ; 1.732
2 2 &2. TS [ 31248 ; DR PRI 1.2% | 1.28
Table 3.5

Resuits for bimodal distribution of orientations.

Agam the relauonship between the average number of intersections and the density is us
predicted in 83.5. /_is constant. as predicted. except for the smallest angle. This is the same as for

the presious example. presumably being due to the cffective width increase for small «.

Balberg and Binenbaum have looked at this case and obtained a critical density of 2.41 for
a=45°. They have used systems of only 100 lines. so we must assume that their result is so different

because of the effect of smal networks.
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The third example looks at the way variability in fracture lengths affects the critical densitv. The

predicted result from §3.7 has been checked.

In this example the fractures are oriented in uniformly random directions and their lengths are

uniformly distributed in the interval (2(1-8).2(1+6)) for a range of @ between 0 and 1. The

predicted behaviour derived in §3.7 was that density would be proportional to (1+19%) -

" T X :
L Denssty p i Intessections / j Ave.l Ave.p : ptl+i8°)
! Average Std. Dev. | Aserage 31d. Dev. ; |
v [ 1"
bo | ram | woes | e nises | 2 | La
02 | 132 l o021 e o2 | s ) L
0.3 | 1.370 ' v.0013 | 3.493 | 0.1568 | 2.550 | 1.443
t
ne 1.301 ST 13w T P X 2582 ! 1.457
o8 | 1200 0 0es3 | 3om | e ' 2sm9 0 1aes
boo 1 1ees 1 weos . IR | awe 25w | Lo
Table 3.6

Results for uniform distribution of fracture lengths.

It can be seen from the results in table 3.6 that the average number of intersecstions over the

density is consistently close 1o the theoretical value of = = 2.546. The predicted change in ciitical

’

denwity 1s close to the calculated value. giving an error of around 29, For the large values of 8
there are less lines generated so the finite size effect will push up the calculated density and explain

some ot the discrepancy.

The fourth exampie takes 3 different hine length variation. This time the lines have lengths 2 or

27 with equal probability. /s taken between (1.0 and 1.2. In each case 30 realisations were done.

1+
2

The results are presented in table 3.7. The theoretical prediction is that p is constant. its

value is given in the final column.

The /=0 result here was not actually calculated separately but was deduced from the I=1 case.
The theoretica! result again seems o work well in these cases. The least good results are for /=0.2

and /=0.4 although even these are only 2% in error.

These results have demonstrated that the formulae relating density and average number of
intersections derived in §3.5 are correct. The predicted change in critical densities caused by
introducing a variable fracture length gave a very good estimate for the calculated values. For the

case of fractures oriented in one of two dircctions the critical number of intersections was found to
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I 1
! f Densuy p Intersections / Ave. !/ Ave. p ‘ p“,..,:,
; i ==
! ! 2
' Average Std Dev Average Std. Dev I
o R S A 1528 0078 " nels i 1434
02 2810 ' aN3s 2577 NO9SK : 0917 5 1.461)
03 153 T 3SR w2 1248 ; 1.467
"a T C s 3470 01 1630 ! 1.447
nx 1 748 ) [TR1 0 oM 01397 ; 2.063 1.433
10 144 ! IR N 3650 1568 2.546 ; 1.434
12 1178 Loomaand . 3633 0143 . 3081 ; 1.437
Table 3.7

Resuits for bimodal distribution of fracture lengths.

be constant as predicted. although in this case and for the uniform angle case the finite size region
seemed to affect the results for small angles. In general it is clear that the finite size effect must be

considered when comparing calculations for different fracture statistics.

The calculations on critical density variation with region size showed that the critical density
decreases with increasing region size. The form of this decrease is consistent with the finite size
scaling argument prediction of R ™' The spread of densities at which percolation occurred also fell
as R™ . so tﬁal for the largest case considered 90% of the realisations percolated at between

246,50 and 257.200 fractures. a range of only 4.2% of the average value.

In three dimensions the computation becomes more difficult. With planes | unit by | unit 1n a
region of 30 by 30 by 50 there are over Z(0.iXX) fractures. Again a special computer program to
deal wath the case ot three orthogonal fracture sets was wnitten. All the fractures had sides paratlel
1o one of the coordinate aves The effect of using difterent percolation criteria was tested by
culculuning the density to gine a cluster connecung any pair of opposite faces of the cube. as well as
the Jensity for a cluster connecting all six faces. Table 3.8 presents the results. In each case 100
realisations were done. except for the largest cube for which 30 realisations were done. In all cases

the ume taker pe. plane per rcalisation was just less than 60usccs.

The pattern ot results 1s vimilar 10 the two dimensional case. with the two defimtions of
percolation giving results that get closer as cube size increases. The scaling arguments this time
predicts a decrease with €7 where C is the cube size. A least-squares fit to the results gives a
hmiung value of 0.1874. in good agreement with the trend of the average results. This limit
corresponds to an average pumber of intcrsections of almost exactly 2.0. This compares with the
theoretical prediction in §3.7 of 2.09. Figure 3.9. shows all these results and the predicted

behaviour.
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Six faces Two faces [ !
1 :
Cube No. of I Density Density 2 Diffetence ' Average
Size | Fractures |  Average Std Dev. |,  Average Std. Dev l |
. 1 t i
1 ’ 97 ¢ o o boase 1 oo 1 e 1 es
1S | 6536 ! 1998 087 1830 o9 oes L 9
0 s | 1970 0087 1855 0069 ; ms e
s hops o 1940 0S4 1845 06y w9s 1893
30 45921 197 w» 1853 0051 | w1890
35 71496 1916 0033 1856 0040 1 0060 | 1886
40 105398 1912 0030 .1857 0030 ! 008S 1 .188s
45 148094 1902 0024 11854 0027 ‘ -buag -1878
0 201906 1903 0022 1856 0028 | 0047 ‘ 1879
Table 3.8

Comparison between original percolation criterion and two-faces criterion.

One other three dimensional case has been considered. This is the case of aniformiy distributed
onientations. Planes of size 1 unit square were used in 3 cube of side 20 units. The average over 100
rcalisations gave an average cntical density of 1.231 planes per unit volume with an average of
2.161 intersections per plane. The ratio of 2.0 between these figures in as predicted in §3.5. As for
the the two dimensional case the n_urnber of intersections at percolation is larger in the random

case than in the orthogonal case. while the density is higher in the orthogonal case.

3.9 Summary and conclusions

The results of this chapter have shown that. in two and three dimansicas. there is a critical
density of fractures. above which large scale paths exist. The cntical density occurs when the
average number of intersections per fracture reachss a critical value. This average is weighted by
fracture size. The critical value is around 3.} for two dimensional systems and 2.0 for three

dimensions.

In the three dimensional case we can say that if we put a borehole through all three fracture sets
then the system will be percolating if the separation between fractures and the borehole is less than
about ] of the typical fracture size. So if we find a separation of ten metres we can say that the

system percolates if the fractures are bigger than 14 metres across.

In two dimensions the fracture separation is much less at percolation. Here the separation must
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he less than | of the fracture length. So with a scparation of 10 metres the fracturcs have to be over

4 metres long for the system to percolate.

From a purcly percolation theory point of view the results have shown that the arguments from
finitc-size sculing can be used and correctly predict the critical density versus region size curves

when using the lattice critical parameters.

The techmques developed to find the fracture intersections quickly are invaluable in the later

work. They may also be useful in other percolation studies.
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Chapter 4 Flow

4.1 Introduction

The modelling of groundwater flow systems has been dominated by the use of Darcy's law. This
law. first suggested by Darcy in 1R56. relates the average velocity of a fluid through a medium to

the pressure gradient. Itis usually wntten

K
u= -=%VpP +.1

n
where u is the average veloaty. TP s the pressure gradient. w is the fluid viscosity and K is the
permeability of the medium. This equation has been found to be valid for many porous media and
can be derived theoretically under ceriain assumptions {Bear.1972). The pressure referred to here

is the non-hydrostatic pressure as it 1= :hroughout this work.

In the case vt flow through g fractured rock itis not clear whether Dareyv's law is vahd. In order
to define an mverage velociny s necessary totake a flux averaged over some Cross-sectional area.
This area must clearly be larger than the microscopic scale of the medium so thut it includes a
representatne numier of flow paths. For a fractured rock the ‘microscopic’ scule as far as
groundwater flow is concerned can be several metres or tens of metres {Bourke et al. 1982). In this
case the averages must be over ven large regions. Measured permeabilities of fructured rock vary

oner orders of magnitude { Brace 1984,

The purposc of the work presented in this chapter was to find under what condinons Darcy's law
is vatid for 2 fractured medium and. when it is valid. to find how the permcability relates 10 the
statistical properties of the fracture system. Long ( 1983 and Long et al.1982) has alsc looked at the
permeability of fracture networks. concentrating on the question of directional permeability. Tt
has not been possible to compare our results with theirs as yet. Some experimental work on lattice
conductivity has been reported (Last and Thouless.1971. Watson and Leath.1974. Shankland and

Waff.1973). Koplik (1981) has looked at conductivity in 2 square lattice numerically.
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4.2 The physical problem

The method we have used to address the question of flow through ﬁaaurcd rock is to generate
two-dimensional fracture systems with given fracture statistics and to perform numerical
experiments on these systems. The assumptions made about the flow were as follows. In cach
fracture segment. that is between cach pair of intersections. we assume that the flux is
proportional to the pressure gradient. The constant of proportionality is defined in terms of the
cffective aperture. At intersections we assume that there is no significant head loss, so that it is
sensible to define a single pressure at the intersection. At each intersection there is mass balance.
The assumption of proportionality between pressure gradient and flux within each fracture
segment is reasonable for the cases of interest here where the flow is slow and so inertial effects
can be ignored. If we think of the fracture segments as parallel sided planar openings then the
relationship between flux and pressure gradient is given by

3 P 1-P 2

q= [ (4.2)

where g is the fluid flux. 1 is the fracture aperture. ! is the length and P, — P, is the pressure drop in
3
the direction of flow. In this case the constant of proportionality is l’Tu - We might alternatively

think of the fracture as being full of some high permeability material, in which case it might be

more appropriate to use Darcy’s law in the individual fractures. This would give a constant of =

proportionality L;S where K is the permeabiiity of the fracture filling. We could then define the

effective hydraulic aperture to be the aperture which gives this value. So whichever way we think

of fractures we can define an aperture for each one.
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4.3 Computational technique

A realisation of a given set of fracture statistics is generated within some region of the plane. the
generation region. Then. for any particular flow calculation. a solution region 1s defined. The sides
of this region can be designated as no-flow or specified pressure boundarnes. For a no-flow
boundary no intersections with the fracture system need be found. For a specified pressure
boundary all the intersections with the fracture network must be located. The method for finding
the intersections in the fracture network is essentially that used in the percolation calculations and
described in §3.4. The difference is that slightly more information must be kept. After the

intersections have all been found we have the following information for cach fracure.

the number of intersections (including specified pressure boundaries)

the fractures (or boundaries) at these intersections
- the position of the intersections.

From this information we must form the matrix equation whose solution 2+ *< the pressures at
cach interscction and hence the flows. The first thing that we do s to reduce the number of
intersections invol ed 1n the calculation. This is done by removing dead-ends and isolated clusters.
figure 3.1 shows an cxample of each type of non-flowing fracture and shows which intersections
van be excluc~d. The removal of dead-ends is straight forward. we simply run through the list of
fractures removing anv which do not intersect two or more other fractures. If thev intersecied one
other fracture then the corresponding entry for this is deleted. This process is repeated until no
more fractures can be removed. The removal of isolated clusters is not so straight forward. it must
be done however. not only to reduce the number of vanables. but because they lead to singular
submatrices. The way these are removed is by finding which cluster each fracture is in. and which
clusters touch a boundary. All fractures in clusters which do not touch a boundary or which touch
a boundary in one position only are removed.

There is one more class of non-flowing fractures shown in figure 4.1, these are in parts of
clusters which are connected to the main flow system by a single fracture. These are quite difficult
to find. requiring each fracture to be removed in turn and the clusters recalculated. The potential
savings in terms of reducing the number of variables are not great enough to justify their removal,

it is better to let the matrix solver calculate the zero fluxes in them.

We now have a list of all intersections to be included in the matrix equation. This equation arises

from the mass balance at each intersection
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Lq; =0 (4.3)
'
where g, is the flux from intersection i 10 intersection !

9 = 0,(F~F) (4.4)

with o, the conductivity of the link from i 1o J

[
0‘, = F—- 4.5
et

7, is the effective aperture of the link and [, is its length.

P, is the pressure at intersection .
Combining (4.3) and (3.4) we have

( X"i/)Pn— ZovrPl =0 (4.6)
I J

We also have boundary conditions on the specified . ressure boundaries

Fy = Py (4.7)
so we end up with
( Zon)Pa- Z oi;P; = E OHP(X,.y,) (1.8)
all y internal § boundary

Becausc any particular intersection can only have four neighbours the matnx is sparse. with a1

most five entries per row. In order to save space only the non-zero elements are stored. So for anyv

Tow we store

k, —the number of non-zero entries
€€z €4 —the column numbers for the non-zero entries
VoY Vi~ the values of the non-zero entries
b, - the right hand side.
Because the matrix is so sparse it is tempting to use an iterative solver (¢.g- Gauss-Seidel, Jacobi
or SOR). However the matrix is very ill-

conditioned, because it is only just diagonally dominan.

and thesz methods ali converge extremely slowly. We have also tried a semi-iterative solver. the

pre-conditioned conjugate gradient algorithm (Jackson and Robinson. 1982). This performed

much better than the classical methods but, while producing the solution, was still slower than we
had hoped.
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Using a direct solver on the matnix as it stands would be very expensive and would require large
amounts of computer space. We have found that by renumberning using a method based on the
Cuthil-McKee algorithm (Cuthil and McKee.1969) the bandwidth can be reduced sufficiently to
make a fast variable bandwidth solver practical. In order to allow for vers large problems an out of
core version of this solver was also written. For both the in core and out of core versions significant
speed gains have been made on the CRAY-1S at Harwell by using full vector facilities of this
machine. The out of core solver will deal with systems of 20000 intersections and a reduced
bandwidth of 160 in 13 seconds on the CRAY-1S (including the renumbering). Small problems

with less than 4000 intersections are solved in less than one second.

The renumbering algonthm can be described as follows. First the intersections along one
specified pressure boundary are renumbered in sequence along the side 10 be the first variables.
Then we run through each alreadv renumbered variable and assign new numbers to all
ntersections connected to °t that have not yet been renumbered. This results in the numbering
running from the first side across the network to the opposite side. This can best be understood by
an example. Figure 4.2 shows the original numbering for an example. this has 2 maximum
bundwidth of 10. The renumbering proceeds as follows. First those intersections along the left
hand edge arc renumbered starting with the intersection nearest the bottom lett corner. Next the
mtersections connected with new intersection | are renumbered. followed by those connected to
new inférsectinn 2 etc. In each case if there is a choice of intersections for the next number the one
with the lowest number originallv s chosen. The final numberning 1s shown in figure 4.3. The
maximum bandwidth s now just 3. For square regtons the bandwidth will be approximately the
square root of the number of intersections. For rectangular regions the starting side should be one
of the shorter sides. The initial. essentially random. numbering will have a bandwidth of the same
order as the number of intersections. N. The time taken by the solver is proportional to the
number of intersections times the bandwidth squared. and is therefore reduced by renumbering
from order N to order N°. The space required to store the matrnix is also dramatically reduced.
meaning that the in core solver can be used for larger problems.

Once the pressures have been found it is a simple matter to find all the fluxes. For the purposes
of this chapter it is only the cross-side fluxes which are important. In the continuum approximation
these would be equal and opposite on opposite faces, but for a fracture system this is only
approximately true. The average velocity is calculated for each face and the average over the

opposite faces is used to give the effective permeability tensor.
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Notice that the fact that we can define an effective permeability tensor for any particular portion
of a fracture system does not imply that Darcy’s law is valid for modelling a system with these
fracture statistics and size. There is necessarily a linear relationship between pressure gradient and
cross-side vciocit_v. because there is a linear relationship in all the fractures. In order for Darcy's
law to be sensible the permeability tensor must be a property of the statistics not of the individual

realisation and must be independent of the scale of the problem.

The computer program has been verified by checking against an independently produced code.
This code also included transport and the comparison is reported in chapter 7. For small cases the
code has also been checked by hand. The internal consistency of the program is constantly checked
by calculating the total flux into the region. This should of course be zero. and is always found to
be at least eight orders of magnitude down on the average flux. the error being caused solely by

roundoff errors in the solver.

4.4 Theoretical estimates of permeability

Many attempts have been made to relate the permeability of porous media to the microscopic
properties of the media. In porous media some work on obtaining bounds on permeability by using
correlation functions has been done {Beran.1968) but this is inapplicable 1o fracture systems. In -
fracture systems an infinite parallel plate model is often used (Snow.1968. Caldwell.1972.
Casullo.1972). In this type model the fracture system is replaced by sets of infinite planar
fractures. The aperture of the fractures is chosen to give the correct porosity. that is the correct
amount of open space per unit volume. Within each plane the Pousseille flow law is used. In the
scrt of two-dimensional system we are considering the fractures form an infinite regular lattice. In
this section we use this type of model. with some extensions to predict the permeability of fracture
networks. The first type of network we consider is ore in which the fractures are all either

horizontal or vertical.

As a first attempt to model this system we take the infinite square lattice shown in figure 4.4,

with an aperture equal to the aperture of the fractures in the network. If the separation between

3
bonds of the lattice is d and the aperture is ¢ the conductivity of each bond is L lfthereisa

12ud
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pressure gradient paraliel to one fracture set there will be a corresponding flow which implies a

3
permeability of 'l%-d The porosity of the system is 2 ‘% and so we have the relationship

K= 9;‘7 (4.9)

-’

where K is the permeability and ¢ is the porosity. If the fracture network has two fracture sets.

with all fractures having length 2 and aperture r and with a total density p , then the porosity is 2pl
and hence the permeability predicted by this model is T This is clearly going to b an

overestimate. since it neglects the discontinuities in the fracture system. It also has no cut-off at

low densities. whereas we know that below the critical density there will be no flow.

In order to get a better approximation we proceed as follows. We take the full infinite lattice
with the appropriate aperture and porosity and cut some of the links at random. as shown in figure
4.5. If we cut a propostion € of the links the ‘flowing porosity’ will be less than the full porosity by
a factor (1—¢). By flowing porosity we mean the amount of space available for flow per unit area.
For the fracture network we can also calculate a flowing porosity. The derivation and exact result

. . ’ - -
is given below. but for fairly dense <vstems the result is the full porosity times (1 - ;:). where 2 1s

ita

- . . - - d
the average number of intersections per fracture. and is ginen by 2 = 2p/-. We sete = = and use

>

efiective medium theory (Landauer.1952. Kirkpatrik.1971) to give the reduction in permeabihity

. . 3 . .
of the lattice. The factor for this case 1s simply (1-2¢) or (1—=). This gives us a new estimate for
P .

the permcability

or K

"

—(p—%) (1.10)

We have already seen. in §3.8 that the critical density for this system is when A = 3.12, giving

. = l;gj- This approximation for the permeability cuts the axis when A=4 at a density 20%

above the critical density. This is improved somewhat if we use the full formula for the flowing

porosity of a network which we will now derive.
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In the system above we showed in §3.5 that the number of intersections per fractures had a
Poisson distribution with mean A=2p/2. The flowing porosity is given by the full porosity times the

. average proportion of each fracture available for flow. This proportion is zero if there are less than
two intersections on a fracture and is given by the separation of the two extreme intersections if
there two or more. We need to calculate the average separation of the extremes of 7 values chosen
at random between U and 1. The probability that the maximum of the r values is less than X s
given by X'7. since all 7 values must be less than .X. From this we find that the average maximum

value is — . Similarly the average minimum is 1 and the average difference is 7=L. Th
r+| r+1 r+1

average proportion over all the fractures is therefore given by

A -1
25 (5) (+.11)
which we can sum to give
2 . )
(1-2)+e™"(1+2) (4.12)
» A

2_ - 2 .
If we use this full formula for the flowing porosity we are led to sete = ;:-e “(1+ ). This gives
3 A N

a zero permeability at 2 = 3.72 which is slightly closer to the true value than before. The accuracy
of this predicted permeabilits will be seen in the next section. Note that we have sull
mveresumated the true flowing porosity since isolated clusters have not been taken account of.

However the cut lattice model will contain isolated clusters 100. so the prediction should not be

greatly affected.

The analvsis above used infinite lattices and was therefore only valid for large regions. In order
to get some idea of the magnitude of the region size effect we now calculate the average
permeability for very small regions. If we take a region a by a with a<</ then the average number of

fractures crossing this region will pe approximatcly pal. The length of all the paths across the
e ? . plt? .. .
region will be a so the average permeability is pIa-]—,—. that is SR This is precisely the value given
2a

by the full network. as it must be since all the fracture space is used. It is higher than the large

region value by a factor )._14' qiving a2 markz=d effect at low densities.

This small region size effect presumably decays.away for regions whose size is larger than the
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fracture length. To get some idea how region size affects the permeability over the whole range we
N can argue as follows. The important thing about small regions which increases the permeability is
that the boundaries intersect fractures which would otherwise be dead ends. In other words they
increase the average number of intersections. In order to estimate the size of this effect we can
simply replace X in the previous formulae by k. the average number of intersections including
boundaries. The number of fractures intersecting the left and right boundaries if the region size is

R is given by 2p/R. the new average is therefore

x = 2pi2+20R (3.13)
pR*
which gives
2, A
¢ = Jpl-+=
x = 2pl +R (4.14)

Note that for large R we have k—7 and for small R x—x. These two limits give a result for the
permeability which agrees with that already calcuiated. For some fixed R the value of A when

permeability is zero is given by
(4.15)

The permeability predicted in this way is compared to the numerical results in the next section.

The above arguments can be generalised 1o cases with other orientation distributions. In all
cases the coordination number. z. should be 4. since each intersection cannot be connected to
more than four other intersections. In the effective medium analysis the factor multipiying the full
lattice permeability depends only on = and on the proportion of missing links €. the general form

being l—z—‘fi—,. The things that do change are the flowing porosity. and hence ¢, and the full lattice

permeability. I{ we use a lattice which has infinite fractures in sets at orientations 0, and with

separations d, and apertures 7, for i=1.....n then the porosity of the full lattice is given by

0= Dk (116

and the permeability in the 8 = 0 direction is given by
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n J' 8
1 'l cos.ei
K = 1—2-2—-—4 (4.17)

If all the 1, and d, are the same then we have

¢ =nz (4.18)
13 o s
K = ncos™® (4.19)
which gives
K = 22 cose. (4.20)

—ne

For the square lattice 6 was Q or ; and so cos~0 = . This value also applies for the case of

uniformly distributed orientations. In fact it applies 10 all cases with fracture orientations cqually

spaced as a consequence of the identity

n=~1
ScosiE = 7 n=2. (4.21)
A=ty - )
In all these cases therefore we have
K= ‘2'4- (3.22

In the uniform distnibution case with density p and lengths 2/ we know that the average number of

intersections A = g pl*. and so using the approximate result for flowing porosity we get

_ 1t B
K= ﬁ(p-z—:) (4.23)

As before we could use the full formula for € to give a slightly better result. and we could include

the boundary effect by using x = A+m. The accuracy of this result will be tested in the next

section.

As we pointed out in §3.5 the average number of intersections for cases with fracture length

variation is the same as in the equivalent case with all lengths set to the average. However, the
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distribution is not Poisson so the calculation of flowing porosity earlier in this section 1s not valid.
For fractures of any particular length the number of intersections 1s a Puisson distribution so we
can use the formula as before and average over lengths at the end. This gives us an average  seful

length

) uh

J[ l___Z_)+e-;.|l)(1+:.%)],1_ﬂ1)dl (4.24)

where MDD = 2pll.
If we take a uniform distnbution with [ <I<!__ with average T this gives a factor

2 (lm-v.})c-i"'—(k +3)e e

max

JL“ " )‘av()‘mu —;'mm )

(4.25)

where X, = 2070, ... Ann = 2011 %, = 2p7°. This implies a slight increase in permeability
as the spread in fracture length increases. This will be seen in the experimental results reported in

the next section.

If we allow a vanation in the fracture aperture then it is not clear how we can best predict the
result. Vse could allow a rvariation in the coenductivity of the links in our lattice model but this is
likelv to be unsatisfactory because it ignores the fact that a wide fracture 1s wide :;]I the wayv along
and not just between one pair of intersections. The result has been calculated to check that this is
s0 We can see what sort of behaviour to expect it we argue as follows. At low densities there are
very fow paths through the network and so the various conductivities will occur in senies. In this
case then the permeability is likely to relate to the harmonic average of the individual
conductivities. and ‘n particular if there are any very narrow fractures they will effectively block
the paths and so produce a low permeability. At high densities the situation is different. Here
there arc many interconnected paths and the permeability will depend more on the anthmetic
average of the individual conductivities. Narrow fractures can easily be bypassed while wide ones

will forin good flow paths and will push up the permeability.

Below we calculate the effcctive medium. harmonic and arithmetic averages for the case of

uniformly distributed apertures.

In terms of apertures the effective medium theory requires
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J Tond = | (4.26)

where flr) 1s the probability density function for the apertures and 1, 1s the effective medium
aperture. The permeabulity calculated using 7, from by this formula will have the missing link
factor 1-2¢in it.

The harmonic average 1,, is given by

{

e J'&;l dt ' (.27
t : '
[

and the anthmetic average t, is given by -

= Ir’ An dr- (4.28)

For the harmoric and arithmetic average the miss.ag link factor must also be included.
Table 3.1 shows how these averages depend on the spread of apertures in the uniform distribution
case. The effective medium case is given for three values of €. with the factor 1-2¢ removed to

allow comparison with the other averages.
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Table 3.1

Effective medium. harmonic and anthmetic averages for uniform aperture distribution.

As the density decreases the effective medium theory predicts a sharper fall in conductivity for
the variable aperture case ccinpared to the fixed aperture case. It will be seen how these averages

compare with the experimental results in the next section.
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4.5 Results of numerical experiments.

Numerical experiments have been carried out using the technique described in §4.3 for many
different region sizes. fracture densities and fracture statistics. These have been compared to the
predictions given in section §3.4 where possible. The first case 10 be considered was that of two
orthogonal fracture sets with one set parallel to the pressure gradient. In this case all the fractures
are of the same length and aperture. All that varies is the density of fractures and the size of the
region used. The‘ sides of the region parallel to the flow direction are no-flow boundaries in these
cases. the effect of making them fixed pressure boundaries is investigated later. The fracture

lengths are all 50 metres (/=25 metres) and the apertures 50 microns.
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Table 4.2

Results of segion size and density varia.ion runs for orthogonal fracture sets.

. . - -3 . .
The critcal density for this system 1s approximately 2.50x 10 ™2 fractures per unit area in each set.
Table 4.2 presents the results for various combinations of densities between 2x 10~ and 12 x 1071

and region sizes between 10 and 900 metres. The predicted permeability uses the formula derived

in ¥dd
. _ plt? 3, 2 -
K=E5(1-2+27"00-2)) (4.29)
with
K = Zplz+%1. (4.30)

It can he seen that this theoretical prediction gives good results for most case-. It breaks down
for the very low density cases. because it fails to give the correct percolation value. For density
4> 10~ the predictions are consistentiy 15-20% low. For densities above this the predictions are

very good. with less than 5% error in most cases.

If we concentrate on the variation of prrmeability with region size for a fixed density. we can see
that there is a sharp decrease in calculated permeability initially and that. as the region size

increases. the results settle down fairly quickly to a constant value. This value can be said to be the
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infinite region permeability of the fracture system. Also. as the region size increases the vanability
in calculated permeability decreases. The standard deviation is given in the table. In order for the
porous medium approximation to be useful the permeability on length scales of interest must have
reached the infinite region permeability and the varability at this scale must be small. 1f we say
that a standard deviation of 10% or the average value is acceptable then we can see that for
p = 4% 10~} a region size of something over 600m is required as can be seen in figure 3.6. If the
densityis 6% 10~ 3 then this is reduced 1o less than 300m. as figure 4.6 again shows. while for higher
densities regions of size less than 200m are acceptable. Al these region sizés the average value is
within a few percent of the infinite region value. and the minimum and maximum values are within
a factor of 2.0 of each other. The predicted average values of permeability are also shown in figure

1.6 and it can be seen that these predict the overall behaviour fairly well.

To see how well the predicted permeabilities do fit the ~alculated values for reasonably large
region size we show in figuie 4.7 the theoretical and exrerimental results for region size 400m with
varying fracture density.

In these runs the top and bottom boundaries were taken as no-flow boundaries. A series of runs
have been done with specified pressure boundaries to see how much this affects the results. In a
real porous medium either boundary condition used here would give the same results. The results
are set out in table 3.3. The permeability perpendicular to the pressure gradient comes from the
net flux across the top and bottom faces. and indicates a local anisotropy. In these runs the density
was fixed at 3x 1075

The first thing that can be said about these results is that the permeability is higher than with the
fived boundzries. This is because the number of flow paths has been increased - any fracture which
cuts the top or bottom boundary is connected to any other fracture cutting the same boundary. For
the large region size runs this increase is around 15% but for the small regions it is much greater.

We can see that this increase in the average results more from an increase in the minimum than in
the maximurs. in other words the effect of open boundaries is to allow poorly connected networks
to have significant flow.

The second thing 10 say is that the net flow leaving the sides is quite significant. For ail cases the

average was small but the range was large. with permeabilities up to 25% of the component
parallel to the pressure gradient. This local anisotropy may well be significant in contaminant

transport calculations.
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Region Size Parallel to pressure gradient Perpendicular 10 pressure gradient

Ave. Min. Max Min. Max.

| 1071 10" 107"~ : 10° " x 10°' x

n 358 f 0o ) i1 67 -3.54 ! 4.55

) - 595 ‘ 1.30 13 82 -39s 3.90

100 i LR () ' 248 ARL) -2.17 21
200 ' 130 : hE . %9 -14 ! 1.97
300 .' i : 257 ) e | 1.26
un 3% 284 151 -1.06 ' 1.04
500 363 j 269 ; 10l -0.93 1.00
00 3.48 ! an ,' 118 -0.95 0.86
T00 332 i 2.7 116 -0.712 09.78
800 337 ’ 2.59 ; 3.99 -on n.68
900 3.30 2n ! 388 -0.m 0.58

Table 4.3
Results of region size variation runs for orthogonal fracture sets with specified pressure
boundanes.

The high permeabilities calculated are unrealistic because they allow flow to leave the top or

bottom at one point and re-enter anywhere else. For this reason we have used the no-flow

boundary condition for the rest of the calculations.

We next looked at a uniform distribution of fracture orientations. The density was varied
between 2x10™* and 8% 10~ fractures per square metre. The region size was fixed at 400m and.
exc:pt for the two largest densities. 100 realisations were done for each density. The fractures all
had a fixed aperture of S0um and a fixed Ienglh of :‘On;n. The results are presented in table 4.4 The
theoretical results given are from the fuil formula with boundary corrections. The results for the

equivalent orthogonal case are given for companson. Figure 4.7 presents the same results

graphically.

The theoretical estimates in this case ar= ai| too high. and are not as good as in the orthogonal
case. The netwoik is acting as if there are effectively fewer intersections per fracture. One possible
reason for this is that when two nearly parallel {ractures intersect they add more flowing porosity
without proportionately increasing the permeability. Whatever the cause of the discrepancy it is
clear that the slope of the results is well modelled and that the difference between these results and
the orthogonal case are small, except near the critical density. For the case of fixed length. fixed
aperture fractures we can therefore say that the porosity permeability relationship

= o
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Denssty Permeability
N ; Ave. Min. Max. Orthogonal case Pred.
107} x X 10" x 107" x 10°"*x 107" x 107" x
20 ' 004 ‘ v.0 011 ; ool 0.0
28 0.30 : 0.0 1.28 ' 0.32 0.53
3.0 1.22 . 0.0 ! bR} i 0.14 1.64
3 f Las 216 | 135 90 107
<0 : 588 i 118 .77 : $.30 6.61
0.0 : 830 i 7.25 9.47 ; 789 9.19
7.0 ' 10.87 | 10.13 11.83 : 10.92 11.78
8.0 | 13.50 12.52 1359 | 13.06 ; 14.37
Table 4.4

Results of density variation runs for uniformly distributed fracture orientations.

gives a good estimate of the average permeability if ¢ is the flowing porosity provided that the

density is not too close to the critical density for the particular orientation distnibution.

We now turn to the case where either the fracture lengths or aperiures or both are allowed to
vary. We base these runs on the orthogonal case with a region size 400m and density 6x1073

fractures per square metre.

For the length variation realisations we have taken a fixed aperture of 50um. The fracture length
was given a umiform distnibution with avzrage 50m but with a spread ranging from zero to 50m.

Table 4.5 presents these results, in each case 100 realisations were done. Figure 4.9 presents the

. results graphically.
Minimum Maximum ; Permeability
A lezgth length Ave. Man. Max. Pred.
: 107"« 1077 x 107" x 107" x
! ] ; : ;
50 | 0 i 7.89 i 6.51 | 8.8 | 7.8
10 ‘ 60 5 793 ! 6.88 | 8.81 ; 7.45
! 30 | 70 ; 7.9 ; 6.75 ! 900 i 7.8
2 ; 80 i 8.18 | 715 : 9.5 : 7.56
10 % | 8.4 ' 733 : 9.81 i 7.7
0 ; 100 | 8.96 I 7.56 | 10.39 8.24
Table 4.5

Results of fracture length variation runs for orthogonal fracture sets.

The predictions come from the result of the previous section including the boundary correction.
The increase in permeability with length spread is predicted reasonably well showing that most of

the change in the permeability is due to the increase in flowing porosity.
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The cffect of varying the aperture is more difficult to predict. We argued that at high densities
the arithmetic average of conductivities would be important while at low densities the harmonic
average would dominate. The results presented in table 4.6. are for the fixed length S0m with the

standard density 610~ fractures per square metre and with uniformly distributed apertures.

Minimum ! Maximum Permeability
aperture ! aperture Ave. Min. Max.
um ; um i 10°"* x 107" x 1071 x
50 50 7.89 6.51 8.8
40 60 1.87 6.83 8.88
k1) 70 7.87 6.75 9.0s
20 80 7.84 6.60 9.12
10 9% 1.76 5.81 9.87
0 100 N 5.02 10.32
Table 4.6

Results of aperture variation runs for orthogonal fracture sets with fixed density.

In each case 100 reasisations were done. The average permeability remains nearly constant.
presumably this case falls between the high density and low density limits. The vanability in
permeability is greatly affected by the spread in fracture aperture. The region size required before

the permeability settles down will therefore be somewhat larger when the fracture length varies.

In order to see how the density aifects the results we repeated the case with apertures bctween

zero and 100um for a range of densities. These results are given in table 4.7 and in figure 4.9,

Densaty Permeability Average:
! Ave, Min. Max. ixed aperture average
0% % { 10°'¢ x 10~ x 107" x r
| |
1 1.56 ! 0.19 2.86 0.54
i 7.71 : 5.02 10.32 0.98
i 16.13 x 12.46 19.04 1.24
10 | 5.7 : 217 9.3 1.39
| 12 i KAl ! nn 40.61 ! 1.52
Table 4.7

Results of aperture variation runs for orthogonal fraciure sets with various densities.

These results agree qualitatively with the prediction and although it is difficult to say whether
the ratio is tending to zero for low density and 2.0 for high density the results certainly do not

contradict this. The effective medium results shown in table 4.1 give the correct trend as density
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increases but are out by a large factor. p=4x 103 corresponds to e=0.4 and here the difference 1s

a factor of five. while at the high density end the factor is two.

In a real system there is a strong possibility that fracture length and fracture aperture are
correlated. In order to see how this might affect the prediction of the permeability of the system
we have looked at the following case. Four fracture sets are present. two oriented parallel to the
pressure gradient and two oriented perpendicular toit. In each direction one of the scts has length
uniformly distributed between 20m and 50m. while the other has length between 50m and 80m.
The apertures are also uniformly distributed. between 20um and S0um for the first set and 50um
and 80um for the second. The lengths and apertures are therefore correlated. with the shorter
fractures being thinner. the correlation coefficient is 0.75. We will compare the results from this
case with the uncorrelated case. where the full range of lengths and apertures -~ Fe s acctt

in anv combinations.

The general method for predicting the permeability using a cut lattice model is as follows. First
we set up a rectangular grid with the same total fracture lcngih per unit area as the network. Then
we remove some links at random to reduce the fracture length per unit area to the Towing (racture
length in the network. Thus we have the separation between the lattice links and the propurtion
cut. The aperture must then be fixed. This is done by taking a weighted average of the network
apertures. the weight being the length of flowing fracture with a given aperture. The type of
average used will depend on the degree of connectivity. as previously explained. For low densities
2 harmonic average of the conductivities will be best. and at high densities an anthmeuc average of
the conductivities. At intermediate densities the best average is unclear. for our case we have
taken an arithmetic average of the apertures. which emphasises neither the particularly low

conductivity links nor the high ones.

In our example. botn for the correlated and uncorrelated cases. the above prescription gives a
lartice separation of 6.67m and a proportion of cut links of 0.262. For the uncorrelated case we use
the average aperture. 30um. For the correlated casc we find that the average flowing length of the
short fractures is 22.10m. and for the long fractures 51.63m. giving a weighted average aperture of
56.01um. The predicted permeabilities are therefore 7.431%x10™'*m" and 1.045x10™*m" for

uncorrelated and correlated respectively. givir.g a ratio of 1.41.

The numerically calculated average permeabilitizs in the two cases were 8.38x10™'*m" and

1 28% 10~ m?. which gives a ratio of 1.53. Thus the predictions are both too low, bet the ratio is

Flow




quite reasonable. The ratio in the calculations is higher. implying that the wider fractures have a

bigger effect than the lattice model predicts.

4.6 Summary and conclusions

The work presented in this chapter has shown that it is possible to calculate flow through large
fracturc systems. We can predict the average permeability for such systems by using a cut lattice
model. This gives the correct behaviour for the change in permeability with fractuse density.
length spread and nectwork size. The variability in permeability is reduced as the network size
increases. reaching 10% of the mean value for networks larger than ten times the fracture length.
The average value is also dependent on the network size. This dependence can be predicted by

including the boundary intersections when calcuiating the average number of intersection. and

hence the flowing porosity.

When the fracture aperture is allowed to vary the permeability is found to increase or decrease
according to the fracture density. For well connected systems there are many interconnected paths
and low aperture fractures are easily bypassed. while for poorly connected systems the paths are

like chains and low aperture fractures cannuot be avoided.
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Chapter 5 Contaminant Transport

5.1 introduction

Once the flow of water through a fracture system has been calculated and a permeability tensor
deduced we have the parameters we need to set up a coninuum model approximation to the flow.
1n many applications. including radioactive waste disposal. 1t is the movement of contaminants by
the flow that i1s important. The major mechanism is advection. which is usually assumed to be

related to the Darcy velocity through the relationship
q = Qv ’ (5.1)

where q is the Darcy velocity. v- is the :wErage velocity for a contaminant barticlc and ¢ is the-
porosity. The next mechanism to consider is hydroayﬁamic di'spcrsion. This is usually modelied by
a diffusion-like equation with a dispersion coefficien, measured experimentally. This coefficient
may have components which depend on the local velocity. In this and the foll~wing two chapters
we shall concentrate on advection and hydrodynamic dispersion. Other mechanisms include

sorption and diffusion into the rock matrix. we discuss these further in chapter 11.

Hydrodynamic dispersion occurs as a result of differing path lengths in the fracture network. An
individua! particle of contaminant will. to some extent. choose its path randomly and a group of

particles which are mnitially close will be dispersed.

Therce are two possible mechamsms at work randomising the particles” paths. The first occurs
within each fracture. here molecular diffusion will spread contaminant across the width of the
fracture. and along the length of the fracture. The second mechanism occurs ct intersections. here
contaminant arriving from ail inflowing fractures is mixed and flows out with equal concentrations
in each outflowing fracture. The exact cause of the mixing is unimportant. We shall show in the
following that molecular diffusion alone is sufficient 1o cause mixing but the roughness of typical

fracture wiil also contribute.

The molecular diffusivity will depend on exactly what contaminant we are concerned with, we
denote 1t by . If the typical fracture aperture is 1. the typical velocity of flow in a fracture is u and
the typical fracture length is /. then the distance spread by the contaminant in the time to travel
along a fracture is d; given by

a4} = 2

u .

(5.2)
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If the fracture intersection is also of size ¢ then the distance spread while passing through an

intersection will be d, given by
dr === (5.3)

For the cases of interest 1o us we have x=2x l()"'m:/s.l=50um.l~lﬂm and u between 10°7 mis
and 10" nus. This gives d, between 6cm and 6lcm. and d, between 130um and 1.4mm. This
implies that complete mixing occurs at intersections and that we can treat the concentration in a
fracture as constant across the width. The contaminant in a fracture travels at the average flow
velocity. that is the flux over the aperture. The aperture in this relation need not be the sauie as the

effective aperture used for hvdraulic conductivity. but they are assumed equal in this work.

In some cases we may wish to consider fracture zones, rather than single fractures. Then the
intersections will be highly fractured. hydrodvnamic dispersion will occur in the intersections and

the complete mixing assumption is still reasonable.

5.2 The diffusion equation approximation

From the numencal calculations. of whatever sort. we obtain the output rate for a pulse input
and for 4 step funcuon input. From this we wish to estimate the coefficients in the diffusion like
vquation used to mode! the svstem as a continuum. In order to do this we compare the resulis with

th= analytic solution of the one-dimensionat diffusion equation

(5.4)

The initial conditions for the pulse input are simplv zero everywhere except for a ¢zha function at
the origin. The boundary conditions relevant 10 the continuum model are less clear. In the
numerical calculation the concentration at the extremities is not constrained. so that the sides are
cifectively just momitoring points. not boundaries. This leads us to take the boundary conditions at
infimty where the concentration and its derivative must be zero. The problem witk boundary
conditions is caused by the fact that we only have convection in the network and so only one

boundary condition. whereas in the continuum we require two conditions.
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The solution to the diffusion equation is the gaussian

-

Cplxt) = Coe (5.5)
P v \iDr ‘
At time t the mass which has passed x=/is
Mp(0) = IC,(:.:)dx = fCorrfc(\I/-Tlg;). (5.6)
! A
The rate at which this mass passes x=lis
ey’
aM C, 1Dt
Rp(1) = p_toe I+ut 5.7)

dt vYm viaDt X

We can deduce D and u from a knowledge of the arrival rates using several different methods. If
the diffusion equation exactly modelled the svstem atl would give the same result. The difference

between the results indicates how far from diffusion-like the svstem is.

The first method 1s to obtawn a least squares best fit 10 the arrival rate data. with the end of
tmesteps being the fitting points. This will tend 1o fit the peak of the arrival rate curve and ignore
the tail. One disadvantage of this method is that it cannot be used very easily if only the arrival

times of discrete particles are known.

The second method uses the 25% and 75°% breakthrough times (any pair of percentages could
be used). These are the times at which 25° and 75% of the mass has arrived. The analytic solution
gives us the formula for these times which. noting that erf{0.477) = i, we can write as

I—ut

NEY;Y = +0.477.

So the breakthrough times t-5 and t~¢ are the roots of
u = Qul+0.91Du+1% = 0

which implies that

b
w

g +izg = 204091 (5.10)

and
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125‘75 = ‘% (51])

from which we can readily deduce D and u.

The final method involves calculating the average arrival time and other moments of the arrival

time distribution. We wnite

<> = J':"R,.(:)d: (5.12) _
° h
and find that
¥ D
<r>=(= =
! (“)+(u:) .
s 2 2
<1->=(£) +4(£)(2,)+6(2,)
” SRR 5.13)
<:">=(‘.‘)+(2) ©-
l "=
s ) g8y DY e 2Y
<t7>=(3) ”(1)(1:)*6(12)
These results can be derived by direct integration using the substitution : = -l or by relating N

v4Dr

> to the n-th denivative of the Laplace transform of Rp(1). The Laplace transform of Rp(t}is

<"

where

u—(u®-3Ds)

a = D (5.14)

From these results we can denive D and u. given /. in a number of ways. The more usetul formulae

are collected below

(i) from </> and <1~ '>

: i<t~ >
us =1 <t>
D=1<t >y (5.15)
or D=u<t>~ly
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(it) from <¢> and <1°>
L W3<r>~(3<ii>=2<r>)})
1]

D= u'<t>—lu ’ (5.16)

wee - -y
(i) from </~ !> and <™ >

‘; = 3<r i >-3<rT > =27 > YY)

D=F<t'>-lu ' (5.17)

For any arrival rate data we can use any of these methods to,derive values for the parameters D
and u. If the data comes from a system which behaves exactly according to the diffusion equation
then the method we use is irrelevant. By companing the results of all the met~ods we can see how

well the diffusion equation models the system.

In the fracture systems we have assumed a linear relationship between pressure gradient and
flow rate. and between flow rate and contaminant velocity. The coefficients D and u will therefore
both be proportional to the overall pressure gradient. The ratio I'?' = D is independent of the
pressurc grrdient. and so is a property of the network. The dependence of this parameter on
fracture statistics and region size will be looked at 1n the numerical calculations reported later. The
other ratio which is only dependent on the network is the ratio between u and the Darcy velocity.
If g is the Darcy velocity we write ¢ = g/u. ¢ is expectad 10 be equal to the flowing porosity

discussed in chapter 4.
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5.3 Transverse dispersion

Up 1o now we have been looking at the longitudinal component of dispersion. that is the

component paraliel to the flow direction. The tranverse component 1s also important, and can be

obtained from arrival information in a similar way.

For an infinitely wide svstem the arrival rate at x=/, with an initial pulse at the origin is

e-i‘b——"
Rp(y.r) = Rp(1)

\/3-!\/4_0?' (5.18)

is the tranverse diffusion coefficient. If the system is not infinitely wide. but has no flow
boundarics at v

where D,

= th the single multiplying factor is replaced by a sum,

k==

? _h-om):
Rp(y) = Rptyr—t—_. 2, Or (5.19
Va\ADn k= -x

For the cases we are considering the boundaries are far enough away 1o allow the simpler form. in

this case we have
<¥T> =2Dp<r>

and so we can find D; from the spatial distribution of the arriving mass.
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Chapter 6 Mass-Lumping Algorithm

6.1 Introduction

In modelling contaminani transport through a network the most natural technique 1s to follow
particles through the network. allowing them to take random directions at intersections. This
technique has been used and is discussed in the next chapter. In this chapter we discuss a different

technique. which may provide a starting point for the inclusion of other mechanisms.

To begin with we assume that we have set up a network and solved the flow cquations We
therefore know the geometry of the network. the pressure at each intersection and the apertures

and conductivities of each link.

We wish to calculate the time dependent transport of somre contaminant through the network. If
phenomena such as sorption are to be included later we will need to know the concentration of
contaminant at all positions at all umes. In this technique we discretise in space and time so that
the concentration is approximated by a piecewise constant function in space and 1s calculated at
the end of discrete timesteps. The important thing is that the length of the sections over which the
concentration is constant 1s chosen so that on a single timestep contaminant moves from one
secuon to the next. The section lengths are therefore different in each link. but are always equal to
the umestep multiplied by the flow veloaty in the link. At intersections all arniving mass is split up

so that the concentration 1n each outflowing fracture is the same.

The advantage of this techmique over particle following 1s that concentration 1s known
everywhere. Sorption and rock matrnix diffusion depend on this concentration. <o the model could
be extended to include them. Finding local concentrations if particles are being followed is difficult
unless a huge number of particles is used. The disadvantage is one of cost. particle following can be
made very fast. and while this method can be speeded up on the CRAY it is still comparatively

rather slow.

As stated above the algonthm seems straightforward. however there are a number of problems

to be overcome.

The first problem is how to deal with intersactions. We could treat them as points. with no mass
of their own. through which the mass from inflowing fractures passes as it splits and goes to the
outflowing fractures. Alternatively we could give them a finite size. so that mass resides at the

fracture for one timestep before being split and moved on. There does not seem to be any strong

Mass-Lumping Algorithm
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feason for choosing one method over the other. We have chosen the second, mainly because it is

casier to program.

The second problem is that the fracture lengths are not going to be convenient multiples of the
distance moved in a timestep. The number of sections along a fracture must be chosen 10 be the
nearest integer to the true number. The error of up to half a timestep that this introduces will be of

random sign and will therefore tend to cancel out after a few links. This is unlikely to cause any

difficultjes.

The third problem is that some fractures will hzave very slow flow. In any network there are

bound to be some fractures which just happen to take almos:

large number of sections for these fractures, since the section length is Proportional to the flow

rate. Since there is very little flow we cannot afford 19 waste time calculating concentrations for all

.

Y. Any mass which moves into it is

collected in a special lost mass section. As long as the amount of lost mass by the end of 3 run is

small the overall results will no: be affected. If there is 100 much lost mass the run must be

Tepeates with a relaxed limit. or with longer timesteps.

lersection straight into the next

fracture. This results in some intersections having mcre than three Outputs. once the mixing which

occurs at the jumped intersection has been taken into account.

Figure 6.1 shows the possible movements of mass on a single timestep.
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6.2 Computational details

The implementation of the algorithm is more or less as stated above. exccpt for a final stage
which puts the information in a form which enables some of the fast library routines on the CRAY
to be used. The sections are numbered so that. except at intersections. the mass in cach section
moves to the next higher numbered section. The other types of move are from section to
intersection. intersection to intersection and intersection to section. Each of these types is dealt
with in two parts. The first movement into any section or intersection is dealt with first, these can
be done using the very fast GATHER and SCATTER routines on the -CRAY. Subse~uent
movements into these sections require the mass to be added to that already present. these are done

separately.

The umestepping uses two sets of arrays to store masses. these are used on alternate steps. For
steps at which processing. such as cross section plots. is required the mass °s dumped to backing

store 10 be processed at the end of the run.

Usually mass starts on one side of a region at time zero and is transported across to the far side
where the rate of mass arrival is monitored. Timesteps are continued uatil no more significant
amount of contaminant is arriving. If results are required for a continuous input. or any other
input fun.ion. they can be derived from the pulse input calculation. From the output rate the

parameters for a2 diffusion like approximation can be derived as described in the previous chapter.
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6.3 Results

As an example of the use of the mass-lumping program we have done 20 runs with a region 200m
square. The fractures are all of length 50m and have aperture 30um. There are two fracture sets.
one honizontal and the other vertical. with 2.5x10"? fractures per square metre in each. The
pressure gradient imposed is 100 Pasm and the viscosity 10 ™% kg/mvs. The limestep was taken as |

day with a check done at | day for one realisation.

We first descnibe the results for a single realisation. The netwerk for this realisation is shown in
figure 6.2. The flow calculation gave a permeability of 5.087x10~'*m=, slightly below average for
these statistics. In the course of the mass transport calculations the fractures were divided into
26185 sections. Of the 890 intersection to intersection links 20 had very low velocities (more than
700 timesteps to move along them) and were therefore designated as lost mass links, the others
had an average of 30 sections each. 36 links were very fast (less than half a timestep) and the mass
cntering these moved directly into the next scctions. The initial 27rival occurred after 161
timesteps and after 1117 timesteps the aigorithm was terminated. At this point 0.74% of the mass

had gone into the lost mass section and 0.39% was still in the network.

The breakthrough times are given in table o.1.

i
Percentage i Time(davs)
Arnval : 1-day timestep —day imestep Least squares fit
. T
i minal ; Inl 00 161.50 -
TN 230 hank 5 34 ! 201.26
28 i R ‘ 287 50 l 24124
s0%% | 307 54 ‘ 307.33 _ 303.59
8o, : 109 A4 ; 109.74 377.35
0% 53455 534.65 457.94
Table 6.1

Breakthrough tinies for single realisation.

The results from the half day timestep run are also shown. it can be seen that reducing the timestep
has little effect showing that the one day timestep is short enough. The least squares best fit for D
and u were used 1o obtain the final column of the table. Figure 6.3 shows the full breakthrough
curve with this fit. It is clear that the tail is much longer than this fit predicts. We can use the other
mcthods to calculate D and u. these results are shown in table 6.2.

The results shown here are for the one day timestep, the half day timestep run gave almost

identical results.
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Method u {m/s) Dmss

107* % 10-* %

Least squares 7.617 ‘ 71947
<r>and <8*> 7.185 | 10.30

<t>and <t™'> 7.059 i 8.024

<t7'>and <17i> 7.143 : 6.342

1.y and 1o 7.126 § 8.49

) Table 6.2
Diffusion cquation parameters using various methods.’

We can also look at the mass distribution at a given time. This is shown after 80 days in figure
6.4. The mass present in slices actoss the network running from top to bottom is plotted as a
histogram with the least squares fit prediction as a solid line. Figure 6.5 shows the cross section
after 160 days. just before initial breakthrough. It is clear in both cases that the fit is not good.

underlining the fact that the dispersion is not diffusion like.

The results for the twenty runs are given below. For these runs the | day timestep was used. The
average lost mass was 0.56% and the average mass still in the network when the zlgurithm stopped
was 0.24%. Figure 6.6 shows the average arrival rate. This shows a sharp initial rise witii a very
much longer tail. The D and u calculated from this curve show the same behaviour as for the single
run. with the weight given to the tail determiniag the size of D. The breakthrouch times for this

average curve are given in table 6.3.

Percentage Tiae(days)

Amnval i Average Least squares fit Minimum Maximum

mitial 134.00 - 134.00 i 195.95

10% 212.42 195.80 193.06 | 270.49

25% 245.26 i 23715 2176 ! 305.79

50% 298.01 E 294.06 270.49 : 386.81

75% 378.54 | 364.63 333.03 ! 523.73

' 9% 488 90 411,62 414.70 ; 071.55

Table 6 3

Breakthrouzh times for average arnval curve and minimum and maximum over 20 realisations.

This table also gives the range of breakthrough times found over the 20 realisations. the range is
fairly large presumably because these runs are for a low fracture density and smali region. The

effect of density and region size are looked at in the next chapter.

The calculated D and u values have a similarly large range. and the average values follow the

same pattern as the single run. as table 6.4 shows.
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Method u (nvs) Dmis
107% % 10~% %

!
Least squares 7.769 7.421
<> and <1° > "33 9.890
<t>and <t”'> 738 7.738
< '>and <> 7.402 6.240
fs AnQ 1yy 7.493 7.790

Table 6.4 '
Average diffusion equation parameters using various methods,

The value of u is determined mainly by the position of the peak arrival rate, it therefore -aries only

a small amount according to the method used. D depends on the weight each method gives to the

tail. and so varies much more.

The dispersion length. '’ = Dju. has been calculated for the runs using the least squares fit. It
has an average of 9.68m with minimum 6.25m anu maximum 18.18m. The ratio of Darcy velocity
to « has an average of 7.05%10~* with a variation from 4.98x10~° 10 8.40%10"%. The average
porosity of the networks is 10™° and the average flowing porosity 6x107°, in fairly good

agreement with the velocity ratio.

These results will be cross checked against the results of the particle following program in the

next chapter.

The computer time taken for the mass moving step in ;hcse“runs was 2 seconds per run. This
uime will be proporuional to the number of intersections. N. 1o the power {. In these runs the
average .V was 6(4). so for a more realistic case with around 5000 intersections the time needed
would be 50 seconds per realisation. We will see in the next chapter that a similar particle following
run with 10000 particles would take less than 1 second. The algorithm d=scribed in this chapter is
therefore not quick enough 10 use tor large numbers of realisaiions. It does howevar have the

potential to include the other mechanisms which the particle following method dues not.
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- - Tl a s




Chapter 7 Particle Following Algorithm

7.1 Introduction

If the only output required from a contaminant transport model is the arrival behaviour at some
point or points. and no mechanisms other than convection and mixing are to be included. then a
particle following method is ideal. In this method the contaminant is transported in discrete
particles of fixed mass. Convection is simply modelled by the motion of the particles along
fractures and mixing is modelled by allowing each particle to go down any outflowing fracture with
probabilities proportional to the fluxes. For this approximation to complete mixing to be

satisfactory a large number of particles must be followed.

The way we have implemented the algorithm means the the spatial distribution of contaminant
at a given time is not readily available. The advantage gained in terms o{ computer time is
substantial and was considered to outweigh the disadvantages. Itis. in any casc. possible to modify

the algorithm to produce the information if it is required.

The basic method is as follows. At time zero the initial pulse input is divided among a'l the
particles equally and they each start atan intersection. If input is along a side of the network then
the probabiiity of each particle starting at a particular intersection is proportional to the flux
entering the network at that point. At each step the particles all move to a new intersection.
according to a random number. The probability of going to each intersection is proportional to the
flux from the current position to the new position. The time taken by each particle is recorded and
updated on each step. Once all the particles arrive at the far side of the network the algorithm
terminates. The reason that the spatial distribution is not easy to obtain is that the time for each
particle at the end of a given step is different. depending on the route taken by the particle so far.
The advantage of this is that the number of steps of the algorithm depends on the number of
intersections on routes from side to side. This will be similar for all routes. including any with very

slow flow. so the algorithm terminates in a predictable number of steps.

The only information required by the algorithm about the network is the probabilities and times

for moves from each intersection. So for eacn intersection we must calculate

- the number of outflowing links

- the intersections at the end of these links
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= the probability of moving down each link
= the time taken to move to the end of each link.

By using some special CRAY library routines the whole process can be vectonsed over the
number of particles and the time taken reduced to just lus per particle per step. So 10000 particles

can be followed through a network with paths of length 100 in 1 second. On the IBM 3081K the

same operations are 10 times slower.

The output from the particle following algorithm is a list of arrival times. These can be sorted so
that a plot of mass arrived against time can be drawn and the percentage breakthrough times
calculated. The averages <>, <t°>, <1~'> and <¢~2> can 1eadily be found and the continuum
parameters D and u« can be calculated in a number of ways. as described in chapter 5. The
discrepancies between these ways of calculating the parameters will indicate how wel) {or badly)
the continuum approximation fits the data. By 1aking averages over many realisations the average
parameter values and the variation in these values can be found. The dependence of both averages

and variations on region size and fracture statistics can be investigated.

7.2 Verification

The network flow and transport computer programs used throughout this work have been
verified against an independently produced code. written by Schwartz and Smith (Schwartz et
al.1983). The FORTRAN source was taken to the University of Alberta and run on the computer
there. Because their program is less general than ours the comparison was done using a network

generated by their program. The usual network generation routines in our program were bypassed

and the network properties were read in directly.

Their program uses a grid on which fractures lie. This caused two problems. First, their program
modifies the fracture lengths so that fractures end exactly on a grid line. This can cause fractures
which sheuld not meet to do so. Second, if two fractures are generated on top of each other they
count as in single fracture in their program. In our program this would not normally happen and
the fractures are treated as if they were parallel, with a small distance between them. These two

problems were overcome by some modifications to our program so that it mimicked theirs. After
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these changes the two programs produced identical results {or number of intersections. number of

boundary conditions. flow rates and permeabilitics.

The two programs use different systems for generating the random numbers needed for particle
following. The results were therefore not identical but the discrepancy in arnival times was well

within the range of statistical fluctuations.

This intercomparison verified that there were no significant errors in either program.

7.3 Results

First. in order to confirm that the algorithm produces results consistent with the mass lumping
algorithm. the example run of the previous chapter has been repeated. using 10000 particies. For

convenience some of the results given there are repeated here.

The permeability calculated was of course identical. The particles had all passed thiough the

network by 100 steps giving the arrival times shown in table 7.1.

Percentage Timetdays) ]
Arnval ! This rup Mass lumping run
ininal 161 84 ! 161.50
10% ' 381 | 2337
25% ; 257.87 ‘ 257.50
50% 306.75 307.33
5% 411.48 409.74
90% 535.31 534.65
100% 8810.25 -
Table 7.1

Breakthrough times for particle following and mass lvmping.

The agreement is almost exact, showing that both algorithms are behaving properly. The
comparison of the calculated u and D show up discrepancies however. as table 7.2 shows.

1t seems that the reason for these discrepancies is that for the mass lumping runs the last 0.5% of
the mass was 10t allowed to arrive. This greatly affects the calculated <> and slightly affects
<r>. The particle following run allows all the particles to arrive. the last one after 8810 days. The
last few particles have a disproportionate effect on the averages .and hence on D, and to a lesser
extent on u. This again highlights the problem of using these averages to calculate D and u. in the

rest of this chapter we have not used <12> at all.
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S

Methed ' This run Mass lumping run

: u {nvs) Dm::s | u {m/s) Dm--s

i 107"« 10" x ; 10" 10 .

<1>and <ii > , 8.327 . 5384 ; 7.188 \ 10.30

H : .
> oand <iC - . 6.817 1.4 . 7059 ; $.023
<rtosand<sti s ' 7.045 ; 6.850 i 7.143 : 6.342
t.e and 1o, i 7106 ! 8.565 i 71% ' 8.499
Table 7.2

Diffusion equation parameters using various methods.
In the following work we use three ways of calculating D and u, we use the notation
u, D, calculated from t.; and ¢,

u, D, calculated from <r>and <1~'>

uy D, calculated from <r™'> and <¢~2>
Similarly we use @,. @, and @, for the porosities v/u, . v/ir, and v/uy and I[P, 1P and 112" for

D u,. D./u. and D1y,

We first looked at the effect of region size for networks with two orthogonal sets of fractures. All
the fractures had length 50m and aperture S0um with a density of 4% 10 ™" fractures per square

metre. The region size ranged from zero to 800m. 100 runs were done for each size.

The permeability results for these runs were reported in chapter 4. where it was shown that tne
permeability average settles down to a constant value for regions of larger than 600m. At this
region size the vaniations between runs were small. For the particle following runs reported here
tnere are more things to consider. For some of the smaller regions there are cases with no flow. for
these the various parameters cannot be defined so averages are taken over the flowing cases. The

rumber of runs with no flow is indicated in prackets in the tables.

Table 7.3 shows the particle mean velocity. u. as calculated by the three methods. They clearly
settle down to a constant value at around 600m. in a similar way to the Darcy velocity. The
discrepaicies between the three results are quite small and show some signs of reducing for the

larger region sizes.

The porosity results are given in table 7.4. These appear to be tending 10 a value shightly below
the geometrically calculated flowing porosity. 6x 10 ~°. For the low density used here a more exact

calculation, taking account of isolated clusters, could well give the reduction needed.
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Repon Number of u, us ‘ u,
Size | reahsanons Average Std. Dev. Average Std. Dev Average Std. Dev.
; 10°* % 107*x | 10°* DD U 10°%%
: ‘ '
v £ 100(48) 20.31 142 2008 118 1o 1.47
) L1001 11.26 218 10.30 1.93 ¥ 10.83 200
o 1M | 19 172 73 - e | 172 172
00 1 100 6.00 1.08 ses |1 589 1.05
woc. 100 5.76 085 s49 | 086 5.65 0.84
wo. 140 5.45 0.64 5.3 e 5.3 0.63
wo. ! 100 5.36 0.47 5.18 0.47 5.27 0.46
0. | 100 5.21 0.41 5.08 \ 0.42 5.13 0.4:
00. 100 5.21 0.33 5.04 0.38 5.12 0.34
g0. | 100 5.12 0.33 198 0.34 5.04 0.33
wo |3 5.4 0.30 5.02 t 0.30 5.07 0.30
Table 7.3
Diffusion equation parameter u using various methods for different region sizes.
|
Repon i Number of -8 [ [ 23
Siuze . realisavons Average Std. Dev. Average Sid. Dev. Average Std. Dev.
10°* x 107" % 10°° % 107 % 107% % 107* x
0. 100(45) 760 | 36 776 ' 356 7.68 3.50
2] D) I 180 ; 1.66 s20 | 1N 195 1.66
100 toT 176 120 sn 118 488 1.21
200 100 190, 0™ s 069 199 0.80
00 100 21 0.8 s 042 . 53 0.51
200, 140 s | os 1 ss | 033 L s 0.39
0. 100 5.43 | 0.26 se2 1 om | 582 028
wo. 100 ss0 027 se8 | 021 5.60 0.25
0. 1 100 ss2 | 02 s D09 5.62 0.18
800. 100 sss | om s | om 5.64 0.15
900. 25 set | om | s l 0.09 5.69 0.10
Table 7.4

Flowing porosity ¢ using various methods for different region sizes.

We can look at the dispersion results in two ways. either as the coefficient D or as the dispersion
length I'P). We first look at D, table 7.5 gives the results. D, and D, become very similar as region
size increases. while D, is always 40% higher. Each is settling down to a constant value, although
not as quickly as the velocities do, 2 region size of 1000m rather than 600m seems to be the size
above which variation is small. The reason that D, and D, converge is that they both take little
account of the tail of the arrival distribution. D, is derived from the 25% and 75% arrival times

and so the tail has no effect and Dy uses <:='> and <1~%> which gives very small weight to the
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tail. D, on the other hand uses <s> which is greatly affected by the tail of the distribution. These

results show that, even at large region sizes, the dispersion is not fully diffusion like.

Region l Number of ; D, D, D,
Size : reahisations l Average Std. Dev. Average Std. Dev. Average Std. Dev.
' Lotx 0%, 107« 10- x 10 x 10-* x
) 10135 008 o1 | oo:m l ues L oo 0.25
) 112y 6.30 192 6.00 | 297 338 1.49
., . 1N T) 734 542 8.67 ! 4. 50 498 1.95
M R4s .32 11.92 7.4 6.94 2.03
0. ¢ w0 | s 3.40 12.69 5.90 798 1.93
w. | e ! e 3.2 13.68 319 894 2.09
. , 00 | 100 274 13.98 38 9.55 1.75
a0 . w0 ' 1097 2.88 15.06 4.94 10.47 2.7
0 T N R TR n 16.57 11 10.90 221
wo. 1 0 | ns 236 16.47 R 7} 11.52 1.92
wo, 2 1135 1% 1 1™ 1 300 1.33 1.61
Table 7 §

Diffusion equation parameter D using various methods for different region sizes.

The dispersion length results show very similar behaviour to the dispersion cocfficient. Table 7.6
shows the results. The standard deviation of /{2’ shows that not only doecs the tsil of the

distribution affect the average value but can cause large variations. This is due to occasional vern

slow pzrcles.

The next set of runs was for a fixed region size. 400m. with fracture densities up to 12x10°3

Dispersion length /'2? using various methods for different region sizes.
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Region Number of "o L2 ne

Size - reahsations - Aserage Std. Dev. Average Std. Dev. Average Std. Dev.
: i '
W 100(45) vos i 031 014 04 0.06 0.15
. 100(12) L 597 5.12 6.04 kB2 k3] 1.63
wo. | 1007 ! 9.59 6.55 12.45 7.01 6.66 2.9
20 i 100 1507 10.19 23.46 19.97 12.29 169
300, l 10 i 1600 7.27 24.39 15.13 14.46 125
o0 100 1882 | 8.3 7.2 13.36 17.12 5.57
o0 1 w0 1re1 | sgs 27.39 .77 18.30 1.06
Ll [V ] 6 ) 637 30.40 12.92 20.63 183
700 boo1000 . 2137 | 565 33.43 17.89 2 186
wo b0 s o 3342 8.75 22.99 423
wo, P as {26 0 a4 31.66 6.90 2248 378
Table 7.6




fractures per square metre. The other fracture statistics were as before, fixed length 50m and fixed

aperture 50um. Some of the low density runs gave no-flow. the numbe: of these is indicated in

brackets in the tables. with the average given being over the flowing runs.

We know from chapter 4 that the Darcy velocity depends on density through the equation

and that the flowing porosity is approximately

o= 21!(9—1—15)

which gives a prediction for the particle velocity

u =

1* pl*=2 P

RV

.0

(7.2)

(71.3)

For this case the large density limit is 10.42%10™° ms. Table 7.7 shows the numerical results for

particle velocity. They agree fairly well wath the theoretical prediction. The discrepancy between

the different methods is small but does not get smaller as the density increases.

Average particle velocity u using various methods for different fracture densities.

Density  { Number of | Yl us 4y ! u
‘reahsations . Average  Std. Dev. ! Average  Std. Dew. | Average  Std. Dev. t Predicted

T RE Y107t x 107 | 107"« 107" x 107" x 107" x ‘ 107°x
2.00 w3 o3 00 2.91 0.0 3.08 0.0 ; -
2.50 W1 328 0% 2.95 0.86 3.7 0.87 -
3.00 1003) 3.55 0.86 37 | oo 1.47 0.82 -
4.00 140 ‘ 5.45 0.64 5.3 0.66 5.35 0.63 3.4
5.00 0 6.76 0.18 6.59 0.48 6.66 0.47 5.52
6.00 10 7 0.32 7.558 0.31 7.61 0.31 €.63
7.00 40 8.23 0.33 8.05 0.33 8.11 0.33 7.33
8.00 40 8.67 0.26 8.49 0.26 8.55 0.26 7.82
9.00 25 3.88 0.25 8.69 0.24 8.75 0.25 8.17
10.0 25 9.25 0.21 9.05 0.21 9.11 0.21 8.44
11.0 2 9.34 0.20 9.13 0.20 9.20 0.20 8.65
12.0 25 9.54 0.20 9.33 0.20 9.39 0.20 8.82

Table 7.7

The porosity behaves just as expected, the results are given in table 7.8.
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Density | Number of ¢, ®, [N ¢
realisations | Average  Std. Dev. Average  Std. Dev. Average  Std. Dev. !;rediqed

10 % 10°% x 107" x 107*x 107 % 107*x 10°*x 10°%x
2.00 N 39) ] 0.73 0.0 | 0.82 0.0 [ R 0.0 1.0
150 (13 1.4 031 | 160 0.42 1.49 0.41 225
3on UNI3) 2.30 049 2.56 0.48 2.35 0.50 35
400 ’ 130 5.30 0.30 5.52 0.33 540 0.9 6.0
500 40 7.83 0.7 8.02 0.25 794 0.26 8.5
o 0 10.30 0.24 10.54 0.23 10.46 0.23 11.0
7 30 12.66 0.24 12.94 0.25 12.34 0.24 13.5
300 40 15.06 0.25 15.38 0.24 15.28 0.24 16.0
9.00 25 17.35 0.30 i72.713 0.30 17.60 0.3 18.5
10.0 2s 19.90 0.28 20.34 0.28 20.21 0.28 21.0
11.0 25 .16 0.30 22.67 0.28 22.50 0.29 235
120 ; 25 24.52 0.28 25.06 0.26 24.90 0.26 26.0

Table 7.8
Flowing porosity @ using various methods fcr different fracture densities.

The dispersion coefficient D is given in table 7.9. li appears to tend 10 a constant value, although

there is no convergence of the three methods.

Density l Number of l D, O. D,
i reahsations ' Average Std. Dev. Average Std. Dev. Average Std. Dev.
Wete | | 107 10°% x 1073 x 10-3 10-%x 10 x
200 1 g | 6.76 I 0.0 13.12 0.0 6.04 | 0.0
1500 0 a3y ‘ 279 | 1sos 17.85 853 ! om I 1.62 i
oo a0 es - sg9 2141 145 | oes 2.79
im0 g b e l 142 13.68 379 8.94 209
s 0 847 193 ! 1098 . 240 8.25 1.45
6.00 0 758 1.08 9.9 1.29 .57 0.87
7.r0 0 7.92 1.36 10.25 1.60 .73 0.93 -
8.00 40 e 0.76 10.08 0.90 7.70 0.54
9 25 7.48 0.60 10.03 0.n 7.62 0.40
100 25 7.29 0.72 9.87 0.94 7.43 0.60
11.0 25 735 0.42 10.35 0.59 7.6 0.29
120 25 729 0.42 9.93 0.56 sE ] 03
Table 7.9

Dispersion coefficient D using various methods for different fracture densities.

So. tie discrepancy between methods is unaffected by density, and we saw in the previous runs
that it was not affected by region size. It must therefore be a genuine property of these fracture

systems. showing that dispersion in fracture systems is not diffusion like.

The dispersion length s also falling as density increases. In table 7.10 we can see that this fall off
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is not as fast as the reduction in the separation between fracture intersections, which is inversely

proportional to density. It is not clear whether the dispersion length is tending to a finite constant

or whether it will eventually reach zero.

Density Number of | noe ne #o ‘
realisations i Avetage Std. Dev. Average Std. Dev. Average Std. Dev.

107 x
2.00 10(39) 21.04 0.0 45.13 0.0 19.59 0.0
2.50 20013) amn 50.28 64.69 Mun 29.33 14.13
1.00 40(4) 36.07 20.16 70.87 37.81 29.01 9.16
1.00 140 18.42 8.36 27.24 13.36 17.12 5.57
5.00 40 12.58 2.96 16.77 4.00 12.45 2.40
6.00 10 9.85 1.57 13.28 1.93 9.98 1.3
7.00 10 9.64 1.80 12.77 2.19 9.55 1.28
8.00 10 8.89 0.89 11.89 1.07 9.02 0.66
9.00 2 843 | on 1.54 0.83 8.7 0.52
10.0 25 789 . 080 1041 1.06 8.16 0.66
no | 25 798 | 049 11.34 0.68 3.28 0.35
120 128 boT6s . 0.9 10.65 o.mn R 00 0.40

Table 7.10

Dispersion length /2 using various methods for different fracture densities.
pe |4 £

In order to look at the variation of dispersion length up to higher densities we used a smaller

region size. 200m. This enabled us 10 go to densities of 23x 10 =3 The dispersion length results are

shown in table 7.11.

D=nuty ’ Number of ne o ne
! realisations Average Std. Dev. Average Std. Dev. Average  Std. Dev.
1070 %
4 100 15.07 10.19 23.46 19.97 12.29 1.69
8. 25 7.26 1.03 10.09 137 7.01 0.80
12 25 6.59 0.89 8.91 1.18 6.34 0.77
16. 25 6.14 0.66 8.47 0.84 5.96 0.46
20. 25 5.97 0.44 8.41 0.79 5.84 0.36
24. 20 5.7 0.59 7.78 0.87 5.63 0.48
Table 7.11

Dispersion length /P using various methods for different fracture densities for a smaller region.

These results confirm that there is no convergence of the three methods but it is still difficult to

be sure what the final value of I‘? is. We can be sure that the dispersion length does not only

depend on the distance between fractures. The other lengths in the problem are the region size,
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which is ruled out because of the results of the runs with varying region size. and the actual
fracture length. This is constant and we shall see that there are some grounds for believing that it is ’

this length that is important at high densitics. this is discussed in chapter 8.

We have looked at transverse dispersion as the fracture density changes. The fracture network
statistics are the same as those used above. but instead of starting particles all along the side they
are started from as near to the centre of the side as possible. This allows the transverse component
to be found quite casily. but increases the variability of the results between realisations. The
averages are still accurate enough 10 see the trends in values. In all cases the spread of particles is
small compared to the width of the region used. which allows us to ignore the effect of the top and

bottom boundaries. Table 7.12 summarises the results.

b
Density ! Number of I D, D, : Ave D,
l ' ! Ave D,
' reshsations | Average Sid. De.. Average Std. Dev. |
ik Pt 10°° x 10 x 0> !
L Y l 714 1.7 [ 1.60 190
$m ‘ s i 658 I 395 1.93 | 113 ' 34
(X11] : 1ta) ! .66 | 150 1.03 1 .37 LEY] -
X0 ; 0 e | 1.64 0,708 : 0.2y TR
mo ‘ S0 \ g | l 1 87 0).4%5 , 00 ; 4y
120 2s ] 713 | 1.R3 | 1.35% ! 9.12 ’ 0.1 -
Table 7.12

Transverse and longitudinal components of dispersion tor different fracture densities. -

We can see from these results that the transverse component decreases rapidly as density
increases. This reduction is faster than the reduction in separation between fractures. which
certainly implies that this component tends to zero as fracture density increases. In fact its closer
1o the square of the separation. It is also ciear froni these results that any attempt to relate the two

components by a simple ratio will not work. the ratio between them depends rrucially on the

connectivity of the network.

Finally we looked at the effect of network orientation on both components of dispersion. Using
the same fracture statistics as before with a fixed density of 6x 10 ™3 fractures per square metre and
a region size of 400m. we rotated the whole system through various angles while Keeping the flow
direction constant. The results are presented in table 7.13. the angle 1s the angle between one

fracture set and the flow direction.
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Angle Number of D, D, Ave D,
Ave D,
reahisations Average Std. Dev. Average S1d. Dev.
(degrees) 10-* x 107% x 10-% x 107" x
0 100 6.66 4.50 1.03 0.37 6.47
s 80 5.56 1.65 1.17 0.45 475
10 80 5.03 1.61 1.16 0.48 434
15 80 4.56 2.39 1.42 0.55 3
20 80 3N 1.50 1.39 0.45 282
pal 80 313 1.08 1.40 0.51 2.23
30 80 247 0.83 1.70 0.66 1.45
38 80 1.8 0.79 1.81 0.58 1.00
0 80 1.8 12 186 0.50 0.98
45 80 1.63 0.84 1.92 0.69 0.85
Table 7.13

Transverse and longitudinal components of dis

As the angle to the flow direction increases the longitudinal dispersion coefficient falls quite
rapidly, while the transverse component increases slowly. This is the same behaviour as for a full
square lattice. where the maximum transverse component occurs at 45°. with the minimum
longitudinal component. In the full lattice case both components have mimmum values of zero.

whereas here the minimum values are determined by the connectedness of the network.
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Chapter 8 Theories of Dispersion

8.1 Introduction

The theory of dispersion in porous media has a long history. When dispersion is modelled bva

continuum equation it 1s usual to use a diffusion-like (Fickian) equation. So. for a one-dimensional

flow. we would use

§.£+ua.—q-0§ =0 (8.1)
=t 3X ox-

where C is the concentration at position x. time 7. i is an average velocity and D is the dispersion

coefficient.

Many attempts have been made to show that (8.1) holds and to caiculate D ( Scheidegger.1972)
Random walk models envisage particles of contaminant undergoing a random walk through the
porous medium. with the distance travelled and time taken for each step being random vanables.
By using the central limit theorem the probability distribution function for particle position can be
shown to tend 10 a Gaussian. We reiate this probability density to the concentration in the real

system and hence deduce values for v and D from the mean and variance of the distribution.

Scheidegger (1954) introduced the idea of dispersivity. or dispersion length. We write
D =1,u (8.2)

and call 7, the dispersion length. In models where the step duration scales linearly with a change of
velncity. [, is a constant length. independent of the velocity and hence a property of the porous

mediuta. This will not be true if molecular diffusion is significant or if the flow is turbulent.

Saffman (1959.196()) uses a random walk mode! for hvdrodynamic dispersion and molecular
diffusion. His results rely on a maximum time for a step determined by the molecular diffusion. If
ks is not imposed the second moment of the time-step length distribution 1s infinite and D is
undefined. This model is discussed further later in this chapter. Saffman points out that it is the

. . f A= - . -
distribution of % _TT which becomes Gaussian according to the central limit theorem. and not

;

X'—uT. which has third moment (X=uT) =T,

Fried and Combarnous (1971) review the historical developments in the area of dispersion in

porous media and give some experimental results. They say that there is a systematic disagreement
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between theory and experiment. Scheidegger has suggested that the sieps in the random walk
should be corrclated. He introduced an autocorreiution function for the velocity and derived a

telegraph equation for the concentration

€, 3 3 3 3°C,3°C
_—4'!('—‘0'—.' = f‘(ll' olu: —  — (83)
2 X 3x- 3x- QXA 3¢+

This leads to a sharp cut off in concentration which moves into the medium with velocity v % and

does not fit experimental results.

Coats and Smith (1964) speculated that the discrepancy was due to dead end pores. in which

onlv diffusion occurs.

Simmons (1982) has argued that correlations can grea:ly affect the validity of the Fickian

assumption.

There is. then. no satisfactory theory of dispersion 1n porous media. and some doubt as to the

vahidity of the Fickian continuum model. especially at small lengths.

In fractured rock the random walk model looks sensible. it is easy to think of the steps of the
walk as the fractures. with complete mining at intersections before the next step. The number of
steps taken may be small. agamn casting doubt on the vahdity of the Fickian assumption. The
hypothesis that complete mixing takes place at intersections has been verified experimentally by

Knizek et al (1972) for a range of flow velocities.

Ve shall consider some random waik models and see what can be said about the effect of

correlations between steps.
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8.2 A simple random walk model

We start with a simple case to show how random walk models behave. We take a random walk
where all the steps are of the same length but take a time which is randomly distributed with
probability density f{r). The mean value of 1 is denoted 7 and the variance 0. The time taken for N

steps is given by

Al
y=1%¢ (8.4)

where the 1, are independent samples of the distribution. It is clear that the average time is given

by
T, = N1 (8.5)
and the variance by
= = (W-T)" = Mo’ (8.6

By using Laplace transforms. or moment generating functions. we can sav more.

Let

x

fis) = _[e"'f(:)d: (8.7
0
and
fuls) = fc-’r‘[.\,(l‘\.)dfv (8.8)
Q
We can see that
T\'
fo(Ty) = J' fooy (T =Df(1)dr (8.9)
4]
that s
fv =fua ¥ (8.10)

where %k denotes the convolution operation.

Hence
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) =EE)Y ‘ (8.11)

The Laplace transform of a probability density function is called the moment generating

function because

2 2 3 N
- STI_S T3 = =T+t 3
ls,,+27f, 67fv4- (l st+21 6:+)

which. by equating powers of 5. gives the relationships
(Tu—Ty)° = Nt=1)° = No*

NT
P . =T ..
The central limit theorem result is for C, = ———— . We can see that
V0

Ty =0
—_—
cy =1

= 1 (=1}

=T
N o

So for large N C;—0 and we have a normal distribution.

For one particular f(r) we can explicitly calculate f (T,). If
fi) = ae™™
then

‘5) = %
Sy = a+s

which implies

N
f‘;(;) =

(a+s)~
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and consequently

fo(T) = aVe-el TL (8.19)
N (N-1)! :

This does not look like the normal distribution when written in this way this but by using

Stirling’s formula for the factorial and setting C = we can show that

e"-‘cz

O~ (8.20)

QTN-N

We can see this in figure 8.1 where we plot VIRNAT,,) against NI for N=10 and N=50, as

well as the Gaussian. f, (7)) itseif does not tend to a Gaussian. For a=1 the maximum arrival time
is at N—1 and the times after which 1% and 99% of the pa:ticles have arrived differ from the

Gaussian results by over one time unit for all N, as can be seen from figure 8.2.

If there is a correlation between steps of the random walk this will affect the calculated
dispersion coefficient and increase the number of steps before a Gaussian is reached. We again

take the simple random walk with

=1
(t-1)° =o* (8.21)
but now also assume that
GRG5) =o' ®.2)
where V, = v(ji—j]). If we take v(k) = A* then we <till have
T, =Nt (8.23)
but now
=7 _ 2l+A 5 -
(TN m = No m 20 )‘1—12 (824)

The number of steps required before the final value of the dispersion coefficient is reached

depends on A, as does the final value.
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If we wish to predict dispersion coefficients we cannot ignore correlations between successive
steps. If they are ignored the resulting prediction will underestimate dispersion. Even in a more
complicated model we can get some idea of the effect of correlations by multiplying the result of an

+\ . . . .
uncorrelated model by :—5 . where A is the correlation coefficient between successive steps.
=A

8.3 Random direction models.

In this section we look at a class of random walk models. where we assume that the probability
distributions for direction.length and velocity of cac.h stcp are independent of all previous steps
but may be correlated with each other. The validity of this assumption is open to question, but we
believe that the effect of correlations can be mimicked by varying the step le.gth so that a step can
include 2 number of correlated smaller steps. A wide range of models is covered by our
assumptions. from simple random walks in one dimension to three dimensional random walks with
any correlations within a step. Since the length scales involved can take any values the models can
be used for flow in a fine grained porous medium or in a fractured rock.

From the statistics of the individual steps we deduce the distributions after a fixed ume. and
hence the dispersion coefficients. By doing this we are implicitly assuming that we can equate the
probability density function for a single particle with the concentration. This seems 10 be a
reasonable assumpticn. If we soive the one-dimensional diffusion equation (8.1) for a pulse
initially at the origin we get the gaussian curve. which we can interpret as a probability density

function for our single particle. which at time T has mean

n=uT (8.25)
and variance
o- = 2DT. (8.26)

From these simple relationships we can deduce u and D.

The basic model

We suppose that the displacement on step j. (x,.¥, .7,). and its duration 1, are random variables

with known probability dznsity functions. The means and variances we denote by i and o2 with
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suffices x,y,z and 1. The covariances we denote by 0,, ctc. The random variables for each step are
identically distributed and independent of all other steps. The first of these assumptions

corresponds 1o statistical homogeneity of the medium, the second seems unavoidable and was

discussed in the previous section.

We denote the position after n steps by (X,,.Y,.2Z, ) and the time T, . We therefore have

n n
Xn = Zx) Yn = E)’,— Zn = ZZ; 7:‘ =

"
=1 = i=1 =

lti (8.27)

After a large number of steps the joint distribution becomes multivariate normal. We
concentrate on the joint distribution of X,and T, to simplify the analysis. Just how large n must be
before we can use the normal we can estimate from the proof of the Central Limit Theorem given
1n section 8.2. from this we can see that we must have

Ky

———

]
’l’OJ

«1 (8.28)
by taking the next term in the expansions we also have

i u,-3a*

| no

<«1 (8.29)

which is generally weaker than the previous condition but dea!s with cases where K3 is zero. In

these formula we have used u3 and u, to denote the third and fourth moments.
Probability density for X given T

If the above conditions hold for x and ¢ we can write the joint probability density function of X

and T, given n1 as

-i¢
P(X&Tiny = —1___¢ (8.30)
21n0,0, \/1—p?
where
X-np,)? (T-mp)? (X- -
g=—L ( nl:.) + ntzl,) _X=np )(T-np,) (8.31)
I-p~ no; no; no, o,
and
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o
=t (8.32)

is the correlation coefficient between x and 1.

The probability density function for T alone. given n is

_‘(T-nu,):
1 © 207
n) = ———e ’ (8.33)
AT = =

We are interested in the probability density function for X at given 7. This is given by

EP(X&Tin)P(n)
_ PX&n _ -
P(XIT) D §P(ﬂn)P(n) (8.39)

All the P(n) are equal so. converting the sums to integrals we get the approximation
J Pixaminn

IP(ﬂn)dn

Evaluation of the integrals

We wish to find the moments of this distribution. and so we must evaluate f.\” P(X&TinYdX.
X

To do this we wnite

. (T-nu,)?
g = 2wia T2 (8.36)
’lo.'
where
X- -
S SN i TO N Lkl ) (8.37)
VIVi-p-\ nio, n‘o,

We can then write

_[X'P(x&nn)dx = 7‘._[x'e-“’:dw P(TIn) (8.38)
X x w

8.8
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where
4]
X = vIVi-p-alo, Wenu, +p—2(T~np,) (8.39)
4

for conciseness we will write

g ag
a = po—‘ a, = \/2\./1---;)10x ay =p —po—‘u, (8.40)
[ 4 : !
and
J = V‘,;J'(a, T+a,n!Wagn) e aw (8.41)
w .

J, is just a polynomial in ». since the range of Wis — to = and the § powers of 1 in the integrand
always appear with odd powers of W. The first few values are
Jo=1
Jy=ayn+a, T
J, =§a§n+(a3n+a, n? (8.42)
Iy =§a§(a,n+a, N+(azn+a, 7)°

To evaluate f J,P(T.n)dn and the denominator in (8.35) we need to evaluate

N, = J-n’ P(Tn)dn (8.43)

0

for integer p. This can be done by the substitation

T—np,
= 8.4
YT Voo ®4
by noting that
T 0
n(v)+n(-v) = 2—+2-Lz vi (8.45)
LS 5
7'2
n(v).n(—v)= = (8.46)
B
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and

N = —a——
oo vinZprl)y

If we write n = ”Iands: =
(

Calculation of the moments

We now have all the tools we need to calculate the various moments. The first moment is found

to be

. . B
which shows that for large T we have an average velocity u = — as we would expect. The second

moment turns out to be

(X-X)" =

and so, for large T we have

Notice that the correlation between x and 1 has an effect on D which can be very significant. Finally

we look at the third momen’
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Tlaz-
u,

=

3 J'v(n(—v)”’é—n(v)”’)e"':d\'

o}
—= we find that
u;

No=1o
N,=NOG’S:)

N,=! (" +3ns° +3s%)

N, =N,(r? +6ns2 +15ns* +155%)

y
et i .

u, 1y ®,

4

- A | b
u - To 0,0 .
ptail *Of“—:)+25‘—"-—4gf—'—,:-—'-+(]+p')
u, 15y B, Hu,
D=

(8.47)

(8.48)

(R.49)

W
Olol

—_— (8.50)

?

(8.51)




~—

At large times this is proportional to T so the distnbution of X given T is not normal even though

we have assumed normal distributions for X, and T, . However L‘L\/-P does have a decreasing

third moment. the rate of decrease depends on the statistics of the individual steps.

General resuits

The results above indicate that the probability distribution of a particle looks gaussian when the
time is large enough, in the sense that the higher moments only increase linearly with time so that
they become less important. There are two things which affect the time before we can say the -

distribution is gaussian. These are

- the number of steps must be large enough to make the assumption that X,"and 1, are

distributed as a multivariate normal valid.
- the time must be large enough for the skewness of the distribution to be unimportant.

The first condition is given by (8.28) and (8.29) for both x and ¢, the second requires

=0 <X =X (8.53)

Examples

In this section we look at some specific models for the individual steps. We start With the model

we used L2fore and then move on to moie complicated models with correlations.

We use the model where all steps are the same length. /. and the time for a step has probability

density function ae ~* . For this model we have

b= of =L by = 5 by =
o« 'S o o
u, =1 0,2 =0 W, =0 ey =0 (8.54)
This leads to the conditions
n>»2
n>6
7*»»% (8.55)

The strictest of these is the last. requiring n!>>3. We saw before that by n=50 the gaussian looked

a good approximation, which is in agreement with this. In the limit we find that
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D = ol = bl (8.56)

Saffman’s model

Saffman (1959.1960) proposes a model for dispersion in porous media which. for the case of
interest here. has Taylor diffusion equalising the concentration over the pore width and Pousseiiie
flow in the pores. He takes fixed length pores randomly oriented. The flow in each pore is
determined by assuming a constant pressure gradient in the x-direction, so flow is proportional 1o
(cosB) ~! where 8 is the angle between the pore and the x—axis. As it stands this leads 1o an infinite
of and so the Central Limit Theorem does not apply. Saffman points out that the diffusion time
along a pore acts as a maximum for the time distribution. when this is taken into account a finite o}

1s regained. He then has

A - 1. 3
W= 3g o = gz (vor=72-1)

= 2'—I 0: = l—:..
73 T
2
n, = 0 0;’ = II

l:lo IJ

H3, '*-U—Z W3, = 135

I*
Ba = T30 H, =0 (8.57)

2
where / is the pore length. U is the average tlow velocitv. t, = L is the time to diffuse along a
po £ £ Yto = 57 B

pore. with x the molecular diffusivity. In the limit we have
3y
D= },Iu(log-l—o—§>. (8.58)

If we take /=1cm. U=10""m/s we find that we must have the number of steps satisfving n'>>17
and a limiting value of D=6.78x10"%m?/s. If we take the larger values, more appropriate for a
fracture system. /=10m, U=10"°m/s we find that we must have the number of steps satisfying

ni>>500 and a limiting value of D=595x10"°mZ/s. In each case we have assumed
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x = 2x10""m?¥/s. The number of steps required here is very large because of the large cut-off

time t,.

The dependence of the hydrodynamic dispersivity is a surprising result. It arises because of the
way velocity is related to orientation. In a real sysiem the fluctuations in pressure gradient would
change this relationship and avoid the problem. In the next model we assume that four pores meet
at an intersection. with random orientations. and that the flows are determined by the equilibrium
state with the pressures at the far end of each pore satisfying the constant pre‘ssure gradient. In this

way a pore perpendicular to the overall flow direction will still take flow.

The random direction model

Using the model proposed above we calculate the velodities in the pores by setting the pressure
at an intersection to the average of the pressures at the far ends of the pores meeting there. These
pressures are assumed 1o obey the constant pressure gradient. If the lengths or apertures of the
pores were variable we would have to take an appropriate weighted average. The following
calculation is for the rwo-dimensional case. If we again let U be the overall average velocity we

find that the average for a pore at an angle 8 with x-axis is

%j(icoseﬂ) (8.59)

where

+L (8.60)
X

a=

(B

Qo | W

The proportion of material going into any one pore is proportional to the flux. and hence to the

velocity. The moments can therefore be calcmlated quite easily.

= ! : _ g
u, = 0.74820; o} = 0.130656—2-
u, = 0.74820/ o] = 0.06520/2
I pener3
Hy =0 13744? By, = —0.52605/
2 )
B, = —0.083485 o; = 0.375002 (8.61)
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From this we find that we require n*>>32 and that the limiting value of the longitudinal dispersion
coefficient is D = 0.24246/U. with transverse component Dy = 0.250601U. This constant
relationship between the two coefficients is not what is féund numerically, implying that there is
more to hydrodynamic dispersion in a fracture network than the random walk model can predict.
The large n requfrcd implies that in real systems the gaussian approximation may not be good

enough.

8.4 Cut lattice model.

The results from chapter 7 that need an explanation are that the longitudinal dispersion length
seems to tend to a constant as the density increases. while the transverse component tends to zero
faster than the separation between fractures. As the orientation varies the tranverse coefficient
changes by a factor of two while the longitudinal component varies by a factor of four. At 45° the

longitudinal component is 6 times the iransverse while at 0° it is 20% less.

In the work on flow through fracture networks reported in chapter 4 we found that the
permeability of the networks could be predictea quite well using a cut lattice. In particular the
dependence of permeability on fracture density was predicted. using an effective mediuni

approximation to the cut lattice.

The success of this predictive tool there makes it a candidate for the prediction of dispersion
coefficients. We look at the simplest case. with fractures oriented =ither parallel to or
perpendicuiar to the flow direction. all with length 2I. The fracture density is denoted by p. All
fractures have the same aperture 1. The cut lattice also has aperture r. and has separation distance

d and proportion of missing links €.

We relate the lattice parameters to the network parameters by equating the full and flowing

porosities. Using the formulae for large densities we have

2

2plt

Al

?_pll(l—?'i) 25(1-9)

where A=2p/? is the average number of intersections per fracture. Thus we are led to set
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dm= ;’ (864)

£ = —. (8.65)

We note in passing that g=l. which means that the average uninterrupted path is half the

fracture length.

For the permeability we simply took the effective medium approximation, but dispersion is
more difficult. There is no dispersion without the cut links. it is not simply a perturbation abou: the

full lattice value. To try to get the dependence of dispersion on fracture density we might argue as

follows.

Suppose that each missing link affects only those particles which would have passed through it.
and that it contributes to the variance of the particle positions by an amount 4_20.%_ The d here is
the scaling factor for different size lattices. Then the overall variance after moving a distance X

across a network will be this time the number of missing links encountered. So

s €X ,2 . Xog . <
e Bl = 2 X 8.66
o 7 Oy o ( )
The time taken for a particle to cross the distance X will be insensitive 1o the densitv at high e

densities. and so we have a dispersion coefficient

pxL. (8.67)
p?
Clearly the same argument applies for the transverse component. So this gives both coefficients

going 10 zero very quickly, much more quickly than is observed in the longitudinal case. and

slightly too quickly in the transverse case.

To explain this we could argue as follows. Suppose that the distance dispersed by a missing link

is large. so that there is interference between iinks causing a cut off in the interlink distance. We

do . .. .
must replace do, by —% since 1 is the distance between missing links. If we work through the
P AR ¢! 8

calculation we find

p=l. (8.68)
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Even this falls faster than the observed longitudinal component. Clearly however this type of

model could explain the transverse coefficient.

We can get a constant D if we suppose that the important distance is the distance between

hd hd

o
missing links in a single direction. In that case the variance for each missing link would be x_‘

and

D = constant . (8.69)

At this time it is not clear whether the correct behaviour can be deduced from a cut lattice model

or if the network results are fundamentally different.
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Chapter 9 An Example of a Full Network

In this chapter we present the results of transport calculations in a full network. that is in a
network which might be taken to represent the fracturing in a large region around a potential
repository. The exampile is not intended to represent any particular site but rather to indicate how

a real site might be modelled. and to discover any unforeseen problems that arise.

The transport calculations were done using a modified version of the particle following program

described in chapter 7. The main modifications were
- the top boundary is not straight
- the fracture density can vary from point to point
- the fracture aperture can vary from point to point
- the particles can stan from any specifiec posit.ons

~ the output at each position against time is recorded.

These have been implemented as follows.

The height of the top boundary 1s given as a function of the horizontal coordinate. This funztion

is used in all calculations of intersections with the boundary.

The variation of fracture density is achieved by supplying a mapping function. This maps
fracture centres from the specified generation region to the solution region. Any density vaniation

can therefore be specified. Fracture sets can be mapped independently.

Fracture apertures are made to vary by specifying a multiplication factor which is a function of
position. The aperture of each fracture is chosen from the original distribution and then muitiplied

by this factor. evaluated at the fracture centre.

The particle start points can be anywhere in the region. The nearest intersection that is not a
dead end is used. For each run any number of different poinis can be specified. with any number of

particles at each.

The particles will return to the surface at a boundary intersection. As each particle arrives the
arrival intersection and time are recorded for later processing. In the example here we use this
information to plot the spatial distribution of the first 10%. next 40% and final 50% of the

particles.
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The example used initially had a top boundary with high grbuhd at each end and a valley
between. The fracture density was highc_r-n'ear thc surface. and the fracture aperture was also
higher there. 1t was found that the sligbi variation in surface height caused large flows near the
surface. so that all the particles finally emerged at or near to the lowest point. In a real system
there would generally be a Iayer of soil or highly fractured rock at the surface which equalises
pressure differences. Itis the arrival at this layer that is of interest, and so the example finally used

has a totally flat valley bottom.

Figure 9.1 shows the example used. The side and bottom boundaries are no-flow. There is a flow
from each end to the centre, caused by the hills. Between 2400m and 25000m from the leftend is a
zone of wider fractures. In this zone the fracture aperture fzctor is constant while elsewhere it
decreases with depth. Four start points are indicated. in fact for each of these the particles were
started from four points at the corner of a 100m squa-e. Full details of the problem are giver
below.

Region 0 to 7000 metres by —2500 10 height(x) metres

Height = 100+300cos 0= x<2000

Heigh' = 100 2000<x <5500

Height lOO+200cos.110(—3£—;—x x>5500

Fracture sct |
Orientation 0°+8° to horizontal. Uniform distribution.
Half-lengtn mean 120m st. dev. 40m. —-ve exponential.
Basic Aperture 50um +25pm. Uniformly distributed.
Basic Density 10~*m~2. Into region 7300m by 3200m.

Fracture set 2

Orientation 75°+ 8° 1o horizontal. Uniformly dist:ibuted.
Half-length mean 120m st. dev. 25m. -ve exponeatial.
Basic Aperture SOum +25um. Uniformly distributed

Basic Density 8x10-°m~2. Into region 7300m by 5200m.

Fracture mapping.  x unaltered, )"=550_2m+1200°: where a= Sggo_o '
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Aperture factor. 1if 2400<x<2500 or y>0. Otherwise 400#—2‘

For the parucular realisation used here there were 3489 fractures. with 8758 intersections after

dead-ends had been.removed.

Four start positions ware used. The first run started 2500 parucles at (1000.-500). (1000.-600),
(1100.-500) and (~1100.-600). The other runs aiso started particles in a 100m square. the top left

corner being at {3(XX).~500), {1000.-1000) and (4000.-1000).

For each run the arrival curve against time was plotted. These are shown in figures 9.2109.5. In
the first run particles arrive very quickly, after just two years. with 90% arriving by 15 vears. This is
because the flow is to the fracture zone and then up to the surface. In the other cases the particles
take much longer to reach the surface. In case 2 this is because the start points are not well
connected to the surface. and in the other cases because of the deeper stant points. It secems that
for case 3 there is no route 1o the surface via the fracture zone, presumat iy because it is not well
cnough connected 1o take flow from ~1000m to the surface. Case 4 takes only twice as long as case
three despite the reduced fracture density and aperture at depth. the start points must be in a

better connected zone than the average {or that depth.

The positions at which the particles arrive are shown in figures 9.6 10 9.9. The arrival positions

for the first 10%. the next 4% and the final 30% are shown. The distances are the percenta e
pe 2

distance across the region. the fracture zone is therefore 34 10 35. It seems that no particles arrive

directly from the fracture zone. but the aperture increase is for fractures ceatred in the zone so

there will be wider fractures for a few hundred metres either side of it.

As we would expect. the positions where particles first arrive are generally the positions where
most particles arnive in all; although for case 3 arrival position 43 takes nonz of the first 10% and
yettakes 36% of the total. while the three ntervals taking 99.5% of tie initial arrivals take just 4%
of the second half arrivals.

We note that in all cases there is very little lateral spreading of the particles.

In general then we have shown that transport through large fracture systems can be calculated,

with the system parameters tailored to the site in question. An indication of arrival positions can

be gained. For the particular case used here there is little lateral spreading of the particles. In

general the initial arrival points indicate where the most will arrive. with a notable exception in

case 3.
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Chapter 10 Network Models in Three Dimensions

10.1 Introduction

In this chapter we collect together some ideas on the extension of network models to three

dimensions.

In a real fracture system fractures are nearly planar openings in a three dimensional rock mass.
The shape of the fractures in their plane can vary. they may have variable apertures. and
channelling may occur. Even when we simplify this system and consider only planar parallel sided
fractures. rectangular in shape. modelling is very difficult. Finding how such a system of fractures
intersect does not present any great problems. it has been done for very large systems in order to
look a: connectivity. see chapter 3. Once a flow field has been calculated. iinding the paths of
particles by a particle following method would not be very different to the two dimensional case
and could be handled without much diificulty. The problem is finding the flow field. In two
dimensions this required simply solving a set of conservation equations. one for each intersection,
with pressure specified on the boundary of some region. In three dimensions the fracture
intersections are line segments. and the fractures between them are two dimensional planes where
complicated flows can take place. It is not simplz to relate pressure at intersections to fluxes and

the two dimensional technique cannot be directly extended.
Let uz examine what equations we need to satisfy.

(i At each intersection there must be conser-ation of mass. This might apply point by point or

for the intersection as a whole if there is flow down the intersection.

(ii) Within each fracture plane we must satisfy the Navier-Stokes equations. which for our case

of very slow flow leads to a linear relationship between pressure and flow.

(iii) Pressure must be continuous everywhere.
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10.2 Pressure formulation

We could take pressure as the basic variable. just as we did in two dimensions. We assume that
the head losses at intersections can be ignored so that each point along an intersection has a unique
pressure. This pressure is then discretised. by finite elements say. so that the vanation along the
intersections s represented by a small number of nodal values. We could allow flow along the
intersection. or not. as appropriate. If we assume no flow along the intersection we proceed as
follows. Within each fracture we calculate the velocity field as a function of the nodal pressures.
This gives the flux into or out of each point along each intersection. From these we can formulate
a conservation equation for each inierscction. The simplest way to do this would be tp- look at the
fluxes at the nodes. It is better t0 take the flux along each intersection weighted by each basis
function. This is because it gives true mass conservation. since the sum of all basis functions on an

interscction 1s unity. and because it leads to a symmetric system of equations as we shall see later.

The important thing that makes the method simple to implement is that the velocity and hence
the fluaes are hinear combinations of the nodal pressure values. We write fI' for the integrated
flux times the r1h basis function when the pressure is unity at node s and zero at the other nodes.
that s the pressure is equal to the sth basis function. Here r and s are both nodes on the same
fracture From this we can see that the flux into the intersection times the rth basis funcuon when

the nodul pressures are P s given by

Vrbep, (10.1)

1
for fracture k. This leaas to an overall set of equations for conservation

VF_ P, =0forallr (10.2)

<
where

g:;ﬁh (10.3)

It is not immediately clear from this that £, is symmetric. We shall prove that each ,,“ is
symmctric tor a wide class of fracture shapes. from which it follows that £ is also symmetric. The

cxample of section 10.4 will show the symmetry for one particular case.

We have a number of lines in a region bounded by some no-flow boundary C. Each intersection

Network Models in Three Dimensions 10.2
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has a number of nodes. with each node we associate some basis function. These basis functions are
defined only along the lines. Usually they are picccwise polynomials which take vajue one at one
node and zero at other nodes. but this is not relevant for our proof. We shall write $,(1) for the sth
basis function at the point 1 on the lines. The pressure along the lines is denoted P(1) and the flux

into the line y(l). These are related by a Green's function G(LI’) through the equation

PQ) = j' GUI W)Y (10.4)
J

where the integral is along the intersections. Here G(1.I') is the pressure at } for a unit sink at I’
with a matching unit source at some other fixed point. subject to no-flow boundary conditions on

the curve C.
It P(1) = ®,() corresponds to a flux v,(1’) we have

o) = J’Gn.r)y,u')dl'. (10.5)
J

Our definition offd is

, = [e.mma. {10.6)
'

Subsututing (10.5) into (10.6) we get

f = J’dn!d\'cn.r)-,,(1')-,,(1). (10.7)

Thercfore in order to show that f, =f, we need to show that G(1.1')=G(}'.1). In order to do this we

will use the complex potential and conformal mappings.

If the region bounded by the curve C can be conformally mapped onto the upper half-plane.

with the curve C going to the real axis. then the result follows from the following argument.

Let us have a point sink at a with a corresponding point source at infinity. Then the complex

potential at z is given by

1 -
2;(logz a + logz—a). (10.8)

The second term is from the image giving no flow across the real axis. The pressure is the real part
of this, and is unchanged by switching a and z. since the real part of the logarithm is unchanged if

the argument changes sign or is conjugated.
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So for this case we have the required result. When we do a conformal mapping the source at

infinity will be mapped 10 a point on the boundary C. In all cases the total flux into the lines will be

zero so the strength of this source will be zero.

It1s a consequence of the Reimann Mapping Theorem ( Nevanlinna and Paatero.1964) that any
region bounded by a piecewise analvtic Jordan curve can be mapped conformally onto the half
plane. with the boundary being mapped conuinuously. The fracture matrix will therefore be

symmetric for ail likely fracture shapes.

The symmetry of F,, means that (10.2) can be solved more quickly. and can be stored more
cfficiently. The solver used in the two-dimensional system could also be used here. This type of
matrix equation is well known in finite-element analysis. Effectively each fracture is acting as a
fimite clement and the 1" matrices are ihe element matrices which are assembled to give £ . If
there are a large number of nodes in total 1t may be sensible to use a frontal solver. This does not
assemble the tull matrix at once. rather 1t bnings in the element (or fractu. o) matnices only when

thes are needed and eliminates vanabies once thev are fully summed. that is once all fractures on

which occur have been included.

With this formulation we can include fixed pressure boundaries simply be replacing the
corresponding equation by the assignment to the required value. Specified fluxes can also be

ncluded amte simply. by adding a term to the night hand side of the equations.

I low ajong the intersections is 1o be included then j:‘" wouid be modified. Care would have to

be tuken not to double count the effects of the intersection by including it in both fractures.

The fracture matrices can be calculated in any way. without modification to the overall method.
This alluws the inclusion of the different fracture charactenstics with little additional effort. The
fracture matrices could be approximated crudely or calculated accurately with. say. a f{inite
element scheme in each fracture. A library of matrices could be formed to allow quick calculations
t> be made. Even for approximate methods the fraciure matrix should be made syinmetric. Also

the overall conservation requires

Vb= oforallk. (10.38)

Note that the symmetric relationship

T/ = 0 for all k (10.9)
5
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also has a physical interpretation. It says that there is no flow if all the nodal pressures are equal.

10.3 Flux formulation

We could use the fluxes at the intersections as the basic vanables. The advantage of doing this is
that the analytic solutions within fractures are easier to obtain in terms of fluxes. However it would
be impossible to specify pressure boundary conditions. We feel that this would be too big a

handicap and will therefore not pursue this method further.

10.4 An example of a fracture matrix

To show one way in which the fracture matnx could be calculated we have used the finite
clement program NAMMU (Rae and Robinson. 1979) to calculate it for a simple case. We take a
square fracture. 40m by 40m. with two intersections. Taking one corner of the fracture at the
ongin these run from (10.10) to (10.25) and from (25.20) to (25.30). The pressure is discretised by
hinear funcuons. giving two nodes on each fracture which are numbered as follows. Node 1 is

at(10.10) with node 2 at {10.25) and node 3 is at (25.20) with node 4 at (25.30).

ror flow between two parallel planes we can use the porous medium program with permeability

replaced by a transmissivity equal to ;——; . where A is the fracture aperture. The flux is given by h

3
times the calculated Darcy velocity. We have taken the factor %—— out of the fracture matrix in
1

r4

presenting the results.
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The pressure contours for cach of the four cases are shown in figure 10.1. The resulting fracture

matrix was
P=1 at P=1 at P=1 at P=1at
node 1 node 2 node 3 node 4
Flux for node 1 -1.0311 0.3527 0.4249 0.2535
Flux for node 2 0.3528  -1.2389 0.4293 0.4569
Flux for node 3 0.4244 0.4290 -1.2718 0.4184
Flux for node 4 0.2534 0.4569 0.4183  -1.1286

The slight lack of symmetry here is due to the approximate nature of the finite element method.
The row sums are all very small. because when the nodal pressures are all the same there is no flow

in the finite element problem. The column sums are less good. because of discretisation errors

from the finite element gnd.
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Chapter 11 Including Other Transport Phenomena

The models used in this work have looked simply at convective transport of contaminant in
fracture networks. There are other important phenomena 1o be considered and the ways that these
might be included are discussed in this chapter. The chapter s in three parts. In the first we give a
description of the phenomena that we wish 1o look at. in the second the extension of the current
models to include some of these is discussed. and finally. in the third section. we describe a

different method which has the ability to model a wide range of phenomena.

11.1 Transport phenomena in networks

The models used earhier deal with transport of coritaminant by convection. Within each fracture

we might also wish to include
- molecular diffusion or dispersion
- sorpuon {equilibrium or kinetic)
- matnx diffusion
- radicactive decay (single species or chains).
Each of these 1s discussed in turn. Throughout we use C 1o denote number of atoms per unit
volume of water.
Convection
Contaminant is simply carried along with the flow. The governing equation is
3 , s8¢

3C |, ,8C _ g 1.1
3 T Y35x (.1

where u is the flow velocity.

Molecular diffusior or dispersion

We include here any mechanism which acts diffusively in the fracture. With convection the

governing equation is
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3C , 3C _ p3°C R
TR TR (11.2)

where D 1s the diffusion coefficient.

Sorption

Sorption is the process by which contaminant becomes chemically attached to the fracture walls.
The equation used depends on the rate of the chemical processes. If they are fast we use
equilibrium sorption. otherwise we use kinetic sorption. For equilibrium sorption there is a
constant ratio between the amount sorbed and the amount in the flow. while for kinetic sorntion
the transfer rates are included in the equations. In each case S denotes the number of atoms sorbed

per umt area of wall. In either case we have

3_—+uf.£=—lé§ (11.3)
3t 3x b at
where 2b is the fracture aperture. The equation for sorpiion is
S _ .
il bk, C - k,§ (1L
bk

where & and k, are the rates for sorption and desorption. If the rates are fast we have 5= —C.
A

r

k
We then write R=1~ k—' R is the retardation factor. and (11.3) and (11.4) are replaced by

RZ- - uZ> =0 (11.5)

Matrix diffusion

The fracture wails are not quite impermeable. Some contaminant will diffuse into the pores in
thz walls. slowing up the transport. We model this by introducing Cp, the concentration in the
pores. which is a function of position in fracture. time and distance into the rock. w. In the fracture

we have convection with a source from the walls (Lever et al.1982. Lever and Bradbury.1983)
REE & uSE = __; (11.6)
2 wmi)

and in the rock we have diffusion
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ac 3:c

ap—3- =D, (1.7

aw*

where D, is the intrinsic rock diffusion coefficient and ap is the rock capacity factor, which may

include a factor for equilibrium sorption in the rock matnx.

Radioactive decay

If we are concerned solely with the decay of a single species then we have simply

3C . 3C _ _
S +uzs = -AC (11.8)

where 2. is the decay constant.

If a chain is 1o be modellied then we have

3c, &€
T uTt = —aC, +A_,C, (11.9)
>t x

where C, 1s the concentration of the sth species in the chain and A, is the corresponding decay

constant. For the first member of the chain the »,_; C,_, term is not present.

Boundary conditions

For each case we must have the appropriate boundary conditions. For first order equations we
will require the concentration at one end. For second order equations the concentration at both
ends. or concentration and its first derivative at one end is required. For the matrix diffusion
equation (11.7) we can either have no diffusion beyond some set distance into the rock. or allow

diffusion to infinity with zero concentration at infinity.

Other time-depzndent effects

In certair circumstances the parameters of the networks might be time-dependent. For example
fractures may close-up as they are mineralised. or they may open up if a pumping test is done. If

the waste is emitting heat then the viscosity may change. as well as sorption constants.
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11.2 Extension of current models

The inclusion of equilibrium sorption and radioactive decay for a single species presents no
problems for any model. Equilibrium sorption leads to a scaling of the flow velocity by the

retardanion factor. Radioactive decay can be ignored until the end when all concentrations can be

reduced by the appropriate amount.

Kinetic sorption could be added to the mass-lumping method by introducing a second mass for
cach secuon. to represent the mass of contaminant on the wall. Mass could then be transferred

between the two compartments on each timestep as required by (11.4).

Matnx diffusion could be included in a similar way. except that more than one extra mass would

be required for each section. representing the mass at various distances into the rock.

Decay chains could Se added to mass-lumping or particle following. If sorption is also to be

included with different retardations for the differem nuclides then the pa-ticle following method

cannot be used.

Molecuiar diffusion or sorption could be included in the mass-lumping method by transferring
mass 1o adjacent sections on each step. It could also be included in the particle following method.

by introducing a random component into the travel times for each link.

Other m'me-dependent effects come into two categones. those which modify the flow. and those
which affect only the transport parameters. If the flow 1s affected then the flow equations must be
re-solhved from time to time. This will cause problems for both mass-lumping and particle
tollowing. requiring major modifications in both methods. If only transport parameters are

changing then both methods. 1f applicadle to the fixed parameter case. could be modified quite

simply to cope.
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11.3 Modelling network transport using Lapiace transforms

For many of the phenomena of interest we can write down a linear partial differential equation
governing the transport of contaminant in a single fracture. Analytic solutions can be obtained. in
many cases by using a Laplace transform. In general these solutions are complicated. requiring
significant computational effort to evaluate. Moreover any attempt to chain together such
solutions quickly becomes impractical. The technique proposed here inverts the Laplace
transforms numerically. and can be used to find the solution for a single fracture or fora network

of fractures.

The method described below is for cases with no second order terms in the fracture transport
equation. that is no diffusion in the fracture. This restriction means that the concentration value

against time at one end of a fracture is sufficient to give the full solution.

Description of the network.

We assume here that the flow through the network has been calculated. either by the program
described carlier or in some other way. A network can be described in terms of its intersections
and the hinks between them. Some intersections will be linked to external sources or sinks. In
gencral. the majority of intersections will be internal. receiving centaminant from from other
‘upstream’ intersections. mixing it and passing it on to the next ‘downstream’ intersections. The
links through which the contaminant moves from intersection to intersection will have certain
properties which are basically the coefficients of the differential equation governing transport. For
the purposes of this section it is convenient to regard the water flow rate as a property, since itis
known. The other properties will include length. aperture. sorption coefficient. rock matrix
diffusion coefficients. etc. There may be some globai properties. such as decay rates. but these can
all be included for each link. The network is fully described by the list of source intersections. the
list of next downstream intersections for each intersection. the properties of each link. and the list

of output intersections.

Given the network description and the contaminant concentrations against time at the input
intersections we wish to find the contaminant concentration against time at the output

intersections.
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The transformed problem

The method we use is as follows. Instead of using concentration agnst time we use the Laplace
transform of this. This makes the problem tractable because the Laplace transform of
toncentration at the downstream end of 2 link is given by the Laplace transform at the upstream
¢nd times a transfer function. This transfer function depends on the properties of the link. but no*

on the concentrations. If we write C , (5) for the transform of the concentranon at intersection ¢

then we have

C ) = VT, ()€ (5) {11.10)

-— )
r=

where T.(s) is the transfer function for the link from jto i and is zero unless i is at the downstream

end of a link from j. If we let T,(s) = 1 we can write

CTsC =0 jor ali i. (11.11)

—
!
The transfer functions here include the factor to take account of mixing.

The problem can now be solved as foilows. We start with the transformed concentration. C" . at
cach <ource intersection. Then we simply ¢yvele round. each time calculaung €™ for every
intersection whose immediate upstream predecessors have been dealt with. Eventually we will
have got the transform for every intersection and in particular for the output intersections. We

now anvert the transtorms to find the concentrazion against time at the intersection of interest.

There are three things we need 1o know: the input transforms. the transfer funcuions. and how to

mvert the transforms.

Input Transforms

Any function could be used for the input but normally the input would be one of the following

Delta-function Cln) = C,8(1—1,)
C'(s) = Cye ™ (11.12)
Step-function Cn =0 for i<t

Ay =C, for 1>y,

-5,

C'(s) = G, &

(11.13)

Decaying radioactive source =0 for 1<y,
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Ct) = Coe™ for 1>,

c i 11.19)
(s) = [ Evey (1L
Finite length pulse Ci)=0 for <y, or >

) = C, for y<i<yy

-llo _ -3
C'(s) = c.,(_‘__"__'l (11.15)

Fracture Transfer Functions

We give examples for the cases listed in section 11.1. In all cases we denote the fracture length

byl

(1) Pure convection

For pure convection the governing equation is (11.1) and the corresponding transfer function is

{
--3

Ts)y=¢ “ (11.16)

(2) Convection with equilibrium sorption and matrix diffusion

In this case the governing equation in the fracture is (11.6). with an additional retardation

factor. R. muluplying the i term. The equation for the rock is (11.7). We take the rock

>t

boundary condition to be zero at infinity. The transfer function is then

T(s) = e-“a

‘(a,.D,)*

x=sR +s° 5 (11.17)

{3) Two radionuclides in a chain with different retardations

In this case the equations are (11.9) with the addition of retardations. R, and R,.

5C. ac,
135; + u-—:—.’ = klRlCl - )\-\R-)C-‘
of oX ot (11.18)
%, uiE‘— = -,R,C
1 3t ax 1481 ™M1
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Instead of a single transfer function we have a two by two array relating the output transforms to

the input by

S~ Cl.omu) = TH“)C!.M(S) + T:(S)C:."‘U)

Cs aul8) = Ty ()G () + Tx()C3 5) (119

Since the output of nuclide 2 does not depend on the input of nuclide 1 T:(s)=l). The other values

are

N
Th(s)=e "

Ta(s)=e¢ * O (11.20)

MR -L -1p
7'::‘5)= :1——;‘( ua - " )

where a=(s+2,)R, and =({s~2.)R..

Inversion of the Laplace transform

The imversion tormula for Laplace transforms s
fin = < [enr i (11.21)
: -u e

where Cis a conzour in the complex plane which runs to the night of all singularities of £ (s). The
; contour used analvucally is the Bromwich contour running from a—ix to a+ix where a is large
enough tu satisfy the condition on singularities. Numerically this contour is no use. The iategrand
oscillates and large errors are introduced. The curve C should be chosen to minimise ths
asaillations. Talbot (1979) proposed a method which uses the best curve for one particular
transform and applies it to all transforms. This works well in many cases and has been used to
invert some single fracture transforms (Lever et al. 1982, Hodgkinson and Lever. 1982.
Hodgkinson et al. 1983). Unfortunately one class of problem that it cannot deal with is where
there is a discontinutty in the solution. In this case the method cannot be used for times before the
discontinuity. since the integrand of (11.20) does not go to zero at the ends of the contour C. For a

network the solution will have many discontinuites. corresponding to the differing path lengths,
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and so the method does not work. It may be that similar methods could be developed that would

be able 1o deal with this case.

The hope is that a method can be found which gives the original function at any time from a
small number of values of the transform. These values could be found in the way outlined in

section 11.2. Until such a method is found this technique cannot be used.
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Chapter 12 Summary and Conclusions

It is important that radioactive waste is disposed of in a safe and reliable fashion. When
considering disposal underground the possibility of groundwater carrving waste back to the surface
must be considered. Modelling this process has generally been done using continuum models. but
for fractured rock it is not clear that these are valid. If they are valid then the parameters for them

must be found.

This study has looked at various aspects of flow through fractured rock. lts purpose was 10
develop a better understanding of the processes that occur in fracture systems. Statistical fracture
networks were used to do this. In these the fracture properties are specified by probavility
distributions. Realisations of these distributions are generated and analysed numerically.
Averages and variabilities between realisations have been found and the effect of varying the

statistical properties assessed.
The study was in three main sections: connectivity, flow and transport.

The connecuvity of fracture networks is closely related to percolation theory. The work.
described in chapter 3. concentrated on finding critical densities for various svstems. In order to
find these a computer program was developed to run on the CRAY computer at Harwel! The
general program can deal with al! distributions of orientation and length. A more specialised
program was developed from this to deal with the case of fixed length. orthogonal systems. This

can analvse svstems of 250.000 fractures in under & seconds.

As a result of these studies 1t has been found that the critical density of networks varies with the
network size used to calculate them. By using finite-size scaling arguments the asymptotic crnitical
density can be deduced. It has been discovered that the average number of intersections for each
fracturc at percolation is insensitive to the fracture statistics. In two dimensions the value is
between 3.1 and 3.7 while in three dimensions values of 2.0 and 2.5 have been found. For cases
where fracture length varies the average number of interscctions 1s taken as a weigiited average

with weights proportional to the fracture length.

A simple argument was presenied to relate the critical densities in networks to the cntical

probabilities in lattices. The predictions that this makes agree well with the numerical results.

In chapter 4 we looked at the flow of water through fracture networks. This was done by using

anothes computer program. The techniques used in the connectivity program proved invaluable
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for finding the intersections in large networks. The matrix equations for pressure at the

intersections were solved using a specially developed variable bandwidth solver.

By calculating the effective permeability of many realisations of the fracture staustics the
average permeabilities and their variabilities were found. The permeability depends on the size of
the network. which implies that small scale expeniments may be misleading. The network size has

10 be at least 10 fracture lengths for the vaniability in permeability to be less than 10% of the mean.

The dependence of permeability on fracture density, length variability and aperture variability
was investigated. It was found that the variation with density could be predicted by a cut lattice
model. which also gave an indication of the pcmcat;ilily variation with spread of fracture length
and with network size. The permeability change with aperture spread was more difficult to predict.
It depends on the fracture density, because at low density the flow is predominantly along chains

of fractures while at high densities there are many interccnnected paths.

The transport of radionuclides in the groundwates is of most importance to radicactive waste
disposal. In this study we concentrated on the transport by convection in the flow with mixing at
the intersections giving hydrodynamic dispersion. Two computer programs were developed from
the flow program. One of these. the mass-lumping program described in chapter 6. was designed
1o be extendable to include other processes such as rock matrix diffusion and sorption. The other,
the parucle following program described in chapter 7. is specifically for convection and mixiag. It
is fast. enabling many realisations to be used. with large numbers of particles in each.

Most of the work on transport was in the system with two orthogonal fracture sets. with fixed
length and fixed aperture fractures. The effect of changing the fracture density and network size
was investigated. In chapter 5 we derived a number of different ways of getting the continuum
parameters from the particle arrival time data. The discrepancies found between the parameters
derived in the different ways shows that dispersion in networks is not fully diffusion-like. The
discrepancies were found to persist when fracture density and network size were increased. The
origin of this discrepancy is the long tail of the arrival times. caused by some particles passing
through fractures with very little. and hence very slow. flow.

The average particle velocity was found to be related to the Darcy velocity by the flowing
porosity, as calculated from geometrical considerations.

The longitudinal dispersion coefficient was found to tend 10 a constant as fracture density

increased. while the transverse component tended to zero surprisingly quickly.
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Some models of hvdrodvnamic dispersion were looked at in chapter 8. Random walk models
were studied and some general results obtained. These were applied to some particular cases.
These models were unable to predict the observed behaviour. The cut lattice model, which had
successtully predicted permeabilities. was considered. Some arguments which might explain the

vbsersed behaviour were put forward. The numerical results are sull not understood.

In chapter 9 the parucle following method was generalised to handle a network model of a large

region surrounding a potential repository. This indicated the sort of results that could be obtained

and the problems that arise.

In chapter 10 the extension of the methods to three dimensions was discussed. 1t was snown that
the fractures could be thought of a elements in a finite-clement problem. with fracture matrices

being assembled to form the overall matrix equation for the pressures. One such fracture matrix

was evaluated.

In chapter 11 the inclusion of other phenomena was discussed. Extensions to the existing models

were considered and a new method based on Laplace transforms was proposed.

In conclusion. this work has shown that connecuvity and permeability of fracture networks can
be understood 1n terms of quite simple models. cnabling critical densities and permeabilities to be
ostimated. Dispersion is much more complicated. ¢ven predicting the dependence on fracture
density could not be done. At the sume time the results have shown that interpreting cxperimental
results in terms of a diffusion equation will give misleading values for the parameters. It is clear

that a better understanding of hvdrodynamic dispersion in fracture networks is still required.
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hree-dimensional continvum groundwater flow

Figure '.1. Finite element grid for typical t
hown. The dark bands are fracture zones

calculation. Only the surface elements are s
modelled by three rows of thin elements.
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Figure 3.1. Typical percolating system. This example is from the case with uniformly distributed

orientations and fixed length fractures.



Figure 3.2. The percolating cluster from the system shown in figure 3.1.
cluster which reached all four sides are shown.
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Figure 3.3. Notation for intersecting fracture planes.
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Figure 3.4. Notation for calculating the average number of intersections per plane in
three-dimensional systems.
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Figure 3.5. Notation for calculating the average number of intersections per plane i
three-dimensional systems.
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Figure 3.6. Criiicai density versus region size. The fractures were all of length 2 units with
orientations in one of two orthogonal directions. The solid lines show the best fit to the
finite-size scaling curve with v=4 and with v allowed to vary.
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Figure 3.7. Standard deviation of critical density versus region size for the same case as figure 3.6.
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results are shown. The solid line shows the best fit to the finite-size scaling curve with v=1
for the six-faces resuits.
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Figure 4.2. Hlustration of renumbering algorithm. A possible original network numbering for a
small example.
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is shown.
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fractures were oriented parallel to the pressure gradient and half perpendicular *o it. The
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Figure 9.3. The number of particles arrived against time for starting position 2.
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S000}
] - »,
4000 50°% —100%%,
w 10.10"50.’0
w
-
o First 10,
P
[+ 4
<
& 3000
|19
Q
[+
w
[s0]
X
2
z
2000
1000}
0 t t t 4 t

25 30 s 40 65 70 75

ARRIVAL POSITION
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Figure 10.1. Pressure contours caiculated by NAMMU for pressure set to one at each of the four
nodes in turn as calculated during evaluation of the fracture matrix for this fracture.




