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Abstract 

The objectives of this research are 'tb0valuate directional mechanical transport parameters 

for anisotropic fracture systems, and to determine if fracture systems behave like equivalent 

porous media. The tracer experiments used to measure directional tortuosity, longitudinal 

geometric dispersivity, and hydraulic effective porosity are conducted with a uniform flow field 

and measurements are made from the fluid flowing within a test section where linear length of 

travel is constant. Since fluid flow and mechanical transport are coupled processes, the direc

tional variations of specific discharge and hydraulic effective porosity are measured in regions 

with constant hydraulic gradients to evaluate porous medium equivalence for the two processes.  

respectively. If the fracture region behaves like an equivalent porous medium, the system has 

the following stable properties: 1) specific discharge is uniform in any direction and can be 

predicted from a permeability tensor and, 2) hydraulic effective porosity is directionally star.e.  

Fracture systems with two parallel sets of continuous fractures satisfy criterion 1. However, in 

these systems hydraulic effective porosity is directionally dependent, and thus, criterion 2 is 

violated. Thus, for some fracture systems, fluid flow can be predicted using porous media 

assumptions, but it may not be possible to predict transport using porous media assumptions.  

Two discontinuous fracture systems were studied which satisfied both criteria. Hydraulic 
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effective porosity for both systems has a value between rock effective porosity and total poros

ity. A length-density analysis (LDS) of Canadian fracture data shows that porous media 

equivalence for fluid flow and transport is likely when systems have narrow aperture distribu

tions. Hydraulic effective porosities are equal to and greater than rock effective porosity for the 

continuous and the discontinuous systems exhibiting porous media equivalence in the LDS, 

respectively. All fracture systems studied showed different polar plots of longitudinal geometric 

dispersivity. In most porous media transport studies, anisotropic media is treated as equivalent 

isotropic media such that longitudinal geometric dispersivity is directionally stable. The use of 

directionally-stable longitudinal geometric dispersivities for these fracture systems could lead to 

serious errors in transport prediction.
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CHAPTER I 

INTRODUCTION 

Concerns about radioactive waste storage and the injection of toxic pollutants deep under

ground have focused interest on the problems of fluid flow and mass transport in groundwater 

systems. The disposal of pollutants in or near a rock mass where fractures constitute the major 

conduits of groundwater movement is a central problem. The primary objective of this research 

is to determine when a fractured rock mass may be treated as an equivalent porous medium 

for transport studies.  

In porous media, the size, shape, and degree of interconnection of the intergranular pores 

regulate fluid flow and transport. The void region is well connected and the number of pores 

per volume of porous medium is very large; so that the medium may be treated as a contin

uum in which macroscopic fluid flow and transport properties are considered without regard 

for the actual movement of individual fluid particles. The number of connected fractures per 

volume of rock is much less in a fractured rock mass than in a porous medium: therefore, a 

larger sample of rock may be required before the porous medium approach is applicable.  

When the porous medium approach is not appropriate, a discrete model which simulates tran

sport in each fracture of the network must be used. The discrete approach requires detailed 

information on the geometry of the fracture system and hence may require an excessive 

amount of data and computational effort. Thus, the continuum approach is preferable if it can 

be shown to be appropriate.  

In order to evaluate whether the continuum approach is applicable, one must demon

strate that the fracture system has the same transport behavior as that of an equivalent porous 

medium. However, fracture systems may be anisotropic and transport in anisotropic media is 

not fully understood. The reason is that no solution is available to determine the components 

of the dispersivity tensor in an anisotropic medium (Freeze and Cherry, 1979, pp. 552).

However, mechanical transport, the component of transport that is due to the movement
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of fluid through the conductive flow channels, can be evaluated for anisotropic media. Thus, 

the conditions under which fracture networks behave like equivalent porous media can be 

investigated by focusing on mechanical transport.  

The directional variations of the ratio of fluid flux to mean velocity, tortuosity, and longi

tudinal mechanical dispersion must be understood to evaluate mechanical transport. In an 

anisotropic medium, the ratio of flux to mean velocity is assumed to be independent of direc

tion of flow and equal to porosity. Thus, a test for equivalent porous medium behavior is to 

determine if the ratio of flux to velocity is consiant in all directions. Less is understood about 

the directional dependence of tortuosity and mechanical dispersion in anisotropic porous 

media. The prevailing practice is to treat an anisotropic porous medium as an equivalent iso

tropic medium in transport studies, implying- that each transport parameter has no directional 

dependence. This work introduces the concept that longitudinal mechanical transport and tor

tuosity are both dependent on the direction of flow. Thus, the evaluation of these parameters 

in anisotropic fracture networks will lead to a better understanding of the transport 

phenomenon in all permeable media.  

The fact that fluid flow and mechanical transport are coupled processes makes it neces

sary to also investigate equivalent porous medium behavior for fluid flow. The directional pro

perties of specific discharge are used to investigate equivalent continuum behavior for fluid 

flow. When the fracture system exhibits continuum behavior, specific discharge can be 

predicted in any direction from a permeability tensor.  

A numerical model is used in this research to simulate mechanical transport in discrete 

fracture networks. We assume that fluid flow is restricted to planar fractures within an 

impermeable rock matrix and that mechanical transport is the only transport process. The 

simulation of mechanical transport uses a new streamtubing technique which traces the 

detailed movement of fluid within streamtubes from inflow to outflow boundaries along the 

fracture system.
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CHAPTER 2 

LITERATURE REVIEW 

2.1. INTRODUCTION 

Tracer injected into a groundwater aquifer will not migrate downstream retaining its 

shape, but will spread and mix with the ambient fluid. Dispersion of the tracer is caused by 

microscopic mixing occurring within the pores of the medium. This literature review will: 1) 

introduce the transport processes and parameters used to model dispersion in porous media; 2) 

present key areas of research in porous media transport and; 3) review mechanical transport 

models for fractured rock masses.  

The primary objective of this research is to determine when a fractured rock mass can be 

treated like an equivalent porous medium. Porous media transport modeling is reviewed so 

that continuum parameters characterizing transport can be evaluated. Areas of uncertainty 

where research is needed are also discussed. Two specific problem areas, applicability of the 

Fickian dispersive approach and dispersion in anisotropic media, will be investigated.  

Three earlier discrete mechanical transport models are discussed below. The modeling 

techniques and principles used in each model are reviewed in detail. A new model which 

simulates mechanical transport in fractured rock masses is developed in Chapter 4. This new 

model is based on the physics of fluid flow to provide a sound and realistic simulation of 

mechanical transport.  

2.2. DISPERSION IN POROUS MEDIA 

The porous media dispersion model consists of an advective transport process coupled 

with a dispersive transport process. The advective process accounts for transport by the mean 

motion of flow. Advective tmnsport alone causes no distortion in the shape of a pollutant 

plume as pollutant is merely transported with the mean flow. The dispersive process allows for 

the spread of a pollutant resulting from complex microscopic mixing that occurs within the 

pores. In the next two sections,modeling of the advective and the dispersive processes are
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discussed. Section 2.2.3 reviews the fairly recent approach of stochastic transport modeling for 

porous media. A numerical stochastic model of mechanical transport will be developed in 

"Chapter 4.  

2.2.1. The Advective Transport Process 

In the advective process, a pollutant moves with the mean flow velocity. In porous 

media modeling, the mean rate of advection is expressed in terms of the quantity of fluid flow

ing through the medium because fluid flow parameters are generally much easier to determine 

than transport parameters. The hydraulic effective porosity is used in this study to express the 

relationship between fluid flow and transport, and is defined as the specific discharge divided 

by the average linear velocity. The average linear velocity is the ratio of the straight or linear 

travel length to the mean flow travel time. Considerable laboratory work has been carried out 

to determine the relationship between hydraulic effective porosity and total porosity. Von 

Rosenburg (1956) conducted tracer experiments in packed columns of Ottawa sand and found 

that for this homogeneous and isotropic medium the hydraulic effective porosity was nearly 

equal to the total porosity. Biggar and Nielsen (1960) obtained mixed results when they inves

tigated a set of four porous media: glass beads, Oakley sand, Columbia silt loam, and Yolo 

loam. In the case of the glass beads, the total porosity provided a good estimate of the 

hydraulic effective porosity. However, the hydraulic effective porosity was less than the poros

ity for the three other porous media. Biggar and Nielsen (1960) attributed this deviation to the 

presence of stagnant void regions. In contrast to the findings of Biggar and Nielsen, Ellis et al.  

(1968) found that, in laboratory tracer experiments involving packed sand columns, the 

hydraulic effective porosity was generally larger than the porosity. The hydraulic effective 

porosity may be greater than the porosity if microscopic regions of slow movement exist which 

have a minor influence on the total flow rate passing through the medium, but have a major 

influence on the travel time for particles flowing into these zones. The slow movement in 

these zones produces a very large mean flow travel time which can result in the hydraulic effec

tive porosity being larger than the porosity.

- ����1
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Well testing methods provide a means of evaluating the hydraulic effective porosity in the 

field. Hazzaa et al. (1965, 1966) applied the two-weU pulse method to predict the hydraulic 

effective porosity for an inhomogeneous aquifer of sand and gravel interbedded with clay 

lenses. Hazzaa et al. in a series of tests concluded that the hydraulic effective porosity was less 

than the porosity.  

Grove and Beetem (1971) used an innovative recharging-discharging well technique to 

determine the hydraulic effective porosity for a fractured carbonate aquifer of Culebra dolom

ite. In this technique, water is pumped from one well and injected into another well at the 

same flow rate until a steady state hydraulic head distribution is established in the aquifer.  

Tracer is then introduced into the recharging well, and the breakthrough curve measured at the 

discharging well. The hydraulic effective porosity was found to be within the range of the 

estimated porosity.  

The standard multiple well method of injecting tracer into a recharging well and monitor

ing concentration at strategically located observation wells was employed by Hoehn and 

Roberts (1982). The multiple-well test was conducted in a vertically homogeneous, poorly

sorted alluvial gravel aquifer. It was concluded that the hydraulic effective porosity was less 

than the porosity.  

Thus, both field and laboratory tests have demonstrated that the hydraulic effective 

porosity (OH) is not necessarily equal to the total porosity (0). Experimental evidence from the 

laboratory indicates that the relationship between OH and 0 is dependent on the type of porous 

medium. Where there is a well-ordered pore structure (i.e. glass beads), OtH is approximately 

equal to k. However, where the pore structure is irregular and nonuniform, the hydraulic effec

tive porosity differs from the total porosity and is usually less than 0 because of the presence of 

stagnant void regions.  

2.2.2. The Dispersive Process 

The distortion in the shape of a contaminant plume for a conservative pollutant is caused 

by the interaction of molecular diffusion and mechanical dispersion. Molecular diffusion is the 

"-";7
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mixing caused by the kinetic energy of randomly moving solute particles. Mechanical disper

sion is the mixing induced by the movement of fluid through the conductive channels of the 

medium. The principle microscopic mechanisms of mechanical dispersion, as illustrated in 

Figure 2-1, are the velocity distribution across a flow channel which causes particles to move 

faster in the center than along the sides of the channel; the flow rate variation from one channel 

to another which dictates the direction particles will travel; and the geometry of the pores 

which causes particles to travel along tortuous paths. Molecular diffusion controls dispersion 

when the flow velocity is very low; mechanical dispersion rapidly becomes the governing mode 

of transport as flow velocity increases.  

Presently, the classical approach is widely used to characterize the dispersive process 

because of the simplicity of this approach,. and because this approach has been used with 

moderate success in analyzing laboratory tracer experiments. The classical approach was for

mulated from Fick's law for molecular diffusion. In this approach, the mass flux dispersing 

across a unit area is equal to the product of a second-order dispersion tensor consisting of con

stant coefficients and the negative of the concentration gradient. Von Rosenburg (1956) 

presented qualitative justification for applying the classical approach to porous media disper

sion based on Taylor's analysis (1953) of dispersion in a pipe. Taylor demonstrated that after 

an initial period, the Fickian approach may be used to model longitudinal dispersion in a pipe.  

The laboratory tracer experiments that confirmed the classical dispersive approach were 

generally conducted using packed columns of isotropic, homogeneous porous media. A porous 

medium sample was carefully placed into an open-ended cylinder and constant hydraulic head 

boundary conditions were applied across the inlet and the outlet of the packed column to create 

a uniform flow field. A consistent uniform flow field throughout the sample was required to 

evaluate meaningul transport parameters from the tracer experiment. Tracer was then intro

duced at the inlet to the column and concentration was measured at various points within the 

column or at the outlet. Perkins and Johnston (1963) present a comprehensive review of 

laboratory dispersion studies that were based on this classical approach.
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Dispersion studies have also been conducted in the field. Two general techniques are 

used to evaluate dispersion from field measurements. In the first technique, tracer tests are 

conducted and concentration measurements are used to evaluate dispersion coefficients. A 

multitude of different types of single-well or multiple-well methods can be applied in this 

approach. The type of tracer test to use depends on the scale of the test and intended accuracy.  

Fried (1975) describes the different types of field tracer tests and their range of applicability.  

The second technique of evaluating dispersion coefficients is known as the inverse method. In 

the inverse method, dispersion coefficients are determined by simulating the time history 

migration of pollutant in an aquifer. This is accomplished by varying the parameters in the 

dispersion model until the calculated concentration contours match the historical data. A 

major limitation of the inverse method is that because of the large number of parameters used 

in transport modeling a unique solution is often not obtainable. Anderson (1979) presents a 

detailed discussion on the application and limitations of the inverse method.  

Dispersion in anisotropic porous media is not well understood. No experimental or 

analytical technique is available for evaluating all nine components of the classical dispersion 

tensor for an anisotropic medium (Anderson, 1979; Freeze and Cherry, 1979). Consequently, 

dispersion in anisotropic porous media cannot be modeled accurately. The current practice is 

to treat an anisotropic medium as an equivalent isotropic porous medium in dispersion stu

dies. This simplification is made because the two independent coefficients of the disperson 

tensor for an isotropic porous medium can be evaluated. These two independent coefficients 

are the dispersion coefficient in the direction of flow called the longitudinal dispersion coeffi

cient, and the dispersion coefficient perpendicular to the direction of flow called the transverse 

dispersion coefficient All references sited in this literature review make the assumption that 

dispersion takes place in an isotropic porous medium.  

One of the main reasons dispersion in anisotropic porous media is indeterminable is that 

the proper flow field to use in a tracer experiment has not been recognized. The direction of 

flow coincides with the direction of the hydraulic gradient for an isotropic porous medium;
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hence, it is easy to create a uniform flow field as discussed earlier. However, for an anisotropic 

porous medium, the direction of flow and the direction of the hydraulic gradient do not coin

cide. Thus, when the hydraulic boundary conditions used in a tracer experiment for an isotro

pic medium are applied to an anisotropic medium, a nonuniform flow field is created. The 

appropriate flow field to use in tracer experiments to evaluate mechanical transport for aniso

tropic porous media will be introduced in Chapter 3.  

There has been no justification to qualify the treatment of an anisotropic medium as an 

equivalent isotropic medium. Evidence from field experiments suggests that this simplification 

may lead to serious errors in transport prediction. The dispersion coefficients calculated from 

field tests are found to be many times larger than dispersion coefficients measured in labora

tory experiments (Anderson,1979; Fried,1981, Cherry et al.,1978). The difference between the 

two measured coefficients could be attributed to directional transport properties of the 

medium.  

Another important finding is that the classical dispersion coefficients computed for field 

data commonly increase with time (Pickens and Grisak, 1981). The transient behavior of 

dispersion coefficients are commonly explained based on the scale of testing. Mechanical 

dispersion, commonly the controlling mode of dispersion, is caused by zones of velocity varia

tions which cause particles to move at different rates and spread out spatially. The size of 

these zones of velocity variations is referred to as the scale of heterogeneity. As the scale of 

heterogeneity increases, the initial period of non-Fickian dispersion increases. Laboratory sam

ples are fairly homogeneous and dispersion is caused by velocity variations within the micros

copic pores. Field tests are conducted on a very large scale, so that dispersion results from 

macroscopic heterogeneous zones which are much larger than a pore. The large scale of hetero

geneity influencing a field test results in measurements of transient dispersion coefficients 

which indicate that the period of testing is within the initial period of non-Fickian dispersion.  

In summary, Fickian dispersion for anisotropic porous media cannot be accurately 

modeled because the second-order dispersion tensor cannot be evaluated. When dispersion
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coefficients are computed by treating the medium as an equivalent isotropic medium, the cal

culated coefficients often increase with sample size. Both of these problems lead to difficulties 

in transport prediction. Methodology will be developed in Chapter 3 to evaluate both the 

hydraulic effective porosity and longitudinal mechanical transport coefficient for anisotropic 

porous media. The applicability of the Fickian approach to characterize mechanical transport 

for anisotropic fractured rock masses will be investigated in Chapters 5 and 6.  

2.2.3. Stochastic Models for Porous Media Dispersion 

The continuum approach is a black-box technique which computes the output from the 

box without analyzing what actually happens within the box. Stochastic modeling is a more 

detailed approach which analyzes the internal structure and actions within the box to deter

mine the system's output. Analytical and numerical stochastic models are briefly reviewed to 

provide the concepts necessary in developing a stochastic model. A numerical stochastic 

model that simulates mechanical transport in fractured rock is developed in Chapter 4. Since 

stochastic modeling is a fairly recent approach one of the objectives of reviewing these studies 

is to show the approaches being used in research on porous media transport.  

2.2.3.1. Analytical Stochastic Models of Dispersion 

In analytic stochastic models, certain transport parameters, such as the mean rate of 

advecion, are allowed to vary statistically throughout the porous medium. This results in a 

stochastic dispersion equation which is then solved to determine macroscopic dispersion within 

the medium. Gelhar et al. (1979) investigated dispersion in vertically-stratified media. The 

focus of their study was to determine whether macroscopic dispersion in the aquifer could be 

represented by the classical approach. Horizontal flow was produced in each layer by introduc

ing a uniform hydraulic gradient in the direction of flow. Dispersion was primarily caused by 

the variation of permeability in the vertical direction. Each variable in the classical dispersion 

equation, except effective porosity, was expressed as a stationary random variable represented 

by its expected value plus a perturbation component. The stochastic equation for the concen-
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tration perturbation was then derived neglecting all second-order perturbation terms. Spectral 

analysis was applied to solve this equation.  

"The results of their study, for a specific permeability spectrum, indicated that global 

dispersion was Fickian only aftei a period of non-Fickian dispersion. Initially, the variance of 

the plume increased much more rapidly than predicted by Fickian dispersion and the spatial 

distribution of the tracer cloud was highly skewed. The spatial distribution of the tracer cloud 

is symmetric when the Fickian approach is applicable. As time went on, Fickian transport was 

approached as the tracer cloud became more symmetric and the rate of spreading decreased.  

Matheron and de Marsily (1981) analyzed dispersion in vertically stratified aquifers in 

which a vertical component of velocity existed. The following parameters in the dispersion 

equation were considered to be constants: vertical component of velocity, longitudinal disper

sion coefficient, transverse dispersion coefficient, and effective porosity. This meant that the 

only stationary random variable in the dispersion equation was the horizontal component of 

velocity. The stochastic model traced the movement of a solute particle through the aquifer.  

"This technique was equivalent to directly solving the dispersion equation because the probabil

ity density of the solute particle at a point was equal to "the expectation of concentration at that 

point.  

The spatial variance in the horizontal direction was found to be a function of the covari

ance in the horizontal velocity component Fickian dispersion only occurred if this covariance 

satisfied certain conditions, and only after an initial period of non-Fickian dispersion. The 

vertical component of velocity caused the conditions for Fickian dispersion to be less stringent 

than if flow was strictly horizontal in the aquifer. Fickian dispersion occurred early when the 

vertical velocity component and vertical dispersion coefficient were large. In a practical exam

ple involving a sandstone aquifer, Fickian dispersion was approached at approximately 140 

days, or after 600 meters of travel under natural flow conditions. This amount of time is often 

not feasible for a field tracer experiment.  

A stochastic study of macrodispersion in three-dimensional heterogeneous porous media
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was conducted by Dieulin et al. (1981). Macrodispersion is dispersion caused strictly by velo

city variations within the heterogeneous porous medium. The velocity field was assumed to be 

a stationary random process in the'Diculin et al. study. The stochastic model traced the move

ment of a solute particle instead of directly solving the dispersion equation, the same technique 

used in the Matheron and de Marsily (1981) study. Dieulin et a]. showed that the dispersion 

tensor can vary in magnitude with time, and after a sufficient initial period, the dispersion ten

sor may become constant.  

2.2.3.2. Numerical Stochastic Models of Dispersion 

Numerical stochastic dispersion modeling is a discrete approach to investigate dispersion 

in porous media. A porous medium is stochastically created within a problem domain by 

dividing the domain into a large number of small subregions and statistically generating the 

dispersion parameters for each subregion. Next, hydraulic boundary conditions are applied to 

the domain to create the desired flow field. Reference tracer particles are then introduced into 

the porous medium and the detailed particle movements are monitored to evaluate dispersion.  

One of the first stochastic studies in porous media transport was conducted by Warren 

and Skiba (1964). This work focused on interpreting the effect of the scale of heterogeneity on 

Fickian mechanical transport. A cubic porous medium domain was subdivided into constant

sized blocks that were cubic or rectangular parallelepiped. Block sizes varied with each Monte 

Carlo run to examine the influence of the scale of heterogeneity on dispersion. Permeability 

was lognormally distributed within the blocks, and porosity was normally distributed within 

the blocks.  

Boundary conditions were applied to the domain to induce flow in one direction between 

two opposing sides and reference particles were randomly introduced across the domain's inlet.  

The magnitude and direction a particle was displaced in a discrete time interval was deter

mined by interpolating velocities in the blocks adjacent to that containing the particle. As par

ticles exited the system, the travel time of each particle was recorded from which the break

through curve was constructed. The classical longitudinal dispersion coefficient was then
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computed from this breakthrough curve.  

Warren and Skiba found that the longitudinal dispersion coefficient increased as the ratio 

of the length of a block to the width of the domain decreased. This implies that the longitudi

nal dispersion coefficient is unique (Fickian dispersion) for all sample sizes only if this dimen

sionless length ratio remains constant. This also implies that for Fickian dispersion, the scale 

of heterogeneity must increase with sample size.  

Schwartz (1977) investigated the validity of the Fickian approach for characterizing 

mechanical transport in heterogeneous porous media. In his study, two-dimensional rectangu

lar porous media domains were constructed using equal-sized rectangular elements. Hetero

geneity was created by distributing low-permeability elements within a background of high

permeability elements. Three types of porous media were simulated by distributing the low

permeability elements in different patterns: random, regular, and aggregated, in which the low

permeability elements appeared as clusters within the domain. A one-dimensional flow field 

was established, and reference particles were introduced across the inlet to the domain.  

Schwartz investigated the applicability of the classical approach by computing the spatial vari

ance of the particle distribution with time. The spatial variance increases linearly with time 

when the longitudinal dispersion coefficient is unique.  

Schwartz found that the applicability of the classical approach was dependent on the type 

of porous medium. In a stratified medium, created by generating three layers of low permea

bility elements within the domain, Schwartz found that a unique dispersion coefficient did not 

exist. A unique dispersion coefficient was approached as the number of elements within the 

domain increased and as the distribution pattern for the low-permeability elements became 

random. The longitudinal dispersion coefficient increased with increased permeability contrast 

and with increased randomness of the low permeability elements.  

In general, the Fickian longitudinal dispersion coefficient computed by Schwartz (1977) 

overestimated the spatial variance of the particle distribution in early stages of dispersion, and 

underestimated it in later stages for a given realization. The particles moved with about the
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same velocity in the early stages of dispersion so the rate of dispersion was small. However, 

with time, the heterogeneities caused the particles to move at different rates and, consequently, 

the spatial variance increased rapidly.  

Smith and Schwartz (1980,1981ab) extended the earlier work of Schwartz (1977). A 

two-dimensional porous medium domain was created using a first-order nearest-neighbor sto

chastic model in which the permeabilities of neighboring elements were spatially correlated.  

The details are given in Smith and Schwartz (1980). A hybrid deterministic-probabilistic 

method governed the movement of tracer particles. The deterministic stage was similar in con

cept to Warren and Skiba (1964). The probabilistic stage accounted for the effects of micros

copic dispersion such as molecular diffusion.  

Two tests were performed to evaluate if macroscopic dispersion could be represented by a 

unique longitudinal dispersion coefficient. The first test, identical to Schwartz (1977), investi

gated the linear variation in the spatial variance with time. A stronger condition for Fickian 

dispersion is that the spatial particle distribution should be Gaussian. To test for this require

ment, the chi-square test was used.  

In a Monte Carlo simulation totaling 300 realizations, Smith and Schwartz found that less 

than 18 percent of the realizations satisfied the two criteria for Fickian dispersion. Smith and 

Schwartz stated the condition necessary for Fickian dispersion: 

"Fundamental to the diffusional representation of dispersion (Scheidegger.1964) is 
the assumption that as the total particle travel time becomes much greater than the 
time interval during which its successive local velocities are still correlated, then the 
total displacement may be considered as the sum of a large number of elementary 
displacements statistically independent of one another." 

The total particle travel times were too short in the Monte Carlo simulation for the Fick

ian representation of dispersion to be applicable. Multimodal particle distributions found in 

many realizations clearly showed that successive local velocities were correlated. Particles trav

eled along prefer-red pathways and thus, were sampling only a portion of the velocity field.  

Consequently, connected pathways of rapid movement/high permeability and slow 

movement/low permeability developed within the domain.
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Stochastic dispersion studies have demonstrated that global dispersion in heterogeneous 

porous media is characterized by an initial period of non-Fickian dispersion. The spatial vari

ance of the solute plume spreads very rapidly in this initial period such that an equivalent clas

sical dispersion coefficient would have to increase with time in order to characterize dispersion.  

These conclusions agree with observations made from field tests. After this initial period, Fick

ian dispersion may occur depending on the statistical properties of the velocity field. Fickian 

dispersion is likely to occur in a porous medium with a small scale of heterogeneity and a ran

dom velocity field.  

2.3. DISCRETE MECHANICAL TRANSPORT MODELS FOR FRACTURED ROCK 

MASSES 

Three discrete mechanical transport models for fractured rock masses are reviewed in this 

section. Detailed discussions are presented on the approaches used to simulate mechanical 

transport in each model. A new discrete mechanical transport model will be developed in 

Chapter 4 that is based on fundamental principles of fluid flow.  

Neretnieks (1980) analyzed mechanical transport in a set of parallel, planar, and continu

ous fractures. A one-dimensional flow field was established, parallel to the orientation of the 

set, by a uniform hydraulic gradient. Fracture apertures were distributed according to a known 

probability distribution. The velocity in each fracture was assumed equal to the average cross

sectional velocity which was proportional to the cubed power of the aperture. Thus, mechani

cal transport was caused by the variation in fracture velocities produced by the aperture distri

bution. The composite concentration distribution at the exit end of the problem domain was 

analytically solved for both a step and a pulse injection of concentration across the inlet to the 

domain. Neretnieks found that Fickian macroscopic transport did not occur for this fracture 

system because the longitudinal dispersion coefficient increased with sample size. This result 

was not surprising since this fracture system w-as equivalent to a stratified porous medium.  

The work of Neretnieks considered fractures which had no interactions with the other fractures
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in the system. The following two studies dealt with more realistic networks of intersecting frac

tures.  

In a series of four related papers (Castillo et al., 1972; K.rizek et al., 1972; Karadi et al., 

1972; and Krizek et al., 1973), a numerical model was developed to simulate transport in a 

fracture system consisting of two sets of parallel, planar, and continuous fractures of constant 

aperture and spacing. The principles incorporated in their model can be understood by follow

ing the migration of solute as it flows through the fracture system. Mechanical transport 

governs the movement of solute within an element: 

8c Oc S+ - 0 at 6 
When solute exits an element at a node, it encounters solute from other elements flowing into 

the node. Krizek et al. used either the complete mixing condition or the partial mixing condi

tion to distribute the inflowing solute to the outflow elements. In the complete mixing condi

tion, all outflow elements receive the same concentration given by: 

7ý 0t ui(i?)cq(,,t) di7 

where the summation of i is for all inflow elements. The complete mixing condition is illus

trated in Figure 2-2a.  

The partial mixing condition is illustrated in Figure 2-2b. Fluid enters the node from ele

ments A and B, and exits through elements C and D. Element D is a large element such that 

the flow rate in element D consists of the total flow rate in element A and part of the flow rate 

in element B. The widths in elements A and B occupied by the flux flowing into element D are 

determined, and the mass of solute entering the node from these zones is calculated. This mass 

of solute is then distributed uniformly across the entrance to element D.  

The travel time within a node is usually very short, such that the solute is primarily 

advected by the flow in a node. The physics of laminar flow suggest that the two mixing con

ditions above would not properly simulate transport within a node. In laminar flow, the fluid 

moves in layers, one layer flowing smoothly over the adjacent layers. A flow lamina cannot
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cross over into another layer, as assumed in the above model, to develop uniform concentra

tions across the entrance of outflow elements. Although laboratory experiments performed by 

Krizek et al. (1972) concluded that the complete mixing is valid for laminar flow, their experi

ments were not conclusive. These experiments were limited to the situation in which there was 

only one inflow element and all outflow elements had nearly identical flow rates. A more gen

eral set of experiments should be considered which involves more than one inflow element, 

with unequal flow rates and unequal concentrations in both inflow and outflow elements. Wil

son (1970) conducted such an experiment using capillary tubes for Reynolds number on the 

same order as the experiments by Krizek et. al (1972) and demonstrated that fluid still flows 

within layers at intersections when the flow is laminar.  

Schwartz et al. (1981) stochastically generated two orthogonal fracture sets in a rectangu

lar domain. The number of fractures in each set within the domain was controlled by the areal 

density (the number of fractures per unit area). The fracture centers were randomly distributed 

in the domain and the fracture lengths and apertures were generated from exponential and log

normal distributions, respectively. Schwartz et at. avoided a major simplification made in pre

vious transport studies of fracture systems by using fractures of finite length. Impermeable 

boundaries were created on two opposite sides of the rectangular domain and the two remain

ing sides consisted of constant-head boundaries. Tracer particles were assumed to propagate at 

a constant velocity within the elements and were also assumed to be completely mixed at the 

nodes, even though the flow was laminar. Molecular diffusion was considered to be negligible 

within a fracture and therefore, was not modeled.  

Schwartz et al. (1981) found that the spatial particle distribution in the average direction 

of flow was non-Gaussian and positively skewed. The skewness is attributed to a combination 

of channels of rapid movement oriented in the direction of flow, and channels of slow move

ment oriented normal to the direction of flow. The bulk of the fluid moves in the direction of 

gradient, and most of the particles travel in this direction. However, as time proceeds, the pro

bability of a particle flowing into a slow channel increases. As particles move through the slow
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channels, an asymmetrical particle distribution develops.  

Consequently, previous mechanical transport models simulate transport in two

dimensional fracture networks by linking together one-dimensional or quasi-one-dimensional 

mechanical transport models for each element in the network as shown in Figure 2-3. The 

model is one-dimensional because a constant velocity is assumed to exist in the element or a 

nodal mixing condition which distributes concentration uniformly across the entrance of out

flowing elements is used. Completely or partially neglecting the effects of the velocity distribu

tion across a fracture ignores an important microscopic mechanism of mechanical transport.  

The nodal mixing conditions used in these models are not based on the physics of laminar 

flow. In laminar flow, the fluid moves in layers, one layer flowing smoothly over the adjacent 

layers. A flow lamina cannot cross over another layer, as assumed in these models, by uni

formly distributing concentration across the entrance of the outflow elements at a node. A 

two-dimensional mechanical transport model for each element is developed in Chapter 4 to 

provide a more realistic understanding of mechanical transport.
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CHAPTER 3 

THEORETICAL DEVELOPMENT 

3.1. INTRODUCTION 

Transport is considered at the microscopic, pore, and continuum levels in the first part of 

this chapter. Transport is modeled within a very small differential control volume at the 

microscopic level. Consequently, all transport processes are accurately modeled at this level.  

In porous media modeling, it is extremely difficult to use a microscopic transport model 

because of the complex flow pattern within the pores and the irregular structure of the pores.  

The only practical way of modeling transport in a porous medium is to treat the medium as a 

continuum and analyze the macroscopic behavior of the medium, disregarding the detailed 

behavior occurring within the pores. Both rock and fluid properties vary smoothly and con

tinuously throughout the continuum as there is no physical boundary between solid and fluid 

phases. However, the concepts of continuum modeling can lead to difficulties in accurately 

modeling transport processes. Transport models are derived at the microscopic, pore, and con

tinuum levels to demonstrate the assumptions and simplifications that are needed to model 

transport at each level.  

No experimental technique is available which can evaluate dispersion in anisotropic 

porous media, and consequently, an anisotropic medium is treated as an equivalent isotropic 

medium (Anderson, 1979). This simplification assumes that there is no directional dependence 

in each transport parameter. A set of tracer experiments will be presented in this chapter that 

allow the directional characteristics of mechanical transport for anisotropic media be evaluated.  

The design, execution, and determination of mechanical transport parameters from the set of 

experiments are presented in this chapter.  

A discrete model is developed in Chapter 4 to simulate fluid flow and mechanical tran

sport in fractured rock masses. An important objective of this research is to determine if a 

fracture system can be treated as an equivalent porous medium continuum. The conditions
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required for equivalent porous medium behavior are discussed below. Tests are developed, 

based on these conditions, to detect when a fracture system can be treated like an equivalent 

porous medium. These tests are incorporated into the numerical model developed in Chapter 

4.  

3.2. MICROSCOPIC LEVEL TRANSPORT 

To develop a transport model at the microscopic level, a conservative solute with the 

same viscosity and density as the ambient fluid is migrating in a porous medium. The model 

is derived below, taking into account the cubic differential control volume shown in Figure 3-1.  

The two microscopic transport processes occurring are molecular diffusion and advection.  

Molecular diffusion is the mixing caused by the random motion of solute molecules produced 

by the concentration gradient. Advective transport is caused by the movement of fluid within 

the pores. The modeling of each transport process at the microscopic level is presented below.  

The diffusive mass flux is defined as the mass of solute diffusing across a unit area in a 

unit time. The diffusive mass flux is governed by Fick's law which states: 

S- -DVc 

The net mass flux diffused into the control volume in the x direction in Figure 3-1 is equal to: 

[mass flux ciffsed into fce ]- [mass flux diffused out of face 2] 

which is equal to: 

Ld,- d -z + "d. ydz (D dxdydz 

Similarly, the net mass flux diffused into the control volume in the y and z directions are, 

respectively*.  

dydxdz and dzdxdy 

The advective mass flux is defined as the mass of solute advecting across a unit area in a 

unit time. The total mass advected into the control volume per unit time across face I is equal 

to the advective mass flux at face 1 (vxc) multiplied by the area of face 1:



Microscopic level 
control volume

Flow channel

Face 1

a) dx dx + - dx 
ax 

av~ C 
vxc+ ax dx 

ice 2 

XBL 827-7149
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(vic) dydz 

Following a similar procedure for net advective transport as demonstrated for diffusive tran

sport, the net mass flux advected into the control volume in the x, y, and z directions are, 

respectively: 

- - dxdydz, - dxdydz, - - dxdydz.  

ax By az 

The mass conservation of solute within the control volume states that: 

net mass flux of : l ret accumulation of 1 
solute diffused vected into /- /solute in control 

-into control volum ontrol volume J volume per unit time .  

Substituting the appropriate terms into the equation above and simplifying yields: 

DV~c - av.c + vyc+ avc ac (3.1) 

a - x ay + z J a 

which is the partial differential equation governing transport at the, microscopic level. The first 

term on the left hand side of equation 3.1 is called the dispersive term and the bracketed term 

is called the advective term. Equation 3.1 is extremely difficult to solve for a porous medium 

because of the complicated flow pattern within the pores and the complex boundary conditions 

arising from the random geometry of the pores. Therefore, the continuum approach is almost 

exclusively used to model porous media transport. The analysis of the microscopic flow field 

within the pores is avoided in the continuum approach because macroscopic properties of the 

medium are evaluated. Also, there is no need to define the detailed geometry of the pores 

because both rock and fluid properties vary continuously throughout the continuum, since there 

is no physical boundary between fluid and solid phases. Before the transport model for porous 

media is developed, transport models are discussed for smaller scale transport within a single 

flow conduit (i.e. pipe or a single conductive pore within a porous medium). These pore tran

sport models must simulate the velocity field within a pore.  

3.3. PORE TRANSPORT MODELS 

The first pore transport model presented is the dispersed plug flow model. The flow velo

city in equation 3.1 is replaced by the average cross-sectional velocity in the dispersed plug flow
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model This means that in this model solute is advected at the same rate across the cross sec

tion of a flow channel. Consequently, the dispersive term in the dispersed plug flow model 

must account for both molecular diffusion and mechanical dispersion produced by the cross

sectional velocity distribution. Since dispersion is greater in the longitudinal direction than in 

the transverse direction, because of mechanical dispersion, the constant coefficient, D, in equa

tion 3.1 is replaced by a second-order dispersion tensor [Np] to account for the anisotropic rate 

of dispersion. Thus, the apparent simplification made to the advective term is somewhat 

negated by the added complexity introduced into the dispersive term.  

Consider, for example, transport in a parallel plate conduit with the channel axis 

corresponding to the x direction as shown in Figure 3-2. The dispersed plug flow model for the 

parallel plate conduit is: 

ac + V'c V (7J[DF]V~c) 

at ax 
The second pore transport model presented is the axial dispersed plug flow model. The 

axial dispersed plug flow model makes an additional simplification to the dispersed plug flow 

model by assuming that concentration is uniformly distributed across each section such that no 

concentration gradient exists in the transverse direction. Consequently, dispersion occurs only 

in the longitudinal direction and the dispersive coefficient, which is multiplied by 7 2c in the 

dispersive term, is a scalar, DL. The axial dispersed plug flow model for transport in a parallel 

plate conduit is: 

ac + VOc - 02c 

The axial dispersed plug flow model cannot simulate transport during the initial period of 

transport. For example, consider the laminar flow problem of transport in a parallel plate con

duit when a pulse of solute is instantaneously injected uniformly across the entrance to the con

duit, as shown in Figure 3-2. The axial dispersed plug flow model is applicable when there is 

no concentration gradient in the transverse direction. In the early stages of transport, the solute 

distribution will violate this condition because advective transport is dominant, as shown in 

Figure 3-2. However, as time increases, molecular diffusion slowly reduces the concentration
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gradient in the transverse direction. Gill et al. (1969) used a numerical technique to show that, 

for times greater than h2/D, the axial dispersed plug flow is applicable.  

Gill et al. (1969) demonstrated that the axial dispersed plug flow model cannot simulate 

early-time transport. The averaging of the flow velocity and avoidance of transverse dispersion 

indicate that a start-up time is required before the axial dispersed plug flow model is applicable.  

This initial period is similar to the period of non-Fickian dispersion commonly observed in 

porous media field tests. The cause of this period of non-Fickian dispersion in porous media is 

related to the macroscopic averaging of properties in the transport model for porous media.  

The derivation of the porous medium transport model is presented in the next section.  

3.4. POROUS MEDIA TRANSPORT MODEL 

The transport model for porous media is derived by considering mass conservation within 

a cubic continuum control volume much larger than a pore consisting of solid and fluid phases.  

The dimensions of this continuum and the coordinate system used in this derivation will be 

identical to those shown in Figure 3-1. In a continuum, fluid and solid phases exist at every 

point within the medium such that both rock and fluid properties are smooth and continuous 

functions throughout the medium. The porous media transport model consists of an advective 

transport process coupled with a dispersive transport process. The advective transport process 

will be modeled first.  

The mass of solute advected into the control volume per unit time across face 1 is Qxc.  

The flow rate Q% is usually expressed in terms of the specific discharge. The specific discharge 

is defined as the flow rate crossing a unit area of porous medium continuum and is governed 

by Darcy's law which states: 

The specific discharge is often misconstrued as representing a type of velocity, because the 

dimensions of 4 are the same as the dimensions for velocity. However, the specific discharge is 

the quantity of fluid flowing across a unit area per unit time, and should never be confused 

with velocity. The flow rate crossing a given area of porous medium written in terms of the
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specific discharge is: 

Q-4.-IK.  
Consequently, the mass of solute advected into the control volume across face 1 per unit time 

can be expressed as: 

(qxdydz) c (3.2) 

It is apparent from equation 3.2 that the transport model for porous media can be classi

fied as a dispersed plug flow model because solute is being advected across face I into the con

trol volume at a constant rate of chdydz. In reality, solute is advected into the control volume 

from the pores at different rates. The microscopic variations in the advective rate of transport 

are accounted for in the dispersive term.  

The net mass flux advected into the control volume in the x direction is: 

[q°c- ( +'-L!Cdx ydz dxdydz 

Similarly, the net mass flux advected into the control volume in the y and z directions are, 

respectively: 

(y )dydxdz and - dzdydx 

Advective transport alone causes no distortion in the shape of a pollutant plume. The 

distortion and spreading of a plume is caused by microscopic variations in the advective rate of 

transport, termed mechanical transport, and by molecular diffusion. Thus, the dispersive term 

accounts for the combined interaction of mechanical dispersion and molecular diffusion known 

as hydrodynamic dispersion.  

The principle microscopic mechanisms of mechanical transport, as discussed in section 

2.2.2 and illustrated in Figure 2-1 are: the velocity distribution across a pore which causes a 

fluid particle to move faster in the center than along the sides of the pore; the flow rate varia

tion from one channel to another which dictates the direction a fluid particle will travel; and 

the random geometry of the pores which causes a particle to meander through the pore region.  

The mechanical dispersive flux is the mass of solute mechanically transported across a unit area

"� '�' 
-.
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in a unit time. The mass flux of solute mechanically dispersed into the control volume across 

face lis: 

m, (Oadydz) 

where OR is the rock effective porosity defined as the conductive void volume per volume of 

rock. The net mass flux mechanically dispersed into the control volume in the x direction is: 

8rn1 
- - dxdydz ax 

Similarly, the net mass flux mechanically dispersed into the control volume in the y and z 

directions are, respectively: 

amý am, 
L- Rdxdyd~z and -- z y Rdxdydz 

The Fickian expression developed by Scheidegger (196 1) is commonly used to represent 

the mechanical dispersive flux: 

-M ac mi - -- ii xj 

where 
VmVn 

M• =a~mVEIN" 

The fourth-order geometric dispersivity tensor has a total of 81 components. Scheidegger 

showed that [a] possesses two symmetric properties, namely: 

aijz - aunm (3.3) 

and 

aij. -- aji (3.4) 

so that there are 36 independent components in [a].  

Presently, there is no experimental or numerical technique that will allow evaluation of all 

36 independent components in [a] for an anisotropic porous medium. Consequently, an aniso

tropic porous medium is generally treated as an equivalent isotropic medium because there are 

only two measurable components in fa] for an isotropic medium: 1) the longitudinal dispersivity 

a-6 and 2) the transverse dispersivity a,. The Fickian mechanical dispersion tensor for an iso

tropic medium with the direction of flow corresponding to the x direction is:

-. r �T - -,
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ccjVUN 0 0 1 
fM]- 0 atVIN 0 

e m 0 atVLINJ 

The mass flux diffused into the control volume is governed by Fick's law. Fluid flows 
along nonlinear paths in a porous medium due to the irregular geometry of the pores as shown 

in Figure 3-3 for a single pore. However, the concentration gradient is considered in the linear 

directions aligned in the directions of the cartesian coordinate system (x,yz). To account for 

the nonlinear path of fluid movement in the diffusive mass flux, the free solution molecular 

diffusion coefficient, D, is divided by the tortuosity (Gilham and Cherry, 1982). The tortuosity 

is defined as the ratio of the mean path length of fluid flow to the linear length of travel. Thus 

the diffusive mass flux is: 

J - -JI Vc - -D Vc 

The total void volume in a porous medium consists of isolated zones, dead-end spaces, and 

conductive void regions. Molecular diffusion occurs within the dead-end and conductive void 

spaces. However, mechanical transport occurs only within the conductive void volume. The 

conductive void volume and total void volume are assumed to be equal in porous media tran

sport modeling because of the difficulty of accurately differentiating the three void spaces. This 

assumption is generally valid because porous media are commonly highly interconnected such 

that dead-end zones and isolated segments usually occupy only a small portion of the total void 

volume. Thus, the net mass flux diffused into the control volume in the x, y, and z directions 

are, respectively: 

Do-2dxdydz, D cRdxdydz, D 0 2c dxdydz Saz 2  d 
The net increase in the mass of solute within the control volume per unit time is: 

ac- odxdydz 
at 

The mass balance in the control volume states that: Lnet mass flux of net mass flux 1 net accumulation of.] 
solute dispersed ] a/dJ [dlu control J 

-into control volume ontrol v olume per unit time 

'TIT ýr-?r_ 
- o (f 

_
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which, when substituted by the appropriate terms yields: 

ac 1 2 c+ Y + 2 DoVC - V. (j (3.5) 

Equation 3.5 represents molecular diffusion and mechanical transport. The two terms on the 

right hand side of equation 3.5 constitute the dispersive term, while the bracketed term on the 

left hand side is the advective transport component.  

This particular research is concerned with pure mechanical transport. The governing 

mechanical transport equation is: 

S+ V. + ± + [ + 1 - 0 (3.6) 

The three primary reasons for investigating mechanical transport are: (1) an insufficient under

standing of hydrodynamic dispersion because no solution is available for the equation govern

ing transport in an anisotropic medium, (2) the use of mechanical transport parameters, such as 

tortuosity, in modeling hydrodynamic dispersion, and (3) the need to determine when fracture 

systems can be treated like equivalent porous media. New principles and techniques will be 

introduced such that directional mechanical transport parameters can be evaluated for anisotro

pic media. The directional characteristics of hydraulic effective porosity will be used to 

develop the conditions under which fracture systems exhibit porous media equivalence. Conse

quently, the investigation of the fundamental mode of mechanical transport will lead to a better 

understanding of dispersion in all permeable media.  

A series of tracer experiments must be conducted to evaluate directional mechanical tran

sport for anisotropic porous media. The operation of the set of tracer experiments is discussed 

in two parts. First, two key steps in designing the tracer experiment are discussed. the proper 

flow field to use in a tracer experiment, and the appropriate test section to measure mechanical 

transport from a tracer experiment. Then, the execution of the set of tracer experiments is dis

cussed.
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3.5. PROPER FLOW FIELD AND APPROPRIATE TEST SECTION USED IN A 

TRACER EXPERIMENT 

Two key steps in designine a tracer experiment to measure mechanical transport are: 1) 

selecting the proper flow field to use in the experiment and; 2) determining the appropriate test 

section within the sample in which to measure mechanical transport. The macroscopic flow 

characteristics within the flow region must be consistent in order for general mechanical tran

sport properties to be measured from a tracer experiment. The flow characteristics are con

sistent when the flow field is uniform such that the specific discharge is constant throughout the 

flow region. If 4 varies from point to point in the medium, equation 3.6 becomes nonlinear 

and difficult to solve.  

To establish this desired flow system, certain hydraulic boundary conditions must be 

maintained on the flow region. Figure 3-4 illustrates the hydraulic boundary conditions that 

are designed to create a uniform flow field for an anisotropic, homogeneous porous medium.  

First, as shown in Figure 3-4a, constant hydraulic heads of H and 0, respectively, are fixed on 

sides 2 and 4 of the flow region. Then, constant hydraulic gradients are maintained along sides 

I and 3. A constant hydraulic gradient in the flow field is needed to guarantee that i is uni

form throughout the flow region in accordance with Darcy's law.  

Figure 3-4 also illustrates how flow net theory can be used to describe the flow field in a 

homogeneous, anisotropic porous medium. Figure 3-4b shows the flow net in the transformed 

isotropic space (Freeze and Cherry, 1979, pp. 174-178), and Figure 3-4c shows the uniform flow 

field for the anisotropic medium. The direction of flow is parallel to the streamlines and the 

hydraulic gradient is normal to the equipotential lines.  

The proper test section within the flow region to conduct measurements of mechanical 

transport must be selected. The tracer experiment will monitor the detailed movement of fluid 

that enters the flow region on side 2 in Figure 3-4a, and exits on side 4. In the proper test sec

tion, the linear length of travel is constant for the fluid which flows continuously between sides 

2 and 4. This requirement guarantees that mechanical transport properties are measured from
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fluid which has traveled over the same linear distance. This linear length of travel is equal to 

the length of a streamline that begins on side 2 and ends on side 4 (Figure 3-4c). The linear 

travel length is constant within, the cross-hatched area between sides 2 and 4 in Figure 3-5.  

Consequently, measurements of mechanical transport can be conducted in this cross-hatched 

zone called the test section. Thus, once the hydraulic boundary conditions have been esta

blished as illustrated in Figure 3-4a, measurements of mechanical transport can be made within 

the cross-hatched area shown in Figure 3-5.  

3.6. EXECUTING THE SET OF TRACER EXPERIMENTS TO MEASURE 

DIRECTIONAL MECHANICAL TRANSPORT 

This section describes the procedure for executing a set of tracer experiments that will 

allow evaluation of directional mechanical transport for anisotropic porous media. The first 

step in this procedure sets up a tracer experiment. This step is initiated by selecting a particular 

orientation of the porous medium to conduct the tracer experiment (Figure 3-6a). Next, the 

hydraulic boundary conditions shown in Figure 3-4a are applied to a flow region aligned in this 

direction to create the desired uniform flow field.  

In the second step, the tracer experiment is performed by monitoring the detailed move

ment of fluid within the cross-hatched test section shown in Figure 3-5. This tracer experiment 

is numerically simulated in this research, but the same task may be performed experimentally 

by instantaneously injecting non-diffusive, dyed water uniformly across side 2 of the flow 

region as shown in Figure 3-6a. The dyed water will flow to side 4 only if it travels within the 

test section. The breakthrough curve for the fluid flowing in the test section is then measured 

by recording the concentration of dyed water on side 4 as illustrated in Figure 3-6a. Steps I 

and 2 constitute the procedure for conducting a single tracer experiment. The measurements 

made from this tracer experiment correspond to a particular direction of flow B, (Figure 3-6b).  

Step three begins the investigation of the directional nature of mechanical transport for 

the medium. In this step, the orientation of the porous medium is rotated as shown in Figure 

3-6c and a second set of measurements of mechanical transport is made by repeating steps I
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and 2 for the new direction of flow %2 (Figure 3-6b). Next, step 3 is systematically repeated for 

selected orientations of the porous medium until a representative sample of directional 

mechanical transport for the medium is obtained. These steps constitute the execution of the 

set of tracer experiments needed to evaluate directional mechanical transport for an anisotropic 

porous medium.  

3.7. MEASURING MECHANICAL TRANSPORT WITH THE 

BREAKTHROUGH CURVE 

The purpose of this section is to show how mechanical transport parameters governing 

both the advective and dispersive processes in equation 3.6 can be evaluated from the tracer 

experiments described in the previous section: A tracer experiment is conducted by injecting a 

pulse of dyed water uniformly across side 2 'of the flow region shown in Figure 3-5. At side 4, 

measurements are made of the concentration of dyed water in relation to time. The time distri

bution of the outlet concentration is known as the breakthrough curve or exit-age distribution 

for the test section. The statistical properties of the breakthrough curve are used to evaluate 

mechanical transport, as described below.  

3.7.1. Mean of the Breakthrough Curve 

The mean of the breakthrough curve is: 

L cdr 

The relationship between the mean of the breakthrough curve and the mean advective rate of 

movement q/IR is derived in this section. The area under the normalized breakthrough curve 

from t, to o represents the percent of fluid residing in the test section longer than t1. The 

volumetric quantity of fluid flowing into the test section in the differential time interval dt is 

Qdt. Thus, the volume of fluid still residing in the test section that first entered t, earlier is: 

Qdtf EdT (3.7) 

The total conductive void volume in the test section is found by integrating equation 3.7 from t 

equals 0 to oD (i.e. for all fluid that enters the test section):
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VC- L QdtJ Ed7 - Q. E Edidt (3.8) 

Reversing the order of integration in equation 3.8 yields.  

Vc- Q1 'Edtd-- Q4 Erd, 

So 

VC L ccrEd r-T 

The average linear velocity is defined as the linear path length of fluid flow divided by the 

mean travel time. VLIN is an ideal velocity a fluid particle would have if it were constrained 

to move only in a straight path in the direction of flow: 

VLIN - L_. _QL . qAL . qV . _q_ (3.9) 

T Vc Vc ORi 

The mean advective rate of movement will be determined from tracer experiments in this study 

because rock effective porosity is normally difficult to evaluate directly from laboratory experi

ments and because transport parameters should be predicted whenever possible from transport 

data (i.e. breakthrough curve).  

The relationship in equation 3.7 assumes that the transport of all particles is characterized 

by a single breakthrough curve. In this equation, Q represents all fluid particles entering the 

test section per unit time and the breakthrough curve represents the probability distribution for 

residence in the test section for every particle. Since the time of residence in the test section for 

all particles is controlled by a single exit age distribution, fluid transport is homogeneous.  

Thus, 4O will equal q/VLIN when the transport of fluid particles is homogeneous.  

Field and numerical studies indicate that transport may be inhomogeneous for homogene

ous porous media. Childs et al. (1974) and Hoehn and Roberts (1982) presented field evidence 

of inhomogeneous transport in homogeneous porous media. Childs et al. used a detailed 

three-dimensional array of sampling points to monitor the movement of waste plumes in an 

operational homogeneous, sand aquifer. The measured concentration patterns showed that the 

waste plumes bifurcated, and moved along preferred pathways of travel that were not aligned in 

the direction of the regional flow. The conventional single plume model could not accurately 

characterize the pollutant migration and there was no indication as to the cause for the
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bifurcation of the waste plumes. The study of Hoehn and Roberts (1982) found that in a 

vertically-homogeneous aquifer a two-domain model was needed to simulate transport. The 

domains in their model consisted of two separate zones (no interaction between zones) with 

vastly differing rates of movement. Hoehn and Roberts stated that no geological evidence sup

ported the use of the two-domain model and noted that the two domains may be distinguish

able only at the microscopic level.  

Smith and Schwartz (1981 a) conducted numerical mass transport studies for statistically

homogeneous porous media which were reviewed in section 2.2. In their Monte Carlo study, it 

was generally observed that, in a given realization, the bulk of the mass migrated along a defin

ite path. This connected path linked together the high-permeable elements within the problem 

domain where the transport velocities were large. In some cases, the effects of the preferred 

paths of travel were clearly evident by bimodal breakthrough curves.  

Thus, the following conclusions can be made. The actual rate of advection is controlled 

by the microscopic velocity field within the pores. If regions of vastly differing rates of move

ment or large variations in pore velocities exist in the medium, then transport is inhomogene

ous. These contrasting domains of transport may be distinguishable only at the microscopic 

level.  

The effect of inhomogeneous transport on the mean advective rate of transport is demon

strated by considering a test section consisting of two separate transport domains: a slow zone 

of movement and a fast zone of movement. The flow rate through the slow zone is QS. The 

particles flowing into the slow zone will produce a different breakthrough curve than the parti

cles flowing into the fast zone. The mean of the breakthrough curve will be larger in the slow 

zone than in the fast zone, and the composite breakthrough curve for the test section is the sum 

of the breakthrough curves for the fast and slow zones. The total conductive void volume is 

given by: 

VC - QSj, Esr dr + (Q-QS)j E~rdr 

So,
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_q_ . L (3.10) 

OR QS, ;ES d7 + (Q-QS) LEFtdQ 

The mean of the composite breakthrough curve (E -Es+EF) is: 

T - I (Es + EF)d7 

which is not equal to the denominator in equation 3.10. Therefore, the average linear velocity 

will not equal q/OR if preferential paths of movement exist in the test section.  

The hydraulic effective porosity is defined to provide a general way of relating the actual 

rate of transport VLIN to the flow parameter q: 

VLIN 

In porous media transport models, the hydraulic effective porosity is usually assumed to be 

equal to OR or 0. The rock effective porosity is a stable rock property that does not vary with 

direction. The relationship indicated above is valid when transport is homogeneous. Field and 

numerical studies indicate that transport occurs along preferred paths of travel. When tran

sport is inhomogeneous, the hydraulic effective porosity may deviate from the rock effective 

porosity. The deviation will increase as the number and size of the microscopic zones of con

trasting movement increase. This research will investigate the directional nature of the 

hydraulic effective porosity for anisotropic media.  

3.7.2. Variance of the Breakthrough Curve 

The type of tracer experiment chosen in this research was carefully selected such that 

Fickian longitudinal mechanical transport can be evaluated from the variance of the break

through curve. The first objective of this section is to prove that longitudinal mechanical tran

sport can be analyzed for the tracer test chosen in this study by developing the relationship for 

longitudinal mechanical transport. The second objective of this section is to show how the 

variance of the breakthrough curve can be used to evaluate longitudinal mechanical transport.  

3.7.2.1. Longitudinal Dispersion for Pure Mechanical Transport 

The equation governing longitudinal mechanical transport is derived in this section. It
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will be shown that the mechanical dispersive flux can be characterized by a single, measurable 

dispersion coefficient. By computing this coefficient, the directional nature of longitudinal 

mechanical transport can be evaluated from the set of tracer experiments discussed in sections 

3.5 and 3.6.  

Laminar flow is considered within the porous medium. Laminar flow is characterized by 

the movement of fluid in laminas or layers, one layer flowing smoothly over the adjacent 

layers. The streamlines in Figure 3-4c which are parallel in the flow region indicate the macros

copic direction of flow. The flow paths of the fluid elements are dictated by the streamlines 

and cannot cross over one another because the flow is laminar. The fluid particle paths will 

deviate about the mean flow direction due to the random geometry of the pores. However, the 

constraint imposed because the streamlines are colinear signifies that the mean direction of 

movement must be in the direction of flow.' Suppose a flow region existed in which the particle 

paths diverged in many directions such as for flow region b in Figure 3-7. If this flow region is 

part of a regional homogeneous, anisotropic medium in which the hydraulic gradient is con

stant, as shown in Figure 3-7, the directions of flow would vary in the adjacent flow regions.  

However, this flow situation cannot exist as the direction of flow is constant when the hydraulic 

gradient is constant in a homogeneous medium.  

The fact that the macroscopic direction of movement for all fluid particles is in the direc

tion of flow signifies that there can be no net transport of fluid perpendicular to the direction of 

flow. Applying this principle to the test section in Figure 3-5, the Fickian mechanical disper

sive flux is: 

m i"-M2i M,22.  

with 

m, - -MI 1 -- M12 2E (3.12) 
as ar 

and 
Bc 

Mr - -M21-' - M - 0 (3.13) 
as Or 

Equation 3.13 yields
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ac 
_M2. r (3.14) 
M= Be 

as 

Velocity is non-zero only in the 9.-diretion such that 
V-V.  

M - Za2mn "=j a2- VLIN (3.15) 

and 

M22- a 22 1VLIN (3.16) 

Equation 3.14 can be expressed using equations 3.15 and 3.16 as: 

ac 
a2 1, .rT (3.17) 

a2211 ac 
as 

Substituting for Lc from equation 3.17 into equation 3.12 yields: Br 

m,- -M- + a211. aC 

or 

a 1211a2111 acIN 
MS a -all 2211I LNa 

Incorporating the symmetric relationship of equation 3.4 yields 

S,- (a-2-l) VLIN-s (3.18) 
[am - 11 a2211 I a 

The bracketed term in equation 3.18 is a constant, and thus, equation 3.18 may be written: 

M, - -aI.VLIN -- ML BC 

Note that for an isotropic porous medium, a 1121 equals zero so that 

aL -m ai11 - al 

where a, is the longitudinal geometric dispersivity for an isotropic porous medium defined in 

section 3.4. Substituting the expression for i into equation 3.6 yields the equation governing 

Fickian longitudinal mechanical transport: 

2E + VLIN- - M s2  (3.19) 

Equation 3.19 is classified as an axial dispersed plug flow model because it is one-dimensional, 

a function only of the longitudinal variable s. Equation 3.19 shows that it is not necessary to



-45-

directly determine all 36 independent components of [a] to evaluate longitudinal dispersion for 

pure Fickian mechanical transport. ML can be evaluated in a tracer experiment even though 

the three independent componeits of [a] which are functions of ML cannot be individually 

evaluated. The directional nature of a. will be investigated for anisotropic media in this 

research.  

3.7.2.2. Evaluation of the Longitudinal Mechanical Dispersion Coefficient 

The longitudinal mechanical transport coefficient ML can be calculated from the variance 

of the breakthrough curve based on some useful formulas derived by Van der Laan (1958) for 

the moments of this curve. The problem domain considered by Van der Laan consisted of an 

entrance and exit section whose properties (i.e. VLIN and MI) were independent from those of 

a middle, test section. Van der Laan solved a number of transport problems by varying the 

boundary conditions imposed on the problem domain. In the tracer experiments considered in 

this research, dyed water is injected and carried across the entrance section/test section interface 

by the bulk flow. There can be no dispersion upstream of this interface. Within the test sec

tion, mechanical transport is governed by equation 3.19. At the test section/exit section inter

face, the concentration of dyed water is measured. Then, the fluid is advected downstream in 

the exit section. Van der Laan analyzed this particular problem using Laplace transformations.  

He found that the Laplace transform for concentration is a fairly complex expression, and 

hence, its inverse transformation back into real space was not performed. Fortunately, the 

moments of the breakthrough curve can be determined without performing this transformation.  

The variance of the breakthrough curve, a function of the first and second moments, is related 

to ML in the following way

S. 2Pe - 2Pe 2II- e(--I/e) (3.20) 

where Pe ML Thus, ML can be implicitly solved from the variance of the breakwher Pe (VLIN)L" 

through curve. The log of Pe versus :- is shown in Figure 3-8. Note that can never exceed

unity.
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Figure 3-9 shows three breakthrough curves for different values of Pe that were con

structed using numerical methods (Levenspiel (1972); Yagi and Miyauchi (1953)). The ordinate 

of these breakthrough curves corresponds to 

E'-ET 

and the coordinate of the breakthrough curves corresponds to the normalized time 

t - TM 
SD 

where TM- T and SD - a. The notation changes were made to accommodate the computer 

graphic capabilities used in this research.  

Figure 3-9 demonstrates that as Pe decreases, the peak concentration increases and shifts 

toward the right, and the skewness in the breakthrough curve decreases. The breakthrough 

curves are slowly converging to the Gaussian distribution as Pe decreases. The Gaussian distri

bution becomes a good approximation of the breakthrough curve when Pe is less than 0.01. For 

these small values of Pe: 

ML ½Z% (VLIN)L (3.21) 

3.8. EQUIVALENT POROUS MEDIUM BEHAVIOR 

Up to this point, the porous medium continuum concept has been applied in order to 

evaluate fluid flow and mechanical transport. Another important objective is to determine if a 

fracture system can be treated like an equivalent homogeneous porous medium continuum.  

The requirements for continuum flow behavior are presented in this section, followed by a dis

cussion of continuum behavior for hydraulic effective porosity.  

In a porous medium, Darcy's law makes it possible to evaluate macroscopic fluid flux 

properties by treating the medium as a continuum. Fluid flow characteristics are analyzed for 

equivalent porous medium behavior in two ways. First, flow fields created from the boundary 

conditions shown in Figure 3-4a are individually evaluated for equivalent porous medium 

behavior. Then, directional flow is analyzed by synthesizing flow results in different directions.  

In a porous medium, macroscopic directional flow characteristics can be predicted from a 

unique permeability tensor.
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Any given flow field must satisfy the following two requirements in order to exhibit 

equivalent porous medium behavior.  

(1) The macroscopic flow field can be predicted by Darcy's law.  

(2) The specific discharge is stable and does not fluctuate with the size of the flow region.  

As discussed in section 3.5, the flow field for an anisotropic porous medium is character

ized by a uniform specific discharge. Because the specific discharge is a vector, the condition of 

uniformity implies that both its magnitude and angle of flow are constant. The use of macros

copic flow measurements are described below to determine if the magnitude and angle of 4 are 

constant for the given flow field.  

A uniform specific discharge means that parallel cross sections of equal area will have the 

same total fluid flux flowing across them. This means that in Figure 3-5 the flow rate into side 

2 is equal to the flow rate out of side 4, 

QS2 -QS4 (3.22) 

and the flow rate into side 1 is equal to the flow rate out of side 3, 

QS1 -QS3 (3.23) 

Equations 3.22 and 3.23 constitute a continuity test to evaluate if the magnitude of the specific 

discharge is constant.  

Two approaches are used to determine the angle of flow. Both approaches produce the 

same angle of flow if the specific discharge is uniform. In the first approach, the total flow rates 

into the sides of the flow region are used to compute the components of the specific discharge 

in the direction of the hydraulic gradient, and in the direction perpendicular to the gradient 

from which angle of flow is calculated. This calculation is not based on the path of the fluid.  

In the second approach, the conditions of the uniform flow field are used to compute angle of 

flow. As shown in Figure 3-5, the amount of fluid entering side 2 that exits on side 4 can be 

used to compute angle of flow. The remaining fluid entering side 2 must exit on side 3.  

The first method of determining the angle of flow can be expressed mathematically using 

the two components of the specific discharge:



-5o

4•-o.,h + qi 

or referring to Figure 3-5, 
0,tan-I 2L - ANFD (3.24) 

For the flow region in Figure 3-5, the specific discharge in the x direction is obtained by sum

ming the flow rate into side 2 from the individual flow channels and dividing by Ly. Similarly, 

the total flow rate into side I divided by L, determines qy.  

The second method of determining the angle of flow is based on the uniformity of the 

specific discharge. For the anisotropic medium in Figure 3-5, a certain quantity of the fluid 

flux, QNC, flowing into side 2 must exit on side 3. Thus, 

QNc.-- QS3.  

and 

qY _53 QNc 

SL.  

Substituting qy into equation 5 yields: 

0- tan- " ANFC (3.25) 

q1L" 

This relationship is also obtained directly from the uniformity of the flow field. The 

cross-hatched area in Figure 3-5 designates the zone in which the fluid flows continuously from 

sides 2 to 4. Since the specific discharge is uniform, the following relationships hold on side 2: 

Qc- QNC_ Q.  
Lc LNC L, 

which means 

c QNcLC QNCxv QNC 

The relationship for the angle of flow is: 

LNc QNc 

so 

0 - tan-I QNc (3.26) 

which is the same expression as equation 3.25.
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Equation 3.26 is the second method of computing the angle of flow. The evaluation of 

ANFD and ANFC constitutes the angle of flow test. The direction of the specific discharge is a 

constant if ANFD is equal to ANFC.  

The stability of the specific discharge, the second requirement for a flow field to exhibit 

porous medium behavior for a particular direction of flow, is tested by slowly increasing the 

size of the flow region and measuring the specific discharge. Initially, the specific discharge 

may be expected to fluctuate significantly. In small flow regions, the number of channels (frac

tures) may be too small so that the flow region does not behave like a representative elementary 

volume of a porous medium. However, as the size of the flow region increases, the fluctuations 

in the specific discharge may dampen out and eventually a stable value may be reached. When 

the specific discharge is stable, the flow field behaves hydraulically like an equivalent porous 

medium.  

The above tests can be used to examine equivalent porous medium behavior for a partic

ular direction of flow. However, Darcy's law also specifies that the flow field in any direction 

can be predicted by a permeability tensor. If such a tensor exists the square root of permeabil

ity.in the direction of flow plots as an ellipse. For example, the square root of Kf/Ky for the 

anisotropic porous medium considered in Figure 3-4a is shown in the polar plot on Figure 3-10.  

Thus, the shape of the plot of the square root of permeability is the test of whether directional 

flow for the system behaves like an equivalent porous medium.  

To determine equivalent porous medium behavior for transport, one must examine the 

directional nature of the hydraulic effective porosity. The hydraulic effective porosity is gen

erally assumed to be equal either to the rock effective porosity or to the total porosity in tran

sport modeling. Since both porosities are independent of direction in a continuum, the 

hydraulic effective porosity should be constant in all directions. Thus, the test for equivalent 

porous medium behavior for transport is to examine the stability of OH with direction.  

The tortuosity was first introduced when researchers were developing the theory relating 

permeability to the geometric properties of a porous medium. One of the first workers,
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Kozeny, considered a simple porous medium model consisting of a bundle of capillary tubes to 

determine this relationship. The Kozeny-Carman expression for the intrinsic permeability for a 

medium of straight capillary tubes is: 

where sr- 32 -Z shape factor 

and rb is the conductive volume divided by the wetted surface area, dc is the diameter of a 

capillary tube, and S, is the specific surface.  

Kozeny, also accounted for the fact that fluid paths are nonlinear. The intrinsic permea

bility in this case (Carman, 1956) is: 

k- 03 (3.27) sS, 

where s - sr, 

Tortuosity for isotropic porous media has been evaluated both analytically for random 

oriented flow channels (Haring and Greenkorn, 1970) and experimentally, by diffusion studies 

(Collins, 1961), to be v0 and V2, respectively. Dullien (1979) stated that r should normally 

range between I and V".  

Tortuosity for anisotropic porous media is directionally dependent. Anisotropy (Rice et 

al.,1970) is caused by differences in path lengths of fluid particles and frictional resistance with 

direction resulting from the asymmetric shape of grains oriented in a particular direction.  

Longer paths of flow cause greater frictional resistance which subsequently reduces flow rate.  

The directional dependence of r was shown experimentally by Sullivan and Hertel (1940) using 

a medium of glass wool. Sullivan and Hertel showed that the tortuosity parallel to the direc

tion of the fibers was much less than r measured in the direction perpendicular to the fibers.  

Directional permeability from equation 3.27 is caused by variations in s. The shape fac

tor sf exhibits relatively small changes for different geometrically shaped conduits (Wyllie and 

Spangler, 1952) and normally falls between 2 and 3. Thus, only slight changes in sf are 

expected with direction in an anisotropic medium. This means that directional permeability
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strongly reflects changes in tortuosity. Since no known extensive study of directional tortuosity 

has been conducted, one would expect tortuosity to be inversely proportional to permeability 

for an equivalent porous medium.
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CHAPTER 4 

THE DISCRETE NUMERICAL MODEL 

4.1. INTRODUCTION 

A three-stage discrete numerical model written in FORTRAN specifically for the VAX

11/780 machines has been developed to evaluate mechanical transport in fracture systems. The 

first stage of the model is called fracture system generation. The function of this stage is to 

create a homogeneous, anisotropic fracture system for which the directional nature of mechani

cal transport can be investigated. In this stage, finite-element meshes are constructed for flow 

regions oriented in different directions so that the set of tracer tests used to evaluate directional 

mechanical transport can be simulated. The second stage is called the hydraulic head calcula

tion. The hydraulic boundary conditions described in section 3.5 are applied to each flow 

region and a finite element method is used to calculate the hydraulic head at each fracture 

intersection within the flow region. The distribution of hydraulic head serves as input to the 

third stage of the numerical model called mechanical transport simulation. Mechanical tran

sport is modeled in this stage using a new streamtubing technique which traces the detailed 

movement of fluid flow. At the end of this stage, macroscopic mechanical transport and fluid 

flow parameters are calculated. Each stage is discussed in detail in this chapter.  

4.2. FRACTURE SYSTEM GENERATION STAGE 

In the first stage of the numerical model a two-dimensional fracture system is created in 

an area called the generation region. The procedure used in creating the fracture system was 

developed by Long (1983). The fractures in the generation region are created one set at a time, 

and the number of fractures in each set is controlled by an assigned areal density (number of 

fractures per unit area). The geometric parameters required to create each fracture are: its 

length, orientation, aperture, and location in the generation region. This information may be 

read directly into the computer program (deterministic approach) or may be generated stochast

ically. In a stochastic generation, each fracture is randomly located in the generation region to
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create a statistically homogeneous system. The three remaining geometric parameters are each 

created by probabilistic simulation. Probabilistic simulation can be conducted with either the 

Gaussian, lognormal or exponential probability distribution. The mean and standard deviation 

for the simulated distribution must be read into the computer program.  

The stochastic generation of a fracture system consisting of two sets of fractures is illus

trated in Figure 4-1. In Figure 4-ia, the size of a square generation region is defined, and the 

center of the first fracture for set I is randomly located in the generation region. This fracture 

is then assigned an orientation (Figure 4-1b) using probabilistic simulation. Next, the fracture 

is stochastically assigned a length and an aperture as shown in Figure 4-1c. The steps shown in 

this figure from 4-la to 4-ic are used to create a single fracture. The number of fractures 

created for set I is controlled by its areal density. Each fracture for the first set is generated 

from the same set of geometric statistics (mean and standard deviation) for length, aperture, 

and orientation. After all the fractures have been created for set I (Figure 4-1d), the fractures 

for set 2 are created from a new set of geometric statistics. Figure 4-1e shows the complete frac

ture system consisting of two sets of fractures.  

Flow regions within the generated fracture network are selected for fluid flow and 

mechanical transport studies. A flow region may be oriented in any direction as long as it fits 

within the boundaries of the generation region. A finite-element mesh is constructed for each 

flow region consisting of nodes, which are fracture intersections, and elements, which are frac

ture segments between nodes. Figure 4-if shows a flow region within the generation region 

oriented at 45". The finite element mesh for the flow region consists of 21 nodes and 22 ele

ments. The hydraulic boundary conditions described in section 3.5 are applied to each flow 

region and the hydraulic heads for the nodes located along the boundary of the flow region are 

calculated. The finite-element mesh with the prescribed nodal hydraulic heads are stored in a 

data file. This file is read into the second stage of the computer program.
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4.3. HYDRAUIUC HEAD CALCULATION 

The steady state hydraulic heads at the nodes are calculated in the second stage using a 

finite-element technique developed by Wilson (1970). Laminar flow in each fracture is 

governed by the cubic law for fracture flow: 

Qe - &3 d (4.1) -- 12s& Q 

The finite element method first develops the necessary algebraic equations governing flow 

within each element by discretizing the derivative for 0 in equation 4.1. The two equations 

governing flow into the two ends (nodes) of the element shown in Figure 4-2 are: 

Node i: Q. - p1b3 (0. - 0j) - aF(,O - f) (4.2) 

and 

Node j: Qj - p1b3 (Oj - $6) - aF(9D - 4j) (4.3) 

Equations 4.2 and 4.3 govern flow within a one-dimensional finite element called a line ele

ment. These two equations can be expressed in matrix notation as: 

or 

[CC{]C} -- {IQ} 
(4.4) 

A set of such equations is computed for each element in the flow region. Next, all the sets 

of equations governing flow at the element level are assembled into a global set of equations 

governing flow for the entire region. The matrix form of this global set of equations is: 

[Ci{'I} - {Q} (4.5) 

The conductance matrix IC] is simply calculated by adding all the 2 x 2 element submatrices 

into a square n x n matrix where n is the number of nodes. The conductance matrix for this 

problem is symmetric and banded. Both {9} and {Q} are n x 1 column vectors of nodal 

hydraulic heads and prescribed flow rates, respectively. For the boundary conditions con

sidered in section 3.5, {Q} is the null vector. After the known nodal hydraulic heads along the 

boundary of the flow region have been implemented into equation 4.5, a direct linear equation 

solver for symmetric banded matrices is used to calculate the nodal hydraulic heads. This
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constitutes the second stage of the numerical model.  

4.3. MECHANICAL TRANSPORT SIMULATION 

Mechanical transport is simulated for the elements in the flow region in the final stage of 

the program. A streamtube is defined as a flow conduit that is bounded by streamlines in 

which flow rate is constant. The model developed to simulate mechanical transport is used to 

determine the paths and flow rates for the streamtubes in the fracture network. Once all the 

streamtube paths have been determined, the total travel time from inlet to outlet for the fluid 

in each streamtube is computed by summing up the residence times in each element along the 

individual streamtubes. This procedure requires an evaluation of the path, the flow rate, and 

the width of the streamtube in each element. The time it takes the fluid in a streamtube to 

travel the length of an element will first be considered. Since fluid flows out of an element to a 

node, the way fluid flowing into a node exits out of the node will then be discussed.  

As mentioned earlier, the flow rate in an element is governed by the cubic law for fracture 

flow. It can be shown that by solving the Navier-Stokes equation for laminar flow between 

parallel plates, an expression for the well-known parabolic velocity distribution across a planar 

element is obtained: 

u(17) -
(4.6) 

The flow rate in the element is obtained by integrating equation 4.6 across the width of the ele

ment: 

-f U(1) pgtb3 dt 
I _ 2 g dk 

This is the cubic law for fracture flow.
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The time it takes the fluid in a streamtube to travel the length of an element is given by: 

LT 
QST 

where i+I - i is the width of a streamtube in an element. Thus, to determine tsT, the width 

that a streamtube occupies in an element must be computed. Integrating equation 4.6 between 

in and + 1 yields: 

The width occupied by the streamtube can then be determined from the flow rate in the 

streamtube and the starting coordinate %i. For example, the node in Figure 4-3 consists of three 

inflowing streamtubes labeled STI, ST2, and ST3. Streamtube ST2 has a flow rate of 4 units 

and a starting coordinate, 7u, equal to zero in element E. The ending coordinate of ST2, 7i+1,2, 

is obtained using equation 4.7. That coordinate then becomes the starting coordinate for ST3 

in element E from which the travel time for ST3 in element E is determined.  

The principle of conservation of mass, and the fact that streamlines cannot cross one 

another in laminar flow, are used to calculate the downstream location of inflow streamtubes in 

outflow elements at a node. Travel times within a node are considered to be negligible. The 

upper outflow element D in Figure 4-3 has a flow rate of three units. The flow into this ele

ment must come from element A because if any of the other two streamtubes flowed into ele

ment D, they would have to cross the path of STI. Using the same principle, ST2 must occupy 

the upper, and ST3 the lower, portion of element E. The order of the streamtubes and the flow 

rates in each streamtube are recorded for each outflow element. This information is needed to 

determine the travel time for the fluid in each streamtube.  

The flux in an inflow streamtube can be distributed into more than one outflow element 

at the node, as is illustrated for STI in Figure 4-4. When this arises, the inflow streamtube 

must be subdivided such that a new streazntube is created for every outflow element that 

receives any portion of the inflow. For example,ST3 and ST4 are the result of the subdivision
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of the discontinued streamtube STI. The total travel time to this particular node for the fluid in 

a new streamtube is determined by backtracking along the path of STI to its origin.  

The first step in tracing the location of streamtubes in the fracture network is to assign a 

streamtube to every inflow element on the boundary of the flow region. This assures that 

streamtubes exist in every conductive element within the flow region. For example, in the frac

ture network shown in Figure 4-5, streamtubes have been initiated in elements 1, 2, and 5.  

Each assigned streamtube is given a width equal to the aperture of the element it occupies, and 

a flow rate equal to that in the element.  

The program then proceeds in sequential nodal order determining the outflow stream

tubes at each node. The outflow streamtubes at a node can only be determined if the stream

tubes are known in all inflow elements at the node. If streamtubes do not exist in an inflow 

element, the inflow element number and the node number are stored in memory. This situa

tion arises when an inflow element at the node under consideration is an outflow element at a 

higher numbered node. The streamtubes in the inflow element at the current node can only be 

determined after proceeding to the higher node. In Figure 4-5, node 1 is the first node exam

ined by the computer program and element 4 is the only outflow element at this node. The 

streamtubes in element 4 can only be calculated if the streamtubes are known in inflow ele

ments 1 and 3. The streantube in element I is known since a streamtube was assigned to this 

element in the first phase of the streamtubing procedure. However, at this point, the stream

tubes in element 3 are unknown. Therefore, element 3 and node I are stored in memory and 

the program proceeds to node 2.  

The streamtubes in the outflow elements at a node are determined when streamtubes exist 

in all inflow elements. After the streamtubes in all outflow elements have been determined, the 

program scans the elements stored in memory and removes any element that is an outflow ele

ment at the current node because the streamtubes are known in these elements. If an element 

is the only one stored for a particular node, then the streamtubes in the outflow elements at 

that node are determined. For example, at node 2 for the fracture network in Figure 4-5, the
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streantube for the inflow element 2 is known. The smtmtube in the outflow element 3 can 

thbeore be Computed knowing the stmmnitube in element 2. The program then removes ele

ment 3 from the list of stored elements becaum the streanitube in element 3 has been dewr

mined. Becaue element 3 is the only element stored in memory for node 1, the strumnitubes in 

the outflowini element 4 at node I can now be calculated. As the network is Bcanned in this 

fashion, the number of streanitubes increases and the width of stresmtubes decreases because 

new stremnitubes are being created at nodes.  

After the streanitubing procedure has been completed, the program computes the macros

copic fluid flow and mechanical trsport parameters listed in Table 4-1.  

Table 4-1. Macroscopic Parameters Calculated In Mechanicl 
Tra•sport Simalatlon Stare.  

FLUID FLOW INFORMATION 

Flow into side 2 (QS2) 
Flow out of side 4 (QS4) 
Flow into side 3 (QS3) 
Flow out of side 1 (QSI) 
Continuous flow from side 2 to 4 (Qc) 
Magnitude of specific discharge (q) 
Deviation in flow (DEVF) 
Angle of flow based on flow uniformity (ANFC) 

Angle of flow based of components of specific discharg (ANFD) 

Deviation in angle of flow (DEVA) 
Tortuosity (11) 

&k, hroqh Cam' Sutdks" 

Mean flow travel time (t) 
Variance ("2) 

Porosity nom w 

Total porosity of flow region O) 
Rock effctive porosity (o) 
Hydraulic effective porosity (*d) 

Velocity lauimatd 

AvM linear velocity (VLIN) 
Mean pore velocity (MPV) 
CAlculated mean pore velocity MVORE) 

There is no guarantee that a fracture system will behave like an equivalent porous 

medium and sat* the continuity criterion discussed in section 3.8. Consequently, the specific
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discharge is defined by recognizing that Darcy's specific discharge represents the average 

discharge crossing a unit area in the mean direction of flow. The magnitude of the specific 

discharge is thus computed by averaging the flux on the sides of the flow region in the following 

way.  

- QS2 + QS4 QSI + QS3 
2q., andqy 2I= 

with 

q - + q V) 

It was shown in section 3.8 that for a porous medium: 

QS2 - QS4 and QSI - QS3 

The exact equality indicated by the two equations above will not necessarily hold for stochasti

cally generated fracture systems. The relationship for the flow rate along the sides of the flow 

region can be written: 

QS2- QS4+ AQ and QS1 -QS3 + AQ 

The deviation in flow is defined to measure how well the continuity criterion is satisfied for the 

flow field within a flow region: 

DV AQI ]100 (4.8) 

DEVF (TOTAL INFLOW 

A small deviation in flow indicates that the continuity criterion is satisfied.  

Two methods were presented in section 3.8 to compute the angle of flow. The continuous 

flow from side 2 to side 4 was used in calculating ANFC by equation 3.25. This method was 

based on the uniformity of the flow field. In the second method, the two components of the 

specific discharge were used in calculating ANFD by equation 3.24. The angle of flow for the 

specific discharge is thus computed by averaging ANFD and ANFC: 

ANFD + ANFC 
2 

The deviation in angle of flow is defined to measure how well the flow field within a flow 

region satisfies the angle of flow criterion: 

DEVA - I ANFD - ANFC I (4.9) 

ANFC will equal ANFD (DEVA - 0) if the fracture system behaves exactly like an equivalent
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porous medium. Thus, DEVA and DEVF are both used to evaluate how well a flow field satis

fies the flow requirements for equivalent porous medium behavior.  

The breakthrough curve is constructed for the fluid that flows continuously between sides 

2 and 4. The mean of this curve is used to compute VLIN in the following way: 

LL _ 
VLIN -L- L 

T coseT 

Next, VLIN is used to compute the hydraulic effective porosity as: 

VLIN 

The variance of the breakthrough curve can be used to compute the Fickian longitudinal 

mechanical transport coefficient from equation 3.20, once VLIN and L have been computed.  

The mean pore velocity is the average microscopic velocity within the pores and is 

expressed mathematically as: 

MPV j- vV 

A commonly accepted relationship associating the mean pore velocity with the specific 

discharge is the Dupuit-Forchheimer assumption (Scheidegger, 1960): 

MPV = q/OR 

"The rock effective porosity is computed by summing the volume of all conductive elements 

within the flow region and then dividing this term by the total volume. For homogeneous tran

sport, q/OR is equal to VLIN, which means that the Dupuit.Forchheimer yields: 

L 
MPV = VLIN - L 

T 

Fluid particles travel along nonlinear paths in a porous medium such that the mean pore 

velocity is larger than the average linear velocity. Consequently, a better estimate of MPV is 

provided in this study by VPORE. VPORE is computed using the tortuosity to account for the 

nonlinearity of fluid flow in the following way: 

VPORE - .. rVLIN 
T 

Tortuosity is computed as: 

NC 
Z QSriLSTI 
i-C 

-" QcL
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CHAPTER 5 

INVESTIGATION OF CONTINUOUS 

FRACTURE SYSTEMS 

5.1. INTRODUCTION 

Two regular continuous systems of infinitely long fractures were initially studied for two 

primary reasons. First, continuous fracture systems behave hydraulically as equivalent porous 

media with flow properties that can be analytically computed (Parsons 119661, Snow 11969]).  

The study of fracture systems with known continuum flow behavior can serve to demonstrate 

the tests developed to identify such behavior.. Second, the possible directional dependence of 

mechanical transport can be investigated for anisotropic fracture systems in which the void 

region is totally connected. Such fracture systems simplify an understanding of the results 

because dead-end zones are excluded from the void region.  

5.2. CONTINUOUS SYSTEM WITH TWO SETS OF 

CONSTANT-APERTURE FRACTURES 

In the first investigation of networks with continuous fractures, the system consisted of 

two sets of parallel fractures oriented at 0° and 30, as illustrated in Figure 5-1. All fractures 

had an aperture of 0.002 cm, and the spacing between fractures was a constant value of 10 cm.  

Several different sized flow regions were analyzed to investigate the requirement that a 

fracture system that exhibits porous medium behavior should have a specific discharge that 

remains stable. This study was conducted by varying the size of several square flow regions 

oriented at (r and observing if the numerical solutions for q and 0 converge to their theoretical 

values as the size increases. The theoretical solutions for q and 0 apply to flow regions of infin

ite dimensions. However, only finite-sized flow regions can be created using numerical models.  

Thus, the difference between the theoretical and numerical solutions for q and 0 should 

decrease as size increases.
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Figure 5-1 Fracture System With Two Sets of Parallel, Continuous, and Constant Aperture 

Fractures.
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Figure 5-2 shows how the ratio of actual to theoretical specific discharge (q/qT) 

approaches unity as the size of the flow region increases. Porous medium equivalence is also 

evident from the results for angle of flow. As shown in Figure 5-2, the deviation between actual 

and theoretical angles of flow (I 0-r O) is negligible for flow regions larger than 200 x 200 cm.  

Further evidence that this size fracture network exhibits porous medium behavior can be 

obtained from the ratio of actual to theoretical porosity (O/Or), which has also been plotted in 

Figure 5-2. Thus, the stability requirement is met for this particular fracture network when the 

size of the flow region is 200 x 200 cm or larger.  

Next, flow results for different directions of flow were analyzed for equivalent porous 

medium behavior using the continuity test and the angle of flow test. Flow regions oriented at 

every 15, beginning at orientation 0", were used in this part of the study. Square flow regions of 

width 400 cm were used for orientations 0, 15, 30, 45, 60", and 105'. Rectangular flow 

regions of size 186 x 400 cm were used for orientations 75" and 90, because the angle of flow is 

greater than 450 for these two orientations. Side 2 had to be longer than side 1 to ensure that a 

zone of continuous flow existed from side 2 to side 4.  

A comparison of numerical and theoretical values for q and 9 is given in Table 5-1. The 

good agreement between numerical and theoretical values (0.96 < q/qr < 1.04 and 1 0-T < 

3") is evidence that the stability requirement for porous medium behavior has been satisfied for 

all flow regions regardless of the orientation of the flow field. The angle of flow test is also 

satisfied for all orientations because the values computed for ANFC are essentially identical to 

those of ANFD. Furthermore, the continuity test is also satisfied because flow rates on oppos

ing sides of the flow region are equal. This equivalence results from the fact that an equal 

number of fractures from each set intersect opposing sides of each flow region. Thus, each flow 

region that has been tested exhibits porous medium flow behavior.  

Directional equivalent porous medium flow behavior can be shown using the flow results 

in Table 5-1. Marcus and Evenson (1961) have derived very useful relationships between 

specific discharge and direction of flow for porous media. If the hydraulic gradient is kept con-
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Figure 5-2 Convergence of Specific Discharge and Porosity to Their Theoretical Values as 

Size of Flow Region Increases (Ratio is cq-Qr or O/Or).
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Table 5-1. Specific Discharge Results for Fracture System With Two Sets 
I01 A-- C #.--UoEUU3 #_ _A .h.-----• "P

stant, as was done in this study, the square root of specific discharge divided by cos0, (q/cosO)V, 

when plotted versus flow direction, forms an ellipse since q/cos0 is equal to the product of Kr 

and the hydraulic gradient. Figure 5-3a shows the plot of (q/cose)½ versus direction of flow. It 

may be seen that the specific discharge curve is an ellipse with directions of maximum and 

minimum permeabilities near 15" and 105, respectively. The ellipse is symmetric about these 

two principal directions. As expected from theory, this particular network of continuous frac

tures has the same flow behavior as an equivalent porous medium.  

Having demonstrated that this system of continuous fractures behaves like an equivalent 

porous medium for fluid flow, the model was next used to investigate continuum behavior for 

transport For comparative purposes, one needs the total porosity of the fracture system. The 

porosity of each set is 0.0002, which is simply the 0.002 cm aperture divided by the 10 cm 

spacing, and therefore the total porosity for the two sets is 0.0004.  

Figure 5-4 is a plot of the hydraulic effective porosity versus direction of flow, which was 

determined by adding the angle of flow to the orientation of the flow region. At orientation 90 

(where the theoretical flow direction is 30") and orientation 120" (where the theoretical flow 

direction is 180") there is a dramatic reduction in OH. At either orientation, one set of fractures 

becomes nonconductive because it is perpendicular to the hydraulic gradient. The result is that 

OH - 0/2 in either flow direction. The directional dependence in the hydraulic effective poros

ity shows that this fracture system does not behave like an equivalent porous medium for

I ~~Ol /'Lraae~i6 C--nin]nuouU~ ani U.•.••,-.M • 59...,. ....  

Orientation Specific Discharge A-le of Flow 

of Gradient Theoretical Actual Theoretical * ANFC ANFD 

degrees I0-1- 10- 7 c--m degrees degrees degrees 

0 1.179 1.199 13.90 13.65 13.65 
I5 1.220 1.232 0 -1.47 0 
30 1 1.179 1.184 -13.90 -13.84 13.94 

45 1.057 1.065 -27.63 1-26.86 -26.86 

60 0.8649 0.8706 -40.92 -40.82 j -40.82 

75 0.6147 0.6116 -52.91 -52.76 -52.76 

90 0.3269 0.3406 -60.00 -61.32 -61.32 
105 0.08759 0.0846 0 -2.87 -2.87
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Figure 5-3 Polar Plots of a) Specific Discharge and b) Average Linear Velocity Factor 

Versus Direction of Flow for System of Two Set of Parallel, Continuous, and 

Constant Aperture Fractures.
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transport.  

At orientation 105%, O decreases slightly below 0 and obtains a value of 0.000384. To 

check this result, two additional square flow regions of widths 320 and 450 cm were tested.  

The resulting OH were 0.000385 and 0.000409, respectively. This clearly indicates that O is 

converging to 0 and that the size of the mechanical transport continuum varies with direction.  

However, the convergence proceeds at different rates for different directions.  

The change in convergence rate is directly related to the tortuosity. As tortuosity 

increases, travel paths become more irregular and deviate more from the flow direction. Con

sequently, larger flow regions are needed before representative mechanical transport behavior 

occurs. Figure 5-5 shows that the tortuosity is relatively stable at 1.04 between directions 0' to 

30*. At direction 30°, the tortuosity reaches a theoretical minimum of 1.0. Tortuosity then 

increases rapidly to 3.86 near direction 105". The bisection of the hydraulic gradient with the 

obtuse angle of 150" resulting from the intersection of the two fracture sets (Figure 5-1) caused 

tortuosity to be maximum in this direction. Thus, the large tortuosity in this direction results 

in a slight oscillation in OH. Tortuosity should be inversely proportional to permeability for an 

equivalent porous medium. Since tortuosity is relatively stable between directions 0* and 30, 

tortuosity does not behave like it would for an equivalent porous medium. However, between 

30" and 105" tortuosity does behave like it would for an equivalent porous medium.  

Figure 5-6 shows a plot of VPORE versus flow direction. This figure shows that there is 

no difference between VPORE and the mean pore velocity. In transport studies, tortuosity is 

rarely computed and normally assigned a value about v2. This figure also demonstrates that if 

a constant tortuosity of VN had been used to compute VPORE, a serious error in the calcu

lated mean pore velocity would have resulted.  

If the hydraulic effective porosity is a constant, then the square root of the average linear 

velocity divided by cosO, (VLIN/cosO)", should plot as an ellipse for an equivalent porous 

medium since (q/cosg)e would plot as an ellipse. The plot of (VLIN/cosO)l in Figure 5-3b also 

demonstrates that this fracture system cannot be treated as equivalent porous medium for tran-
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Figure 5-5 Tortuosity Versus Direction of Flow for Fracture System of Two Sets of Paral

lel, Continuous, and Constant Aperture Fractures.
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Mean Pore Velocity With Tortuosity of %12 for Flrcture System of Two Sets Of 

Continuous, Parallel, and Constant Aperture Fractures.
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sport. Althougjh the VLIN curve coincides with the q curve in most directions, there are four 

sharp cusps in the directions where OH drops dramatically.  

Figure 5-7 is the polar plot of the longitudinal geometric dispersivity. This plot definitely 

shows that a. is directionally dependent. The maximum aL. of 74 cm occurs in the direction of 

minimum permeability. Longitudinal geometric dispersivity is much smaller in all other direc

tions, but aL is zero only near directions of flow 30 and 0". Longitudinal geometric disper

sivity is minimum in these directions because only one set conducts flow, and the velocity in 

each fracture of this set is constant.  

The applicability of the Fickian dispersive approach was investigated for flow direction 

18.3" (orientation 45') using two square flow regions of widths 200 and 400 cm. When the 

Fickian approach is applicable, at, will not vary with the size of the flow region. The longitudi

nal geometric dispersivities computed for the two sizes were 0.882 cm and 0.995 cm, respec

tively. The scale-dependent dispersivity shows that the Fickian approach cannot be applied at 

this scale.  

5.3. SYSTEM WITH TWO ORTHOGONAL SETS OF CONTINUOUS FRACTURES 

In the second investigation with this model, the system consisted of two sets of parallel 

fractures oriented at right angles to each other and all spaced 10 cm apart as shown in Figure 

5-8. Anisotropy was achieved by using an aperture of 0.002 cm for the first set oriented at 0, 

and an aperture of 0.004 cm for the second set oriented at 90". Thus, the direction of max

imum principal permeability is 90, and the direction of minimum principal permeability is 0.  

The hydraulic gradient along sides I and 3 (see Figure 3-4) was set at 0.01 for all flow regions.  

The total porosity is 0.0006; the porosity for the set oriented at 0" is 0.0002 and that for the set 

at 90" is 0.0004.  

Sizes of flow regions were selected so that the number of elements and nodes in each 

region was nearly equal to that of the first study. It was anticipated that using the same 

number of elements and nodes would produce equivalent porous medium flow behavior in this 

orthogonal fracture system. Square flow regions of width 280 cm were used for orientations 0,
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45", 60", 75" and 90'. Rectangular flow regions of 235 x 335 cm were used for orientations 15" 

and 30" because the angle of flow was greater than 45".  

A comparison of numerical and theoretical values for specific discharge is given in Table 

5-2. The results demonstrate that each flow region behaves like an equivalent porous medium 

for fluid flow. Figure 5-9a illustrates directional equivalent porous medium behavior. The plot 

of (q/cosB)½ is an ellipse whose maximum axis coincides with the maximum principal permea

bility at 90" and whose minimum axis coincides with the minimum value of permeability at 00.  

This is further evidence that this system of orthogonal fractures behaves like an equivalent 

porous medium for fluid flow.  

Table 5-2. Specific Discharge Results for Fracture System With Two 

Orthogonal Sets of-Fractures.  

Orientation Specific Discharme Anile of Flow 

of Gradient Theoretical Actual Theoretical ANFC ANFD 

degrees 10 - 7 cm I 0 -.7 cm degrees . degrees degrees 

0 0.6538 0.6538 0 -0.31 -0.40 

15 1.496 1.499 i 49.99 50.91 50.90 

30 2.676 2.691 i 47.78 47.52 46.82 

45 3.727 3.681 I 37.87 38.08 37.87 

60 4.541 4.668 25.87 25.64 25.12 

75 5.055 5.086 13.08 14.72 14.59 

90 5.230 5.230 0 0 0 

The model was next used to investigate continuum behavior for transport, and the results 

are shown in Figure 5-10. We again see a drastic reduction in hydraulic effective porosity when 

the direction of gradient is at right angles to either fracture set. Figure 5-10 clearly illustrates 

the directional dependence of hydraulic effective porosity for this orthogonal fracture system.  

The plot of (VLIN/cos0)9 in Figure 5-9b reveals an unexpected result. One would normally 

associate the direction of minimum principal permeability as an indication of the direction of 

the minimum velocity. However, the minimum value of VLIN does not occur at 0" because 

the minimum hydraulic effective porosity occurs in this direction. In dealing with fracture net

works of this kind, one simply cannot associate directions of principal permeabilities with the 

directions of maximum or minimum linear velocities.
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Figure 5-9 Polar Plots of a) Specific Discharge and b) Average Linear Factors Versus 

Direction of Flow for System With Two Orthogonal Sets of Continuous Frac

tures.
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The tortuosity versus direction of flow is shown in Figure 5-11. The directional nature in 

tortuosity shows that this parameter does not behave like it would for an equivalent porous 

medium. This is clearly evident in the direction of minimum permeability where tortuosity is 

minimum. This is exactly opposite of what one would expect for an equivalent porous 

medium.  

The polar plot in Figure 5-12 shows that aL is strongly directionally dependent. The max

imum a. of 26 cm is obtained in the four directions 7" from the direction of maximum permea

bility. In the two principal directions, aL. is zero because only one of the sets conducts flow, 

and the velocity in each fracture for this set is constant. Thus unlike the previous continuous 

system where aL reached its maximum value in the direction of minimum permeability, aL has 

a minimum value in the direction of minimum permeability.  

The polar plots of aL for the two continuous fracture systems both show large directional 

variations in aL. The maximum aL is much larger in the first continuous system where aniso

tropy is greater. If a directionally-stable aL is used to model transport for each system, serious 

errors in transport prediction would result. Yet, this type of modeling is presently practiced by 

treating an anisotropic medium as an equivalent isotropic medium.  

This orthogonal fracture system can easily be made isotropic by making the apertures for 

both sets the same. Theoretically, aL. is directionally stable for an isotropic porous medium. If 

this fracture system were converted to an isotropic medium, a directionally stable aL would not 

result. In directions of flow 0' and 90, longitudinal geometric dispersivity would be zero. In 

all other directions, longitudinal geometric dispersivity would be nonzero. This clearly shows 

that a system which behaves like an equivalent isotropic porous medium for fluid flow, may 

not have a &L which is directionally stable as theoretically expected.
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Figure 5-11 Polar Plot of Tortuosity for Fracture System With Two Orthogonal Sets of Con

tinuous Fractures.
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Orthogonal Sets of Continuous Fractures.
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CHAPTER 6 

INVESTIGATION OF DISCONTINUOUS 

FRACTURE SYSTEMS 

6.1. INTRODUCTION 

A continuous fracture system is created in the generation region when all fractures are 

long compared to the size of the generation region. However, it more likely that a fracture sys

tern must be studied in which the frctures do not span the width of the region. A fracture sys

tem consisting of finite-length fractures is called a discontinuous fracture system. Discontinu

ous fracture systems are much more difficult to analyze than continuous fracture systems. Con

tinuous fracture systems have been shown to behave like equivalent porous media for fluid 

flow. This is not the case for discontinuoussystems. The concepts developed in section 3.9 are 

used to evaluate equivalent porous medium flow behavior for discontinuous systems.  

Mechanical transport is influenced by the paths of fluid flow in the conductive void 

spaces of a fracture system. Flow paths differ in discontinuous and continuous systems due to 

the structure of the void regions. In a continuous fracture system, all fractures are connected 

such that fluid can flow through the entire void region. However, conductive spaces are only 

part of the total void region in a discontinuous fracture system. The void region also consists 

of dead-end zones and isolated spaces where fluids cannot flow.  

6.2. DISCONTINUOUS FRACTURE SYSTEM OF TWO SETS 

ORIENTED AT 0" AND 30 

The first discontinuous fracture system studied was chosen to simulate the continuous 

fracture system in section 5.2. The discontinuous system consisted of two sets of fractures 

oriented at 0" and 30". The areal density for each set was 0.00633 cm- 2. All fractures had an 

aperture of 0.002 cm and a length of 40 cm. A Monte Carlo simulation was required because 

fracture centers were randomly located in the generation region. The Monte Carlo simulation 

consisted of 10 realizations; the size of generation region used in each realization was 300 x 300
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cm. Figure 6-1 shows the fracture pattern in the generation region for one of the realizations.  

The fracture pattern for the discontinuous fracture system differed considerably from the simu

lated continuous fracture system because of the random location of fracture centers and finite 

length of fractures.  

The objective for each realization was to obtain a representative directional sample of 

mechanical transport and fluid flow properties. This required estimating the direction of flow 

for a given orientation of the hydraulic gradient. Since the angle of flow cannot be computed 

from first principles for discontinuous systems, the direction of flow for a given orientation of 

the hydraulic gradient was estimated from 0 calculated for the simulated continuous fracture 

system. Based on these calculations, nine orientations of a uniform hydraulic gradient of 0.01 

were selected to study fluid flow and mechanical transport. The nine orientations and 

estimated directions of flow are listed in Table 6-I.  

The flow region sizes used in the Monte Carlo simulation were determined from a size 

study conducted in the first realization for orientation 15°. In the size study, the width of a 

square flow region oriented at 15" was slowly increased until the flow field exhibited the charac

teristics of an equivalent porous medium. This meant that the following conditions had to be 

satisfied: continuity test, angle of flow test, and stability of &. When the width of the flow 

region was 180 cm, DEVF equaled 1.21, DEVA equaled 1.84, and q was relatively stable.  

Consequently, a minimum flow region size of 32400 cm2 was used in the Monte Carlo simula

tion. Table 6-1 lists the flow region sizes used to initiate the Monte Carlo simulation. The 

actual dimensions of the flow regions were selected such that a zone of continuous flow existed 

between sides 2 and 4 for the estimated direction of flow. Figure 6-2 shows the fracture pattern 

and connected fracture segments in a flow region oriented at 83" in one of the realizations.  

Figure 6-3 is a polar plot of the mean square root of permeability in the direction of flow 

V4. Mean V\Y/ was computed by averaging Vx/ for the ten realizations. For each mean 

VX•, the standard error of the mean was computed. The standard error of the mean is a meas

ure of the scatter in the data and is defined as the sample standard deviation divided by the



-90

250 

200 __ y_ 

E 150 

100 

50 

0 
0 50 100 150 200 250 300 

(cm) 

XBL 841-389 

Figure 6-1 Fracture Network in the Generation Region for Discontinuous Fracture System 
of Two Sets of Fractures Oriented at 0" and 30" With Constant Aperture and 
Length.
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Table 6-1. Orientations, Estimated Directions of Flow, and Flow Region Sizes 
Used in Monte Carlo Simulation of the Discontinuous System 
r(nelatinn af Tna • I1..,..... 04t.h..i., . fO - .#4 f - h

Orientation Direction of flow 
of hydraulic based on continuous Flow region size 
gradient system in section 5.2 

dearees derees cm 2 

15 15 180 x 180 
83 25.08 140 x 230 
100 54.37 170 x 188 
104 91.34 180 x 180 
105 105 180 x 180 

106.5 125 170 x 188 
110 155.6 170 x 188 
130 186.2 140 x 230 
160 192.1 180 x 180

square root of the number of realizations (Topping, 1955; Baird, 1962). The computed mean 

from the data has a probability of approximately 68 percent of being within ± one standard 

error of the true value. The standard error of the mean VK• was less than 0.00006 (cm/s)P in 

all directions except in mean direction of flow 15.14° where the standard error was 0.00010 

(cm/s)V. In this direction, there is an irregularity in the y/'Kf curve. The plot of mean \/-Kf is 

similar to the plot of (q/cose)½ for the simulated continuous fracture system (Figure 5-3). The 

shape of the mean f curve is approximately an ellipse with directions of maximum and 

minimum permeabilities near 15" and 105, respectively. The ratio of Ks to Ky is about eleven.  

Thus, the directional flow characteristics for this fracture system behave like an equivalent 

porous medium.  

Equivalent porous medium flow behavior was also evaluated for each direction of flow 

using the parameters DEVA and DEVF. When DEVA and DEVF are both small, equivalent 

porous medium behavior is likely to occur in that particular direction. Mean DEVA and mean 

DEVF are plotted versus direction of flow in Figure 6-4. DEVA exhibits two local maxima 

near each principal direction. The general tendency of the DEVA curve is for this parameter to 

increase as direction increases from the direction of maximum permeability to the direction of 

minimum permeability. DEVF also increases as direction of flow moves from the direction of 

maximum permeability to the direction of minimum permeability. Thus, porous medium
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Figure 6-3 Polar Plot of Square Root of Permeability in Direction of Flow for Discontinu
ous Fracture System of Two Sets Oriented at 0 and 30".
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Figure 6-4 Mean DEVF and Mean DEVA Versus Direction of Flow for Discontinuous 

Fracture System of Two Sets Oriented at r' and 30".
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equivalence is more likely to occur near the direction of maximum permeability than near the 

direction of minimum permeability.  

Figure 6-5 demonstrates that tortuosity is highly directionally dependent ranging from 

1.10 to 3.93. The standard error of the mean 7 was less than 4 percent of its mean value in any 
direction. The directional variation of tortuosity for this system is similar to tortuosity for the 

simulated continuous fracture system (Figure 5-5). However, there is one important difference.  

The minimum tortuosity occurs near the direction of maximum permeability and not at 30, as 
found in the continuous system, such that tortuosity increases from the direction of maximum 

permeability to the direction of minimum permeability. Consequently, directional tortuosity 

for this system exhibits the characteristics one would expect for an equivalent porous medium.  

Tortuosity is used in this study to compute VPORE. Figure 6-6 shows how VPORE and MPV 
vary with direction of flow in the first realization. VPORE does not correspond exactly with 

MPV as found for the continuous fracture system. However, VPORE provides a good estimate 
of MPV from two mechanical transport parameters 7 and VLIN. If tortuosity had been ignored 

in computing VPORE, a much lower estimate of the mean pore velocity would have resulted 

near the direction of minimum permeability.  

The mean total porosity, rock effective porosity and hydraulic effective porosity are each 
plotted against direction of flow in Figure 6-7. Total porosity and rock effective porosity are 

both directionally stable. Hydraulic effective porosity exhibits no sharp cusps as found in OH 

for the simulated continuous fracture system, but there is some directional dependence. The 
minimum OH occurs near the direction of maximum permeability and the maximum OH occurs 

near the direction of minimum permeability. The mean OH is nearly equal to the average of 0 
and OR. Hydraulic effective porosity is computed as the product of q and T divided by L So 

OH can be large when Tis large. In the direction of maximum permeability, mean travel time is 
small because this is the direction in which fluid flows the easiest. However, in the direction of 
minimum permeability, zones of low velocity and slow movement exist in the void region.  

Consequently, T and OH are large in the direction of minimum permeability. However, the
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Figure 6-5 Polar Plot of Tortuosity for Discontinuous Fracture System of Two Sets 
Oriented at O" and 30.
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Figure 6-7 Polar Plots of Total Porosity, Hydraulic Effective Porosity, and Rock Effective 

Porosity for Discontinuous Fracture System of Two Sets Oriented at 0* and 30*.
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mean hydraulic effective porosity of 0.00080 is a good estimate of Om in any direction, and 

transport can be predicted by treating this frature system like an equivalent porous medium.  

Three composite breakthrough curves are shown in Figure 64. Direction of flow 

increases from the direction of maximum permeability to the direction of minimum permeabil

ity as one proceeds down this figure. Near the direction of maximum permeability, the bulk of 

the fluid arrives at side 4 in a narrow time interval, with travel times less than I The right 

skewness in the curve is caused by a small part of the fluid that takes a long time to travel 

through the flow region. As direction of flow moves towaMs the direction of minimum per

meability, a greater percent of the fluid have travel times lrger than T as more slow zones of 

movement develop within the flow reion. Consequently, the breakthrough curve becomes 

more symmetric, but the right skewness in the breakthrough curve is still evident.  

Figure 6-9 shows the directional variation in the longitudinal geometric dispersivity. The 

maximum aL is obtained near the direction of maximum permeability. In the four directions 

midway between the directions of principal permeabilities, at, decreases to minimum values.  

The minimum a. is seven times less than the maximum a.. This strong directional depen

dence in a. means that this anisotropic medium cannot be treated as an equivalent isotropic 

medium for transport studies. The use of a directionally stable aL for this fracture system 

would lead to serious errors in transport predictions.  

Thus, the following conclusions can be made about the directional properties of this frac

ture system. The parameters DEVA and DEWF show that porous medium equivalence is more 

likely to occur near the direction of maximum permeability than near the direction of 

minimum permeability. Hydraulic effective porosity is relatively stable with direction so that 

the system can be treated like an equivalent porous medium for transport. The mean ft is not 

equal to either # or #R but approximately equal to the average of the two porosities. The 

importance of understanding the directional transport properties of this anisotropic medium is 

exhibited by aL, Longitudinal geometric dispersivity is highly directionally dependent with the 

maximum aL being at least seven times larger than the minimum aL.
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Figure 6-9 Polar Plot of Longitudinal Geometric Dispersivity Versus Direction of Flow for 

Discontinuous System of Two Sets Oriented at 0" and 30".
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6.3. DISCONTINUOUS FRACTURE SYSTEM OF TWO SETS 

ORIENTED AT 0" AND 60" 

The first Monte Carlo study was conducted for a discontinuous fracture system in which 

the three geometric parameters length (1), aperture (b), and orientation (o) were all constant.  

The following Monte Carlo study was conducted for a fracture system in which the three 

geometric parameters were all probabilistically simulated from the mean (s) and the standard 

deviation (a) for each parameter. The fracture system consisted of the following geometric 

parameters: 

0.t I - 0", o'.o I - 50 

o.w 2 - 60%, ot 2 -- 5 

,sl-40m, a 1-4m 

b -- 0.00002 m, ab - 0.000 00 2 m 

Ten orientations of the hydraulic gradient were selected for study in each realization.  

These orientations were selected in order to obtain a representative sample of mechanical tran

sport in all directions. Direction of flow for each orientation was estimated based on calcula

tions made for a continuous fracture system of two parallel sets of fractures oriented at 0" and 

60". Each fracture in this continuous system had the same aperture, and the spacing between 

fractures of the same set was constant. The ten orientations and estimated directions of flow 

are listed in Table 6-2. The estimated directions of maximum and minimum permeabilities are 

30" and 120, respectively. The estimated ratio of K, to K. is two. Flow regions of size 160 by 

160 m (size limited by computer storage) were used for all orientations, and the hydraulic gra

dient along sides I and 3 was set at 0.01 for all flow regions. Figure 6-10 shows the fracture 

pattern in the generation region of 500 by 500 m for one of the realizations. Figure 6-11 shows 

the fracture pattern and conductive fracture segments in a flow region oriented at 30" for the 

same realization.
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Figure 6-10 Fracture Network in the Generation Region for Discontinuous System of Two 

Sets Oriented at (" and 60".
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Table 6-2. Orientations and Estimated Directions of Flow Used in Monte' 

Carlo Simulation of the Discontinuous System Consisting 
of Two Sets of Fractures Oriented at 0" and 60".  

Orientation Angle of Flow based Estimated Direction 

of hydraulic on continuous of flow 

gradient system 
de,,rees " degrees degre-es 

30 0 30 

75 -26.6 48.4 

95 -29.4 65.6 

107 -21.7 85.3 

114 -11.5 102.5 

120 0 120 

126 11.5 137.5 

138 21.7 159.7 

145 29.4 167.4 

165 26.6 191.6 

The stability of hydraulic effective porosity determined the number of realizations for this 

Monte Carlo study. Figure 6-12 shows the mean hydraulic effective porosity for three orienta

tions (30", 75, and 120") plotted against the number of realizations. Orientations 30" and 120" 

were chosen because they were aligned in the estimated directions of principal permeabilities.  

For orientations 75" and 120", mean O fluctuated in the first ten realizations. However, mean 

OH was relatively stable for all three orientations after twelve realizations, and a slight direc

tional dependence in O was apparent. This Monte Carlo study ended after the seventeenth 

realization because hydraulic effective porosity in each of the three orientations was stable.  

Figure 6-13 shows the plot of mean VI versus direction of flow. The standard error of 

the mean Vf was less than 2.5 percent of its mean in any direction. The plot of the mean 

Vl can be approximated by an ellipse with directions of maximum and minimum permeabili

ties near 30" and 120, respectively. This curve is nearly symmetric about the direction of 

minimum permeability, and the ratio of K. to K. is about 2.4. The elliptic shape of the VK 

curve shows that the directional flow characteristics for this fracture system behaved like an 

equivalent porous medium. Table 6-3 lists the computed mean direction of flow and the stan

dard error of the mean for each orientation of the hydraulic gradient. The fluid flow calcula

tions made for the continuous fracture system gave good estimates of the fluid flow properties
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Table 6-3. Orientations and Directions of Flow Calculated for 
Monte Carlo Study of the Discontinuous System 
of Two Sets of Fractures Oriented at 0 and 60°.  

Orientation Direction 
of hydraulic of flow 
gradient 

degrees decrees 

30 29.69±2.05 
75 47.33±0.62 
95 65.37± 1.02 
107 81.96± 1.16 
114 95.96± 1.82 
120 115.38±2.90 
126 140.00±2.06 
138 165.74±0.81 
145 175.25±0.58 
165 192.91±0.46 

for this system.  

Mean DEVA and mean DEVF for this fracture system showed the same directional 

behavior (Figure 6-14) as the previous discontinuous system (Figure 6-4). DEVA exhibited two 

peaks, one near the direction of maximum permeability and the other near the direction of 

minimum permeability. The flow field was less uniform near the directions of principal per

meabilities than in directions away from the principal directions. DEVF was inversely related 

to permeability, as DEVF steadily increased from the direction of maximum permeability to 

the direction of minimum permeability. Flow rate was large and fluid flowed easily in the 

direction of maximum permeability, as tortuosity was minimum (Figure 6-15), and DEVF was 

small. In the direction of maximum permeability, fluid flowed in a direction close to the orien

tations of the two sets. However, in the direction of minimum permeability, the orientation of 

the hydraulic gradient was not aligned favorably with the orientations of the sets. The mean 

orientations of both sets were not oriented in the direction of the hydraulic gradient, and fluid 

had to move in a particular direction that was controlled by the orientation of the hydraulic 

gradient. Tortuosity and DEVF were large in the direction of minimum permeability because 

fluid flowed in a direction nearly perpendicular to the orientations of the two sets.  

Equivalent porous medium flow behavior for this fracture system is directional
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dependent. Flow characteristics are better predicted by Darcy's law when the direction of flow 

is near the direction of maximum permeability than when it is near the direction of minimum 

permeability, as evidenced by the smaller DEVF and DEVA near the direction of maximum 

permeability. Since permeability is inversely proportional to tortuosity, the study of the fluid 

flow characteristics for this fracture system has shown that fluid flow continuum size is 

inversely related to tortuosity. The study of mechanical transport for the continuous fracture 

system oriented at 0* and 30" showed that mechanical transport continuum size was also 

inversely related to tortuosity (section 5.2).  

Next, the relationship between mean pore velocity and VPORE was investigated. The 

estimate of mean pore velocity, VPORE, discussed in section 4.4, can be derived from the 

Kozeny equation (section 3.8). Kozeny formulated an expression relating pipe flow to porous 

media flow. The mean velocity in a pipe under laminar flow conditions is given by the 

Poiseuille equation: 

204 dL 

The first key step in the formulation of the Kozeny equation was the acceptance that the 

Poiseuille equation was valid for porous media flow, with a few added modifications. The first 

modification accounted for the fact that fluid flows in only part (the conductive void region) of 

the total volume. The second modification accounted for the fact that fluid paths are nonlinear 

in a porous medium. The next key step in the formulation of the Kozeny equation was the 

development of the relationship between MPV and specific discharge. The mean pore velocity 

is expressed in the Kozeny equation as: 

MPV- -A" -. rS d_4P (6.1) 4 L o•sr d".  

Theoretically, 

MPV-- fvvdV (6.2) 

which is a very difficult equation to evaluate. In equation 6.1, mean pore velocity is related to 

macroscopic parameters (q, 0, L, and L" ) which are much easier to compute than is equation
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6.2. Since L.JL is the tortuosity, mean pore velocity can be written as: 

MPV - A, 

which for homogeneous transport is equal to: 

MPV - VLINr - VPORE 

Thus, VPORE is a function of two mechanical transport parameters that are measured in this 

study.  

Tortuosity increased from 1.17 near the direction of maximum permeability to 1.95 near 

the direction of minimum permeability. The relationship between VPORE and mean pore 

velocity was investigated in three directions near the direction of minimum permeability, where 

tortuosity has a definite effect of VPORE. For the three directions of 82.0, 96.0, and 115.40, 

mean tortuosities were 1.68, 1,80, and 1.95, respectively. Mean MPVs of 1.275 x 10-6, 

1.265x 10-6, and 1.248x 10- 6 m/s were calculated in thesr three directions, respectively. Mean 

VPOREs of 1.234x 10-6, 1.224x 10-6, and 1.240x 10-6m/s were also calculated in the same 

three directions, respectively. VPORE slightly underestimated MPV in the three directions.  

However, the difference between VPORE and MPV was less than 4 percent of MPV. Thus, 

VPORE provided a good estimate of the mean pore velocity.  

Tortuosity has been found to be an important mechanical transport parameter. Tortuos

ity, as just shown, is an essential component in estimating VPORE. The continuum sizes for 

mechanical transport and fluid flow were found to be inversely related to tortuosity. Tortuosity 

is normally considered to range between I and 2. However, for the continuous and discontinu

ous fracture systems of two sets oriented at 0( and 30, tortuosities as high as 3.8 were calcu

lated. For discontinuous systems which exhibited continua behavior for directional fluid flow, 

tortuosity increased from a minimum value in the direction of maximum permeability to a 

maximum value in the direction of minimum permeability, as one would expect for equivalent 

porous media.  

Total porosity, rock effective porosity, and hydraulic effective porosity are each plotted 

against direction of flow in Figure 6-16. Total porosity and rock effective porosity were both
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stable with direction. Hydraulic effective porosity was slightly larger than O, and the mean O 

was 0.00000727. Hydraulic effective porosity showed a small directional dependence, with 

minimum OH occurring near the direction of maximum permeability, and the maximum OH 

occurring midway between the directions of principal permeabilities. The small directional 

dependence in hydraulic effective porosity indicates that this fracture system can be treated like 

an equivalent porous medium for transport.  

The two Monte Carlo studies for discontinuous fracture systems showed that hydraulic 

effective porosity was larger than OR, but less than 0. Thus, q/O would overestimate the aver

age linear velocity for these two systems. Hydraulic effective porosity was larger than OR 

because zones of slow movement exist in the flow region which caused T to be larger than 

theoretically expected. Hydraulic effective porosity exhibited a slight directional dependence, 

with the minimum OH occurring near the direction of maximum permeability. The abrupt 

changes in OH found in the regular continuous fracture systems were not observed in the 

discontinuous systems.  

The directional variation of £L for this fracture system is shown in Figure 6-17. The max

imum aL was obtained at a direction midway between the two directions of principal per

meabilities. The minimum aL was obtained near the direction of minimum permeability. The 

ratio of maximum to minimum aL was four.  

The following summarizes the results of the directional studies for the longitudinal 

geometric dispersivity. For the first continuous fracture system of two parallel sets oriented at 

0" and 30, the maximum a. was obtained in the direction of minimum permeability. How

ever, the minimum aL of zero was obtained in the two principal directions for the next continu

ous system of two orthogonal sets. The discontinuous fracture system of two sets oriented at 0' 

and 30" had the maximum a in the direction of maximum permeability, and the minimum C 

at a direction midway between the two principal directions. For the discontinuous system just 

studied, the maximum aL occurred at a direction midway between the two principal directions, 

and the minimum a. occurred near the direction of minimum permeability. Thus, each system

dwwwý
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showed a unique directional dependence for a,.. The ratio of a=.a to aLtmj for the two discon

tinuous systems was related to the degree of anisotropy (ratio of K1 to Iy).  

The longitudinal geometric dispersivity will not vary with flow region size if the Fickian 

approach to characterizing dispersion is applicable. The applicability of the Fickian approach 

was studied using the fracture system in the last realization, as follows. The width of a square 

flow region oriented at 107' was increased in increments of 20 m, beginning at a width of 40 m.  

Orientation 107' was selected for this study because the fluid flow and mechanical transport 

parameters (KI, O, r, cL) for the last realization were all reasonably close to their mean values 

for the Monte Carlo study. For each flow region, the computer program was used to determine 

aL. Computer storage limited the maximum width of the flow region to 160 m.  

Figure 6-18 shows the variation in al. with sample size. Since aL increases with sample 

size, the Fickian approach cannot be used to characterize dispersion at this scale. The polar 

plot of the longitudinal geometric dispersivity shown in Figure 6-17 can only be used to predict 

transport for problems on the scale of 160 m. For problems on a larger scale, al. is expected to 

be larger than aL in Figure 6-17. Longitudinal geometric dispersivity varies linearly with size 

when the width of the flow region is greater than 75 m. Linearly varying dispersivities have 

been reported in the literature. Pickens and Grisak (1981a) had good success in matching the 

results of tracer experiments by Sudicky and Cherry (1979) and Pickens and Grisak (1981b) 

with linearly varying dispersivities. Presently, most transport models are based on the Fickian 

approach. However, the results of this study agree with a number of recent studies (Gelhar et 

al., 1979; Pickens and Grisak, 1981; Schwartz, 1977) which have demonstrated that dispersion 

coefficients initially increase with sample size.  

6.4. SENSITIVITY ANALYSIS 

A fracture system is created from the following geometric parameters: aperture (b), orien

tation (o), length (1), and set areal density (XA). The first three geometric parameters are gen

erally distributed and are modeled in this study using probabilistic simulation. This statistical 

procedure requires a knowledge of the mean and standard deviation for the simulated
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a mean geometric parameter. The frawure system in the first realization of the Monte Carlo 

simulation for the discontinuous fracture system of two sets oriented at 0( and 30" served as the 

control fracture system. This firacture system had the following constant fracture geometric 

parameters: 40 cm length, 0.002 cm aperture, 0 orientation for set 1, 30" orientation for set 2, 

and 0.00633 cm- 2 areal density for each set. For each perturbed fracture system, measure

menu of mechanical transport and fluid flow were made for a flow region of 180 x 180 cm 

oriented at 160". This orientation was selected because it showed a good probability of exhibit

ing equivalent porous medium flow behavior in the Monte Carlo study. The results for the 

perturbed fracture systems were then analyzed to evaluate sensitivity.  

The connectivity sensitivity studies for mean orientation, set areal density, and mean frac

ture length were conducted with the following perturbed fracture systems. In the orientation 

sensitivity study, the orientation of set 2 was perturbed while the orientation of set I remained 

constant at 0'. Four orientations for set 2 of 26%, 258, 32", and 34" were used in this part of the 

study. The areal density sensitivity study was conducted by equally perturbing ),A for both sets.  

The control fracture system had 570 fractures of each set in the generation region of 300 x 300 

cm. In the aral density sensitivity study, the number of ftactures per set in the generation 

region ranged from 300 to 625 fractures. In the mean fracture length sensitivity study, five 

values of mean fracture length ranging from 30 to 45 cm we, e used.  

Two perturbed systems were sufficient to conduct the conductivity sensitivity study for 

mean aperture because mean aperture is the only geometric parameter for which sensitivity can 

be computed. The two perturbed systems had mean apertures of 0.001 cm and 0.003 cm.  

6.4.1.1. Connectivity SensitivIty Studies of Mean Fracture Langth 

Mean Orientation, and Set Anal Density 

The sensitivity studies for p, pj, and XA were conducted together because the three param

etes influence the connectivity of a fracture network. Connectivity clearly decreases as set 

areal density or fracture length decreases. The mean orientation of fracture sets can also influ

ence connectivity. For example, consider a fracture system consisting of two fracture sets. The
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minimum connectivity occurs when the two sets are parallel, and the maximum connectivity 

occurs when the two sets are orthogonal.  

Mean sensitivity and relative sensitivity were computed to evaluate the sensitivity of a 

mean geometric parameter. The relative sensitivity (S) of a mechanical transport or fluid flow 

parameter (y) for a given value of a mean geometric parameter (x) was computed as: 

I I a8y =Ay S. _ Y • y.._ 

I-ax -'Jx 
x x 

The relative sensitivity was defined so that the sensitivities of ;4, & and XA could be compared 

on an equivalent dimensionless basis. Relative sensitivity was computed for each perturbed 

value of the studied geometric parameter. For the range of the studied geometric parameter 

(x1,x2), mean sensitivity was computed as: 

Sm x2 "1 a 

The relative sensitivities and mean sensitivity for a range of x were used to interpret a 

sensitivity study. Three types of relationships between y and x were observed. In the first type 

of relationship, y showed a tendency to increase or decrease with respect to x (solid line in Fig

ure 6-19). Since relative sensitivities had the same sign (positive or negative), y was directly 

related to x. One can predict what will happen to y when x is perturbed for this type of rela

tionship. In the second relationship, y was insensitive to x (dashed line in Figure 6-19). The 

relative sensitivities and mean sensitivity were small in magnitude, and the relative sensitivities 

had mixed signs. Even if there is a small error (perturbation) in the mean geometric parameter, 

y can be predicted fairly accurately. In the third relationship, y was highly sensitive to x (dot

ted line in Figure 6-19): y fluctuated with x and no general tendency was observed. This 

geometric parameter must be determined accurately to predict y.  

Table 6-4 lists the mean sensitivity and maximum magnitude of relative sensitivity (max 

SS I) for the connectivity sensitivity study. Total porosity and rock effective porosity increased 

as fracture length and set areal density increased (Figure 6-20). The increase in both porosities 

reflected increases in connectivity. The mean sensitivity and max I S I of total porosity to
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mean orientation of set 2 were both zero. The nonsensitivity of 0 to mean orientation of set 2 

occurred because the number of fractures in the generation region did not change as the orienta

tion of set 2 was perturbed. However, OR increased as the mean orientation of set 2 increased 

because connectivity increased. Total porosity and rock effective porosity were most sensitive 

to fracture length, and least sensitive to the mean orientation of set 2.  

Table 6-4. Mean Sensitivity and Maximum Magnitude of Relative Sensitivity 
for Mean Orientation, Set Areal Density, and Mean Fracture 
L•nath •.nsitivtlN Studies.

Orientation Areal Density I Fracture Length 
Parameter max Isi S. max ISI Su i max ISi SI 

q 1.1 0.57 6.3 2.7 6.3 3.1 
a 0.04 0.04 0.59 0.02 0.65 -0.10 
0 0 0 1.3 0.88 1.4 1.0 

OR 0.90 0.57 3.3 1.4 4.7 3.3 
OH 2.1 0.11 18.3 0.57 0.0 2.2 

0.29 0.57 1.2 -0.09 1.1 -0.21 
T 1.4 I 0.18 25.0 -2.4 17.1 -0.90 
02 15.5 -3.7 52.1 1.9 28.9 -5.1

Specific discharge increased as A'i, '\A, and A, 2 increased (Figure 6-21). The max [S I 

of q was nearly equal for mean fracture length and set areal density. The max I S I of q to 

P.,.t 2 was almost six times less than the max I S I for ;4 or XA. It was anticipated that the angle 

of flow would increase as the orientation of set 2 increased. However, the angle of flow was 

surprisingly insensitive to perturbations in Ao.M 2, A,, and XA. Thus, q increased as connectivity 

increased, while 0 was relatively insensitive to connectivity.  

Rock effective porosity and specific discharge both increased as ;&,, pAm 2, and XA 

increased. Thus, specific discharge and rock effective porosity were each plotted versus connec

tivity in Figure 6-22 using the results of the three sensitivity studies. The good correlation of 

both q and OR to connectivity shows that both parameters are fundamentally related to connec

tivity for this fracture system. Consequently, q and OR can be estimated from connectivity 

when the geometric parameters of this fracture system are perturbed.  

Mechanical transport parameters were generally much more sensitive to ;&., ;t and XA than 

either q or OR. The three plots of mean travel time versus p, XAand IAm 2 in Figure 6-23
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demonstrate the high sensitivity of mechanical transport to each parameter. Three different 

relationships betweenT and connectivity are observed in this figure, and no general relationship 

between T and any geometric parameter is observed. The high sensitivity of mechanical tran

sport to connectivity is also evident in the variance of the breakthrough curve (Figure 6-24).  

The variance, v2, was the most sensitive mechanical transport parameter, varying by as much as 

two orders of magnitude in a given sensitivity study. The shape of the a2 curve for a particular 

mean geometric parameter was similar to the shape of the T curve for the same geometric 

parameter. Thus, a2 and T showed the same type of relationship to each mean geometric 

parameter.  

As each geometric parameter (;q, p, XA) is perturbed, a different configuration of the con

ductive void region results. Specific discharge was found to be relatively insensitive to the con

figuration of the conductive void region, and fundamentally related to connectivity. However, 

mechanical transport was found to be highly sensitive to changes in the configuration of the 

conductive void region. Thus, mechanical transport parameters cannot be related to connec

tivity, for these parameters are highly dependent on the configuration of the conductive void 

region. These results imply the following on the use of double-porosity models. It may be pos

sible to predict fluid flow using a double-porosity model, but it is less likely that such a model 

can be used to predict transport.  

Mechanical transport parameters were generally least sensitive to the mean orientation of 

set 2, with the mean fracture length and the set areal density having about equal sensitivity to 

each mechanical transport parameter. For example, hydraulic effective porosity was highly sen

sitive to fracture length and set areal density, and OH became larger than 0 in the two sensitivity 

studies (Figure 6-22). However, the max IS I of O to the mean orientation of set 2 was 

almost four times less than the max I S I of OH to either the mean fracture length or the set 

areal density.  

The connectivity sensitivity study has shown that q and OR are fundamentally related to 

connectivity. Specific discharge and rock effective porosity were least sensitive to the mean

AP01
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orientation of set 2. Specific discharge exhibited nearly equal sensitivity to the mean fracture 

length and the set areal density. For this fracture system, angle of flow was relatively insensi

tive to connectivity.  

Mechanical transport parameters were generally much more sensitive to the three connec

tivity parameters than either q or OR. No relationship was found between any of the mechani

cal transport parameters and connectivity, except for tortuosity. Mechanical transport parame

ters exhibited the least sensitivity to the mean orientation of set 2, and an equal sensitivity to 

the mean fracture length and the set areal density. The most sensitive mechanical transport 

parameter was a2, and the least sensitive was r.  

6.4.1.2. Mean Aperture Sensitvity Analysis

Mean aperture is the only geometric parameter for which sensitivity can be evaluated.  

The following relationships were easily formulated for aperture: 

a) 0 asb 

b) OR oC Ab 

c) q cc A 

d) e8a 
e)r L --- -1

e)Toc 

OR b 

0 VLIN 4 

g) TCX4 

The relationships listed above were confirmed in the mean aperture sensitivity study 

which was conducted using two perturbed systems of aperture 0.001 cm and 0.003 cm.  

The sensitivity of the variance of the breakthrough curve to aperture was not analytically 

derived. The mean aperture sensitivity study showed that a2 is proportional to At4 . The rela

tionship of v2 to mean aperture was used to develop the relationships of both ML and a,. to Ab.  

Peclet number must be independent of mean aperture from equation 3.20 since the ratio of v2
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to -f is proportional to 4. The relationship of ML to mean aperture was determined from the 

Peclet number as: 

ML - Pe (VLIN)L 

Since VLIN is proportional to A?, ML must also be proportional 4. The longitudinal geometric 

dispersivity is equal to: 

ML 
VLIN 

so aL must be proportional to 4 since both VLIN and ML are proportional to ?. Thus, the 

mean aperture sensitivity study has shown that 12 , • and q are highly sensitive to mean aper

ture, while -, e, and aL exhibit no sensitivity to mean aperture.  

6.4.2. Sensitivity of Distributed Geometric PArameters 

The previous sensitivity studies investigated the sensitivity of mean geometric parameters 

(ju). In this section, we shall investigate the effect distributed geometric parameters (a* 0) have 

on mechanical transport and fluid flow. The sensitivity study for a distributed geometric 

parameter was conducted in the following way. First, a control fracture system (the same con

trol fracture system used in the previous sensitivity study) was selected. Then, a distributed 

fracture system was created in which one of the three geometric parameters of length, orienta

tion, or aperture was probabilistically simulated. The results for the distributed fracture system 

were then compared to the control fracture system to determine the effect the distributed 

geometric parameter had on mechanical transport and fluid flow.  

6.4.2.1. Distribution of Fracture Orientation 

The first distributed fracture system was created by distributing the fracture orientations 

in each set according to a normal distribution. The normal distribution for set I had a mean of 

0" and a standard deviation of Y, and the normal distribution for set 2 had a mean of 30" and a 

standard deviation of Y. The distribution of fracture orientations produced a more random 

fracture pattern because fractures were oriented over a wider range of directions.
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Connectivity increased with the randomness of the fracture pattern. As the number of 

fracture intersections increased, more fracture segments became conductive. The greater con

ductive void volume caused more fluid to flow through the system, and consequently, q and OR 

increased for this distributed system.  

Deviation in angle of flow was greater for this system than for the control fracture system.  

The flow field became more nonuniform as paths of fluid particles became more irregular and 

deviated more from the mean direction of flow. The increased randomness of particle travel 

paths was reflected by a larger tortuosity. As the paths of particles became longer, the fluid 

needed more time to flow from side 2 to side 4. Consequently, mean travel time increased and 

the average linear velocity decreased. The increase in 4 and decrease in VLIN resulted in an 

increase in OH. This increase in OH was expected since an increase in o should correspond to 

an increase in oH. The variance of the breakthrough curve also increased because of the 

increased randomness in particle paths.  

Thus, the distribution in fracture orientations created a more random fracture system 

which caused connectivity to increase. As the fracture pattern became more random, paths of 

fluid particles became more irregular. The following parameters increased because of the distri

bution in fracture orientation: Ot, 4, DEVA, r, T, and A2. The average linear velocity decreased 

for the fracture system with distributed orientations.  

6.4.2.2. Distribution of Fracture Aperture 

The second distributed fracture system was created by distributing the fracture apertures 

for each set according to a lognormal distribution with a mean of 0.002 cm and a standard 

deviation of 0.0001 cm. The purpose of this study was to show how small aperture fractures 

created by the distribution control both mechanical transport and fluid flow.  

A fluid stream flows through a series of fractures of different apertures in a fracture net

work. The cubic law states that the flow rate in a fracture is proportional to b3 . Consequently, 

the flow rate in a series of fractures is governed by the fracture with the smallest aperture, so 

that small aperture fractures will negate the large flow capabilities of large aperture fractures.
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Flow rate would only increase if connected pathways of large aperture fractures existed across 

the fracture network. However there is only a small- probability of these highly conductive 

paths developing in a fracture network.  

The effect of small aperture fractures was demonstrated by the reduction in 4 for this sys

tem, as compared with the control fracture system. The smaller flow rate, coupled with the fact 

that tortuosity did not change, meant that fluid particles took a longer time to travel through 

the flow region. Consequently, T increased and VLIN decreased. Since both q and VLIN 

decreased, hydraulic effective porosity did not change.  

The distribution of apertures caused a greater variation in the velocities within elements.  

This resulted in a larger difference in the flow rate on opposing sides of the flow region, and a 

wider distribution in particle travel times In the breakthrough curve. Consequently, both 

DEVF and a2 increased.  

6.4.2.3. Distribution of Fracture Length 

The third distributed fracture system was created by probabilistically simulating the frac

ture lengths of both sets according to a lognormal distribution with a mean of 40 cm and a 

standard deviation of 4 cm. Connectivity was greatly reduced for this fracture system as a 

larger portion of the void region became dead-end zones and isolated spaces. The short length 

fractures caused these nonconductive void regions to develop in the fracture network Rock 

effective porosity and specific discharge decreased as connectivity decreased, and DEVF 

increased as only a few flow paths were continuous between sides 2 and 4.  

6.4.2.4. Summary 

The study of distributed geometric parameters has shown that a distribution in fracture 

orientation caused the fracture network to become more random. The increased randomness in 

the fracture network caused connectivity, q, OR, and O to increase. When fracture lengths were 

distributed, connectivity decreased. The short length fractures caused an increase in dead-end 

zones and isolated void spaces. The reduced connectivity caused both q and ft to decrease,
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and DEVF to increase. The distributed aperture study demonstrated that mechanical transport 

and fluid flow are controlled by the small aperture fractures. The distribution of aperture 

caused q to decrease and bothTand a2 to increase.
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CHAPTER 7 

INVESTIGATION OF MECHANICAL TRANSPORT AT 

RESEARCH SITE IN MANITOBA, CANADA 

7.1. INTRODUCTION 

The Atomic Energy of Canada Limited is conducting hydrologic research at a site located 

in the province of Manitoba (Figure 7-1). The research program, called the Canadian Nuclear 

Fuel waste Management Program, has two objectives: 1) to understand fluid flow in a fractured 

zone in the Lac du Bonnet granitic batholith, and 2) to understand mechanical transport in the 

same area. The study of fluid flow is being conducted by Long (1984). This chapter presents 

the study of mechanical transport for this fractured zone.  

The computer program described in Chapter 4 was used to study mechanical transport for 

two vertical planes oriented at N-45-W and N-S in a sparsely fractured zone. Each plane inter

sected the location of the proposed shaft (insert to Figure 7-1). Fracture information must be 

read into the program to simulate the fracture pattern for the two vertical planes. This infor

mation for each plane consists of: 

1) The number of fracture sets.  

2) A and a. for each set, and the type of probability distribution for fracture orienta

tion.  

3) m and a for each set, and the type of probability distribution for fracture aperture.  

4) The areal density for each set.  

5) 1.4 and ur for each set, and the type of probability distribution for fracture length.  

These geometric parameters were determined from hydrogeologic data collected at the site. A 

detailed discussion of the analysis of the field data is given by Long (1984). The field data con

sisted of borehole T.V. logs, core logs, and data from well tests for permeability. The borehole 

T.V. logs and core logs were used to determine the number of fracture sets, and the mean and
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Figure 7-1 Map of Hydrogeological Research Site in Manitoba, Canada.
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standard deviation for the fracture orientations of each set. The fracture orientation statistics 

in both vertical planes were nearly 'identical such that only a single set of fracture orientation 

statistics (g. and a. for each set)-was needed for both planes. Fracture orientations in each set 

were assumed to follow the Gaussian distribution.  

The well testing data were used to determine the mean and standard deviation for the 

fracture apertures of each set. The aperture statistics for each set were assumed to be identical.  

Subsequently, the limited well testing data did not have to be analyzed separately for each set.  

The following geometric parameters were determined from the analysis of the field data: 

1) The number of sets is 2.  

2) go. -0t " - 0% oojetI - 30" 

3) Ao..e 2 - 90"C,o.t2 - 350 

4) Ab - 0.00005 m, ob - 0.00005 m 

The set areal density, mean fracture length, and standard deviation of fracture length 

could not be determined from the borehole data. Thus, a length-density sensitivity analysis was 

conducted to investigate how length and density influences mechanical transport. In this 

analysis, each fracture set was assumed to have the same areal density and the same fracture 

length statistics, with the standard deviation of length assumed equal to !,I. Fracture lengths 

were assumed to be lognormally distributed. The following relationship was used to relate 

mean fracture length and set areal density (Long, 1984): 

X, LD - AIXA (7.1) 

The linear density ,)q, is the number of fractures intersecting a unit length of scanline. Linear 

density was computed in this study by counting the number of open fractures intersecting each 

borehole, and then dividing by the total length of the boreholes. The mean of cost is a correc

tion factor used to account for the fact that fractures that are perpendicular to the scanline have 

a greater probability of intersecting the scanline than fractures that are parallel to this line.  

From X• and p, the constant length-density parameter LD was computed to be 0.1 m-1. As
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an example of the use of this length-density relationship, a fracture set with a mean fracture 

length of 1. would have the following length statistics and set areal density: 

XA - 0.1/la 

Two series of length-density sensitivity studies were conducted: 1) the constant aperture 

series and; 2) the distributed aperture series. The constant aperture series was conducted to 

investigate mechanical transport caused strictly by the configuration of the fracture pattern, 

ignoring the heterogeneity that results by distributing apertures. Two studies were conducted in 

the distributed aperture series because the aperture distribution has a great influence on 

mechanical transport: l)study with g, and ab -both equal to 0.00005 m and, 2) study with ab 

equal to 0.3 tb. The mean b3 (cubic law) was held constant in the two series so that the 

expected permeability would be the same in the two series. In the first distributed aperture 

study, fracture apertures were lognormally distributed in both sets, with a mean of 0.00005 m 

and a standard deviation of 0.00005 m. The mean b3 for this probability distribution is 

I x 10-1 2m 3. Consequently, this mean b3 was maintained in both series such that an aperture 

of 0.0001 m was used in the constant aperture series.  

7.2. CONSTANT APERTURE LENGTH-DENSITY SERIES 

Fracture systems with different fracture lengths and set areal densities were created using 

equation 7.1: 

LD - 0. 1 - ,AAI 

Each fracture system consisted of two fracture sets with the same XA. The fracture orientations 

for set 1 were distributed using a normal distribution with a mean of 0* and a standard devia

tion of 30". The fracture orientations for set 2 were distributed using a normal distribution 

with a mean of 90" and a standard deviation of 35". All fractures had an aperture of 0.0001 m, 

and fracture lengths were distributed using a lognormal distribution with a mean of g, and a 

standard deviation also equal to ,l. Each set had an areal density of 0. 1/;&,.
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The width of the square generation region used in each length study was twenty times 

larger than gi. Square flow regions of width ten times A,, oriented at every 1S, were created for 

each fracture system to study mechanical transport. The hydraulic gradient on sides 1 and 3 

for all flow regions was set at 0.01: 

The first two fracture systems were created with $4 equal to 10 m (XA - 0.01 m-2 ) and A 

equal to 20 m (XA - 0.005 m- 2). The fracture pattern in the generation region for the fracture 

system with Il of 10 m is shown in Figure 7-2. The fracture pattern and network of connected 

fracture segments for the flow region oriented at 0* for this fracture system are both shown in 

Figure 7-3. Both fracture systems were so sparse that a zone of continuous flow did not 

develop between sides 2 and 4. Thus, neither system behaved like equivalent porous medium.  

In a porous medium, a continuous zone of flow exists in a square flow region unless the angle 

of flow is greater than 45". The geometric parameters for the two systems indicate that both 

systems should be fairly isotropic, such that the angle of flow will not exceed 45". No study of 

mechanical transport was conducted for the two systems because of the absence of the continu

ous zone of flow between sides 2 and 4 in any flow region. The fracture system with ;,l of 30 m 

was the first system studied which had a continuous zone of flow between sides 2 and 4. In 

addition to the fracture system with A, of 30 m, two other discontinuous systems with ;4 of 35 

m and 50 m were studied. For the fracture system with Il of 50 m, the width of the flow region 

was reduced to seven times A, because of computer storage. The fracture pattern in the genera

tion region for the fracture system with 14 of 35 m is shown in Figure 7-4. The fracture pattern 

and network of connected fracture segments for the flow region oriented at 0* for this system 

are shown in Figure 7-5.  

A continuous fracture system (A - ao) was also created to study mechanical transport.  

This system was created in the following way. For each set, a scanline was drawn perpendicu

lar to the mean orientation of the set across the entire generation region. The square generation 

region had a width of 650 m. This scanline passed through the center of the generation region.  

The fracture centers of the set were then randomly located on this scanline. The number of
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Figure 7-2 Fracture Network in the Generation Region for Discontinuous System' With 

Mean Fracture Length Of 10 m.
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Figure 7-4 Fracture Network in the Generation Region for Discontinuous System With 

Mean Fracture Length of 35 m.
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fracture centers located on the scanline was equal to (LDXu,)LS, where LS is the length of the 

scanline. Next, fracture orientations and apertures were distributed from Gaussian and lognor

mal distributions, respectively. Each fracture in the set was assigned a length much larger than 

the width of the generation region. After the completion of the fracture network, square flow 

regions of width 250 m, oriented at every 15%, were used to study mechanical transport.  

Figure 7-6 shows the tortuosity versus direction of flow for the continuous fracture system 

and the three discontinuous systems. In all four cases, tortuosity is stable with direction. This 

indicates that these fracture systems are fairly isotropic. The permeability study conducted by 

Long (1984) also found that the four systems are fairly isotropic. Mean tortuosity does not 

vary significantly for the three discontinuous systems. The mean tortuosities were 1.367, 1.403, 

and 1.368 for the discontinuous systems with , of 30 m, 35 m, and 50 m, respectively. The 

mean tortuosity for the continuous system is 1.261. The fractures in the continuous system 

span across the entire flow region. Consequently, fluid flows in a more direct route across the 

flow region in the continuous fracture system than in any of the discontinuous systems. This 

caused tortuosity to be lower for the continuous system.  

Hydraulic effective porosity is shown plotted against direction of flow in Figure 7-7. No 

directional dependence in OH is apparent for any of the four fracture systems. Since hydraulic 

effective porosity is relatively constant in all directions for the four systems, each system 

behaves like an equivalent porous medium for transport. The mean O are 0.0000133, 

0.0000141, and 0.0000147 for the three discontinuous systems with ,l of 30 m, 35 m, and 50 m, 

respectively. Rock effective porosity is constant at 0.000013 for the three discontinuous sys

tems. Consequently, OH is greater than OR, and O increases with A, in the discontinuous sys

tems. The mean O is 0.0000213 for the continuous fracture system. This value is slightly less 

than the total porosity of 0.0000235. Hydraulic effective porosity is much greater for the con

tinuous system than for the discontinuous system because no dead-end fracture segments exist 

in the continuous system. The void-volume is totally connected for continuous systems. The 

total porosity for the three discontinuous systems of 0.0000195 is only slightly less than 0 for
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the continuous system. However, only 67 percent of this void volume is conductive.  

Figures 7-8 and 7-9 show the polar plots of longitudinal geometric dispersivity for the four 

systems. The discontinuous system with 4 of 30 m has a maximum aL of 99 m at direction of 

flow 78". The next largest aL occurs in a direction which is nearly perpendicular to the direc

tion of maximum a.. The mean a, for this system is 61.1 m, and the standard deviation in on.  

is 18.4 m. The polar plot of al. is very different for the discontinuous system with A of 35 m.  

Longitudinal geometric dispersivity shows large directional variations, as the aL curve is very 

jagged. The ratio of aLý. to a is four. The two largest values of aL occur in directions 

that are nearly orthogonal to each other. The mean aL for this system is 63.5 m, and the stan

dard deviation in aL is 36.0 m. The directional variation in aL is less for the discontinuous sys

tem with A of 50 m than for the discontinuous system with p, of 35 m. The ratio of aL.• to 

aLmw is three, and the standard deviation in al is 20.3 m. The mean at. for this system is 66.4 

m. For the continuous system, al. shows a strong directional dependence. The ratio of aLmU 

to aLmi is nine. The two directions of maxima al are 0* and 90". These two directions are the 

mean orientations for the two sets. The mean al is 30.3 m for the continuous system.  

The following conclusions can be made about the atL study. The direction of maximum 

at. for each system is located between 80' and 170'. The next largest aL for each system is 

obtained in a direction that is nearly perpendicular to the direction of maximum aL. The polar 

plots of al are very different for each system, as aL exhibits a unique directional variation in 

each system. However, the mean-directional longitudinal geometric dispersivities for the three 

discontinuous systems are nearly the same so that mean al. is independent of mean fracture 

length.  

The highly directional nature of aL was not expected in this study. Theoretically, aL.  

should be constant in all directions in an isotropic porous medium. Therefore, we expected the 

polar plots of aL to be nearly circular. To see if aL. approaches a directionally stable value, four 

additional realizations were studied for the discontinuous system with A, of 50 m. The width of 

flow region used in these realizations was 330 m.
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All five realizations showed large directional variations in m.. Figure 7-10 is a polar plot 

of the mean &L for the five realizations. Longitudinal geometric dispersivity is directionally 

stable between 20" to 80". As direction of flow varies from 80" to 130%, a increases rapidly to 

its maximum value of 110 m. The ratio of at..m to atmig is 2.8. Thus, longitudinal geometric 

dispersivity does not appear to be approaching a directionally stable value, as longitudinal 

geometric dispersivity is stable only between 20" to 80". This was not the first fairly isotropic 

medium which had a directionally dependent aL. It will be recalled from section 5.3 that aL 

was directionally dependent for the continuous fracture system of two orthogonal sets with con

stant apertures which behaved like an equivalent isotropic medium for fluid flow. The mean 

al for the five realizations is 65.7 m. This value is about equal to the mean longitudinal 

geometric dispersivities measured earlier for the three discontinuous systems. We expect that if 

a were to converge to a directionally stable value, this value would be about 65 m.  

The four systems behaved like equivalent porous media for transport because OH was 

directionally stable in each system. A study was made to see what happens to OH when the 

fracture system does not behave like an equivalent porous medium. The fracture system in the 

last realization of the previous longitudinal geometric dispersivity study was used for this study.  

Square flow regions of widths 60 m, 175 m, and 330 m were oriented at every 15%, beginning at 

0" within the generation region. For each flow region, the computer program was used to calcu

late hydraulic effective porosity.  

Figure 7-11 is a polar plot of OH measured using flow regions of width 330 m. Hydraulic 

effective porosity is nearly the same in all directions. The mean OH is 0.0000148 and the stan

dard deviation in OH is 1.28x 10-6. Figure 7-12 shows the polar plot of hydraulic effective 

porosity measured using flow regions of width 175 m. The mean hydraulic effective porosity is 

0.0000149. Thus, the mean hydraulic effective porosity did not change as the size was lowered.  

The standard deviation in OH increased slightly to 1.35 x 10-6. The polar plot of O is still 

approximately a circle, and we can conclude that on this scale the system behaves like a contin

uum for transport. Figure 7-13 shows the polar plot of OH measured using flow regions of

r- - i
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width 60 m. The mean hydraulic effective porosity of 0.0000118 is less than computed at the 

two larger scales. The OH curve deviates from a circle as large fluctuations in OH are observed 

near 110*. The standard deviation in OH has increased to 1.73x 10-6. Thus, a flow region of 

this size behaves like a discontinuum for transport. As the flow region size decreases, the polar 

plot of OH begins to deviate from a circle and OH fluctuates with direction. As a consequence, 

the standard deviation in OH increases.  

7.3. DISTRIBUTED APERTURE LENGTH-DENSITY SERIES 

7.3.1. Distributed Aperture Length-Density Study with Standard 

Deviation Equal to Mean Aperture 

The previous constant aperture length-density study investigated mechanical transport 

caused by the configuration of the fracture network, ignoring heterogeneity that results by distri

buting apertures. In the first distributed aperture length-density study, fracture apertures were 

distributed using two techniques.  

1) Apertures were lognormally distributed with a mean of 0.00005 m and a standard 

deviation of 0.00005 m.  

2) Apertures were linearly correlated to fracture length in the following way: 

b-- I + e (7.2) 
Ab 

where E is a random variation in aperture and g is equal 

to 0.00005 m.  

Since fracture lengths were lognormally distributed with %I equal to a,, the linear correlation 

model was used so that ;% would equal oa, similar to the lognormal distribution of apertures.  

7.3.1.1. Continuous Fracture System 

The fracture apertures were lognormally distributed for the continuous fracture system 

since fracture lengths which are infinitely long cannot be correlated with apertures. A Monte 

Carlo study was conducted because fracture apertures were probabilistically simulated. The
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continuous fracture system in each realization was created in the same way as in the constant 

aperture length-density study except that apertures were lognormally distributed. Figure 7-14 

shows the fracture pattern in the generation region for one of the realizations. The intensity of 

each fracture (line) is directly related to the fracture's aperture.  

The number of realizations for this Monte Carlo study was determined from: 1) the stabil

ity of the mean directional O, and 2) the directional stability of oH. The mean directional OH 

was computed in the following way. For each realization, the hydraulic effective porosity in 

each direction was added up to obtain the sum of all hydraulic effective porosities for this reali

zation. This total was next added to the previously calculated total of all hydraulic effective 

porosities. Mean directional hydraulic effective porosity was then computed by dividing the 

last total by the total number of measurements of hydraulic effective porosity. We expected 

that OH would be directionally stable as was found earlier in the constant aperture length

density study. When OH is directionally stable, the mean directional OH is equal to its direction

ally stable value.  

Hydraulic effective porosity in each direction should converge to its stable value as the 

number of realizations increases. The directional stability of OH was tested using the polar plot 

of mean O. When OH is directionally stable, the polar plots of OH for n realizations and n+5 

realizations are identical. The mean directional OH tests the overall stability of the hydraulic 

effective porosity. The directional stability of OH requires that in every direction hydraulic 

effective porosity is stable.  

Figure 7-15 is the plot of the mean directional hydraulic effective porosity versus the 

number of realizations. Initially, this mean OH increases rapidly as the number of realizations 

increase. Mean directional hydraulic effective porosity is then relatively constant for the next 

eight realizations. At realization 12, another sudden increase in this mean ft is measured.  

This sudden increase is followed by a gradual decrease in mean directional OH as the number of 

realizations increases. Mean directional hydraulic effective porosity is slowly approaching a 

stable value. This stable value is not equal to the total porosity of the system which is
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0.0000106.  

The standard error of the mean directional OH is plotted against the number of realiza

tions in Figure 7-16. The large increases in the standard error of the mean directional OH at 

realizations 2 and 12 reflect the two sudden increases in this mean OH. After realization 12, the 

standard error slowly decreases as the number of realizations increases. This figure shows that 

in one out of ten realizations a fracture system is created in which the hydraulic effective is 

very large. Consequently, both mean directional O and its standard error increase at this reali

zation. This sudden increase is followed by a decrease and a slow stabilization in mean direc

tional OH.  

The sudden increase in mean directional OH at realization 12 is caused by two fractures 

with very large apertures (super conductors) within the fracture network (Figure 7-17). These 

two large apertures were created because of the large standard deviation in fracture apertures.  

Since travel time in a fracture is proportional to b- 2 , fluid flowing in the large aperture frac

tures had a much smaller travel time from side 2 to side 4 as compared with the travel times 

for the rest of the fluid. Thus, two zones of contrasting fluid movement developed in the flow 

region. This type of transport is called inhomogeneous transport. The breakthrough curve for 

direction of flow 20" (Figure 7-18) shows that part of the fluid moves within a zone of fast 

movement, and have travel times that are less than T The remaining fluid moves within a 

zone of slow movement and have travel times that can be much larger than T The two large

aperture fractures also caused a large increase in specific discharge because q is proportional to 

b3. Mean hydraulic effective porosity suddenly increased at realization 12 because the product 

of q and T was large in relation to L.  

Figures 7-19 and 7-20 show polar plots of mean OH after 5, 10, 15, and 25 realizations.  

After 5 and 10 realizations (Figure 7-19), O exhibits large directional variations as each polar 

plot is very jagged. The two polar plots in Figure 7-20 for 15 and 25 realizations are more 

similar to each other than the two polar plots in Figure 7-19 for 5 and 10 realizations. This 

indicates that OH is slowly converging to its stable value in all directions as the number of reali-
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zations increase. The Monte Carlo simulation ended after 25 realizations because both mean 

directional hydraulic effective porosity and directional OH were stabilizing. However, after 25 

realizations, hydraulic effective porosity is still directionally dependent, and the polar plot of OH 

is very jagged.  

The polar plot of OH after 25 realizations indicates that at this scale the fracture system 

does not behave like an equivalent porous medium for transport. The characteristics of this 

polar plot are similar to the polar plot of OH for the discontinuous system of constant aperture 

with gs of 50 m calculated using square flow regions of width 60 m. At a scale of 60 m, the 

discontinuous system did not behave like a continuum for transport. The polar plot of OH 

showed large fluctuations, and deviated from the nearly circular plots of OH found using larger 

flow regions of widths 175 m and 330 m. For this continuous fracture system, the flow region 

size was too small to be a good statistical sample for the distribution of apertures. Conse

quently, equivalent porous medium behavior for transport was not obtained at the scale of 250 

m. Unfortunately, we could not increase flow region size because of the limitations of com

puter storage.  

The polar plots of OH were constructed using flow regions of width 250 m. These polar 

plots show that OH is directionally dependent and that OH is greater than 0 in all directions.  

Walter et al. (1983) reported large differences in travel times, depending on direction of flow, 

for tracer tests conducted in a fractured aquifer. Walter et al. questioned the meaning of effec

tive' porosity. We have shown that OH can be directionally dependent when a fracture system 

does not behave like an equivalent porous medium. In porous media, the mean rate of advec

tion is often predicted by q/0. This estimate would be two times faster than the mean rate of 

advection in direction of flow 120, and 1.5 times faster than the rate in direction of flow 30".  

Thus, the porous medium estimate q/0 is not a good estimate of the mean rate of advection in 

all directions at this scale. When field tracer tests are conducted at this scale, one should bear 

in mind that the transport properties may be directional.  

The maximum OH occurs near direction of flow 120. This direction coincides with the
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direction of maximum aL for the discontinuous system of constant aperture with jai of 50 m.  

Longitudinal geometric dispersivity is large when the standard deviation of the breakthrough 

curve is large in relation to T A large standard deviation can be caused by inhomogeneous 

transport. The contrasting zones of movement lead to a wide distribution of travel times, and 

consequently, a large standard deviation for the breakthrough curve. For the discontinuous sys

tem of constant aperture with M, of 50 m, OH was slightly larger than OR, so a small degree of 

inhomogeneous transport occurred. The movement of fluid in the contrasting zones caused by 

inhomogeneous transport did not affect the directional nature of OH, as hydraulic effective 

porosity was directionally stable. However, inhomogeneous transport had a major influence on 

a2, as the spread in the breakthrough curve was greatest in direction of flow 120". A larger 

deviation between OH and OR was measured for this continuous fracture system in this direc

tion. Thus, a greater degree of inhomogeneous transport occurred because of the heterogeneity 

created by distributing fracture apertures. Unlike the discontinuous fracture system, inhomo

geneous transport had a major directional effect on OH for this continuous fracture system.  

Equivalent porous medium flow behavior can be analyzed using DEVF and DEVA. Fig

ure 7-21 is a plot of mean DEVA and mean DEVF versus direction of flow after 25 realiza

tions. DEVF is much larger for this continuous system than for the discontinuous system of 

two sets oriented at 0' and 60". A larger difference in flow rate on opposing sides of the flow 

region occurred because of the wide distribution in fracture apertures. A large-aperture fracture 

which intersects side 2, but does not intersect side 4 can cause this large flow difference. Thus, 

it is likely that this continuous fracture system does not behave like an equivalent porous 

medium for fluid flow at this scale. It will be recalled that the directional flow characteristics 

for the discontinuous system behaved like an equivalent porous medium.  

Figure 7-22 is a polar plot of mean tortuosity after 25 realizations. The tortuosity curve is 

nearly circular which indicates that the medium is isotropic. Tortuosity is the only mechanical 

transport parameter that is similar in both the constant aperture and the distributed aperture 

length-density series. This result is not surprising, since the sensitivity analysis in Chapter 6
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showed that tortuosity was insensitive to both m and uh.  

In most realizations, longitudinal geometric dispersivity could not be computed in any 

direction of flow because vl/' exceeded unity. The variance in the breakthrough curve was 

very large because of the wide distribution in fracture apertures (b,-ob). Travel time in a frac

ture is proportional to b- 2. Thus, the distribution in travel times was much wider than the dis

tribution of apertures. Consequently, the ratio of a to T exceeded unity, which meant that ML 

approached infinity. No polar plot of at, was constructed because of the limited data.  

7.3.1.2. Discontinuous System with Mean Fracture Length of 50 m 

7.3.1.2.1. System with Linearly Correlated Apertures 

The fracture system for each realization 'was created the same way as in the constant

aperture study except that apertures were linearly correlated with fracture lengths by equation 

7.2. The linear correlation model was used to distribute apertures so that: 1) long fractures 

would be assigned large apertures and short fractures would be assigned small apertures and, 2) 

the mean aperture of 0.00005 m would equal the standard deviation of aperture. This mean 

was equal to the standard deviation because fracture lengths were lognormally distributed with 

the mean of 50 m equal to the standard deviation of fracture length. Square flow regions of 

width 330 m were oriented at every 15 so that mechanical transport could be studied.  

Numerical precision problems were encountered in the mechanical transport stage of the 

computer program because of large hydraulic gradient differences in the elements intersecting a 

node. For example, consider two elements intersecting a node. Suppose element I has an aper

ture which is 30 times larger than the aperture of element 2. For this fracture system, the large 

aperture difference is caused by the wide distribution of apertures. Since both fractures have 

the same flow rate, the ratio of hydraulic gradients in the two elements is proportional to b3: 

('702 -- (30)3 - 27000 

Consequently, it was difficult for the program to distinguish no flow elements (zero gradient) 

from low flow elements (very small gradient). This problem is similar to the problem one
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encounters when modeling transient flow in an aquifer consisting partly of sand and partly of 

clay. Sand is much more permeable than clay. So, small time steps must be used in order for 

the numerical solution to be stable. Also, the conductive matrix for such a problem is a stiff 

matrix because the coefficients along the diagonal of this matrix vary significantly. Numerical 

solution is often difficult when the conductance matrix is a stiff matrix.  

The problem of large hydraulic gradient differences at a node was not encountered in the 

study of the continuous fracture system of distributed apertures. Theoretically, the gradient 

along an infinitely-long fracture is equal to the product of the magnitude of the hydraulic gra

dient and the cosine of the angle between the fracture orientation and direction of the gradient.  

Since the gradient along the fracture was not related to aperture cubed, there were no extreme 

differences in hydraulic gradients at a node. For this system, with jsa of 50 m and linearly corre

lated apertures, five realizations were run for each orientation.  

The rock effective porosity, hydraulic effective porosity, and total porosity are each shown 

in Figure 7-23. Both total porosity and rock effective porosity were directionally stable, but 

hydraulic effective porosity was highly directionally dependent. Hydraulic effective porosity 

did not show the characteristics of an equivalent porous medium, as the polar plot of ON was 

very jagged and om showed large directional variations. These porosity results were based on 

five realizations, and consequently, may not be conclusive. However, we believe that hydraulic 

effective porosity will st•i exhibit directional tendencies when a large number of realizations are 

made because the same directional tendencies for # were present after 5 and 25 realizations 

for the previous continuous system. The direction of maximum O was near 120'. This direc

tion was also the direction of maximum O for the continuous fracture system with distributed 

apertures, and the direction of maximum aL for the discontinuous system with %I of S0 m and 

constant apertures. The maximum O had a value four times larger than the rock effective 

porosity. Consequently, the deviation between om and OR is greater for this system than for the 

previous continuous system.  

Hydraulic effective porosity was greater than total porosity because both q and T were
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large in relation to L Specific discharge was large because long fractures with large apertures 

have a greater probability of conducting flow (intersecting other long fractures) than the short 

fractures with small apertures. Mean travel time was large because of the slow movement of 

part of the fluid. Figure 7-24 shows a breakthrough curve in a direction in which O was three 

times larger than O. Sixty-eight percent of the fluid arrived within the small time interval 

between the normalized times of -0.5 and 0.0. Between the normalized times of 0.0 and 0.5, 

another 22 percent of the fluid arrived. However, the 10 percent of the fluid that arrived 

between the normalized times of 0.5 and 2.0 caused the mean travel time to be large. The real 

time (t) is equal to: 

t - T+ u(normalized time) 

Since the standard deviation of this breakthrough curve is larger than the mean travel time, real 

time rapidly becomes greater than T as normalized time increases. The right skewness in the 

breakthrough curve reflects the movement of particles which had large travel times.  

Mean DEVA and mean DEVF are shown plotted against direction of flow in Figure 7-25.  

Both DEVA and DEVF were much larger in this system than in any of the previous systems 

studied. The large DEVA and DEVF were caused by the heterogeneity of apertures. For the 

fracture system in the fifth realization of the constant aperture study with A, of 50 m, mean 

directional DEVA and DEVF were only 10.5' and 12.4, respectively. The large values in 

DEVA and DEVF at this scale show that this fracture system does not behave like an 

equivalent porous medium for fluid flow.  

Figure 7-26 is a polar plot of mean tortuosity. Tortuosity is nearly constant in all direc

tions, and the mean directional tortuosity is 1.28. Thus, even though hydraulic effective poros

ity showed large directional variations, tortuosity showed the same directional behavior as 

found in the constant-aperture study for the fracture system with gS of 50 m, where the polar 

plot of hydraulic effective was nearly circular.  

Longitudinal geometric dispersivity could not be computed for more than 90 percent of 

the realizations. The mean velocity within an element varied considerably in the flow region
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because of the wide range of apertures. This large velocity variation caused fluid particles to 

spread out rapidly such that u/t" exceeded unity. When u/" exceeds unity, the Peclet number 

and a approach infinity. Consequently, the rate of dispersion cannot be characterized by a.  

using the classical approach. Transport is probably occurring in the initial non-Fickian period 

where dispersion occurs at a faster rate than in the later Fickian time domain.  

7.3.1.2.2. System with Lognormally Distributed Apertures 

Fractures were created in a generation region of 1000 by 1000 m by lognormally distribut

ing apertures using a mean of 0.00005 m and a standard deviation of 0.00005 m. Twelve 

square flow regions of width 330 m were oriented at every 15" within the generation region.  

For each orientation, two realizations were run to study mechanical transport.  

Figure 7-27 is the polar plot of mean hydraulic effective porosity. This system showed 

extreme directional variations in hydraulic effective porosity. Hydraulic effective porosity was 

much larger than rock effective porosity. Rock effective porosity and total porosity were both 

directionally stable at 0.0000072 and 0.0000098, respectively. The large directional variations 

in 01i indicate that this fracture system cannot be treated like an equivalent porous medium for 

transport.  

Figure 7-28 shows mean DEVA and mean DEVF plotted against the direction of flow.  

DEVA and DEVF are both very large in most directions. Consequently, this fracture system 

also does not behave like an equivalent porous medium for fluid flow. Of all the systems stu

died, this fracture system showed the greatest deviation from porous medium behavior.  

7.3.2. Distributed Aperture Length-Density Study with Standard 

Deviation of Aperture Equal to 0.3 of Mean Aperture 

The directional behavior of hydraulic effective porosity was different in the constant aper

ture and in the first distributed aperture length-density studies. Hydraulic effective porosity 

was directionally stable in the constant aperture study, such that the fracture systems behaved 

like equivalent porous media. Large directional variations in hydraulic effective porosity in the

AL_



-176-

184 , f 1 1 

240 300 

270 

XBL 8401 1,GD7 9 

7re .27 Polar Plot of Mean Hydraulic Effective Porosity for System With Mean Frac

ture Length of 50 m in the First Distributed Aperture Study.Fiu

L-

÷. X 10-1



-177-

.- DEVF 
--- DEVA

I---/ 
/ 

/
/

50 100 150 

Direction of flow (0) 

XB L 8401-6790 

Mean DEVF and Mean DEVA Versus Direction of Flow for System With Mean 

Fracture Length of 50 m in the First Distributed Aperture Study.

100

75 I-

50 1-
a 

'I_ 

IL 
0 IUl

25 1-

0
0

Figure 7-28



-178-

first distributed aperture study showed that the fracture systems exhibited no porous media 

equivalence. A third length-density study was conducted for fracture systems in which the stan

dard deviation of aperture was 0.3 of the mean aperture. Thus, this length-density study 

bridged together the two previous studies.  

The two fracture systems used in this study were the continuous fracture system and the 

discontinuous system with ;& of 50 m. Each system was created in the same way as described 

in the distributed aperture study, except that apertures were lognormally distributed using a 

mean of 0.0000917 m and a standard deviation of 0.0000275 m. The mean and standard devi

ation were determined so that the mean b3 was constant in all three length-density studies. For 

each fracture system, five realizations were run for each orientation of the flow region to study 

mechanical transport.  

7.3.2.1. Continuous Fracture System 

The polar plots of hydraulic effective porosity and total porosity are shown in Figure 7-29.  

Hydraulic effective porosity is nearly equal to total porosity in all directions. Thus, this frac

ture. system behaves like an equivalent porous medium for transport. We have found that con

tinuous systems with ab/wb less than 0.3 behaved like equivalent porous medium for transport 

when flow regions of size 250 by 250 m were used.  

Mean DEVA and mean DEVF are plotted against direction of flow in Figure 7-30. DEVF 

is two times smaller in most directions for this system than for the continuous system with 

qb/jb of 1. The mean directional DEVF and DEVA were 9.35 and 2.12', respectively, for the 

continuous system with constant aperture (Ob/Asb 0). Consequently, porous medium flow 

behavior is more likely to occur in continuous systems where the ratio of ab to Ab is small.  

Figure 7-31 shows the polar plot of tortuosity. In the three length-density studies, the 

same directional behavior in tortuosity was found. The polar plots of tortuosity were nearly 

circular, indicating that each system was fairly isotropic. Tortuosity decreased slightly as the 

ratio of ao to gb increased. Tortuosities were 1.261, 1.253, and 1.167 for the continuous systems 

with ab/gb of 0, 0.3, and I, respectively.
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Figure 7-32 shows that polar plot of longitudinal geometric dispersivity. The maximum 

aL occurred at 105". This direction was near the direction of maximum at for the continuous 

system in the constant aperture study. However, the maximum aL was three times larger for 

this system than for the system with ft/pb of 0. For the continuous system with ab/•, of 1, the 

Peclet number approached infinity, such that aL could not be computed. Thus, the three 

length-density studies showed that aL increased as O¢/js increased.  

7.3.2.2. Discontinuous System with Mean Fracture Length of 50 m 

The polar plots of total porosity, hydraulic effective porosity, and rock effective porosity 

are shown in Figure 7-33. All three porosities are directionally stable, and this fracture system 

behaves like an equivalent porous medium for transport. The mean directional hydraulic effec

tive porosity of 0.0000146 is larger than the rock effective porosity. The three length-density 

studies showed that hydraulic effective porosity deviated more from rock effective porosity as 

ab/lMb increased. The ratios of hydraulic effective porosity to rock effective porosity were 1. 10, 

1.18 for the systems with Ob/Ab of 0 and 0.3, respectively. The ratio of OH tO OR was much 

larger than 2 in most directions for the system with correlated apertures and ,b/A of 1.  

Hydraulic effective porosity was greater than rock effective porosity for this discontinuous 

system, and OH was nearly equal to ft for the previous continuous system. In a discontinuous 

system, the flow rate in a series of elements is governed by the element with the smallest aper

ture, such that the large flow capacity of large aperture elements are often negated by small 

aperture elements. In a continuous fracture system, the flow rate in a fracture is theoretically 

independent of the flow rates in the fractures intersecting it. Consequently, two different effects 

of large aperture fracture on mean travel time (flow rate) occur in continuous and discontinu

ous fracture systems. Continuous fracture systems have, on a relative basis, smaller mean 

travel times than discontinuous systems because the flow rates in large aperture fractures are 

not controlled by small aperture fractures. One should keep in mind that travel time in an ele

ment is inversely proportional to the flow rate in the element. Since hydraulic effective poros

ity is equal to qT/L, hydraulic effective porosity deviated less from rock effective porosity for

E___ NONNNamw
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the continuous fracture system.  

Figure 7-34 is a plot of mean DEVF and mean DEVA versus direction of flow. DEVF 

was two times smaller for this system than for the discontinuous system with Cb/Pb of 1, and 

about two times larger than DEVF for the discontinuous system with ;L of 50 m in the constant 

aperture study. Thus, equivalent porous medium flow behavior is more likely to occur for frac

ture systems with small Gb/Pb

The polar plot of longitudinal geometric dispersivity in Figure 7-35 shows that aL is rela

tively constant in most directions. The mean directional aL. is 96.6 m. The mean directional 

aL was 66 m for the discontinuous system with A, of 50 m in the constant aperture study. The 

results showed again that aL increased as ab/Mb increased. Tortuosity was directionally stable, 

with a mean of 1.365 (Figure 7-36).  

7.4. SUMMARY OF LENGTH-DENSITY ANALYSIS 

The fracture information needed to run the computer program was determined from 

hydrogeologic data collected at the research site. The geometric parameters of mean fracture 

length, standard deviation of fracture length, and set areal density could not be determined 

from the field data. Consequently, a length-density analysis was conducted to investigate the 

influence of length and density on mechanical transport. Since the aperture distribution of a 

fracture system has a major influence on mechanical transport, three length-density studies 

were conducted using different aperture distributions: 1) ab/Pb equal to 0 (S 1), 2) Gb/Pb equal to 

0.3 (S2), and 3) ob/#b equal to 1 (S3).  

The fracture systems in S1 and S2 behaved like equivalent porous media for transport.  

Hydraulic effective porosity was nearly equal to rock effective porosity for the continuous sys

tems in SI and S2. For the discontinuous systems in S1 and S2, hydraulic effective porosity 

was larger than rock effective porosity, and the deviation between hydraulic effective porosity 

and rock effective porosity increased as the ratio of cb/Ab increased. Hydraulic effective poros

ity did not equal rock effective porosity in the discontinuous systems, because large aperture 

fractures have a different influence on mechanical transport in discontinuous and continuous
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systems.  

The fracture systems in S3 did not behave like equivalent porous media for transport.  

The polar plots of hydraulic effective porosity were jagged because OH was directionally depen

dent. The direction of maximum OH was near 120" for each system in S3. Hydraulic effective 

porosity was greater than rock effective porosity for both the continuous and discontinuous sys

tems in S3. The deviations between o, and o were much larger for the fracture systems in S3 

than for the discontinuous systems in Si and S2. Also in S3, the deviations between O and 4O 

were larger for the discontinuous system than for the continuous system.  

DEVF and DEVA are measures of equivalent porous medium flow behavior in a direc

tion of flow. DEVA and DEVF both increased as o'b/gb increased. Consequently, a fracture 

system with a narrow aperture distribution (small vb/Ab) behaved more like an equivalent 

porous medium than a fracture system with a wide aperture distribution.  

Tortuosity was directionally stable in all studies. A directionally stable tortuosity indi

cated that the fracture systems were fairly isotropic. Tortuosity was slightly less in the continu

ous systems than in the discontinuous systems. Fluid flows in a more direct path across the 

flow region in a continuous system than in a discontinuous system because the fractures in a 

continuous system span across the entire flow region. Consequently, tortuosity was smaller for 

the continuous systems.  

The longitudinal geometric dispersivity is theoretically constant in all directions for an 

equivalent isotropic porous medium. However, the longitudinal geometric dispersivities were 

directionally dependent for the fracture systems in Sl and S2, and no general directional rela

tionship for a was found. Each fracture system had a unique polar plot for aL. However, we 

found that mean directional aL was independent of mean fracture length for the discontinuous 

system in St, even though the polar plots of aL were different. These systems were not the only 

nearly isotropic systems which showed directionally dependent longitudinal geometric disper

sivities in this research. The equivalent isotropic continuous system of two orthogonal sets of 

fractures in section 5.3 also had a directionally varying aL. The aperture distribution greatly
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influenced longitudinal geometric dispersivity as aL could not be computed for the fracture sys

tems in S3 because the Peclet number approached infinity. The three length-density studies 

showed that aL increased as b/Ab, increased.
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

8.1. CONCLUSIONS 

The primary objectives of this research were to investigate directional mechanical tran

sport parameters for anisotropic fracture systems, and to determine when a fracture system can 

be treated like an equivalent porous medium for mechanical transport. The two essential con

ditions necessary for measuring directional mechanical transport for an equivalent porous 

medium are a uniform flow field, and a test section where linear length is constant. When 

these two conditions are satisfied, mechanical transport parameters can be measured from the 

breakthrough curve for the fluid that flows within the test section.  

Parameters were defined to evaluate directional mechanical transport. The mean rate of 

advection in a particular direction was characterized by the hydraulic effective porosity. The 

hydraulic effective porosity was defined as the ratio of specific discharge to average linear velo

city. In porous media transport studies, hydraulic effective porosity is assumed to be direction

ally stable. Thus, the shape of the polar plot of hydraulic effective porosity was used to test 

whether a fracture system behaved like an equivalent porous medium for mechanical transport.  

The mechanical dispersive flux in a particular direction was characterized by the longitu

dinal geometric dispersivity. The longitudinal geometric dispersivity is a function of several 

components of the geometric dispersivity tensor. The derivation of the relationship between 

longitudinal geometric dispersivity and this tensor showed that it is not necessary to determine 

all the components of this fourth-ranked tensor to evaluate longitudinal mechanical transport.  

In porous media transport studies, an anisotropic medium is treated as an equivalent isotropic 

medium. When this simplification is made, the longitudinal geometric dispersivity becomes 

directionally stable. We have found that the directional variation of the longitudinal geometric 

dispersivity can be significant for anisotropic fracture systems. Furthermore, a fracture system 

which behaved like an equivalent isotropic porous medium for fluid flow did not have a
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directionally-stable longitudinal geometric dispersivity.  

Another important mechanical transport parameter we studied was the tortuosity. Tor

tuosity was first used to predict permeability. Tortuosity can also be used to predict the effec

tive diffusion coefficient and to estimate the mean pore velocity. Little work has been carried 

out on the directional characteristics of tortuosity.  

The fact that fluid flow and mechanical transport are coupled made it necessary to inves

tigate equivalent porous medium behavior for fluid flow. When a fracture system, under a con

stant hydraulic gradient, behaves like an equivalent porous medium, the specific discharge will 

be uniform in any direction of flow. The uniformity of the specific discharge in a direction was 

evaluated using the continuity test and the angle of flow test. Darcy's law also specifies that the 

flow field in any direction of flow can be predicted by an unique permeability tensor. If such a 

tensor exists, the square root of permeability in the direction of flow plots as an ellipse. Thus, 

the shape of the square root of permeability was used to test whether directional flow for the 

system behaved like an equivalent porous medium.  

A numerical model was developed to simulate mechanical transport under steady laminar 

flow in a network of fractures. The model incorporated the principles of laminar flow to calcu

late the paths of streamtubes for fluid traveling from one side of a flow region to another. We 

assumed that fluid flow was restricted to planar fractures within an impermeable rock matrix, 

and that mechanical transport was the only transport process. Of course, other transport 

processes occur, but focusing on mechanical transport led to the evaluation of the directional 

transport properties for anisotropic systems.  

Mechanical transport was first investigated for regular, anisotropic systems of continuous 

fractures. These fracture systems were first studied because they behaved like equivalent 

porous media for fluid flow, with flow parameters that could be analytically computed. The 

results showed that a fracture system which behaved as a continuum for fluid flow did not 

behave as a continuum for mechanical transport. This was demonstrated by a hydraulic effec

tive porosity which was directionally dependent and that decreased well below the porosity in

MEMNON
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certain directions. In these directions, part of the fracture voids became nonconductive because 

the direction of the hydraulic gradient was perpendicular to the orientation of a fracture set.  

The size of the mechanical transport continuum was found to be directly related to tor

tuosity. As tortuosity increased, travel paths became more irregular and deviated more from 

the mean direction of flow. Consequently, larger flow regions were needed before representa

tive mechanical transport behavior occurred when tortuosity was large.  

Tortuosity did not behave as one would expect for an equivalent porous medium for 

these continuous fracture systems. Tortuosity decreased to a minimum of 1.0 in a direction 

where one fracture set became nonconductive. This direction was not necessarily in the direc

tion of maximum permeability, where one would expect tortuosity to be a minimum for an 

equivalent porous medium. Thus, porous medium equivalence can be found for certain 

parameters, while the directional properties of other parameters show that porous medium 

equivalence is not possible.  

The longitudinal geometric dispersivity showed large and abrupt directional variations for 

the continuous systems. The magnitude of the maximum longitudinal geometric dispersivity 

increased with the degree of anisotropy, and no general relationship was found between the 

principal directions of longitudinal dispersivity and the principal directions of permeability.  

Thus, both longitudinal geometric dispersivity and hydraulic effective porosity were highly 

directionally dependent. The use of a directionally stable longitudinal geometric dispersivity 

cannot be justified for these systems. Serious errors in transport prediction would result if one 

were to treat these anisotropic systems as equivalent isotropic systems.  

The first two discontinuous fracture systems studied (section 6.2 and 6.3) behaved like 

equivalent porous media for fluid flow. Hydraulic effective porosity for both systems showed a 

slight directional dependence, with the minimum hydraulic effective porosity occurring near the 

direction of maximum permeability. The polar plots of hydraulic effective porosity, however, 

were nearly circular and we concluded that each fracture system behaved like an equivalent 

porous medium for transport. The mean directional hydraulic effective porosity for each sys-
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tern was greater than the rock effective porosity so the average linear velocity was less than the 

usual porous medium estimate of specific discharge divided by rock effective porosity.  

Hydraulic effective porosity was larger than the rock effective porosity because zones of slow 

movement existed in the flow region which caused mean travel time to be large in relation to 

linear travel length and specific discharge. For these two discontinuous systems, tortuosity 

increased from the direction of maximum permeability to the direction of minimum permeabil

ity, as one would expect for equivalent porous media.  

Tortuosities as high as 3.8 were measured for the discontinuous system of two sets 

oriented at 0" and 30". In the literature, tortuosity is reported to normally range between I and 

2. The large measured values of tortuosities were caused by the high anisotropy of the system, 

as the ratio of maximum permeability to minimum permeability was ten. The size of the fluid 

flow continuum was found to be related to tortuosity. As tortuosity increased, both DEVA and 

DEVF, measures of equivalent porous medium flow behavior, increased. Thus, the continuum 

size for both fluid flow and mechanical transport was found to be inversely related to tortuos

ity. VPORE computed as the product of tortuosity and average linear velocity was shown to be 

a good estimate of the mean pore velocity. The actual mean pore velocity is normally 

extremely difficult to determine so an estimate like VPORE is used.  

Each discontinuous system showed a unique directional dependence for the longitudinal 

geometric dispersivity. The ratio of maximum to minimum longitudinal geometric dispersivity 

was directly related to the degree of anisotropy. The directional variations in longitudinal 

geometric dispersivity for the discontinuous systems were not as severe as those in the continu

ous fracture systems. However, the two discontinuous fracture systems showed again that the 

determination of the directional transport properties for an anisotropic medium is essential to 

predicting transport.  

The large differences in longitudinal geometric dispersivity measured from laboratory and 

field data could be due to the directional nature of aL. Longitudinal geometric dispersivity is 

properly measured in the laboratory when the procedure described in sections 3.5 and 3.6 is
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used. We are unaware of any laboratory experiments which has used this procedure. In a 

groundwater aquifer, the natural direction of flow may vary spatially such that, to model tran

sport in the aquifer, a directional aL must be used. In most transport studies, a constant a. is 

used to model transport in the aquifer. Consequently, the dispersivities measured from labora

tory and field data may not properly characterize transport in the aquifer.  

The connectivity sensitivity studies for mean fracture length, set areal density, and mean 

fracture orientation showed that mechanical transport parameters were generally much more 

sensitive to the three connectivity parameters than either specific discharge or rock effective 

porosity. For example, both mean travel time and the variance of the breakthrough curve were 

highly sensitive to each connectivity parameter, and no relationship was found between either 

mechanical transport parameter and any connectivity parameter. However, specific discharge 

and rock effective porosity both increased with connectivity. Tortuosity was the only mechani

cal transport parameter that showed no sensitivity to connectivity. The least sensitive connec

tivity parameter was the mean orientation of the fracture set, with the mean fracture length and 

the set areal density having about equal sensitivity. In the mean aperture sensitivity study, the 

variance of the breakthrough curve was the most sensitive mechanical transport parameter, fol

lowed by mean travel time. The longitudinal geometric dispersivity and tortuosity were both 

insensitive to mean aperture.  

Connectivity increased when fracture orientations became distributed, while connectivity 

decreased when fracture lengths became distributed. The increased connectivity created a more 

random fracture system, and the following parameters increased because of this: rock effective 

porosity, specific discharge, tortuosity, mean travel time, and the variance of the breakthrough 

curve. Heterogeneity increased when fracture apertures became distributed. This increased 

heterogeneity caused a reduction in the specific discharge. The specific discharge decreased 

because the flow rate in a series of fractures is governed by the fracture with the smallest aper

ture. The smaller flow rate meant that fluid particles took a longer time to travel through the 

flow region, and thus, mean travel time increased. The variance in the breakthrough curve
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increased because the increased heterogeneity caused a greater variation in pore velocities.  

A length-density analysis was conducted using fracture data collected at a research site in 

Manitoba, Canada. Since the aperture distribution of a fracture system has a major influence 

on mechanical transport, three length-density studies were conducted using different aperture 

distributions. The studies showed that porous media equivalence for fluid flow and transport is 

likely to occur for fracture systems in which the ratio of ab to Ab is small. For the continuous 

systems which showed porous media equivalence, hydraulic effective porosity was nearly equal 

to rock effective porosity. However, hydraulic effective porosity was larger than rock effective 

porosity for the discontinuous systems which exhibited porous media equivalence. The larger 

deviation between hydraulic effective porosity and rock effective porosity in the discontinuous 

systems was caused by the different effects of large aperture fractures on travel time in continu

ous and in discontinuous systems. Tortuosity was directionally stable for all systems which 

indicated that each fracture system was fairly isotropic.  

Theoretically, the longitudinal geometric dispersivity is directionally stable for an 

equivalent isotropic medium. However, the longitudinal geometric dispersivities were direc

tionally dependent for the fracture systems which otherwise exhibited porous media 

equivalence. We found that the mean directional al was independent of mean fracture length 

for the discontinuous systems in the constant aperture length-density study, even though the 

polar plots of aL were different. These systems were not the only nearly isotropic systems 

which showed directionally varying longitudinal geometric dispersivities in this research. The 

equivalent isotropic system of two orthogonal sets of continuous fractures in section 5.3 also 

had a directionally dependent aL. The aperture distribution greatly influenced longitudinal 

geometric dispersivity, as aL could not be computed for the fracture systems in which the mean 

aperture equaled the standard deviation of aperture. The Peclet number approached infinity 

for these fracture systems. The three length-density studies showed that aL increased as ab/I• 

increased.
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8.2. RECOMMENDATIONS 

The purpose of this research was to investigate the directional measurement of mechani

cal transport for anisotropic fracture systems. No extensive study of directional mechanical 

transport in groundwater systems has been reported in the literature. Consequently, in this 

research a set of experiments was developed to measure directional mechanical transport, and 

then it was shown how directional mechanical transport can be interpreted from these experi

ments. The primary mechanical transport parameters investigated were hydraulic effective 

porosity, tortuosity, and longitudinal geometric dispersivity.  

This study has uncovered a number of significant findings on directional transport proper

ties. For example, tortuosities much larger than three were measured in this study. In most 

transport studies, tortuosity is rarely determined, and is normally assigned a value about 1.4.  

Further research is needed to understand how travel paths influence fluid flow and transport.  

Tortuosity was used in this work to characterize the mean path length. Research is needed to 

determine how the distribution of paths lengths can be used in evaluating transport. Another 

area that can be investigated is the use of the Kozeny equation for anisotropic media. The 

computer program can be modified so that the shape factor and the hydraulic radius in the 

Kozeny equation can also be computed for different directions of flow.  

The longitudinal geometric dispersivity was shown to be highly directionally dependent.  

Yet, in most transport studies, a constant longitudinal geometric dispersivity is assumed in all 

directions, as the anisotropic medium is treated as an equivalent isotropic medium. Future 

research can investigate the error that is made when this assumption is used. The error associ

ated with this assumption can be determined by conducting tracer experiments for anisotropic 

media using the hydraulic boundary conditions for isotropic media described in section 2.2.2.  

Directional mechanical transport is measured in this study using a numerical model. An 

alternative method would be to conduct laboratory experiments. The conventional laboratory 

tracer experiment consists of applying no-flow boundary conditions along the sides of the test 

sample, and constant-head boundary conditions across the inlet and the outlet to the sample.

11 . ... . . ... . . . . ... . . . . n ow-
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Tracer is next injected across the inlet, and then the breakthrough curve is constructed to meas

ure transport. The conventional Uacer experiment can be used to measure mechanical tran

sport in the two principal directions. Between the two principal directions, the tracer experi

ments described in Chapter 3 must be used to measure mechanical transport. The crucial step 

in designing this laboratory experiment is the application of the constant hydraulic gradient 

boundary conditions along the sides of the test sample. An innovative design is needed to 

implement such hydraulic boundary conditions. Once the hydraulic boundary conditions have 

been applied, the experiment can proceed in the manner described in section 3.6.  

The computer program in Chapter 4 was written using single precision. Certain parts of 

the computer program require computational accuracy. For example, the flow rate in each 

streamtube must be accurately computed to ensure that the total flow rate into a node is equal 

to the total flow rate out of a node. Better accuracy can be gained by writing the computer pro

gram using double precision. However, the dimensions of variable arrays are reduced when 

double precision is used and this will result in an analysis of smaller sized problems unless a 

computer with a larger storage capacity becomes available. To increase accuracy without 

decreasing the size of the arrays used in the present computer program, one should switch from 

the VAX machine (Class IV) to a Class VI machine such as the Cray.  

The accuracy of the modeling results also depends on the availability of detailed and reli

able fracture data. We have shown that the statistical parameters of the aperture distribution 

are essential for modeling fluid flow and mechanical transport. To obtain a representative sam

ple of the aperture distribution, a well planned set of packer tests would have to be conducted 

in the fractured rock mass. Thus, a dynamic interaction between theoretical (modeling) and 

experimental (field data) groundwater research activities is essential to significant advancements 

in this field.  

A useful addition to the computer program would be to eliminate all dead-end loops in 

the fracture network formed by nonconductive fracture segments before the mechanical tran

sport simulation stage. The program would not have to search for dead-end loops in the pro-
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cess of locating streamtubes, and thus, computer time would decrease for this stage. The algo

rithm for eliminating dead-end loops should follow the fracture system generation stage. The 

elimination of dead-end loops would then decrease the number of elements and nodes in the 

flow region, and the bandwidth in the conductance matrix would probably decrease. Thus, 

computer time would also decrease in the hydraulic head calculation stage.  

The next step in the theoretical development would be to determine if directional hydro

dynamic dispersion can be analyzed. The investigation of directional hydrodynamic dispersion 

would require the understanding of another transport process, molecular diffusion. The two 

key steps that must be considered in developing the theory to measure directional hydro

dynamic dispersion are: 1) finding the appropriate test section in which to measure hydro

dynamic dispersion, and 2) determining how hydrodynamic dispersion parameters can be 

evaluated from measurements made within this test section. The concepts of directional 

mechanical transport in Chapter 3 will provide a good starting point for developing the neces

sary theory.  

The present computer program would have to be modified to model hydrodynamic 

dispersion. Numerical methods that are commonly used to model hydrodynamic dispersion in 

porous media are the finite difference method (FDM), the finite element method (FEM), and 

the method of characteristics (MOC). If the present computer program were to be modified to 

include hydrodynamic dispersion, the MOC would be the best method to use. The MOC would 

be able to use some of the streamtubing principles developed in Chapter 4. Also, the MOC 

requires less computer time than either the FEM or the FDM. Both the FDM and the FEM 

require the solution of a larger matrix than the conductance matrix for fluid flow. Further

more, this matrix would have to be solved for each time step since transport is a transient 

phenomenon.  

The computer program as developed in this work for hydrodynamic dispersion should be 

used in two parts. First, the computer program should be used to evaluate directional mechani

cal transport and evaluate porous medium equivalence. Mechanical transport must be
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evaluated first because the direction of flow, average linear velocity, and tortuosity are needed 

to model hydrodynamic dispersion. Then the computer program should be used to evaluate 

hydrodynamic dispersion. In this manner, the program can be used to evaluate both mechani

cal transport and hydrodynamic dispersion.
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