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Purpose of Presentation

* Highlight the safety issues related to the use

of graphite technology in High Temperature
Reactors

* ldentify options that lead to the successful
resolution of these issues



Overview
e PBMR design

— Functional Requirements
— Assessment Criteria
e Graphite
— Manufacture
— Material Properties
— Performance Assessment
— Risk Mitigation
* MTR Programme
* Inner Reflector Replacement

e Conclusions




PBMR Design

e Core Structures Safety Functionality
e Maintain Pebble Bed (PB) Geometry

e Maintain Adequate Cooling of the PB under
normal and abnormal conditions

e Maintain Access for the Reactivity Control and
Shutdown System (RCSS)

e Maintain the De-fuelling Path
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Performance Assessment Criteria

e Structural
— Build up of stresses exceeding strength
* Deformation
— Excessive distortion of reflector columns

e Material exhaustion




PBMR Design — T

Main Power System

Reactor Unit chtfniiec Power Conversion Unit



PBMR Design — B oM R

Core Structures 1
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PBMR Design — e

Core Structures 2
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PBMR Reactor Data — oM R
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Nuclear Graphite Manufacture

Particle size of different materials

Coarse grain

Medium grain Fine grain

Electrodes Most. Nu.clear Recent Nuclear
Applications, e.g. Applications, e.g.
MAGNOX, AGR, HTTR, HTR-10

AVR, THTR
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Manufacturing Summary

* The properties of Nuclear Grade Graphites
can be determined by suitable choice of

— Raw Materials
— (rain size

— Manufacturing Route
» Fabrication
* Impregnation

e Purification
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PBMR - SGL Unirradiated " " " °
Material Properties B

Property Sleeve Grade 1 Grade 2 Iso Saso!
Density (10°Kg/m") 1.79 1.75 1.79 1.82 1.79
Thermal Conductivity Not known 130 130 133 130
@ Room Temperature (W/m.K)

CTE 20-200 °C (10° K) 4.35 42 4.4 4.1 47
Neutron Absorbancy (mBarns) 462 45 54 4.0 12
Compressive Strength (MPa) 72 55 65 100 70

Modulus of Elasticity (GPa) 8.9 9 10 10 10
Poisson’s Ratio 0.21 0.21 0.21 0.21 0.21
Anisotropy Ratio (Par/Per) 1.1 1.1 1.1 1.1 1.1
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PBMR — SGL nor
Material Impurities ppb

Element Li Be B Na Mg Al K Ca
Typlcal 2.1 380 250 310 45 680 79 2.6
Element Sc Ti Vv Cr Mn Fe Co Ni
Typical 15 3.8 100 16 75 500 3.4 37
Element |  Cu Zn Ga Ge | Se Rb Sr Y
Typical 43 40 3.2 24 21 2.7 2.5 57
Element | Zr Nb Mo Ru | Rh Ag Cd In
Typical 3.7 1.9 12 6 1.9 3.7 15 150
Element Sn Sb Te Cs Ba La Ce Pr
Typical 6 3.4 27 1 2 1.9 3.8 7.6
Element Nd Sm Eu Gd Hf Ta w Re
Typical 11 13 4 12 7.1 41 7.3 52
Element | Au Hg Tl Pb Bi Th U
Typical 1.3 4.2 1.8 3.1 1 1 2.4
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* Vacant Lattice Sites
X Displaced Atoms

O C atoms within the graphite lattice

@ [nterstitial C atoms after neutron imadiation
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Material Property Variation
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Dimensional Change
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Thermal Resistivity
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Young’s Modulus

Fast neutron dose, 10™ n cm’? (EON)
Figure 45, Young's Modulus changes,
comparison of generated curves with experimental data
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comparison of generated curves with experimental data
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Irradiation Induced Creep = =
(Beneficial)

1 PBMR EOL Requirements |

crwep strain per unit inital strain
- » o - @
=3 S o o S

EDND x16™n.crm?

| Figure 52 Constant Stress Irradiation Creep Data (Isotropic Graphite)

23



Strength

 Weibull ‘weakest link’ theory

— Typical Nuclear graphite Weibull Modulus = 10
e German Performance Assessment Model

— Probability of Failure = 104

— Safety Factor = 2.4

e Irradiation behaviour is correlated with Young’s
Modulus

— Pre turnaround (Y .M irradiation induced change)!/?
— Post turnaround (Y.M irradiation induced change)'
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Material Summary

* There is considerable graphite data, empirical

relationships and operational experience available
to PBMR from previous gas-cooled, graphite

moderated reactor programmes, e.g. MAGNOX,
AGR, AVR & THTR.

* Pre-Turnaround Graphite Behaviour

There 1s a high degree of confidence that the existing
graphite database is sufficient to describe the behaviour
of graphites currently available to PBMR up to the point
of turnaround — approximately 15 years of PBMR
operation at the peak flux position (inner surface of
inner side reflector at mid-core height).
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Summary (Continued)

e Post-Turnaround Graphite Behaviour

Beyond the point of turnaround there is
uncertainty in the PBMR graphite database for
performance assessment due to the following:

* lack of knowledge of behaviour of graphite at high
fluence (beyond return to initial volume)

* lack of actual data for PBMR graphite
* Validation of reactor parameters

26
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Performance Assessment

* There are numerous different approaches to
assessment of structural performance of
graphite moderated cores

— UK
O > (PBMR adopted)
— Germany

— Japan

27
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Structural performance

* Primary or External

* The reflector is subject to several external loads pebble bed

hydrostatic pressure, coolant differential pressure, deadweight
and pebble bed ‘breathing’ pressure.

* Secondary or Internal

* Under irradiation graphite exhibits significant dimensional

change and material property change. These property changes
can set up significant shrinkage and thermal stresses.

Additionally when graphite is subjected to load it exhibits
creep. |
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Deformation

e Local deformation is caused within the block due
to shrinkage strain, thermal strain and creep strain.

e Large global deformation could occur towards end
of life due to the accumulation of local

deformation, 1.e. within a column. This may lead
to

— control rod articulation limits being exceeded

— unacceptably high leakage/bypass flows and
unacceptable peak fuel temperatures
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Material Exhaustion

* As discussed earlier at high fluence, graphite
exhibits significant swelling and associated
reduction in Modulus and Strength. This is a
material limit and is determined by the irradiation
fluence and temperature

* The limit for PBMR graphite has been nominally
set to 5% swelling and some parts of the side
reflector exceed this value for the assumed
material data.
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Performance Summary

* PBMR has adopted a combination of German and
UK approaches to graphite component
performance assessment

e Up to turnaround, assuming the current graphite
database, the performance assessment criteria,
structural, deformation and material exhaustion,
are met for the current design of the PBMR.

* At EOL, assuming the current graphite database,
the performance assessment criteria, structural,
deformation and material exhaustion, are not met
for the current design of the PBMR.
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Risk Mitigation

* MTR Programme to determine irradiation
behaviour beyond turnaround

— To achieve PBMR fluence will require

* 8-10 year programme at a low flux facility
* 14 months at a high flux facility |

* Inner Reflector Replacement

— via the central Plug

33
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Inner Reflector Replacement

+ Replacement of the Inner Reflector will:

— Mitigate risk from lifetime issues
e Structural performance
e Distortion
 Material Exhaustion

— Increase margin to peak fuel temperature limit
(lower thermal resistivity @ EOL)

— Allow continued operation w/o replacement
subject to satistfactory MTR programme results
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Conclusions 1

* There is substantial experience in operating

gas-cooled, graphite moderated reactors
around the world, e.g. UK.

* Suitable Nuclear Grade Graphites can be

determined by appropriate choice of
manufacturing process parameters
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Conclusions 2

* Sufficient information is available to justify
PBMR operation up to the point of turnaround,

approximately 15 full power years at the peak flux
position.

* Graphite Technology is still mainly empirical,
especially at high fluence and temperature and
uncertainty exists in the material database
assumed for PBMR beyond turnaround
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Conclusions 3

* A MTR programme is required to characterise
PBMR graphite and to remove uncertainty
associated with performance assessment of PBMR
graphite components beyond turnaround

* The risks associated with performance of graphite
components in PBMR can be mitigated by
replacement of the inner reflector
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