

Performance Assessment Perspective on the Behavior of Engineered Barriers

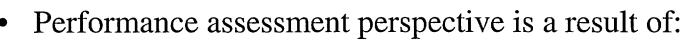
David W. Esh, Ph.D.

System Performance Analyst Environmental and Performance Assessment Branch Contact info: (301) 415-6705, <u>dwe@nrc.gov</u>

Contributors: Richard B. Codell and Sitakanta Mohanty

Nm5501 WM-1 gloz But/NM55

1



Outline

- Overall repository risk current knowledge
- Insights on system behavior (waste package as a barrier)
- Conservatism and 'risk'
- Performance Assessment (PA) perspective waste package key issues

Performance Assessment Perspective

- Independent analyses by NRC and CNWRA (TPA code, uncertainty and sensitivity analyses, barrier evaluation, other)
- Review of DOE and others (e.g. EPRI)
- Comments of review committees (e.g. ACNW, NWTRB, peer reviews)
- Performance assessment involves understanding why the results are what they are

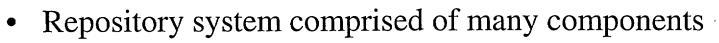
· d

Repository Risk (role of waste package)

Scenario DOE, TSPA-SR	Time Period 10k	Nominal (mrem/yr)/# Failures		Igneous (mrem/yr)
		0	0	0.1
DOE, FEIS	10k	0.00002	0.3	0.1
DOE, TSPA-SR	100k	70	6000	NA
DOE, FEIS	100k	0.1	900	NA
DOE, TSPA-SR	peak	500	12000	NA
DOE, FEIS	peak	200	12000	NA

Overall Repository Risk – Current Understanding

- 10k model risks are small (assuming current models appropriately represent uncertainties)
- 100k and longer model risks are comparable to background radiation
- Igneous activity model risks are larger than nominal risks in 10k, but small compared to the radiological standard
- Why continue to study this problem?



Overall Repository Risk – Current Understanding

- We continue to evaluate this problem to understand the impact of key uncertainties on:
 - 1) Timing and magnitude of the doses in the nominal scenario
 - 2) Magnitude of the disruptive scenario doses (reasonably bounded by current estimates).
 - 3) The capabilities of the barriers

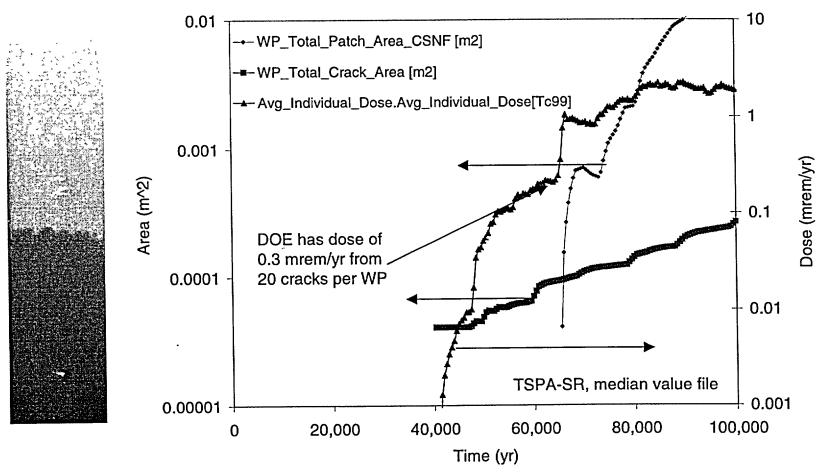
Insights on System Behavior

- Not all components are created equal (from a risk perspective)
- Both NRC and DOE analyses suggest that the waste package performance is significant contributor to limiting future risk
- Simple calculations can provide insights into repository behavior
- Is the waste package the only contributor that limits future risk?

Waste Package as a Barrier

- Take inventory of ¹²⁹I (0.3 Ci) and ⁹⁹Tc (130 Ci) in a single commercial spent nuclear fuel waste package (readily transported species)
- Assume the spreading/dilution function of the rest of the system is only equivalent to 500 years
- Dilute the concentrations in the regulatory defined water volume (3,000 acre-ft/yr)
- Dose from a single package ~ 0.5 mrem/yr
- TPA 4.1 result from 40 initial failures is 0.02 mrem/yr, a factor of 1000 *lower*
- Other components of the repository system contribute to the limitation of future risks

8



Risk and Surface Area Failed

- Diffusive releases are directly proportional to the surface area of the failures
- Early advective releases are strongly correlated with surface area failed
- Does the type of failure have a strong influence on risk?

In TSPA-SR, only 13% of packages experience advective conditions 10

Simple Models to Evaluate Diffusive Risks - SCC

<u>Conservative representation (only diffusion</u> <u>through the end caps):</u>

~300 mrem/yr from ¹²⁹I, ⁹⁹Tc, and ²³⁷Np (300 cracks per package, 1000 packages cracked)

Less conservative representation (adding diffusion

from waste to end caps through water film):

Reduces dose to 0.1 mrem/yr (no performance benefit from rest of repository)

Conclusion – Caution is needed in interpreting theresults of highly conservative models11

Risk and Surface Area Failed - Summary

- Caution is needed in employing conservatism in mass transfer representations for radionuclide release
- Waste package failure mechanisms that result in numerous small openings or a few catastrophic failures are not likely to be risk-significant
- PA staff are most concerned with mechanisms that may result in numerous moderate to large openings that experience advective conditions

Issue Resolution in Waste Package and Drip Shield Performance

- Environmental Conditions
- Uniform Corrosion/Passivity
- Localized Corrosion
- Stress Corrosion Cracking (SCC)
- Drip Shield Performance
- Materials Aging
- Mechanical Failure
- Juvenile Failure
- Criticality

PA Perspective on Key WP Issues

Environmental Conditions, Uniform Corrosion, Passivity, Localized Corrosion, Materials Aging

- Higher risk-significance for mechanisms (or combination of) that could result in numerous reasonably-sized openings.
- Important to understand consequence and identify likelihood of transpassivity/localized corrosion

PA Perspective on Key WP Issues

Stress Corrosion Cracking (SCC)

- Frequency and size of openings not likely to create significant "risk" unless combined with conservative release modeling (see slide 11).
- Advective release not expected based on size of SCC failures and capillarity argument.
- Lower risk-significance.

PA Perspective on Key WP Issues

Drip Shield Performance

- If drip shield is preventing numerous rockfall failures or preventing aggressive chemical conditions, would be much more risk-significant than current results indicate (see slide 25)
- Lower risk-significance (quantitative), Moderate risksignificance (thought)?

PA Perspective on Key WP Issues

Mechanical Failure

- Current analyses suggest combination of likelihood of occurrence and consequences are lower risk (rockfall)
- However, extent of drift degradation (likelihood) and resultant consequences need to be further analyzed
- Lower risk-significance (rockfall), drift degradation?

PA Perspective on Key WP Issues

Juvenile Failures

- Current TSPA results suggest frequency not high enough to create significant risk (see slides 4, 8)
- Lower risk-significance

Criticality

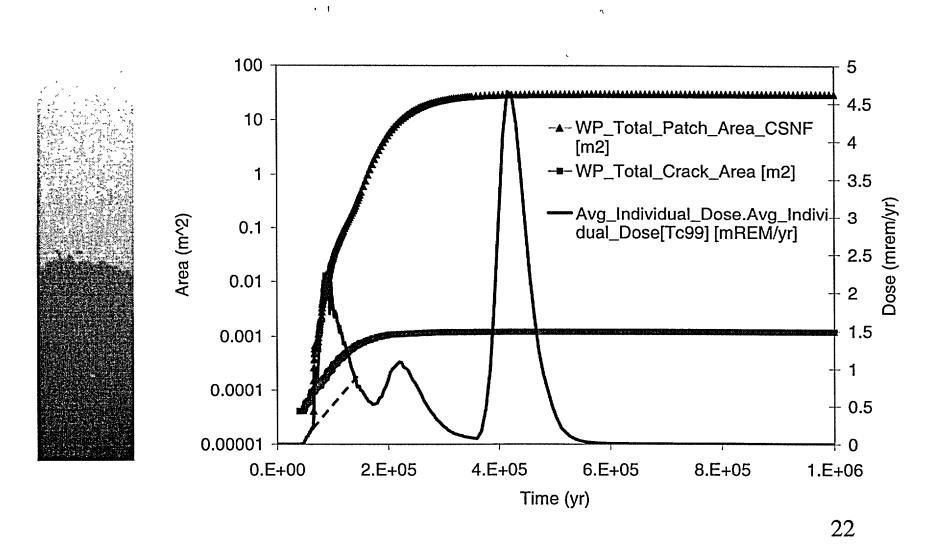
- Coupled to other degradation modes
- Current analyses suggest likelihood not large enough to create significant risk
- Lower risk-significance

TSPAI Agreements and WP Key Issues

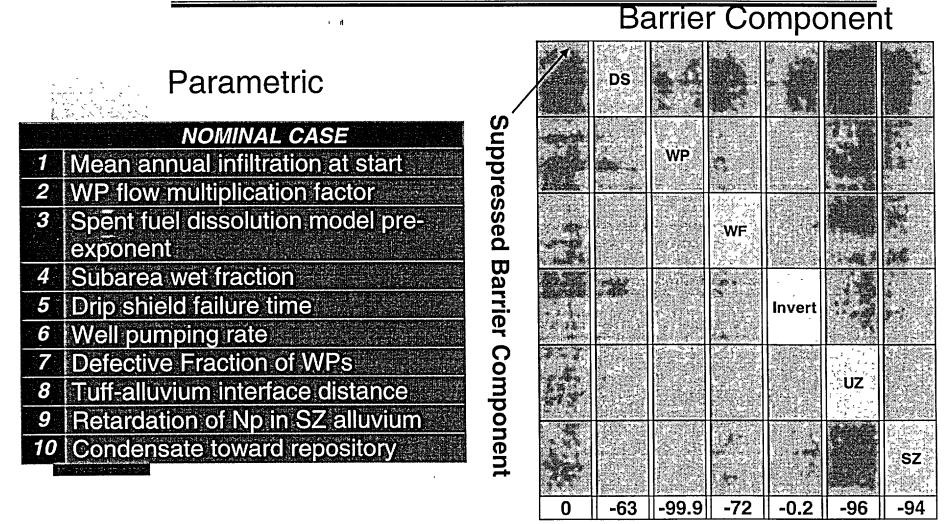
- 42 Agreements for TSPAI subissue 3 (model abstraction)
- Many TSPAI agreements deal with uncertainty
- ~ 30% pertain to uniform corrosion/passivity, localized corrosion, and environmental conditions

Conclusions

- The waste package is an important barrier, *but* the performance of other system components limit risks
- Caution is needed in utilizing conservatism and in interpreting results (from conservative models)
- PA results and additional analyses are used to condition thinking
- The assigned relative risk importance to CLST issues is based on current understanding


· 1

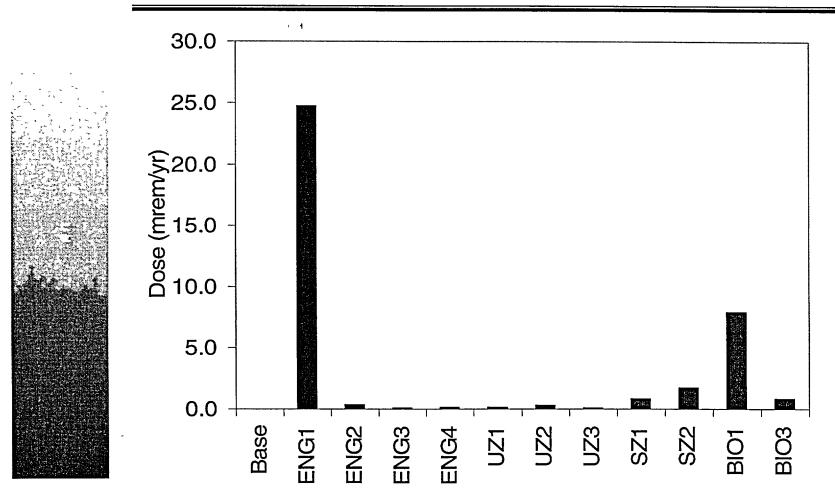
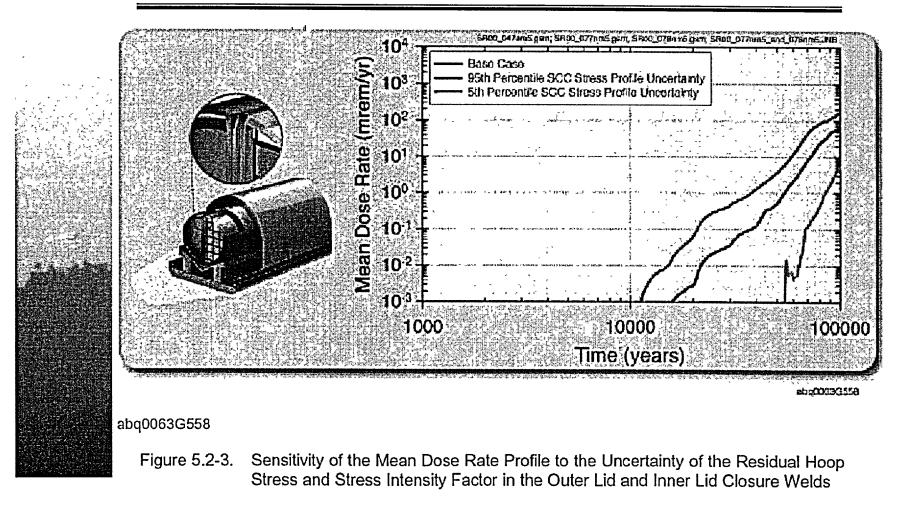
Back-up Slides

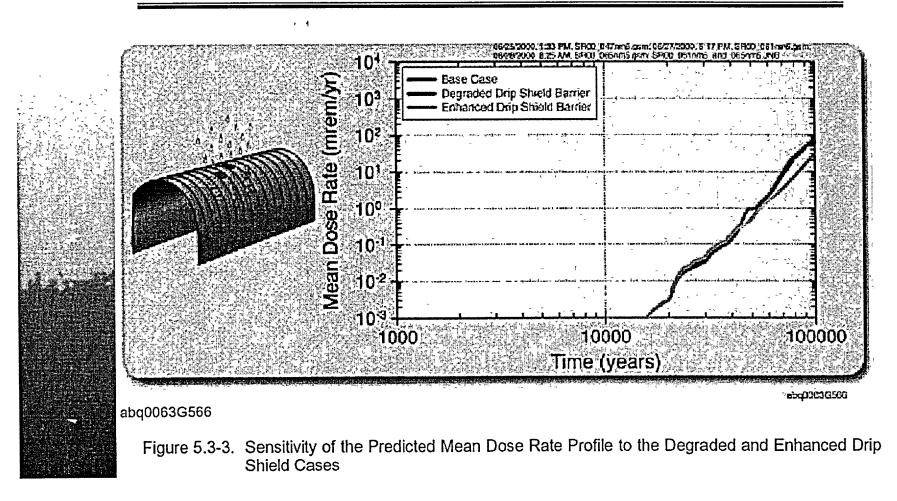


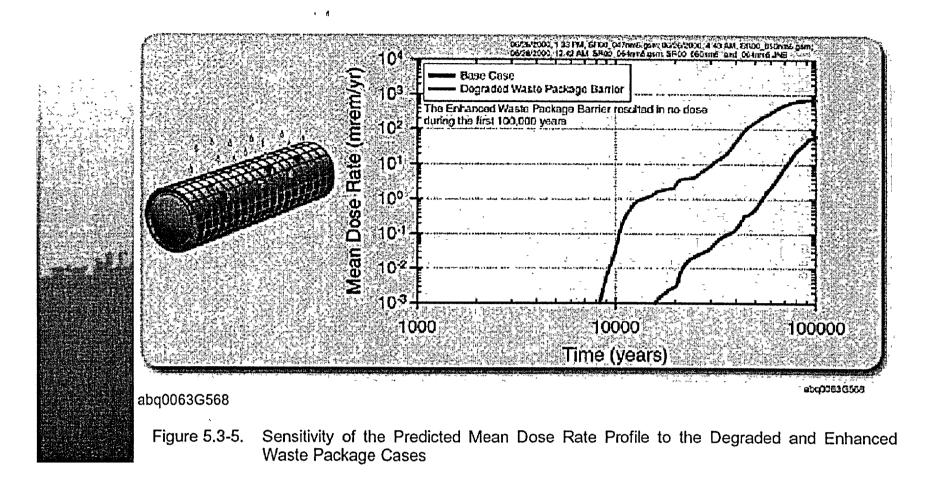
21

% change w.r.t dose wher?all barrier components suppressed

United States Nuclear Regulatory Commission


Figure 1 from (Esh, Codell, and McCartin, IHLW 2001) 24


DOE, Total-System Performance Assessment for the Site Recommendation (TDR-WIS-PA-00001, 2000) 25

DOE, Total-System Performance Assessment for the Site Recommendation (TDR-WIS-PA-00001, 2000) 26

DOE, Total-System Performance Assessment for the Site Recommendation (TDR-WIS-PA-00001, 2000) 27