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Sensitivity analysis methods for identifying 
influential parameters in a problem with a 
large number of random variables 

Sitakanta Mohanty' and Richard Codell2 

'Center for Nuclear Waste Regulatory Analyses, USA 
'U.S. Nuclear Regulatory Commission, Washington, D.C., USA 

Abstract 

Risk analysis can benefit from applications of sensitivity techniques to identify the 
important parameters. This paper compares the ranking of the ten most influential 
variables among a possible 330 variables for a model describing the performance 
of a repository for radioactive waste, using ten different statistical and non
statistical parametric sensitivity analysis methods. Because each method has its 
advantages and limitations, the selection of the final list of influential parameters 
is based on the number of times the parameter achieves a high ranking by different 
methods. The scoring method appears to successfully isolate the most influential 
parameters.  

1 Introduction 

Computer modeling provides an avenue to simulate the behavior of complex 
systems. Many of the input model parameters have large uncertainties. Sensitivity 
analysis can be used to investigate the model response to these uncertain input 
parameters. Such studies are particularly useful to identify the most influential 
parameters affecting model output and to determine the variation in model output 
that can be explained by these variables.  

There are a large variety of sensitivity analysis methods, each with its own 
strengths and weaknesses, and no method clearly stands out as the best. In this 
paper, we have picked ten different methods and have applied these methods to a 
high-level waste repository model, which is characterized by a large number of 
variables (e.g., 330), to identify influential input variables.
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2 Sensitivity Analysis Techniques

Most techniques used herein rely on the Monte Carlo (or its stratified equivalent, 
Latin Hypercube Sampling) method for probabilistically determining system 
performance. Many of the input parameters are not precisely known. The Monte 
Carlo technique makes a series of calculations (called realizations) of the possible 
states for the system, choosing values for the input parameters from their 
probability distributions.  

A sensitive parameter is one that produces a relatively large change in model 
response for a unit change in an input parameter. The goal of the sensitivity 
analyses presented in this paper is to determine the parameters to which model 
response shows the most sensitivity. The goal of the uncertainty analyses is to 
determine the parameters that are driving uncertainty (i.e., variation) in response.  

2.1 General Model 

The response of the system is denoted as y, which is generally a function of 
random parameters, xi; deterministic parameters, d,,; and model assumptions, a,,.  
The system response for the jth realization is 

Y =- (xI IX, ..... Q--1~'dkP.  
where I is the total number of sampled parameters in the model, k is the number of 
deterministic parameters and m is the number of model assumptions. It is assumed 
that the behavior of the system is simulated by appropriately sampling the random 
parameters and then computing the system response for each realization of the 

parameter vector X, ={x,.jX 2,j I.... xQ& ..... x . For the purposes of identifying 

influential random parameters and develop understanding of their relationship to 
the response, we do not consider the dependence of y on deterministic parameters 
and model assumptions.  

2.2 Regression Analyses Methods 

Single Linear Regression on One Variable 

Single linear regression (i.e., regression with only the first power of a single 
independent variable), is useful to understand the nature and strength of 
relationships between input and response variables of a model. The coefficient of 
determination, R', gives a quantitative measure of the correlation. Even when the 
response variable is linearly dependent on the input variable being studied, 
univariate linear regression of Monte Carlo results may fail to show unambiguous 
correlation because other sampled parameters that affect the response are varying 
at the same time. When R2 is small, it is not necessarily a good indicator of the 
importance of the variable. A better indication of influence is to determine by 
means of a T-test whether the probability that the slope of the linear regression line 
is significantly different from zero [1].  

The correlation between input and response variables can be enhanced by 
transforming the variables. In general, variables are transformed by (i) eliminating 
dimensionality, (ii) reducing the role of the tails of the distributions, (iii) properly 
scaling the resulting sensitivities to the variability of the input variables, and (iv) 
using input variable ranks. While transformations generally increase the goodness
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of-fit, they may distort the meaning of the results. For example, transformations 
such as rank, logarithmic, and power law applied to the response variable, 
frequently give unfair weight to small response values, which do not affect the 
mean results as much as the large response values. If the mean response is a 
desirable quantity, regression results based on transformed variables should be used 
cautiously.  

2.3 Stepwise Multiple Linear Regression 

Stepwise multiple linear regression (stepwise regression) determines the most 
influential input parameters according to how much each input parameter reduces 
the residual sum of squares (RSS) [2]. The form of the regression equation is 

y = mIx 1 + m 2 x 2 +... + mnx, + b (2) 

where y is the dependent variable, xi are independent variables (could be raw, 

transformed, or rank variables),m, are regression coefficients, and b is the 
intercept. The regression coefficient, which is the partial derivative of the 
dependent variable with respect to each of the independent variables, is a measure 
of linear sensitivity of y to input x, [3]. The stepwise algorithm calculates the 
reduction in RSS for the independent variables in the order that gives the greatest 
reduction first. In the implementation of the procedure, a multiple linear regression 
model is fitted to the data in an iterative fashion. The procedure starts with the 
variable, x,, that explains most of the variation in the model response, y. Then it 
adds additional variables (one at a time) to maximize the improvement in fit of the 
model according to the R' value, which is an indicator of the fraction of variability 
in the dependent variable that is explained by the variability of x,. The sequence 
in which the inputs are selected and the magnitude of the increment in R2 provides 
the measure of uncertainty importance.  

2.4 The Kolmogorov-Smlrnov (K-S) Test 

The K-S test is nonparametric, i.e., a statistical test that does not require specific 
assumptions about the probability distributions of the data [4]. Probability 
distribution of a subset (e.g., top 10 percent) of the observations of the input 
variables is compared to the theoretical (i.e., true) distribution of that variable. If 
the two distributions are equivalent, then response is not sensitive to the variable 
in question. Conversely, if the distributions are different, then the variable in 
question does have an effect on response. For the present study, there are 4,000 
vectors in the entire set, and the subset consists of the 400 vectors with the highest 
responses. The significance of the K-S test was determined at the 95-percent 
confidence level.  

2.5 The Sign Test 

The Sign test is also nonparametric. In the Sign test, each observation of the input 
variable is represented by either a plus sign (+) or a minus sign (-) depending on 
if it is greater than or less than the median value of the theoretical distribution. A 
subset of the input parameter values (e.g., 10 percent) corresponding to calculated 
responses is compared to the theoretical distribution of that input variable. For the 
present study, there are 4,000 vectors in the entire set, and the subset consists of the 
400 vectors with the highest responses. The significance of the Sign test was 
determined at the 90-percent confidence level.
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2.6 Differential Analysis Technique

In the differential analysis technique for determining the most influential input 

parameters, multiple deterministic runs are made in which an input parameter, xi , 

is changed (one at a time) by a known amount, O x, , to estimate the first derivative 

of the performance: ay/ax=[y(x +Ax,)-y(x,)]/Ax,. Usually Ax, in this 

derivative is relatively small (e.g., 1 percent of the parameter value). Consequently, 
differential analysis determines sensitivity of parameters only at local points in 
parameter space and does not consider the wide range of parameter variations as 
does the Monte Carlo method. This concern is alleviated by evaluating derivatives 
at several randomly selected points in the sample space and averaging the 
corresponding sensitivities that are derived from these derivatives. In the analyses 
presented herein, the derivative is transformed in one of two ways to allow for 
comparison of sensitivity coefficients between parameters whose units may differ.  

The first transformation is described by S, = (ay / y) /(ax, / x, where xi and Y 

are the mean values of Xi and Y, respectively and S, is the dimensionless 
normalized sensitivity coefficient. These normalized sensitivity coefficients 
presented in the above equation are equivalent to the coefficients of the regression 
equation using the logs of the normalized response and independent variables.  
Because S, does not account for the range of the input parameter, a second 
transformation ofthe derivative is also performed where the derivative is multiplied 
by the standard deviation of the input parameter distribution. This transformation 

is described by S0 = (Dy / axi )ax, .  

Differential analysis determines sensitivity unambiguously because it deals with 
changes in only one independent variable at a time. In contrast, regression analysis 
on the Monte Carlo results can only determine the most influential parameters 
when those parameters also have large-enough correlation coefficients that they are 
distinguishable from the confounding effects of the simultaneous sampling of all 
other independent variables.  

2.7 Morris Method Technique 

In the Morris method [5], the random variable, ay/axi , is evaluated using the 

current and the previous values of y: 

Ay = y(xi + Ax 1,...,xi + Ax,,... ,x, ) y(x, + Ax,,...,x,...,x,) (3) 
AxAx, Ax, 

To compute i)y/axi , a design matrix is constructed by (i) subdividing the range 

of each input variable x, into (p-1) intervals using (p- 1) equally spaced points, (ii) 
randomly sampling x, (normalized) from these p intervals of size A, = p/2(p - 1).  

The Morris method considers a'y/ax, as a random variable and uses its mean and 

standard deviation of the random variable to determine the sensitivity ofy tox,. A 

large value of mean ly/lxi implies that x, has a large overall influence on y. A 

large value of standard deviation implies that either x, has significant interactions 
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with other input parameters (i.e., xb, k = 1, 2, ... , I, k '*i) or its influence is highly 
nonlinear.  

2.8 The Fourier Amplitude Sensitivity Test (FAST) Method 

Both the differential analysis and the Moimis method handle one input parameter 
at a time. For a nonlinear computational model, in which input parameters are 
likely to have strong interactions, it would be desirable to have a sensitivity 
analysis method that would investigate the influence of all input parameters at the 
same time. The FAST method [6] does this. It first applies the trigonometric 

transformation x, = gi (sin ws) to the input parameters. Transformations for 

various input distribution functions can be found in Lu and Mohanty [7]. The 
output variable can then be expanded into a Fourier series 

y(s) =--+E ,A,sin(Ws)= y(s+2Y2) (4) 
2 W 

where A,'s are the Fourier amplitudes of the output variables corresponding to 
frequencies wa.  

The trigonometric transforms relate each input variable, x, to a unique integer 

frequency, w,. All transforms have a common parameter s, where 0•< S : 2;r. As 

s varies from 0 to 27, all the input parameters vary through their ranges 
simultaneously at different rates controlled by the integer frequencies assigned to 

them through x, = g, (sin wos) . Equally spaced values of s between 0 and 2nc are 

chosen to generate values of x,. Because trigonometric transforms and integer 
frequencies are used, the response, y, becomes periodic in s, and the discrete 
Fourier analysis can be used to obtain the Fourier coefficients ofy with respect to 
each integer frequency. The sensitivity ofy to x, is measured by the magnitudes of 
the Fourier coefficients with respect to Wo,, andy is considered sensitive to the input 
parameters with larger magnitudes of Fourier coefficients.  

The use of integer frequencies causes some errors due to "aliasing"(see [7] for an 
explanation) among Fourier coefficients. The integer frequencies in 

x, = gi (sin w,s) were chosen to minimize interactions among Fourier coefficients 

to ensure, as much as possible, that the particular coefficient, A, , through the 
particular integer frequency, w,, represents only the influence of the corresponding 

input parameter, x,. Assuming 0:< x, < 1, the trigonometric transformation 

functions used here is x, = 1/2+1/jrarcsin[sin(wo s+ r)], where r,'s are 

random numbers.  

Because implementing the FAST method is computationally intensive, the number 
of input variables was limited to 50. According to Cukier et al. [8], as many as 
43,606 realizations are needed to perform a satisfactory analysis on 50 input 
parameters to avoid aliasing among any four Fourier amplitudes.  

2.9 Parameter Tree Method 

The parameter tree method evaluates relative sensitivity and correlations of the 
output variable to one or a subgroup of input parameters. In this technique, the 
Monte Carlo method is used to produce a pool of realizations, which is then 
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partitioned into bins according to several rules; e.g., all sampled input parameters 
above their median value. The bins are then examined to determine which input 
variables appear to have significant effects on the output variable [9].  

A tree structure develops by partitioning input parameter space into bins, each 
forming a branch of the tree based on a partitioning criterion similar to an event 
tree. The simplest branching criterion is a classification based on parameter 
magnitude that treats sampled input values as either a + or a - depending on 
whether the sampled value is greater or less than the branching criterion value.  
First, a number of Monte Carlo realizations are generated for a given scenario 
class. Next, the realizations are partitioned into two subsets determined by whether 
the first influential parameter, x,, is greater than or less than a specified level.  
Realizations with a high value are all treated as a + and low as a -, regardless of 
their position within the subset. For example, realizations with all five influential 
input parameters in a subgroup of five influential parameters sampled above the 
median would be placed in the same bin. Similarly, all realizations where the first 
four influential parameters are a + and the last one is a - would be placed in 
another bin and so on.  

Let the number of realizations associated with the two branches be N1+ and N,-.  
Next, the response variable is examined for realization associated with each branch 
of the tree. The number of realizations withy greater than a partition criterion (e.g., 
mean) is counted for both the branches. Let these numbers be L,. (L+,:5N1 ) and L, 
(L_ -_, _). The difference between L1, / N,+ and L, -/ N, - is a measure of sensitivity 
of y to x,. The procedure is repeated in each of these two subsets with the next 
influential parameter to be considered and so on until each of the influential 
parameters is considered. Note that, in this approach, the selection of the second 
parameter is dependent on the first and so on.  

While the parameter tree method is powerful method for dealing with a subgroup 
of parameters, it is limited to determining a relatively small number of significant 
variables because at each new branch of the tree, the number of realizations 
available for analysis decreases on average by half.  

2.10 Fractional Factorial Method 

Factorial methods are used in the design of experiments[ 10] and more recently, in 
testing of computer codes and models [I I]. The basic approach is to sample each 
of the parameters at two or three levels (e.g., a median value divides the parameter 
range into two levels) and then to run the model to determine the response. A full
factorial design looks at all possible combinations of sampled input variables; e.g., 
for two levels, there would have to be 2N samples, where N is the number of 
variables. Since the current problem has as many as 330 sampled variables, and 
each run requires several minutes of computer time, a full-factorial design in 
infeasible.  

Fractional factorial designs require fewer than 2N runs, but at the expense of 
ambiguous results. For example, a so-called "level 4" design for 330 variables 
requires 2048 runs. The results from such a level-4 experimental design can yield 
results for which the main effects of all variables are distinct from each other and 
two-way interactions of other variables, but can be confounded by some three-way 
or higher interactions of other variables. However it is possible to use other 

information generated in the runs to determine in many cases if the results of the 
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fractional factorial design are truly measuring the response to the variable or 
combinations of other variables.  

In general, the fractional factorial analysis was conducted in the following steps; 
(1) Develop a fractional factorial design for all variables in the problem taking into 
account the largest number of runs that cin reasonably be handled; (2) From the 
results of the preliminary screening, perform an analysis of variance (ANOVA) to 
determine those variables that appear to be significant to a specified statistical 
significance; (3) Further screen the list of statistically significant variables on the 
basis of information other than the ANOVA results; and (4) repeat the analyses 
with a refined set of variables and higher-resolution designs until results are 
acceptably unambiguous.  

3 TEST PROBLEM 

The test problem is the TPA Version 4.1 Code [12] for which the most influential 
input parameters are to be identified. The analyses have been conducted using the 
nominal case data set (i.e., includes the most likely scenario and excludes low 
probability and high consequence events), which does not include disruptive 
external events. The parameters sampled are the ones where a significant amount 
of uncertainty remains in their value or they have been shown potentially 
significant to estimating response (output variable) in the process-level sensitivity 
analyses. Out of 965 input parameters, 330 input parameters are sampled 
parameters, 635 are deterministic parameters, and there are numerous model 
assumptions. Only a few of the 330 sampled parameters contribute significantly 
to the uncertainty in response 

4 RESULTS AND ANALYSES 

This section presents the sensitivity and uncertainty analysis results generated using 
methods described in the previous section. Statistical results are treated separately 
from the non-statistical methods. The nonstatistical methods include differential 
analysis, Morris method, FAST method and the fractional factorial design method.  
Detailed description of the meaning of the parameters and their relevance to the 
performance assessment is outside the scope of this paper.  

4.1 Sensitivity Results from Statistical Methods 

This section presents the sensitivity analyses based on an initial screening by 
statistical analysis of a 4,000-vector Monte Carlo analysis of the nominal case. The 
statistical tests used in the screening were (1) the K-S test; (2) the Sign tests; (3) 
Single-variable regression including (a) t-test on the regression of the raw data and 
(b) t-test on the regression of the ranks of the data; (4) Stepwise regression of (a) 
raw data, (b) the ranks of the data, and (c) the logarithms of the data.  

For each of the statistical tests, the resulting regression coefficients were sorted, 
giving the highest values receiving the best score. Sensitivities that ranked below 
the 5th percentile in terms of either a t-statistic or F-statistic, were eliminated from 
consideration (score = -). The overall score for a variable consisted of two parts; 
(1) the number of times that the variable appeared in the six tests with a finite rank 
(0 to 6), and (2) the sum of the reciprocal of the rank for the six tests. A variant of 
the second test replaced the rank with its square, but the results did not change the
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conclusions. The top 10 ranks from the statistical screening that combines method 
1 to 4 are presented in the second column of table 1.  

4.2 Sensitivity from Nonstatistical Methods 

Results from Differential Analyses: Seveni baseline values were randomly sampled 
for each of the 330 parameters around which values were perturbed. Perturbations 
(+-1% of the baseline or local value) to the parameters in these random sets were 
selected so that the parameter values were maintained in their respectively defined 
ranges. The selection of random values yields calculations similar to one realization 
of a probabilistic TPA code run. Sensitivities calculated using arithmetic mean of 
the absolute values of S, (at 7 points) weighted by the standard deviation of x,.  
Then the x, 's were sorted in the descending order of the sensitivities to identify the 
influential variables. The top 10 influential input variables are presented in column 
3 of table 1.  

Results from the Morris Method: In Morris method, seven samples are collected 

for each random variable oy/a i. A 2316 x 330 matrix was generated and used in 

sampling input parameters to the TPA code. The 2317 realizations [(330 +1)x 7] 

produced seven samples for each ay/lx 1 , which were used to calculate mean and 

standard deviation for each 5/ox . Seven samples were chosen to be consistent 

with the differential analysis method.  

The greater the distance ay/axi for parameter xi is from zero the more influential 

the parameter xi is. Physically, a point with large values of both mean and 

standard deviation suggests that the corresponding input parameter has not only a 
strong nonlinear effect itself, but also strong interactive effects with other 
parameters on the response. Results are presented in column 4 of table 1.  

Results from the FAST Method: Conducting sensitivity analyses for all 330 
sampled parameters in the TPA code using the FAST method is impractical 
because it would take more than 40,000 realizations for only 50 parameters. Such 
a large number of realizations is needed to avoid aliasing among Fourier 
coefficients [8]. Therefore, preliminary screening was necessary to reduce the 
number of parameters evaluated with the FAST method. In this paper, the FAST 
method is applied to the 20 parameters identified by the Morris method. For the 
20 parameters, only 4,174 realizations are needed to avoid aliasing among any four 
Fourier amplitudes. To account for the range of an input parameter, each Fourier 
amplitude was multiplied by the standard deviation of the corresponding input 
parameter.  

Results from the FAST methods are somewhat limited by the initial selection of 
20 parameters from the Morris method.  

Results from the Parameter Tree Method: In the parameter tree approach, median, 
mean, and 90' percentile values were used for parameter distribution for the 
identified influential input parameters and the response variable. Using a median 
value cutoff criterion for the input and output variables, 143 out of 
4,000 realizations had all 5 of the influential parameters with values above the 
median. Of these 143 realizations, 128 had responses above the median value for
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all 4,000 realizations. These 143 realizations accounted for 24 percent of the 
population mean of responses. This analysis reinforces the notion that these are 
indeed influential parameters because 3.5 percent of the realizations account for 
over 24 percent of the mean from all realizations.  

The number of variables that can be captured by this method is limited by the 
number of realizations because each new branch of the tr cuts the number of 
samples by approximately half. In table I there may be reasonable assurance that 
only approximately the top 5 variables are significant, and the others are likely to 
be spurious.  

Results from Fractional Factorial Method: The initial screening with the fractional 
factorial method used a level-4 design for 330 input variables that needed 2,048 
runs. There were two levels for each of the input parameter models, chosen to be 
the 5' and 9 5 "h percentiles of the parameter distributions. The TPA code was then 
run for this experimental design to calculate the responses.  

Results from the set of 2,048 runs were then analyzed by ANOVA, using a 
probability cutoff of 0.05. The ANOVA yielded a set of 100 potentially influential 
variables. The results were refined to a list of only 37 variables by observations 
from other information generated by the code; for example, it was possible to 
eliminate all variables related to seismic failure of the waste packages by observing 
from other code outputs that there were no seismic failures in any of the runs.  

Using the reduced set of variables from the initial screening, we then set up another 
fractional factorial design with higher discriminatory power. We set up a level 5 
run for 37 variables that yielded the list presented in Table 1. With only 37 
variables, it was also possible to look at some of the two-way and 3-way 
interactions that were combinations of the main effects, and to make conjectures 
about 4' and higher order interactions of those variables that might be explored by 
additional factorial designs. With less than 10 variables from the second screening, 
a full factorial design would require only 1024 additional runs. This experiment 
will be run in the near future.  

5 CONCLUSIONS 

This paper describes a suite of sensitivity analysis techniques to identify model 
variable whose uncertainty and variability strongly influence model response.  
These techniques help focus attention on what are likely to be the most important 
to response and also can be used to identify deficiencies in the models and data.  

The sensitivity analyses employed in this work were conducted using the functional 
relations between the model input variables and the response variable embodied in 
the TPA code. Variety of statistical techniques (e.g., regression-based methods and 
parameter tree method) using a large set of Monte Carlo runs (4,000 vectors) and 
nonstatistical techniques (differential analysis, Morris method, FAST method, and 
fractional factorials) using 250-4,000 TPA realizations were used in this analysis.  
The parameter tree method allowed the determination of combinations of variables 
that led to the highest responses. The Morris method and the FAST method were 
used to determine what further insights could be gained from techniques 
specifically designed for nonlinear models.
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Results from the regression analyses were based on normalized, log-transforms of 
the normalized inputs and ranks. The normalized results weight each result equally, 
whereas the log-normalized results tend to overemphasize smaller doses. However, 
the log-transformed results generally provide a better fit for the regression 
equations. Results of the regression analyses are standardized to account for the 
ranges of the input variables and allow a more accurate ranking of sensitivity 
coefficients.  
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Table 1. Top 10 influential parameters from statistical and non-statistical 
analyses. Entries in the columns under each method represents numerical 
representation of the variable name.
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ABSTRACT 

A general method for identifying important parameters of complex stochastic models is presented.  
The method is applied to the analysis of a performance assessment model of a geologic repository. A 
small set of important parameters is derived and it is verified that this small set is sufficient to explain 
the nature of the model output.  
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INTRODUCTION 

For complex models incorporating multiple stochastic parameters, it is frequently helpful to determine 
the parameters that most influence their output, and values at which the parameters become influential.  
In this paper, we describe a novel method for accomplishing this task. This technique, referred to as 

the partitioning method, has greater power in identifying possible correlations among input and output 
variables than traditional methods such as linear regression, is computationally simple, and can be 
efficiently programmed.  

The motivation for the partitioning method was to develop a technique to analyze results of a model to 
assess the performance of a proposed geologic repository at Yucca Mountain, Nevada. The model, 
implemented in the Total-system Performance Assessment (TPA) code (Mohanty and McCartin, 
2000), has over 300 parameters (some of them correlated) that have assigned probability distributions.  
This code is executed in a Monte Carlo mode using the Latin Hypercube method to sample values of 
stochastic parameters. The main output of the code is a large number of realizations, each realization 

consisting of total effective dose equivalent (TEDE) to a reasonably maximally exposed individual as a 
function of time. The mean and confidence bounds for the TEDE as functions of time can be derived
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from these multiple realizations. Each realization is associated with a particular set of values of input 

parameters. In the United States, disposal regulations applicable to Yucca Mountain require that the 

peak of the mean TEDE within 10,000 years be below a specified value. In this paper, the partitioning 
method is used to identify the set of most important stochastic parameters affecting different attributes 

of the TEDE (simply referred to as the annual dose from here on).  

DESCRIPTION OF THE PARTITIONING METHOD 

An outline of the partitioning method is provided as follows. Partition the output realizations into two 

bins, one bin containing those realizations contributing the most to the mean annual dose (contributing 

realizations) and a second bin containing all the remaining realizations (non-contributing realizations).  

We explored four different approaches for defining "contributing" and "non-contributing" realizations, 
discussed later. Let A be the parameter whose importance is to be evaluated. Plot a cumulative 
distribution function and a complementary cumulative distribution function for the set of values of A 

that are associated with the contributing and non-contributing realizations, respectively. Let (xA, PA) 

be the coordinates of the intersection of these two curves. The probability value PA can be used to 
measure the importance of the parameter A. For example, the importance index for parameter A, zA, 
can be defined as 

ZA = 05-PA (1) 

High values of kzAI (i.e., kAIA>0.1) indicate an evident partitioning of parameter A into two subsets, 

related to the contributing and non-contributing realizations. The greater the value of kAI the more 

important is variable A. Values of kA I < 0.1 suggest a lack of partitioning and a lack of importance of 

the parameter A. If kZA I is large (i.e., k I1>0.1) and ZA is positive (negative), then there is a positive 

(negative) correlation between the parameter and the mean annual dose. Direct comparison of zAl 
yields the ranking of the most important parameters in the stochastic model. The intersection value xA 

also has an interesting interpretation. If IzA I>0.1 and z, is positive, then there is a greater likelihood of 

A>xA for contributing realizations and A<XA for non-contributing realizations. In this sense, the value 
of the intersection, XA, defines a partitioning value for the parameter A.  

Four methods were explored to define contributing and non-contributing realizations. Method 1 was 

selected to detect the influence of any given realization on the peak of the mean annual dose, ignoring 
the time at which the peak may occur. Let p-i be the maximum of the mean annual dose, computed 
without accounting for ith realization in the determination of the mean; i.e., 

X:.. max( ~ d• d(t 

n is the total number of realizations and dj(t) is the annual dose as a function of time for the jth 
realization. The function max has the usual mathematical meaning. The discriminating index 
associated with the tth realization, aj, is defined as 

P-i- PT (3) 
a1 P 

PT
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where PT represents the peak of the mean annual dose during the simulation time. For Method 1, the 

contributing realizations are defined as those satisfying I a,1 > a., where a,, is the mean of the set of I aq 

values (Y=1,2, ... , n). The non-contributing realizations are those for which I aj <- a.. It can be shown 

that a, - 1/n. For most of the realizations considered in this paper, ai is close l/n; thus, a. is also a 

number close to 1/n.  

Method 2 was selected to detect the influence of a realization on the peak of the mean dose, at the time 

at which the peak occurs. Let t T be the time at which the peak dose, pT, occurs. The discriminating 

index for the ith realization, bi, is defined as 

di (tT) - PT 
(4) 

PT 

d,{t) is the annual dose for the ith realization evaluated at time tT. The contributing realizations are 

defined as those satisfying bi > 0 and the non-contributing are all of the others. Since for the majority 

of the realizations considered in this paper the annual dose is negligible compared to the peak of the 

mean annual dose, bi is in general close to -1.  

Method 3 was designed to highlight influences on the mean dose over the complete simulation period.  

The norm in the space of continuous functions in the interval [0, t:x] is defined as 

-(5) 

IfI fii J(t)} 2 dt 
0 

tmx is the maximum time of the simulation period and fis a continuous function. Let d 1(t) represent 

the mean annual dose as function of time. The discriminating index for the ith realization, c,, is 

defined as 

2 (-4 (6) 
C 2' 

Chun et al. (2000) used an expression similar to Eqn. 6 to measure changes in output cumulative 

distribution functions. Let c. be the mean value of the set of cj values (j=1,2,...,n). The contributing 

realizations are selected as those for which c, > cp and the non-contributing realizations are all of the 

others. Since for the majority of the realizations considered in this paper the annual dose is negligible 

compared to the mean annual dose, c, is in general close to one.  

Method 4 was also designed to highlight the influences on the mean annual dose over the complete 

simulation period. The discriminating index for the ith realization, Z, is defined as 

2 (7) 

d-L is computed as 
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(8) 

- n l0 j=1 
jfi 

The contributing realizations are defined as those having values of Z greater than the mean of the set 

of Zj values (--1,2,...,n). It can be shown that F =c1/n2 , provided that the number of realizations, n, is 

large enough. Thus, Method 4 is equivalent to Method 3; the yield identical results if the number of 
realizations is large, as is the case in this paper.  

RESULTS 

Data generated with 4000 realizations of the TPA Code Version 4. lj were used for the analyses. In 
this version of the TPA code, 330 stochastic input parameters are considered in the non-disruptive base 
case. In general, the discriminating indices (i.e., a,, b,, and c,) defined above tend to be close to a 
constant value (i.e., 1/4000, -1, 1, respectively). Thus, linear regression between the discriminating 
index and parameter values yields a slope that is not clearly different from zero. In other words, linear 
regression cannot be used to identify a correlation between parameter values and the discriminating 
index. On the other hand, the partitioning is capable of detecting correlations, if they exist.  

The importance indices, zA, were computed for all of the stochastic parameters using the three methods 
defined above (methods 3 and 4 are equivalent). The parameters were sorted according to decreasing 

values of kZA I. The most important parameters are those with highest values of IZA . The list of the 

most important parameters for 10,000 year and 100,000 year realizations are included in Table 1.  

TABLE 1 
LIST OF MOST IMPORTANT PARAMETERS 

Parameter 100,000 10,000 Corne Meaning 
yr yr nlted I 

Preexponenial.SFDissolutionModel2 x x Factor modulating the spent fuel dissolution rate 

AlluviumMatrixRD_SAVNp x x CI Retardation coefficient for Np in the alluvium 

SubAreaWetFraction x x -B, Related to the amount of water at the drift 

AAI1_I[C/m2/yr] x Corrosion rate of Alloy 22 

AreaA verageMeanAnnualnflltFationAtStart x x B 2  Mean annual infiltration for current climate 

AflnviumMatrixRD_SAV_Pu x x C2 Retardation coefficient for Pu in the alluvium 

AfluvtumMatrixRD SAVAm x x C2 Retardation coefficient for Am in the alluvium 

AnluviumMatrixRJ_SAV_U x x C 2  Retardation coefficient for U in the alluvium 

DistanceToTuffAnlnvuminterface[km] x x Related to location of tufl7alluvium interface 

WastePackageFlowMultiplicationFactor x x Related to the amount of water for release 

MatrixPermeabilityTSw_[m2] x x B2  Matrix permeability for Topopah Spring tuff
welded 

WellPumpingRateAtReceptorGroup20km x x Well pumping rate for farming receptor group 
[gal/day]* located at a distance greater than 20 km 

AlluviumMatrixRD_SAV_Th x C 2  Retardation coefficient for Th in the alluvium 

FractionOfCondensateTowardRepository[ x x Fraction of condensed water moving towards 
l/yr] the repository 

ImmobilePorosityPenetrationFractionST x Effective fraction of saturated rock matrix 
FF accessible to matrix diffusion 

MatrixKDUCF_Am[m3/kg] x Matrix sorption coefficient (Upper Crater Flat) 
for Am 
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* In the TPA Code Version 4.1j, non-disruptive base case, the pumping rate is sampled from a probability distribution 

function. United States regulations for the proposed Yucca Mountain Site require that the pumping rate of well water 

considered for performance assessment analysis be a particular fixed value. Future versions of the TPA code will be made 

consistent with this recent regulatory requirement.  

The parameter names in Table 1 are the same as those used in the TPA Code. The three methods 
coincide in that pre-exponential factor modulating the rate of spent fuel dissolution is the most 
important parameter (listed as the first entry in Table 1). If a parameter ranked within the first 20, for 

at least two of the three methods, such a parameter was included in Table 1. The three methods 
coincide in the top nine (five) parameters -indicated in bold'(italic) font in Table 1- for 100,000 
(10,000) year simulations, although the ranking is slightly different from method to method. The 18 
(17) most important parameters for 100,000 (10,000) year simulations are indicated by the label x 
under the 100,000 (10,000) year column in Table 1. In the non-disruptive base case, the parameters 
labeled with B2 and C2, under the Correlated column, are correlated to the parameters labeled with B1 

and C1, respectively. Parameters labeled with B2 and C2 appear important because they are correlated 
to the parameters labeled with B] and C1, as is shown later. Several runs of the TPA code were 
completed to verify that the parameters in Table 1 are sufficient to reproduce the variance of the annual 
dose and the magnitude of the mean annual dose. The results are reported in Figure 1.  
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Figure 1: Plots of the 5'h, 50"h, and 95'h percentile of the annual dose versus time.  
(A) Base case, and cases 1 and 2.  

(B) Cases 3 and 4. See main text for the definition of cases 1 to 4.  

Figure 1 includes 5th, 50th, and 95th percentile curves for the annual dose versus time. Figure 1-A 
presents results for the base case and cases 1 and 2. The thick lines are associated to results of the 
non-disruptive base case (500 realizations). For the case 1 (thin lines), the important parameters in 
Table 1 were sampled stochastically (300 realizations) in the range defined in the base case, with the 
exception of those parameters labeled with B2 and C2. All of the other parameters, including those 
labeled with B2 and C2, were fixed at their mean values. A total of 16 parameters were sampled. For 
the case 2 (dotted lines in Figure 1-A), the parameters in Table 1 in bold or italic font, except those 
labeled with B2 and C2, and the parameter DripShieldFailureTime[yr] were sampled stochastically 

5

SolubilityNp[kg/m3] x Solubility of Np 

InterceptionFraction/lrrigate x x Fraction of irrigation interception 

DefectiveFraction OJWPs/cell X Related to the number of waste packages 
assumed initially failed 

DripShieldFailureTime[yr] x Time of failure of the drip shield 

FractionOfCondensateRemoved[ 1 /yr] x Fraction of condensed water not intersecting 
the drifts 

RntoDetermineFaultOrientation X Random number to determine fault orientation



(300 realizations). All of the other parameters, including the B2 and C2 parameters, were fixed at their 
mean values. Thus, a total of 8 parameters were sampled for the case 2. The confidence intervals for 
the base case and cases I and 2 are very similar, with relevant variations only in the 5th percentile 
curves. It is concluded that 8 parameters suffice to account for the gross variance of the annual dose.  
The 50t and 95' percentile curves compare within less than an order of magnitude for the three cases.  

Furthermore, the mean annual dose curves (not included in Figure 1) are almost the same for the three 
cases (they differ by much less that an order of magnitude at all times for the three cases).  

Figure 1-B, includes results for cases 3 and 4. For case 3 (thick lines), all of the important parameters 
in Table 1 were fixed at their mean values (a total of 22 parameters) and all of the others were 
sampled. Case 4 (thin lines) is the reverse to case 2; the 8 parameters of the case 2 were fixed at their 
mean values, and the remaining 322 input parameters were sampled. Figure 1-B summarizes 300
realization runs.  

In Figure 1 it is noted that the variance in the annual dose deriving from the variance of 322 

parameters is small compared to that resulting from the variance of the 8 most important parameters 

identified in cases 2 and 4. Some of the parameters (those with labels B2 and C2 in Table 1) are ranked 
high by the partitioning method because they are correlated to important parameters. Method 3 was 
capable of ranking the parameter associated with the failure time of the drip shield within the highest 

six parameters, because it was designed to identify parameters affecting the annual dose in the 

complete simulation period, as opposed to methods 1 and 2, which focus on the peak of the mean 
annual dose. The partitioning method succeeded in identifying a small set of parameters controlling 

the variance of the annual dose.  

CONCLUSIONS 

The partitioning method for identifying important parameters was discussed. Although there was a 
direct motivation to analyze the performance assessment model of a geologic repository, the method is 

quite general and can be applied to the analysis of any data in which the output depends upon 

stochastic input parameters. In the particular example of the geologic repository, the partitioning 

method indicates that the mean annual dose rate is influenced most by parameters controlling the rate 
of release of radionuclides, corrosion rates of container materials, the amount of water available for 
radionuclide transport, and retardation coefficients for neptunium.  
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