Industry Views on Fire Protection SDP Changes

Fred Emerson
July 9, 2002

NE

Topics

- Goals for meeting
- Industry position
- Previous industry comments
- Recommended actions

NE

Goals for Meeting

- Staff understanding of industry positions and rationale
- Agreement on pathway for revising SDP
- ✓ Agreement on interim measures

NÉI

Industry Positions

- Revise SDP to address industry concerns
- Provide improved bases for determining degradation of DID elements
- Provide clear guidance for interim SDP use

Industry Position

- Need revised SDP:
 - Risk informed
 - Allows use of plant PSA
 - Addresses all DID elements
 - Useful to inspectors and licensees
 - Effectively screens out low significance issues
 - Credits compensatory measures and manual actions
 - Consistent with other SDPs
 - Transparent use

Industry Position

- Improved basis for determining degradation of DID elements
 - Current guidelines in IM 0609F-2 are unnecessarily conservative
 - Specific recommendations made in NEI letter of 10/18/01

Industry Position

- Interim safety significance determination needs clear NRC guidance
 - Emphasis on transparent use and clear stafflicensee communication
 - Improve ability to credit non safe shutdown equipment to avoid core damage

Previous Industry Comments

- NEI letter October 18, 2001
 - Unnecessary complexity and subjectivity in fire protection SDP
 - Detailed comments provided
 - Address excessive application of resources to inspections
 - Pursue use of self-assessments to reduce inspection resources

Recommended Actions

- Develop new SDP with stakeholder input
- Revise IM 0609F-2, with stakeholder input
- Develop clear guidance for interim use of current SDP, with stakeholder input
- Agree on concrete steps to pursue increased use of self-assessments

Proposed Approach

 $\Delta CDF = F_{f} * P_{g} * P_{gD} * P_{AE} * P_{DM} * \Delta P_{CCD} (per r.y.)$

Fr - frequency of any size fire

 $P_{\rm g} =$ fire size parameter (more realistic location and size)

PED = probability of equipment/cable damage given substantial fire

PAS - probability that automatic suppression won't control the fire

 $P_{\rm BM}$ _ probability that detection and manual suppression won't control the fire

 Δ $P_{\rm CCD}$ = change in conditional probability of core damage given fire-induced failure(s)

ŊÉI

Proposed Approach

Prevention Det/Suppr SS Core Damage $\Delta \ \mathrm{CDF} = \left\{ \mathbf{F}_{\mathrm{f}} \ ^{\bullet} \mathbf{P}_{\mathrm{E}} \right\} \ ^{\bullet} \left\{ \ \mathbf{P}_{\mathrm{BM}} \ ^{\bullet} \mathbf{P}_{\mathrm{AE}} \right\} \ ^{\bullet} \left\{ \mathbf{P}_{\mathrm{ED}} \right\} \ ^{\bullet} \left\{ \ \Delta \ \mathbf{P}_{\mathrm{CCD}} \right\}$

DID element

Prevention

Ignition frequency; fire severity; scenario development

Det/Suppr

Degradation ratings; brigade performance evals

Safe Shutdown

Berrier degradation; spurious acts

Core Demare

Credit for remaining mitigation capability; credit for ASSD capability and manual actions

Pre-screening

- Application of prevention or safe shutdown considerations
 - Screen out if fires are very low probability of if there is no safe shutdown or cable present