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Fig 1. N ie%% of the .AVR-evperimental pover station vkth the high temperature reactor

rounded b% a safetr containment and a concrete shell 

j150 cm thick) The concrete shell i- simultaneousl,, the 

reactor building and the outer biological shield

The charge and discharge of fuel elements is per

formed continuously duritig the reactor operation. so no 

excess reactivit, is necessar. to compensate the fuel



Types of HTGRs 

" Pebble Bed Designs 
,o Pebble: -15,000 fuel particles in a 6 cm graphite ball 
, Pebble bed: Like a gum ball dispenser. Forced helium 

flow between -330,000 fuel pebbles.  
• Continuous refueling: Pebbles discharged after single 

pass (OTTO) or multiple passes (MEDUL) thru core 

" Prismatic Block Designs 
, Fuel particles incorporated with carbon binder into 

compacts in replaceable, stacked graphite blocks.  
, Channels for helium coolant flow.
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HTR PEBBLE CROSS-SECTION CUT-AWAY COATED PARTICLE

FIG 3 8. PBMR fiuelparticle and sphere

TABLE -3 5 PBMR FUEL CHARACTERISTICS 
Kernels: 

Ma,'e&ial of Kernels 0 

Enr:chment - 7.8-8.5% (":U/U) 
Densit' 10.4-10.75 g/cm' 
Diameter 500 

Coated Particles_, 

Outer Diametcr of Coated Particles 1-920 pm 

Material of Coatings - - CIC/SiC " 

Dznsitx 1-1.05/1.90/3.18/1.90 Lz'cm' 

Th:ckness [95/40/35/40 yim 
Spheres- I 

Diameter 160 mm 

Diameter of Fuel Zone 50 mm 
Density 1.75 g/cm
Thermal Conductivity (Temperature' and Irradiaton 0.17-0.39.WY/cm" 'C 
Depeýident) 
Graphite Material (Matrix Outer Shell. and Graphite A3 (proposed) 

Spheres) 
Loading

H-leav) Metal Loading 9 g/sphere c 

No of Fuel Particles - 15 000 n./sphere K

contract, has started laboratory scale work including the manufactuie of'fuel 
'ork is to support the external technology that is being obtained [3-2].

kernels. This

3 3 2 2. Pov er conversion unit [3-12] 

The PCU (Fig 3.9) includes the equipment necessary to convert the heat of the hot 
helium from the reactor into electricity.
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CERAMIC FUEL RETAINS ITS INTEGRITY UNDER 
SEVERE ACCIDENT CONDITIONS

Pyrolytic Calbon 

Silicon Carbide 

Porous Carbon Bufter 

Uranium Oxycarbide 

TRISO Coated fuel particles (left) are formed into fuel 
rods (center) and inserted into graphite fuel elements 
(right).

P
I.

PARTICLES COMPACTS FUEL ELEMENTS

+ GENERAL ATOMICS
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Fig. 3. Schematic diagram of the fuel handling equipment.  
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3.1. Fuel elements 

Besides the demonstration of long term reliability of 
the reactor components, the large scale test of .the 
different kinds of fuel elements during reactor operation 
is a main tasks of the AVR. At the'present, there are 
alltogether twelve different kinds of fuel elements in the 
AVR, distinguished by their enrichment, ratio of 
uranium to thorium, chemical comijposition, size and 
,qtiality of the fuel particles.  

Due to the significance of the fuel elements testing 
programme, a spatial review is given in a separate 
article in this issue. -

production of power is nevc 
purposes. The AVR fuel chai 
of its kind, so no knowledg, 
phite spheres in helium gas 
nents was available prior to i 
Naturally, this device has bee 
has nevertheless been demor 
cations can be removed with 
to the staff, and without a 
production. But since this eqi 
containment (in a low radia 
has to be limited to minimiz 
staff which received rigorous 

3.3. Graphite and carbon bloc, 

It is not yet possible to ins 
or carbon block installation 
devicesi, so to this date not st• 
tion can be-made. It may be 1 
samples from the reflector b" 
vices which pass through ti 
tubes. The operation of the p] 
changes in the ceramics insta] 
investigation of all these con 
after plant decommissioning.  

3.4. Shutdown rods 

The shutdown rods are ins 
the core by ihe weight of a cot 
of removal and insertion is co 

None of the rod mechani., 
pairs so far. Only as a preca 
transmission, and siphon glanc 
ment) were replaced; 'the gear 
indicators were:improved. Th 
the rods themselves are in pern 

3.5. Steam generator 

By June 1983 the total ope 
generator (fig. 6) was 93000



High Temperature Gas Cooled 
Reactors - Defining Features 

" Fuel 
SCeramic coated particles of oxide or carbide fuel 

- BISO coated particles 1 -, 1 
- TRISO coated particles since early 1980s 
TRISO particles retain fission products up to 16000C 

" Moderator, Core Structure, Reflectors 
Graphite - large heat capacity, sublimes at 38000C 

" Coolant 
• Helium - chemically and neutronically inert 

SCore average outlet temperatures up to 9500C

I I
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History of HTGR Operation (1)

- Dragon - United Kingdom, 1966-75 
SBlock type, 20 MWt, 750 0C Outlet

N AVR - West Germany, 1967-88
Pebble bed, 46 MWt,(15 MWe), 950'C Outlet 

i Peach Bottom 1 -United States, 1967-74
Blodck type, 115 MWt (40 MWe), 725°C Outlet

m Fort St: Vrain - United
SBlock type, 840

States, 1976-89
MWt (330 MWe), 785 0C Outlet

"* THTR West Germany, 1985-89
Pebble bed, 750 MWt (300 MWe), 7500 C Outlet

.if
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History of HTGR Operation (2) -~~.fllfl~f~flfl ifl &lflflSS.....................~...  

" HTTR - Japan, 1998-present 
Block type, 30 MWt, 850-950 0C Outlet 

"- HTR-10 - China, 2 0 00-present 
Pebble bed, 10 MWt, 7000C Outlet

•s
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of 0.62 was obtained. This s

To build up the specific configuration of the initial core, a special loading facility was developed. Us- .  
ing this facility, the spherical elements were loaded by gravity into the core from the 48-m platform above 
the prestressed concrete reactor vessel. After pass
ing through headers of loading pipes for the dif
ferent types of spherical elements, the elements passed 
through release valves, pneumatic decelerators, and a telescopic pipe into the carousel (Figs. I and 2), which 
distributed them to the 15 individual loading pipes (3' 
for the inner core zone).  

In the first step of the nuclear commissioning pro- x_____________________ gram, the core was filled with elements to such a level 
as to reach criticality with no control 'rods inserted.  During the loading process, the inner and outer core, ---;.  

r 

Fig. 2. Schematic vie 
.  

Number of i MEWN 

loading I 
layers 

----loading 4 , 'layers 

H orizon 'tal 
"4 loading' 5 S ' " l a y e r s 3 •: , 

Discharge Fig. 1. Vieik of THTR pebble bed'during loading, sho\\- tube 
ing core rods. carousel s\\ itch. and loading tube,. FiL,3. loadinQ nf TI-T'



New U.S. Interest in Modular HTGRs 

* Pebble Bed Modular Reactors 
. Exelon with ESKOM, IDC, and BNFL: PBMR 

- Demonstration module planned in South Africa 
- NRC pre-application review started 

, MIT & INEEL - MPBR 
- Proposing a "license by test" reactor in Idaho 

"* Gas Turbine - Modular Helium Reactor 
DOE/GA: Russian Pu-burning GT-MHR 

, General Atomics: LEU GT-MHR 
- Request for NRC pre-application review



Other HTGR Design Efforts . ..... ... .. ... ... ... .. .. ........... .  

"* Japan's Helium Turbine HTGR Designs 
, 300 MWt Annular Core Pebble Bed HTGR 

- Electricity, steam co-generation, water desalination 
, 600 MWt.Annular Core Prismatic Fuel HTGR 

"* Netherlands' ACACIA Plant 
, 40 MWt-Pebble Bed HTGR with .Helium Turbine 

- Electricity, steam co-generation



M'ODULAR H/ELI/UMiM REACTOR REPRESEN1TS A FUN/DAM/ENTAL 
C IAIN/E iN/ REAACITOR DESIIGN/ ANID SAFETY PHW/IL S)OPH/Y

--'
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Modular HTGR Design Concept 

" Smaller HTGRs designed to withstand depress rized loss of forced coolng (DLOFC) 

SPassive "Conduction Cooldown" through vessel wall 
SMaximumnfuel, temperature < 16000 C 

" Key Modular HTGR Design Features 
, Lower power density, high'thermal capacity 

Tall, slender core and vessel
• Annular-core in some designs"' 

- Typical Module Output 

SPrismatic block: 600 MWt (250 MWe) 
SPebble bed: 200-270 MWt (85-110 MWe)



Key MHTGR Safety Goals/Concepts 

"* Safety does not depend on presence of coolant 
, Passive heat removal prevents fuel damage in 

depressurized LOFC events 

"* Early insertion of control or shutdown rods not 
required in accident scenarios 

, Passive shutdown thru negative temperature feedback 

"* No inherent mechanisms for runaway reactivity 
excursions or rapid power transients 

"* Severe air ingress leading to "graphite fire" 
effectively precluded by design



Past Modular HTGR Design Efforts 

"* HTR-Module - West Germany, 1979-90, 
- Pebble bed, 85 MWe, Steam cycle, Process heat 

"O'DOE/General Atomics MHTGR,. 1985-95 
- Block type, 250 MWe, Steam' cycle 

- NUREG-1338', 1989-(Jerry Wilson, Tom King, Pete Williams)'Y., 
- Draft update to NUREG-1338, 1995 (Jack Donohew, NRR) 

- 1994 Changed to Helium turbine, 300 MWe GT-MHR 

"* DOE/CEGA New Production MHTGR, 1989-92 
- HEU with tritium producing Li targets, plus containment.



ANNULAR REACTOR CORE LIMITS FUEL 
TEMPERATURE DURING ACCIDENTS

REPLACEABLE CENTRAL 
& SIDE REFLECTORS ,

36 X OPERATING 
CONTROL RODS

BORATED PINS (TYP)CORE BARREL

ACTIVE CORE 
102 COLUMNS 
10 BLOCKS HIGH 

PERMANENT 
SIDE 
REFLECTOR

REFUELING 
PENETRATIONS 

•> 12 X START-UP 
CONTROL RODS 

18 X RESERVE 

SHUTDOWN 
CHANNELS 

... ANNULAR COREE USES EXJSTI/NG TECHNOLOZ6Y 
+ GENERAL ATOMICS

L-199(10) 
6-9-95



FIG. 3.6 Reactor layout.
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Fig. 2 Main Power System 
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22 As nuclear data library the 43 group MUPO-Library 5 13] has been 
used in DITO 14] with updates from ORIGEN 15] arriving now at a total of 77 isotopes. As an alternative it is planned to inte- I Ira . .11 
grate the WIMS-D Library 16] into the system. First calculations 
indicate that predictions with MUPO and WIMS-Libraries show a 
different sensitivity to spectrum and leakage effects during 
buckling iterations.  

One important point in the HTR model describes the movement of the fuel elements in nine channels of near cylindrical shell 
shape (Fig. 5). This mesh net is generated in FLIMO and trans
formed in MAGI to r-z-phi geometry. It contains 139 burnup re
gions where the fuel reshuffling and recycling has to take place.  
The burn up module has to be fed with one group fluxes obtained from the four group flux solution from the CITATION code [7].  
C:TATION solves the 3 dimensional model diffusion equation. Fig.  6 and 7 show axial neutron'fluxes and radial temperatures for two 
different reloading stages. A schematic diagram of the two main 
blocks of HTR-2000 are shown in Fig. 8 with the buckling itera
tion between spectrum and diffusion calculation.  

To follow selected fuel elements within the reactor during'its 
burn up and movement in the core as realistically as possible a 
further development beyond the 77 isotopes of HTR-2000 has been undertaken starting from the Isotope Generation and Depletion 
Code ORIGEN 15]. This code has been named HTROGEN. It can solve 
the burn up equations for 1156 nuclides including such transmu
tations as 

(n, a)-, (n, y)-, (n, p)-, (n, 2n)- and (n, 3n}-processes.  

The code works with three groups of neutron energies and has to be fitted to give the same reaction rates as the four group pic- ' 
ture in HTR-2000 (Fig. 9).  

For licensing purposes the KFA is obliged to use HTROGEN under 4' safeguard aspects to calculate all fuel inventories and other 
radioactive materials. 3, 

In an earlier test HTR-2000 and HTROGEN were used sucessfully to follow the reactor operation since September 1982 up to the shut- 5 down in 1988 18]. It provides results for gamma-activities, shut 
down heat and the build-up of heavy metal isotopes beyond pluto
nium.  

TOMKU 

For the determination of the effective potential scatter cross 
sections in HTRs with spherical fuel elements of different types the program TOMKU was written. According to the reactor model of FIG 6, the AVR 9 different fuel types in 10 burn up groups are catered 
for covering 25 spectral zones. Separate calculations are perfor
med for the Thorium 232 and Uranium 238 resonances.
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Vessln Model Development and Integration

* S S 
* S S 

* S 
* S S 
* . S 

Uniform bed configuration and flow distribution Non-unifor'm bed configuration and flow distribution

* Real flowis.3-dimensional. With eddies for separation 
* For steady state simplification may be possible.  
* Use of quasi-steady ,closure relationships for accidents 

and non-uniform configurations has'not been 'Veiified

Los Alamos 
Texas A&M UniversityUnsolicited Proposal for PBMR Support to NRC 

Please contact: D. V. Rao (505) 667-5098 for 
r'-,,rporting Information, Including Cost Estimates



Fig. 6 Loss of Coolant Event 

265 MW PBMR Ref. Core: Temperature Distribution during a DLOFC 
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FUEL TEMPERATURES REMAIN BELOW DESIGN 

LIMITS DURING LOSS OF COOLING EVENTS

2 4 6 

Time After Initiation (Days)

.. PASSIVE DESIGNI FEATURES EN/SURE FUEL REMAIN/S BELOW 1/6000c

k +GENERAL ATOMICS
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0 

a, 
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a) 
C
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L-340(3) : 
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I safely concept oJ the H-TR-Module 339 

V *100% 
VOtO 

70 

60 

30 ! '> 12000," 

20 

10 

0 20 40 60 80 100 120 140 160 180 200 -h 

h 

Fig. 3. Time-dependent fraction of fuel element for various 
temperatures (depressurization with core heat-up).  

Rupture of the line is followed by the complete 
depressurization of the primary circuit until it has re
ached the same pressure as the environment after several 
minutes. In order to prevent an inadmissibly high inter
nal pressure in the reactor building, the primary coolant 
is discharged to the environment via pressure relief 
openings with flaps in the reactor building.  

The environmental exposure caused by the radioac-



TRAC Bench Marking: 
SANA Test Data

Los Alamos 
Texas A&M University

N

.. -

Unsolicited Proposal for PBMR Support to NRC 
Please contact: D. V. Rao (505) 667-5098 for 
1z, nporting Information, Including Cost Estimates
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Fuel is Key to MHTGR Safety Case 

"* Fuel Fabrication Quality 
Low fraction of initially defective particle coatings 

. Low U contamination outside coatings 

* Fuel Performance 
, Fission product retention in intact coated particles 

Very low coating failure and release rates 
- During irradiation 
- During maximum heatup accidents

F



TRISO Coated Fuel Particles 

"I Uranium oxide kernel: 0.500 mm dia 

"I Porous carbon buffer layer: 0.095 mm,, 
Serves as fission gas plenum 
Isolates kernel from gas-tight coatings 

I Inner high density pyrocarbon layer: 0.040 mm 
SProvides foundation for silicon carbide 

" Silicon' carbide layer: 0,035, mm 
( Contains fuel andfission products 

"I Outer high density, pyrocarbon layer: 0.035 mm 
SProtects silicon carbide
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Fractional Fission Product Release 
*1 10 IIAg 

- largest fractional release 
C,- .. heating time independent 

S- 250 day half-life 
"plates out on colder graphite 

surface 
o jj - greatest migration through 
S:.silicon carbide layer 

1 Cs 
i. .tY+'-."- time/temperature dependent 

-.. "., -fractional release significant after 
-.---- .breakdown of silicon carbide 

17 layer 

-0 .O 2 41Tf R Maximum additional fractional 
V release due to core heat-up: - 10-5



H. Nabielek et al. / Development

100 

10-1 

10.2 

0o- 5 

106 

0o- 7 

10-8 

10-9 

10-10 
107

0

~Relaefom bare

Release from a typical AVR element 

-•-HTR fuel elements irr.1 in DIDO 
I I

10', 20 30. 40 
Heating time at 16000C

51

of advance 

'The 
"-16000( 

.tude (fi 
exposec 
AVR a; 
speciall1 
ments i 
taining 
which -1 

J131 ", I was 
sh6wn I 
10 h al 
35°C p 
1800 C 
demonsi 
iodine r

0

Fig. 9. Iodine release during heating at 1600 * C. Bare U0 2 , as 
is used in mostreactor systems, .releases all iodine in the fuel
after 15 -h.The coated pafticles-used in the HTR retain iodine 
complietly upto 1600 0 C. The'heting test• of AVRý-irradiated 
fuel ýek'mentsýs'0ow 'the'level of crosg-sontamination- from old' 
fuel elffiient types ;iith' high levelsNof heavy metal contamina / 

Stio n . c

10-3 

10-4 

CU

16 

C -C

I

•mI

208



R. Kasten / The safety of MHTGRs
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Fig. 2. Fission-gas-release results accompanying heat-up of 
irradiated AVR fuel pebbles in temperature-ramp tests of 

50°C/hour up to 25000C [1,2].  

fuel temperature, up to 2500'C. Radiologically, the 
most significant nuclide is iodine, and it is released as a 
gas from MHTGRs. It has been shown experimentally 
that krypton release from fuel particles is a conserva
tive measure of iodine release; since krypton release is 
easier to measure, it is measured to indicate iodine 
rele~ae. FRC7 meq-iirid krvntnn fikinn-anq rPln¢r1c
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demonstrates the 
iodine release [18].
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Fig. 4. Typical temperature transient following a loss-of
coolant accident in a high-performance MHTGR, with the 
passive heat removal system operational (temperatures in

cludes the maximum expected uncertainties) [4].
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at 1600 and 1800°C, respectively [1,3].
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Fig. 3. Fission product release during temperature-ramp heat
ing of TRISO-coated pairticles [1]. 

fission gases are being retained within the coated-fuel 
particles to very high temper'atures (~ 2200'C). Figure 
3 also shows that silver is not retained well at high 
temperatures, and diffuses relatively raipidly' hrough 
SiC and pyrocarbon ;at'-temperatures above' - 1600°C.  
However, silver hasa very low fission yield, and also 
condenses readily on the "cold".surfaces outside the 
reactor core; consequently, it does not' constitute a 
radiological hazard to the public. Cesium is much more 
a radiological hazard, but is essentially retained by fuel 
coatings up to about !2100'C for tens of hours based on 
the ramp tests of fig. 3 (these tests were carried out 
over a period of ~ 25 hours). The krypton release 
results are typical ofLfission gas release; the Sr 'ahd -Riiu 
release values are extremely low except at very -high 
temperatures such as 25000C. " 

The maximum fuel temperatures (including uncer
tainty estimates)in MHTGRs under a loss of coolant 
accident is illustrated in fig. 4. As shown, the peak 
temperature of about 1600'C occurs- for a period of
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4. LICENSABILITY ISSUES 

4.1 Introduction -

The staff performs preapplication reviews of an advanced reactor design in 
part to identify issues that may impede licensing the design. These 
licensability issues are where the design departs significantly from what NRC 
has accepted in the past or where changes to the design to resolve a staff 
concern may fundamentally'alter the proposed design. These issues need to be 
identified at an early stage, so that the designers can address the issues in 

an application to NRC for design approval: the preliminary design approval 
(PDA), final design approval (FDA), or standard plan design certification 
under 10 CFR Part 52.  

In this chapter, the staff-discusses the licensability issues for the MHTGR 
design. The identification of these issues was discussed in the previous 
chapter (Chapter 3). The-references in this chapter to the evolutionary 
light-water reactors (LWRs) and passive advanced LWRs are references to the 
plants listed,'in Section 5.1 of this report which have gone through or are 
going through' design approval reviews by the staff.  

4.2 MHTGR Licensability Issues 

The nine licensability issues for the"MHTGR desig'n are as follows: 

* Fuel Performance (Section 4.2.1) 
* Fission" Product Transport-Computer Codes (Section-4.2.2) 
* Source Term (Section 4.2.3) 
* Unconventional Containment-(Section 4.2.4) 
* Safety Classification and Regulatory Treatment of Non-Safety-Grade 

Systems,(Section 4.2.5) 
* Completely Passive System for Ultimate Heat Sink (Section 4.2.6) 
* Reactor Vessel Neutron Fluence Embrittlemeint (Section 4.2.7) 
* • Reactor Vessel-Elevated Temperature Service (Section 4.2.8) 
* Applied Technology Designation,'(Section 4.2.9) _9 

4.2.1 Fuel Performance -' 

The proposed fuel for the MHTGR is the TRISO multicoated microspheres Which 

are discussed in Section 4.2 of-the Prelimiinary Safety. Information Document 

(PSID) ([DOE]L-HTGR-86-024). It is essentially the same fuel as that approved 

for Fort St. Vrain, although the Department of Energy (DOE) has considered 

additional sealcoats on the TRISO structurejfor.-the MHTGR. -A picture of the 

fuel, from the DOE presentation Of June 4-6, 1991, listed inSectionil 3'of 

this-report, is shown in Figure 4.1.: The fuel particles are formed into 

small, cylindrical compacts in the manufacturing-process aid-the compacts are 

in'large prismatic graphite blocks as shown in Figure 1.2 of this report.  

Fueled blocks and unfueled, or reflector, prismatic blockswill make up the 

core inside the reactor pressure vessel.
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The PBMR Project in South Africa 
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* Eskom 
began investigating in 1993 
Pre-Feasibility Study in 1995 
Techo-Economic Study in 1997 
Engineering Design phase by 1998 

- Construction Activities by mid 2001 
, With Industrial Development Corporation have 50 % 

of shareholding in the project 

* Two International Companies Have Invested 
PECO Energy = Exelon 

, British Nuclear Fuel (BNF)
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