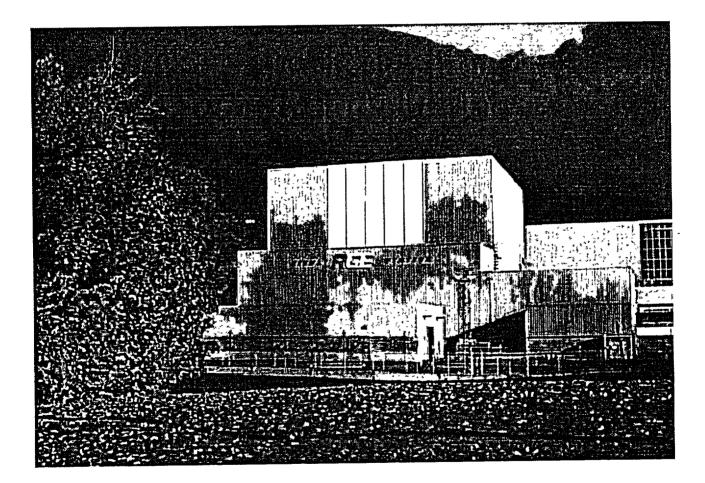

### **R. E. Ginna Nuclear Power Plant**




### **Application for Renewed Operating License**

### Volume 2

Section 3 – Aging Management Review Results Section 4 – Time-Limited Aging Analysis Appendix A – UFSAR Supplement Appendix B – Aging Management Programs Appendix C – Not Used in this Application Appendix D – Technical Specification Changes



### APPLICATION FOR RENEWED OPERATING LICENSE



**R. E. GINNA NUCLEAR POWER PLANT** 

#### 3.0 AGING MANAGEMENT REVIEW RESULTS

For those structures and components that are subject to aging management review, paragraph 54.21(a)(3) of the license renewal rule requires demonstration that the effects of aging will be adequately managed so that the intended function(s) will be maintained consistent with the current licensing basis for the period of extended operation.

This chapter describes the results of the aging management reviews for structures and components that were identified in Chapter 2, Structures and Components Subject to Aging Management Review.

#### 3.1 Review Methodology

The overall process by which aging effects requiring management were identified and evaluated is summarized in this section.

#### 3.1.1 Determination of Materials of Construction

Material(s) of construction were identified for all systems, structures and components subject to aging management review. Sources of information used to identify materials of construction included original Westinghouse and Gilbert Associates, Inc. (GAI) equipment and material specifications, vendor technical manuals and drawings, fabrication drawings, piping and instrument drawings, and piping line specifications. Field walkdowns were also used to identify/verify materials of construction for some components.

#### 3.1.2 Determination of Operating Environments

Internal operating environments were defined by fluid medium and chemistry (i.e., treated water, raw water, lubricating oil and fuel oil, air/gas, etc.), service temperature, and condition of fluid flow. External environments were defined by plant location, including temperature and humidity (i.e., indoor with no air-conditioning, outdoor with exposure to weather), exposure to soil/soil water (i.e., buried), embedment in concrete, and exposure to borated water leaks.

Table 3.1-1 and Table 3.1-2 contain descriptions of the internal and external service environments at Ginna Station which are used in subsequent sections of this chapter. Within this Application, some of the internal environments have been subdivided into subgroups based on the fluid chemistry or flow rate. The subgroups are identified in the Description column in Table 3.1-1.

#### 3.1.3 Component Grouping by Material/Environment Combination

The aging mechanisms and effects that apply to a structure or component are determined by the material(s) of construction and operating environment (including temperature and stress) to which the material is exposed. Structures or components constructed of the same material and exposed to the same environment would therefore be susceptible to the same aging mechanisms and effects. As a result, structures and components were grouped together according to material/environment combinations. This facilitated the aging management review process, in that a single aging management review could be performed for an entire group of structures or components.

#### 3.1.4 Aging Effects Analysis - Non-Class 1 Mechanical Systems and Components

Aging effects requiring management for Non-Class 1 systems and components were determined using the evaluation processes described in standard industry guidance for aging evaluation of mechanical systems and components. Systems and components were evaluated by applying a set of material/environment-based rules derived from known age-related degradation mechanisms documented in the technical literature and published industry operating experience. A plant-specific review of this guidance document was conducted to demonstrate applicability of this document at Ginna Station and to provide corrections and/or enhancements to criteria for evaluating aging of specific materials in certain environments (see Section 3.1.9).

#### 3.1.4.1 Treated Water Systems

In accordance with NUREG-1801 for treated water systems, aging mechanisms and effects were identified and evaluated without crediting the mitigative effects of water chemistry controls.

#### 3.1.4.2 Protective Coatings

Coatings are used at Ginna Station to protect the surfaces of steel components in mechanical systems and structures. Although the benefits derived from protective coatings are recognized, coatings, in and of themselves, do not perform License Renewal intended functions. Therefore, protective coatings are not credited with managing the effects of aging. However, the condition of steel surfaces protected by coatings is evaluated during inspections directed by aging management programs at Ginna Station. When evidence of superficial surface corrosion caused by coating degradation is found, the coating is evaluated and repaired in accordance with plant procedures. That notwithstanding, protective coatings applied to surfaces in containment are managed within the current licensing basis. This is further discussed in Appendix B2.1.24.

#### 3.1.5 Aging Effect Analysis - Essential Structures

Aging effects requiring management for Essential Structures (including Yard Structures) were determined using the evaluation processes described in standard industry guidance for aging evaluation of structures and structural components. Aging mechanisms and effects identified in the EPRI document for structural materials were derived from a number of sources, including collective nuclear plant operating experience and relevant operating experience from other industries. A plant-specific review of this guidance document was conducted to evaluate applicability of various aging mechanisms at Ginna Station (see Section 3.1.9).

#### 3.1.6 Aging Effects Analysis - Class 1 Systems, Structures and Components

Aging effects requiring management for Class 1 mechanical systems, components and the Containment Structure were determined using the information and guidance presented in Westinghouse Generic Topical Reports (GTRs). The following Class 1 components were evaluated using the GTRs:

- Containment Structure
- Reactor Pressure Vessel
- Reactor Vessel Internals
- Reactor Coolant System Piping
- Reactor Coolant System Supports
- Steam Generators
- Pressurizer

The GTRs have undergone extensive peer review and, in some cases, NRC review. In addition, they contain thorough reviews of equipment maintenance histories as well as discussions and assessments of industry/regulatory issues. For those GTRs with U. S. NRC Final Safety Evaluation Reports (FSERs), detailed responses to all Applicant Action Items were prepared.

#### 3.1.7 Industry and Plant-Specific Operating Experience Review

A thorough review of appropriate industry and plant-specific operating experience was conducted to confirm that applicable aging effects had been identified. Industry operating experience sources included NRC Generic Publications, INPO Significant Operating Event Reports (SOER), EPRI Technical Reports, Westinghouse Generic Technical Reports (GTRs), and NUREG-1801 (Generic Aging Lessons Learned (GALL) report). Plant-specific operating experience sources included Reports to AEC/NRC, Abnormal Occurrence and Licensee Event Reports (LERs), Non-Conformance Reports (NCRs), Corrective Action Reports (CARs), Refueling, Inspection and Overhaul Reports (RIOs), Inservice Inspection (ISI) Reports, Identified Deficiency Reports (IDRs), and ACTION Reports (ARs) from 1969 to the present. This review was conducted not only to confirm that the aging effects determined by material/environment-based rules were appropriate, but also to assure that any additional plant-specific aging mechanisms and related effects were identified for management.

#### 3.1.8 Assignment of Aging Management Programs

Appropriate aging management program(s) credited for managing each aging effect were assigned to each structure or component evaluated in the aging management review process. Aging management programs are described in Appendix B of this Application.

### 3.1.9 Standard Industry Guidance Document Review (Mechanical Systems and Components)

A technical review of standard industry guidance for aging evaluation of mechanical systems and components was conducted to demonstrate that the materials and internal/external operating environments evaluated in the document were applicable and bounding for Ginna Station. In addition, an evaluation of the aging mechanisms identified for specific materials in certain environments was performed. Positions were developed for mechanisms such as stress corrosion cracking (SCC) and intergranular attack/stress corrosion cracking (IGA/IGSCC) of austenitic stainless steels in treated and raw water environments. A position was also established for SCC of bolting materials.

#### 3.1.9.1 Position on SCC of Austenitic Stainless Steel

The threshold temperature for the onset of stress corrosion cracking of austenitic stainless steels in the presence of halides (>150 ppb) and sulfates (>100 ppb) is generally agreed to be approximately 140°F (Reference 1 and Reference 2). The validity of this threshold temperature is also supported by industry operating experience. This threshold temperature has been applied to austenitic stainless steels in all environments evaluated in this LRA. However, it should be noted that the Water Chemistry Control Program (supplemented by one-time inspections in stagnant or low-flow areas) is the aging management program credited for managing cracking due to SCC in treated water systems. This aging management approach is consistent with NUREG-1801.

#### 3.1.9.2 Position on IGA/IGSCC of Austenitic Stainless Steels

Cracking of austenitic stainless steels due to IGA/IGSCC requires a threshold level of grain boundary sensitization and a threshold temperature of approximately 140°F (Reference 1 and Reference 2). IGA/IGSCC is not a credible aging mechanism for welded austenitic stainless steel piping and components at Ginna Station due to controls imposed on heat input and interpass temperature during fabrication which limited grain boundary sensitization in heat affected zones of welded joints. Susceptibility of austenitic stainless steels to IGA/IGSCC may be increased only after prolonged exposure to elevated temperatures above 482°F.

#### 3.1.9.3 Position on SCC of SA 193 Grade B7 Bolting Materials

Although there have been a few reported cases of cracking of bolting in the industry caused by SCC, these have been attributed to susceptible high yield stress materials exposed to aggressive environments, such as lubricants containing molybdenum disulfide. One such case occurred at Ginna Station early in plant life. The bolting which cracked was high-strength (ASTM A 490) RCP embedment anchor studs which had been improperly heat treated, installed with excessive preload, and exposed to borated water leakage. The failure mechanism was determined to be SCC. Replacement A-490 bolting (properly heat-treated and installed with proper preload) has not cracked.

However, a survey of industry experience, technical literature, and laboratory corrosion studies (documented in EPRI Report NP-5769) indicates that SCC should not be a concern for closure bolting in nuclear power plant applications if the specified minimum yield strength is <150 Ksi. For quenched and tempered low-alloy steels typically used for closure bolting (e.g., SA193, Grade B7), susceptibility to SCC is controlled by yield strength. The minimum yield strength specified in SA193 for Grade B7 material is 105 Ksi, which is well below the threshold value of 150 Ksi identified in EPRI Report NP-5769. Furthermore, the selection and use of fastener lubricants for pressure boundary components has been controlled by the Ginna Station Quality Assurance Program since 1983 as part of the response to IE Bulletin 82-02. Limits are also imposed on levels of contaminants such as chlorides and sulfur compounds (including molybdenum disulfide) in lubricants and sealant compounds. Therefore, it is reasonable to conclude that failure by SCC should not be a significant issue for SA193 Grade B7 bolting materials. Ginna Station operating experience supports this conclusion.

### 3.1.10 Standard Industry Guidance Document Review (Structures and Structural Components)

A technical review of standard industry guidance for aging evaluation of structures and structural components was conducted to evaluate the applicability of aging mechanisms identified for structural materials at Ginna Station. This included a review of original construction contractual requirements, specifications for concrete structures and other materials, site-specific environments, and plant operating experience. Certain aging mechanisms/effects were determined not to be applicable at Ginna Station. Nevertheless, appropriate aging management/monitoring programs are credited for verification that these mechanisms/effects do not, in fact, result in age-related degradation.

#### 3.1.11 Standard Industry Guidance Document Review (Electrical Commodities)

A technical review of standard industry guidance for aging evaluation of electrical commodities was conducted to evaluate the applicability of aging mechanisms identified for electrical components at Ginna Station. This included a review of original construction requirements, specifications for selected electrical components and other insulating materials, site-specific environments, and plant operating experience. Certain aging mechanisms/effects were determined not to be applicable at Ginna Station. Nevertheless, appropriate aging management/monitoring programs are credited for verification that these mechanisms/effects do not, in fact, result in age-related degradation.

#### 3.1.12 Generic Component Assets

It was recognized that certain items/assets such as carbon/low-alloy steel closure bolting or other carbon steel components are present in almost every mechanical system or structure and therefore may be conveniently treated as commodity groups. To facilitate aging management review of such items, generic assets were created in every system and structure to account for the presence of closure bolting and external surfaces of carbon steel components which are subject to the effects of aging. Carbon steel components (CS components) are identified as a specific commodity group to ensure that carbon steel components potentially exposed to borated water leaks are evaluated. The normal external operating environment is evaluated with the specific system-identified components.

Aging effects requiring management for closure bolting were assigned to the generic asset in each system/structure and appropriate aging management programs were identified and credited. For borated water systems or non-borated water systems in close proximity to borated water systems, the potential for boric acid corrosion of carbon/low-alloy steel closure bolting, structural bolting, and external surfaces of equipment and structural members was recognized and accounted for by assigning the applicable aging effects to the generic assets. Appropriate aging management programs were then identified and credited.

Aging management review results for Reactor Coolant Systems are contained in Section 3.2, for Engineered Safety Features Systems in Section 3.3, for Auxiliary Systems in Section 3.4, for Steam and Power Conversion Systems in Section 3.5, for Structures and Component Supports in Section 3.6, and for Electrical and Instrument and Controls Systems in Section 3.7.

#### 3.1.13 Review of NUREG-0933

NUREG-0933 has been reviewed in accordance with the guidance provided in Appendix A.3 of the Standard Review Plan. As a result of this review, the following generic safety issues (GSI) have been evaluated for license renewal and have been addressed in the LRA:

- GSI-168, Environmental Qualification of Electrical Equipment, is addressed in Section 4.4, Environmental Qualification (EQ) of Electric Equipment.
- GSI-190, Fatigue Evaluation of Metal Components for 60-Year Plant Life, is addressed in Section 4.3.7, Environmentally Assisted Fatigue.
- GSI-191, Assessment of Debris Accumulation on PWR Sump Performance, is addressed in Appendix B2.1.24, Protective Coatings Monitoring and Maintenance Program

#### R. E. Ginna Nuclear Power Plant Application for Renewed Operating License Technical and Administrative Information

| Environment                                                                                                                                                                                                                                                                                                                                                                                                                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Treated Water -<br>Primary, T<140°F                                                                                                                                                                                                                                                                                                                                                                                            | Treated water containing boric acid in the Reactor Coolant System (RCS),<br>T<140°F. The chemistry of this water is monitored and controlled in<br>accordance with the requirements of the Ginna Station Water Chemistry<br>Control Program. Includes consideration of Stagnant, Low Flow <3 fps.                                                                                                                                                                  |
| Treated Water -<br>Primary, T>480°F                                                                                                                                                                                                                                                                                                                                                                                            | Treated water containing boric acid in the Reactor Coolant System (RCS),<br>T>480°F. The chemistry of this water is monitored and controlled in<br>accordance with the requirements of the Ginna Station Water Chemistry<br>Control Program. Includes consideration of Stagnant, Low Flow <3 fps.                                                                                                                                                                  |
| Treated Water -<br>Primary,<br>140°F <t<480°f< td=""><td>Treated water containing boric acid in the Reactor Coolant System (RCS),<br/>140°F<t<480°f. and="" chemistry="" controlled="" in<br="" is="" monitored="" of="" the="" this="" water="">accordance with the requirements of the Ginna Station Water Chemistry<br/>Control Program. Includes consideration of Stagnant, Low Flow &lt;3 fps.</t<480°f.></td></t<480°f<> | Treated water containing boric acid in the Reactor Coolant System (RCS),<br>140°F <t<480°f. and="" chemistry="" controlled="" in<br="" is="" monitored="" of="" the="" this="" water="">accordance with the requirements of the Ginna Station Water Chemistry<br/>Control Program. Includes consideration of Stagnant, Low Flow &lt;3 fps.</t<480°f.>                                                                                                              |
| Treated Water -<br>Secondary,<br>T>120°F                                                                                                                                                                                                                                                                                                                                                                                       | Demineralized, deaerated water; secondary water chemistry is monitored and<br>controlled in accordance with the requirements of the Ginna Station Optimized<br>Secondary Water Chemistry Program (included in the Water Chemistry<br>Control Program) and includes High Energy Piping in Main Steam,<br>Feedwater, Blowdown, Auxiliary Feedwater, Condensate, and Sample<br>System - Secondary. Includes steam and consideration of Stagnant, Low<br>Flow, <3 fps. |
| Treated Water -<br>Secondary,<br>T<120°F (Stagnant,<br>Low Flow <3 fps)                                                                                                                                                                                                                                                                                                                                                        | Demineralized, deaerated water; secondary water chemistry is monitored and<br>controlled in accordance with the requirements of the Ginna Station Optimized<br>Secondary Water Chemistry Program (included in the Water Chemistry<br>Control Program). Includes portions of Aux Feedwater, Condensate, and<br>Sample System - Secondary                                                                                                                            |
| Treated Water -<br>Borated, T<140°F<br>(Stagnant, Low Flow<br><3 fps)                                                                                                                                                                                                                                                                                                                                                          | Treated water containing boric acid in systems other than the RCS, i.e.,<br>Sample System NSSS, CVCS Charging and Letdown, Residual Heat<br>Removal, Safety Injection, Spent Fuel Cooling, Containment Spray, and<br>Waste Disposal Systems. Borated water chemistry is monitored and<br>controlled in accordance with the requirements of the Ginna Station Primary<br>Water Chemistry Control Program.                                                           |
| Treated Water -<br>Borated, T>140°F<br>(Stagnant, Low Flow<br><3 fps)                                                                                                                                                                                                                                                                                                                                                          | Stagnant, low flow (<3 fps) treated water containing boric acid in systems<br>other than the RCS, i.e., Sample System NSSS, CVCS Charging and<br>Letdown, Residual Heat Removal, Safety Injection, Spent Fuel Cooling,<br>Containment Spray, and Waste Disposal Systems. Borated water chemistry is<br>monitored and controlled in accordance with the requirements of the Ginna<br>Station Primary Water Chemistry Control Program.                               |

#### Table 3.1-1 Internal Service Environments

#### R. E. Ginna Nuclear Power Plant Application for Renewed Operating License Technical and Administrative Information

| Environment                                                              | - Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Treated Water -<br>Other                                                 | Treated water is demineralized water which may be deaerated and include<br>corrosion inhibitors and biocides or some combination of these treatments.<br>The chemistry of this water is monitored and controlled in accordance with the<br>requirements of the Ginna Station Primary Water Chemistry Control Program.<br>Ginna Station treated water systems include Primary Makeup Water,<br>Emergency Diesel Generator Cooling Water, Component Cooling Water, and<br>Chilled Water. |
| Treated Water -<br>Other (Stagnant,<br>Low Flow <3 fps)                  | Treated water is demineralized water which may be deaerated and include<br>corrosion inhibitors and biocides or some combination of these treatments.<br>The chemistry of this water is monitored and controlled in accordance with the<br>requirements of the Ginna Station Primary Water Chemistry Control Program.<br>Ginna Station treated water systems include Primary Makeup Water,<br>Emergency Diesel Generator Cooling Water, Component Cooling Water, and<br>Chilled Water. |
| Treated Water -<br>Other (High velocity,<br>change in flow<br>direction) | Treated water is demineralized water which may be deaerated and include<br>corrosion inhibitors and biocides or some combination of these treatments.<br>The chemistry of this water is monitored and controlled in accordance with the<br>requirements of the Ginna Station Primary Water Chemistry Control Program.<br>Ginna Station treated water systems include Primary Makeup Water,<br>Emergency Diesel Generator Cooling Water, Component Cooling Water, and<br>Chilled Water. |
| Raw Water<br>(Flowing, >3 fps)                                           | Raw water at Ginna Station includes the lake water used both for Circulating<br>Water (in the main condensers) and for the Service Water System, as well as<br>city water used for the Fire Protection System. The Standby Auxiliary<br>Feedwater System also contains raw water.                                                                                                                                                                                                      |
| Raw Water<br>(Stagnant, Iow flow<br><3 fps)                              | Raw water at Ginna Station includes the lake water used both for Circulating<br>Water (in the main condensers) and for the Service Water System, as well as<br>city water used for the Fire Protection System. The Standby Auxiliary<br>Feedwater System also contains raw water.                                                                                                                                                                                                      |
| Raw Water (High<br>velocity, change in<br>flow direction)                | Raw water at Ginna Station includes the lake water used both for Circulating<br>Water (in the main condensers) and for the Service Water System, as well as<br>city water used for the Fire Protection System. The Standby Auxiliary<br>Feedwater System also contains raw water.                                                                                                                                                                                                      |
| Raw Water<br>Drainage                                                    | Fluids collected in building drains. These can be treated waters (primary, borated, secondary, or other), raw water (service water, city water), fuel oil or lubricating oil.                                                                                                                                                                                                                                                                                                          |
| Lubricating Oil and<br>Fuel Oil                                          | This category comprises either lubricating oil or diesel fuel oil. Ginna Station<br>systems with this internal environment include the Emergency Diesel<br>Generator (EDG) Fuel Oil and Lube Oil System, and Diesel Fire Pump Fuel<br>Oil and Lube Oil System.                                                                                                                                                                                                                         |

Table 3.1-1 Internal Service Environments

| Environment                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lubricating Oil and<br>Fuel Oil - Pooling          | This category comprises either lubricating oil or diesel fuel oil with the potential for pooling of water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Air and Gas                                        | The environments in this category include atmospheric (breathing) air, dry/<br>filtered instrument air, nitrogen, carbon dioxide, hydrogen, helium and halon.<br>Ginna Station systems exposed to this internal environment include the<br>Instrument Air, Breathing Air, Nitrogen, EDG Air Start System, Control Room<br>HVAC, Computer/Cable Spread Room HVAC, CRDM Cooling, Containment<br>Purge, Emergency Containment Coolers, Emergency Containment Filters,<br>Containment Post Accident evaluation, the Normal Containment Coolers,<br>portions of Waste Disposal, Fire Suppression, and Refrigerated Systems.<br>Note that air operated valves assigned to balance of plant systems are also<br>exposed to this environment. |
| Air and Gas -<br>Wetted<br>Environment             | Moist atmospheric air, unfiltered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Air and Gas -<br>Wetted<br>Environment,<br>T>140°F | Moist atmospheric air, unfiltered, T>140°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### Table 3.1-1 Internal Service Environments

| Category                        | Description                                                                                                                                                                                    |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outdoor                         | Moist air, temperature: 0-91°F, 5-100% relative humidity. Exposed to weather including precipitation and wind.                                                                                 |
| Indoor - No Air<br>Conditioning | Moist air, temperature: 50-104°F, 60% nominal humidity. Not exposed to weather.                                                                                                                |
| Indoor - Air<br>Conditioning    | Specific temperature range/humidity dependent upon building/room.<br>Typically, temperature: 70-78°F, 60% relative humidity. Not exposed to<br>weather.                                        |
| Containment                     | Moist air, temperature: 60-120°F, 50% nominal humidity, Radiation - total integrated dose 1 rad per hour max. (excluding equipment located inside the reactor cavity). Not exposed to weather. |
| Buried                          | Exposed to soil/fill or ground water                                                                                                                                                           |
| Borated Water<br>Leaks          | Potentially exposed to borated water leaks                                                                                                                                                     |
| Embedded                        | Embedded/encased in concrete                                                                                                                                                                   |

#### **Section 3.1 References**

- 1. D. Peckner and I.M. Bernstein, Handbook of Stainless Steels, McGraw Hill, 1977.
- 2. A.J. Sedricks, Corrosion of Stainless Steels, John Wiley & Sons, 1979, pp. 152-156.

#### 3.2 Aging Management of Reactor Coolant System

The results of the aging management review of the Reactor Coolant System components are provided in this section and summarized in Tables 3.2-1 and 3.2-2. Table 3.2-1 shows the aging management of system components evaluated in NUREG-1801 that are relied on for license renewal of the Reactor Coolant System components at Ginna. Included in the table is a discussion column. The discussion column will provide a conclusion indicating if the aging management evaluation results are consistent with NUREG-1801 along with any clarifications or explanations required to support the stated conclusion if that conclusion is different than those of the NUREG. For a determination to be made that a table line item is "Consistent with NUREG-1801" several criteria must be met. First the plant specific component is reviewed against the GALL to ensure that the component, materials of construction and internal or external service environment are comparable to those described in a particular GALL item. Second, for those that are comparable, the results of the plant aging management review- aging effect evaluation are compared to the aging effects/mechanisms in the GALL. Finally, the programs credited in the GALL for managing those aging effects are compared to the programs invoked in the plant evaluation. If, using good engineering judgment, it could be reasonably concluded that the plant evaluation is in agreement with the GALL evaluation a line item was considered consistent with NUREG-1801. There are cases where components and component material/environment combinations and aging effects are common between a NUREG-1801 line item and the plant evaluation but the aging management program selections differ. In those cases the discussion column will indicate the plant aging management program selection but no conclusion will be made that the line item is consistent with the GALL. Table 3.2-2 contains the Reactor Coolant System components aging management review results that are not addressed in NUREG-1801. A plant component is considered not addressed by the NUREG if the component type is not evaluated in the GALL or has a different material of construction or operating environment than evaluated in the GALL. This table includes the component types, materials, environments, aging effects requiring management, the programs and activities for managing aging, and a discussion column. To avoid confusion, no attempt was made to interrelate material/environment/aging effects from one NUREG-1801 chapter to another. Note that these tables only include those components, materials and environments that are applicable to a PWR.

#### **Materials**

The materials of construction of a component have a major influence on the evaluation of aging effects applicable to the component. Sources of information used to identify materials of construction include original equipment specifications, vendor technical manuals and drawings, fabrication drawings, piping line specifications, modification design records and field walkdowns/verifications. The tables below account for the materials of construction for the components requiring an aging management review. Since similar materials are susceptible to the same aging effects/mechanisms, the tables itemize the component types (i.e., groupings) while factoring in the materials of construction.

#### Environment

As previously described, the environment(s) to which components are exposed are critical in the determination of potential aging mechanisms and effects. A review of plant design documentation was performed to quantify the environmental conditions to which Ginna Station equipment is exposed. This review identified that some equipment is exposed to a variety of environments. This can include normal operating conditions and post accident conditions. Since aging mechanisms and effects will be primarily driven by the environmental conditions to which equipment is exposed on a daily basis, under normal operating conditions, these conditions will differ from the design parameters which are established based upon the worst case scenario (e.g., LOCA conditions). Ginna Station equipment environments may be categorized into basic external and internal environments detailed in Section 3.1.2.

#### **Aging Effects Requiring Management**

After the components requiring aging management review were identified and grouped by materials of construction and environment, a review of industry and plant-specific operating experience was performed. The purpose of this review was to assure that all applicable aging effects were identified, and to evaluate the effectiveness of existing aging management programs.

This experience review was performed utilizing various industry and plant-specific programs and databases. Industry operating experience sources included NRC Generic Publications (including Information Notices, Circulars, Bulletins, and Generic Letters), INPO Significant Operating Event Reports (SOER), EPRI Technical Reports, and other information sources, such as the B&W Owners Group Non-Class 1 Mechanical Tools Implementation document, Westinghouse Generic Technical Reports (GTRs), and the Generic Aging Lessons Learned (GALL) report.

Plant specific operating experience sources included Semi-annual and Annual Reports to AEC/NRC, Abnormal Occurrence and Licensee Event Reports (LERs), Non-Conformance Reports (NCRs), Corrective Action Reports (CARs), Refueling, Inspection and Overhaul Reports (RIOs), Inservice Inspection (ISI) Reports, Identified Deficiency Reports (IDRs), and ACTION Reports (ARs) from 1969 to the present. Information from these sources was compiled in various databases. Based upon the material of construction, the applicable environments, and operating experience the potential aging effects requiring management for each of the components was identified as documented in the tables below.

#### **Time-Limited Aging Analysis**

In addition to those identified in NUREG-1801, any additional time-limited aging analyses (TLAA) identified as appropriate to the system are identified in Section 4.0.

#### **Confirmation of Topical Report Applicability**

#### **Class 1 Piping and Associated Pressure Boundary Components**

The Westinghouse Owners' Group Life Cycle Management & License Renewal Program has prepared topical report, WCAP-14575-A, Aging Management Evaluation for Class 1 Piping and Associated Pressure Boundary Components (Reference 1), which has been utilized in the aging management review of the Ginna Class 1 piping and associated pressure boundary components. The scope of the RC components described in the topical report bounds the Ginna Class 1 piping and associated pressure boundary components. A reconciliation of the final SER for WCAP 14575-A applicant action items is provided in Table 3.2.0-1.

#### **Reactor Internals**

The Westinghouse Owners' Group Life Cycle Management & License Renewal Program has prepared topical report, WCAP-14577, Rev. 1-A, License Renewal Evaluation: Aging Management for Reactor Internals (Reference 2), which has been utilized in the aging management review of the Ginna Reactor Vessel Internals components. The scope of the Reactor Vessel Internals components described in the topical report bounds the Ginna Reactor Vessel Internals components. A reconciliation of the final SER for WCAP-14577, Rev. 1-A applicant action items is provided in Table 3.2.0-2.

#### Pressurizer

The Westinghouse Owners' Group Life Cycle Management & License Renewal Program has prepared topical report, WCAP-14574-A, License Renewal Evaluation: Aging Management Evaluation for Pressurizers (Reference 3), which has been utilized in the aging management review of the Ginna Pressurizer components. The Ginna pressurizer is included in WCAP-14574 -A. The scope of the Pressurizer components described in the topical report bounds the Ginna Pressurizer components with the following clarifications:

- For the Ginna pressurizer, the design, fabrication, and installed configuration are the same as specified in the WCAP with the exception of the earthquake lugs and valve support brackets.
- The WCAP identifies stress corrosion cracking (SCC) of the pressurizer sensitized stainless steel nozzle safe ends as a potential aging mechanism. However, the WCAP recognizes that service experience with nozzles and safe ends in Westinghouse pressurizers has been excellent and bases the need for aging management on general industry concerns. The WCAP identifies ASME Section XI inspections as the program to manage SCC of the safe ends. Consistent with the other Class 1 AMRs, SCC of stainless steel materials in the RCS environment can be effectively managed by the Ginna Station Water Chemistry Control Program. Cracking due to flaw growth is considered in the Ginna Pressurizer AMR and the Ginna Station ASME Section XI Inservice Inspection is credited to manage the aging effects. As such, ASME Section XI inspections remain as an aging management program for pressurizer safe-ends.

A reconciliation of the final SER for WCAP-14574 -A applicant action items is provided in Table 3.2.0-3.

#### Conclusion

The programs and activities selected to manage the aging effects of the Reactor Coolant System are identified in Table 3.2-1 and Table 3.2-2. The results of the applicant action item reviews are also contained in these tables, but in the SRP format. A description of these aging management activities is provided in Appendix B, along with the demonstration that the identified aging effects will be managed for the period of extended operation. Therefore, based on the demonstrations provided in Appendix B, the effects of aging associated with the system components will be adequately managed so that there is reasonable assurance that the intended function(s) will be maintained consistent with the current licensing basis during the period of extended operation.

| Renewal Applicant Action Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Plant-Specific Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) The license renewal applicant is to verify that<br>its plant is bounded by the topical report. Further,<br>the renewal applicant is to commit to programs<br>described as necessary in the topical report to<br>manage the effects of aging during the period of<br>extended operation on the functionality of the<br>reactor coolant system piping. Applicants for<br>license renewal will be responsible for describing<br>any such commitments and identifying how such<br>commitments will be controlled. Any deviations<br>from the aging management programs within this<br>topical report described as necessary to manage<br>the effects of aging during the period of extended<br>operation and to maintain the functionality of the<br>reactor coolant system piping and associated<br>pressure boundary components or other<br>information presented in the report, such as<br>materials of construction, will have to be identified<br>by the renewal applicant and evaluated on a<br>plant-specific basis in accordance with 10 CFR<br>54.21(a)(3) and (c)(1). | <ul> <li>The Ginna Station Class 1 piping and reactor coolant pumps are bounded by the topical report with regard to design criteria and features, materials of construction, fabrication techniques, installed configuration, modes of operation and environments/exposures.</li> <li>Aging management programs necessary to manage the effects of aging are consistent with those described in the topical report. Program commitments to manage the effects of aging for Class 1 piping and reactor coolant pumps are described in Appendix B of the License Renewal Application and include the following:</li> <li>One-Time Inspection Program for Small-Bore Class 1 Piping</li> <li>Water Chemistry Control Program</li> <li>ASME Section XI, Subsections IWB, IWC, &amp; IWD Inservice Inspection Program.</li> </ul> |
| <ul> <li>(2) Summary description of the programs and<br/>evaluation of Time-Limited Aging Analyses are to<br/>be provided in the license renewal FSAR<br/>supplement in accordance with 10 CFR 54.21(d).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A summary of the programs identified to<br>manage the effects of aging for Class 1 piping<br>and reactor coolant pumps will be included in<br>the UFSAR. A markup of the UFSAR sections<br>affected by the TLAA evaluations will also be<br>included in the UFSAR revision.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Table 3.2.0-1 | Class 1 Piping and Associated Pressure Boundary Components -<br>WCAP-14575-A Final Safety Evaluation Report Response to Applicant |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------|
|               | Action Items                                                                                                                      |

| Renewal Applicant Action Item                                                                                                                                           | Plant-Specific Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (3) The renewal applicant should complete the<br>updated review of generic communications and<br>capture any additional items not identified by the<br>original review. | The entire set of NRC Generic<br>Communications was reviewed using an<br>automated text search routine developed for<br>WOG. Initial searches were made for the<br>occurrence of terms relating to components<br>within the scope of WCAP-14575-A. Then, the<br>titles of all selected documents were reviewed<br>to eliminate those which did not relate to<br>age-related degradation or which related to<br>equipment not included in WCAP-14575-A.<br>The remaining documents were individually<br>reviewed to determine the applicable aging<br>effect(s). These resulting documents are<br>included in the summary provided in Table 3-1<br>in WCAP-14575-A<br>An updated review of industry operating<br>experience has been conducted independently<br>by RG&E in support of license renewal<br>activities. This review has included NRC<br>Generic Communications through December<br>2001. |

. ....

| Renewal Applicant Action Item                                                                                                                                                                                                                                                                                                                                                                                                           | Plant-Specific Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (4) The license renewal applicant must provide a description of all insulation used on austenitic stainless steel NSSS piping to ensure the piping is not susceptible to stress-corrosion cracking from halogens.                                                                                                                                                                                                                       | During construction, the Class 1 piping was<br>insulated in accordance with the applicable<br>Westinghouse Equipment Specification. As<br>described in the Ginna Station UFSAR Section<br>5.2.3.2, "All external insulation of the reactor<br>coolant system components is compatible with<br>the component materials. All other external<br>corrosion resistant surfaces in the reactor<br>coolant system are insulated with a low or<br>halide-free insulating material." Generally, the<br>piping is insulated with a calcium carbonate<br>material covered with a stainless steel sheet<br>covering. Blanket insulation made from a<br>halide-free fabric is also used at locations<br>where periodic inspections and maintenance<br>are required. The Reactor Coolant Pump<br>casings and the SG Channel Heads are<br>insulated with a stainless steel reflective<br>insulation. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                         | Since the insulation that is used on the reactor<br>coolant piping is low halide or halide free, the<br>piping is not susceptible to stress corrosion<br>cracking initiated by such halides.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (5) The license renewal applicant should<br>describe how each plant-specific AMP addresses<br>the following 10 elements: (1) scope of the<br>program, (2) preventive actions, (3) parameters<br>monitored or inspected, (4) detection of aging<br>effects, (5) monitoring and trending, (6)<br>acceptance criteria, (7) corrective actions, (8)<br>confirmation process, (9) administrative controls,<br>and (10) operating experience. | Programs necessary to manage the effects of<br>aging for Class 1 piping and reactor coolant<br>pumps address the 10 elements identified.<br>These programs (including the 10 elements)<br>are described in Appendix B of the License<br>Renewal Application.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| <b>Renewal Applicant Action Item</b>                                                                                                                                                                                                                                                                                                                        | Plant-Specific Response                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (6) The license renewal applicant should perform<br>additional inspection of small-bore Reactor<br>Coolant System piping, that is, less than<br>4-inch-size piping, for license renewal to provide<br>assurance that potential cracking of small-bore<br>Reactor Coolant System piping is adequately<br>managed during the period of extended<br>operation. | A sample of small-bore (< 4-inch NPS) piping<br>welds will be inspected by a volumetric<br>technique prior to the end of the current<br>licensing period. The sample population will be<br>selected on the basis of piping geometry, size,<br>and flow condition. The aging management<br>review and specific program commitments for<br>Class 1 small-bore piping are addressed in<br>Appendix B of the License Renewal<br>Application. |

| Table 3.2.0-1 | Class 1 Piping and Associated Pressure Boundary Components -<br>WCAP-14575-A Final Safety Evaluation Report Response to Applicant |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------|
|               | Action Items                                                                                                                      |

| Renewal Applicant Action Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Plant-Specific Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Renewal Applicant Action Item (7) Components that have delta ferrite levels below the susceptibility screening criteria have adequate fracture toughness and do not require supplemental inspection. As a result of thermal embrittlement, components that have delta ferrite levels exceeding the screening criterion may not have adequate fracture toughness and do require additional evaluation or examination. The license renewal applicant should address thermal-aging issues in accordance with the staff's comments in Section 3.3.3 of this evaluation. | Plant-Specific ResponseReduction in fracture toughness for CASS<br>Class 1 piping components and reactor coolant<br>pump casings due to thermal aging<br>embrittlement is addressed by<br>Leak-Before-Break (LBB) analyses. These<br>analyses are identified as TLAAs and are<br>discussed in Section 4.0 of the License<br>Renewal Application. The LBB (fracture<br>mechanics) analyses demonstrate that<br>significant margin exists between detectable<br>flaw sizes and unstable flaws assuming<br>"fully-aged" CASS properties. The Ginna<br>Station methodology is consistent with the staff<br>comments.The following clarification is also provided:The following clarification is also provided:The WOG approach to the potential for<br>reduced fracture toughness in CASS<br>components in WCAP-14575-A does not rely<br>on susceptibility screening using delta ferrite; it<br>conservatively assumes that all CASS Class 1<br>RCS components are potentially susceptible.The WOG report specifies an accepted<br>analytical technique (Leak-Before-Break<br>analysis) as the primary aging management<br>approach to demonstrate adequate fracture<br>toughness at end-of-life. Only if this approach<br>fails are alternative "corrective" actions<br>specified: repair, replacement, or the ASME<br>Section XI inservice examination and flaw<br>evaluation approach. (NOTE: Open item #6<br>deals with clarifications of these corrective<br>actions.) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The staff's comments in Section 3.3.3 of the<br>DSER for valve bodies / pump casings state<br>that existing ASME Section XI inspection<br>requirements are adequate, with the alternative<br>being ASME Code Case N-481 for pump<br>casings. The WOG report specifies<br>demonstration of compliance with the N-481<br>requirements as the primary aging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Table 3.2.0-1 | Class 1 Piping and Associated Pressure Boundary Components -      |
|---------------|-------------------------------------------------------------------|
|               | WCAP-14575-A Final Safety Evaluation Report Response to Applicant |
|               | Action Items                                                      |

| Renewal Applicant Action Item                                                                                                                                                                       | Plant-Specific Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (7) (continued)                                                                                                                                                                                     | management approach, with the supplemental<br>visual inspections. If this approach fails, then<br>ASME Section XI volumetric ISI is specified as<br>the alternative. For both LBB and N-481, the<br>WOG report clarifies that "fully-aged" fracture<br>toughness data must be used for the limiting<br>materials for the extended period of operation.                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (8) The license renewal applicant should perform<br>additional fatigue evaluations or propose an AMP<br>to address the components labeled I-M and I-RA<br>in Tables 3-2 through 3-16 of WCAP-14575. | An automated cycle counting and Fatigue<br>Monitoring Program (FatiguePro <sup>TM</sup> ) has been<br>implemented at Ginna Station. A review has<br>been conducted of fatigue-sensitive locations<br>in Class 1 piping systems, including<br>components labeled I-M and I-RA in Tables 3-2<br>through 3-16 of WCAP-14575-A. Locations<br>with highest predicted fatigue usage have been<br>selected for monitoring. These include the<br>surge line, charging nozzle, safety injection<br>nozzle, and RHR tee. Locations subjected to<br>severe thermal transients or fluctuations due to<br>stratification are monitored using a<br>stress-based fatigue methodology. A<br>discussion of the fatigue-monitoring<br>methodology is included in Section 4.0 of the<br>License Renewal Application. |

| Table 3.2.0-1 | Class 1 Piping and Associated Pressure Boundary Components -      |
|---------------|-------------------------------------------------------------------|
|               | WCAP-14575-A Final Safety Evaluation Report Response to Applicant |
|               | Action Items                                                      |

| Renewal Applicant Action Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Plant-Specific Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (9) The staff recommendation for the closure of GSI-190 "Fatigue Evaluation of Metal<br>Components for 60-Year Plant Life" is contained<br>in a December 26, 1999, memorandum from<br>Ashok Thadani to William Travers. The license<br>renewal applicant should address the effects of<br>the coolant environment on component fatigue life<br>as aging management programs are formulated in<br>support of license renewal. The evaluation of a<br>sample of components with high-fatigue usage<br>factors using the latest available environmental<br>fatigue data is an acceptable method to address<br>the effects of the coolant environment on<br>component fatigue life. | Transient cycle projections to 60 years of plant<br>operation have been made using both a<br>conservative linear cycle projection and a more<br>realistic weighted projection, which assumes<br>that the more recent plant operating history is<br>more representative of future operation than<br>earlier plant history. This assessment of the<br>frequency and severity of actual plant<br>transients demonstrates that there is sufficient<br>conservatism in the original design basis<br>transient set, based on either method of<br>projection (linear or weighted), to adequately<br>bound the period of extended operation.<br>However, a sample of Class 1 piping<br>components with potentially high fatigue usage<br>factors has been selected for monitoring using<br>the FatiguePro <sup>TM</sup> Automated Cycle-Counting<br>and Fatigue Monitoring Program. Fatigue<br>usage for these locations will be computed by<br>cycle-based or stress-based software modules<br>including the latest available environmental<br>factors. For components with CUFs which are<br>expected to exceed 1.0 during the period of<br>extended operation, corrective actions will<br>include one or more of the following options:<br>• Perform an explicit fatigue analysis (i.e., using<br>sophisticated methods in ASME Section III<br>NB-3200 or NB-3600) including<br>environmental factors to lower the CUF below<br>1.0 prior to the end of the current license<br>period, or<br>• Repair of the fatigue-sensitive location(s), or<br>• Replacement of the fatigue by an inspection<br>program that has been reviewed and<br>approved by the NRC (i.e., periodic<br>non-destructive examination of the<br>fatigue-sensitive locations at inspection<br>intervals to be determined by a method<br>accepted by the NRC). |

| Plant-Specific Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A further discussion of the Metal Fatigue TLAA<br>is presented in Section 4.3 of the License<br>Renewal Application.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| An LBB analysis has been performed in<br>accordance with NUREG-1061, for the Ginna<br>reactor coolant loop piping applicable to the<br>extended period of operation. The analysis<br>considered loading, pipe geometry and fracture<br>toughness (including the reduction in fracture<br>toughness of CASS components in the RCS,<br>i.e., elbows and RCP casings, due to thermal<br>aging) to assess crack stability in the reactor<br>coolant piping for the period of extended<br>operation. The results demonstrated that<br>significant margin exists between detectable<br>flaw sizes and unstable flaws. Additionally,<br>fatigue crack growth rates including<br>environmental effects were evaluated for<br>primary loop piping materials and shown to be<br>insignificant.<br>The Ginna Station Inservice Inspection<br>Program requires that any repair or<br>replacement of CASS components be<br>performed in accordance with the requirements<br>of ASME Section XI. This would include a new<br>LBB analysis based on the material properties<br>of the repaired or replaced component (and |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Renewal Applicant Action Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Plant-Specific Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) To ensure applicability of the results and<br>conclusions of WCAP-14577 to the applicant's<br>plant(s), the license renewal applicant is to verify<br>that the critical parameters for the plant are<br>bounded by the topical report. Further, the<br>renewal applicant must commit to programs<br>described as necessary in the topical report to<br>manage the effects of aging during the period of<br>extended operation on the functionality of the<br>reactor vessel components. Applicants for license<br>renewal will be responsible for describing any<br>such commitments and proposing the appropriate<br>regulatory controls. Any deviations from the aging<br>management programs described in this topical<br>report as necessary to manage the effects of<br>aging during the period of extended operation and<br>to maintain the functionality of the reactor vessel<br>internal components or other information<br>presented in the report, such as materials of<br>construction, must be identified by the renewal<br>applicant and evaluated on a plant-specific basis<br>in accordance with 10 CFR 54.21(a)(3) and (c)(1). | The Ginna Station reactor vessel internals are<br>bounded by WCAP-14577 Rev. 1-A with<br>respect to design criteria and features,<br>materials of construction, fabrication<br>techniques, installed configuration, mode of<br>operation and environments/ exposures.<br>Programs necessary to manage the effects of<br>aging are identified in Table 3.2-1 and Table<br>3.2-2 and summarized in Appendix B of the<br>Application.                                                                                           |
| (2) A summary description of the programs and<br>activities for managing the effects of aging and<br>the evaluation of TLAAs must be provided in the<br>license renewal FSAR supplement in accordance<br>with 10 CFR 54.21(d).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Programs necessary to manage the effects of<br>aging for the Ginna reactor vessel internals are<br>the ASME Section XI, Subsections IWB, IWC,<br>& IWD Inservice Inspection Program, the<br>Reactor Vessel Internals Program, and the<br>Water Chemistry Control Program. Summary<br>descriptions of these programs are provided in<br>Appendix A and Appendix B of the LRA. The<br>only TLAA applicable to the Ginna reactor<br>internals is fatigue. The TLAA for metal fatigue<br>is evaluated in Section 4.3 of the LRA. |
| (3) For the holddown spring, applicants for<br>license renewal are expected to address intended<br>function, aging management review, and<br>appropriate aging management program(s).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The holddown spring is within the scope of<br>license renewal for the Ginna reactor vessel<br>internals. The intended function, results of the<br>aging management review, and aging<br>management program for the holddown spring<br>are provided in Table 2.3.1-3, Table 3.2-1,<br>Table 3.2-2 and Appendix B of the LRA.                                                                                                                                                                                                  |

### Table 3.2.0-2 Reactor Internals - WCAP-14577, Rev. 1-A, Final Safety Evaluation Report Response to Applicant Action Items

| Renewal Applicant Action Item                                                                                                                             | Plant-Specific Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (4) The license renewal applicant must address<br>aging management review, and appropriate aging<br>management program(s), for guide tube support<br>pins | In Section 2.6.7.2 of the GTR, it is stated, "As<br>noted above, pin degradation does not lead to<br>a loss of intended function. Generally, pin<br>replacement is considered to be a sound<br>maintenance practice to preclude degradation<br>when industry experience indicates that such<br>degradation has been observed."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                           | degradation has been observed."<br>All 33 guide tube support pins were replaced at<br>Ginna Station during the 1986 Refueling<br>outage. The new pins were fabricated using a<br>Framatome design which had been installed in<br>French nuclear reactors where SCC pin<br>failures had occurred. The original design of<br>the support pin was susceptible to SCC due to<br>an undesirable microstructure caused by<br>solution heat treatment of the pins at a<br>temperature less than 1800°F, followed by<br>age-hardening and application of high preload,<br>resulting in high tensile stresses. The<br>replacement pins were solution heat-treated at<br>2000°F, followed by age-hardening at 1300°F.<br>Other improvements in machined configuration<br>and surface finish were incorporated in the new<br>design. Final installation torque was reduced to<br>achieve adequate cold preload and still<br>maintain a tight joint. No evidence of cracking<br>of the redesigned guide tube support pins has<br>since been observed at Ginna. The effects of<br>SCC on reactor internals guide tube support<br>pins fabricated from Alloy X-750 with the<br>updated pin designs may therefore be |
|                                                                                                                                                           | considered insignificant (GTR 3.1.2.2).<br>However, loss of material due to wear is also<br>identified as an aging effect requiring<br>management for the support pins. The ASME<br>Section XI, Subsections IWB, IWC, & IWD<br>Inservice Inspection Program (Subsection<br>IWB) is credited with managing loss of material<br>due to wear for the support pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

### Table 3.2.0-2 Reactor Internals - WCAP-14577, Rev. 1-A, Final Safety Evaluation Report Response to Applicant Action Items

### Table 3.2.0-2 Reactor Internals - WCAP-14577, Rev. 1-A, Final Safety Evaluation Report Response to Applicant Action Items

| Renewal Applicant Action Item                                                                                                                                                                                                                                                                                                     | Plant-Specific Response                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (5) The license renewal applicant must explicitly<br>identify the materials of fabrication of each of the<br>components within the scope of the topical report.<br>The applicable aging effect should be reviewed<br>for each component based on the materials of<br>fabrication and the environment.                             | The materials of fabrication were explicitly<br>identified for all subcomponents of the Ginna<br>reactor vessel internals within the scope of<br>license renewal. The list of these materials and<br>source documents are available for review on<br>site. The aging effect evaluations are<br>performed based on these materials and the<br>appropriate environment. |
| (6) The license renewal applicant must describe<br>its aging management plans for loss of fracture<br>toughness in cast austenitic stainless steel RVI<br>components, considering the synergistic effects of<br>thermal aging and neutron irradiation<br>embrittlement in reducing the fracture toughness<br>of these components. | There are no reactor vessel internals<br>components at Ginna Station within the scope<br>of license renewal which are fabricated from<br>cast austenitic stainless steel.                                                                                                                                                                                             |

| Renewal Applicant Action Item                                                                                                                                                                                                                                                                                                                                                                                                                                     | Plant-Specific Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (7) The license renewal applicant must describe<br>its aging management plans for void swelling<br>during the license renewal period.                                                                                                                                                                                                                                                                                                                             | Recent studies of irradiation-induced swelling<br>and stress relaxation suggest that swelling<br>problems, if they arise in PWR core internals,<br>would be highly localized, occurring in the<br>higher flux and temperature locations.<br>Irradiation-enhanced stress relaxation (or<br>irradiation creep) refers to the accumulation of<br>deformation strain over an extended time<br>period, typically at elevated temperatures.<br>Stress relaxation may mitigate loads resulting<br>from void swelling.              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TEM studies of thin foils prepared from an<br>intact baffle/former bolt and locking device<br>removed from the Ginna reactor vessel<br>internals in 1999 indicate that voids were<br>present in the threaded end of the bolt but not<br>in the head or the 304 SS locking device. The<br>void volume, 0.004% maximum observed in<br>the 347 SS bolt material, is small and<br>preliminary extrapolation to the end of<br>extended life using a simple square law<br>suggests that void swelling should not be a<br>concern. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ginna Station is participating in industry<br>initiatives to determine the extent of the<br>concerns associated with void swelling and<br>what appropriate changes to the Reactor<br>Vessel Internals Program may be required<br>once an industry position has been<br>established.                                                                                                                                                                                                                                         |
| <ul> <li>(8) Applicants for license renewal must describe<br/>how each plant-specific AMP addresses the<br/>following elements: (1) scope of the program, (2)<br/>preventative actions, (3) parameters monitored or<br/>inspected, (4) detection of aging effects, (5)<br/>monitoring and trending, (6) acceptance criteria,<br/>(7) corrective actions, (8) confirmation process,<br/>(9) administrative controls, and (10) operating<br/>experience.</li> </ul> | The programs necessary to manage the effects<br>of aging for the Ginna reactor vessel internals<br>(RVIs) address the 10 elements identified.<br>These elements are described in Appendix B of<br>the LRA.                                                                                                                                                                                                                                                                                                                  |

## Table 3.2.0-2Reactor Internals - WCAP-14577, Rev. 1-A, Final Safety EvaluationReport Response to Applicant Action Items

| Renewal Applicant Action Item                                                                                                                                                                                                   | Plant-Specific Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (9) The license renewal applicant must address<br>plant-specific plans for management of cracking<br>(and loss of fracture toughness) of RVI<br>components, including any plans for augmented<br>inspection activities.         | The Ginna Station Reactor Vessel Internals<br>Program is credited for managing cracking and<br>loss of fracture toughness of RVI components.<br>This program is described in Appendix B of the<br>LRA and includes participation in industry<br>initiatives and efforts for development of<br>appropriate enhanced inspection techniques to<br>permit detection and characterizing very small<br>features of interest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (10) The license renewal applicant must address<br>plant-specific plans for management of<br>age-related degradation of baffle/former and<br>barrel/former bolting, including any plans for<br>augmented inspection activities. | During the 1999 refueling outage, the entire<br>population of 728 Type 347 stainless steel<br>baffle/former bolts were selected for inspection<br>by UT at Ginna Station. Of this number, only<br>639 bolts could actually be inspected due to<br>limitations on accessibility. A total of 56 bolts<br>were replaced with Type 316 stainless steel<br>bolts during the outage. These were bolts that<br>were found to contain defect-like indications<br>and were part of a pre-qualified minimum bolt<br>pattern for two-loop nuclear plants that was<br>generated by the Westinghouse Owners Group<br>(WCAP-15036). Maintaining the structural<br>integrity of the bolts within this pattern assures<br>compliance with requirements of ASME III,<br>Subsection NG (1989), considering dynamic<br>loads generated by a 10° line break in the<br>reactor coolant system. This LOCA load<br>bounds those that are generated by effects of<br>earthquake, thermal, deadweight, and<br>flow-induced vibration. No further inspections<br>of baffle/former or barrel/former bolts are<br>planned at Ginna Station. However, RG&E will<br>continue to monitor and participate in industry<br>initiatives with regard to baffle/former and<br>barrel/former bolt cracking. |
| (11) The license renewal applicant must address the TLAA of fatigue on a plant-specific basis                                                                                                                                   | A discussion of fatigue of reactor vessel<br>internals is presented in Section 4.3 of the<br>LRA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

## Table 3.2.0-2 Reactor Internals - WCAP-14577, Rev. 1-A, Final Safety Evaluation Report Response to Applicant Action Items

| Renewal Applicant Action Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Plant-Specific Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) <b>3.3.1.1</b> –1 - License renewal applicants should<br>identify the TLAAs for the pressurizer<br>components, define the associated CUF and, in<br>accordance with 10 CFR 54.21(c)(1),<br>demonstrate that the TLAAs meet the CLB fatigue<br>design criterion, CUF ≤1.0, for the extended<br>period of operation, including the<br>insurge/outsurge and other transient loads not<br>included in the CLB which are appropriate to such<br>an extended TLAA, as described in the WOG<br>report "Mitigation and Evaluation of Thermal<br>Transients Caused by Insurges and Outsurges,"<br>MUHP–5060/5061/5062, and considering the<br>effects of the coolant environment on critical<br>fatigue location. The applicant must describe the<br>methodology used for evaluating<br>insurge/outsurge and other off-normal and<br>additional transients in the fatigue TLAAs. | The only TLAA identified for the Ginna<br>pressurizer is thermal fatigue. Transient cycle<br>projections to 60 years of plant operation have<br>been made using both a conservative linear<br>cycle projection and a more realistic weighted<br>projection, which assumes that the more recent<br>plant operating history is more representative<br>of future operation than earlier plant history.<br>This assessment of the frequency and severity<br>of actual plant transients demonstrates that<br>there is sufficient conservatism in the original<br>design basis transient set, based on either<br>method of projection (linear or weighted), to<br>adequately bound the period of extended<br>operation. However, in order to address<br>insurge/outsurge transients and thermal<br>stratification, an automated cycle counting and<br>Fatigue Monitoring Program (FatiguePro <sup>TM</sup> )<br>has been implemented at Ginna Station. Four<br>fatigue-sensitive pressurizer locations (spray<br>nozzle, surge nozzle, upper shell, and heater<br>well penetration) have been selected for<br>fatigue monitoring using a stress-based<br>method which computes real-time fatigue<br>usage based on actual plant transient data.<br>These locations will be monitored for a<br>sufficient period of time to establish a baseline<br>cyclic history and cumulative fatigue usage.<br>The effects of coolant environment are<br>included in this computation. For locations with<br>CUFs which are expected to exceed 1.0 during<br>the period of extended operation, corrective<br>actions will include one or more of the following<br>options:<br>• Perform an explicit fatigue analysis (i.e., using<br>sophisticated methods in ASME Section III<br>NB-3200 or NB-3600) including<br>environmental factors to lower the CUF below<br>1.0 prior to the end of the current license<br>period, or<br>• Replacement of the fatigue-sensitive<br>location(s), or |

| Renewal Applicant Action Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Plant-Specific Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Manage the effects of fatigue by an inspection<br/>program that has been reviewed and<br/>approved by the NRC (i.e., periodic<br/>non-destructive examination of the<br/>fatigue-sensitive locations at inspection<br/>intervals to be determined by a method<br/>accepted by the NRC).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (2) <b>3.2.2.1–1 -</b> In the report, WOG concluded that general corrosion is nonsignificant for the internal surfaces of Westinghouse-designed pressurizers and that no further evaluations of general corrosion are necessary. While the staff concurs that hydrogen overpressure can mitigate the aggressive corrosive effect of oxygen in creviced geometries on the internal pressurizer surfaces, applicants for license renewal will have to provide a basis (statement) in their plant-specific applications about how their water chemistry control programs will provide for a sufficient level of hydrogen overpressure to manage crevice corrosion of the internal surfaces of their pressurizer. | Hydrogen concentration in the reactor coolant<br>system (RCS) primary water at Ginna Station is<br>strictly maintained within specified limits (25 to<br>50 cc/kg) by measurement of hydrogen<br>concentrations in periodic RCS samples, and<br>adjusting hydrogen overpressure in the volume<br>control tanks accordingly. The hydrogen<br>concentration limits established for the RCS<br>ensure that general corrosion is non-significant<br>for the internal surfaces of the Ginna<br>pressurizer as well as other Class 1<br>components. Hydrogen concentration limits for<br>the RCS are delineated in the Ginna Station<br>Water Chemistry Control Program described in<br>Appendix B of the License Renewal<br>Application. |
| (3) <b>3.2.2.1-2</b> - The staff finds that the criteria in GL 88–05 and the Section XI requirements for conducting system leak tests and VT–2 type visual examinations of the pressurizer pressure boundary are acceptable programs for managing boric acid corrosion of the external, ferritic surfaces and components of the pressurizer. However, the report fails to refer to the actual provisions in the ASME Code, Section XI that require mandatory system leak tests of the pressurizer boundary. The applicants must identify the appropriate Code inspection requirements from ASME Code Table IWB-2500-1.                                                                                        | Leak testing of the Ginna pressurizer is<br>required by ASME Section XI, Subsection IWB,<br>Table IWB-2500-1, Category B-P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Renewal Applicant Action Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Plant-Specific Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| (4) <b>3.2.2.3.2–1</b> - The staff concurs that the potential to develop SCC in the bolting materials will be minimized if the yield strength of the material is held to less than 150 ksi, or the hardness is less than 32 on the Rockwell C hardness scale; however, the staff concludes that conformance with the minimum yield strength criteria in ASME Specification SA–193 Grade B7 does not in itself preclude a quenched and tempered low-alloy steel from developing SCC, especially if the acceptable yield strength is greater than 150 ksi. To take credit for the criteria in EPRI Report NP–5769, the applicant needs to state that the acceptable yield strengths for the quenched and tempered low-alloy steel bolting materials (e.g., SA–193, Grade B7 materials) are in the range of 105–150 ksi. | Although there have been a few reported<br>cases of cracking of bolting in the industry<br>caused by SCC, these have been attributed to<br>susceptible high yield stress materials exposed<br>to aggressive environments, such as lubricants<br>containing molybdenum disulfide. However, a<br>survey of industry experience, technical<br>literature, and laboratory corrosion studies<br>(documented in EPRI Report NP-5769)<br>indicates that SCC should not be a concern for<br>closure bolting in nuclear power plant<br>applications if the specified minimum yield<br>strength is <150 Ksi. For quenched and<br>tempered low-alloy steels typically used for<br>closure bolting (e.g., SA193, Grade B7),<br>susceptibility to SCC is controlled by yield<br>strength. The minimum yield strength specified<br>in SA193 for Grade B7 material is 105 Ksi,<br>which is well below the threshold value of 150<br>Ksi identified in EPRI Report NP-5769.<br>Furthermore, the selection and use of fastener<br>lubricants for pressure boundary components<br>has been controlled by the Ginna Station<br>Quality Assurance Program since 1983 as part<br>of the response to IE Bulletin 82-02. Limits are<br>also imposed on levels of contaminants such<br>as chlorides and sulfur compounds (including<br>molybdenum disulfide) in lubricants and<br>sealant compounds. Therefore, it is reasonable<br>to conclude that failure by SCC should not be a<br>significant issue for SA193 Grade B7 bolting<br>materials. Ginna Station operating experience<br>supports this conclusion.<br>Therefore, cracking due to SCC is not<br>considered to be an aging effect requiring<br>management for the Ginna pressurizer bolting. |  |

| Renewal Applicant Action Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Plant-Specific Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>(5) 3.2.5-1 - The staff considers the discussion in<br/>Section 3.5.2 to be extremely confusing in that it<br/>appears WOG is making three different<br/>conclusions that conflict with one another:</li> <li>a. That fluid flow velocity and particulate<br/>conditions are not sufficient in the<br/>pressurizer to consider that erosion is a<br/>plausible degradation mechanism that could<br/>affect the integrity of the subcomponents in<br/>the pressurizer.</li> <li>b. That seven components in the pressurizer<br/>(refer to the list above) are exposed to fluid<br/>flows that have the potential to result in<br/>erosion of the components.</li> <li>c. That only one component in the pressurizer<br/>(the spray head) is exposed to a fluid flow<br/>that has the potential to result in erosion of<br/>the component.</li> <li>The applicant should state why erosion is not<br/>plausible for the surge nozzle thermal sleeve,<br/>spray nozzle thermal sleeve, surge nozzle<br/>safe-end, and spray nozzle safe-end. If erosion<br/>is plausible, then an AMP is required.</li> </ul> | Based on the aging management review of the<br>Ginna pressurizer, loss of material due to<br>erosion is not an aging effect requiring<br>management. Austenitic stainless steels are<br>considered to be resistant to erosion in PWR<br>operating environments. The austenitic<br>stainless steel surge and spray nozzle thermal<br>sleeves and safe ends, and the surge nozzle<br>retaining baskets are not subject to flow rates<br>that are sufficiently high to cause erosion. The<br>spray head couplings and the spray heads do<br>not perform license renewal intended functions<br>and, thus, do not require an aging<br>management review. |
| (6) <b>3.3–1</b> - Applicants for license renewal must<br>describe how each plant-specific AMP addresses<br>the following 10 elements: (1) scope of the<br>program, (2) preventive action, (3) parameters<br>monitored or inspected, (4) detection of aging<br>effects, (5) monitoring and trending, (6)<br>acceptance criteria, (7) corrective actions, (8)<br>confirmation process, (9) administrative controls,<br>and (10) operating experience.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Programs necessary to manage the effects of<br>aging for the Ginna pressurizer address the 10<br>elements identified. Detailed program<br>descriptions (including the 10 elements) are<br>provided in Appendix B of the License Renewal<br>Application.                                                                                                                                                                                                                                                                                                                                                                                             |

## Table 3.2.0-3 Pressurizers - WCAP-14574-A Final Safety Evaluation Report Response to Applicant Action Items

| Renewal Applicant Action Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Plant-Specific Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (7) <b>3.3.2.1–1 -</b> Applicants for license renewal<br>must provide sufficient details in their LRAs about<br>how their GL 88–05 programs and ISI programs<br>will be sufficient to manage the corrosive effects<br>of boric acid leakage on their pressurizer<br>components during the proposed extended<br>operating terms for their facilities, including<br>postulated leakage from the pressurizer nozzles,<br>pressurizer nozzle-to-vessel welds, pressurizer<br>nozzle-to-safe end welds, and pressurizer<br>manway bolting materials. | Loss of material due to boric acid wastage<br>resulting from boric acid leakage is an aging<br>effect requiring management affecting the<br>external surfaces of the Ginna pressurizer,<br>including bolting materials. The Ginna Station<br>Boric Acid Corrosion Program and the ASME<br>Section XI, Subsections IWB, IWC, & IWD<br>Inservice Inspection Program are credited with<br>managing this aging effect. Detailed program<br>descriptions provided in Appendix B of the<br>License Renewal Application demonstrate that<br>the effects of aging due to boric acid leakage<br>will be adequately managed during the period<br>of extended operation. |

# Table 3.2.0-3Pressurizers - WCAP-14574-A Final Safety Evaluation Report<br/>Response to Applicant Action Items

| Renewal Applicant Action Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Plant-Specific Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (8) <b>3.3.2.2–1</b> - The staff concludes that an AMP is<br>necessary to control and manage the potential for<br>SCC to occur in welded pressurizer penetration<br>nozzles and manway bolting materials, and<br>recommends that a licensee could credit the<br>following programs as the basis for managing the<br>phenomena of PWSCC/IGSCC of the pressurizer<br>components: (1) the primary coolant chemistry<br>control program; (2) the ISI program for the<br>pressurizers; and (3) the plant-specific quality<br>assurance program as it pertains to assuring that<br>previous welding activities on welds in the<br>pressurizer have been controlled in accordance<br>with the pertinent requirements of 10 CFR Part<br>50, Appendix B, and with the pertinent welding<br>requirements of the ASME Code for Class 1<br>systems. The staff concludes that applicants need<br>to extend AMP–2–1 to the pressurizer penetration<br>nozzles, to the nozzle-to-vessel welds, and to the<br>manway bolting materials, and to include the<br>appropriate Code requirements among the<br>program attributes listed in Table 4–1 and<br>summarized in the text in Section 4.1 of the<br>report. Applicants for license renewal must<br>provide sufficient details in their LRAs as to how<br>their primary coolant chemistry control programs,<br>ISI programs, and 10 CFR Part 50, Appendix B,<br>quality assurance programs will be sufficient to<br>manage the potential for SCC to occur in the<br>pressurizer nozzle components and bolted<br>manway covers during the proposed extended<br>operating terms for their facilities. | Stress corrosion cracking (SCC), as it applies<br>to the pressurizers, is identified as an aging<br>effect requiring management for pressurizer<br>parts exposed to primary (treated) water. The<br>Ginna Station Water Chemistry Control<br>Program and the ASME Section XI,<br>Subsections IWB, IWC, & IWD Inservice<br>Inspection Program are credited for managing<br>cracking due to SCC. The Quality Assurance<br>Program applies to all aging management<br>programs credited for license renewal. The<br>program descriptions provided in Appendix B<br>of the License Renewal Application<br>demonstrate that these programs will<br>adequately manage cracking due to SCC<br>throughout the extended period of operation.<br>As stated previously in the response to<br>Applicant Action Item 3.2.2.3.2-1, cracking due<br>to SCC is not an aging effect requiring<br>management for pressurizer bolting. |

| Renewal Applicant Action Item                                                                                                                                                                                | Plant-Specific Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (9) <b>3.3.2.2–2</b> - Applicants must propose an AMP to verify whether or not thermal fatigue-induced cracking has propagated through the clad into the ferritic base metal or weld metal beneath the clad. | There is no industry experience to suggest that<br>cracks initiating at the clad inner surfaces in the<br>pressurizer will propagate into the underlying<br>base metal or weld material. Observed flaws in<br>other plants were monitored for an extended<br>period of time, and no significant flaw growth<br>was observed. In 1990, several indications<br>were discovered at the Connecticut Yankee<br>Plant. UT inspection confirmed that the<br>indications did not penetrate into the ferritic<br>base metal, and therefore, in accordance with<br>ASME Section XI, the indications were<br>acceptable without repair. A surveillance<br>program was initiated, and after two follow-up<br>inspections that showed no change, the<br>surveillance program was discontinued with<br>NRC approval. In several of the cases of<br>observed cracking, fracture mechanics<br>analyses were performed and demonstrated<br>that the cladding indications would not<br>compromise the integrity of the primary system<br>components. |
|                                                                                                                                                                                                              | At temperatures >180°F, the cladding has<br>virtually no impact on fracture behavior. This is<br>the low end of the plant operating range. ASME<br>Section XI flaw evaluation rules require that the<br>effects of cladding must be considered in any<br>structural integrity evaluation, especially for<br>postulated flaws that penetrate the cladding<br>into the base metal. The actual impact of the<br>cladding on such an evaluation is negligible.<br>The pressurizer shell design considers fatigue<br>usage throughout the operating lifetime and<br>includes adequate margin. This is expected to<br>preclude the formation of fatigue cracks in the<br>cladding material. The fracture mechanics<br>evaluations performed for actual observed<br>cracks in other plants indicate that the cracks<br>do not grow significantly over the plant lifetime.<br>Therefore, a specific aging management<br>program to manage fatigue cracking of the<br>pressurizer cladding is not required.                                 |

#### Table 3.2.0-3 Pressurizers - WCAP-14574-A Final Safety Evaluation Report Response to Applicant Action Items

| Renewal Applicant Action Item | Plant-Specific Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (9) (continued)               | Cracking due to fatigue is identified as a<br>Time-Limited Aging Analysis for the Ginna<br>pressurizer, and is analytically addressed in<br>this TLAA. The conclusion of this analysis is<br>that adequate margin exists in the original<br>design-basis transient set to envelope the<br>period of extended operation. However, a<br>Fatigue Monitoring Program has been<br>implemented as a confirmatory program to<br>ensure that the fatigue analysis remains valid<br>for the license renewal term. Cracking due to<br>flaw growth and stress corrosion is an aging<br>effect requiring management. As noted above,<br>programs credited to manage cracking of<br>pressurizer parts include the Water Chemistry<br>Control Program and the ASME Section XI,<br>Subsections IWB, IWC, & IWD Inservice<br>Inspection Program, both of which are<br>described in Appendix B of the License<br>Renewal Application. Based on the aging<br>management review performed for the Ginna<br>pressurizer, no additional aging management<br>program is required. |

#### Table 3.2.0-3Pressurizers - WCAP-14574-A Final Safety Evaluation Report<br/>Response to Applicant Action Items

| Renewal Applicant Action Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Plant-Specific Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (10) <b>3.3.2.2–3</b> - The staff is concerned that<br>IGSCC in the heat- affected zones of 304<br>stainless steel supports that are welded to the<br>pressurizer cladding could grow as a result of<br>thermal fatigue into the adjacent pressure<br>boundary during the license renewal term. The<br>staff considers that these welds will not require<br>aging management in the extended operating<br>periods if applicants can provide a reasonable<br>justification that sensitization has not occurred in<br>these welds during the fabrication of these<br>components. Therefore, applicants for license<br>renewal must provide a discussion of how the | Both the cladding material (308L) used to<br>protect the pressurizer alloy steel shell from<br>primary water, and the weld material (309L)<br>used to join the pressurizer internal supports<br>and the pressurizer cladding were selected to<br>have sufficiently low carbon content to<br>minimize the likelihood of sensitization in these<br>welds.The low carbon (and nitrogen) content of<br>the 304 stainless steel material in the heater<br>support plates and the surge nozzle retaining<br>basket minimize the susceptibility of the<br>material to sensitization as a result of welding. |
| implementation of their plant-specific procedures<br>and quality assurance requirements, if any, for the<br>welding and testing of these austenitic stainless<br>steel components provides reasonable assurance<br>that sensitization has not occurred in these welds<br>and their associated heat-affected zones. In                                                                                                                                                                                                                                                                                                                                            | However, in spite of material selection and<br>manufacturing processes which minimize<br>sensitization, the possibility cannot be<br>precluded that sensitized areas exist in the 304<br>stainless steel supports or their welds.                                                                                                                                                                                                                                                                                                                                                                    |
| addition, the staff requests that applicants for<br>license renewal identify whether these welds fall<br>into Item B8.20 of Section XI Examination<br>Category B–H, Integral Attachments for Vessels,<br>and if applicable, whether the applicants have<br>performed the mandatory volumetric or surface<br>examinations of these welds during the ISI<br>intervals referenced in the examination category.                                                                                                                                                                                                                                                      | The same Water Chemistry Control Program<br>which precludes SCC in other PWR primary<br>system materials is also effective in preventing<br>SCC in these pressurizer components and<br>welds. Rigorous control of oxygen and<br>chlorides provides an essentially benign<br>environment which has been shown to be<br>effective both in laboratory experiments and<br>years of operating experience.                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Therefore, the presence of sensitized stainless<br>steel material does not necessarily result in<br>any increase in susceptibility to IGSCC. Note<br>that even in laboratory cases where severely<br>sensitized stainless steels have been<br>deliberately exposed to PWR environments, no<br>intergranular attack has been observed.                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | In summary, the Ginna Station Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

#### Table 3.2.0-3Pressurizers - WCAP-14574-A Final Safety Evaluation ReportResponse to Applicant Action Items

In summary, the Ginna Station Water Chemistry Control Program is an adequate aging management program to preclude SCC in the pressurizer internal attachment welds for the period of extended operation for the following reasons:

| Renewal Applicant Action Item | Plant-Specific Response                                                                                                                                                                                                                                                             |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (10) (continued)              | <ol> <li>It is possible that some locations of the<br/>welded stainless steel attachments in the<br/>pressurizer are sensitized, even with the use<br/>of 308L weld material and careful control of<br/>the welding processes;</li> </ol>                                           |
|                               | <ol> <li>Studies and operating experience have<br/>shown that PWR environments do not lead<br/>to stress corrosion cracking in sensitized<br/>stainless steel;</li> </ol>                                                                                                           |
|                               | <ol> <li>Service experience has demonstrated that<br/>stress corrosion cracking does not occur in<br/>stainless steels in a PWR environment,<br/>whether or not they are sensitized.</li> </ol>                                                                                     |
|                               | In response to the question regarding the<br>applicability of Item B8.20 of Examination<br>Category B-H, this category applies to exterior<br>attachments such as the support skirt, seismic<br>lug and support bracket, and is not applicable<br>to the interior attachment welds. |

#### Table 3.2.0-3Pressurizers - WCAP-14574-A Final Safety Evaluation Report<br/>Response to Applicant Action Items

| Component                                           | Aging<br>Effect/Mechanism                                   | Aging<br>Management<br>Programs                          | Further<br>Evaluation<br>Recommended                                | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) Reactor coolant pressure<br>boundary components | Cumulative fatigue<br>damage                                | TLAA, evaluated in<br>accordance with 10<br>CFR 54.21(c) | Yes, TLAA                                                           | Consistent with NUREG-1801. Cumulative fatigue damage was<br>identified as an aging effect requiring management during the<br>period of extended operation for components listed in this<br>component grouping. Thermal fatigue is addressed as a TLAA<br>in Section 4.3 for those components which contain time-limited<br>assumptions defined by the current operating term and<br>incorporated into the current licensing basis. Secondary-side<br>steam generator pressure boundary components such as the<br>top head, steam nozzle, upper and lower shells, transition cone<br>and feedwater nozzle/impingement plate are included in this<br>grouping although they are not part of the reactor coolant<br>pressure boundary.                                                                                                                                                                                                                                                 |
| (2) Steam generator shell assembly                  | Loss of material<br>due to pitting and<br>crevice corrosion | Inservice<br>inspection; water<br>chemistry              | Yes, detection of<br>aging effects is to<br>be further<br>evaluated | Consistent with NUREG-1801. Loss of material due to general,<br>pitting and crevice corrosion of the steam generator shell<br>assembly (including transition cone) are identified as an aging<br>effect requiring management at Ginna Station. Loss of material<br>from all applicable aging mechanisms on steam generator<br>secondary-side internal surfaces is effectively managed by<br>control of secondary-side water chemistry through the Water<br>Chemistry Control Program and inservice inspections<br>performed in accordance with the ASME Section XI,<br>Subsections IWB, IWC, & IWD Inservice Inspection Program.<br>In addition, the Ginna Station Steam Generator Tube Integrity<br>Program which was developed in accordance with NEI<br>Initiative 97-06 provides all-inclusive guidance for the<br>management of steam generator assets. Assessment of<br>secondary-side aging mechanisms is included in the scope of<br>Steam Generator Tube Integrity Program. |

1

| Component                                                                                                                             | Áging<br>Effect/Mechanism                                                    | Aging<br>Management<br>Programs                                                    | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (3) Pressure vessel ferritic<br>materials that have a neutron<br>fluence greater than 10 <sup>17</sup><br>n/cm <sup>2</sup> (E>1 MeV) | Loss of fracture<br>toughness due to<br>neutron irradiation<br>embrittlement | TLAA, evaluated in<br>accordance with<br>Appendix G of 10<br>CFR 50 and RG<br>1.99 | Yes, TLAA                            | Consistent with NUREG-1801. Loss of fracture toughness in ferritic reactor pressure vessel materials due to neutron irradiation embrittlement has been identified as an aging effect requiring management during the period of extended operation. Reactor pressure vessel TLAAs, including RT <sub>PTS</sub> , adjusted reference temperature, and equivalent margins analysis are addressed in Section 4.2. This component group includes the vessel shell and nozzles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (4) Reactor vessel beltline<br>shell and welds                                                                                        | Loss of fracture<br>toughness due to<br>neutron irradiation<br>embrittlement | Reactor vessel<br>surveillance                                                     | Yes, plant specific                  | Consistent with NUREG-1801. Loss of fracture toughness in reactor vessel beltline shell and weld materials due to neutron irradiation embrittlement has been identified as an aging effect requiring management during the period of extended operation. The upper shell and nozzles are not subject to significant neutron irradiation exposure because of their physical distance from the reactor core. The limiting beltline material in the Ginna Station reactor vessel is the intermediate-to-lower shell beltline circumferential weld. The Ginna Station Reactor Vessel Surveillance Program, in conjunction with TLAA analyses, effectively manages loss of fracture toughness in the beltline materials. The Reactor Vessel Surveillance Program provides adequate material property and neutron dosimetry data to predict fracture toughness in beltline materials at the end of the period of extended operation. In addition, equivalent margins analyses have been performed in accordance with 10 CFR 50 Appendix G methods. These fracture mechanics analyses (see TLAAs, Section 4.2) provide assurance that beltline material toughness values in the Ginna Station reactor vessel will remain at acceptable levels through the period of extended operation. |

| Component                                       | Aging<br>Effect/Mechanism                                                                         | Aging<br>Management<br>Programs | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (5) Westinghouse and B&W<br>baffle/former bolts | Loss of fracture<br>toughness due to<br>neutron irradiation<br>embrittlement and<br>void swelling | Plant specific                  | Yes, plant specific                  | Consistent with NUREG-1801. Loss of fracture toughness due<br>to neutron irradiation embrittlement was identified as an aging<br>effect requiring management for the Ginna Station<br>baffle/former bolts. A combination of the ASME Section XI,<br>Subsections IWB, IWC, & IWD Inservice Inspection Program<br>and the Reactor Vessel Internals Program (described in<br>Appendix B) will be used to manage this aging effect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                 |                                                                                                   |                                 |                                      | During the 1999 refueling outage, all accessible Type 347<br>stainless steel baffle/former bolts were inspected at Ginna<br>Station and bolts with defect-like indications were replaced with<br>Type 316 stainless steel bolts. The bolt inspection and<br>replacement program assured the structural integrity of bolts<br>within a pre-qualified minimum pattern generated by WOG and<br>thereby assured compliance with ASME Section III, Subsection<br>NB (1989). In addition, destructive metallurgical analysis of<br>intact Type 347 bolts revealed only minor evidence of voids<br>near the threaded end of one bolt, but not in the head end. The<br>void volume (.004%) was small and preliminary extrapolations<br>to the end of life suggest that void swelling should not be a<br>concern. For this reason, change in dimensions due to void<br>swelling is not expected to represent a concern for<br>baffle/former bolts in the Ginna Station reactor vessel internals. |
|                                                 |                                                                                                   |                                 |                                      | These facts notwithstanding, Ginna Station will continue to<br>participate in WOG activities and monitor industry initiatives for<br>the purpose of evaluating the significance of void swelling on<br>selected PWR reactor vessel internals components. As new<br>information and technology becomes available, the<br>plant-specific Reactor Vessel Internals Program will be<br>modified to incorporate enhanced surveillance techniques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Component                                                                | Aging<br>Effect/Mechanism                                                                                 | Aging<br>Management<br>Programs                                     | Further<br>Evaluation<br>Recommended                                                                           | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (6) Small-bore reactor coolant<br>system and connected<br>systems piping | Crack initiation and<br>growth due to SCC,<br>intergranular SCC,<br>and thermal and<br>mechanical loading | Inservice<br>inspection; water<br>chemistry; one-time<br>inspection | Yes, parameters<br>monitored/<br>inspected and<br>detection of aging<br>effects are to be<br>further evaluated | Consistent with NUREG-1801. Included and evaluated with this component grouping are Non-Class 1 RCS small-bore piping, tubing, valves, and other components in connected systems. Crack initiation and growth due to SCC was identified as an aging effect requiring management in small-bore ( <nps &="" (described="" 4)="" 4.<="" <="" a="" accomplished="" aging="" also="" an="" and="" appendix="" applicable="" are="" as="" asme="" b).="" be="" branch="" but="" by="" chemistry="" combination="" control="" coolant="" cracking="" for="" further="" identifies="" in="" inservice="" inspection="" inspections="" iwb,="" iwc,="" iwd="" lines.="" management="" not="" notes="" nps="" nureg-1801="" of="" one-time="" piping="" program="" program,="" reactor="" required="" section="" service-induced="" subsections="" system="" td="" that="" the="" volumetric="" water="" will="" xi,=""></nps> |
|                                                                          |                                                                                                           |                                                                     |                                                                                                                | A sample of small-bore piping welds will be inspected using<br>appropriate volumetric examination techniques near, but prior<br>to, the end of the current license period. This sample will be<br>selected to include various piping sizes, configurations and<br>flow conditions. If a flaw is detected in the sample, the<br>successive examinations described in ASME Code, Section XI,<br>IWB-2420 and additional examinations as described in<br>IWB-2430 would apply as appropriate.                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                          |                                                                                                           |                                                                     |                                                                                                                | The proposed combination of water chemistry controls and<br>volumetric inspections (implemented by the Water Chemistry<br>Control Program and One-Time Inspection Program) is an<br>effective means of managing service-induced cracking in<br>small-bore reactor coolant system piping and connected<br>branch lines during the period of extended operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (7) Vessel shell                                                         | Crack growth due<br>to cyclic loading                                                                     | TLAA                                                                | Yes, TLAA                                                                                                      | Consistent with NUREG-1801. Underclad cracking in carbon/low-alloy steel which has been clad with austenitic stainless steel using weld-overlay processes has been identified as an aging effect requiring management and is addressed as a TLAA. An evaluation of the TLAA for underclad cracking is contained in Section 4.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Component             | Aging<br>Effect/Mechanism                       | Aging<br>Management<br>Programs | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------|-------------------------------------------------|---------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (8) Reactor internals | Changes in<br>dimension due to<br>void swelling | Plant specific                  | Yes, plant specific                  | Consistent with NUREG-1801. The specific concerns arising<br>from the effects of void swelling in reactor internals are<br>constriction of flow paths, interference with control rod<br>insertion, and excessive baffle/former bolt loading. Recent<br>destructive examinations of baffle/former bolts removed from<br>the Ginna Station reactor internals suggest that void volumes<br>are very small and changes in dimension in baffle/former bolts<br>due to void swelling should not be a concern during the period<br>of extended operation. In addition, recent studies of<br>irradiation-induced swelling and stress relaxation suggest that<br>swelling problems, if they arise in PWR core internals, would<br>be highly localized, occurring in the higher flux and<br>temperature locations. Irradiation-enhanced stress relaxation<br>(or irradiation creep) may mitigate or limit loads resulting from<br>void swelling. For many reactor internals components, change<br>in dimension does not represent an aging effect requiring<br>management because the intended function of the<br>component(s) is not affected. Additional reactor internal<br>components not identified in NUREG-1801 that are susceptible<br>to changes in dimension due to void swelling are identified in<br>Table 3.2-2 Line Number (7)<br>These facts notwithstanding, the Reactor Vessel Internals<br>Program manages changes in dimension due to void swelling.<br>In addition to inservice inspections performed according to the |
|                       |                                                 |                                 |                                      | requirements of ASME Section XI, Subsection IWB, the<br>Reactor Vessel Internals Program provides for augmented<br>visual (VT-1) inspections for certain susceptible (or limiting)<br>components using high resolution techniques yet to be<br>developed. Ginna Station will continue to participate in industry<br>investigations of aging effects applicable to reactor vessel<br>internals as well as initiatives to develop advanced inspection<br>techniques which will permit resolution and measurement of<br>very small features of interest. Ginna Station will incorporate<br>applicable results of industry initiatives related to void swelling<br>in the Reactor Vessel Internals Program.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Component                                                                                                                                                                  | Aging<br>Effect/Mechanism                                                                                    | Aging<br>Management<br>Programs | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (9) PWR core support pads,<br>instrument tubes (bottom head<br>penetrations), pressurizer<br>spray heads, and nozzles for<br>the steam generator<br>instruments and drains | Crack initiation and<br>growth due to SCC<br>and/or primary<br>water stress<br>corrosion cracking<br>(PWSCC) | Plant specific                  | Yes, plant specific                  | Consistent with NUREG-1801. The reactor vessel leak<br>detection line is fabricated from stainless steel. The portion of<br>the line that is in scope to license renewal is included in the<br>small-bore piping category. Management of service-induced<br>cracking for small-bore piping is addressed in Item 6, and is<br>consistent with NUREG-1801. The pressurizer spray head<br>performs no license renewal intended functions at Ginna<br>Station. The steam generator instrument nozzles are low-alloy<br>steel, not Alloy 600, and therefore are not included in this<br>component group.                  |
|                                                                                                                                                                            |                                                                                                              |                                 |                                      | The core support pads and the bottom head instrument<br>penetrations are fabricated from Alloy 600. Crack initiation and<br>growth of the core support pads and the bottom head<br>penetrations due to SCC/PWSCC is managed at Ginna Station<br>by a combination of the Water Chemistry Control Program and<br>the Reactor Vessel Head Penetration Inspection Program<br>(described in Appendix B). The Reactor Vessel Head<br>Penetration Inspection Program is a plant-specific program<br>which includes participation in industry initiatives related to<br>management of Alloy 600 penetration cracking issues. |

| Component                                                                                               | Aging<br>Effect/Mechanism                       | Aging<br>Management<br>Programs             | Further<br>Evaluation<br>Recommended                               | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (10) Cast austenitic stainless<br>steel (CASS) reactor coolant<br>system piping                         | Crack initiation and growth due to SCC          | Plant specific                              | Yes, plant specific                                                | Consistent with NUREG-1801. The Ginna Station pressurizer<br>surge line nozzle is cast carbon steel (integral with the<br>pressurizer bottom head) and clad with weld-deposited<br>austenitic stainless steel overlay. The reactor coolant system<br>piping is forged Type 316 stainless steel. However, the fittings<br>(elbows) are CASS (Type CF8M). In addition, the CASS (Type<br>CF8M) reactor coolant pump casings are also included in this<br>component grouping.                                                                                                                                                                                                                                                                                                                       |
|                                                                                                         |                                                 |                                             |                                                                    | As in NUREG-1801, crack initiation and growth due to SCC<br>was identified as an aging effect requiring management for<br>reactor coolant system CASS components. The Ginna Station<br>Water Chemistry Control Program monitors and controls<br>primary water chemistry in accordance with the guidelines of<br>EPRI TR-105714 (Rev. 5) and therefore effectively manages<br>crack initiation and growth due to SCC. Additionally, the flaw<br>tolerance evaluations performed by fracture mechanics<br>analysis under the Thermal Aging Embrittlement of Cast<br>Austenitic Stainless Steel (CASS) Program (described in<br>Appendix B) provide assurance that large margins exist for<br>postulated flaw sizes which satisfy leakage detection criteria as<br>compared to unstable flaw sizes. |
| (11) Pressurizer<br>instrumentation penetrations<br>and heater sheaths and<br>sleeves made of Ni-alloys | Crack initiation and<br>growth due to<br>·PWSCC | Inservice<br>inspection; water<br>chemistry | Yes, AMP for<br>PWSCC of Inconel<br>182 weld is to be<br>evaluated | There are no components fabricated from Alloy 600 in the Ginna Station pressurizer. Instrument penetrations, heater well tubes and adapters are wrought Type 316 stainless steel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Component                                        | Aging<br>Effect/Mechanism                              | Aging<br>Management<br>Programs | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------|--------------------------------------------------------|---------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (12) Westinghouse and B&W<br>baffle former bolts | Crack initiation and<br>growth due to SCC<br>and IASCC | Plant specific                  | Yes, plant specific                  | Consistent with NUREG-1801. Crack initiation and growth due<br>to SCC and IASCC were identified as aging effects requiring<br>management for Ginna Station baffle/former bolts. A<br>combination of the Water Chemistry Control Program, ASME<br>Section XI, Subsections IWB, IWC, & IWD Inservice Inspection<br>Program and the Reactor Vessel Internals Program will be<br>used to manage this aging effect.                                                                                                                                   |
|                                                  |                                                        |                                 |                                      | During the 1999 refueling outage, all accessible Type 347<br>stainless steel baffle/former bolts were inspected at Ginna<br>Station and bolts with defect-like indications were replaced with<br>Type 316 stainless steel bolts. The bolt inspection and<br>replacement activities assured the structural integrity of bolts<br>within a pre-qualified minimum pattern generated by WOG and<br>thereby assured compliance with ASME Section III, Subsection<br>NB (1989).                                                                        |
|                                                  |                                                        |                                 |                                      | No further inspections of baffle/former bolts are anticipated at<br>Ginna Station. However, Ginna Station will continue to<br>participate in WOG activities and monitor industry initiatives for<br>the purpose of evaluating the significance of cracking due to<br>IASCC on selected PWR reactor vessel internals components.<br>As new information and technology becomes available, the<br>plant-specific Reactor Vessel Internals Program (described in<br>Appendix B) will be modified to incorporate enhanced<br>surveillance techniques. |

| Component                                                          | Aging<br>Effect/Mechanism                      | Aging<br>Management<br>Programs | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------|------------------------------------------------|---------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (13) Westinghouse and B&W<br>baffle former bolts                   | Loss of preload due to stress relaxation       | Plant specific                  | Yes, plant specific                  | Consistent with NUREG-1801. Loss of mechanical closure<br>integrity due to irradiation creep/stress relaxation was identified<br>as an aging effect requiring management for Ginna Station<br>baffle/former bolts. Irradiation-enhanced stress relaxation (or<br>irradiation creep) refers to the accumulation of deformation<br>strain over an extended time period, typically at elevated<br>temperatures.                                                                                                                                                                                                                                                                                  |
|                                                                    |                                                |                                 |                                      | Loss of preload due to stress relaxation will be managed jointly<br>by the ASME Section XI, Subsections IWB, IWC, & IWD<br>Inservice Inspection Program and the Reactor Vessel Internals<br>Program. Ginna Station will continue to participate in industry<br>investigations of aging effects applicable to reactor vessel<br>internals as well as initiatives to develop advanced inspection<br>techniques which will permit resolution and measurement of<br>very small features of interest. Aging management activities or<br>surveillance techniques resulting from these initiatives will be<br>incorporated, as required, as enhancements to the Reactor<br>Vessel Internals Program. |
| (14) Steam generator<br>feedwater impingement plate<br>and support | Loss of section<br>thickness due to<br>erosion | Plant specific                  | Yes, plant specific                  | This component group is not applicable to Ginna Station. The feedwater delivery to the steam generators at Ginna Station is through feedrings to Alloy 690 J-tubes. The feedrings and J-tubes perform no license renewal intended function.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Component                                                               | Aging<br>Effect/Mechanism                                                                                                                                                                                                                                                                                                          | Aging<br>Management<br>Programs                         | Further<br>Evaluation<br>Recommended                          | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (15) (Alloy 600) Steam<br>generator tubes, repair<br>sleeves, and plugs | Crack initiation and<br>growth due to<br>PWSCC, outside<br>diameter stress<br>corrosion cracking<br>(ODSCC), and/or<br>inter-granular<br>attack (IGA) or loss<br>of material due to<br>wastage and pitting<br>corrosion, and<br>fretting and wear:<br>or deformation due<br>to corrosion at tube<br>support plate<br>intersections | Steam generator<br>tubing integrity;<br>water chemistry | Yes, effectiveness<br>of a proposed AMP<br>is to be evaluated | Consistent with NUREG-1801. Cracking due to PWSCC and<br>IGA/IGSCC and loss of material due to pitting and wear were<br>identified as aging effects requiring management for the Ginna<br>Station steam generator tubes and plugs. These aging effects<br>will be jointly managed by the Water Chemistry Control<br>Program (both primary and secondary water chemistry) and<br>the Steam Generator Tube Integrity Program (described in<br>Appendix B). The Steam Generator Tube Integrity Program at<br>Ginna Station was developed to meet the guidelines in NEI<br>97-06. Consistent with these guidelines, the requirements for<br>SG degradation management are included in Section 3.4.13 of<br>Ginna Station Technical Specifications. These requirements,<br>including tube inspection scope and frequency, plugging, repair<br>and leakage monitoring have been incorporated in plant<br>administrative controls.<br>New, replacement recirculating steam generators (SG) were<br>installed at Ginna Station in 1996. These generators<br>incorporate many enhancements in design and materials of<br>construction. The tubes are fabricated from drawn Alloy 690 TT<br>(thermally-treated) material. The tubes are hydraulically<br>expanded over the full depth of the tubesheet. The tube<br>support design is a lattice-grid structure fabricated from Type<br>410 stainless steel bars. Anti-vibration supports in the U-bend<br>region of the bundle are also Type 410 stainless steel fan-bars.<br>Sufficient corrosion of the tube support structure to cause<br>tube-denting is not expected based on the resistance of Type<br>410 stainless steel to the secondary water environment. After<br>four operating cycles (six years), no service-induced defects<br>have been installed other than two factory-installed Alloy 690<br>TT plugs in each generator. Secondary-side water chemistry<br>control at Ginna Station is based on all-volatile-treatment<br>(AVT), not phosphate treatment. |

| Component                                           | Aging<br>Effect/Mechanism                  | Aging<br>Management<br>Programs | Further<br>Evaluation<br>Recommended                          | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------|--------------------------------------------|---------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (16) Tube support lattice bars made of carbon steel | Loss of section<br>thickness due to<br>FAC | Plant specific                  | Yes, plant specific                                           | Tube support lattice bars are fabricated from Type 410<br>stainless steel in Ginna Station replacement steam generators.<br>Type 410 stainless steel is not susceptible to FAC. Therefore<br>this component group is not applicable to Ginna Station. A<br>discussion of steam generator components susceptible to FAC<br>is given in Item 21.                                                                                                                                                                                                                                                                                           |
| (17) Carbon steel tube<br>support plate             | Ligament cracking due to corrosion         | Plant specific                  | Yes, effectiveness<br>of a proposed AMP<br>is to be evaluated | There are no carbon steel tube support materials in the Ginna<br>Station steam generators. Therefore this component group is<br>not applicable to Ginna Station.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                     |                                            |                                 |                                                               | NUREG-1801 does not specify the corrosion mechanisms<br>which might cause ligament cracking. Cracking due to SCC<br>and loss of material due to pitting and crevice corrosion were<br>identified as aging effects requiring management for the lattice<br>grid support bars in the Ginna Station steam generators. These<br>aging effects are managed jointly by the Water Chemistry<br>Control Program and the Steam Generator Tube Integrity<br>Program, which provides for secondary side inspections to<br>verify the effectiveness of water chemistry control. These aging<br>management programs will be identified in Appendix B. |

1

| Component                                              | Aging<br>Effect/Mechanism                                 | Aging<br>Management<br>Programs | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------|-----------------------------------------------------------|---------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (18) Reactor vessel closure<br>studs and stud assembly | Crack initiation and<br>growth due to SCC<br>and/or IGSCC | Reactor head<br>closure studs   | No                                   | Consistent with NUREG-1801. Crack initiation and growth due<br>to SCC or IGSCC were not identified as an aging effect<br>requiring management for the Ginna Station reactor vessel<br>closure studs. Nevertheless, the Reactor Head Closure Studs<br>Program which includes ASME Section XI visual, surface and<br>volumetric inservice inspections capable of detecting cracking<br>due to SCC, is credited for managing aging effects applicable<br>to the reactor head closure studs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                        |                                                           |                                 |                                      | NUREG-1801 identifies crack initiation and growth due to SCC<br>is a potential aging effect for reactor vessel closure studs<br>exposed to borated water leaks. Although there have been a<br>few reported cases of cracking of bolting in the industry caused<br>by SCC, these have been attributed to susceptible high<br>yield-stress materials exposed to aggressive environments,<br>such as lubricants containing molybdenum disulfide. A survey<br>of industry experience, technical literature, and laboratory<br>corrosion studies (documented in EPRI Report NP-5769)<br>indicates that SCC should not be a concern for closure bolting<br>in nuclear power plant applications if the specified minimum<br>yield strength is <150 Ksi. The Ginna Station studs are<br>fabricated from SA-320 Gr. L43 material (corresponding to AISI<br>Grade 4340) which is not a high strength steel. The minimum<br>yield strength specified in SA-320 for Grade L43 material is<br>105 Ksi, which is well below the 150 Ksi threshold.<br>Furthermore, the selection and use of fastener lubricants for<br>pressure boundary components has been controlled by the<br>Ginna Station Quality Assurance Program since 1983 as part<br>of the response to IE Bulletin 82-02. Limits are also imposed<br>on levels of contaminants such as chlorides and sulfur<br>compounds in lubricants and sealant compounds. Therefore, it<br>is reasonable to conclude that failure by SCC should not be a<br>significant issue for SA-320 Gr. L43 bolting materials. Industry<br>and plant-specific operating experience support this<br>conclusion. |

1

| Component                            | Aging<br>Effect/Mechanism                                              | Aging<br>Management<br>Programs | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------|------------------------------------------------------------------------|---------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (19) CASS pump casing and valve body | Loss of fracture<br>toughness due to<br>thermal aging<br>embrittlement | Inservice inspection            | No                                   | Consistent with NUREG-1801. Loss of fracture toughness due<br>to thermal aging embrittlement was identified as an aging effect<br>requiring management for the CASS reactor coolant pump<br>(RCP) casings and Class 1 valve bodies.                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                      |                                                                        |                                 |                                      | The ASME Section XI, Subsections IWB, IWC, & IWD<br>Inservice Inspection Program (as modified by ASME Code<br>Case N-481) is credited for managing this aging effect for the<br>RCP casings. One of the requirements of Code Case N-481 is<br>a flaw tolerance evaluation performed by fracture mechanics<br>methods for the RCP casings to verify that adequate margin<br>exists for flaw stability after consideration is given to reduction<br>in fracture toughness due to thermal aging embrittlement. This<br>evaluation has been performed and adequate margin was<br>demonstrated throughout the period of extended operation. |
|                                      |                                                                        |                                 |                                      | For Class 1 valve bodies, the ASME Section XI, Subsections<br>IWB, IWC, & IWD Inservice Inspection Program is credited for<br>managing loss of fracture toughness due to thermal aging<br>embrittlement.                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Component                                                   | Aging<br>Effect/Mechanism                                              | Aging<br>Management<br>Programs           | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (20) CASS piping                                            | Loss of fracture<br>toughness due to<br>thermal aging<br>embrittlement | Thermal aging<br>embrittlement of<br>CASS | No                                   | Consistent with NUREG-1801. The Thermal Aging<br>Embrittlement of Cast Austenitic Stainless Steel (CASS)<br>Program is credited with managing loss of fracture toughness<br>due to thermal aging embrittlement. This program invokes<br>ASME Section XI ISI requirements as well as flaw-tolerance<br>analyses using fracture mechanics methods which take into<br>account the effects of thermal aging during the period of<br>extended operation. An updated leak-before-break (LBB)<br>analysis has been performed for the Ginna Station reactor<br>coolant system piping and elbows based on loading, pipe<br>geometry, and end-of-life fracture toughness considering<br>thermal aging effects through the end of the period of extended<br>operation. This analysis is addressed as a TLAA and is<br>discussed in Section 4.0 of the Application.<br>The CRDM pressure housings and all reactor coolant system |
|                                                             |                                                                        |                                           |                                      | nozzle safe ends at Ginna Station are wrought stainless steel,<br>not CASS. The pressurizer spray head performs no license<br>renewal intended function at Ginna Station. In addition, the<br>pressurizer nozzle is cast carbon steel (integral with the<br>pressurizer) and clad with austenitic stainless steel weld<br>overlay. The reactor coolant system piping is forged Type 316<br>stainless steel. However, the fittings (elbows) are CASS (Type<br>CF8M).                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (21) BWR piping and fittings;<br>steam generator components | Wall thinning due to<br>flow-accelerated<br>corrosion                  | Flow-accelerated corrosion                | No                                   | Consistent with NUREG-1801. The aging management review<br>for the replacement steam generators did not identify loss of<br>material due to FAC as an aging effect requiring management<br>for the steam outlet nozzle and feedwater inlet nozzle. The<br>steam quality and flows at the steam outlet nozzle are such<br>that FAC would not represent a concern. Furthermore, the<br>design of the feedwater inlet nozzle includes an Alloy 690<br>thermal sleeve which is extremely resistant to flow-accelerated<br>corrosion damage. Nevertheless, the Flow-Accelerated<br>Corrosion Program is credited for verification that steam<br>generator components are not degraded due to FAC.                                                                                                                                                                                                                         |

| Component                                                                                                                                                                         | Aging<br>Effect/Mechanism                                                                                                                              | Aging<br>Management<br>Programs                          | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (22) Reactor coolant pressure<br>boundary (RCPB) valve<br>closure bolting, manway and<br>holding bolting, and closure<br>bolting in high pressure and<br>high temperature systems | Loss of material<br>due to wear; loss of<br>preload due to<br>stress relaxation;<br>crack initiation and<br>growth due to cyclic<br>loading and/or SCC | Bolting integrity                                        | Νο                                   | Consistent with NUREG-1801. The closure bolting for reactor<br>coolant system valves, reactor coolant pump, steam generator,<br>and pressurizer is SA-193 Grade B7 material, with specified<br>minimum yield strength of 105 Ksi. Consequently, crack<br>initiation and growth due to SCC is not an applicable aging<br>effect (see discussion for Item 18). Loss of mechanical closure<br>integrity due to boric acid corrosion was also identified as an<br>aging effect requiring management for all RCPB bolting<br>potentially exposed to borated water leaks. The applicable<br>aging management program is the Boric Acid Corrosion<br>Program. |
|                                                                                                                                                                                   |                                                                                                                                                        |                                                          |                                      | For all RCPB bolting other than the reactor vessel closure<br>studs, loss of material due to wear and loss of mechanical<br>closure integrity due to stress relaxation are managed at Ginna<br>Station by the Bolting Integrity Program (described in Appendix<br>B). The Bolting Integrity Program invokes the ASME Section<br>XI, Subsections IWB, IWC, & IWD Inservice Inspection<br>Program for assurance that effects of aging for RCPB closure<br>bolting are effectively managed.                                                                                                                                                               |
|                                                                                                                                                                                   |                                                                                                                                                        |                                                          |                                      | There are no flanged connections associated with the CRDM penetrations with reactor coolant pressure boundary (RCPB) bolting at Ginna Station.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (23) CRD nozzle                                                                                                                                                                   | Crack initiation and<br>growth due to<br>PWSCC                                                                                                         | Ni-alloy nozzles<br>and penetrations;<br>water chemistry | No                                   | Consistent with NUREG-1801. Crack initiation and growth due<br>to PWSCC was identified as an aging effect requiring<br>management for the Alloy 600 CRDM nozzles and reactor<br>head vent pipe. The aging management programs credited for<br>managing this effect are the Water Chemistry Control Program<br>and the Reactor Vessel Head Penetration Inspection Program.                                                                                                                                                                                                                                                                              |

| Component                                                                                                                      | Aging<br>Effect/Mechanism                                                                                            | Aging<br>Management<br>Programs                           | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (24) Reactor vessel nozzles<br>safe ends and CRD housing;<br>reactor coolant system<br>components (except CASS<br>and bolting) | Crack initiation and<br>growth due to cyclic<br>loading, and/or<br>SCC, and PWSCC                                    | Inservice<br>inspection; water<br>chemistry               | No                                   | Consistent with NUREG-1801. Crack initiation and growth due<br>to SCC and flaw growth were identified as aging effects<br>requiring management for the reactor vessel nozzle safe ends,<br>CRD housing and RCS components. Aging management<br>programs credited for managing these effects are the Water<br>Chemistry Control Program and ASME Section XI, Subsections<br>IWB, IWC, & IWD Inservice Inspection Program. |
|                                                                                                                                |                                                                                                                      |                                                           |                                      | The pressurizer manway and flange are integrally cast with the carbon steel heads and are evaluated with the pressurizer heads.                                                                                                                                                                                                                                                                                          |
|                                                                                                                                |                                                                                                                      |                                                           |                                      | The pressurizer relief tank is not in scope to license renewal at Ginna Station.                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                |                                                                                                                      |                                                           |                                      | For small-bore connected systems piping and fittings, aging management programs for managing crack initiation and growth due to SCC are discussed in Item 6.                                                                                                                                                                                                                                                             |
| (25) Reactor vessel internals<br>CASS components                                                                               | Loss of fracture<br>toughness due to<br>thermal aging,<br>neutron irradiation<br>embrittlement, and<br>void swelling | Thermal aging and<br>neutron irradiation<br>embrittlement | No                                   | The upper and lower internals assemblies in the Ginna Station<br>reactor vessel contain no CASS components. The lower<br>support forging and lower support plate columns are wrought<br>stainless steel. Therefore this component grouping is not<br>applicable to Ginna Station.                                                                                                                                        |

| Component                                                                                              | Aging<br>Effect/Mechanism                          | Aging<br>Management<br>Programs | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (26) External surfaces of<br>carbon steel components in<br>reactor coolant system<br>pressure boundary | Loss of material<br>due to boric acid<br>corrosion | Boric acid corrosion            | No                                   | Consistent with NUREG-1801. Loss of material due to boric<br>acid corrosion was identified as an aging effect requiring<br>management for external surfaces of carbon steel components<br>(including closure bolting) in the reactor coolant system<br>pressure boundary. The Boric Acid Corrosion Program is<br>credited for managing this aging effect. |
|                                                                                                        |                                                    |                                 |                                      | Additionally, loss of material due to boric acid corrosion was<br>identified for all borated water systems as well as non-borated<br>water systems in proximity to borated water systems at Ginna<br>Station. The Boric Acid Corrosion Program was also credited<br>for aging management of boric acid corrosion in these<br>additional systems.          |
| (27) Steam generator<br>secondary manways and<br>handholds (CS)                                        | Loss of material due to erosion                    | Inservice inspection            | No                                   | This line item applies to once-through steam generators and is therefore not applicable to Ginna Station.                                                                                                                                                                                                                                                 |

| Component                                                                         | Aging<br>Effect/Mechanism                               | Aging<br>Management<br>Programs | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (28) Reactor internals, reactor<br>vessel closure studs, and core<br>support pads | Loss of material<br>due to wear                         | Inservice inspection            | Νο                                   | Consistent with items IV.A2.5-f, B2.1-l, B2.5-o, and B2.6-c of<br>NUREG-1801. Loss of material due to wear was identified as<br>an aging effect requiring management for the reactor vessel<br>flange and internals components identified in NUREG-1801.<br>However, loss of material due to wear was also identified for<br>the reactor vessel closure studs and the core support pads for<br>which no specific line items appear in the NUREG-1800 (SRP)<br>table. The ASME Section XI, Subsections IWB, IWC, & IWD<br>Inservice Inspection Program was credited for managing loss<br>of material due to wear for all components except the flux<br>thimble tubes and the reactor vessel closure studs. |
|                                                                                   |                                                         |                                 |                                      | For the flux thimble tubes, Ginna Station credits the Thimble<br>Tubes Inspection Program for managing loss of material due to<br>wear. This program was implemented in response to NRC<br>Bulletin 88-09 which required that an inspection program be<br>established to manage the effects of thimble wear for<br>Westinghouse reactors with bottom-mounted instrumentation.<br>The program provides for eddy current inspections at an<br>appropriate frequency, includes acceptance criteria and<br>corrective actions and has effectively managed thimble tube<br>wear at Ginna Station (see Appendix B).                                                                                             |
|                                                                                   |                                                         |                                 |                                      | The Reactor Head Closure Studs Program (see Appendix B) is credited for managing loss of material due to wear of reactor vessel closure studs (see Item 35).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (29) Pressurizer integral<br>support                                              | Crack initiation and<br>growth due to cyclic<br>loading | Inservice inspection            | No                                   | Consistent with NUREG-1801. Cracking due to flaw growth<br>was identified as an aging effect requiring management for the<br>pressurizer support skirt and flange. Flaw growth occurs as a<br>result of cyclic loading. The ASME Section XI, Subsections<br>IWB, IWC, & IWD Inservice Inspection Program was credited<br>for managing this aging effect. Although the aging effect<br>identified by Ginna Station is not described as crack initiation<br>and growth due to cyclic loading, cracking due to any<br>mechanism would be acceptably managed by the ASME<br>Section XI ISI Program.                                                                                                           |

| Component                                                 | Aging<br>Effect/Mechanism                   | Aging<br>Management<br>Programs                                           | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (30) Upper and lower internals<br>assembly (Westinghouse) | Loss of preload due<br>to stress relaxation | Inservice<br>inspection; loose<br>part and/or neutron<br>noise monitoring | No                                   | Not consistent with NUREG-1801. Loss of mechanical closure<br>integrity due to stress-relaxation was identified as an aging<br>effect requiring management for the holddown spring in the<br>upper internals assembly and for the clevis-insert bolts in the<br>lower internals assembly. However, the ASME Section XI,<br>Subsections IWB, IWC, & IWD Inservice Inspection Program<br>was credited for managing this aging effect. Ginna Station<br>does not employ loose-parts or neutron noise monitoring<br>methods for aging management as referenced in<br>NUREG-1801. This item will therefore be included in Table<br>3.2-2. |

ĺ

| Component                                                                                                                | Aging<br>Effect/Mechanism                                                                          | Aging<br>Management<br>Programs             | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (31) Reactor vessel internals<br>in fuel zone region (except<br>Westinghouse and Babcock &<br>Wilcox [B&W] baffle bolts) | Loss of fracture<br>toughness due to<br>neutron irradiation<br>embrittlement, and<br>void swelling | PWR vessel<br>internals; water<br>chemistry | No                                   | Consistent with NUREG-1801. Loss of fracture toughness due<br>to neutron irradiation embrittlement was identified as an aging<br>effect requiring management for reactor vessel internals<br>components in the fuel zone. However, void swelling was not<br>specifically identified as an aging mechanism. The results of<br>recent destructive examinations of one of the Ginna Station<br>baffle/former bolts removed during the 1999 refueling outage<br>suggest that void swelling should not represent a concern<br>during the period of extended operation (see discussion in Item<br>8). In addition, the lower support forging and the core barrel<br>outlet nozzle were not included among the components subject<br>to significant irradiation embrittlement because of their location<br>remote from the fuel zone.<br>The aging management program referred to in NUREG-1801 is<br>the PWR Vessel Internals Program. However, the SRP<br>references Water Chemistry as well as the PWR Vessel<br>Internals Program.<br>Nevertheless, the Reactor Vessel Internals Program is credited<br>with managing loss of fracture toughness due to neutron<br>irradiation embrittlement and void swelling for the internals<br>components in this component grouping. Ginna Station will<br>incorporate applicable results of industry initiatives related to<br>void swelling in the Reactor Vessel Internals Program as they<br>become available. |

| Component                                                                                   | Aging<br>Effect/Mechanism                                        | Aging<br>Management<br>Programs             | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (32) Steam generator upper<br>and lower heads; tubesheets;<br>primary nozzles and safe ends | Crack initiation and<br>growth due to SCC,<br>PWSCC and<br>IASCC | Inservice<br>inspection; water<br>chemistry | Νο                                   | Consistent with NUREG-1801. The only components in this grouping applicable to Ginna Station are the primary nozzles and safe ends (NUREG-1801, Item IV D1.1-i).<br>The steam generator primary head, inlet and outlet nozzles, and manways at Ginna Station are low-alloy steel clad with austenitic stainless steel weld overlay. The primary nozzle safe ends are Type 316 stainless steel. Since the interior (clad) surface of the nozzles, manway, and head are exposed to the same environment, the primary head and manways are included with this component grouping. Crack initiation and growth due to SCC was identified as an aging effect requiring management for the stainless steel-clad primary head, inlet and outlet nozzles, manways, and stainless steel safe ends. The ASME Section XI, Subsections IWB, IWC, & IWD Inservice Inspection Program and the Water Chemistry Control Program are credited for managing applicable aging effects for components in this grouping. |

| Component                                                                     | Aging<br>Effect/Mechanism                              | Aging<br>Management<br>Programs                   | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (33) Vessel internals (except<br>Westinghouse and B&W baffle<br>former bolts) | Crack initiation and<br>growth due to SCC<br>and IASCC | PWR vessel<br>internals; water<br>chemistry       | No                                   | Consistent with NUREG-1801. Ginna Station credited either<br>the Water Chemistry Control Program alone (for components<br>subject to SCC) or in combination with the Reactor Vessel<br>Internals Program (for components subject to IASCC) for<br>management of crack initiation and growth due to SCC/IASCC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                               |                                                        |                                                   |                                      | Crack initiation and growth due to SCC was identified as an aging effect requiring management for all reactor vessel internals components fabricated from stainless steel. Crack initiation and growth due to IASCC was identified as an aging effect requiring management for those components exposed to neutron fluence $>10^{21}$ n/cm <sup>2</sup> in the core. However, the Ginna Station evaluation determined that not all components listed in NUREG-1801 were considered susceptible to crack initiation and growth due to IASCC. This is a result of fluence exposures being less than the threshold value of $10^{21}$ n/cm <sup>2</sup> . In addition, plant-specific data obtained from destructive evaluation of Type 347 stainless steel baffle/former bolts removed in 1999 indicated very limited evidence of IASCC. Those components determined by evaluation not to be susceptible to IASCC are enumerated in Table 3.2-2. |
| (34) Reactor internals (B&W screws and bolts)                                 | Loss of preload due to stress relaxation               | Inservice<br>inspection; loose<br>part monitoring | No                                   | The components in this grouping are not applicable to Ginna Station.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (35) Reactor vessel closure studs and stud assembly                           | Loss of material<br>due to wear                        | Reactor head<br>closure studs                     | No                                   | Consistent with NUREG-1801. Loss of material due to wear<br>was identified as an aging effect requiring management for the<br>reactor vessel closure studs. The Reactor Head Closure Studs<br>Program is credited with managing this effect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Component                                                                                                 | Aging<br>Effect/Mechanism                | Aging<br>Management<br>Programs                   | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (36) Reactor internals<br>(Westinghouse upper and<br>lower internal assemblies; CE<br>bolts and tie rods) | Loss of preload due to stress relaxation | Inservice<br>inspection; loose<br>part monitoring | No                                   | Loss of mechanical closure integrity due to stress relaxation<br>was identified as an aging effect requiring management for the<br>upper and lower support plate column bolts. The ASME<br>Section XI, Subsections IWB, IWC, & IWD Inservice Inspection<br>Program is credited for managing this aging effect. Therefore<br>this is consistent with NUREG-1801. |
|                                                                                                           |                                          |                                                   |                                      | NUREG-1801 cites the Loose Parts Monitoring Program as<br>well as the ASME Section XI ISI Program. However,<br>loose-parts monitoring is not considered to be effective as an<br>aging management program at Ginna Station. This is not<br>consistent with NUREG-1801 and will be further discussed in<br>Table 3.2-2.                                          |

| Component Types                                                                                                                                                                                                                                                                                                                                                                                                           | Material                                                               | Environment   | AERMs                  | Program/Activity                          | Discussion                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------|------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>(1) RPV Closure<br/>Head Dome,<br/>Closure Head</li> <li>Flange, Vessel</li> <li>Flange, Upper</li> <li>Shell, Primary Inlet</li> <li>Nozzles, Primary</li> <li>Outlet Nozzles,<br/>Intermediate Shell</li> <li>(including<br/>circumferential</li> <li>Beltline weld),<br/>Lower Shell,</li> <li>Bottom Head Torus,</li> <li>Bottom Head Dome</li> <li>BMI Guide Tubes,</li> <li>Seal Table Fittings</li> </ul> | Low-Alloy Steel<br>with Stainless Steel<br>Cladding<br>Stainless Steel | Primary Water | Cracking due to<br>SCC | Water Chemistry<br>Control <b>Program</b> | Cracking due to SCC is not identified as an aging<br>effect requiring management for these components<br>in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the aging<br>effects identified and provide assurance that the<br>aging effects are effectively managed through the<br>period of extended operation. |

| Component Types                                                                                                                                                                                                                                                         | Material                                                       | Environment   | AERMs                          | Program/Activity                                                                                                                                     | Discussion                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (2) RPV Closure<br>Head Dome,<br>Closure Head<br>Flange, Vessel<br>Flange, Upper<br>Shell, Primary Inlet<br>Nozzles, Primary<br>Outlet Nozzles,<br>Intermediate Shell<br>(including<br>circumferential<br>weld), Lower Shell,<br>Bottom Head Torus,<br>Bottom Head Dome | Low-Alloy Steel<br>with Stainless Steel<br>Cladding            | Primary Water | Cracking due to<br>Flaw Growth | ASME Section XI,<br>Subsections IWB,<br>IWC, & IWD<br>Inservice<br>Inspection <b>Program</b>                                                         | Cracking due to flaw growth is not identified as an<br>aging effect requiring management for these<br>components in NUREG-1801. The aging<br>management program(s) referenced are appropriate<br>for the aging effects identified and provide<br>assurance that the aging effects are effectively<br>managed through the period of extended operation. |
| Primary Nozzle<br>Safe Ends<br>BMI Guide Tubes<br>Core Support Pads                                                                                                                                                                                                     | Stainless Steel<br>Weld Butter<br>Stainless Steel<br>Alloy 600 |               |                                | ASME Section XI,<br>Subsections IWB,<br>IWC, & IWD<br>Inservice<br>Inspection <b>Program</b>                                                         |                                                                                                                                                                                                                                                                                                                                                        |
| CRDM Head<br>Housing Tubes<br>(Head Adapters),<br>Vent Pipe,<br>Instrumentation<br>Tubes and Safe<br>Ends                                                                                                                                                               | Alloy 600                                                      |               |                                | Reactor Vessel<br>Head Penetration<br>Inspection<br>Program<br>ASME Section XI,<br>Subsections IWB,<br>IWC, & IWD<br>Inservice<br>Inspection Program |                                                                                                                                                                                                                                                                                                                                                        |

| Component Types                                                                                                                                                                                                                                  | Material                                            | Environment            | AERMs                                                                        | Program/Activity                                                                             | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (3) RPV Core<br>Support Pads                                                                                                                                                                                                                     | Alloy 600                                           | Primary Water          | Loss of Material<br>due to Wear                                              | ASME Section XI,<br>Subsections IWB,<br>IWC, & IWD<br>Inservice<br>Inspection <b>Program</b> | Loss of material due to wear was not identified as<br>an aging effect requiring management in<br>NUREG-1801. The aging management program(s)<br>referenced are appropriate for the aging effects<br>identified and provide assurance that the aging<br>effects are effectively managed through the period<br>of extended operation.                                                                                                                                              |
| (4) RPV Primary<br>Inlet and Outlet<br>Nozzles and Upper<br>Shell                                                                                                                                                                                | Low-Alloy Steel<br>with Stainless Steel<br>Cladding | Primary Water          | Loss of Fracture<br>Toughness due to<br>Neutron Irradiation<br>Embrittlement | Reactor Vessel<br>Surveillance<br>Program                                                    | As discussed in Table 3.2-1 Line Number (4) the<br>RPV upper shell and the lower sides of the primary<br>inlet and outlet nozzles are not subject to significant<br>neutron irradiation embrittlement because of their<br>physical distance from the reactor core. Therefore<br>loss of fracture toughness due to neutron irradiation<br>embrittlement is not identified as an aging effect<br>requiring management at Ginna Station. This is not<br>consistent with NUREG-1801. |
| (5) RPV Ventilation<br>Shroud Support<br>Ring, Refueling<br>Seal Ledge, Upper<br>Shell, Primary Inlet<br>Nozzles, Primary<br>Outlet Nozzles,<br>Intermediate Shell,<br>Lower Shell,<br>Bottom Head Torus,<br>Bottom Head Dome<br>(CS Components) | Carbon/Low-Alloy<br>Steel                           | Borated Water<br>Leaks | Loss of Material<br>due to Boric Acid<br>Corrosion                           | Boric Acid<br>Corrosion <b>Program</b>                                                       | Loss of material due to boric acid corrosion of<br>external surfaces of these components was not<br>identified as an aging effect requiring management<br>in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the aging<br>effects identified and provide assurance that the<br>aging effects are effectively managed through the<br>period of extended operation.                                                                                  |
| (6) Closure Studs,<br>Nuts, Washers                                                                                                                                                                                                              | Carbon/Low-Alloy<br>Steel                           | Containment Air        | Loss of Mechanical<br>Closure Integrity<br>due to Stress<br>Relaxation       | Reactor Head<br>Closure Studs<br><b>Program</b>                                              | Loss of mechanical closure integrity due to stress<br>relaxation was not identified in NUREG-1801 as an<br>aging effect requiring management for the reactor<br>vessel closure studs. The aging management<br>program(s) referenced are appropriate for the aging<br>effects identified and provide assurance that the<br>aging effects are effectively managed through the<br>period of extended operation.                                                                     |

| Component Types                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Material                                                                                       | Environment   | AERMs                                           | Program/Activity                           | Discussion                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>(7) Lower Core<br/>Plate and Fuel<br/>Pins, Lower</li> <li>Support Forging,<br/>Lower Support</li> <li>Columns, Core</li> <li>Barrel and Flange,<br/>Radial Keys and</li> <li>Clevis Inserts,</li> <li>Baffle and Former</li> <li>Assembly, Core</li> <li>Barrel Outlet</li> <li>Nozzle, Upper</li> <li>Support Plate</li> <li>Assembly, Upper</li> <li>Core Plate and</li> <li>Fuel Alignment</li> <li>Pins, Upper</li> <li>Support Columns,</li> <li>RCCA Guide Tubes</li> <li>and Flow</li> <li>Downcomers,</li> <li>Guide Tube</li> <li>Support Pins,</li> <li>Upper Core Plate</li> <li>Alignment Pins,</li> <li>Upper Core Plate</li> <li>Alignment Pins,</li> <li>Holddown Spring,</li> <li>Thermal Shield and</li> <li>Neutron Panels,</li> <li>Bolting for all</li> <li>Bolted Closures</li> </ul> | Stainless Steel,<br>Alloy 600 (Clevis<br>Inserts), Alloy<br>X-750 (Guide Tube<br>Support Pins) | Primary Water | Changes in<br>Dimension due to<br>Void Swelling | Reactor Vessel<br>Internals <b>Program</b> | As discussed in Table 3.2-1 Line Number (8)<br>change in dimension due to void swelling was not<br>explicitly identified as an aging effect requiring<br>management for these components at Ginna<br>Station. However, the Reactor Vessel Internals<br>Program manages the effects of void swelling<br>should it become a concern. |

| Table 3.2-2 | <b>Reactor Coolant S</b> | ystem - Component Type | s Subject to Aging | Management not Evaluated in NUREG-1801 |
|-------------|--------------------------|------------------------|--------------------|----------------------------------------|
|-------------|--------------------------|------------------------|--------------------|----------------------------------------|

| Component Types                                                                                                                                                                                                                                                                                                                                                                                                 | Material                  | Environment   | AERMs                                                                | Program/Activity                                                                                   | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (8) Lower Support<br>Forging, Core<br>Barrel Outlet<br>Nozzle                                                                                                                                                                                                                                                                                                                                                   | Forged Stainless<br>Steel | Primary Water | Loss of Fracture<br>Toughness due to<br>Irradiation<br>Embrittlement | Reactor Vessel<br>Internals <b>Program</b><br>Water Chemistry<br>Control Program<br><b>Program</b> | As discussed in Table 3.2-1 Line Number (31) at<br>Ginna Station, loss of fracture toughness due to<br>irradiation embrittlement was not identified as an<br>aging effect requiring management in the AMR for<br>these components because of their location remote<br>from the fuel zone. In addition, void swelling was not<br>explicitly identified as an applicable aging<br>mechanism, although the Reactor Vessel Internals<br>Inspection program manages the effects of void<br>swelling should it become a concern. |
| (9) Lower Support<br>Forging, Radial<br>Keys and Clevis<br>Supports, Core<br>Barrel Outlet<br>Nozzle, Upper<br>Support Plate<br>Assembly, Upper<br>Core Plate and<br>Fuel Alignment<br>Pins, Upper<br>Support Columns,<br>RCCA Guidetubes<br>and Flow<br>Downcomers,<br>Upper Core Plate<br>Alignment Pins,<br>Holddown Spring,<br>Upper Support<br>Column Bolting,<br>Guide Tube Bolts,<br>Clevis Insert Bolts | Stainless Steel           | Primary Water | Cracking due to<br>IASCC                                             | Reactor Vessel<br>Internals <b>Program</b><br>Water Chemistry<br>Control Program<br><b>Program</b> | As discussed in Table 3.2-1 Line Number<br>(33) cracking due to IASCC was not identified as an<br>aging effect requiring management in the AMR for<br>these components because neutron fluence<br>exposure is below the threshold value for IASCC<br>susceptibility. That not withstanding, the aging<br>management program(s) referenced are appropriate<br>for the aging effects identified should cracking due<br>to IASCC become a concern.                                                                            |

#### **AERMs** Program/Activity Discussion **Component Types** Material Environment (10) Lower Core Loss of material due to wear was not identified as Loss of Material ASME Section XI. Stainless Steel Primary Water Plate and Fuel an aging effect requiring management for these due to Wear Subsections IWB. components in NUREG-1801. The aging Pins, Core Barrel IWC. & IWD Flange, Fuel management program(s) referenced are appropriate Inservice Alianment Pins. Inspection Program for the aging effects identified and provide Guide Tube assurance that the aging effects are effectively Support Pins. managed through the period of extended operation. Holddown Spring (11) Secondary Primary Water Cracking due to Water Chemistry Cracking due to SCC was not identified as an aging Stainless Steel Core Support. Control Program effect requiring management for these components SCC Diffuser Plate. in NUREG-1801. The aging management program(s) referenced are appropriate for the aging Guide Tube Support Pins, Head effects identified and provide assurance that the Vessel Alianment aging effects are effectively managed through the Pins, BMI Columns period of extended operation. and Flux Thimbles. Head Cooling Spray Nozzles, Upper Instrumentation Column, Conduits and Supports (12) Upper and ASME Section XI. Loss of Preload As discussed in Table 3.2-1 Line Number (30) and Stainless Steel Primary Water Lower Internals Table 3.2-1 Line Number (36) loss of mechanical due to Stress Subsections IWB. Assembly -Relaxation IWC, & IWD closure integrity was identified as an aging effect Holdown Spring. requiring management for these components. Inservice Upper and Lower However, loose parts or neutron noise monitoring Inspection Program Support Column programs are not used for the purpose of aging Bolts, Clevis Insert management at Ginna Station. This is not consistent with NUREG-1801. Bolts (13) RCS Primary Cracking due to flaw growth is not identified as an CASS **Primary Water** Cracking due to ASME Section XI. Loop Elbows aging effect requiring management for these Subsections IWB. Flaw Growth components in NUREG-1801. The aging IWC, & IWD management program(s) referenced are appropriate Inservice for the aging effects identified and provide Inspection Program RCS Valves > 4 in. assurance that the aging effects are effectively Wrought Stainless NPS, Valves < 4 in. managed through the period of extended operation. Steel NPS

| Component Types                                                                                                                     | Material                                         | Environment     | AERMs                                                  | Program/Activity                                                                                                                          | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (14) RCS Valves ≥<br>4 in. NPS, Valves <<br>4 in. NPS                                                                               | Wrought Stainless<br>Steel                       | Primary Water   | Cracking due to<br>SCC                                 | Water Chemistry<br>Control <b>Program</b>                                                                                                 | Cracking due to SCC is not identified as an aging<br>effect requiring management in NUREG-1801 for<br>wrought stainless steel valves $\geq 4$ in. NPS and < 4<br>in. NPS. The aging management program(s)<br>referenced are appropriate for the aging effects<br>identified and provide assurance that the aging<br>effects are effectively managed through the period<br>of extended operation.                                     |
| (15) Reactor<br>Coolant Pump<br>Thermal Barrier<br>Flange, Thermal<br>Barrier Heat<br>Exchanger Tubing,<br>Orifices and<br>Reducers | Wrought Stainless<br>Steel                       | Primary Water   | Cracking due to<br>SCC, Cracking due<br>to Flaw Growth | Water Chemistry<br>Control <b>Program</b><br>ASME Section XI,<br>Subsections IWB,<br>IWC, & IWD<br>Inservice<br>Inspection <b>Program</b> | The Reactor Coolant Pump Thermal Barrier Flange,<br>Heat Exchanger Tubing, and Orifices and Reducers<br>are not identified in NUREG-1801. Although these<br>component types are not included in the NUREG,<br>the aging management program(s) referenced are<br>appropriate for the aging effects identified and<br>provide assurance that the aging effects are<br>effectively managed through the period of extended<br>operation. |
| (16) Reactor<br>Coolant Pump Lugs                                                                                                   | Stainless Steel                                  | Containment Air | Cracking due to<br>Flaw Growth                         | ASME Section XI,<br>Subsections IWB,<br>IWC, & IWD<br>Inservice<br>Inspection <b>Program</b>                                              | Cracking due to flaw growth for the Reactor Coolant<br>Pump Lugs is not identified as an aging effect<br>requiring management in NUREG-1801. The aging<br>management program(s) referenced are appropriate<br>for the aging effects identified and provide<br>assurance that the aging effects are effectively<br>managed through the period of extended operation.                                                                  |
| (17) Pressurizer<br>Safety Nozzle,<br>Pressurizer Relief<br>Nozzle                                                                  | Carbon Steel with<br>Stainless Steel<br>Cladding | Primary Water   | Cracking due to<br>SCC, Cracking due<br>to Flaw Growth | Water Chemistry<br>Control <b>Program</b><br>ASME Section XI,<br>Subsections IWB,<br>IWC, & IWD<br>Inservice<br>Inspection <b>Program</b> | The Pressurizer Safety and Relief Nozzles are not<br>explicitly identified in NUREG-1801. Although these<br>component types are not included in the NUREG,<br>the aging management program(s) referenced are<br>appropriate for the aging effects identified and<br>provide assurance that the aging effects are<br>effectively managed through the period of extended<br>operation.                                                 |

| Table 3.2-2 | Reactor Coolant System - Con | ponent Types Subject to Aging Manageme | nt not Evaluated in NUREG-1801 |
|-------------|------------------------------|----------------------------------------|--------------------------------|
|-------------|------------------------------|----------------------------------------|--------------------------------|

| Component Types                                                                                                                                                        | Material                                                           | Environment            | AERMs                                              | Program/Activity                                                                             | Discussion                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (18) Pressurizer<br>Manway Cover                                                                                                                                       | Carbon Steel with<br>Stainless Steel<br>Disc Insert                | Primary Water          | Cracking due to<br>SCC                             | Water Chemistry<br>Control <b>Program</b>                                                    | The Pressurizer Manway Cover is not explicitly<br>identified in NUREG-1801. Although these<br>component types are not included in the NUREG,<br>the aging management program(s) referenced are<br>appropriate for the aging effects identified and<br>provides assurance that the aging effects are<br>effectively managed through the period of extended<br>operation.  |
| (19) Pressurizer<br>Spray Nozzle,<br>Relief Nozzle,<br>Safety Nozzle,<br>Surge Nozzle and<br>Manway Cover (CS<br>Components)                                           | Carbon Steel with<br>Stainless Steel<br>Cladding or Disc<br>Insert | Borated Water<br>Leaks | Loss of Material<br>due to Boric Acid<br>Corrosion | Boric Acid<br>Corrosion <b>Program</b>                                                       | Loss of material due to boric acid corrosion was not<br>identified as an aging effect requiring management<br>for these components in NUREG-1801. The aging<br>management program(s) referenced are appropriate<br>for the aging effects identified and provide<br>assurance that the aging effects are effectively<br>managed through the period of extended operation. |
| (20) SG Primary<br>Channel Head,<br>Primary Inlet and<br>Outlet Nozzles,<br>Primary Inlet and<br>Outlet Nozzle Safe<br>Ends,                                           | Low-Alloy Steel<br>with Stainless Steel<br>Cladding                | Primary Water          | Cracking due to<br>Flaw Growth                     | ASME Section XI,<br>Subsections IWB,<br>IWC, & IWD<br>Inservice<br>Inspection <b>Program</b> | Cracking due to Flaw Growth is not identified as an<br>aging effect requiring management for these<br>components in NUREG-1801. The aging<br>management program(s) referenced are appropriate<br>for the aging effects identified and provide<br>assurance that the aging effects are effectively<br>managed through the period of extended operation.                   |
| Steam Generator<br>Shell and Transition<br>Cone, Feedwater<br>Nozzle, Steam<br>Outlet Nozzle,<br>Blowdown Piping<br>Nozzle and<br>Secondary-Side<br>Shell Penetrations | Carbon Steel                                                       | Secondary Water        |                                                    |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                          |

| Component Types                                  | Material                                      | Environment     | AERMs                                                                                                     | Program/Activity                                                                                                                          | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------|-----------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (21) SG Tubesheet<br>(Primary Side)              | Low-Alloy Steel<br>with Alloy 600<br>cladding | Primary Water   | Cracking due to<br>SCC<br>Cracking due to<br>Flaw Growth                                                  | Water Chemistry<br>Control <b>Program</b><br>ASME Section XI,<br>Subsections IWB,<br>IWC, & IWD<br>Inservice<br>Inspection <b>Program</b> | Cracking due to SCC and flaw growth is not<br>identified as an aging effect requiring management<br>for the primary side of the SG tubesheet in<br>NUREG-1801. The aging management program(s)<br>referenced are appropriate for the aging effects<br>identified and provide assurance that the aging<br>effects are effectively managed through the period<br>of extended operation.                                                                |
| (22) SG Tubesheet<br>(Secondary Side)            | Low Alloy Steel                               | Secondary Water | Loss of Material<br>due to General,<br>Pitting and Crevice<br>Corrosion<br>Cracking due to<br>Flaw Growth | Water Chemistry<br>Control <b>Program</b><br>ASME Section XI,<br>Subsections IWB,<br>IWC, & IWD<br>Inservice<br>Inspection <b>Program</b> | Loss of material due to general, pitting and crevice<br>corrosion and cracking due to flaw growth are not<br>identified as aging effects requiring management for<br>the secondary side of the SG tubesheet in<br>NUREG-1801. The aging management program(s)<br>referenced are appropriate for the aging effects<br>identified and provide assurance that the aging<br>effects are effectively managed through the period<br>of extended operation. |
| (23) SG Primary<br>Channel Head<br>Divider Plate | Alloy 690                                     | Primary Water   | Cracking due to<br>SCC                                                                                    | Water Chemistry<br>Control <b>Program</b>                                                                                                 | Cracking due to SCC is not identified as an aging<br>effect requiring management for the SG divider<br>plate in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the aging<br>effects identified and provide assurance that the<br>aging effects are effectively managed through the<br>period of extended operation.                                                                                                   |

### Table 3.2-2 Reactor Coolant System - Component Types Subject to Aging Management not Evaluated in NUREG-1801

### Table 3.2-2 Reactor Coolant System - Component Types Subject to Aging Management not Evaluated in NUREG-1801

| Component Types                                                                                                                                                                                                                                  | Material                  | Environment            | AERMs                                                                                 | Program/Activity                                                                                 | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (24) SG Feedwater<br>Nozzle, Steam<br>Outlet Nozzle,<br>Steam Flow<br>Restrictor,<br>Blowdown Piping<br>Nozzles and<br>Secondary-Side<br>Shell Penetrations,<br>Secondary<br>Closures, and<br>Internal Shroud,<br>Primary and<br>Secondary Decks | Carbon/Low-Alloy<br>Steel | Secondary Water        | Loss of Material<br>due to General,<br>Pitting and Crevice<br>Corrosion               | Water Chemistry<br>Control <b>Program</b>                                                        | Loss of material due to general, pitting and crevice<br>corrosion was not identified in NUREG-1801 as an<br>aging effect requiring management for these<br>components exposed to the secondary-side SG<br>environment. The aging management program(s)<br>referenced are appropriate for the aging effects<br>identified and provide assurance that the aging<br>effects are effectively managed through the period<br>of extended operation.                                                              |
| (25) SG Lattice<br>Grid Tube<br>Supports, U-Bend<br>Fan Bar Restraints                                                                                                                                                                           | Stainless Steel           | Secondary Water        | Cracking due to<br>SCC<br>Loss of Material<br>due to Pitting and<br>Crevice Corrosion | Water Chemistry<br>Control <b>Program</b><br>Steam Generator<br>Tube Integrity<br><b>Program</b> | As discussed in Table 3.2-1 Line Number (17)<br>cracking due to SCC and loss of material due to<br>pitting and crevice corrosion were not identified as<br>aging effects requiring management in<br>NUREG-1801 for the lattice grid tube supports and<br>U-bend fan bar restraints. The aging management<br>program(s) referenced are appropriate for the aging<br>effects identified and provide assurance that the<br>aging effects are effectively managed through the<br>period of extended operation. |
| (26) SG Primary<br>Inlet and Outlet<br>Nozzles and<br>Support Pads (CS<br>Components)                                                                                                                                                            | Carbon/Low-Alloy<br>Steel | Borated Water<br>Leaks | Loss of Material<br>due to Boric Acid<br>Corrosion                                    | Boric Acid<br>Corrosion <b>Program</b>                                                           | Loss of material due to boric acid corrosion was not<br>identified as an aging effect requiring management<br>in NUREG-1801 for the external surfaces of the<br>primary inlet and outlet nozzles and support pads.<br>The aging management program(s) referenced are<br>appropriate for the aging effects identified and<br>provide assurance that the aging effects are<br>effectively managed through the period of extended<br>operation.                                                               |

| Component Types                                                                                                                                             | Material                                                                               | Environment                                    | AERMs                                                                                     | Program/Activity                                                                             | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (27) SG Support<br>Pads, Seismic Lugs                                                                                                                       | Carbon Steel                                                                           | Containment Air                                | Cracking due to<br>Flaw Growth                                                            | ASME Section XI,<br>Subsections IWB,<br>IWC, & IWD<br>Inservice<br>Inspection <b>Program</b> | Cracking due to flaw growth was not identified in<br>NUREG-1801 as an aging effect requiring<br>management for the support pads and seismic lugs.<br>The aging management program(s) referenced are<br>appropriate for the aging effects identified and<br>provide assurance that the aging effects are<br>effectively managed through the period of extended<br>operation.                                                |
| (28) Non-Class 1<br>RCS Manual<br>Valves,<br>Solenoid-Operated<br>Valves, Strainers,<br>PORV Operators,<br>Accumulators,<br>Nitrogen Surge<br>Tanks, Piping | Carbon Steel,<br>Stainless Steel,<br>CASS, Copper<br>Alloy (Zn<15%)<br>Stainless Steel | Air and Gas<br>Air and Gas,<br>Wetted (<140°F) | No Aging Effects                                                                          | No AMP Required                                                                              | Non-Class 1 RCS carbon steel, stainless steel,<br>CASS and copper alloy components exposed to air<br>and gas environments are not identified in<br>NUREG-1801.                                                                                                                                                                                                                                                             |
| (29) Non-Class 1<br>RCS Piping                                                                                                                              | Carbon Steel                                                                           | Air and Gas,<br>Wetted (<140°F)                | Loss of Material<br>due to General,<br>Crevice, Pitting,<br>Galvanic Corrosion<br>and MIC | Periodic<br>Surveillance and<br>Preventive<br>Maintenance                                    | Non-Class 1 RCS carbon steel piping exposed to a<br>wetted air and gas (<140°F) environment is not<br>identified in NUREG-1801. Although these<br>component types are not included in the NUREG,<br>the aging management program(s) referenced are<br>appropriate for the aging effects identified and<br>provide assurance that the aging effects are<br>effectively managed through the period of extended<br>operation. |
| (30) Reactor<br>Coolant Pump<br>Upper Bearing<br>Cooler                                                                                                     | Carbon Steel                                                                           | Treated Water -<br>Other                       | Loss of Material<br>due to General,<br>Crevice, and<br>Galvanic Corrosion<br>and MIC      | Water Chemistry<br>Control Program                                                           | The Reactor Coolant Pump upper bearing cooler is<br>a Non-Class 1 RCS component which is not<br>identified in NUREG-1801. Although these<br>component types are not included in the NUREG,<br>the aging management program(s) referenced are<br>appropriate for the aging effects identified and<br>provide assurance that the aging effects are<br>effectively managed through the period of extended<br>operation.       |

### Table 3.2-2 Reactor Coolant System - Component Types Subject to Aging Management not Evaluated in NUREG-1801

| Component Types                                                                                      | Material                         | Environment                                                                    | AERMs                                                                                              | Program/Activity                                          | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (31) Reactor<br>Coolant Pump<br>Motor Upper and<br>Lower Bearing<br>Cooling Coil                     | Copper Alloy<br>(Zn<15%, Zn>15%) | Oil and Fuel Oil                                                               | Loss of Material<br>due to MIC                                                                     | Periodic<br>Surveillance and<br>Preventive<br>Maintenance | The Reactor Coolant Pump Motor upper and lower<br>bearing cooling coils are Non-Class 1 components<br>which are not identified in NUREG-1801. Although<br>these component types are not included in the<br>NUREG, the aging management program(s)<br>referenced are appropriate for the aging effects                                                                                                                                                                                                                     |
|                                                                                                      |                                  | Treated Water -<br>Other                                                       | Loss of Material<br>due to MIC,<br>Crevice and<br>Galvanic Corrosion,<br>and Selective<br>Leaching | Water Chemistry<br>Control <b>Program</b>                 | identified and provide assurance that the aging<br>effects are effectively managed through the period<br>of extended operation.                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                      |                                  | Treated Water -<br>Other                                                       | Loss of Heat<br>Transfer due to<br>Particulate and<br>Biological Fouling                           | Water Chemistry<br>Control <b>Program</b>                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (32) Seal Table                                                                                      | Stainless Steel                  | Treated Water -<br>Borated (<140°F)                                            | Loss of Material<br>due to Crevice and                                                             | Water Chemistry<br>Control <b>Program</b>                 | The seal table is a Non-Class 1 component which is not identified in NUREG-1801 Although these                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                      |                                  |                                                                                | Pitting Corrosion<br>and MIC                                                                       | One-Time<br>Inspection <b>Program</b>                     | component types are not included in the NUREG,<br>the aging management program(s) referenced are<br>appropriate for the aging effects identified and<br>provide assurance that the aging effects are<br>effectively managed through the period of extended<br>operation.                                                                                                                                                                                                                                                  |
| (33) External<br>Surfaces of<br>Carbon/Low-Alloy<br>Steel Components<br>in Reactor Coolant<br>System | Carbon/Low Alloy<br>Steel        | Containment<br>Atmosphere<br>(≥212°F)<br>Containment<br>Atmosphere<br>(<212°F) | No Aging Effects<br>Loss of Material<br>due to General and<br>Pitting Corrosion                    | No AMP Required<br>Systems Monitoring<br>Program          | External surfaces of carbon/low-alloy steel<br>components in the Reactor Coolant System<br>exposed to the Containment atmosphere are not<br>identified in NUREG-1801. No aging effects are<br>identified for those components which normally<br>operate at temperatures $\geq 212^{\circ}$ F. For components<br>with service temperatures $< 212^{\circ}$ F, loss of material<br>due to general and pitting corrosion is an applicable<br>aging effect which is effectively managed by the<br>Systems Monitoring Program. |

### Table 3.2-2 Reactor Coolant System - Component Types Subject to Aging Management not Evaluated in NUREG-1801

| Table 3.2-2 Read | ctor Coolant System | <ul> <li>Component Types</li> </ul> | <b>Subject to Aging</b> | Management not Evaluated in NUREG-1801 |
|------------------|---------------------|-------------------------------------|-------------------------|----------------------------------------|
|------------------|---------------------|-------------------------------------|-------------------------|----------------------------------------|

| Component Types                                                                                                   | Material                        | Environment                                         | AERMs            | Program/Activity | Discussion                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (34) External<br>Surfaces of<br>Stainless Steel and<br>Nickel-Alloy<br>Components in<br>Reactor Coolant<br>System | Stainless Steel<br>Nickel Alloy | Borated Water<br>Leaks<br>Containment<br>Atmosphere | No Aging Effects | No AMP Required  | External surfaces of stainless steel and nickel alloy<br>components in the Reactor Coolant System<br>exposed to the Containment atmosphere or borated<br>water leaks are not identified in NUREG-1801.<br>There are no applicable aging effects for stainless<br>steel or nickel alloy components exposed to borated<br>water leaks or the Containment atmosphere. |

### Section 3.2 References

- 1. WCAP-14575-A, Aging Management Evaluation for Class I Piping and Associated Pressure Boundary Components, December, 2000.
- 2. WCAP-14577, Rev. 1-A, License Renewal Evaluation: Aging Management for Reactor Internals, March, 2001.
- 3. WCAP-14574-A, License Renewal Evaluation: Aging Management Evaluation for Pressurizers, December, 2000.

### 3.3 Aging Management of Engineered Safety Features Systems

The results of the aging management review of the Engineered Safety Features Systems components are provided in this section and summarized in Tables 3.3-1 and 3.3-2. Table 3.3-1 shows the aging management of system components evaluated in NUREG-1801 that are relied on for license renewal of the Engineered Safety Features Systems components at Ginna. Included in the table is a discussion column. The discussion column will provide a conclusion indicating if the aging management evaluation results are consistent with NUREG-1801 along with any clarifications or explanations required to support the stated conclusion if that conclusion is different than those of the NUREG. For a determination to be made that a table line item is "Consistent with NUREG-1801" several criteria must be met. First the plant specific component is reviewed against the GALL to ensure that the component, materials of construction and internal or external service environment are comparable to those described in a particular GALL item. Second, for those that are comparable, the results of the plant aging management review- aging effect evaluation are compared to the aging effects/mechanisms in the GALL. Finally, the programs credited in the GALL for managing those aging effects are compared to the programs invoked in the plant evaluation. If, using good engineering judgment, it could be reasonably concluded that the plant evaluation is in agreement with the GALL evaluation a line item was considered consistent with NUREG-1801. There are cases where components and component material/environment combinations and aging effects are common between a NUREG-1801 line item and the plant evaluation but the aging management program selections differ. In those cases the discussion column will indicate the plant aging management program selection but no conclusion will be made that the line item is consistent with the GALL. Table 3.3-2 contains the Engineered Safety Features Systems components aging management review results that are not addressed in NUREG-1801. A plant component is considered not addressed by the NUREG if the component type is not evaluated in the GALL or has a different material of construction or operating environment than evaluated in the GALL. This table includes the component types, materials, environments, aging effects requiring management, the programs and activities for managing aging, and a discussion column. To avoid confusion, no attempt was made to interrelate material/environment/aging effects from one NUREG-1801 chapter to another. Note that these tables only include those components, materials and environments that are applicable to a PWR.

### Materials

The materials of construction of a component have a major influence on the evaluation of aging effects applicable to the component. Sources of information used to identify materials of construction include original equipment specifications, vendor technical manuals and drawings, fabrication drawings, piping line specifications, modification design records and field walkdowns/verifications. The tables below account for the materials of construction for the components requiring an aging management review. Since similar materials are susceptible to the same aging effects/mechanisms, the tables itemize the component types (i.e., groupings) while factoring in the materials of construction.

### Environment

As previously described, the environment(s) to which components are exposed are critical in the determination of potential aging mechanisms and effects. A review of plant design documentation was performed to quantify the environmental conditions to which Ginna Station equipment is exposed. This review identified that some equipment is exposed to a variety of environments. This can include normal operating conditions and post accident conditions. Since aging mechanisms and effects will be primarily driven by the environmental conditions to which equipment is exposed on a daily basis, under normal operating conditions, these conditions will differ from the design parameters which are established based upon the worst case scenario (e.g., LOCA conditions). Ginna Station equipment environments may be categorized into basic external and internal environments detailed in Section 3.1.2.

### **Aging Effects Requiring Management**

After the components requiring aging management review were identified and grouped by materials of construction and environment, a review of industry and plant-specific operating experience was performed. The purpose of this review was to assure that all applicable aging effects were identified, and to evaluate the effectiveness of existing aging management programs.

This experience review was performed utilizing various industry and plant-specific programs and databases. Industry operating experience sources included NRC Generic Publications (including Information Notices, Circulars, Bulletins, and Generic Letters), INPO Significant Operating Event Reports (SOER), EPRI Technical Reports, and other information sources, such as the B&W Owners Group Non-Class 1 Mechanical Tools Implementation document, Westinghouse Generic Technical Reports (GTRs), and the Generic Aging Lessons Learned (GALL) report.

Plant specific operating experience sources included Semi-annual and Annual Reports to AEC/NRC, Abnormal Occurrence and Licensee Event Reports (LERs), Non-Conformance Reports (NCRs), Corrective Action Reports (CARs), Refueling, Inspection and Overhaul Reports (RIOs), Inservice Inspection (ISI) Reports, Identified Deficiency Reports (IDRs), and ACTION Reports (ARs) from 1969 to the present. Information from these sources was compiled in various databases. Based upon the material of construction, the applicable environments, and operating experience the potential aging effects requiring management for each of the components was identified as documented in the tables below.

### **Time-Limited Aging Analysis**

In addition to those identified in NUREG-1801, any additional time-limited aging analyses (TLAA) identified as appropriate to the system are identified in Section 4.0.

### Conclusion

The programs and activities selected to manage the aging effects of the Engineered Safety Features Systems are identified in Table 3.3-1 and Table 3.3-2. A description of these aging management activities is provided in Appendix B, along with the demonstration that the identified aging effects will be managed for the period of extended operation. Therefore, based on the demonstrations provided in Appendix B, the effects of aging associated with the system components will be adequately managed so that there is reasonable assurance that the intended function(s) will be maintained consistent with the current licensing basis during the period of extended operation.

# Table 3.3-1 Engineered Safety Features Systems - Aging Management Programs Evaluated in NUREG-1801 that are Relied on for License Renewal

| Component                                                                                                                                                     | Aging<br>Effect/Mechanism                                                  | Aging<br>Management<br>Programs                    | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) Piping, fittings, and<br>valves in emergency core<br>cooling system                                                                                       | Cumulative fatigue<br>damage                                               | TLAA, evaluated in accordance with 10 CFR 54.21(c) | Yes, TLAA                            | Consistent with NUREG-1801. Cumulative Fatigue Damage is addressed as a TLAA in Section 4.3.                                                                                                                                                                                                       |
| (2) Components in<br>containment spray (PWR<br>only), standby gas<br>treatment (BWR only),<br>containment isolation, and<br>emergency core cooling<br>systems | Loss of material<br>due to general<br>corrosion                            | Plant specific                                     | Yes, plant specific                  | The combination of components, materials and environments identified in Items V.A.2-a and V.A.5-a are not applicable at Ginna Station. Components identified in Item V.C.1-a are included in the containment isolation valves and associated piping entry under line item 4 below in this table.   |
| (3) Components in<br>containment spray (PWR<br>only), standby gas<br>treatment (BWR only),<br>containment isolation, and<br>emergency core cooling<br>systems | Loss of material<br>due to pitting and<br>crevice corrosion                | Plant specific                                     | Yes, plant specific                  | Consistent with NUREG-1801 (containment isolation<br>components and RWST bottom). The One-Time Inspection<br>Program manages these aging effects for RWST bottom. The<br>Systems Monitoring Program is credited for managing all other<br>applicable aging effects.                                |
| (4) Containment isolation<br>valves and associated<br>piping                                                                                                  | Loss of material<br>due to<br>microbiologically<br>influenced<br>corrosion | Plant specific                                     | Yes, plant specific                  | Consistent with NUREG-1801 (containment isolation<br>components such as valves and pipe penetrations). The aging<br>effect "loss of material due to microbiologically influenced<br>corrosion (MIC)" is managed by the plant-specific Periodic<br>Surveillance and Preventive Maintenance Program. |
| (5) High pressure safety<br>injection (charging) pump<br>miniflow orifice                                                                                     | Loss of material due to erosion                                            | Plant specific                                     | Yes, plant specific                  | The high pressure safety injection pumps are not used for<br>normal charging at Ginna Station. Loss of material due to<br>erosion of miniflow orifices is not applicable at Ginna Station.                                                                                                         |
| (6) Piping and fittings of<br>CASS in emergency core<br>cooling system                                                                                        | Loss of fracture<br>toughness due to<br>thermal aging<br>embrittlement     | Thermal aging<br>embrittlement of<br>CASS          | No                                   | There are no CASS piping and fittings in the emergency core<br>cooling system at Ginna Station which are subject to loss of<br>fracture toughness due to thermal aging embrittlement.                                                                                                              |

| Component                                                                                                | Aging<br>Effect/Mechanism                                                                       | Aging<br>Management<br>Programs         | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (7) Components serviced<br>by open-cycle cooling<br>system                                               | Local loss of<br>material due to<br>corrosion and/or<br>buildup of deposit<br>due to biofouling | Open-cycle cooling<br>water system      | No                                   | The combination of components, materials and environments identified in Items V.A.6-a, V.A.6-b, V.D1.6-b and V.D1.6-c are not applicable at Ginna Station.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (8) Components serviced<br>by closed-cycle cooling<br>system                                             | Loss of material<br>due to general,<br>pitting, and crevice<br>corrosion                        | Closed-cycle<br>cooling water<br>system | No                                   | Consistent with NUREG-1801. The Closed-Cycle (Component)<br>Cooling Water System Program is credited with managing the<br>aging effect "loss of material due to general, pitting and crevice<br>corrosion." The program includes maintenance of corrosion<br>inhibitor concentrations to minimize corrosion and periodic<br>surveillance testing and inspections to evaluate system and<br>component performance and condition.                                                                                                                                                                                                                                                                                                                                                                             |
| (9) Pumps, valves, piping,<br>and fittings in containment<br>spray and emergency core<br>cooling systems | Crack initiation and<br>growth due to SCC                                                       | Water chemistry                         | No                                   | Consistent with NUREG-1801. Although the NUREG references a temperature gate of < 90°C (200°F) and a single aging effect (cracking due to SCC), materials science supports (1) a temperature gate > 140°F for cracking due to SCC, and (2) loss of material due to pitting (stagnant or low flow conditions) and crevice corrosion for all temperatures. Although the aging effect identified by Ginna (loss of material) for temperatures < 140°F differs from that of the NUREG, the Water Chemistry Control Program credited for managing the aging effects for all temperatures is consistent with the NUREG and will preclude the possibility of crack initiation and growth due to SCC. A One-Time Inspection Program is also credited to verify the adequacy of the Water Chemistry Control program. |
| (10) Carbon steel<br>components                                                                          | Loss of material<br>due to boric acid<br>corrosion                                              | Boric acid corrosion                    | No                                   | Consistent with NUREG-1801. The Boric Acid Corrosion<br>Program is credited with managing the aging effect "loss of<br>material due to boric acid corrosion."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# Table 3.3-1 Engineered Safety Features Systems - Aging Management Programs Evaluated in NUREG-1801 that are Relied on for License Renewal

### Table 3.3-1 Engineered Safety Features Systems - Aging Management Programs Evaluated in NUREG-1801 that are Relied on for License Renewal

| Component                                                               | Aging<br>Effect/Mechanism                                                                                                                                                 | Aging<br>Management<br>Programs | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (11) Closure bolting in high<br>pressure or high<br>temperature systems | Loss of material<br>due to general<br>corrosion, loss of<br>preload due to<br>stress relaxation,<br>and crack initiation<br>and growth due to<br>cyclic loading or<br>SCC | Bolting integrity               | No                                   | Consistent with NUREG-1801. The Bolting Integrity Program is<br>credited for managing the aging effects "loss of material due to<br>general corrosion and crack initiation and growth due to cyclic<br>loading and SCC." There are no bolts with a specified minimum<br>yield strength > 150 ksi in the ESF Systems. Therefore, SCC is<br>not an applicable aging effect/mechanism. |

| Component Type              | Material Type             | Environment Type                | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------|---------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) ACCUMULATOR             | Carbon/Low Alloy<br>Steel | Containment                     | Loss of Material | Systems<br>Monitoring<br><b>Program</b>                                     | Consistent with Item E.1-b of NUREG-1801.<br>Volume 1, Table 2 includes "External surface of<br>carbon steel components" with a plant specific<br>aging management program. This material and<br>environment grouping is not included in<br>NUREG-1800 Table 3.2-1. The Systems<br>Monitoring Program is credited for managing this<br>aging effect. |
| (2) BLOWER<br>CASING        | Carbon/Low Alloy<br>Steel | Air and Gas<br>(Wetted) < 140   | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                         |
| (3) BLOWER<br>CASING        | Carbon/Low Alloy<br>Steel | Containment                     | Loss of Material | Systems<br>Monitoring<br><b>Program</b>                                     | Consistent with Item E.1-b of NUREG-1801.<br>Volume 1, Table 2 includes "External surface of<br>carbon steel components" with a plant specific<br>aging management program. This material and<br>environment grouping is not included in<br>NUREG-1800 Table 3.2-1. The Systems<br>Monitoring Program is credited for managing this<br>aging effect. |
| (4) CONTROLLER <sup>1</sup> | Stainless Steel           | Air and Gas                     | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                    |
| (5) CONTROLLER <sup>1</sup> | Stainless Steel           | Containment                     | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                    |
| (6) CONTROLLER <sup>1</sup> | Stainless Steel           | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                    |

| Component Type              | Material Type             | Environment Type                | AERMs                                          | Program/Activity                           | Discussion                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------|---------------------------|---------------------------------|------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (7) DELAY COIL              | Stainless Steel           | Containment                     | No Aging Effects                               | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                    |
| (8) EDUCTOR                 | Stainless Steel           | Indoor (No Air<br>Conditioning) | No Aging Effects                               | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                    |
| (9) FASTENERS<br>(BOLTING)  | Carbon/Low Alloy<br>Steel | Indoor (No Air<br>Conditioning) | Cracking due to SCC                            | Bolting Integrity<br>Program               | There are no bolts with a specified minimum yield strength > 150 ksi in this system. Therefore, SCC is not an applicable aging effect/mechanism.                                                                                                                                                                                                     |
| (10) FASTENERS<br>(BOLTING) | Carbon/Low Alloy<br>Steel | Indoor (No Air<br>Conditioning) | Loss of Preload<br>due to Stress<br>Relaxation | Bolting Integrity<br>Program               | Material and environment grouping are included in<br>NUREG-1801. Aging effect of loss of preload due<br>to stress relaxation is applicable, but is not<br>included in Chapter V - Section E, Chapter VII -<br>Section I, or Chapter VIII - Section H of the<br>NUREG.                                                                                |
| (11) FASTENERS<br>(BOLTING) | Stainless Steel           | Borated Water<br>Leaks          | No Aging Effects                               | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                    |
| (12) FILTER<br>HOUSING      | Carbon/Low Alloy<br>Steel | Air and Gas                     | No Aging Effects                               | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                    |
| (13) FILTER<br>HOUSING      | Carbon/Low Alloy<br>Steel | Indoor (No Air<br>Conditioning) | Loss of Material                               | Systems<br>Monitoring<br><b>Program</b>    | Consistent with Item E.1-b of NUREG-1801.<br>Volume 1, Table 2 includes "External surface of<br>carbon steel components" with a plant specific<br>aging management program. This material and<br>environment grouping is not included in<br>NUREG-1800 Table 3.2-1. The Systems<br>Monitoring Program is credited for managing this<br>aging effect. |

Ĩ

| <b>Table 3.3-2</b> | Engineered Safety Features Systems - Component Types Subject to Aging Management not Evaluated in |
|--------------------|---------------------------------------------------------------------------------------------------|
|                    | NUREG-1801                                                                                        |

| Component Type       | Material Type             | Environment Type                | AERMs            | Program/Activity                           | Discussion                                                                                                                                                                                                                                                                                                                                           |
|----------------------|---------------------------|---------------------------------|------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (14) FLANGE          | Carbon/Low Alloy<br>Steel | Containment                     | Loss of Material | Systems<br>Monitoring<br><b>Program</b>    | Consistent with Item E.1-b of NUREG-1801.<br>Volume 1, Table 2 includes "External surface of<br>carbon steel components" with a plant specific<br>aging management program. This material and<br>environment grouping is not included in<br>NUREG-1800 Table 3.2-1. The Systems<br>Monitoring Program is credited for managing this<br>aging effect. |
| (15) FLANGE          | Carbon/Low Alloy<br>Steel | Outdoor                         | Loss of Material | Systems<br>Monitoring<br><b>Program</b>    | Consistent with Item E.1-b of NUREG-1801.<br>Volume 1, Table 2 includes "External surface of<br>carbon steel components" with a plant specific<br>aging management program. This material and<br>environment grouping is not included in<br>NUREG-1800 Table 3.2-1. The Systems<br>Monitoring Program is credited for managing this<br>aging effect. |
| (16) FLOW<br>ELEMENT | Carbon/Low Alloy<br>Steel | Air and Gas                     | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                    |
| (17) FLOW<br>ELEMENT | Carbon/Low Alloy<br>Steel | Indoor (No Air<br>Conditioning) | Loss of Material | Systems<br>Monitoring<br><b>Program</b>    | Consistent with Item E.1-b of NUREG-1801.<br>Volume 1, Table 2 includes "External surface of<br>carbon steel components" with a plant specific<br>aging management program. This material and<br>environment grouping is not included in<br>NUREG-1800 Table 3.2-1. The Systems<br>Monitoring Program is credited for managing this<br>aging effect. |
| (18) FLOW<br>ELEMENT | Stainless Steel           | Containment                     | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                    |
| (19) FLOW<br>ELEMENT | Stainless Steel           | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                    |

1

| Table 3.3-2 | Engineered Safety Features Systems - Component Types Subject to Aging Management not Evaluated in |
|-------------|---------------------------------------------------------------------------------------------------|
|             | NUREG-1801                                                                                        |

| Component Type         | Material Type             | Environment Type                | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                           |
|------------------------|---------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (20) FLOW<br>NOZZLES   | Stainless Steel           | Air and Gas                     | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                    |
| (21) FLOW<br>NOZZLES   | Stainless Steel           | Containment                     | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                    |
| (22) HEAT<br>EXCHANGER | Carbon/Low Alloy<br>Steel | Indoor (No Air<br>Conditioning) | Loss of Material | Systems<br>Monitoring<br>Program                                            | Consistent with Item E.1-b of NUREG-1801.<br>Volume 1, Table 2 includes "External surface of<br>carbon steel components" with a plant specific<br>aging management program. This material and<br>environment grouping is not included in<br>NUREG-1800 Table 3.2-1. The Systems<br>Monitoring Program is credited for managing this<br>aging effect. |
| (23) HEAT<br>EXCHANGER | Cast Iron                 | Indoor (No Air<br>Conditioning) | Loss of Material | Systems<br>Monitoring<br>Program                                            | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                         |
| (24) HEAT<br>EXCHANGER | Cast Iron                 | Oil and Fuel Oil                | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                         |
| (25) HEAT<br>EXCHANGER | Cast Iron                 | Raw Water                       | Loss of Material | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                         |

1

| Component Type         | Material Type                | Environment Type              | AERMs                    | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------|------------------------------|-------------------------------|--------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (26) HEAT<br>EXCHANGER | HX-Cast Iron <sup>2</sup>    | Oil and Fuel Oil              | Loss of Heat<br>Transfer | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (27) HEAT<br>EXCHANGER | HX-Cast Iron <sup>2</sup>    | Raw Water                     | Loss of Heat<br>Transfer | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (28) HEAT<br>EXCHANGER | HX-Nickel Alloy <sup>2</sup> | Treated Water<br>Borated <140 | Loss of Heat<br>Transfer | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (29) HEAT<br>EXCHANGER | HX-Nickel Alloy <sup>2</sup> | Treated Water<br>Other        | Loss of Heat<br>Transfer | Closed-Cycle<br>(Component)<br>Cooling Water<br>System <b>Program</b>       | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (30) HEAT<br>EXCHANGER | Nickel Alloy                 | Treated Water<br>Borated <140 | Loss of Material         | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |

| Component Type              | Material Type                      | Environment Type                | AERMs            | Program/Activity                                                      | Discussion                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------|------------------------------------|---------------------------------|------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (31) HEAT<br>EXCHANGER      | Nickel Alloy                       | Treated Water<br>Borated <140   | Loss of Material | Water Chemistry<br>Control <b>Program</b>                             | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (32) HEAT<br>EXCHANGER      | Nickel Alloy                       | Treated Water<br>Other          | Loss of Material | Closed-Cycle<br>(Component)<br>Cooling Water<br>System <b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (33) HEAT<br>EXCHANGER      | Stainless Steel                    | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                            | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (34) INDICATOR <sup>1</sup> | Stainless Steel                    | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                            | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (35) ORIFICE                | Cast Austenitic<br>Stainless Steel | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                            | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (36) ORIFICE                | Cast Austenitic<br>Stainless Steel | Treated Water<br>Borated <140   | Loss of Material | One-Time<br>Inspection<br><b>Program</b>                              | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |

| Component Type | Material Type                      | Environment Type                | AERMs            | Program/Activity                           | Discussion                                                                                                                                                                                                                                                                                   |
|----------------|------------------------------------|---------------------------------|------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (37) ORIFICE   | Cast Austenitic<br>Stainless Steel | Treated Water<br>Borated <140   | Loss of Material | Water Chemistry<br>Control <b>Program</b>  | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (38) ORIFICE   | Stainless Steel                    | Containment                     | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (39) ORIFICE   | Stainless Steel                    | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (40) PIPE      | Carbon/Low Alloy<br>Steel          | Air and Gas                     | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (41) PIPE      | Carbon/Low Alloy<br>Steel          | Air and Gas<br>(Wetted) <140    | Loss of Material | One-Time<br>Inspection<br>Program          | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (42) PIPE      | Carbon/Low Alloy<br>Steel          | Buried                          | Loss of Material | One-Time<br>Inspection<br>Program          | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (43) PIPE      | Copper Alloy (Zn<br>< 15%)         | Air and Gas                     | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |

| Component Type | Material Type              | Environment Type                | AERMs            | Program/Activity                           | Discussion                                                        |
|----------------|----------------------------|---------------------------------|------------------|--------------------------------------------|-------------------------------------------------------------------|
| (44) PIPE      | Copper Alloy (Zn<br>< 15%) | Containment                     | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801. |
| (45) PIPE      | Copper Alloy (Zn<br>< 15%) | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801. |
| (46) PIPE      | Stainless Steel            | Air and Gas                     | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801. |
| (47) PIPE      | Stainless Steel            | Air and Gas<br>(Wetted) <140    | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801. |
| (48) PIPE      | Stainless Steel            | Concrete                        | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801. |
| (49) PIPE      | Stainless Steel            | Containment                     | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801. |
| (50) PIPE      | Stainless Steel            | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801. |
| (51) PIPE      | Stainless Steel            | Outdoor                         | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801. |

| Component Type   | Material Type                      | Environment Type                  | AERMs            | Program/Activity                           | Discussion                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------|------------------------------------|-----------------------------------|------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (52) PIPE        | Stainless Steel                    | Treated Water<br>Other (Stagnant) | Loss of Material | One-Time<br>Inspection<br>Program          | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |
| (53) PIPE        | Stainless Steel                    | Treated Water<br>Other (Stagnant) | Loss of Material | Water Chemistry<br>Control <b>Program</b>  | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (54) PUMP CASING | Cast Austenitic<br>Stainless Steel | Indoor (No Air<br>Conditioning)   | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (55) PUMP CASING | Cast Austenitic<br>Stainless Steel | Treated Water<br>Borated <140     | Loss of Material | One-Time<br>Inspection<br>Program          | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |
| (56) PUMP CASING | Cast Austenitic<br>Stainless Steel | Treated Water<br>Borated <140     | Loss of Material | Water Chemistry<br>Control <b>Program</b>  | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |

| Component Type            | Material Type   | Environment Type                  | AERMs            | Program/Activity                           | Discussion                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------|-----------------|-----------------------------------|------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (57) PUMP CASING          | Stainless Steel | Air and Gas<br>(Wetted) <140      | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (58) PUMP CASING          | Stainless Steel | Indoor (No Air<br>Conditioning)   | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (59) RECOMBINER<br>CASING | Stainless Steel | Air and Gas                       | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (60) RECOMBINER<br>CASING | Stainless Steel | Containment                       | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (61) SWITCH <sup>1</sup>  | Stainless Steel | Indoor (No Air<br>Conditioning)   | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (62) TANK                 | Stainless Steel | Indoor (No Air<br>Conditioning)   | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (63) TANK                 | Stainless Steel | Treated Water<br>Other (Stagnant) | Loss of Material | One-Time<br>Inspection<br>Program          | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |

| Component Type                           | Material Type              | Environment Type                  | AERMs            | Program/Activity                                                     | Discussion                                                                                                                                                                                                                                                                                   |
|------------------------------------------|----------------------------|-----------------------------------|------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (64) TANK                                | Stainless Steel            | Treated Water<br>Other (Stagnant) | Loss of Material | Water Chemistry<br>Control <b>Program</b>                            | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (65) TEMPERATURE<br>ELEMENT <sup>1</sup> | Stainless Steel            | Indoor (No Air<br>Conditioning)   | No Aging Effects | No Aging<br>Management<br>Program Required                           | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (66) THERMOWELL                          | Copper Alloy (Zn<br>< 15%) | Air and Gas<br>(Wetted) <140      | Loss of Material | One-Time<br>Inspection<br>Program                                    | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (67) THERMOWELL                          | Copper Alloy (Zn<br>< 15%) | Indoor (No Air<br>Conditioning)   | No Aging Effects | No Aging<br>Management<br>Program Required                           | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (68) TRANSMITTER <sup>1</sup>            | Stainless Steel            | Indoor (No Air<br>Conditioning)   | No Aging Effects | No Aging<br>Management<br>Program Required                           | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (69) VALVE BODY                          | Carbon/Low Alloy<br>Steel  | Air and Gas                       | No Aging Effects | No Aging<br>Management<br>Program Required                           | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (70) VALVE BODY                          | Carbon/Low Alloy<br>Steel  | Air and Gas<br>(Wetted) <140      | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br>Program | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

| Component Type  | Material Type                      | Environment Type                | AERMs            | Program/Activity                           | Discussion                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------|------------------------------------|---------------------------------|------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (71) VALVE BODY | Cast Austenitic<br>Stainless Steel | Air and Gas                     | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (72) VALVE BODY | Cast Austenitic<br>Stainless Steel | Air and Gas<br>(Wetted) <140    | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (73) VALVE BODY | Cast Austenitic<br>Stainless Steel | Containment                     | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (74) VALVE BODY | Cast Austenitic<br>Stainless Steel | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (75) VALVE BODY | Cast Austenitic<br>Stainless Steel | Raw Water<br>Drainage           | Loss of Material | One-Time<br>Inspection<br>Program          | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (76) VALVE BODY | Cast Austenitic<br>Stainless Steel | Treated Water<br>Borated <140   | Loss of Material | One-Time<br>Inspection<br>Program          | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |
| (77) VALVE BODY | Cast Austenitic<br>Stainless Steel | Treated Water<br>Borated <140   | Loss of Material | Water Chemistry<br>Control <b>Program</b>  | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |

| Component Type  | Material Type                      | Environment Type              | AERMs                  | Program/Activity                          | Discussion                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------|------------------------------------|-------------------------------|------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (78) VALVE BODY | Cast Austenitic<br>Stainless Steel | Treated Water<br>Borated >140 | Cracking due to<br>SCC | One-Time<br>Inspection<br>Program         | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |
| (79) VALVE BODY | Cast Austenitic<br>Stainless Steel | Treated Water<br>Borated >140 | Cracking due to<br>SCC | Water Chemistry<br>Control <b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (80) VALVE BODY | Cast Austenitic<br>Stainless Steel | Treated Water<br>Borated >140 | Loss of Material       | One-Time<br>Inspection<br>Program         | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |
| (81) VALVE BODY | Cast Austenitic<br>Stainless Steel | Treated Water<br>Borated >140 | Loss of Material       | Water Chemistry<br>Control <b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |

| Component Type  | Material Type                      | Environment Type                  | AERMs            | Program/Activity                           | Discussion                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------|------------------------------------|-----------------------------------|------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (82) VALVE BODY | Cast Austenitic<br>Stainless Steel | Treated Water<br>Other (Stagnant) | Loss of Material | One-Time<br>Inspection<br>Program          | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |
| (83) VALVE BODY | Cast Austenitic<br>Stainless Steel | Treated Water<br>Other (Stagnant) | Loss of Material | Water Chemistry<br>Control <b>Program</b>  | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (84) VALVE BODY | Cast Iron                          | Air and Gas                       | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (85) VALVE BODY | Cast Iron                          | Indoor (No Air<br>Conditioning)   | Loss of Material | Systems<br>Monitoring<br><b>Program</b>    | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (86) VALVE BODY | Copper Alloy (Zn<br>< 15%)         | Air and Gas                       | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (87) VALVE BODY | Copper Alloy (Zn<br>< 15%)         | Air and Gas<br>(Wetted) <140      | Loss of Material | One-Time<br>Inspection<br>Program          | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |

| Component Type  | Material Type              | Environment Type                  | AERMs            | Program/Activity                           | Discussion                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------|----------------------------|-----------------------------------|------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (88) VALVE BODY | Copper Alloy (Zn<br>< 15%) | Containment                       | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (89) VALVE BODY | Copper Alloy (Zn<br>< 15%) | Indoor (No Air<br>Conditioning)   | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (90) VALVE BODY | Stainless Steel            | Air and Gas                       | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (91) VALVE BODY | Stainless Steel            | Air and Gas<br>(Wetted) <140      | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (92) VALVE BODY | Stainless Steel            | Containment                       | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (93) VALVE BODY | Stainless Steel            | Indoor (No Air<br>Conditioning)   | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (94) VALVE BODY | Stainless Steel            | Outdoor                           | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (95) VALVE BODY | Stainless Steel            | Treated Water<br>Other (Stagnant) | Loss of Material | One-Time<br>Inspection<br>Program          | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |

| Component Type               | Material Type              | Environment Type                  | AERMs            | Program/Activity                           | Discussion                                                                                                                                                                                                                                                                                   |
|------------------------------|----------------------------|-----------------------------------|------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (96) VALVE BODY              | Stainless Steel            | Treated Water<br>Other (Stagnant) | Loss of Material | Water Chemistry<br>Control Program         | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (97) VENTILATION<br>DUCTWORK | Galvanized<br>Carbon Steel | Air and Gas<br>(Wetted) <140      | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (98) VENTILATION<br>DUCTWORK | Galvanized<br>Carbon Steel | Containment                       | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |

1. Selected instruments were conservatively included within the scope of License Renewal. Consideration was given to the consequences of an instrument housing pressure boundary failure. Where an instrument was unisolable from a pressure source and is of sufficient size that a system function would be degraded should the pressure boundary fail, that instrument is included for License Renewal review.

2. Material prefixes with HX are used to identify heat exchanger materials which perform a heat transfer intended function in addition to the typical material usage function of pressure boundary.

### 3.4 Aging Management of Auxiliary Systems

The results of the aging management review of the Auxiliary Systems components are provided in this section and summarized in Tables 3.4-1 and 3.4-2. Table 3.4-1 shows the aging management of system components evaluated in NUREG-1801 that are relied on for license renewal of the Auxiliary Systems components at Ginna. Included in the table is a discussion column. The discussion column will provide a conclusion indicating if the aging management evaluation results are consistent with NUREG-1801 along with any clarifications or explanations required to support the stated conclusion if that conclusion is different those of the NUREG. For a determination to be made that a table line item is "Consistent with NUREG-1801" several criteria must be met. First the plant specific component is reviewed against the GALL to ensure that the component, materials of construction and internal or external service environment are comparable to those described in a particular GALL item. Second, for those that are comparable, the results of the plant aging management review- aging effect evaluation are compared to the aging effects/mechanisms in the GALL. Finally, the programs credited in the GALL for managing those aging effects are compared to the programs invoked in the plant evaluation. If, using good engineering judgment, it could be reasonably concluded that the plant evaluation is in agreement with the GALL evaluation a line item was considered consistent with NUREG-1801. There are cases where components and component material/environment combinations and aging effects are common between a NUREG-1801 line item and the plant evaluation but the aging management program selections differ. In those cases the discussion column will indicate the plant aging management program selection but no conclusion will be made that the line item is consistent with the GALL. Table 3.4-2 contains the Auxiliary Systems components aging management review results that are not addressed in NUREG-1801. A plant component is considered not addressed by the NUREG if the component type is not evaluated in the GALL or has a different material of construction or operating environment than evaluated in the GALL. This table includes the component types, materials, environments, aging effects requiring management, the programs and activities for managing aging, and a discussion column. To avoid confusion, no attempt was made to interrelate material/environment/aging effects from one NUREG-1801 chapter to another. Note that these tables only include those components, materials and environments that are applicable to a PWR.

#### Materials

The materials of construction of a component have a major influence on the evaluation of aging effects applicable to the component. Sources of information used to identify materials of construction include original equipment specifications, vendor technical manuals and drawings, fabrication drawings, piping line specifications, modification design records and field walkdowns/verifications. The tables below account for the materials of construction for the components requiring an aging management review. Since similar materials are susceptible to the same aging effects/mechanisms, the tables itemize the component types (i.e., groupings) while factoring in the materials of construction.

#### Environment

As previously described, the environment(s) to which components are exposed are critical in the determination of potential aging mechanisms and effects. A review of plant design documentation was performed to quantify the environmental conditions to which Ginna Station equipment is exposed. This review identified that some equipment is exposed to a variety of environments. This can include normal operating conditions and post accident conditions. Since aging mechanisms and effects will be primarily driven by the environmental conditions to which equipment is exposed on a daily basis, under normal operating conditions, these conditions will differ from the design parameters which are established based upon the worst case scenario (e.g., LOCA conditions). Ginna Station equipment environments may be categorized into basic external and internal environments detailed in Section 3.1.2.

### **Aging Effects Requiring Management**

After the components requiring aging management review were identified and grouped by materials of construction and environment, a review of industry and plant-specific operating experience was performed. The purpose of this review was to assure that all applicable aging effects were identified, and to evaluate the effectiveness of existing aging management programs.

This experience review was performed utilizing various industry and plant-specific programs and databases. Industry operating experience sources included NRC Generic Publications (including Information Notices, Circulars, Bulletins, and Generic Letters), INPO Significant Operating Event Reports (SOER), EPRI Technical Reports, and other information sources, such as the B&W Owners Group Non-Class 1 Mechanical Tools Implementation document, Westinghouse Generic Technical Reports (GTRs), and the Generic Aging Lessons Learned (GALL) report.

Plant specific operating experience sources included Semi-annual and Annual Reports to AEC/NRC, Abnormal Occurrence and Licensee Event Reports (LERs), Non-Conformance Reports (NCRs), Corrective Action Reports (CARs), Refueling, Inspection and Overhaul Reports (RIOs), Inservice Inspection (ISI) Reports, Identified Deficiency Reports (IDRs), and ACTION Reports (ARs) from 1969 to the present. Information from these sources was compiled in various databases. Based upon the material of construction, the applicable environments, and operating experience the potential aging effects requiring management for each of the components was identified as documented in the tables below.

### Time-Limited Aging Analysis

In addition to those identified in NUREG-1801, any additional time-limited aging analyses (TLAA) identified as appropriate to the system are identified in Section 4.0.

### Conclusion

The programs and activities selected to manage the aging effects of the Auxiliary Systems are identified in Table 3.4-1 and Table 3.4-2. A description of these aging management activities is provided in Appendix B, along with the demonstration that the identified aging effects will be managed for the period of extended operation. Therefore, based on the demonstrations provided in Appendix B, the effects of aging associated with the system components will be adequately managed so that there is reasonable assurance that the intended function(s) will be maintained consistent with the current licensing basis during the period of extended operation.

| Component                                                                                                                                                                                      | Aging<br>Effect/Mechanism                                                                                             | Aging<br>Management<br>Programs                          | Further<br>Evaluation<br>Recommended                                | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) Components in spent<br>fuel pool cooling and<br>cleanup                                                                                                                                    | Loss of material<br>due to general,<br>pitting, and crevice<br>corrosion                                              | Water chemistry<br>and one-time<br>inspection            | Yes, detection of<br>aging effects is to<br>be further<br>evaluated | Consistent with NUREG-1801. The Water Chemistry Control<br>Program is credited with managing the aging effects of loss of<br>material due to general, pitting, and crevice corrosion. The<br>One-Time Inspection as well as the Periodic Surveillance and<br>Preventive Maintenance Programs will be used to verify the<br>effectiveness of the Water Chemistry Control Program.                                                                                                             |
| (2) Linings in spent fuel<br>pool cooling and cleanup<br>system; seals and collars in<br>ventilation systems                                                                                   | Hardening,<br>cracking and loss<br>of strength due to<br>elastomer<br>degradation; loss of<br>material due to<br>wear | Plant specific                                           | Yes, plant specific                                                 | Consistent with NUREG-1801. The Spent Fuel Cooling system<br>(Section A3 of the NUREG) at Ginna Station contains no<br>components that are elastomer lined.<br>For ventilation systems, the One-Time Inspection and Periodic<br>Surveillance and Preventive Maintenance Programs are<br>credited for managing the hardening, cracking and loss of<br>strength aging effects. The Systems Monitoring Program is<br>credited for managing the aging effect of loss of material due to<br>wear. |
| <ul> <li>(3) Components in load<br/>handling, chemical and<br/>volume control system</li> <li>(PWR), and reactor water<br/>cleanup and shutdown<br/>cooling systems (older<br/>BWR)</li> </ul> | Cumulative fatigue<br>damage                                                                                          | TLAA, evaluated in<br>accordance with 10<br>CFR 54.21(c) | Yes, TLAA                                                           | Consistent with NUREG-1801. Cumulative Fatigue Damage is addressed as a TLAA in Section 4.3.                                                                                                                                                                                                                                                                                                                                                                                                 |

## Table 3.4-1 Auxiliary Systems - Aging Management Programs Evaluated in NUREG-1801 that are Relied on for License Renewal License Renewal

## Table 3.4-1 Auxiliary Systems - Aging Management Programs Evaluated in NUREG-1801 that are Relied on for License Renewal

| Component                                                                                                                                                          | Aging<br>Effect/Mechanism                                                          | Aging<br>Management<br>Programs | Further<br>Evaluation<br>Recommended                                | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (4) Heat exchangers in<br>reactor water cleanup<br>system (BWR); high<br>pressure pumps in chemical<br>and volume control system<br>(PWR)                          | Crack initiation and<br>growth due to SCC<br>or cracking                           | Plant specific                  | Yes, plant specific                                                 | Consistent with NUREG-1801. Although the NUREG<br>references a temperature gate of < 90°C (200°F) and a single<br>aging effect (cracking due to SCC), materials science supports<br>(1) a temperature gate > 140°F for cracking due to SCC, and<br>(2) loss of material due to pitting (stagnant or low flow<br>conditions) and crevice corrosion for all temperatures. The<br>aging effect identified by Ginna (loss of material) for<br>temperatures < 140°F differs from that of the NUREG. That not<br>withstanding, the Water Chemistry Control Program, credited<br>for managing the aging effects for all temperatures, is<br>consistent with the NUREG and will preclude the possibility of<br>crack initiation and growth due to SCC. The One-Time<br>Inspection Program as well as the Periodic Surveillance and<br>Preventive Maintenance Program are credited with verifying<br>the adequacy of the Chemistry program. |
| (5) Components in<br>ventilation systems, diesel<br>fuel oil system, and<br>emergency diesel generator<br>systems; external surfaces<br>of carbon steel components | Loss of material<br>due to general,<br>pitting, and crevice<br>corrosion, and MIC  | Plant specific                  | Yes, plant specific                                                 | Consistent with NUREG-1801. For the internal environments of<br>ventilation systems, the diesel fuel oil systems, and the<br>emergency diesel generator system, the One-Time Inspection,<br>Periodic Surveillance and Preventive Maintenance,<br>Closed-Cycle (Component) Cooling Water System, and the<br>Fuel Oil Chemistry Programs are credited for managing<br>applicable aging effects.<br>For the external surfaces of all carbon steel components, the<br>Systems Monitoring Program will be credited for managing the<br>aging effects of loss of material.                                                                                                                                                                                                                                                                                                                                                               |
| (6) Components in reactor<br>coolant pump oil collect<br>system of fire protection                                                                                 | Loss of material<br>due to galvanic,<br>general, pitting, and<br>crevice corrosion | One-time<br>inspection          | Yes, detection of<br>aging effects is to<br>be further<br>evaluated | Consistent with NUREG-1801. The aging effects of<br>components within the Reactor Coolant Pump Oil Collection<br>system will managed by the One-Time Inspection Program. In<br>addition, selected components will be inspected on a periodic<br>basis in conjunction with the Periodic Surveillance and<br>Preventive Maintenance Program.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Component                                                                                          | Aging<br>Effect/Mechanism                                                                                                 | Aging<br>Management<br>Programs                                 | Further<br>Evaluation<br>Recommended                                | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (7) Diesel fuel oil tanks in<br>diesel fuel oil system and<br>emergency diesel generator<br>system | Loss of material<br>due to general,<br>pitting, and crevice<br>corrosion, MIC, and<br>biofouling                          | Fuel oil chemistry<br>and one-time<br>inspection                | Yes, detection of<br>aging effects is to<br>be further<br>evaluated | The Fuel Oil Chemistry Program is credited with managing<br>applicable aging effects. In lieu of the One-Time Inspection<br>Program, Ginna Station has chosen to use the Periodic<br>Surveillance and Preventive Maintenance Program to verify the<br>adequacy of the Fuel Oil Chemistry Program in managing<br>these aging effects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (8) Heat exchangers in<br>chemical and volume<br>control system                                    | Crack initiation and<br>growth due to SCC<br>and cyclic loading                                                           | Water chemistry<br>and a plant-specific<br>verification program | Yes, plant specific                                                 | Consistent with NUREG-1801. Although the NUREG<br>references a temperature gate of < 90°C (200°F) and a single<br>aging effect (cracking due to SCC), materials science supports<br>(1) a temperature gate > 140°F for cracking due to SCC, and<br>(2) loss of material due to pitting (stagnant or low flow<br>conditions) and crevice corrosion for all temperatures. The<br>aging effect identified by Ginna (loss of material) for<br>temperatures < 140°F differs from that of the NUREG. That not<br>withstanding, the Water Chemistry Control Program, credited<br>for managing the aging effects for all temperatures, is<br>consistent with the NUREG and will preclude the possibility of<br>crack initiation and growth due to SCC. The One-Time<br>Inspection Program as well as the Periodic Surveillance and<br>Preventive Maintenance Program are credited with verifying<br>the adequacy of the Water Chemistry Control Program. |
| (9) Neutron absorbing<br>sheets in spent fuel storage<br>racks                                     | Reduction of<br>neutron absorbing<br>capacity and loss of<br>material due to<br>general corrosion<br>(Boral, boron steel) | Plant specific                                                  | Yes, plant specific                                                 | Consistent with NUREG-1801. The Periodic Surveillance and<br>Preventive Maintenance Program will direct the scheduling of<br>activities that will detect applicable aging effects under the<br>Spent Fuel Pool Neutron Absorber Monitoring Program.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (10) New fuel rack<br>assembly                                                                     | Loss of material<br>due to general,<br>pitting, and crevice<br>corrosion                                                  | Structures<br>monitoring                                        | No                                                                  | Consistent with NUREG-1801. The Structures Monitoring<br>Program is credited with managing the aging effects of loss of<br>material due to general, pitting, and crevice corrosion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

## Table 3.4-1 Auxiliary Systems - Aging Management Programs Evaluated in NUREG-1801 that are Relied on for License Renewal In the second secon

# Table 3.4-1 Auxiliary Systems - Aging Management Programs Evaluated in NUREG-1801 that are Relied on for License Renewal License Renewal

| Component                                                                                | Aging<br>Effect/Mechanism                                                       | Aging<br>Management<br>Programs | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (11) Spent fuel storage<br>racks and valves in spent<br>fuel pool cooling and<br>cleanup | Crack initiation and<br>growth due to<br>stress corrosion<br>cracking           | Water chemistry                 | No                                   | Consistent with NUREG-1801. Although the NUREG<br>references a temperature gate of < 90°C (200°F) and a single<br>aging effect (cracking due to SCC), materials science supports<br>(1) a temperature gate > 140°F for cracking due to SCC, and<br>(2) loss of material due to pitting (stagnant or low flow<br>conditions) and crevice corrosion for all temperatures. The<br>aging effect identified by Ginna (loss of material) for<br>temperatures < 140°F differs from that of the NUREG. That not<br>withstanding, the Water Chemistry Control Program, credited<br>for managing the aging effects for all temperatures, is<br>consistent with the NUREG and will preclude the possibility of<br>crack initiation and growth due to SCC. The One-Time<br>Inspection Program as well as the Periodic Surveillance and<br>Preventive Maintenance Program are credited with verifying<br>the adequacy of the Chemistry program. |
| (12) Neutron absorbing<br>sheets in spent fuel storage<br>racks                          | Reduction of<br>neutron absorbing<br>capacity due to<br>Boraflex<br>degradation | Boraflex monitoring             | No                                   | Consistent with NUREG-1801. The Spent Fuel Pool Neutron<br>Absorber Monitoring Program is functionally equivalent to the<br>Boraflex Monitoring Program. However, borated stainless steel<br>neutron absorber panels (line item 9 above) are included in the<br>scope of this monitoring program. Existing boraflex neutron<br>absorber panels are not credited in the CLB for reactivity<br>control in the Spent Fuel Pool, and therefore are excluded from<br>the scope of this monitoring program.<br>The Spent Fuel Pool Neutron Absorber Monitoring Program<br>manages the aging effects of reduction of neutron absorbing<br>capacity and loss of material due to general corrosion of the<br>borated stainless steel panels.                                                                                                                                                                                                |

## Table 3.4-1 Auxiliary Systems - Aging Management Programs Evaluated in NUREG-1801 that are Relied on for License Renewal License Renewal

| Component                                                                                          | Aging<br>Effect/Mechanism                                                         | Aging<br>Management<br>Programs                           | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (13) Closure bolting and<br>external surfaces of carbon<br>steel and low-alloy steel<br>components | Loss of material<br>due to boric acid<br>corrosion                                | Boric acid corrosion                                      | No                                   | Consistent with NUREG-1801. The Boric Acid Corrosion<br>Program is credited with managing the aging effect of loss of<br>material due to boric acid corrosion on the external surfaces of<br>carbon/low alloy steel components (including closure bolting).<br>Although not addressed in the NUREG, the following additional<br>systems at Ginna Station contain carbon/low alloy steel<br>components and have the potential for exposure to boric acid<br>spillage (located in Containment or the Auxiliary Building) and<br>are included in this evaluation: Component Cooling Water,<br>Service Water, Fire Protection, Containment Ventilation,<br>Essential Ventilation, Waste Disposal, Radiation Monitoring,<br>and Cranes, Hoists and Lifting Devices. |
| (14) Components in or<br>serviced by closed-cycle<br>cooling water system                          | Loss of material<br>due to general,<br>pitting, and crevice<br>corrosion, and MIC | Closed-cycle<br>cooling water<br>system                   | Νο                                   | Consistent with NUREG-1801. Components within the<br>Chemical and Volume Control, Component Cooling Water,<br>Waste Disposal, and the Emergency Power systems are<br>subject to the Closed-Cycle (Component) Cooling Water<br>System Program. This program is credited with managing the<br>aging effects of loss of material due to general, pitting, and<br>crevice corrosion as well as micro-biologically influenced<br>corrosion (MIC).                                                                                                                                                                                                                                                                                                                   |
| (15) Cranes including<br>bridge and trolleys and rail<br>system in load handling<br>system         | Loss of material<br>due to general<br>corrosion and wear                          | Overhead heavy<br>load and light load<br>handling systems | No                                   | The Periodic Surveillance and Preventive Maintenance<br>Program implements the Inspection of Heavy Load and<br>Refueling Handling Systems procedures at Ginna Station. The<br>periodic inspections are credited with managing the aging<br>effects of loss of material due to general corrosion and wear.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Component                                                                | Aging<br>Effect/Mechanism                                                                                                                                 | Aging<br>Management<br>Programs                                                        | Further<br>Evaluation<br>Recommended                      | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (16) Components in or<br>serviced by open-cycle<br>cooling water systems | Loss of material<br>due to general,<br>pitting, crevice, and<br>galvanic corrosion,<br>MIC, and<br>biofouling; buildup<br>of deposit due to<br>biofouling | Open-cycle cooling<br>water system                                                     | No                                                        | Consistent with NUREG-1801. Components within the Service<br>Water, Component Cooling Water, Containment Ventilation,<br>Spent Fuel Cooling, and the Emergency Power systems are<br>subject to the Open-Cycle Cooling (Service) Water System<br>Program as implemented by the Service Water System<br>Reliability Optimization Program (SWSROP). This program is<br>credited with managing the aging effects of loss of material due<br>to general, pitting, crevice, and galvanic corrosion, MIC, and<br>biofouling.                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                          |                                                                                                                                                           |                                                                                        |                                                           | The Periodic Surveillance and Preventive Maintenance<br>Program is used at Ginna Station to verify the effectiveness of<br>the Open-Cycle Cooling (Service) Water System Program.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (17) Buried piping and fittings                                          | Loss of material<br>due to general,<br>pitting, and crevice<br>corrosion, and MIC                                                                         | Buried piping and<br>tanks surveillance<br>or<br>Buried piping and<br>tanks inspection | No<br>Yes, detection of<br>aging effects and<br>operating | The Buried Piping and Tanks Inspection Program is<br>implemented by the Periodic Surveillance and Preventive<br>Maintenance Program at Ginna Station. Tanks in the<br>Emergency Power system are periodically inspected for signs<br>of applicable aging effects. In addition, a one-time ultrasonic<br>inspection will be performed to verify the effectiveness of the<br>Preventive Maintenance Program.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                          |                                                                                                                                                           |                                                                                        | experience are to<br>be further<br>evaluated              | For buried piping, the Fire Water System Program is credited<br>for managing the effects of aging for buried cast iron piping and<br>fittings. External surfaces of buried piping are visually<br>examined during maintenance activities (inspections of<br>opportunity) performed as a result of performance tests. No<br>evidence of age-related degradation has been detected from<br>inspections performed to date. Cast iron fire system and<br>service water piping at Ginna Station is ductile cast iron, not<br>gray cast iron. Ductile irons are not susceptible to loss of<br>structural integrity due to selective leaching mechanisms, and<br>generally display excellent resistance to general corrosion due<br>to exposure to non-aggressive ground water. Ground<br>water/lake water at Ginna Station is analyzed periodically and<br>analyses performed to date confirm that the water is<br>non-aggressive. |

| Component                                                                                                 | Aging<br>Effect/Mechanism                                                                                           | Aging<br>Management<br>Programs        | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (18) Components in<br>compressed air system                                                               | Loss of material<br>due to general and<br>pitting corrosion                                                         | Compressed air monitoring              | No                                   | The Instrument and Service Air systems are not in scope to License Renewal and therefore not subject to an aging management review.                                                                                                                                                                                                                                                |
| (19) Components (doors<br>and barrier penetration<br>seals) and concrete<br>structures in fire protection | Loss of material<br>due to wear;<br>hardening and<br>shrinkage due to<br>weathering                                 | Fire protection                        | No                                   | Consistent with NUREG-1801. The Fire Protection Program is credited with managing the aging effects of loss of material due to wear and general corrosion and hardening and shrinkage for components/structures that act as fire barriers.                                                                                                                                         |
| (20) Components in water-based fire protection                                                            | Loss of material<br>due to general,<br>pitting, crevice, and<br>galvanic corrosion,<br>MIC, and biofouling          | Fire water system                      | No                                   | Consistent with NUREG-1801. The Fire Water System<br>Program is credited with managing the aging effects of loss of<br>material due to general, pitting, crevice, and galvanic corrosion,<br>MIC, and biofouling. At Ginna Station, the Periodic Surveillance<br>and Preventive Maintenance Program is used to verify the<br>effectiveness of the Fire Water System Program.       |
| (21) Components in diesel<br>fire system                                                                  | Loss of material<br>due to galvanic,<br>general, pitting, and<br>crevice corrosion                                  | Fire protection and fuel oil chemistry | No                                   | The Fuel Oil Chemistry Program is credited with managing the applicable aging effects. At Ginna Station, the Periodic Surveillance and Preventive Maintenance Program is used to verify the effectiveness of this program.                                                                                                                                                         |
| (22) Tanks in diesel fuel oil<br>system                                                                   | Loss of material<br>due to general,<br>pitting, and crevice<br>corrosion                                            | Above ground carbon steel tanks        | No                                   | There are no aboveground diesel fuel oil tanks in the Emergency Power system at Ginna Station.                                                                                                                                                                                                                                                                                     |
| (23) Closure bolting                                                                                      | Loss of material<br>due to general<br>corrosion; crack<br>initiation and<br>growth due to cyclic<br>loading and SCC | Bolting integrity                      | No                                   | The Bolting Integrity Program is credited for managing the aging effects "loss of material due to general corrosion, loss of preload due to stress relaxation, and crack initiation and growth due to cyclic loading and SCC." There are no bolts with a specified minimum yield strength > 150 ksi in the Auxiliary Systems. Therefore, SCC is not an applicable aging mechanism. |

| Component                                                                                                                                                      | Aging<br>Effect/Mechanism                        | Aging<br>Management<br>Programs    | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (24) Components<br>(aluminum bronze, brass,<br>cast iron, cast steel) in<br>open-cycle and<br>closed-cycle cooling water<br>systems, and ultimate heat<br>sink | Loss of material<br>due to selective<br>leaching | Selective leaching<br>of materials | No                                   | In addition to the Open-Cycle Cooling (Service) Water System<br>and Closed-Cycle (Component) Cooling Water System<br>Programs, the Periodic Surveillance and Preventive<br>Maintenance Program or the One-Time Inspection Program will<br>be credited with managing the aging effect of loss of material<br>for components within the Open and Closed-Cycle Cooling<br>Water systems. |

| Table 3.4-1 | Auxiliary Systems - Aging Management Programs Evaluated in NUREG-1801 that are Relied on for |
|-------------|----------------------------------------------------------------------------------------------|
|             | License Renewal                                                                              |

| Component                                                               | Aging<br>Effect/Mechanism                                                                                                                                                                   | Aging<br>Management<br>Programs                 | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (25) Fire barriers, walls,<br>ceilings and floors in fire<br>protection | Concrete cracking<br>and spalling due to<br>freeze-thaw,<br>aggressive<br>chemical attack,<br>and reaction with<br>aggregates; loss of<br>material due to<br>corrosion of<br>embedded steel | Fire protection and<br>structures<br>monitoring | Νο                                   | The Fire Protection Program in conjunction with the Structures<br>Monitoring Program identifies the evidence that an aging<br>mechanism is present and active and also provides<br>confirmation and verification of the absence of all types of<br>aging effects. Indication of aging effects may be absent if the<br>materials of construction, design specifications, and<br>operational environment preclude an aging mechanism but,<br>due to the long lead time necessary for some effects to<br>manifest themselves, it is prudent to periodically assess the<br>condition of SSCs regardless of the likelihood that a particular<br>aging mechanism is applicable. The degradation of<br>inaccessible concrete can create symptoms of aging effects<br>that are detectable in accessible areas. Conversely, if aging<br>effects are present in accessible areas it is sensible to<br>extrapolate those effects into inaccessible areas and perform<br>additional evaluations. |
|                                                                         |                                                                                                                                                                                             |                                                 |                                      | Concrete in indoor and outdoor environments have been<br>evaluated for the following aging mechanisms:<br>Aging Mechanism: Freeze-Thaw<br>Aging Effect: Loss of Material<br>Evaluation: The contract-specified air contents are within the<br>range specified by current revisions of ACI 318, and the<br>contract-specified water-to-cement ratio meets the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                         |                                                                                                                                                                                             |                                                 |                                      | recommendations of ACI 318-63 ( $\leq$ 0.53). Therefore, loss of material and cracking of concrete due to freeze-thaw are not probable aging effects at Ginna Station and have not been observed to date.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                         |                                                                                                                                                                                             |                                                 |                                      | Aging Mechanism: Aggressive Chemical Attack<br>Aging Effect: Loss of Material, Changes in Material Properties<br>Evaluation: Concrete degradation in air due to aggressive<br>rainwater is insignificant and the below-grade/lake water<br>environment is non-aggressive. Additionally, recent structural<br>inspections revealed no evidence of degradation owing to<br>aggressive chemical attack; therefore, loss of material and<br>change in material properties due to aggressive chemical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Component        | Aging<br>Effect/Mechanism | Aging<br>Management<br>Programs | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------|---------------------------|---------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (25) (continued) |                           |                                 |                                      | attack are not probable aging effects at Ginna Station and<br>have not been observed to date. The Structures Monitoring<br>Program requires periodic monitoring of ground/lake water to<br>verify chemistry remains non-aggressive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  |                           |                                 |                                      | Aging Mechanism: Corrosion of Embedded Steel<br>Aging Effect: Loss of Material, Cracking, Loss of Bond<br>Evaluation: Since the embedded steel is not exposed to an<br>environment which is considered aggressive, loss of material,<br>cracking, and loss of bond due to corrosion of embedded steel<br>are not probable aging effects at Ginna Station and have not<br>been observed to date.                                                                                                                                                                                                                                                                                                                                                                                   |
|                  |                           |                                 |                                      | Aging Mechanism: Reaction with Aggregates<br>Aging Effect: Cracking, Expansion<br>Evaluation: During construction the aggregates were tested for<br>potential reactivity in accordance with ASTM C227 and ASTM<br>C295, cracking and expansion due to reaction with aggregates<br>are not probable aging effects at Ginna Station and have not<br>been observed to date.                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |                           |                                 |                                      | Aging Mechanism: Settlement<br>Aging Effect: Cracking, Distortion, Increase in Component<br>Stress Level<br>Evaluation: All structures at Ginna Station are either founded<br>on bedrock, steel foundation piles that are driven to bedrock, or<br>have foundations that consist of caissons extending to<br>bedrock. Structural inspections indicate no visible evidence of<br>settlement since construction of the station. During the<br>Systematic Evaluation Program, the NRC concluded that<br>settlement of foundations and buried equipment is not a safety<br>concern for Ginna Station. Cracking, distortion, and an<br>increase in component stress levels due to settlement are not<br>probable aging effects at Ginna Station and have not been<br>observed to date. |

| Component        | Aging<br>Effect/Mechanism | Aging<br>Management<br>Programs | Further<br>Evaluation<br>Recommended | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------|---------------------------|---------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (25) (continued) |                           |                                 |                                      | Aging Mechanism: Leaching of Calcium Hydroxide<br>Aging Effect: Change in Material Properties<br>Evaluation: The original construction specifications met the<br>intent of ACI 201.2R. Change in material properties due to<br>leaching of calcium hydroxide is not a probable aging effect at<br>Ginna Station and has not been observed to date.                                                                                                                  |
|                  |                           |                                 |                                      | Additionally, masonry walls are used as fire barriers at Ginna<br>Station. Masonry wall inspections are incorporated into the<br>Structures Monitoring Program . The Structures Monitoring<br>Program effectively manages cracking due to restraint,<br>shrinkage and creep.                                                                                                                                                                                        |
|                  |                           |                                 |                                      | Operating experience has shown that concrete has not<br>experienced unanticipated aging effects at Ginna Station. That<br>notwithstanding, the identification of the above aging effects by<br>the Structures Monitoring Program , as well as the resistance<br>provided by the materials of construction provide adequate<br>assurance that all types of concrete aging effects will be<br>identified and managed through out the extended period of<br>operation. |

| Component Types                    | Material                   | Environment                  | AERMs            | Program/Activity                           | Discussion                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------|----------------------------|------------------------------|------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) AIR OPERATED<br>DAMPER HOUSING | Cast Iron                  | Air and Gas<br>(Wetted) <140 | Loss of Material | One-Time<br>Inspection<br>Program          | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                |
| (2) AIR OPERATED<br>DAMPER HOUSING | Cast Iron                  | Containment                  | Loss of Material | Systems<br>Monitoring<br><b>Program</b>    | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                |
| (3) AIR OPERATED<br>DAMPER HOUSING | Galvanized<br>Carbon Steel | Air and Gas<br>(Wetted) <140 | No Aging Effects | No Aging<br>Management<br>Program Required | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |
| (4) AIR OPERATED<br>DAMPER HOUSING | Galvanized<br>Carbon Steel | Containment                  | No Aging Effects | No Aging<br>Management<br>Program Required | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |

| Component Types                    | Material                   | Environment                     | AERMs            | Program/Activity                           | Discussion                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------|----------------------------|---------------------------------|------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (5) AIR OPERATED<br>DAMPER HOUSING | Galvanized<br>Carbon Steel | Indoor (Air<br>Conditioning)    | No Aging Effects | No Aging<br>Management<br>Program Required | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |
| (6) AIR OPERATED<br>DAMPER HOUSING | Galvanized<br>Carbon Steel | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |
| (7) BELL <sup>1</sup>              | Cast Iron                  | Indoor (No Air<br>Conditioning) | Loss of Material | Systems<br>Monitoring<br><b>Program</b>    | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                |
| (8) BLOWER<br>CASING               | Galvanized<br>Carbon Steel | Air and Gas<br>(Wetted) <140    | No Aging Effects | No Aging<br>Management<br>Program Required | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |

ł,

| Component Types                                          | Material                   | Environment                     | AERMs                  | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------|----------------------------|---------------------------------|------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (9) BLOWER<br>CASING                                     | Galvanized<br>Carbon Steel | Indoor (No Air<br>Conditioning) | No Aging Effects       | No Aging<br>Management<br>Program Required                                  | Not consistent with NUREG-1801. According to site-specific review of standard industry guidance for aging evaluation of mechanical systems and components, stainless steel exposed to ventilation air (T<140°F) would not be expected to exhibit loss of material due to pitting and crevice corrosion. Therefore no aging effects are applicable and no aging management program is required. |
| (10) COMPRESSOR<br>CASING (included for<br>conservatism) | Carbon/Low Alloy<br>Steel  | Air and Gas                     | No Aging Effects       | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                              |
| (11) CONDENSER                                           | Stainless Steel            | Indoor (No Air<br>Conditioning) | No Aging Effects       | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                              |
| (12) CONDENSER                                           | Stainless Steel            | Treated Water<br>Borated >140   | Cracking due to<br>SCC | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Structure/component type, material and<br>environment grouping are not included in<br>NUREG-1801. The aging management program(s)<br>referenced are appropriate for the aging effects<br>identified and provides assurance that the aging<br>effects are effectively managed through the period<br>of extended operation.                                                                      |
| (13) CONDENSER                                           | Stainless Steel            | Treated Water<br>Borated >140   | Cracking due to<br>SCC | Water Chemistry<br>Control <b>Program</b>                                   | Structure/component type, material and<br>environment grouping are not included in<br>NUREG-1801. The aging management program(s)<br>referenced are appropriate for the aging effects<br>identified and provides assurance that the aging<br>effects are effectively managed through the period<br>of extended operation.                                                                      |
| (14) CONDENSER                                           | Stainless Steel            | Treated Water<br>Borated >140   | Loss of Material       | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Structure/component type, material and<br>environment grouping are not included in<br>NUREG-1801. The aging management program(s)<br>referenced are appropriate for the aging effects<br>identified and provides assurance that the aging<br>effects are effectively managed through the period<br>of extended operation.                                                                      |

| Table 3.4-2 | Auxiliary Systems | Component Types Subject to Aging Management not Evaluated in NUREG- | 1801 |
|-------------|-------------------|---------------------------------------------------------------------|------|
|-------------|-------------------|---------------------------------------------------------------------|------|

| Component Types              | Material                   | Environment                     | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                |
|------------------------------|----------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (15) CONDENSER               | Stainless Steel            | Treated Water<br>Borated >140   | Loss of Material | Water Chemistry<br>Control Program                                          | Structure/component type, material and<br>environment grouping are not included in<br>NUREG-1801. The aging management program(s)<br>referenced are appropriate for the aging effects<br>identified and provides assurance that the aging<br>effects are effectively managed through the period<br>of extended operation. |
| (16) CONDENSER               | Stainless Steel            | Treated Water<br>Other          | Loss of Material | Closed-Cycle<br>(Component)<br>Cooling Water<br>System <b>Program</b>       | Structure/component type, material and<br>environment grouping are not included in<br>NUREG-1801. The aging management program(s)<br>referenced are appropriate for the aging effects<br>identified and provides assurance that the aging<br>effects are effectively managed through the period<br>of extended operation. |
| (17) CONTROLLER <sup>1</sup> | Copper Alloy (Zn<br>< 15%) | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                         |
| (18) COOLER                  | Cast Iron                  | Indoor (No Air<br>Conditioning) | Loss of Material | Systems<br>Monitoring<br><b>Program</b>                                     | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                              |
| (19) COOLER                  | Cast Iron                  | Oil and Fuel Oil                | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                              |
| (20) COOLER                  | Cast Iron                  | Raw Water                       | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                              |

| Component Types | Material                   | Environment                     | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|-----------------|----------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (21) COOLER     | Cast Iron                  | Treated Water<br>Other          | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (22) COOLER     | Copper Alloy (Zn<br>< 15%) | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (23) COOLER     | Copper Alloy (Zn<br>< 15%) | Treated Water<br>Other          | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (24) COOLER     | Copper Alloy (Zn<br>> 15%) | Raw Water                       | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (25) COOLER     | Copper Alloy (Zn<br>> 15%) | Treated Water<br>Other          | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (26) COOLER     | Stainless Steel            | Concrete                        | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (27) COOLER     | Stainless Steel            | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |

| Component Types | Material        | Environment                   | AERMs                  | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                |
|-----------------|-----------------|-------------------------------|------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (28) COOLER     | Stainless Steel | Treated Water<br>Borated >140 | Cracking due to<br>SCC | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br>Program        | Structure/component type, material and<br>environment grouping are not included in<br>NUREG-1801. The aging management program(s)<br>referenced are appropriate for the aging effects<br>identified and provides assurance that the aging<br>effects are effectively managed through the period<br>of extended operation. |
| (29) COOLER     | Stainless Steel | Treated Water<br>Borated >140 | Cracking due to<br>SCC | Water Chemistry<br>Control <b>Program</b>                                   | Structure/component type, material and<br>environment grouping are not included in<br>NUREG-1801. The aging management program(s)<br>referenced are appropriate for the aging effects<br>identified and provides assurance that the aging<br>effects are effectively managed through the period<br>of extended operation. |
| (30) COOLER     | Stainless Steel | Treated Water<br>Borated >140 | Loss of Material       | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Structure/component type, material and<br>environment grouping are not included in<br>NUREG-1801. The aging management program(s)<br>referenced are appropriate for the aging effects<br>identified and provides assurance that the aging<br>effects are effectively managed through the period<br>of extended operation. |
| (31) COOLER     | Stainless Steel | Treated Water<br>Borated >140 | Loss of Material       | Water Chemistry<br>Control <b>Program</b>                                   | Structure/component type, material and<br>environment grouping are not included in<br>NUREG-1801. The aging management program(s)<br>referenced are appropriate for the aging effects<br>identified and provides assurance that the aging<br>effects are effectively managed through the period<br>of extended operation. |
| (32) COOLER     | Stainless Steel | Treated Water<br>Other        | Loss of Material       | Closed-Cycle<br>(Component)<br>Cooling Water<br>System Program              | Structure/component type, material and<br>environment grouping are not included in<br>NUREG-1801. The aging management program(s)<br>referenced are appropriate for the aging effects<br>identified and provides assurance that the aging<br>effects are effectively managed through the period<br>of extended operation. |

| Component Types   | Material                   | Environment                     | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------|----------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (33) COOLING COIL | Carbon/Low Alloy<br>Steel  | Air and Gas<br>(Wetted) <140    | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                |
| (34) COOLING COIL | Copper Alloy (Zn<br>< 15%) | Air and Gas<br>(Wetted) <140    | Loss of Material | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                |
| (35) COOLING COIL | Copper Alloy (Zn<br>< 15%) | Air and Gas<br>(Wetted) <140    | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                |
| (36) COOLING COIL | Copper Alloy (Zn<br>< 15%) | Containment                     | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (37) COOLING COIL | Copper Alloy (Zn<br>< 15%) | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (38) COOLING COIL | Galvanized<br>Carbon Steel | Air and Gas<br>(Wetted) <140    | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |

| Component Types              | Material                   | Environment                     | AERMs            | Program/Activity                           | Discussion                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------|----------------------------|---------------------------------|------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (39) COOLING COIL            | Galvanized<br>Carbon Steel | Indoor (Air<br>Conditioning)    | No Aging Effects | No Aging<br>Management<br>Program Required | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |
| (40) COOLING COIL            | Stainless Steel            | Air and Gas<br>(Wetted) <140    | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (41) COOLING COIL            | Stainless Steel            | Containment                     | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (42) COOLING COIL            | Stainless Steel            | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (43) CUTTER<br>ASSEMBLY      | Aluminum                   | Air and Gas                     | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (44) CUTTER<br>ASSEMBLY      | Aluminum                   | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (45) DAMPER<br>HOUSING/FRAME | Aluminum                   | Air and Gas<br>(Wetted) <140    | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (46) DAMPER<br>HOUSING/FRAME | Aluminum                   | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |

| Component Types              | Material                   | Environment                     | AERMs            | Program/Activity                           | Discussion                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------|----------------------------|---------------------------------|------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (47) DAMPER<br>HOUSING/FRAME | Galvanized<br>Carbon Steel | Air and Gas<br>(Wetted) <140    | No Aging Effects | No Aging<br>Management<br>Program Required | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |
| (48) DAMPER<br>HOUSING/FRAME | Galvanized<br>Carbon Steel | Containment                     | No Aging Effects | No Aging<br>Management<br>Program Required | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |
| (49) DAMPER<br>HOUSING/FRAME | Galvanized<br>Carbon Steel | Indoor (Air<br>Conditioning)    | No Aging Effects | No Aging<br>Management<br>Program Required | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |
| (50) DAMPER<br>HOUSING/FRAME | Galvanized<br>Carbon Steel | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |

| Component Types              | Material                   | Environment                     | AERMs                                               | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------|----------------------------|---------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (51) DAMPER<br>HOUSING/FRAME | Galvanized<br>Carbon Steel | Outdoor                         | No Aging Effects                                    | No Aging<br>Management<br>Program Required                                  | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |
| (52) DEMINERALIZER           | Stainless Steel            | Indoor (No Air<br>Conditioning) | No Aging Effects                                    | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (53) DEMINERALIZER           | Stainless Steel            | Treated Water<br>Borated <140   | Loss of Material                                    | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program.     |
| (54) DEMINERALIZER           | Stainless Steel            | Treated Water<br>Borated <140   | Loss of Material                                    | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                |
| (55) DIAPHRAGM<br>SEAL       | Neoprene                   | Air and Gas                     | No Aging Effects                                    | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (56) DIAPHRAGM<br>SEAL       | Neoprene                   | Treated Water<br>Borated <140   | Change in<br>Material<br>Properties and<br>Cracking | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                |

| Component Types         | Material                   | Environment                     | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------|----------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (57) ENGINE<br>CASING   | Carbon/Low Alloy<br>Steel  | Oil and Fuel Oil                | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                |
| (58) ENGINE<br>CASING   | Cast Iron                  | Indoor (No Air<br>Conditioning) | Loss of Material | Systems<br>Monitoring<br>Program                                            | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                |
| (59) EXPANSION<br>JOINT | Flexible Asbestos<br>Cloth | Air and Gas<br>(Wetted) <140    | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (60) EXPANSION<br>JOINT | Flexible Asbestos<br>Cloth | Containment                     | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (61) EXPANSION<br>JOINT | Galvanized<br>Carbon Steel | Air and Gas                     | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |
| (62) EXPANSION<br>JOINT | Galvanized<br>Carbon Steel | Air and Gas<br>(Wetted) >140    | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |

| Table 3.4-2 Auxiliary Systems - Component Types Subject to Aging Mana | agement not Evaluated in NUREG-1801 |
|-----------------------------------------------------------------------|-------------------------------------|
|-----------------------------------------------------------------------|-------------------------------------|

| Component Types         | Material                   | Environment                     | AERMs                                               | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------|----------------------------|---------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (63) EXPANSION<br>JOINT | Galvanized<br>Carbon Steel | Indoor (No Air<br>Conditioning) | No Aging Effects                                    | No Aging<br>Management<br>Program Required                                  | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |
| (64) EXPANSION<br>JOINT | Neoprene                   | Indoor (Air<br>Conditioning)    | No Aging Effects                                    | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (65) EXPANSION<br>JOINT | Neoprene                   | Raw Water                       | No Aging Effects                                    | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (66) EXPANSION<br>JOINT | Rubber Coated<br>Asbestos  | Air and Gas<br>(Wetted) <140    | Change in<br>Material<br>Properties and<br>Cracking | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                |
| (67) EXPANSION<br>JOINT | Rubber Coated<br>Asbestos  | Containment                     | Change in<br>Material<br>Properties and<br>Cracking | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                |
| (68) EXPANSION<br>JOINT | Stainless Steel            | Air and Gas<br>(Wetted) >140    | Cracking due to<br>SCC                              | One-Time<br>Inspection<br><b>Program</b>                                    | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                |

| Component Types         | Material                  | Environment                     | AERMs            | Program/Activity                           | Discussion                                                                                                                                                                                                                                                                                   |
|-------------------------|---------------------------|---------------------------------|------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (69) EXPANSION<br>JOINT | Stainless Steel           | Air and Gas<br>(Wetted) >140    | Loss of Material | One-Time<br>Inspection<br>Program          | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (70) EXPANSION<br>JOINT | Stainless Steel           | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (71) FAN CASING         | Aluminum                  | Air and Gas<br>(Wetted) <140    | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (72) FAN CASING         | Aluminum                  | Indoor (Air<br>Conditioning)    | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (73) FAN CASING         | Aluminum                  | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (74) FAN CASING         | Aluminum                  | Outdoor                         | Loss of Material | Systems<br>Monitoring<br><b>Program</b>    | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (75) FAN CASING         | Carbon/Low Alloy<br>Steel | Indoor (Air<br>Conditioning)    | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (76) FAN CASING         | Cast Iron                 | Indoor (No Air<br>Conditioning) | Loss of Material | Systems<br>Monitoring<br><b>Program</b>    | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

| Component Types             | Material                   | Environment                     | AERMs                                          | Program/Activity                           | Discussion                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------|----------------------------|---------------------------------|------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (77) FAN CASING             | Galvanized<br>Carbon Steel | Air and Gas<br>(Wetted) <140    | No Aging Effects                               | No Aging<br>Management<br>Program Required | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |
| (78) FAN CASING             | Galvanized<br>Carbon Steel | Indoor (No Air<br>Conditioning) | No Aging Effects                               | No Aging<br>Management<br>Program Required | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |
| (79) FASTENERS<br>(BOLTING) | Carbon/Low Alloy<br>Steel  | Indoor (No Air<br>Conditioning) | Cracking due to<br>SCC                         | Bolting Integrity<br>Program               | There are no bolts with a specified minimum yield<br>strength > 150 ksi in this system. Therefore, SCC<br>is not an applicable aging effect/mechanism.                                                                                                                                                                                                                                                      |
| (80) FASTENERS<br>(BOLTING) | Carbon/Low Alloy<br>Steel  | Indoor (No Air<br>Conditioning) | Loss of Preload<br>due to Stress<br>Relaxation | Bolting Integrity<br>Program               | Material and environment grouping are included in<br>NUREG-1801. Aging effect of loss of preload due<br>to stress relaxation is applicable, but is not<br>included in Chapter V - Section E, Chapter VII -<br>Section I, or Chapter VIII - Section H of the<br>NUREG.                                                                                                                                       |
| (81) FASTENERS<br>(BOLTING) | Stainless Steel            | Borated Water<br>Leaks          | No Aging Effects                               | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (82) FILTER<br>HOUSING      | Aluminum                   | Air and Gas                     | No Aging Effects                               | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (83) FILTER<br>HOUSING      | Aluminum                   | Indoor (No Air<br>Conditioning) | No Aging Effects                               | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |

| Component Types        | Material                  | Environment                     | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|------------------------|---------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (84) FILTER<br>HOUSING | Aluminum                  | Oil and Fuel Oil                | Loss of Material | Fuel Oil<br>Chemistry<br>Program                                            | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (85) FILTER<br>HOUSING | Aluminum                  | Oil and Fuel Oil                | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (86) FILTER<br>HOUSING | Aluminum                  | Treated Water<br>Other          | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (87) FILTER<br>HOUSING | Carbon/Low Alloy<br>Steel | Indoor (Air<br>Conditioning)    | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (88) FILTER<br>HOUSING | Carbon/Low Alloy<br>Steel | Oil and Fuel Oil                | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (89) FILTER<br>HOUSING | Cast Iron                 | Indoor (No Air<br>Conditioning) | Loss of Material | Systems<br>Monitoring<br><b>Program</b>                                     | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

| Component Types        | Material                                  | Environment                  | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------|-------------------------------------------|------------------------------|------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (90) FILTER<br>HOUSING | Cast Iron                                 | Oil and Fuel Oil             | Loss of Material | Fuel Oil<br>Chemistry<br>Program                                            | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                |
| (91) FILTER<br>HOUSING | Cast Iron                                 | Oil and Fuel Oil             | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                |
| (92) FILTER<br>HOUSING | Fiberglass<br>Reinforced Plastic<br>(FRP) | Air and Gas<br>(Wetted) <140 | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (93) FILTER<br>HOUSING | Fiberglass<br>Reinforced Plastic<br>(FRP) | Containment                  | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (94) FILTER<br>HOUSING | Galvanized<br>Carbon Steel                | Air and Gas<br>(Wetted) <140 | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |
| (95) FILTER<br>HOUSING | Galvanized<br>Carbon Steel                | Indoor (Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Not consistent with NUREG-1801. According to site-specific review of standard industry guidance for aging evaluation of mechanical systems and components, galvanized carbon steel exposed to ventilation air (T<140°F) would be expected to exhibit minimal deterioration of the zinc coating. Therefore no aging effects are applicable and no aging management program is required.                      |

| Component Types         | Material                   | Environment                     | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------|----------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (96) FILTER<br>HOUSING  | Galvanized<br>Carbon Steel | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |
| (97) FILTER<br>HOUSING  | Stainless Steel            | Air and Gas<br>(Wetted) <140    | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Not consistent with NUREG-1801. According to site-specific review of standard industry guidance for aging evaluation of mechanical systems and components, stainless steel exposed to ventilation air (T<140°F) would not be expected to exhibit loss of material due to pitting and crevice corrosion. Therefore no aging effects are applicable and no aging management program is required.              |
| (98) FILTER<br>HOUSING  | Stainless Steel            | Containment                     | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (99) FILTER<br>HOUSING  | Stainless Steel            | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (100) FILTER<br>HOUSING | Stainless Steel            | Oil and Fuel Oil                | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                |

| Component Types         | Material                  | Environment                   | AERMs            | Program/Activity                           | Discussion                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------|---------------------------|-------------------------------|------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (101) FILTER<br>HOUSING | Stainless Steel           | Treated Water<br>Borated <140 | Loss of Material | One-Time<br>Inspection<br>Program          | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |
| (102) FILTER<br>HOUSING | Stainless Steel           | Treated Water<br>Borated <140 | Loss of Material | Water Chemistry<br>Control <b>Program</b>  | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (103) FLAME<br>ARRESTOR | Aluminum                  | Containment                   | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (104) FLAME<br>ARRESTOR | Aluminum                  | Oil and Fuel Oil              | Loss of Material | One-Time<br>Inspection<br>Program          | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (105) FLANGE            | Carbon/Low Alloy<br>Steel | Air and Gas                   | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (106) FLOW<br>ELEMENT   | Stainless Steel           | Air and Gas<br>(Wetted) <140  | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (107) FLOW<br>ELEMENT   | Stainless Steel           | Containment                   | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |

| Component Types                  | Material                   | Environment                     | AERMs            | Program/Activity                                                      | Discussion                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------|----------------------------|---------------------------------|------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (108) FLOW<br>ELEMENT            | Stainless Steel            | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                            | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (109) FLOW<br>ELEMENT            | Stainless Steel            | Treated Water<br>Borated <140   | Loss of Material | One-Time<br>Inspection<br>Program                                     | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |
| (110) FLOW<br>ELEMENT            | Stainless Steel            | Treated Water<br>Borated <140   | Loss of Material | Water Chemistry<br>Control <b>Program</b>                             | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (111) FLOW<br>ELEMENT            | Stainless Steel            | Treated Water<br>Other          | Loss of Material | Closed-Cycle<br>(Component)<br>Cooling Water<br>System <b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (112) FLOW<br>METER <sup>1</sup> | Stainless Steel            | Air and Gas                     | No Aging Effects | No Aging<br>Management<br>Program Required                            | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (113) FLOW<br>METER <sup>1</sup> | Stainless Steel            | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                            | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (114) FLOW<br>NOZZLES            | Copper Alloy (Zn<br>< 15%) | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                            | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |

1

| Component Types               | Material                   | Environment                     | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                 |
|-------------------------------|----------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (115) GAS<br>CYLINDER         | Carbon/Low Alloy<br>Steel  | Air and Gas                     | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                          |
| (116) HAND<br>CONTROL STATION | Carbon/Low Alloy<br>Steel  | Air and Gas                     | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                          |
| (117) HAND<br>CONTROL STATION | Carbon/Low Alloy<br>Steel  | Indoor (Air<br>Conditioning)    | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                          |
| (118) HAND<br>CONTROL STATION | Copper Alloy (Zn<br>< 15%) | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                          |
| (119) HEAT<br>EXCHANGER       | Carbon/Low Alloy<br>Steel  | Raw Water                       | Loss of Material | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                               |
| (120) HEAT<br>EXCHANGER       | Carbon/Low Alloy<br>Steel  | Raw Water                       | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Structure/component type, material, and<br>environment grouping are not included in<br>NUREG-1801. The aging management program(s)<br>referenced are appropriate for the aging effects<br>identified and provides assurance that the aging<br>effects are effectively managed through the period<br>of extended operation. |
| (121) HEAT<br>EXCHANGER       | Cast Iron                  | Indoor (No Air<br>Conditioning) | Loss of Material | Systems<br>Monitoring<br>Program                                            | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                               |

| Component Types         | Material                   | Environment                       | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|-------------------------|----------------------------|-----------------------------------|------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (122) HEAT<br>EXCHANGER | Cast Iron                  | Raw Water                         | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (123) HEAT<br>EXCHANGER | Cast Iron                  | Treated Water<br>Other (Stagnant) | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (124) HEAT<br>EXCHANGER | Copper Alloy (Zn<br>< 15%) | Raw Water                         | Loss of Material | Open-Cycle<br>Cooling (Service)<br>Water System<br>Program                  | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (125) HEAT<br>EXCHANGER | Copper Alloy (Zn<br>< 15%) | Raw Water                         | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (126) HEAT<br>EXCHANGER | Copper Alloy (Zn<br>< 15%) | Treated Water<br>Other            | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

| Component Types         | Material                   | Environment                  | AERMs                    | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|-------------------------|----------------------------|------------------------------|--------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (127) HEAT<br>EXCHANGER | Copper Alloy (Zn<br>> 15%) | Air and Gas<br>(Wetted) >140 | Loss of Heat<br>Transfer | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (128) HEAT<br>EXCHANGER | Copper Alloy (Zn<br>> 15%) | Air and Gas<br>(Wetted) >140 | Loss of Material         | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (129) HEAT<br>EXCHANGER | Copper Alloy (Zn<br>> 15%) | Raw Water                    | Loss of Heat<br>Transfer | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (130) HEAT<br>EXCHANGER | Copper Alloy (Zn<br>> 15%) | Raw Water                    | Loss of Material         | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (131) HEAT<br>EXCHANGER | Copper Alloy (Zn<br>> 15%) | Treated Water<br>Other       | Loss of Heat<br>Transfer | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br>Program        | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

| Component Types         | Material                                   | Environment            | AERMs                    | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|-------------------------|--------------------------------------------|------------------------|--------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (132) HEAT<br>EXCHANGER | Copper Alloy (Zn<br>> 15%)                 | Treated Water<br>Other | Loss of Material         | Closed-Cycle<br>(Component)<br>Cooling Water<br>System <b>Program</b>       | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (133) HEAT<br>EXCHANGER | Copper Alloy (Zn<br>> 15%)                 | Treated Water<br>Other | Loss of Material         | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (134) HEAT<br>EXCHANGER | HX-Copper Alloy<br>(Zn < 15%) <sup>2</sup> | Raw Water              | Loss of Heat<br>Transfer | Open-Cycle<br>Cooling (Service)<br>Water System<br><b>Program</b>           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (135) HEAT<br>EXCHANGER | HX-Copper Alloy<br>(Zn < 15%) <sup>2</sup> | Raw Water              | Loss of Heat<br>Transfer | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (136) HEAT<br>EXCHANGER | HX-Copper Alloy<br>(Zn < 15%) <sup>2</sup> | Treated Water<br>Other | Loss of Heat<br>Transfer | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

Į

| Component Types         | Material                                   | Environment                   | AERMs                    | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                |
|-------------------------|--------------------------------------------|-------------------------------|--------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (137) HEAT<br>EXCHANGER | HX-Copper Alloy<br>(Zn > 15%) <sup>2</sup> | Treated Water<br>Other        | Loss of Heat<br>Transfer | Closed-Cycle<br>(Component)<br>Cooling Water<br>System Program              | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                              |
| (138) HEAT<br>EXCHANGER | HX-Copper Alloy<br>(Zn > 15%) <sup>2</sup> | Treated Water<br>Other        | Loss of Heat<br>Transfer | Open-Cycle<br>Cooling (Service)<br>Water System<br>Program                  | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                              |
| (139) HEAT<br>EXCHANGER | HX-Stainless<br>Steel <sup>2</sup>         | Raw Water                     | Loss of Heat<br>Transfer | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                              |
| (140) HEAT<br>EXCHANGER | HX-Stainless<br>Steel <sup>2</sup>         | Treated Water<br>Other        | Loss of Heat<br>Transfer | Closed-Cycle<br>(Component)<br>Cooling Water<br>System Program              | Structure/component type, material and<br>environment grouping are not included in<br>NUREG-1801. The aging management program(s)<br>referenced are appropriate for the aging effects<br>identified and provides assurance that the aging<br>effects are effectively managed through the period<br>of extended operation. |
| (141) HEAT<br>EXCHANGER | HX-Stainless<br>Steel <sup>2</sup>         | Treated Water<br>Primary <140 | Loss of Heat<br>Transfer | Water Chemistry<br>Control <b>Program</b>                                   | Structure/component type, material and<br>environment grouping are not included in<br>NUREG-1801. The aging management program(s)<br>referenced are appropriate for the aging effects<br>identified and provides assurance that the aging<br>effects are effectively managed through the period<br>of extended operation. |

| Component Types         | Material                           | Environment                     | AERMs                    | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                |
|-------------------------|------------------------------------|---------------------------------|--------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (142) HEAT<br>EXCHANGER | HX-Stainless<br>Steel <sup>2</sup> | Treated Water<br>Secondary >120 | Loss of Heat<br>Transfer | Water Chemistry<br>Control <b>Program</b>                                   | Structure/component type, material and<br>environment grouping are not included in<br>NUREG-1801. The aging management program(s)<br>referenced are appropriate for the aging effects<br>identified and provides assurance that the aging<br>effects are effectively managed through the period<br>of extended operation. |
| (143) HEAT<br>EXCHANGER | Stainless Steel                    | Air and Gas<br>(Wetted) <140    | No Aging Effects         | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                         |
| (144) HEAT<br>EXCHANGER | Stainless Steel                    | Indoor (No Air<br>Conditioning) | No Aging Effects         | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                         |
| (145) HEAT<br>EXCHANGER | Stainless Steel                    | Raw Water                       | Loss of Heat<br>Transfer | Open-Cycle<br>Cooling (Service)<br>Water System<br><b>Program</b>           | Structure/component type, material and<br>environment grouping are not included in<br>NUREG-1801. The aging management program(s)<br>referenced are appropriate for the aging effects<br>identified and provides assurance that the aging<br>effects are effectively managed through the period<br>of extended operation. |
| (146) HEAT<br>EXCHANGER | Stainless Steel                    | Raw Water                       | Loss of Material         | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                              |
| (147) HEAT<br>EXCHANGER | Stainless Steel                    | Treated Water<br>Borated <140   | Loss of Heat<br>Transfer | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                              |

#### Program/Activity **AERMs** Discussion **Component Types** Material Environment (148) HEAT Loss of Material One-Time Material and environment grouping are not Stainless Steel Treated Water included in NUREG-1801. The aging management Inspection EXCHANGER Borated <140 program(s) referenced are appropriate for the Program aging effects identified and provides assurance that the aging effects are effectively managed through the period of extended operation. One-time inspections are used to verify the effectiveness of the Water Chemistry Control Program. Material and environment grouping are not included in NUREG-1801. The aging management (149) HEAT Stainless Steel Treated Water Loss of Material Periodic Surveillance and EXCHANGER Borated <140 program(s) referenced are appropriate for the Preventive aging effects identified and provides assurance Maintenance that the aging effects are effectively managed Program through the period of extended operation. (150) HEAT Material and environment grouping are not Loss of Material Water Chemistry Stainless Steel Treated Water included in NUREG-1801. The aging management Control Program Borated <140 EXCHANGER program(s) referenced are appropriate for the aging effects identified and provides assurance that the aging effects are effectively managed through the period of extended operation. (151) HEAT Closed-Cycle Material and environment grouping are not Treated Water Loss of Material Stainless Steel included in NUREG-1801. The aging management (Component) EXCHANGER Other program(s) referenced are appropriate for the Cooling Water aging effects identified and provides assurance System Program that the aging effects are effectively managed through the period of extended operation. (152) HEAT Water Chemistry Structure/component type, material and Loss of Material Stainless Steel Treated Water environment grouping are not included in EXCHANGER Primary <140 Control Program NUREG-1801. The aging management program(s) referenced are appropriate for the aging effects identified and provides assurance that the aging

#### Table 3.4-2 Auxiliary Systems - Component Types Subject to Aging Management not Evaluated in NUREG-1801

effects are effectively managed through the period

of extended operation.

| Component Types         | Material                   | Environment                     | AERMs                  | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                |
|-------------------------|----------------------------|---------------------------------|------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (153) HEAT<br>EXCHANGER | Stainless Steel            | Treated Water<br>Secondary >120 | Cracking due to<br>SCC | Water Chemistry<br>Control <b>Program</b>                                   | Structure/component type, material and<br>environment grouping are not included in<br>NUREG-1801. The aging management program(s)<br>referenced are appropriate for the aging effects<br>identified and provides assurance that the aging<br>effects are effectively managed through the period<br>of extended operation. |
| (154) HEAT<br>EXCHANGER | Stainless Steel            | Treated Water<br>Secondary >120 | Loss of Material       | Water Chemistry<br>Control <b>Program</b>                                   | Structure/component type, material and<br>environment grouping are not included in<br>NUREG-1801. The aging management program(s)<br>referenced are appropriate for the aging effects<br>identified and provides assurance that the aging<br>effects are effectively managed through the period<br>of extended operation. |
| (155) HEATER            | Copper Alloy (Zn<br>< 15%) | Indoor (No Air<br>Conditioning) | No Aging Effects       | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                         |
| (156) HEATER            | Copper Alloy (Zn<br>< 15%) | Treated Water<br>Secondary >120 | Loss of Material       | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                              |
| (157) HEATING<br>COIL   | Carbon/Low Alloy<br>Steel  | Air and Gas<br>(Wetted) <140    | Loss of Material       | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                              |
| (158) HEATING<br>COIL   | Carbon/Low Alloy<br>Steel  | Indoor (Air<br>Conditioning)    | No Aging Effects       | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                         |

| Component Types                                 | Material                   | Environment                     | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------|----------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (159) HEATING<br>ELEMENT                        | Stainless Steel            | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (160) HEATING<br>ELEMENT                        | Stainless Steel            | Oil and Fuel Oil                | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                |
| (161) HEATING<br>ELEMENT                        | Stainless Steel            | Treated Water<br>Other          | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                |
| (162) HVAC<br>EQUIPMENT<br>PACKAGE <sup>3</sup> | Carbon/Low Alloy<br>Steel  | Air and Gas<br>(Wetted) <140    | Loss of Material | One-Time<br>Inspection<br><b>Program</b>                                    | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                |
| (163) HVAC<br>EQUIPMENT<br>PACKAGE <sup>3</sup> | Galvanized<br>Carbon Steel | Air and Gas<br>(Wetted) <140    | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |

| Component Types                                 | Material                   | Environment                     | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------|----------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (164) HVAC<br>EQUIPMENT<br>PACKAGE <sup>3</sup> | Galvanized<br>Carbon Steel | Containment                     | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |
| (165) HVAC<br>EQUIPMENT<br>PACKAGE <sup>3</sup> | Galvanized<br>Carbon Steel | Indoor (Air<br>Conditioning)    | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |
| (166) HVAC<br>EQUIPMENT<br>PACKAGE <sup>3</sup> | Galvanized<br>Carbon Steel | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |
| (167) INDICATOR <sup>1</sup>                    | Copper Alloy (Zn<br>< 15%) | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (168) INDICATOR <sup>1</sup>                    | Copper Alloy (Zn<br>< 15%) | Oil and Fuel Oil                | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                |

| Table 3.4-2 | Auxiliary Systems - | <b>Component Types Subject</b> | to Aging Management no | ot Evaluated in NUREG-1801 |
|-------------|---------------------|--------------------------------|------------------------|----------------------------|
|-------------|---------------------|--------------------------------|------------------------|----------------------------|

| Component Types              | Material                   | Environment                       | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|------------------------------|----------------------------|-----------------------------------|------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (169) INDICATOR <sup>1</sup> | Copper Alloy (Zn<br>< 15%) | Raw Water                         | Loss of Material | Open-Cycle<br>Cooling (Service)<br>Water System<br>Program                  | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (170) INDICATOR <sup>1</sup> | Copper Alloy (Zn<br>< 15%) | Treated Water<br>Other (Stagnant) | Loss of Material | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (171) INDICATOR <sup>1</sup> | Copper Alloy (Zn<br>< 15%) | Treated Water<br>Other (Stagnant) | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (172) INDICATOR <sup>1</sup> | Plastic                    | Indoor (No Air<br>Conditioning)   | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (173) INDICATOR <sup>1</sup> | Plastic                    | Oil and Fuel Oil                  | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (174) INDICATOR <sup>1</sup> | Plastic                    | Raw Water<br>(Stagnant)           | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (175) INDICATOR <sup>1</sup> | Stainless Steel            | Containment                       | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (176) INDICATOR <sup>1</sup> | Stainless Steel            | Indoor (No Air<br>Conditioning)   | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |

| Component Types              | Material        | Environment                   | AERMs            | Program/Activity                  | Discussion                                                                                                                                                                          |
|------------------------------|-----------------|-------------------------------|------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (177) INDICATOR <sup>1</sup> | Stainless Steel | Treated Water<br>Borated <140 | Loss of Material | One-Time<br>Inspection<br>Program | Structure/component type, material and<br>environment grouping are not included in<br>NUREG-1801. The aging management program(<br>referenced are appropriate for the aging effects |

#### Program

|                              |                            |                                 |                  |                                                                       | identified and provides assurance that the aging<br>effects are effectively managed through the period<br>of extended operation. One-time inspections are<br>used to verify the effectiveness of the Water<br>Chemistry Control Program.                                                                                  |
|------------------------------|----------------------------|---------------------------------|------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (178) INDICATOR <sup>1</sup> | Stainless Steel            | Treated Water<br>Borated <140   | Loss of Material | Water Chemistry<br>Control <b>Program</b>                             | Structure/component type, material and<br>environment grouping are not included in<br>NUREG-1801. The aging management program(s)<br>referenced are appropriate for the aging effects<br>identified and provides assurance that the aging<br>effects are effectively managed through the period<br>of extended operation. |
| (179) INDICATOR <sup>1</sup> | Stainless Steel            | Treated Water<br>Other          | Loss of Material | Closed-Cycle<br>(Component)<br>Cooling Water<br>System <b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                              |
| (180) LEVEL GLASS            | Copper Alloy (Zn<br>< 15%) | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                            | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                         |
| (181) LEVEL GLASS            | Copper Alloy (Zn<br>< 15%) | Oil and Fuel Oil                | Loss of Material | Fuel Oil<br>Chemistry<br>Program                                      | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                              |

| Component Types   | Material                   | Environment                       | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|-------------------|----------------------------|-----------------------------------|------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (182) LEVEL GLASS | Copper Alloy (Zn<br>< 15%) | Oil and Fuel Oil                  | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br>Program        | Consistent with NUREG-1801.<br>Material/environment grouping and aging effect<br>are included in NUREG-1801. The Periodic<br>Surveillance and Preventive Maintenance Program<br>will be used to verify the effectiveness of the Fuel<br>Oil Chemistry Program.                               |
| (183) LEVEL GLASS | Copper Alloy (Zn<br>< 15%) | Treated Water<br>Other (Stagnant) | Loss of Material | One-Time<br>Inspection<br><b>Program</b>                                    | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (184) LEVEL GLASS | Copper Alloy (Zn<br>< 15%) | Treated Water<br>Other (Stagnant) | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (185) LEVEL GLASS | Glass                      | Indoor (No Air<br>Conditioning)   | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (186) LEVEL GLASS | Glass                      | Oil and Fuel Oil                  | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (187) LEVEL GLASS | Plastic                    | Indoor (No Air<br>Conditioning)   | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (188) LEVEL GLASS | Plastic                    | Treated Water<br>Other            | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (189) LEVEL GLASS | Stainless Steel            | Containment                       | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |

1

| Component Types                   | Material                   | Environment                     | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------|----------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (190) LEVEL GLASS                 | Stainless Steel            | Oil and Fuel Oil                | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                |
| (191) MOTOR<br>OPERATED<br>DAMPER | Galvanized<br>Carbon Steel | Air and Gas<br>(Wetted) <140    | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |
| (192) MOTOR<br>OPERATED<br>DAMPER | Galvanized<br>Carbon Steel | Outdoor                         | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |
| (193) MUFFLER                     | Galvanized<br>Carbon Steel | Air and Gas<br>(Wetted) >140    | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (194) MUFFLER                     | Galvanized<br>Carbon Steel | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (195) ORIFICE                     | Copper Alloy (Zn<br>< 15%) | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |
| (196) ORIFICE                     | Stainless Steel            | Containment                     | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                           |

| Component Types           | Material                  | Environment                       | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|---------------------------|---------------------------|-----------------------------------|------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (197) ORIFICE             | Stainless Steel           | Indoor (No Air<br>Conditioning)   | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (198) ORIFICE             | Stainless Steel           | Oil and Fuel Oil                  | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (199) ORIFICE             | Stainless Steel           | Raw Water<br>Drainage             | Loss of Material | One-Time<br>Inspection<br><b>Program</b>                                    | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (200) ORIFICE             | Stainless Steel           | Treated Water<br>Other            | Loss of Material | Closed-Cycle<br>(Component)<br>Cooling Water<br>System <b>Program</b>       | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (201) PENETRATION<br>SEAL | Carbon/Low Alloy<br>Steel | Indoor (Air<br>Conditioning)      | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (202) PENETRATION<br>SEAL | Carbon/Low Alloy<br>Steel | Air and Gas                       | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (203) PIPE                | Carbon/Low Alloy<br>Steel | Indoor (Air<br>Conditioning)      | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (204) PIPE                | Carbon/Low Alloy<br>Steel | Treated Water<br>Other (Stagnant) | Loss of Material | One-Time<br>Inspection<br><b>Program</b>                                    | Material and environment grouping are not<br>included in NUREG-1801. One-time inspections<br>are used to verify the effectiveness of the Water<br>Chemistry Control Program.                                                                                                                 |

# Table 3.4-2 Auxiliary Systems - Component Types Subject to Aging Management not Evaluated in NUREG-1801

| Component Types | Material                  | Environment                       | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------|---------------------------|-----------------------------------|------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (205) PIPE      | Carbon/Low Alloy<br>Steel | Treated Water<br>Other (Stagnant) | Loss of Material | Water Chemistry<br>Control Program                                          | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (206) PIPE      | Carbon/Low Alloy<br>Steel | Treated Water<br>Secondary >120   | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (207) PIPE      | Cast Iron                 | Buried                            | Loss of Material | Fire Water<br>System <b>Program</b>                                         | Not consistent with NUREG-1801. The Fire Water<br>System Program is credited for managing the<br>effects of aging for buried cast iron piping and<br>fittings. External surfaces of buried piping are<br>visually examined during maintenance activities<br>(inspections of opportunity) performed as a result<br>of performance tests. No evidence of age-related<br>degradation has been detected from inspections<br>performed to date. Cast iron fire system and<br>service water piping at Ginna Station is ductile cast<br>iron, not gray cast iron. Ductile irons are not<br>susceptible to loss of structural integrity due to<br>selective leaching mechanisms, and generally<br>display excellent resistance to general corrosion<br>due to exposure to non-aggressive ground water.<br>Ground water/lake water at Ginna Station is<br>analyzed periodically and analyses performed to<br>date confirm that the water is non-aggressive. |
| (208) PIPE      | Cast Iron                 | Concrete                          | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (209) PIPE      | Cast Iron                 | Indoor (No Air<br>Conditioning)   | Loss of Material | Systems<br>Monitoring<br>Program                                            | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Component Types | Material                   | Environment                     | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|-----------------|----------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (210) PIPE      | Concrete<br>(Reinforced)   | Buried                          | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (211) PIPE      | Concrete<br>(Reinforced)   | Raw Water                       | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (212) PIPE      | Copper Alloy (Zn<br>< 15%) | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (213) PIPE      | Copper Alloy (Zn<br>< 15%) | Oil and Fuel Oil                | Loss of Material | Fuel Oil<br>Chemistry<br>Program                                            | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (214) PIPE      | Copper Alloy (Zn<br>< 15%) | Raw Water<br>(Stagnant)         | Loss of Material | Fire Water<br>System <b>Program</b>                                         | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (215) PIPE      | Copper Alloy (Zn<br>< 15%) | Raw Water<br>(Stagnant)         | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Consistent with NUREG-1801.<br>Material/environment grouping and aging effect<br>are included in NUREG-1801. The Periodic<br>Surveillance and Preventive Maintenance Program<br>will be used to verify the effectiveness of the Fire<br>Water System Program.                                |

| Component Types | Material                   | Environment                       | AERMs                                               | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|-----------------|----------------------------|-----------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (216) PIPE      | Copper Alloy (Zn<br>< 15%) | Raw Water<br>Drainage             | Loss of Material                                    | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (217) PIPE      | Copper Alloy (Zn<br>< 15%) | Treated Water<br>Other (Stagnant) | Loss of Material                                    | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (218) PIPE      | Copper Alloy (Zn<br>< 15%) | Treated Water<br>Other (Stagnant) | Loss of Material                                    | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (219) PIPE      | Neoprene                   | Air and Gas                       | No Aging Effects                                    | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (220) PIPE      | Neoprene                   | Containment                       | Change in<br>Material<br>Properties and<br>Cracking | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (221) PIPE      | Neoprene                   | Containment                       | Change in<br>Material<br>Properties and<br>Cracking | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

| Component Types | Material | Environment                     | AERMs                                               | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|-----------------|----------|---------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (222) PIPE      | Neoprene | Containment                     | Change in<br>Material<br>Properties and<br>Cracking | Systems<br>Monitoring<br>Program                                            | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (223) PIPE      | Neoprene | Indoor (No Air<br>Conditioning) | Change in<br>Material<br>Properties and<br>Cracking | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (224) PIPE      | Neoprene | Indoor (No Air<br>Conditioning) | Change in<br>Material<br>Properties and<br>Cracking | Systems<br>Monitoring<br>Program                                            | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (225) PIPE      | Neoprene | Oil and Fuel Oil                | No Aging Effects                                    | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (226) PIPE      | Neoprene | Raw Water                       | No Aging Effects                                    | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (227) PIPE      | Neoprene | Raw Water<br>(Stagnant)         | No Aging Effects                                    | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (228) PIPE      | Neoprene | Treated Water<br>Other          | No Aging Effects                                    | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (229) PIPE      | Plastic  | Indoor (No Air<br>Conditioning) | No Aging Effects                                    | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |

| Table 3.4-2 A | Auxiliarv Svstems - C | omponent Types | Subject to Agin | ng Management not E | valuated in NUREG-1801 |
|---------------|-----------------------|----------------|-----------------|---------------------|------------------------|
|---------------|-----------------------|----------------|-----------------|---------------------|------------------------|

| Component Types | Material        | Environment                     | AERMs            | Program/Activity                           | Discussion                                                        |
|-----------------|-----------------|---------------------------------|------------------|--------------------------------------------|-------------------------------------------------------------------|
| (230) PIPE      | Plastic         | Raw Water<br>Drainage           | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801. |
| (231) PIPE      | Stainless Steel | Air and Gas                     | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801. |
| (232) PIPE      | Stainless Steel | Air and Gas<br>(Wetted) <140    | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801. |
| (233) PIPE      | Stainless Steel | Buried                          | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801. |
| (234) PIPE      | Stainless Steel | Concrete                        | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801. |
| (235) PIPE      | Stainless Steel | Containment                     | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801. |
| (236) PIPE      | Stainless Steel | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801. |
| (237) PIPE      | Stainless Steel | Raw Water<br>Drainage           | Loss of Material | One-Time<br>Inspection<br>Program          | Material and environment grouping are not included in NUREG-1801. |

| Component Types | Material        | Environment                   | AERMs                  | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------|-----------------|-------------------------------|------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (238) PIPE      | Stainless Steel | Treated Water<br>Borated <140 | Loss of Material       | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |
| (239) PIPE      | Stainless Steel | Treated Water<br>Borated <140 | Loss of Material       | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (240) PIPE      | Stainless Steel | Treated Water<br>Borated >140 | Cracking due to<br>SCC | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (241) PIPE      | Stainless Steel | Treated Water<br>Borated >140 | Cracking due to<br>SCC | Water Chemistry<br>Control Program                                          | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (242) PIPE      | Stainless Steel | Treated Water<br>Borated >140 | Loss of Material       | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br>Program        | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |

| Table 3.4-2 Auxi | liary Systems - Component | t Types Subject to Aging Management not Ev | aluated in NUREG-1801 |
|------------------|---------------------------|--------------------------------------------|-----------------------|
|------------------|---------------------------|--------------------------------------------|-----------------------|

| Component Types | Material        | Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AERMs                  | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|-----------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (243) PIPE      | Stainless Steel | Treated Water<br>Borated >140                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Loss of Material       | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (244) PIPE      | Stainless Steel | Treated Water<br>Other                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Loss of Material       | Closed-Cycle<br>(Component)<br>Cooling Water<br>System <b>Program</b>       | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (245) PIPE      | Stainless Steel | Treated Water<br>Primary <140                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Loss of Material       | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (246) PIPE      | Stainless Steel | Treated Water<br>Primary <140                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Loss of Material       | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (247) PIPE      | Stainless Steel | Treated Water<br>Primary,<br>140 <t<480< td=""><td>Cracking due to<br/>SCC</td><td>Periodic<br/>Surveillance and<br/>Preventive<br/>Maintenance<br/>Program</td><td>Material and environment grouping are not<br/>included in NUREG-1801. The aging management<br/>program(s) referenced are appropriate for the<br/>aging effects identified and provides assurance<br/>that the aging effects are effectively managed<br/>through the period of extended operation.</td></t<480<> | Cracking due to<br>SCC | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br>Program        | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

| Component Types           | Material        | Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AERMs                  | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|---------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (248) PIPE                | Stainless Steel | Treated Water<br>Primary,<br>140 <t<480< td=""><td>Cracking due to<br/>SCC</td><td>Water Chemistry<br/>Control <b>Program</b></td><td>Material and environment grouping are not<br/>included in NUREG-1801. The aging management<br/>program(s) referenced are appropriate for the<br/>aging effects identified and provides assurance<br/>that the aging effects are effectively managed<br/>through the period of extended operation.</td></t<480<>                               | Cracking due to<br>SCC | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (249) PIPE                | Stainless Steel | Treated Water<br>Primary,<br>140 <t<480< td=""><td>Loss of Material</td><td>Periodic<br/>Surveillance and<br/>Preventive<br/>Maintenance<br/><b>Program</b></td><td>Material and environment grouping are not<br/>included in NUREG-1801. The aging management<br/>program(s) referenced are appropriate for the<br/>aging effects identified and provides assurance<br/>that the aging effects are effectively managed<br/>through the period of extended operation.</td></t<480<> | Loss of Material       | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (250) PIPE                | Stainless Steel | Treated Water<br>Primary,<br>140 <t<480< td=""><td>Loss of Material</td><td>Water Chemistry<br/>Control <b>Program</b></td><td>Material and environment grouping are not<br/>included in NUREG-1801. The aging management<br/>program(s) referenced are appropriate for the<br/>aging effects identified and provides assurance<br/>that the aging effects are effectively managed<br/>through the period of extended operation.</td></t<480<>                                      | Loss of Material       | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (251) PROTOMATIC          | Cast Iron       | Indoor (No Air<br>Conditioning)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Loss of Material       | Systems<br>Monitoring<br><b>Program</b>                                     | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (252) PULSATION<br>DAMPER | Stainless Steel | Indoor (No Air<br>Conditioning)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No Aging Effects       | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |

| Component Types           | Material        | Environment                     | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------|-----------------|---------------------------------|------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (253) PULSATION<br>DAMPER | Stainless Steel | Treated Water<br>Borated <140   | Loss of Material | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |
| (254) PULSATION<br>DAMPER | Stainless Steel | Treated Water<br>Borated <140   | Loss of Material | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (255) PUMP<br>CASING      | Aluminum        | Indoor (Air<br>Conditioning)    | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (256) PUMP<br>CASING      | Aluminum        | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (257) PUMP<br>CASING      | Aluminum        | Raw Water<br>Drainage           | Loss of Material | One-Time<br>Inspection<br><b>Program</b>                                    | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (258) PUMP<br>CASING      | Aluminum        | Raw Water<br>Drainage           | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |

| Component Types      | Material                  | Environment                     | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|----------------------|---------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (259) PUMP<br>CASING | Carbon/Low Alloy<br>Steel | Air and Gas                     | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (260) PUMP<br>CASING | Cast Iron                 | Air and Gas<br>(Wetted) >140    | Loss of Material | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (261) PUMP<br>CASING | Cast Iron                 | Indoor (Air<br>Conditioning)    | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (262) PUMP<br>CASING | Cast Iron                 | Indoor (No Air<br>Conditioning) | Loss of Material | Systems<br>Monitoring<br><b>Program</b>                                     | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (263) PUMP<br>CASING | Cast Iron                 | Oil and Fuel Oil                | Loss of Material | Fuel Oil<br>Chemistry<br>Program                                            | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (264) PUMP<br>CASING | Cast Iron                 | Oil and Fuel Oil                | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

| Component Types      | Material                   | Environment                     | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|----------------------|----------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (265) PUMP<br>CASING | Cast Iron                  | Raw Water<br>Drainage           | Loss of Material | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (266) PUMP<br>CASING | Copper Alloy (Zn<br>< 15%) | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (267) PUMP<br>CASING | Copper Alloy (Zn<br>< 15%) | Oil and Fuel Oil                | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (268) PUMP<br>CASING | Stainless Steel            | Air and Gas<br>(Wetted) <140    | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (269) PUMP<br>CASING | Stainless Steel            | Containment                     | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (270) PUMP<br>CASING | Stainless Steel            | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (271) PUMP<br>CASING | Stainless Steel            | Oil and Fuel Oil                | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

| Table 3.4-2 | Auxiliary Systems - Component | t Types Subject to Aging Management not | Evaluated in NUREG-1801 |
|-------------|-------------------------------|-----------------------------------------|-------------------------|
|-------------|-------------------------------|-----------------------------------------|-------------------------|

| Component Types      | Material        | Environment                   | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------|-----------------|-------------------------------|------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (272) PUMP<br>CASING | Stainless Steel | Raw Water<br>Drainage         | Loss of Material | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (273) PUMP<br>CASING | Stainless Steel | Raw Water<br>Drainage         | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (274) PUMP<br>CASING | Stainless Steel | Treated Water<br>Borated <140 | Loss of Material | One-Time<br>Inspection<br>Program                                           | Consistent with NUREG-1801. Although the<br>NUREG references a temperature gate of $< 90^{\circ}$ C<br>(200°F) and a single aging effect (cracking due to<br>SCC), materials science supports (1) a<br>temperature gate $> 140^{\circ}$ F for cracking due to SCC,<br>and (2) loss of material due to pitting (stagnant or<br>low flow conditions) and crevice corrosion for all<br>temperatures. The aging effect identified by Ginna<br>(loss of material) for temperatures $< 140^{\circ}$ F differs<br>from that of the NUREG. That not withstanding,<br>the Water Chemistry Control Program, credited for<br>managing the aging effects for all temperatures, is<br>consistent with the NUREG and will preclude the<br>possibility of crack initiation and growth due to<br>SCC. One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |

| Component Types             | Material        | Environment                     | AERMs            | Program/Activity                           | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------|-----------------|---------------------------------|------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (275) PUMP<br>CASING        | Stainless Steel | Treated Water<br>Borated <140   | Loss of Material | Water Chemistry<br>Control <b>Program</b>  | Consistent with NUREG-1801. Although the<br>NUREG references a temperature gate of $< 90^{\circ}$ C<br>(200°F) and a single aging effect (cracking due to<br>SCC), materials science supports (1) a<br>temperature gate > 140°F for cracking due to SCC,<br>and (2) loss of material due to pitting (stagnant or<br>low flow conditions) and crevice corrosion for all<br>temperatures. The aging effect identified by Ginna<br>(loss of material) for temperatures < 140°F differs<br>from that of the NUREG. That not withstanding,<br>the Water Chemistry Control Program, credited for<br>managing the aging effects for all temperatures, is<br>consistent with the NUREG and will preclude the<br>possibility of crack initiation and growth due to<br>SCC. A One-Time Inspection Program is also<br>credited to verify the adequacy of the Chemistry<br>program. |
| (276) RADIATION<br>DETECTOR | Aluminum        | Air and Gas                     | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (277) RADIATION<br>DETECTOR | Aluminum        | Air and Gas<br>(Wetted) <140    | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (278) RADIATION<br>DETECTOR | Aluminum        | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (279) RADIATION<br>DETECTOR | Stainless Steel | Air and Gas<br>(Wetted) <140    | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (280) RADIATION<br>DETECTOR | Stainless Steel | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

- í

| Component Types                 | Material                   | Environment                     | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|---------------------------------|----------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (281) RADIATION<br>DETECTOR     | Stainless Steel            | Raw Water                       | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (282) RADIATION<br>MONITOR SKID | Stainless Steel            | Air and Gas                     | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (283) RADIATION<br>MONITOR SKID | Stainless Steel            | Air and Gas<br>(Wetted) <140    | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (284) RADIATION<br>MONITOR SKID | Stainless Steel            | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (285) RELEASE<br>ASSEMBLY       | Aluminum                   | Air and Gas                     | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (286) RELEASE<br>ASSEMBLY       | Aluminum                   | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (287) RELEASE<br>ASSEMBLY       | Carbon/Low Alloy<br>Steel  | Air and Gas                     | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (288) RELEASE<br>ASSEMBLY       | Copper Alloy (Zn<br>< 15%) | Air and Gas                     | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (289) RELEASE<br>ASSEMBLY       | Copper Alloy (Zn<br>< 15%) | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |

| Component Types           | Material                   | Environment                     | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------|----------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (290) SCREEN              | Cast Iron                  | Indoor (No Air<br>Conditioning) | Loss of Material | Systems<br>Monitoring<br>Program                                            | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (291) SPECIAL<br>ELEMENT  | Aluminum                   | Air and Gas                     | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (292) SPECIAL<br>ELEMENT  | Aluminum                   | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (293) SPECTACLE<br>FLANGE | Carbon/Low Alloy<br>Steel  | Air and Gas<br>(Wetted) <140    | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (294) SPECTACLE<br>FLANGE | Copper Alloy (Zn<br>< 15%) | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (295) SPECTACLE<br>FLANGE | Stainless Steel            | Buried                          | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (296) SPECTACLE<br>FLANGE | Stainless Steel            | Treated Water<br>Borated <140   | Loss of Material | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |

| Component Types           | Material                   | Environment                     | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|---------------------------|----------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (297) SPECTACLE<br>FLANGE | Stainless Steel            | Treated Water<br>Borated <140   | Loss of Material | Water Chemistry<br>Control <b>Progra</b> m                                  | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (298) SPRINKLER<br>HEAD   | Copper Alloy (Zn<br>< 15%) | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (299) STRAINER<br>HOUSING | Carbon/Low Alloy<br>Steel  | Treated Water<br>Secondary >120 | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (300) STRAINER<br>HOUSING | Cast Iron                  | Containment                     | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (301) STRAINER<br>HOUSING | Cast Iron                  | Containment                     | Loss of Material | Systems<br>Monitoring<br><b>Program</b>                                     | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (302) STRAINER<br>HOUSING | Cast Iron                  | Indoor (No Air<br>Conditioning) | Loss of Material | Systems<br>Monitoring<br>Program                                            | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

| Component Types           | Material                   | Environment                     | AERMs            | Program/Activity                                           | Discussion                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------|----------------------------|---------------------------------|------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (303) STRAINER<br>HOUSING | Copper Alloy (Zn<br>< 15%) | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                 | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (304) STRAINER<br>HOUSING | Copper Alloy (Zn<br>< 15%) | Raw Water<br>(Stagnant)         | Loss of Material | Open-Cycle<br>Cooling (Service)<br>Water System<br>Program | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (305) STRAINER<br>HOUSING | Stainless Steel            | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                 | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (306) STRAINER<br>HOUSING | Stainless Steel            | Treated Water<br>Borated <140   | Loss of Material | One-Time<br>Inspection<br>Program                          | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |
| (307) STRAINER<br>HOUSING | Stainless Steel            | Treated Water<br>Borated <140   | Loss of Material | Water Chemistry<br>Control <b>Program</b>                  | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (308) STRUCTURE           | Aluminum                   | Indoor (No Air<br>Conditioning) | No Aging Effects | Fire Protection<br>Program                                 | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |

| Table 3.4-2 | Auxiliary Systems | Component Types Subject to Aging Management not Evaluated in NUREG-1 | 801 |
|-------------|-------------------|----------------------------------------------------------------------|-----|
|-------------|-------------------|----------------------------------------------------------------------|-----|

| Component Types | Material                 | Environment                     | AERMs                                           | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|-----------------|--------------------------|---------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (309) STRUCTURE | Concrete<br>(Reinforced) | Air and Gas<br>(Wetted) <140    | No Aging Effects                                | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (310) STRUCTURE | Concrete<br>(Reinforced) | Outdoor                         | No Aging Effects                                | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (311) STRUCTURE | Fire Stop<br>Materials   | Indoor (No Air<br>Conditioning) | Cracking/Delamin<br>ation due to<br>Movement    | Fire Protection<br>Program                                                  | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (312) STRUCTURE | Fire Stop<br>Materials   | Indoor (No Air<br>Conditioning) | Cracking/Delamin<br>ation due to<br>Shrinkage   | Fire Protection<br>Program                                                  | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (313) STRUCTURE | Fire Stop<br>Materials   | Indoor (No Air<br>Conditioning) | Cracking/Delamin<br>ation due to<br>Vibration   | Fire Protection<br>Program                                                  | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (314) STRUCTURE | Fire Stop<br>Materials   | Indoor (No Air<br>Conditioning) | Hardening and<br>Shrinkage due to<br>Weathering | Fire Protection<br>Program                                                  | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

| Component Types | Material               | Environment                     | AERMs                                        | Program/Activity           | Discussion                                                                                                                                                                                                                                                                                   |
|-----------------|------------------------|---------------------------------|----------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (315) STRUCTURE | Fire Stop<br>Materials | Indoor (No Air<br>Conditioning) | Loss of Material                             | Fire Protection<br>Program | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (316) STRUCTURE | Fire Stop<br>Materials | Indoor (No Air<br>Conditioning) | Separation due to<br>Movement                | Fire Protection<br>Program | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (317) STRUCTURE | Fire Stop<br>Materials | Indoor (No Air<br>Conditioning) | Separation due to<br>Shrinkage               | Fire Protection<br>Program | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (318) STRUCTURE | Fire Stop<br>Materials | Indoor (No Air<br>Conditioning) | Separation due to<br>Vibration               | Fire Protection<br>Program | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (319) STRUCTURE | Fire Wrap<br>Materials | Indoor (No Air<br>Conditioning) | Cracking/<br>Delamination due<br>to Movement | Fire Protection<br>Program | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

| Component Types | Material               | Environment                     | AERMs                                         | Program/Activity                  | Discussion                                                                                                                                                                                                                                                                                   |
|-----------------|------------------------|---------------------------------|-----------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (320) STRUCTURE | Fire Wrap<br>Materials | Indoor (No Air<br>Conditioning) | Cracking/<br>Delamination due<br>to Vibration | Fire Protection<br>Program        | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (321) STRUCTURE | Fire Wrap<br>Materials | Indoor (No Air<br>Conditioning) | Loss of Material                              | Fire Protection<br>Program        | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (322) STRUCTURE | Grout                  | Indoor (No Air<br>Conditioning) | Cracking/<br>Delamination due<br>to Movement  | Fire Protection<br>Program        | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (323) STRUCTURE | Grout                  | Indoor (No Air<br>Conditioning) | Cracking/<br>Delamination due<br>to Shrinkage | Fire Protection<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (324) STRUCTURE | Grout                  | Indoor (No Air<br>Conditioning) | Cracking/<br>Delamination due<br>to Vibration | Fire Protection<br>Program        | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

| Component Types | Material | Environment                     | AERMs                                           | Program/Activity           | Discussion                                                                                                                                                                                                                                                                                   |
|-----------------|----------|---------------------------------|-------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (325) STRUCTURE | Grout    | Indoor (No Air<br>Conditioning) | Hardening and<br>Shrinkage due to<br>Weathering | Fire Protection<br>Program | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (326) STRUCTURE | Grout    | Indoor (No Air<br>Conditioning) | Loss of Material                                | Fire Protection<br>Program | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (327) STRUCTURE | Grout    | Indoor (No Air<br>Conditioning) | Separation due to<br>Movement                   | Fire Protection<br>Program | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (328) STRUCTURE | Grout    | Indoor (No Air<br>Conditioning) | Separation due to<br>Shrinkage                  | Fire Protection<br>Program | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (329) STRUCTURE | Grout    | Indoor (No Air<br>Conditioning) | Separation due to<br>Vibration                  | Fire Protection<br>Program | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

| Component Types           | Material                        | Environment                     | AERMs            | Program/Activity                                                      | Discussion                                                                                                                                                                                                                                                                                   |
|---------------------------|---------------------------------|---------------------------------|------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (330) STRUCTURE           | Structural Steel -<br>Stainless | Indoor (No Air<br>Conditioning) | No Aging Effects | Fire Protection<br>Program                                            | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (331) SWITCH <sup>1</sup> | Copper Alloy (Zn<br>< 15%)      | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                            | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (332) SWITCH <sup>1</sup> | Stainless Steel                 | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                            | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (333) SWITCH <sup>1</sup> | Stainless Steel                 | Treated Water<br>Other          | Loss of Material | Closed-Cycle<br>(Component)<br>Cooling Water<br>System <b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (334) TANK                | Carbon/Low Alloy<br>Steel       | Air and Gas                     | No Aging Effects | No Aging<br>Management<br>Program Required                            | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (335) TANK                | Carbon/Low Alloy<br>Steel       | Buried                          | Loss of Material | One-Time<br>Inspection<br>Program                                     | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

| Component Types | Material                   | Environment                       | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------|----------------------------|-----------------------------------|------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (336) TANK      | Carbon/Low Alloy<br>Steel  | Treated Water<br>Other (Stagnant) | Loss of Material | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |
| (337) TANK      | Carbon/Low Alloy<br>Steel  | Treated Water<br>Other (Stagnant) | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (338) TANK      | Carbon/Low Alloy<br>Steel  | Treated Water<br>Other (Stagnant) | Loss of Material | Water Chemistry<br>Control Program                                          | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (339) TANK      | Cast Iron                  | Indoor (No Air<br>Conditioning)   | Loss of Material | Systems<br>Monitoring<br>Program                                            | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (340) TANK      | Copper Alloy (Zn<br>< 15%) | Air and Gas<br>(Wetted) <140      | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |

- (

| Component Types | Material                   | Environment                     | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------|----------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (341) TANK      | Copper Alloy (Zn<br>< 15%) | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (342) TANK      | Stainless Steel            | Containment                     | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (343) TANK      | Stainless Steel            | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (344) TANK      | Stainless Steel            | Oil and Fuel Oil                | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (345) TANK      | Stainless Steel            | Raw Water<br>Drainage           | Loss of Material | One-Time<br>Inspection<br><b>Program</b>                                    | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (346) TANK      | Stainless Steel            | Treated Water<br>Borated <140   | Loss of Material | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |

| Table 3.4-2 | Auxiliary Systems | Component Types S | ubject to Aging | Management not | Evaluated in NUREG-1801 |
|-------------|-------------------|-------------------|-----------------|----------------|-------------------------|
|-------------|-------------------|-------------------|-----------------|----------------|-------------------------|

| Component Types | Material        | Environment                   | AERMs                  | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|-----------------|-----------------|-------------------------------|------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (347) TANK      | Stainless Steel | Treated Water<br>Borated <140 | Loss of Material       | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (348) TANK      | Stainless Steel | Treated Water<br>Borated >140 | Cracking due to<br>SCC | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (349) TANK      | Stainless Steel | Treated Water<br>Borated >140 | Cracking due to<br>SCC | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (350) TANK      | Stainless Steel | Treated Water<br>Borated >140 | Loss of Material       | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (351) TANK      | Stainless Steel | Treated Water<br>Borated >140 | Loss of Material       | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

| - 2 |
|-----|
| 2   |
|     |
|     |

| Component Types                           | Material        | Environment                     | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------|-----------------|---------------------------------|------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (352) TANK                                | Stainless Steel | Treated Water<br>Other          | Loss of Material | Closed-Cycle<br>(Component)<br>Cooling Water<br>System <b>Program</b>       | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (353) TEMPERATURE<br>ELEMENT <sup>1</sup> | Stainless Steel | Containment                     | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (354) TEMPERATURE<br>ELEMENT <sup>1</sup> | Stainless Steel | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                                                                                                                                       |
| (355) TEMPERATURE<br>ELEMENT <sup>1</sup> | Stainless Steel | Oil and Fuel Oil                | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (356) TEMPERATURE<br>ELEMENT <sup>1</sup> | Stainless Steel | Treated Water<br>Borated <140   | Loss of Material | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |
| (357) TEMPERATURE<br>ELEMENT <sup>1</sup> | Stainless Steel | Treated Water<br>Borated <140   | Loss of Material | Water Chemistry<br>Control Program                                          | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |

| Component Types                           | Material        | Environment                   | AERMs                  | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|-------------------------------------------|-----------------|-------------------------------|------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (358) TEMPERATURE<br>ELEMENT <sup>1</sup> | Stainless Steel | Treated Water<br>Borated >140 | Cracking due to<br>SCC | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (359) TEMPERATURE<br>ELEMENT <sup>1</sup> | Stainless Steel | Treated Water<br>Borated >140 | Cracking due to<br>SCC | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (360) TEMPERATURE<br>ELEMENT <sup>1</sup> | Stainless Steel | Treated Water<br>Borated >140 | Loss of Material       | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (361) TEMPERATURE<br>ELEMENT <sup>1</sup> | Stainless Steel | Treated Water<br>Borated >140 | Loss of Material       | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (362) TEMPERATURE<br>ELEMENT <sup>1</sup> | Stainless Steel | Treated Water<br>Other        | Loss of Material       | Closed-Cycle<br>(Component)<br>Cooling Water<br>System <b>Program</b>       | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

| Component Types                           | Material        | Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AERMs                  | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|-------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (363) TEMPERATURE<br>ELEMENT <sup>1</sup> | Stainless Steel | Treated Water<br>Other (Stagnant)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Loss of Material       | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (364) TEMPERATURE<br>ELEMENT <sup>1</sup> | Stainless Steel | Treated Water<br>Other (Stagnant)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Loss of Material       | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (365) TEMPERATURE<br>ELEMENT <sup>1</sup> | Stainless Steel | Treated Water<br>Primary <140                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Loss of Material       | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (366) TEMPERATURE<br>ELEMENT <sup>1</sup> | Stainless Steel | Treated Water<br>Primary <140                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Loss of Material       | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (367) TEMPERATURE<br>ELEMENT <sup>1</sup> | Stainless Steel | Treated Water<br>Primary,<br>140 <t<480< td=""><td>Cracking due to<br/>SCC</td><td>Periodic<br/>Surveillance and<br/>Preventive<br/>Maintenance<br/><b>Program</b></td><td>Material and environment grouping are not<br/>included in NUREG-1801. The aging management<br/>program(s) referenced are appropriate for the<br/>aging effects identified and provides assurance<br/>that the aging effects are effectively managed<br/>through the period of extended operation.</td></t<480<> | Cracking due to<br>SCC | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

| Component Types                           | Material                   | Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AERMs                  | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|-------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (368) TEMPERATURE<br>ELEMENT <sup>1</sup> | Stainless Steel            | Treated Water<br>Primary,<br>140 <t<480< td=""><td>Cracking due to<br/>SCC</td><td>Water Chemistry<br/>Control <b>Program</b></td><td>Material and environment grouping are not<br/>included in NUREG-1801. The aging management<br/>program(s) referenced are appropriate for the<br/>aging effects identified and provides assurance<br/>that the aging effects are effectively managed<br/>through the period of extended operation.</td></t<480<>                               | Cracking due to<br>SCC | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (369) TEMPERATURE<br>ELEMENT <sup>1</sup> | Stainless Steel            | Treated Water<br>Primary,<br>140 <t<480< td=""><td>Loss of Material</td><td>Periodic<br/>Surveillance and<br/>Preventive<br/>Maintenance<br/><b>Program</b></td><td>Material and environment grouping are not<br/>included in NUREG-1801. The aging management<br/>program(s) referenced are appropriate for the<br/>aging effects identified and provides assurance<br/>that the aging effects are effectively managed<br/>through the period of extended operation.</td></t<480<> | Loss of Material       | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (370) TEMPERATURE<br>ELEMENT <sup>1</sup> | Stainless Steel            | Treated Water<br>Primary,<br>140 <t<480< td=""><td>Loss of Material</td><td>Water Chemistry<br/>Control <b>Program</b></td><td>Material and environment grouping are not<br/>included in NUREG-1801. The aging management<br/>program(s) referenced are appropriate for the<br/>aging effects identified and provides assurance<br/>that the aging effects are effectively managed<br/>through the period of extended operation.</td></t<480<>                                      | Loss of Material       | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (371) TRANSMITTER <sup>1</sup>            | Copper Alloy (Zn<br>< 15%) | Indoor (No Air<br>Conditioning)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No Aging Effects       | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (372) TRANSMITTER <sup>1</sup>            | Stainless Steel            | Containment                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No Aging Effects       | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (373) TRANSMITTER <sup>1</sup>            | Stainless Steel            | Indoor (No Air<br>Conditioning)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No Aging Effects       | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |

.

| Table 3.4-2 | Auxiliary Systems | <ul> <li>Component Types Subject 1</li> </ul> | to Aging Management not Evaluated in NUREG-1801 |
|-------------|-------------------|-----------------------------------------------|-------------------------------------------------|
|-------------|-------------------|-----------------------------------------------|-------------------------------------------------|

| Component Types                | Material        | Environment                   | AERMs                  | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------|-----------------|-------------------------------|------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (374) TRANSMITTER <sup>1</sup> | Stainless Steel | Treated Water<br>Borated <140 | Loss of Material       | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |
| (375) TRANSMITTER <sup>1</sup> | Stainless Steel | Treated Water<br>Borated <140 | Loss of Material       | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (376) TRANSMITTER <sup>1</sup> | Stainless Steel | Treated Water<br>Borated >140 | Cracking due to<br>SCC | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (377) TRANSMITTER <sup>1</sup> | Stainless Steel | Treated Water<br>Borated >140 | Cracking due to<br>SCC | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (378) TRANSMITTER <sup>1</sup> | Stainless Steel | Treated Water<br>Borated >140 | Loss of Material       | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br>Program        | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |

| Component Types                | Material                  | Environment                     | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|--------------------------------|---------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (379) TRANSMITTER <sup>1</sup> | Stainless Steel           | Treated Water<br>Borated >140   | Loss of Material | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (380) TRANSMITTER <sup>1</sup> | Stainless Steel           | Treated Water<br>Other          | Loss of Material | Closed-Cycle<br>(Component)<br>Cooling Water<br>System <b>Program</b>       | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (381) TRANSMITTER <sup>1</sup> | Stainless Steel           | Treated Water<br>Primary <140   | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (382) TRANSMITTER <sup>1</sup> | Stainless Steel           | Treated Water<br>Primary <140   | Loss of Material | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (383) TRAP<br>HOUSING          | Carbon/Low Alloy<br>Steel | Treated Water<br>Secondary >120 | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (384) VALVE BODY               | Aluminum                  | Air and Gas                     | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |

| Table 3.4-2 Auxil | ary Systems - Compor | ent Types Subject t | o Aging Management no | ot Evaluated in NUREG-1801 |
|-------------------|----------------------|---------------------|-----------------------|----------------------------|
|-------------------|----------------------|---------------------|-----------------------|----------------------------|

| Component Types  | Material                           | Environment                       | AERMs            | Program/Activity                                                     | Discussion                                                                                                                                                                                                                                                                                   |
|------------------|------------------------------------|-----------------------------------|------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (385) VALVE BODY | Aluminum                           | Indoor (No Air<br>Conditioning)   | No Aging Effects | No Aging<br>Management<br>Program Required                           | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (386) VALVE BODY | Carbon/Low Alloy<br>Steel          | Air and Gas                       | No Aging Effects | No Aging<br>Management<br>Program Required                           | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (387) VALVE BODY | Carbon/Low Alloy<br>Steel          | Air and Gas<br>(Wetted) <140      | Loss of Material | One-Time<br>Inspection<br>Program                                    | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (388) VALVE BODY | Carbon/Low Alloy<br>Steel          | Treated Water<br>Other (Stagnant) | Loss of Material | One-Time<br>Inspection<br>Program                                    | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (389) VALVE BODY | Carbon/Low Alloy<br>Steel          | Treated Water<br>Other (Stagnant) | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br>Program | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (390) VALVE BODY | Carbon/Low Alloy<br>Steel          | Treated Water<br>Other (Stagnant) | Loss of Material | Water Chemistry<br>Control <b>Program</b>                            | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (391) VALVE BODY | Cast Austenitic<br>Stainless Steel | Air and Gas                       | No Aging Effects | No Aging<br>Management<br>Program Required                           | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |

| Component Types  | Material                           | Environment                     | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|------------------|------------------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (392) VALVE BODY | Cast Austenitic<br>Stainless Steel | Air and Gas<br>(Wetted) <140    | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (393) VALVE BODY | Cast Austenitic<br>Stainless Steel | Containment                     | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (394) VALVE BODY | Cast Austenitic<br>Stainless Steel | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (395) VALVE BODY | Cast Austenitic<br>Stainless Steel | Oil and Fuel Oil                | Loss of Material | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (396) VALVE BODY | Cast Austenitic<br>Stainless Steel | Raw Water                       | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (397) VALVE BODY | Cast Austenitic<br>Stainless Steel | Raw Water<br>Drainage           | Loss of Material | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

| Component Types  | Material                           | Environment                   | AERMs                  | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------|------------------------------------|-------------------------------|------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (398) VALVE BODY | Cast Austenitic<br>Stainless Steel | Treated Water<br>Borated <140 | Loss of Material       | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |
| (399) VALVE BODY | Cast Austenitic<br>Stainless Steel | Treated Water<br>Borated <140 | Loss of Material       | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (400) VALVE BODY | Cast Austenitic<br>Stainless Steel | Treated Water<br>Borated >140 | Cracking due to<br>SCC | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (401) VALVE BODY | Cast Austenitic<br>Stainless Steel | Treated Water<br>Borated >140 | Cracking due to<br>SCC | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (402) VALVE BODY | Cast Austenitic<br>Stainless Steel | Treated Water<br>Borated >140 | Loss of Material       | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |

| Component Types  | Material                           | Environment                       | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------|------------------------------------|-----------------------------------|------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (403) VALVE BODY | Cast Austenitic<br>Stainless Steel | Treated Water<br>Borated >140     | Loss of Material | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (404) VALVE BODY | Cast Austenitic<br>Stainless Steel | Treated Water<br>Other            | Loss of Material | Closed-Cycle<br>(Component)<br>Cooling Water<br>System <b>Program</b>       | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (405) VALVE BODY | Cast Austenitic<br>Stainless Steel | Treated Water<br>Other (Stagnant) | Loss of Material | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |
| (406) VALVE BODY | Cast Austenitic<br>Stainless Steel | Treated Water<br>Other (Stagnant) | Loss of Material | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (407) VALVE BODY | Cast Austenitic<br>Stainless Steel | Treated Water<br>Primary <140     | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |

| Table 3.4-2 Au | uxiliary Systems - | <b>Component Types</b> | Subject to Aging | Management not | Evaluated in NUREG-1801 |
|----------------|--------------------|------------------------|------------------|----------------|-------------------------|
|----------------|--------------------|------------------------|------------------|----------------|-------------------------|

| Component Types  | Material                           | Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AERMs                  | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (408) VALVE BODY | Cast Austenitic<br>Stainless Steel | Treated Water<br>Primary <140                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Loss of Material       | Water Chemistry<br>Control Program                                          | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (409) VALVE BODY | Cast Austenitic<br>Stainless Steel | Treated Water<br>Primary,<br>140 <t<480< td=""><td>Cracking due to<br/>SCC</td><td>Periodic<br/>Surveillance and<br/>Preventive<br/>Maintenance<br/><b>Program</b></td><td>Material and environment grouping are not<br/>included in NUREG-1801. The aging management<br/>program(s) referenced are appropriate for the<br/>aging effects identified and provides assurance<br/>that the aging effects are effectively managed<br/>through the period of extended operation.</td></t<480<> | Cracking due to<br>SCC | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (410) VALVE BODY | Cast Austenitic<br>Stainless Steel | Treated Water<br>Primary,<br>140 <t<480< td=""><td>Cracking due to<br/>SCC</td><td>Water Chemistry<br/>Control <b>Program</b></td><td>Material and environment grouping are not<br/>included in NUREG-1801. The aging management<br/>program(s) referenced are appropriate for the<br/>aging effects identified and provides assurance<br/>that the aging effects are effectively managed<br/>through the period of extended operation.</td></t<480<>                                      | Cracking due to<br>SCC | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (411) VALVE BODY | Cast Austenitic<br>Stainless Steel | Treated Water<br>Primary,<br>140 <t<480< td=""><td>Loss of Material</td><td>Periodic<br/>Surveillance and<br/>Preventive<br/>Maintenance<br/><b>Program</b></td><td>Material and environment grouping are not<br/>included in NUREG-1801. The aging management<br/>program(s) referenced are appropriate for the<br/>aging effects identified and provides assurance<br/>that the aging effects are effectively managed<br/>through the period of extended operation.</td></t<480<>        | Loss of Material       | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (412) VALVE BODY | Cast Austenitic<br>Stainless Steel | Treated Water<br>Primary,<br>140 <t<480< td=""><td>Loss of Material</td><td>Water Chemistry<br/>Control <b>Program</b></td><td>Material and environment grouping are not<br/>included in NUREG-1801. The aging management<br/>program(s) referenced are appropriate for the<br/>aging effects identified and provides assurance<br/>that the aging effects are effectively managed<br/>through the period of extended operation.</td></t<480<>                                             | Loss of Material       | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

| Component Types  | Material  | Environment                     | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|------------------|-----------|---------------------------------|------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (413) VALVE BODY | Cast Iron | Air and Gas<br>(Wetted) <140    | Loss of Material | One-Time<br>Inspection<br><b>Program</b>                                    | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (414) VALVE BODY | Cast Iron | Air and Gas<br>(Wetted) <140    | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (415) VALVE BODY | Cast Iron | Buried                          | Loss of Material | Fire Water<br>System <b>Program</b>                                         | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (416) VALVE BODY | Cast Iron | Containment                     | Loss of Material | Systems<br>Monitoring<br><b>Program</b>                                     | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (417) VALVE BODY | Cast Iron | Indoor (No Air<br>Conditioning) | Loss of Material | Systems<br>Monitoring<br>Program                                            | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

| Component Types  | Material  | Environment             | AERMs            | Program/Activity                                                     | Discussion                                                                                                                                                                                                                                                                                   |
|------------------|-----------|-------------------------|------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (418) VALVE BODY | Cast Iron | Oil and Fuel Oil        | Loss of Material | Fuel Oil<br>Chemistry<br><b>Program</b>                              | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (419) VALVE BODY | Cast Iron | Oil and Fuel Oil        | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br>Program | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (420) VALVE BODY | Cast Iron | Outdoor                 | Loss of Material | Systems<br>Monitoring<br><b>Program</b>                              | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (421) VALVE BODY | Cast Iron | Raw Water               | Loss of Material | Open-Cycle<br>Cooling (Service)<br>Water System<br>Program           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (422) VALVE BODY | Cast Iron | Raw Water<br>(Stagnant) | Loss of Material | Open-Cycle<br>Cooling (Service)<br>Water System<br>Program           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

| Component Types  | Material                   | Environment                       | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|------------------|----------------------------|-----------------------------------|------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (423) VALVE BODY | Cast Iron                  | Raw Water<br>(Submerged)          | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (424) VALVE BODY | Cast Iron                  | Treated Water<br>Other (Stagnant) | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (425) VALVE BODY | Copper Alloy (Zn<br>< 15%) | Air and Gas                       | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (426) VALVE BODY | Copper Alloy (Zn<br>< 15%) | Air and Gas<br>(Wetted) <140      | Loss of Material | One-Time<br>Inspection<br><b>Program</b>                                    | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (427) VALVE BODY | Copper Alloy (Zn<br>< 15%) | Air and Gas<br>(Wetted) <140      | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (428) VALVE BODY | Copper Alloy (Zn<br>< 15%) | Containment                       | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (429) VALVE BODY | Copper Alloy (Zn<br>< 15%) | Indoor (No Air<br>Conditioning)   | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |

Ţ.

| Component Types  | Material                   | Environment                     | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|------------------|----------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (430) VALVE BODY | Copper Alloy (Zn<br>< 15%) | Indoor (No Air<br>Conditioning) | No Aging Effects | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (431) VALVE BODY | Copper Alloy (Zn<br>< 15%) | Oil and Fuel Oil                | Loss of Material | Fuel Oil<br>Chemistry<br>Program                                            | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (432) VALVE BODY | Copper Alloy (Zn<br>< 15%) | Oil and Fuel Oil                | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (433) VALVE BODY | Copper Alloy (Zn<br>< 15%) | Outdoor                         | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (434) VALVE BODY | Copper Alloy (Zn<br>< 15%) | Raw Water<br>Drainage           | Loss of Material | One-Time<br>Inspection<br><b>Program</b>                                    | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (435) VALVE BODY | Copper Alloy (Zn<br>< 15%) | Treated Water<br>Borated <140   | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

| Component Types  | Material                   | Environment                       | AERMs            | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|------------------|----------------------------|-----------------------------------|------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (436) VALVE BODY | Copper Alloy (Zn<br>< 15%) | Treated Water<br>Other            | Loss of Material | Closed-Cycle<br>(Component)<br>Cooling Water<br>System <b>Program</b>       | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (437) VALVE BODY | Copper Alloy (Zn<br>< 15%) | Treated Water<br>Other            | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (438) VALVE BODY | Copper Alloy (Zn<br>< 15%) | Treated Water<br>Other (Stagnant) | Loss of Material | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (439) VALVE BODY | Copper Alloy (Zn<br>< 15%) | Treated Water<br>Other (Stagnant) | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (440) VALVE BODY | Copper Alloy (Zn<br>< 15%) | Treated Water<br>Secondary >120   | Loss of Material | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (441) VALVE BODY | Plastic                    | Indoor (Air<br>Conditioning)      | No Aging Effects | No Aging<br>Management<br>Program Required                                  | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |

| Component Types  | Material        | Environment                     | AERMs            | Program/Activity                           | Discussion                                                                                                                                                                                                                                                                                   |
|------------------|-----------------|---------------------------------|------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (442) VALVE BODY | Plastic         | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (443) VALVE BODY | Plastic         | Raw Water<br>Drainage           | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (444) VALVE BODY | Stainless Steel | Air and Gas                     | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (445) VALVE BODY | Stainless Steel | Air and Gas<br>(Wetted) <140    | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (446) VALVE BODY | Stainless Steel | Containment                     | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (447) VALVE BODY | Stainless Steel | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required | Material and environment grouping are not included in NUREG-1801.                                                                                                                                                                                                                            |
| (448) VALVE BODY | Stainless Steel | Oil and Fuel Oil                | Loss of Material | Fuel Oil<br>Chemistry<br>Program           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (449) VALVE BODY | Stainless Steel | Oil and Fuel Oil                | Loss of Material | One-Time<br>Inspection<br>Program          | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

ļ

| Component Types  | Material        | Environment                   | AERMs                  | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------|-----------------|-------------------------------|------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (450) VALVE BODY | Stainless Steel | Oil and Fuel Oil              | Loss of Material       | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (451) VALVE BODY | Stainless Steel | Raw Water<br>Drainage         | Loss of Material       | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (452) VALVE BODY | Stainless Steel | Treated Water<br>Borated <140 | Loss of Material       | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |
| (453) VALVE BODY | Stainless Steel | Treated Water<br>Borated <140 | Loss of Material       | Water Chemistry<br>Control Program                                          | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (454) VALVE BODY | Stainless Steel | Treated Water<br>Borated >140 | Cracking due to<br>SCC | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |

| Table 3.4-2 A | Auxiliary Systems - | Component Types Subject to Aging Management not Evaluated in NUREG-1 | 1801 |
|---------------|---------------------|----------------------------------------------------------------------|------|
|---------------|---------------------|----------------------------------------------------------------------|------|

| Component Types  | Material        | Environment                       | AERMs                  | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------|-----------------|-----------------------------------|------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (455) VALVE BODY | Stainless Steel | Treated Water<br>Borated >140     | Cracking due to<br>SCC | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (456) VALVE BODY | Stainless Steel | Treated Water<br>Borated >140     | Loss of Material       | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (457) VALVE BODY | Stainless Steel | Treated Water<br>Borated >140     | Loss of Material       | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (458) VALVE BODY | Stainless Steel | Treated Water<br>Other            | Loss of Material       | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.                                                                                                            |
| (459) VALVE BODY | Stainless Steel | Treated Water<br>Other (Stagnant) | Loss of Material       | One-Time<br>Inspection<br>Program                                           | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation.<br>One-time inspections are used to verify the<br>effectiveness of the Water Chemistry Control<br>Program. |

| Component Types  | Material        | Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AERMs                  | Program/Activity                                                            | Discussion                                                                                                                                                                                                                                                                                   |
|------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (460) VALVE BODY | Stainless Steel | Treated Water<br>Other (Stagnant)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Loss of Material       | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (461) VALVE BODY | Stainless Steel | Treated Water<br>Other (Stagnant)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Loss of Material       | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (462) VALVE BODY | Stainless Steel | Treated Water<br>Primary <140                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Loss of Material       | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (463) VALVE BODY | Stainless Steel | Treated Water<br>Primary <140                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Loss of Material       | Water Chemistry<br>Control <b>Program</b>                                   | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |
| (464) VALVE BODY | Stainless Steel | Treated Water<br>Primary,<br>140 <t<480< td=""><td>Cracking due to<br/>SCC</td><td>Periodic<br/>Surveillance and<br/>Preventive<br/>Maintenance<br/><b>Program</b></td><td>Material and environment grouping are not<br/>included in NUREG-1801. The aging management<br/>program(s) referenced are appropriate for the<br/>aging effects identified and provides assurance<br/>that the aging effects are effectively managed<br/>through the period of extended operation.</td></t<480<> | Cracking due to<br>SCC | Periodic<br>Surveillance and<br>Preventive<br>Maintenance<br><b>Program</b> | Material and environment grouping are not<br>included in NUREG-1801. The aging management<br>program(s) referenced are appropriate for the<br>aging effects identified and provides assurance<br>that the aging effects are effectively managed<br>through the period of extended operation. |

#### **Program/Activity** Discussion **AERMs Component Types** Material Environment (465) VALVE BODY Material and environment grouping are not Cracking due to Water Chemistry Stainless Steel Treated Water included in NUREG-1801. The aging management SCC Control Program Primary. program(s) referenced are appropriate for the 140<T<480 aging effects identified and provides assurance that the aging effects are effectively managed through the period of extended operation. Material and environment grouping are not (466) VALVE BODY Loss of Material Periodic Stainless Steel **Treated Water** included in NUREG-1801. The aging management Surveillance and Primary. program(s) referenced are appropriate for the Preventive 140<T<480 aging effects identified and provides assurance Maintenance that the aging effects are effectively managed Program through the period of extended operation. Material and environment grouping are not Water Chemistry (467) VALVE BODY Loss of Material **Treated Water** Stainless Steel included in NUREG-1801. The aging management Control Program Primary, program(s) referenced are appropriate for the 140<T<480 aging effects identified and provides assurance that the aging effects are effectively managed through the period of extended operation. (468) VENTILATION No Aging Effects Not consistent with NUREG-1801. According to No Aging Air and Gas Galvanized site-specific review of standard industry guidance Management (Wetted) < 140DUCTWORK Carbon Steel for aging evaluation of mechanical systems and Program Required components, galvanized carbon steel exposed to ventilation air (T<140°F) would be expected to exhibit minimal deterioration of the zinc coating. Therefore no aging effects are applicable and no aging management program is required. Not consistent with NUREG-1801. According to (469) VENTILATION No Aging Effects No Aging Containment Galvanized site-specific review of standard industry guidance Management Carbon Steel DUCTWORK for aging evaluation of mechanical systems and Program Required components, galvanized carbon steel exposed to ventilation air (T<140°F) would be expected to exhibit minimal deterioration of the zinc coating. Therefore no aging effects are applicable and no aging management program is required.

| Component Types               | Material                   | Environment                     | AERMs            | Program/Activity                           | Discussion                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------|----------------------------|---------------------------------|------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (470) VENTILATION<br>DUCTWORK | Galvanized<br>Carbon Steel | Indoor (Air<br>Conditioning)    | No Aging Effects | No Aging<br>Management<br>Program Required | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |
| (471) VENTILATION<br>DUCTWORK | Galvanized<br>Carbon Steel | Indoor (No Air<br>Conditioning) | No Aging Effects | No Aging<br>Management<br>Program Required | Not consistent with NUREG-1801. According to<br>site-specific review of standard industry guidance<br>for aging evaluation of mechanical systems and<br>components, galvanized carbon steel exposed to<br>ventilation air (T<140°F) would be expected to<br>exhibit minimal deterioration of the zinc coating.<br>Therefore no aging effects are applicable and no<br>aging management program is required. |
| (472) VENTILATION<br>DUCTWORK | Galvanized<br>Carbon Steel | Outdoor                         | No Aging Effects | No Aging<br>Management<br>Program Required | Not consistent with NUREG-1801. According to site-specific review of standard industry guidance for aging evaluation of mechanical systems and components, galvanized carbon steel exposed to ventilation air (T<140°F) would be expected to exhibit minimal deterioration of the zinc coating. Therefore no aging effects are applicable and no aging management program is required.                      |

1. Selected instruments were conservatively included within the scope of License Renewal. Consideration was given to the consequences of an instrument housing pressure boundary failure. Where an instrument was unisolable from a pressure source and is of sufficient size that a system function would be degraded should the pressure boundary fail, that instrument is included for License Renewal review.

2. Material prefixes with HX are used to identify heat exchanger materials which perform a heat transfer intended function in addition to the typical material usage function of pressure boundary.

3. HVAC equipment packages include the pressure boundary attributes associated with the package and sub-components such as filter housings, internal damper housings, and fan housings. Both the HVAC package units and their associated sub-components are uniquely identified on plant drawings.