FINAL AS-ADMINISTERED ADMINISTRATIVE JPMS

FOR THE LASALLE INITIAL EXAMINATION - APRIL 2002

Facility: LaSalle County Nuclear Station Date of Examination: 04/08/02 Examination Level (circle one): RO SRO Operating Test Number: 2002301		
ר 📗	Administrative Topic/Subject Description	Describe method of evaluation: 1. ONE Administrative JPM, OR 2. TWO Administrative Questions
	Conduct of Operations	Conduct of Operations - 1) Overtime Question (2.1.1); 2) Replaced 1) with SBLC Sodium Pentaborate Determination (2.1.1); 3) Replaced 2) with Stack Elaw Determination (2.1.1)
A.1		3) Replaced 2) with Stack Flow Determination (2.1.1) Conduct of Operations - License Reactivation Question (2.1.1)
	Conduct of Operations	Perform Core Operating Limits Surveillance (2.1.7)
A.2	Equipment Control	Review an Out of Service (2.2.13)
A.3	Radiological Controls	Review a Radiological Work Permit (2.3.10)
A.4	Emergency Plan	Activate Plant Siren from Remote Shutdown Panel (2.4.43)

Facility: LaSalle County Nuclear Station Date of Examination: 04/08/02 Examination Level (circle one): RO(SRO) Operating Test Number: 2002301		
Administrative Topic/Subject Description		Describe method of evaluation: 1. ONE Administrative JPM, OR 2. TWO Administrative Questions
. 1	Conduct of Operations	Conduct of Operations - Overtime Question (2.1.1); 2) Replaced 1) with SBLC Sodium Pentaborate Determination (2.1.1); 3) Replaced 2) with Stack Flow Determination (2.1.1)
A.1	Conduct of Operations	Conduct of Operations - License Reactivation Question (2.1.1) Review Core Operating Limits Surveillance (2.1.7)
A.2	Equipment Control	Review an Out of Service (2.2.13)
A.3	Radiological Controls	Review a Radiological Work Permit (2.3.10)
A.4	Emergency Plan	Classify GSEP event, Determine PARS and Complete a NARS Form for Transmittal (2.4.38)

LASALLE COUNTY NUCLEAR STATION

JOB PERFORMANCE MEASURE

Conduct of Operations Questions: **Overtime Question** License Reactivation Question

Examination Level: SRO /SRO(I)

Date: April 8, 2002

Developed by: Raymond Keith Walton Date: _____

Date: _____

Reviewed by: _____

Approved by: _____

Date:_____

Facility: LaSalle Nuclear Station	Task No: <u>A.1.a</u>		
Task Title:Overtime Question & License Reactivation	Question (Conduct of Operations)		
Job Performance Measure No:			
K/A Reference: 2.1.1	K/A Importance: <u>3.7/3.8</u>		
Examinee:			
NRC Examiner:	Date:		
Time Started:	Time Finished:		
Time Critical Task: NO	Estimated Completion Time:		
<u>Method of testing:</u> Performance: Simulated X_ Actual	Location: <u>X</u> Simulator Plant		
Task Standard:			

Required Materials:

General References: LS-AA-119, Overtime Controls, Rev. 0 OP-AA-101-701, NRC Active License Maintenance, Rev. 2.

READ TO THE EXAMINEE:

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. Tell me when you have successfully complete the task. References are available for use.

Q1: The plant is in Mode 1 with normal maintenance activities in progress. You are a unit supervisor on Unit 1 working an 8-hour shift. You take the shift (after turnover) at 6:30 am. You take a total of 30 minutes for lunch and breaks on the 2nd shift. Your relief calls in sick and you must work a double shift. You take another 30 minutes for dinner and breaks on the 3rd shift. You commence turnover at midnight and leave the site shortly thereafter. Tomorrow, you must take the unit supervisor position on Unit 1 (after turnover) by 6:30 am. Do you need an Overtime Guidance Deviation Authorization prior to taking the watch? Why or why not? Justify your answer.

Q2: During the last quarter you were on medical leave for 6 weeks, then returned to work as an operations procedure writer for the remainder of the quarter. Your requalification and respirator training is current. You have returned to the control room 4 days ago and have performed a plant tour and shift turnover. You have completed three 12-hour shifts, under instruction, in the Unit Supervisor position. Can you stand watch as the Unit Supervisor without instruction today? Why or why not? Justify your answer.

.

Simulator Setup Instructions:

1. None

Operating Test A1, Conduct of Operations

Q1: The plant is in Mode 1 with normal maintenance activities in progress. You are a unit supervisor on Unit 1 working an 8-hour shift. You take the shift (after turnover) at 6:30 am. You take a total of 30 minutes for lunch and breaks on the 2nd shift. Your relief calls in sick and you must work a double shift. You take another 30 minutes for dinner and breaks on the 3rd shift. You commence turnover at midnight and leave the site shortly thereafter. Tomorrow, you must take the unit supervisor position on Unit 1 (after turnover) by 6:30 am. Do you need an Overtime Guidance Deviation Authorization prior to taking the watch? Why or why not? Justify your answer.

Operating Test A.1, Conduct of Operations

Q2: During the last quarter you were on medical leave for 6 weeks, then returned to work as an operations procedure writer for the remainder of the quarter. Your requalification and respirator training is current. You have returned to the control room 4 days ago and have performed a plant tour and shift turnover. You have completed three 12-hour shifts, under instruction, in the Unit Supervisor position. Can you stand watch as the Unit Supervisor without instruction today? Why or why not? Justify your answer.

Q1: The plant is in Mode 1 with normal maintenance activities in progress. You are a unit supervisor on Unit 1 working an 8-hour shift. You take the shift (after turnover) at 6:30 am. You take a total of 30 minutes for lunch and breaks on the 2nd shift. Your relief calls in sick and you must work a double shift. You take another 30 minutes for dinner and breaks on the 3rd shift. You commence turnover at midnight and leave the site shortly thereafter. Tomorrow, you must take the unit supervisor position on Unit 1 (after turnover) by 6:30 am. Do you need an Overtime Guidance Deviation Authorization prior to taking the watch? Why or why not? Justify your answer.

A1: Yes you need an Overtime Guidance Deviation Authorization prior to taking the watch. You have worked a total of 17.5 hours but must exclude 1.0 hour of non Generic Letter 82-12 hours (breaks and meals). This totals 16.5 hours worked in a 24 hour period. You must have 8 hours of rest prior to taking the watch. Those 8 hours started when you commenced turnover at midnight. Therefore, you can not take the watch prior to 8:00 am the following day.

Reference LS-AA-119, Overtime Controls

Operating Test A.1, Conduct of Operations

Q2: During the last quarter you were on medical leave for 6 weeks, then returned to work as an operations procedure writer for the remainder of the quarter. Your requalification and respirator training is current. You have returned to the control room 4 days ago and have performed a plant tour and shift turnover. You have completed three 12-hour shifts, under instruction, in the Unit Supervisor position. Can you stand watch as the Unit Supervisor without instruction today? Why or why not? Justify your answer.

A2: No. RO and SRO licenses can be maintained by actively performing the functions of RO (Unit NSO or Assistant NSO) or SRO (Shift Manager or Unit Supervisor) for a minimum of seven 8-hour or five 12-hour shifts per calendar quarter.

Reference: OP-AA-101-701, NRC Active License Maintenance

(CUE) THIS COMPLETES THIS JPM Record Stop Time: _____

VERIFICATION OF COMPLETION

Job Performance Measure No.
Examinee's Name:
Examiner's Name:
Date performed:
Number of attempts:
Time to complete:
Question Documentation:
Question:
Response:

Result: SAT or UNSAT

,

Examiner's signature and date:

LASALLE COUNTY NUCLEAR STATION

JOB PERFORMANCE MEASURE

Conduct of Operations Questions: Overtime Question License Reactivation Question

Examination Level: RO

Date: April 8, 2002

Developed by: <u>Raymond Keith Walton</u> Date: _____

Approved by: _____

Reviewed by: _____

Date: _____

Date:	
-------	--

Facility: LaSalle Nuclear Station	Task No: <u>A.1.a</u>	
Task Title: <u>Overtime Question & License Reactivation Question</u> (Conduct of Operations)		
Job Performance Measure No:		
K/A Reference: 2.1.1	K/A Importance: <u>3.7/3.8</u>	
Examinee:		
NRC Examiner:	Date:	
Time Started:	Time Finished:	
Time Critical Task: NO	Estimated Completion Time:	
Method of testing: Performance: Simulated X_ Actual	Location: <u>X</u> Simulator Plant	
Task Standard:		

Required Materials:

General References: LS-AA-119, Overtime Controls, Rev. 3. OP-AA-101-701, NRC Active License Maintenance, Rev. 2.

READ TO THE EXAMINEE:

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. Tell me when you have successfully complete the task. References can be used.

Q1: The plant is in Mode 1 with normal maintenance activities in progress. You are a reactor operator on Unit 1 working an 8-hour shift. You take the shift (after turnover) at 6:30 am. You take a total of 30 minutes for lunch and breaks on the 2nd shift. Your relief calls in sick and you must work a double shift. You take another 30 minutes for dinner and breaks on the 3rd shift. You commence turnover at midnight and leave the site shortly thereafter. Tomorrow, you must take the reactor operators position on Unit 1 (after turnover) by 6:30 am. Do you need an Overtime Guidance Deviation Authorization prior to taking the watch? Why or why not? Justify your answer.

Q2: During the last quarter you were on medical leave for 6 weeks, then returned to work as an operations procedure writer for the remainder of the quarter. Your requalification and respirator training is current. You have returned to the control room 4 days ago and have performed a plant tour and shift turnover. You have completed three 12-hour shifts, under instruction, in the Unit NSO position. Can you stand watch as the Unit NSO without instruction today? Why or why not? Justify your answer.

Simulator Setup Instructions:

1. None

.

,

LASALLE COUNTY NUCLEAR STATION

JOB PERFORMANCE MEASURE

Conduct of Operations Questions: SBLC Sodium Pentaborate Question License Reactivation Question

Examination Level: RO

Date: April 8, 2002

Developed by: Raymond Keith Walton Date: _____

Facility: <u>LaSalle Nuclear Station</u>	Task No: <u>A.1.a</u>	
Task Title:	ctivation Questions (Conduct of Operations)	
Job Performance Measure No:		
K/A Reference: <u>2.1.1</u>	K/A Importance: <u>3.7/3.8</u>	
Examinee:		
NRC Examiner:	Date:	
Time Started:	Time Finished:	
Time Critical Task: NO	Estimated Completion Time: <u>10 min</u>	
Method of testing: Performance: Simulated X Actual	Location: <u>X</u> Simulator Plant	
Task Standard: Identify that Sodium Pentaborate Solution does not meet technical requirements. Identify that individual does not meet requirements for license reactivation.		

Required Materials:

LCP-110-9, Attachment A, "Sample Information Sheet for Sodium Pentaborate." LOS-AA-S101, Figure A-3, Sodium Pentaborate Solutions Temperature/Concentration Rqts. LOS-AA-S101, Figure A-4, Sodium Pentaborate Volume/Concentration Rqts.

General References:

OP-AA-101-701, NRC Active License Maintenance, Rev. 2.

READ TO THE EXAMINEE:

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. Tell me when you have successfully complete the task. References can be used.

Q1: Chemistry has completed LCP-110-9, "Determination of High Range Boron (Sodium Pentaborate)," for the Unit 1 Standby Liquid Control (SBLC) Storage Tank. The shift Manager has asked you to review the attached LCP-110-9, Attachment A surveillance results for the Unit 1 SBLC storage tank. Based on these results, does the Unit 1 SBLC Storage Tank meet Technical Specification surveillance requirements? Why or why not.

Q2: During the last quarter you were on medical leave for 6 weeks, then returned to work as an operations procedure writer for the remainder of the quarter. Your requalification and respirator training is current. You have returned to the control room 4 days ago and have performed a plant tour and shift turnover. You have completed three 12-hour shifts, under instruction, in the Unit NSO position. Can you stand watch as the Unit NSO without instruction today? Why or why not? Justify your answer.

Simulator Setup Instructions:

1. None

Operating Test A1, Conduct of Operations

Q1: Chemistry has completed LCP-110-9, "Determination of High Range Boron (Sodium Pentaborate)," for the Unit 1 Standby Liquid Control (SBLC) Storage Tank. The shift Manager has asked you to review the attached LCP-110-9, Attachment A surveillance results for the Unit 1 SBLC storage tank.

Based on these results, does the Unit 1 SBLC Storage Tank meet Technical Specification surveillance requirements? Why or why not.

Operating Test A.1, Conduct of Operations

Q2: During the last quarter you were on medical leave for 6 weeks, then returned to work as an operations procedure writer for the remainder of the quarter. Your requalification and respirator training is current. You have returned to the control room 4 days ago and have performed a plant tour and shift turnover. You have completed three 12-hour shifts, under instruction, in the Unit NSO position. Can you stand watch as the Unit NSO without instruction today? Why or why not? Justify your answer.

- Q1: Chemistry has completed LCP-110-9, "Determination of High Range Boron (Sodium Pentaborate)," for the Unit 1 Standby Liquid Control (SBLC) Storage Tank. The shift Manager has asked you to review the attached LCP-110-9, Attachment A surveillance results for the Unit 1 SBLC storage tank. Based on these results, does the Unit 1 SBLC Storage Tank meet Technical Specification surveillance requirements? Why or why not.
- A1: No, the SBLC solution does not meet Technical Specification surveillance requirement 3.1.7.1 and 3.1.7.5. since the solution/volume numbers are outside the acceptable range. (It does meet TS SR 3.1.7.2. since temperature/concentration requirements are within the acceptable operating region).

Reference: LOS-AA-101 Figures A-3 & A-4.

Operating Test A.1, Conduct of Operations

Q2: During the last quarter you were on medical leave for 6 weeks, then returned to work as an operations procedure writer for the remainder of the quarter. Your requalification and respirator training is current. You have returned to the control room 4 days ago and have performed a plant tour and shift turnover. You have completed three 12-hour shifts, under instruction, in the Unit NSO position. Can you stand watch as the Unit NSO without instruction today? Why or why not? Justify your answer.

A2: No. RO and SRO licenses can be maintained by actively performing the functions of RO (Unit NSO or Assistant NSO) or SRO (Shift Manager or Unit Supervisor) for a minimum of seven 8-hour shifts or five 12-hour shifts per calendar quarter.

Reference: OP-AA-101-701, NRC Active License Maintenance

(CUE) THIS COMPLETES THIS JPM Record Stop Time: _____

VERIFICATION OF COMPLETION

· · · · · · · · · · · · · · · · · · ·	

Result: SAT or UNSAT

Examiner's signature and date: _____

LASALLE COUNTY NUCLEAR STATION

JOB PERFORMANCE MEASURE

Conduct of Operations Questions: SBLC Sodium Pentaborate Question License Reactivation Question

Examination Level: SRO /SRO(I)

Date: April 8, 2002

Developed by: Raymond Keith Walton Date: _____

Facility: LaSalle Nuclear Station	Task No: <u>A.1.a</u>	
Task Title:	activation Questions (Conduct of Operations)	
Job Performance Measure No:		
K/A Reference: 2.1.1	K/A Importance: <u>3.7/3.8</u>	
Examinee:		
NRC Examiner:	Date:	
Time Started:	Time Finished:	
Time Critical Task: NO	Estimated Completion Time: <u>10 min</u>	
Method of testing: Performance: Simulated X_ Actual	Location: <u>X</u> Simulator Plant	
Task Standard: Identify that Sodium Pentaborate Solution does not meet technical requirements. Identify that individual does not meet requirements for license reactivation.		
Required Materials: LCP-110-9, Attachment A, "Sample Information Sheet for Sodium Pentaborate."		

LOS-AA-S101, Figure A-3, Sodium Pentaborate Solutions Temperature/Concentration Rqts. LOS-AA-S101, Figure A-4, Sodium Pentaborate Volume/Concentration Rqts.

General References: OP-AA-101-701, NRC Active License Maintenance, Rev. 2.

READ TO THE EXAMINEE:

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. Tell me when you have successfully complete the task. References can be used.

Q1: Chemistry has completed LCP-110-9, "Determination of High Range Boron (Sodium Pentaborate)," for the Unit 1 Standby Liquid Control (SBLC) Storage Tank. The shift Manager has asked you to review the attached LCP-110-9, Attachment A surveillance results for the Unit 1 SBLC storage tank. Based on these results, does the Unit 1 SBLC Storage Tank meet Technical Specification surveillance requirements? Why or why not.

Q2: During the last quarter you were on medical leave for 6 weeks, then returned to work as an operations procedure writer for the remainder of the quarter. Your requalification and respirator training is current. You have returned to the control room 4 days ago and have performed a plant tour and shift turnover. You have completed three 12-hour shifts, under instruction, in the Unit Supervisor position. Can you stand watch as the Unit Supervisor without instruction today? Why or why not? Justify your answer.

Simulator Setup Instructions:

1. None

Operating Test A1, Conduct of Operations

Q1: Chemistry has completed LCP-110-9, "Determination of High Range Boron (Sodium Pentaborate)," for the Unit 1 Standby Liquid Control (SBLC) Storage Tank. The shift Manager has asked you to review the attached LCP-110-9, Attachment A surveillance results for the Unit 1 SBLC storage tank.

Based on these results, does the Unit 1 SBLC Storage Tank meet Technical Specification surveillance requirements? Why or why not.

Operating Test A.1, Conduct of Operations

Q2: During the last quarter you were on medical leave for 6 weeks, then returned to work as an operations procedure writer for the remainder of the quarter. Your requalification and respirator training is current. You have returned to the control room 4 days ago and have performed a plant tour and shift turnover. You have completed three 12-hour shifts, under instruction, in the Unit Supervisor position. Can you stand watch as the Unit Supervisor without instruction today? Why or why not? Justify your answer.

- Q1: Chemistry has completed LCP-110-9, "Determination of High Range Boron (Sodium Pentaborate)," for the Unit 1 Standby Liquid Control (SBLC) Storage Tank. The shift Manager has asked you to review the attached LCP-110-9, Attachment A surveillance results for the Unit 1 SBLC storage tank. Based on these results, does the Unit 1 SBLC Storage Tank meet Technical Specification surveillance requirements? Why or why not.
- A1: No, the SBLC solution does not meet Technical Specification surveillance requirement 3.1.7.1 and 3.1.7.5. since the solution/volume numbers are outside the acceptable range. (It does meet TS SR 3.1.7.2. since temperature/concentration requirements are within the acceptable operating region).

Reference: LOS-AA-101 Figures A-3 & A-4.

Operating Test A.1, Conduct of Operations

Q2: During the last quarter you were on medical leave for 6 weeks, then returned to work as an operations procedure writer for the remainder of the quarter. Your requalification and respirator training is current. You have returned to the control room 4 days ago and have performed a plant tour and shift turnover. You have completed three 12-hour shifts, under instruction, in the Unit Supervisor position. Can you stand watch as the Unit Supervisor without instruction today? Why or why not? Justify your answer.

A2: No. RO and SRO licenses can be maintained by actively performing the functions of RO (Unit NSO or Assistant NSO) or SRO (Shift Manager or Unit Supervisor) for a minimum of seven 8-hour or five 12-hour shifts per calendar guarter.

Reference: OP-AA-101-701, NRC Active License Maintenance

(CUE) THIS COMPLETES THIS JPM Record Stop Time: _____

VERIFICATION OF COMPLETION

Job Performance Measure No
Examinee's Name:
Examiner's Name:
Date performed:
Number of attempts:
Time to complete:
Question Documentation:
Question:
Response:

Result: SAT or UNSAT

Examiner's signature and date:

LASALLE COUNTY NUCLEAR STATION

JOB PERFORMANCE MEASURE

Conduct of Operations Questions: Stack Flow Question License Reactivation Question

Examination Level: RO

Date: April 8, 2002

Developed by: <u>Raymond Keith Walton</u> Date: _____

Facility: LaSalle Nuclear Station	Task No: <u>A.1.a</u>	
Task Title:Stack Flow & License Reactivation Questi	ons (Conduct of Operations)	
Job Performance Measure No:		
K/A Reference: 2.1.1	K/A Importance: <u>3.7/3.8</u>	
Examinee:		
NRC Examiner:	Date:	
Time Started:	Time Finished:	
Time Critical Task: NO	Estimated Completion Time: <u>10 min</u>	
Method of testing: Performance: Simulated X_ Actual	Location: X Simulator	
Task Standard: Identify that Station Vent Stack effluent sample flow is not in the acceptable range. Identify that individual does not meet requirements for license reactivation.		
Required Materials:		

General References:

OP-AA-101-701, NRC Active License Maintenance, Rev. 2.

LOP-PR-04, Startup, Operation, and Troubleshooting of the Station Vent Stack Wide Range Radiation Monitoring System

READ TO THE EXAMINEE:

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. Tell me when you have successfully complete the task. References can be used.

Q1: Unit 1 and 2 are operating at full power. Instrument Maintenance Department is performing LIS-PR-02, Station Vent Main Stack Effluent and Sampler Flow Rate Monitor Calibration. IMD contacts the control room to verify proper isokinetic flow is established with Low Range pumps running per the applicable steps of LOP-PR-04. Stack Flow (MON 029) 7.0x10⁵ CFM Low Range Flow (MON 028) 1.8 CFM Is Sample Flow in an acceptable range? Explain your answer.

Q2: During the last quarter you were on medical leave for 6 weeks, then returned to work as an operations procedure writer for the remainder of the quarter. Your requalification and respirator training is current. You have returned to the control room 4 days ago and have performed a plant tour and shift turnover. You have completed three 12-hour shifts, under instruction, in the Unit NSO position. Can you stand watch as the Unit NSO without instruction today? Why or why not? Justify your answer.

Simulator Setup Instructions:

1. None

Operating Test A1, Conduct of Operations

Q1: Unit 1 and 2 are operating at full power. Instrument Maintenance Department is performing LIS-PR-02, Station Vent Main Stack Effluent and Sampler Flow Rate Monitor Calibration. IMD contacts the control room to verify proper isokinetic flow is established with Low Range pumps running per the applicable steps of LOP-PR-04.

Stack Flow (MON 029)	7.0x10 ⁵ CFM
Low Range Flow (MON 028)	1.8 CFM

Is Sample Flow in an acceptable range? Explain your answer.

Operating Test A.1, Conduct of Operations

Q2: During the last quarter you were on medical leave for 6 weeks, then returned to work as an operations procedure writer for the remainder of the quarter. Your requalification and respirator training is current. You have returned to the control room 4 days ago and have performed a plant tour and shift turnover. You have completed three 12-hour shifts, under instruction, in the Unit NSO position. Can you stand watch as the Unit NSO without instruction today? Why or why not? Justify your answer.

Q1: Unit 1 and 2 are operating at full power. Instrument Maintenance Department is performing LIS-PR-02, Station Vent Main Stack Effluent and Sampler Flow Rate Monitor Calibration. IMD contacts the control room to verify proper isokinetic flow is established with Low Range pumps running per the applicable steps of LOP-PR-04.

Stack Flow (MON 029) 7.0x10⁵ CFM

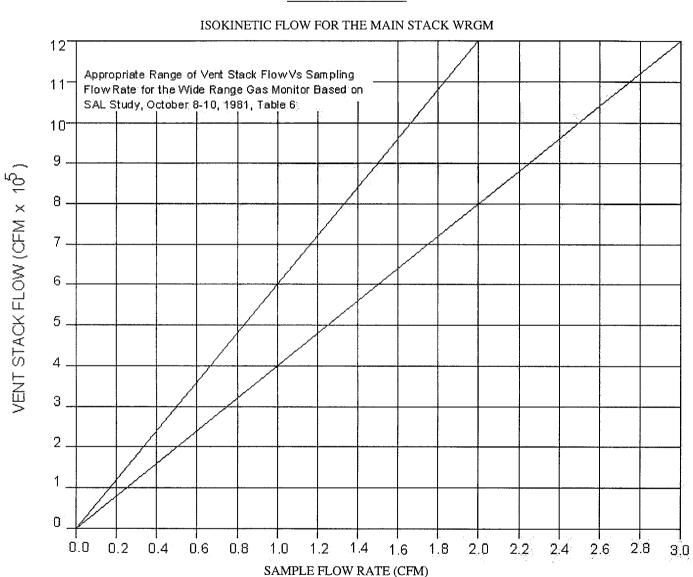
Low Range Flow (MON 028) 1.8 CFM

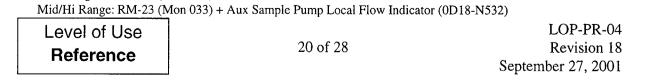
Is Sample Flow in an acceptable range? Explain your answer.

A1: No, sample flow is too high for the given stack flow rate.

Reference: LOP-PR-04, Step E.2.5

Operating Test A.1, Conduct of Operations

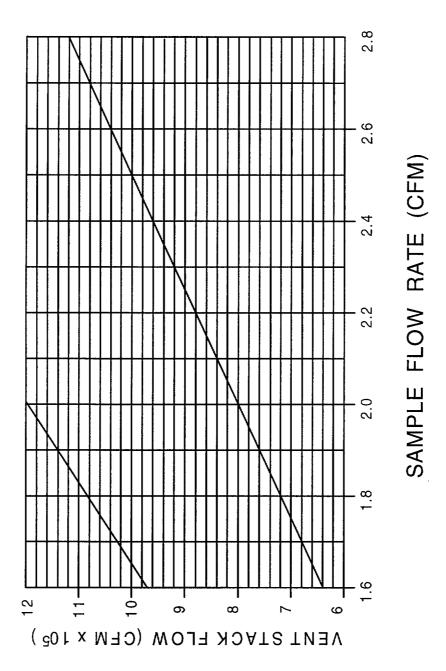

Q2: During the last quarter you were on medical leave for 6 weeks, then returned to work as an operations procedure writer for the remainder of the quarter. Your requalification and respirator training is current. You have returned to the control room 4 days ago and have performed a plant tour and shift turnover. You have completed three 12-hour shifts, under instruction, in the Unit NSO position. Can you stand watch as the Unit NSO without instruction today? Why or why not? Justify your answer.


A2: No. RO and SRO licenses can be maintained by actively performing the functions of RO (Unit NSO or Assistant NSO) or SRO (Shift Manager or Unit Supervisor) for a minimum of seven 8-hour shifts or five 12-hour shifts per calendar quarter.

Reference: OP-AA-101-701, NRC Active License Maintenance

(CUE) THIS COMPLETES THIS JPM Record Stop Time: _____

ATTACHMENT A



Low Range: RM-23 (Mon 028)

.

ATTACHMENT B

ISOKINETIC FLOW FOR THE MAIN STACK WRGM (NARROW RANGE)

Level of Use Reference

21 of 28

LOP-PR-04 Revision 18 September 27, 2001

VERIFICATION OF COMPLETION

Job Performance Measure No.
Examinee's Name:
Examiner's Name:
Date performed:
Number of attempts:
Time to complete:
Question Documentation:
Question:
Response:

Result: SAT or UNSAT

Examiner's signature and date:

LASALLE COUNTY NUCLEAR STATION

JOB PERFORMANCE MEASURE

Conduct of Operations Questions: Stack Flow Question License Reactivation Question

Examination Level: SRO /SRO(I)

Date: April 8, 2002

Developed by: Raymond Keith Walton Date: _____

JOB PERFORMANCE MEASURE

Facility: LaSalle Nuclear Station	Task No: <u>A.1.a</u>									
Task Title: <u>Stack Flow & License Reactivation Question</u>	ask Title: <u>Stack Flow & License Reactivation Questions</u> (Conduct of Operations)									
Job Performance Measure No:	Job Performance Measure No:									
K/A Reference: 2.1.1	K/A Importance: <u>3.7/3.8</u>									
Examinee:										
NRC Examiner:	Date:									
Time Started:	Time Finished:									
Time Critical Task: NO	Estimated Completion Time: <u>10 min</u>									
Method of testing: Performance: Simulated X_ Actual	Location: <u>X</u> Simulator Plant									
Task Standard:										

Identify that Station Vent Stack effluent sample flow is not in the acceptable range. Identify that individual does not meet requirements for license reactivation.

Required Materials:

General References:

OP-AA-101-701, NRC Active License Maintenance, Rev. 2.

LOP-PR-04, Startup, Operation, and Troubleshooting of the Station Vent Stack Wide Range Radiation Monitoring System

READ TO THE EXAMINEE:

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. Tell me when you have successfully complete the task. References can be used.

Q1: Unit 1 and 2 are operating at full power. Instrument Maintenance Department is performing LIS-PR-02, Station Vent Main Stack Effluent and Sampler Flow Rate Monitor Calibration. IMD contacts the control room to verify proper isokinetic flow is established with Low Range pumps running per the applicable steps of LOP-PR-04. Stack Flow (MON 029) 7.0x10⁵ CFM Low Range Flow (MON 028) 1.8 CFM Is Sample Flow in an acceptable range? Explain your answer.

Q2: During the last quarter you were on medical leave for 6 weeks, then returned to work as an operations procedure writer for the remainder of the quarter. Your requalification and respirator training is current. You have returned to the control room 4 days ago and have performed a plant tour and shift turnover. You have completed three 12-hour shifts, under instruction, in the Unit Supervisor position. Can you stand watch as the Unit Supervisor without instruction today? Why or why not? Justify your answer.

Simulator Setup Instructions:

1. None

Operating Test A1, Conduct of Operations

Q1: Unit 1 and 2 are operating at full power. Instrument Maintenance Department is performing LIS-PR-02, Station Vent Main Stack Effluent and Sampler Flow Rate Monitor Calibration. IMD contacts the control room to verify proper isokinetic flow is established with Low Range pumps running per the applicable steps of LOP-PR-04.

Stack Flow (MON 029)	7.0x10⁵ CFM
Low Range Flow (MON 028)	1.8 CFM

Is Sample Flow in an acceptable range? Explain your answer.

JOB PERFORMANCE MEASURE

Operating Test A.1, Conduct of Operations

Q2: During the last quarter you were on medical leave for 6 weeks, then returned to work as an operations procedure writer for the remainder of the quarter. Your requalification and respirator training is current. You have returned to the control room 4 days ago and have performed a plant tour and shift turnover. You have completed three 12-hour shifts, under instruction, in the Unit Supervisor position. Can you stand watch as the Unit Supervisor without instruction today? Why or why not? Justify your answer.

Q1: Unit 1 and 2 are operating at full power. Instrument Maintenance Department is performing LIS-PR-02, Station Vent Main Stack Effluent and Sampler Flow Rate Monitor Calibration. IMD contacts the control room to verify proper isokinetic flow is established with Low Range pumps running per the applicable steps of LOP-PR-04.

Stack Flow (MON 029) 7.0x10⁵ CFM

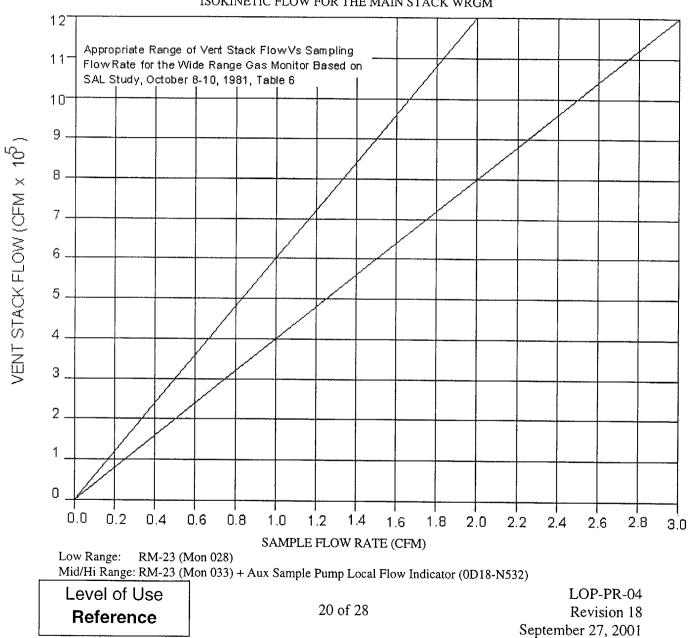
Low Range Flow (MON 028) 1.8 CFM

Is Sample Flow in an acceptable range? Explain your answer.

A1: No, sample flow is too high for the given stack flow rate.

Reference: LOP-PR-04, Step E.2.5

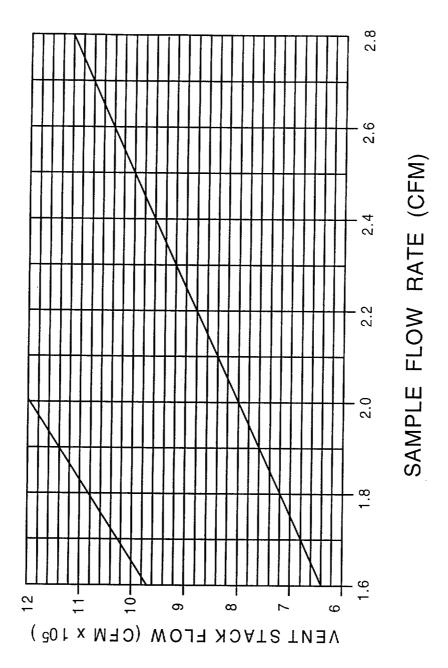
Operating Test A.1, Conduct of Operations


Q2: During the last quarter you were on medical leave for 6 weeks, then returned to work as an operations procedure writer for the remainder of the quarter. Your requalification and respirator training is current. You have returned to the control room 4 days ago and have performed a plant tour and shift turnover. You have completed three 12-hour shifts, under instruction, in the Unit Supervisor position. Can you stand watch as the Unit Supervisor without instruction today? Why or why not? Justify your answer.

A2: No. RO and SRO licenses can be maintained by actively performing the functions of RO (Unit NSO or Assistant NSO) or SRO (Shift Manager or Unit Supervisor) for a minimum of seven 8-hour or five 12-hour shifts per calendar guarter.

Reference: OP-AA-101-701, NRC Active License Maintenance

(CUE) THIS COMPLETES THIS JPM Record Stop Time: _____


ATTACHMENT A

ISOKINETIC FLOW FOR THE MAIN STACK WRGM

ISOKINETIC FLOW FOR THE MAIN STACK WRGM (NARROW RANGE)

ATTACHMENT B

Level of Use **Reference**

21 of 28

LOP-PR-04 Revision 18 September 27, 2001

VERIFICATION OF COMPLETION

Job Performance Measure No
Examinee's Name:
Examiner's Name:
Date performed:
Number of attempts:
Time to complete:
Question Documentation:
Question:
Response:

Result: SAT or UNSAT

Examiner's signature and date:

-

LASALLE COUNTY NUCLEAR STATION

JOB PERFORMANCE MEASURE

Perform Core Operating Limits Surveillance

Examination Level: RO/SRO

Date: April 8, 2002

Developed by: Raymond Keith Walton Date: <u>3/14/2002</u>

JOB PERFORMANCE MEASURE

Facility: LaSalle Nuclear Station	Task No: <u>A.1.b</u>
Task Title:Core Operating Limits Reports Surveilland	<u>e</u>
Job Performance Measure No:	
K/A Reference: 2.1.7	K/A Importance: <u>3.7/4.4</u>
Examinee:	
NRC Examiner:	Date:
Time Started:	Time Finished:
Estimated Completion Time: <u>5 min</u>	Time Critical Task: NO
<u>Method of testing:</u> Performance: Simulated Actual	Location: <u>X</u> Simulator Plant
Task Standard: Identify rod out of symmetry, MAPRAT outside of limits, of MELLLA.	3 APRMs out of tolerance, and operating outside
Required Materials: CMSS Core Performance Log for Unit at full power - OE Control Rod Position (OD 7), Core Performance Log and Fuel Bundle Thermal Data (Power/Flow Map	
General References: LOS-AA-S101, Unit 1 Shiftly Surveillance, Rev 7, 4/26/2	001
READ TO THE EXAMINEE: I will explain the initial conditions, which steps to simulat me when you have successfully complete the task.	te or discuss, and provide initiating cues. Tell
Initial Conditions: You are the NSO on Unit 1. Unit 1 is operating at full po	ower on 108% rod line.

Initiating Cue: The 0700 PowerPlex printout has just printed. Perform LOS-AA-S101, Unit 1 Shiftly Surveillance, Section E.1.2.

Simulator Setup Instructions:

1. Faults on printouts: MAPRAT reads 1.01 Control Rod out of sequence/symmetry 3 APRMs read greater than 2% from calculated power Outside MELLLA region

JOB PERFORMANCE MEASURE

INITIAL CONDITIONS

Initial Conditions: You are the NSO on Unit 1. Unit 1 is operating at full power on 108% rod line.

Initiating Cue:

The 0700 PowerPlex printout has printed. Perform LOS-AA-S101, "Unit 1 Shiftly Surveillance," Section E.1.2.

		RFORMANCE MEASURE			· · · · · · · · · · · · · · · · · · ·
	note critical steps with an asterisk)				<u> </u>
(Dei			SAT	UNSAT	Comment #
	Element	Expected Response			
1.	REVIEWs LOS-AA-S101, Unit 1 Shiftly Surveillance and OD printouts.				
*2.	REVIEWS printout for core symmetry and rods out of position. NOTIFIES Supervisor	Notifies Supervisor core <u>NOT</u> symmetrical, rod out of position.			
*3.	CHECK APLHGR by verifying MAPRAT \leq 1.00. REPORT that MAPRAT NOT \leq 1.00. IDENTIFY TS 3.2.1.1. applies.	MAPRAT <u>NOT</u> \leq 1.00 CUE: Unit Supv. will review TS ACTION statement to ensure compliance.			
4.	CHECK MFLPD is \leq 1.00 and MFDLRX is \leq 1.00	MFLPD is ≤ 1.00 and MFDLRX is ≤ 1.00			
5.	CHECK MCPR by verifying MFLCPR is \leq 1.00	MFLCPR is ≤ 1.00			

JOB PERFORMANCE MEASURE

(Denote critical steps with an asterisk)

	Element	Exported Personal	SAT	UNSAT	Comment #
	Liement	Expected Response			
*6.	CHECK difference between APRM channels & calculated power. VERIFY difference $\leq 2\%$.	Absolute difference between APRM channels and calculated power Greater than 2% for APRMs A, D, & E.			
7.	CHECK Power to Flow Map that unit operation is in Region C (III).	Unit is operating in Region C (III).			
*8.	CHECK Power to Flow Map that unit is not operating outside of the analyzed MELLLA region.	Unit <u>IS</u> operating outside of analyzed MELLLA region.			

(CUE) THIS COMPLETES THIS JPM Record Stop Time: _____

,

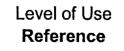
.

E. <u>PROCEDURE</u>

. .

1

E.1	IN Mode 1, 2 OR 3 COMPLETE ATTACHMENT A AS FOLLOWS:
E.1.1	RECORD current plant status 1, 2 or 3:
E.1.1.1	REQUEST an Inserted Value Summary LOP-CX-44, ATTACH to this surveillance.
E.1.1.2	REQUEST an Alarm Summary per LOP-CX-45, EVALUATE alarms and ATTACH to this surveillance.
E.1.2	Mode 1, 2
E.1.2.1	DEMAND process computer program OD-7 option 2 per LOP-CX-07. REVIEW for core symmetry, control rods out of position, and inoperable position indications and attach to this surveillance. (Tech Spec SR 3.1.3.1)
E.1.2.2	If Core Power is \geq twenty-five (25) Percent, OBTAIN a copy of a CMSS Core Performance Log that was generated during this shift after OD-7 option 2 program, USE this Log for subsequent steps and ATTACH to this surveillance.
E.1.2.2.1	If a new CMSS Core Performance Log is desired immediately, DEMAND OD-20 Option 1 per LOP-CX-20. Edit should be available within five to seven minutes. After this edit is complete, DEMAND OD-06 option 1 per LOP-CX-06 to obtain a copy of this Log and ATTACH to this surveillance.
E.1.2.2.2	CHECK Average Planar Linear Heat Generation Rate (APLHGR) by verifying MAPRAT \leq 1.00. (Tech Spec SR 3.2.1.1)
E.1.2.2.3	CHECK Linear Heat Generation Rate (LHGR) by verifying MFLPD is ≤ 1.00 and MFDLRX is ≤ 1.00 . (Tech Spec SR 3.2.3.1).
E.1.2.2.4	CHECK Minimum Critical Power Ratio (MCPR) by verifying MFLCPR is \leq 1.00. (Tech Spec SR 3.2.2.1)
E.1.2.2.5	CHECK the absolute difference between the average power range monitor (APRM) channels and the calculated power. Verify the absolute difference is $\leq 2\%$ RTP while operating at $\geq 25\%$ RTP. (Tech Spec 3.3.1.1 Actions Note 2 and SR 3.3.1.1.2) This check can be accomplished by comparing Core Power (GMWT) to APRM Calibration readings (RAP), listed on either an OD-3 or OD-20.


Level of Use Reference

 $\overline{\bigcirc}$

- E.1.2.2.6 CHECK using Power to Flow Map that unit operation is in Region C (III). (Reference G.1 and G.5) (Tech Spec SR 3.4.1.2)
- E.1.2.2.6.1 If Power >30% AND Flow <50% but unit is <u>NOT</u> inside Region A (I) or B (II) of Power to Flow Map, INITIATE stability monitoring per LOS-RR-SR1.
- E.1.2.2.7 CHECK using Power to Flow Map that unit is <u>NOT</u> operating outside of the analyzed MELLLA region.
- E.1.2.2.8 <u>If Power is ≤ 10% RTP, CHECK that all OPERABLE control rods comply</u> with the analyzed control rod sequence. This step may be accomplished in one of two ways: verification received from the QNE or by selecting the last step inserted and verifying that no rod block was received. (Tech Spec SR 3.1.6.1)

E.1.3 **0PM14J/0PM15J**

- E.1.3.1 If VG is running on either unit, PERFORM following:
- E.1.3.1.1 PERFORM Channel Check of VG Noble Gas Activity Monitor by checking LOW, MID, and HIGH readings against 0D18-R519. (ODCM 12.2.2-2.4.a., TRM 3.3.d)
- E.1.3.1.2 PERFORM a Channel Check of VG Effluent Flow 1(2)FR-VG009. (ODCM 12.2.2-2.4.d)
- E.1.3.1.3 PERFORM a Channel Check of VG sample flow and VERIFY isokinetic per Figure A-1. MID/HI Range Sample Flow will indicate zero unless MID/HI Sample Pump is in operation. (ODCM 12.2.2-2.4.e)
- E.1.3.2 PERFORM a Channel Check of SVS Noble Gas Activity Monitors by checking LOW, MID, and HIGH readings against 0D18-R521 and 0D18-R522. (ODCM 12.2.2-2.2.a) (TRM 3.3.d)
- E.1.3.3 PERFORM a Channel Check of SVS Effluent System Flow Rate Monitor by checking values from 0D18-R518 to 0FR-VR019. (ODCM 12.2.2-2.2.d)
- E.1.3.4 PERFORM a Channel Check of SVS Sample Flow Rate Monitor (Mon 033 on 0D18-R518) and verify isokinetic per Figure A-2. Flow indicators at skids are <u>NOT</u> calibratable and should only be used as a backup. (ODCM 12.2.2-2.2.e.)

ATTACHMENT A

UNIT 1 SHIFTLY SURVEILLANCE FOR MODE 1, 2, OR 3

g BU Poly References	n an	2	3.5
	Current Plant condition (1, 2, 3)		9999-92 9 - CONVERSION - MONTANA AND
(🗸)	Process Computer Out of Scan Summary (OD-44)	······	
(*)	Alarm Summary (OD-45).		
)£,11,92	Work 1.2		
(*)	Control rod position OD-7 option 2.		
(*)	If $\geq 25\%$ power CMSS Core Performance Log		
(•⁄)	MAPRAT ≤ 1.00.		
(•⁄)	MFLPD and MFDLRX \leq 1.00.		
(•⁄)	MFLCPR ≤ 1.00.		
(√)	APRM \pm 2% RTP from calculated power		
(√)	Outside region A (I) or B (II) of Power to Flow Map		
(*)	Operating within the analyzed MELLLA region on the Power to Flow Map		
(•⁄)	$\underline{If} \le 10\%$ RTP, all OPERABLE control rods comply with analyzed control rod sequence.		
$= \left\{ \begin{smallmatrix} 0 \\ 0 \\ 0 \end{smallmatrix} \right\}_{d=1}^{d} \left[\begin{smallmatrix} 0 \\ 0 \\ 0 \\ 0 \end{smallmatrix} \right]_{d=0}^{d} \left[\begin{smallmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	OPS6EDOPS6ED		
(🗸)	Channel Check VG noble gas activity monitor.		
(🔨)	Channel Check VG effluent flow.		
(•⁄)	Channel Check VG sample flow isokinetic per Fig. A-1		
(🔨)	Channel Check SVS noble gas activity monitor		
(🗸)	Channel Check SVS effluent flow		
(√)	Channel Check sample flow isokinetic per Fig. A-2.		
(•⁄)	Channel Check all VC rad monitors on both Units.		

Level of Use Reference

.

ъ. 7

OD-	7	CONTROL	ROD	NOTCH	POSI	FIONS,	NEW	SCAN,	04/	16/02,	1602,	LAS	ALLE	UNIT	1.
59					48	48	48	48	48	48	48				
55				48	48	48	48	48	48	48		48			
51			48	48	48	48	48	48	48	48		40 48	48		
47		48	48	48	48	24	48	48	48	24		40 48	48 48	10	
43	4		48	48	48	48	48	48	48	48		40 48	40 48	48	10
39	48	8 48	48	24	48	48	48	18	48	48		40 24	40 48	48	48
35	48	8 48	48	48	48	48	48	48	48	48		24 48	40 48	48	48
31	48	8 48	48	48	48	18	48	48	48	40 18		40 48	40 48	48 48	48
27	48	8 48	48	48	48	48	48	48	48	48		48 48	40 48	48 48	48
23	48	8 48	48	18	48	48	48	18	48	48		40 24	40 48	48 48	48
19	48	8 48	48	48	48	48	48	48	48	48		48	40 48	40 48	48
15		48	48	48	48	24	48	48	48	24		48 48	40	40 48	48
11			48	48	48	48	48	48	48	48		48	40 48	40	
07				48	48	48	48	48	48	48	-	48	40		
03					48	48	48	48	48	48	48	10			
	02	2 06	10	14	18	22	26	30	34	38		46	50	54	58

. . LaSalle-1 WK-0216 02APR15-16.12.28 284 MWD/MTU TRIGR=BACKUP REV=ddec9 TBLNAM: EOOS MCPR(P) AND OLMCPR = 1.35

CORE PERFORMANCE LOG --- LONG EDIT

CTP CALCULATION : HEAT BALANCE SYMMETRY : FULL

.

1

.

1

STATE CONDITIONS	FLOW RATES / CORE	PARAMETERS	NUCLEAR LI	MITS	LOCATION
MWE 1158.89	WT 94.2 (86.	8%) MLB/HR	MPF	2.550	35-22-20
MWT 3493.3 (100.19	3)WTSUB 90.01	MLB/HR	MFLCPR	0.895	37-36
EFF 33.17 %	WTFLAG 2		MAPRAT	1.001	55-42-09
PR 1015.0 PSIA	WFW 14.94	MLB/HR	MFDLRX	0.875	55-42-09
DHS 22.09 BTU/LB	WD 28.27	MLB/HR	MFLPD	0.900	55-42-09
			MAX(P-PCS)	.00	31-40-21
ER 1.08	CRD FLOW 0.033				
ERATIO .98	AVG VOID FRAC	.4100	FCL	108.1%	
TARGET 1.11	AVG POW DEN	50.06 KW/L			
KEFF 1.0000	PRESS DROP (MEAS)	19.02 PSIA	XENON	100.43	cio
CRD 0.0358	PRESS DROP (CALC)	13.01 PSIA			

CYCLE EXPOSURE 284.2 MWD/MTU CAVEX 12573.8 MWD/MTU

LOCATION12345678RING REL POWER.521.351.121.130.911.150.970.84

* * * * * * * * * * * * * * *	NUCLEAR LIM	ITS ***	*****	* * * * * * * * *	*AXI	AL REL	POWER*
FLCPR LOC	APRAT LO	С	FDLRX	LOC	NODE	NOTCH	REL-POW
					25		
0.895 37-36						00	0.435
0.895 23-36						02	0.738
0.895 37-26				55-20-09		04	0.932
0.895 23-26						06	1.042
0.878 49-52	0.885 45-3	6-07	0.868	47-36-06	20	08	1.092
					19	10	1.103
FLPD LOC			TPF	LOC	18	12	1.089
	-				17	14	1.064
0.900 55-42-0		:	2.550	35-32-20	16	16	1.037
0.900 55-42-0		:	2.540	31-36-20	15	18	1.016
0.900 55-20-0	09	:	2.520	33-30-20	14	20	1.005
0.900 05-20-0	09	:	2.520	31-28-20	13	22	1.004
0.892 47-36-0	06		2.510	35-35-20	12	24	1.017
					11	26	1.039
*******	* MLHGR BY F	UEL TYPI	E ****	* * * * * *	10	28	1.066
TYPE LHGR 1				JOCATION	9	30	1.092
1 14.2 3	31-40-21	0	.00		8	32	1.113
2 13.9 3	31-32-20	0	.00		7	34	1.119
4 11.8	35-34-20	0	.00		6	36	1.102
5 10.5 3	33-30-20	0	.00		5	38	1.054
10 8.3	37-34-20	0	.00		4	40	0.963
11 9.1	35-32-20	0	.00		3	42	0.821
12 6.4 !	51-41-21	U	.00		2	44	0.618
0.00		0	.00		1	48	0.345
0.00		0	.00				
0.00		0	.00				
ADDM DEADING							

APRM READINGS97.499.1100.997.797.2101.5APRM GAFS1.0311.0120.9951.0301.0190.990

V. 1 ŧ

a. .

LaSalle-1 WK-0216 02APR15-16.06.48 284 MWD/MTU TRIGR=BACKUP REV=ddec9

.

												* * * *				
	02 00	5 10	14	18	22	26	30	34	38	42	46	50	54	58		
59															59	
55															55	DISPLAY KEY
51															51	R = MFLCPR
47					24				24						47	M = MAPRAT
43 39		·	 24				 10						*		43	X = FDLRX
35 ·			24 				18 	R			24		~-		39 35	C = FDLRC P = PRECOND
31 ·					18				18						31	P = PRECOND D = MFLPD
27 ·															27	* = MULTPL.
			18				18				24				23	
															19	
15 11					24				24						15	
07															11 07	
03															03	
	02 06	10	14	18	22	26	30	34	38	42	46	50	54	58	0.5	
SUBS	DS OUT ST. RC *****	DS:						-23								
, 57	*****		.1	BRAT 10.		PRM 1 11.1			* * *	* * * *	* * * *	*				TAILED SENSOR
,,			• 1 • 4	34.		37.6		0.0 3.7								ATION STATUS
			.1	56.		60.7		5.0								
			.2	61.		70.8		6.9								
19	10.9		.2	16.	6	16.7	1	6.2	12	.3						
	36.5	17	.4	55.	1	E 4 1										
	F A					54.1		3.8	41							
	59.0	71		70.	8	78.2	7	0.0	65	.2						
	57.6	71 80	.3	70. 79.	8 9	78.2 96.2	7 7	0.0 7.5	65 69	.2 .6						
11	57.6 12.9	71 80 17	.3 .7	70. 79. 19.	8 9 8	78.2 96.2 20.7	7 7 1	0.0 7.5 9.2	65 69 16	.2 .6 .5	9.					
11	57.6 12.9 43.7	71 80 17 57	.3 .7 .4	70. 79. 19. 60.	8 9 8 4	78.2 96.2 20.7 59.4	7 7 1 5	0.0 7.5 9.2 9.3	65 69 16 54	.2 .6 .5 .0	33.	8				
11	57.6 12.9 43.7 68.4	71 80 17 57 71	.3 .7 .4 .8	70. 79. 19. 60. 80.	8 9 8 4 7	78.2 96.2 20.7 59.4 75.7	7 7 1 5 7	0.0 7.5 9.2 9.3 9.9	65 69 16 54 70	.2 .6 .5 .0 .0	33. 54.	8 7				
	57.6 12.9 43.7 68.4 76.0	71 80 17 57 71 79	.3 .7 .4 .8 .1	70. 79. 19. 60. 80. 88.	8 9 8 4 7 5	78.2 96.2 20.7 59.4 75.7 81.7	7 7 1 5 7 8	0.0 7.5 9.2 9.3 9.9 9.7	65 69 16 54 70 75	.2 .6 .5 .0 .0	33. 54. 55.	8 7 4				
	57.6 12.9 43.7 68.4 76.0 13.3	71 80 17 57 71 79 18	.3 .7 .4 .8 .1 .6	70. 79. 19. 60. 80. 88. 21.	8 9 8 4 7 5 2	78.2 96.2 20.7 59.4 75.7 81.7 21.2	7 7 1 5 7 8 8	0.0 7.5 9.2 9.3 9.9 9.7 0.9	65 69 16 54 70 75	.2 .6 .5 .0 .7	33. 54. 55.	8 7 4 2				
33	57.6 12.9 43.7 68.4 76.0 13.3 43.9	71 80 17 57 71 79 18 56	.3 .7 .4 .8 .1 .6 .7	 70. 79. 19. 60. 80. 88. 21. 59. 	8 9 8 4 7 5 2 5	78.2 96.2 20.7 59.4 75.7 81.7 21.2 60.1	7 7 5 7 8 20 5	0.0 7.5 9.2 9.3 9.9 9.7 0.9 9.7	65 69 16 54 70 75 17 54	.2 .6 .0 .0 .7 .1	 33. 54. 55. 11. 38. 	8 7 4 2 1				
	57.6 12.9 43.7 68.4 76.0 13.3	71 80 17 57 71 79 18 56 79	.3 .7 .4 .8 .1 .6 .7 .8	70. 79. 19. 60. 80. 88. 21.	8 9 8 4 7 5 2 5 7	78.2 96.2 20.7 59.4 75.7 81.7 21.2	7 7 5 5 8 8 20 5 5 7	0.0 7.5 9.2 9.3 9.9 9.7 0.9	65 69 16 54 70 75	.2 .6 .0 .0 .7 .1 .2	33. 54. 55.	8 7 4 2 1 7				
	57.6 12.9 43.7 68.4 76.0 13.3 43.9 70.4 87.2 12.7	71 80 17 57 71 79 18 56 79 93 18	.3 .7 .4 .8 .1 .6 .7 .8 .0	 70. 79. 19. 60. 80. 88. 21. 59. 75. 	8 9 8 4 7 5 2 5 7 0	78.2 96.2 20.7 59.4 75.7 81.7 21.2 60.1 81.2	7 7 5 5 7 8 8 20 5 7 7 7	0.0 7.5 9.2 9.3 9.9 9.7 0.9 9.7 5.4	65 69 16 54 70 75 17 54 78	.2 .6 .5 .0 .7 .1 .2 .4	 33. 54. 55. 11 38. 59 	8 7 4 2 1 7 5				
33	57.6 12.9 43.7 68.4 76.0 13.3 43.9 70.4 87.2 12.7 42.1	71 80 17 57 71 79 18 56 79 93 18 53	.3 .7 .4 .8 .1 .6 .7 .8 .0 .8 .7	 70. 79. 19. 60. 80. 88. 21. 59. 75. 81. 20. 60. 	8 9 8 4 7 5 2 5 7 0 2 0	78.2 96.2 20.7 59.4 75.7 81.7 21.2 60.1 81.2 88.4 21.4 60.0	71 55 72 89 20 59 75 75 75 75 75 75 75	0.0 7.5 9.2 9.3 9.9 9.7 0.9 9.7 5.4 9.7 9.7	65 69 16 54 70 75 17 54 78 93 16 55	.2 .6 .0 .7 .1 .2 .4 .6	 33. 54. 55. 11. 38. 59. 67. 10 35. 	8 7 4 2 1 7 5 2 7				
33	57.6 12.9 43.7 68.4 76.0 13.3 43.9 70.4 87.2 12.7 42.1 68.2	71 80 17 57 71 79 18 56 79 93 18 53 72	.3 .7 .4 .8 .1 .6 .7 .8 .0 .8 .7 .9	 70. 79. 19. 60. 80. 88. 21. 59. 75. 81. 20. 60. 81. 	8 9 8 4 7 5 2 5 7 0 2 0 6	78.2 96.2 20.7 59.4 75.7 81.7 21.2 60.1 81.2 88.4 21.4 60.0 75.8	71 55 72 89 20 59 75 75 75 75 75 75 60 80	0.0 7.5 9.2 9.3 9.9 9.7 0.9 9.7 5.4 9.7 9.7 9.7 0.3 0.2	65 69 16 54 70 75 17 54 78 93 16 55 69	.2 .6 .0 .7 .1 .2 .4 .6 .9 .7	 33. 54. 55. 11 38. 59. 67 10 35 57 	8 7 4 2 1 7 5 2 7 1	*()JTII <u>I</u> :		
33	57.6 12.9 43.7 68.4 76.0 13.3 43.9 70.4 87.2 12.7 42.1	71 80 17 57 71 79 18 56 79 93 18 53 72	.3 .7 .4 .8 .1 .6 .7 .8 .0 .8 .7 .9	 70. 79. 19. 60. 80. 88. 21. 59. 75. 81. 20. 60. 	8 9 8 4 7 5 2 5 7 0 2 0 6	78.2 96.2 20.7 59.4 75.7 81.7 21.2 60.1 81.2 88.4 21.4 60.0	71 55 72 89 20 59 75 75 75 75 75 75 60 80	0.0 7.5 9.2 9.3 9.9 9.7 0.9 9.7 5.4 9.7 9.7	65 69 16 54 70 75 17 54 78 93 16 55	.2 .6 .0 .7 .1 .2 .4 .6 .9 .7	 33. 54. 55. 11. 38. 59. 67. 10 35. 	8 7 4 2 1 7 5 2 7 1	۰. ۱	ЭТПĿ		AILED SENSORS SOR STATUS
33	57.6 12.9 43.7 68.4 76.0 13.3 43.9 70.4 87.2 12.7 42.1 68.2 80.5 11.6	71 80 17 57 71 79 18 56 79 93 18 53 72 80 16	.3 .7 .4 .8 .1 .6 .7 .8 .0 .8 .7 .9 .5 .1	 70. 79. 19. 60. 80. 88. 21. 59. 75. 81. 20. 60. 81. 90. 18. 	8 9 8 4 7 5 2 5 7 0 2 2 0 6 6 2 2 4	78.2 96.2 20.7 59.4 75.7 81.7 21.2 60.1 81.2 88.4 21.4 60.0 75.8 80.1 18.6	7 7 5 5 7 8 9 20 5 9 7 9 7 9 6 0 80 90 18	0.0 7.5 9.2 9.3 9.9 9.7 0.9 9.7 0.9 7 5.4 9.7 0.3 0.2 0.3 0.2 0.3 3.0	65 69 16 54 70 75 17 54 78 93 16 55 69 78 14	.2 .6 .5 .0 .7 .1 .2 .4 .6 .7 .3 .3	 33. 54. 55. 11 38. 59. 67 10 10 10 	8 7 4 2 1 7 5 2 7 1 3 4	×.(J)T∏E		
33	57.6 12.9 43.7 68.4 76.0 13.3 43.9 70.4 87.2 12.7 42.1 68.2 80.5 11.6 38.1	71 80 17 57 71 79 18 56 79 93 18 53 72 80 16 50	.3 .7 .4 .8 .1 .6 .7 .8 .0 .8 .7 .9 .5 .1 .2	 70. 79. 19. 60. 80. 88. 21. 59. 75. 81. 20. 60. 81. 90. 18 57.5 	8 9 8 4 7 5 2 5 7 0 2 2 0 6 2 2 4 3	78.2 96.2 20.7 59.4 75.7 81.7 21.2 60.1 81.2 88.4 21.4 60.0 75.8 80.1 18.6 58.1	7 7 5 5 7 8 9 20 5 9 7 9 1 9 6 0 8 0 9 0 1 8 5 8	0.0 7.5 9.2 9.3 9.9 9.7 0.9 9.7 0.9 7 5.4 9.7 0.3 0.2 0.3 0.2 0.3 3.0 3.2	65 69 16 54 70 75 17 54 78 93 16 55 69 78 78 14 47	.2 .6 .5 .0 .7 .1 .2 .4 .6 .9 .7 .3 .3 .7	 33. 54. 55. 11 38. 59. 67 10 35 57 62 10 34 	8 7 4 2 1 7 5 2 7 1 3 4 1	× (ЭТПЕ		AILED SENSORS SOR STATUS
33	57.6 12.9 43.7 68.4 76.0 13.3 43.9 70.4 87.2 12.7 42.1 68.2 80.5 11.6	71 80 17 57 71 79 18 56 79 93 18 53 72 80 16 50 74	.3 .7 .4 .8 .1 .7 .8 .0 .7 .9 .5 .1 .2 .7	 70. 79. 19. 60. 80. 88. 21. 59. 75. 81. 20. 60. 81. 90. 18. 	8 9 8 4 7 5 2 5 7 0 2 2 5 7 0 2 2 4 3 5	78.2 96.2 20.7 59.4 75.7 81.7 21.2 60.1 81.2 88.4 21.4 60.0 75.8 80.1 18.6 58.1 81.3	7 7 5 5 7 8 9 20 5 9 7 9 0 90 1 8 5 8 7 2 7 90 1 8 5 8 7 2 7 5 90 1 8 5 8 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.0 7.5 9.2 9.3 9.9 9.7 0.9 9.7 0.9 9.7 5.4 9.7 0.3 0.2 0.3 0.2 0.3 3.0 3.2 2.6	65 69 16 54 70 75 17 54 78 93 16 55 69 78 78 14 47. 72	.2 .6 .5 .0 .7 .1 .2 .4 .6 .9 .7 .3 .3 .7 .7	 33. 54. 55. 11. 38. 59. 67. 10 35. 57. 62 10 34 55. 	8 7 4 2 1 7 5 2 7 1 3 4 1 7	۰.(ЭТПĿ		
25	57.6 12.9 43.7 68.4 76.0 13.3 43.9 70.4 87.2 12.7 42.1 68.2 80.5 11.6 38.1 64.4	71 80 17 57 71 79 18 56 79 93 18 53 72 80 16 50 74 87	.3 .7 .4 .8 .1 .6 .7 .8 .0 .7 .9 .5 .1 .2 .7 .9	 70. 79. 19. 60. 80. 88. 21. 59. 75. 81. 20. 60. 81. 90. 18 57 84 	8 9 8 4 7 5 2 5 7 0 2 2 5 7 0 2 2 0 6 2 2 4 3 5 5 7 0 2 2 5 7 0 2 2 5 7 0 2 2 5 7 0 2 5 7 0 8 4 7 7 5 5 7 7 8 8 4 7 7 7 9 8 7 7 9 8 7 7 7 9 8 7 7 7 9 8 7 7 7 9 8 7 7 7 9 8 7 7 7 9 8 7 7 7 9 8 7 7 7 9 8 7 7 7 9 8 7 7 7 7	78.2 96.2 20.7 59.4 75.7 81.7 21.2 60.1 81.2 88.4 21.4 60.0 75.8 80.1 18.6 58.1 81.3 93.7	7 1 5 7 8 2 7 5 7 2 6 0 8 1 5 7 5 6 0 0 0 0 0 1 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7	0.0 7.5 9.2 9.3 9.9 9.7 0.9 9.7 5.4 9.7 9.7 5.4 9.7 0.3 2.3 3.0 2.6 3.2 2.6 9.2	65 69 16 54 70 75 17 54 78 93 16 55 69 78 14 47 72 80	.2 .6 .5 .0 .7 .1 .2 .4 .6 .9 .7 .3 .7 .7 .7	 33. 54. 55. 11 38. 59. 67 10 35 57 62 10 34 	8 7 4 2 1 7 5 2 7 1 3 4 1 7	۰ (ЭТПЕ		
33	57.6 12.9 43.7 68.4 76.0 13.3 43.9 70.4 87.2 12.7 42.1 68.2 80.5 11.6 38.1 64.4	71 80 17 57 71 79 93 18 56 79 93 18 53 72 80 16 50 74 87 11	.3 .7 .4 .8 .1 .6 .7 .8 .0 .8 .7 .9 .5 .1 .2 .7 .9	 70. 79. 19. 60. 80. 88. 21. 59. 75. 81. 20. 60. 81. 90. 18 57 84 12 	8 9 8 4 7 5 2 5 7 0 2 2 5 7 0 2 2 4 3 5 1 5 7 0 2 2 5 7 0 2 2 5 7 7 0 2 2 5 7 7 0 2 5 5 7 7 0 2 5 5 7 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7	78.2 96.2 20.7 59.4 75.7 81.7 21.2 60.1 81.2 88.4 21.4 60.0 75.8 80.1 18.6 58.1 81.3 93.7 13.3	7 7 7 7 7 8 7 7 7 7 7 9 6 0 8 0 9 0 1 8 7 9 1 9 1 9 1 9 1 9 1 9 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0 7.5 9.2 9.3 9.9 9.7 0.9 9.7 5.4 9.7 5.4 9.7 5.4 9.7 5.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.2 9.7 5.4 9.7 0.2 9.7 5.4 9.7 0.2 9.7 5.4 9.7 9.2 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	65 69 16 54 70 75 17 54 78 93 16 55 69 78 78 14 47 72 80 11	.2 .6 .5 .0 .7 .1 .2 .4 .6 .9 .7 .3 .7 .7 .7 .1 .2 .4 .5 .0 .7 .7 .1 .2 .4 .5 .7 .7 .7 .7 .1 .2 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7	 33. 54. 55. 11. 38. 59. 67. 10 35. 57. 62 10 34 55. 	8 7 4 2 1 7 5 2 7 1 3 4 1 7	× (ЭТПĿ		
25	57.6 12.9 43.7 68.4 76.0 13.3 43.9 70.4 87.2 12.7 42.1 68.2 80.5 11.6 38.1 64.4	71 80 17 57 71 79 18 56 79 93 18 53 72 80 16 50 74 87 11 39	.3 .7 .4 .8 .1 .6 .7 .8 .0 .8 .7 .9 .5 .1 .2 .7 .9	 70. 79. 19. 60. 80. 88. 21. 59. 75. 81. 20. 60. 81. 90. 18. 57. 84. 12. 44. 	8 9 8 4 7 5 2 5 7 0 2 0 6 2 4 3 5 5 7 0 6 2 7 7 7 7	78.2 96.2 20.7 59.4 75.7 81.7 21.2 60.1 81.2 88.4 21.4 60.0 75.8 80.1 18.6 58.1 81.3 93.7 13.3 45.1	74 7 7 5 5 7 8 9 7 9 6 0 8 9 0 1 8 5 8 7 9 0 1 8 7 2 7 9 0 1 8 1 9 0 1 8 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	0.0 7.5 9.2 9.3 9.9 9.7 0.9 9.7 5.4 9.7 5.4 9.7 5.4 9.7 5.2 0.3 2.6 3.2 3.0 3.2 2.6 3.1 4.6	65 69 16 54 70 75 17 54 78 93 16 55 69 78 78 14 47 72 80 111 37	.2 .6 .5 .0 .7 .1 .2 .4 .6 .9 .7 .3 .7 .7 .1 .1 .2 .4 .6 .7 .7 .1 .2 .4 .6 .7 .7 .7 .1 .2 .4 .5 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7	 33. 54. 55. 11. 38. 59. 67. 10 35. 57. 62 10 34 55. 	8 7 4 2 1 7 5 2 7 1 3 4 1 7	۰.(JT∏Ŀ		
25	57.6 12.9 43.7 68.4 76.0 13.3 43.9 70.4 87.2 12.7 42.1 68.2 80.5 11.6 38.1 64.4	71 80 17 57 71 79 93 18 56 79 93 18 53 72 80 16 50 74 87 11	.3 .7 .4 .8 .1 .7 .8 .0 .7 .9 .5 .1 .2 .7 .9 .2	 70. 79. 19. 60. 80. 88. 21. 59. 75. 81. 20. 60. 81. 90. 18 57 84 12 	8 9 8 4 7 5 2 5 7 0 2 0 6 2 4 3 5 7 7 5 7 7 7 7 5 7 7 7 7 7 7 7 7 7 7	78.2 96.2 20.7 59.4 75.7 81.7 21.2 60.1 81.2 88.4 21.4 60.0 75.8 80.1 18.6 58.1 81.3 93.7 13.3	74 75 75 85 75 75 75 75 75 60 80 90 18 58 72 75 13 44 68	0.0 7.5 9.2 9.3 9.9 9.7 0.9 9.7 5.4 9.7 5.4 9.7 5.4 9.7 5.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.2 9.7 5.4 9.7 0.2 9.7 5.4 9.7 0.2 9.7 5.4 9.7 9.2 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	65 69 16 54 70 75 17 54 78 93 16 55 69 78 78 14 47 72 80 11	.2 .6 .5 .0 .7 .1 .2 .4 .6 .9 0 7 .3 .3 7 .7 .1 .7 .1 .2 .4 .6 .7 .7 .1 .2 .4 .6 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7	 33. 54. 55. 11. 38. 59. 67. 10 35. 57. 62 10 34 55. 	8 7 4 2 1 7 5 2 7 1 3 4 1 7	۰ (ЭТПЕ		

LaSalle-1 WK-0216 02APR15-16.12.28 284 MWD/MTU TRIGR=BACKUP REV=ddec9 TBLNAM: EOOS MCPR(P) AND OLMCPR = 1.35

CORE PERFORMANCE LOG --- LONG EDIT

CTP CALCULATION : HEAT BALANCE SYMMETRY : FULL

. .

.

1

x i

STATE CONDITIONS MWE 1158.89 MWT 3493.3 (100.1 EFF 33.17 % PR 1015.0 PSIA DHS 22.09 BTU/LB	FLOW RATES / CORE PA WT 94.2 (86.8%) %)WTSUB 90.01 WTFLAG 2 WFW 14.94 WD 28.27	ARAMETERS NUCLEAR MLB/HR MPF MLB/HR MFLCPR MAPRAT MLB/HR MFDLRX MLB/HR MFLPD	LIMITS LOCATION 2.550 35-22-20 0.895 37-36 1.001 55-42-09 0.875 55-42-09 0.900 55-42-09
ER 1.08	CRD FLOW 0.033	MAX (P-PC	CS) .00 31-40-21
ERATIO .98 TARGET 1.11	AVG VOID FRAC .4	100 FCL .06 KW/L	108.1%
KEFF 1.0000 CRD 0.0358		0.02 PSIA XENON 0.01 PSIA	100.43%

CYCLE EXPOSURE 284.2 MWD/MTU CAVEX 12573.8 MWD/MTU

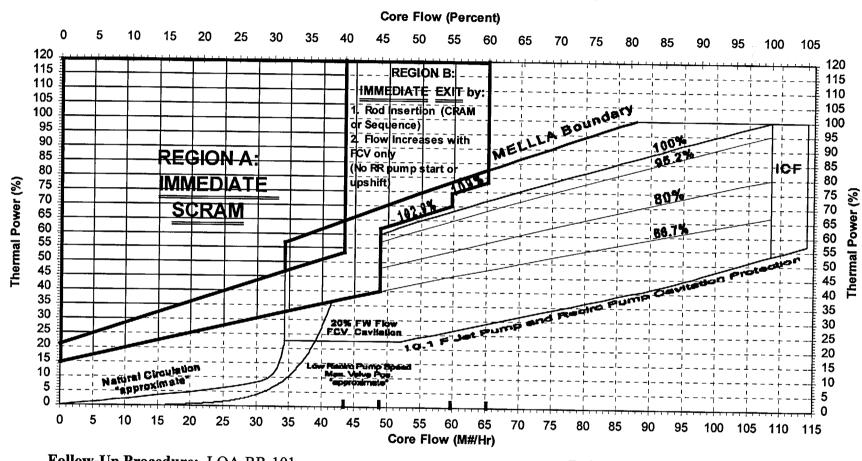
LOCATION12345678RING REL POWER.521.351.121.130.911.150.970.84

**************************************					^AAL	AL REL	POWER*
			T DLKA	LOC		NOTCH	REL-POV
.895 37-36	0 919 55	-12-09	0 075	55-42.00	25	0.0	0.005
.895 23-36	0,919 55	-12-09		55-42-09	24	00	0.435
				55-20-09	23	02	0.738
1895 23-26	0,919,05	20-09	0.875	05-20-09	22	04	
.878 49-52	0.919 05	20-09	0.875	05-20-09		06	1.042
.070 47 52	0.000 40	-36-07	0.868	47-36-06	20	08	1.092
FLPD LOC	,				19	10	1.103
			T.D.F.	LOC 35-32-20	18	12	1.089
					17	14	1.064
0.900 55-42	2-09		2.550	35-32-20		16	1.037
0.900 55-42			2.540	31-36-20	15	18	1.016
0.900 55-20			2.520	33-30-20	14	20	1.005
0.900 05-20				31-28-20	13	22	1.004
0.892 47-36	-06		2.510	35-35-20	12	24	1.017
					11	26	1.039
********	** MLHGR BY				10	28	1.066
TYPE LHGR		TYPE	LHGR I	JOCATION	9	30	1.092
1 14.2	31-40-21	0	.00		8	32	1.113
2 13.9	31-32-20	0	.00		7	34	1.119
	35-34-20	0	.00		6	36	1.102
	33-30-20	0	.00		5	38	1.054
	37-34-20	0	.00		4	40	0.963
11 9.1	35-32-20	0	.00		3	42	0.821
12 6.4	51-41-21	0	.00		2	44	
0.00	I	0	.00		1	48	0.345
0.00		0	.00		-		0.010
0.00		0	.00				

APRM READINGS97.499.1100.997.797.2101.5APRM GAFS1.0311.0120.9951.0301.0190.990

. .

÷.


LaSalle-1 WK-0216 02APR15-16.06.48 284 MWD/MTU TRIGR=BACKUP REV=ddec9

٧*

			***	****	****	***	CONTE	OL R	.OD D.	АТА	****	****	****	*			
	02	06	10	14	18	22	26	30	34	38	42	46	50	54	58		
31 21 23	5 1 7 3 5 1 7 3 5			 24 18 		 24 18 24 24		 18 18 18 		 24 				* * 		59 55 51 47 43 39 35 31 27 23 19 15	DISPLAY KEY R = MFLCPR M = MAPRAT X = FDLRX C = FDLRC P = PRECOND D = MFLPD * = MULTPL.
07	7	06	10	 14	 18	 22	 26	 30	 34	 38	 42	 46	50	54	58	11 07 03	
	NODS JBST.			IRRC	OR SY	MMET	RY:	14	-23								
57		* * * *	*** (10 33 55 53	.1 .4 .1	BRAT 10. 34. 56. 61.	1 9 7	PRM 11.1 37.6 60.7 70.8	1(3: 5!	INGS 0.0 3.7 5.0 6.9	***	****	****	*				AILED SENSORS* TION STATUS
49	3 5	0.9 6.5 9.0 7.6	14 47 71 80	.4 .1	16. 55. 70. 79.	1 8	16.7 54.1 78.2 96.2	53 7(5.2 3.8).0 7.5	12 41 65 69	.5 .2						
41	43	2.9 3.7 8.4 6.0	17 57 71 79	.4 .8	19. 60. 80. 88.	4 7	20.7 59.4 75.7 81.7	59 79	9.2 9.3 9.9 9.7	16 54 70 75	.0 .0	9.9 33.0 54.7 55.4	8 7				
33	4: 7(3.3 3.9 0.4 7.2	18. 56. 79. 93.	.7 .8	21. 59. 75. 81.	5 7	21.2 60.1 81.2 88.4	59 75).9).7 5.4).7	17 54 78 93	.2 .4	11.2 38.2 59.7 67.5	1 7				
25	42 68	2.7 2.1 3.2 0.5	18. 53. 72. 80.	.7 .9	20. 60. 81. 90.	0 6	21.4 60.0 75.8 80.1	60 80).7).3).2).3	16 55 69 78	.0 .7	10.2 35.7 57.1 62.3	7 1	*(R FA	AILED SENSORS* SOR STATUS
17	38 64	1.6 3.1 4.4 3.3	16. 50. 74. 87.	. 2 . 7	18. 57. 72. 84.	8 5	18.6 58.1 81.3 93.7	58 72	.0 .2 .6 .2	14 47 72 80	.7 .7	10.4 34.1 55.7 53.4	1 7				
09)8	11. 39. 64. 68. 16	9 2 8	12.1 44. 69.5 80.0 24	7 5 6	13.3 45.1 72.2 86.4 32	44 68 76	.1 .6 .4 .2 0	11. 37. 59. 58. 48	.1 .7 .6	56					

ATTACHMENT A

HARDCARD - LASALLE COUNTY NUCLEAR STATION POWER - TO - FLOW MAP

LaSalle County Nuclear Station Power-to-Flow Map, Rev. 0

Follow-Up Procedure: LOA-RR-101

Reference Procedure: LOA-RR-101

Level of Use LOA-RR-101 39 of 41 Continuous **Revision 10** January 17, 2002

Recirculation Loops Operating 3.4.1

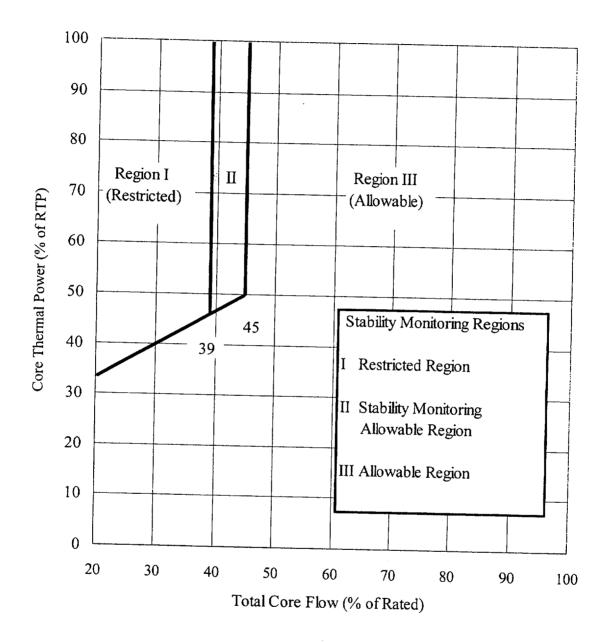


Figure 3.4.1-1 (Page 1 of 1) Power versus Flow

VERIFICATION OF COMPLETION

Job Performance Measure No.	
Examinee's Name:	
Examiner's Name:	
Date performed:	
Number of attempts:	
Time to complete:	
Question Documentation:	
Question:	
Response:	

Result: SAT or UNSAT

Examiner's signature and date: _____

		ATTACH	IMENT 4	1	uge 410	
Clearance Hang	g Checklis		ation, Approval and Authorizat	ion		
		Page				
CLEARANCE # $PDDDL$		СНК #	CHECKLIST TYPE: FH	MO SFH RH PCO		
PRINCIPLE EQUIPMENT:						
Exceptional C/O: Condi	tion Depend	lent C/O:	Mode Dependent C/O: Pro	oduction Risk C/O:		
CLEARANC	E HANG C	HECKLIST	PREPARATION AND APPROVAL			
Required Actions	Approve (√ - N/A)	Approve (√ - N/A)	Risk Con	sideration		
Special instructions reviewed/entered			Causes	Effects	Effects	
Exceptional C/O criteria evaluated	~		Fuse or circuit board removal	Auto-starts		
Containment Integrity considered	V		Draining/Venting	Equipment trips		
C/O Positions and Sequences correct	~		Isolating instruments	Reactor Protection Logic	signals	
All attached work scope understood	V		Jumper installation	Control Room Indication	charges	
Drain and vent requirements identified (drain permits)	V		Breaking daisy chains	Control Room Annunciato	ors	
Tech Spec applicability assessed	-		Isolating control air	Opposite Unit/Train affect	ts	
Fire Protection concerns noted/addressed	V		De-energizing control power	Turbine Supervisory Logic		
C/O step types and tag types correct	V		Lifting of Leads	Radioactive Release		
C/O Production Risk Considered (next column)			Installing Grounds	Loss of Main Condenser	Vacuum	
C/O Production Risk Critical Steps Identified						
Requestor notified if work not isolated as requested						
CLEARANCE	PRE-HANG	SUPERVIS	SORY AUTHORIZATION		(~ - N/A)	
Plant conditions acceptable						
C/O Production Risks Considered						
HLA criteria evaluated and initiated if required						
Probabilistic Risk Assessment/Shutdown Risk Assessm	nent conside	ered/OSPRE				
Fire Protection actions initiated						
Tech Spec requirements met/initiated						
Redundant Train operability assessed	·····					
Applicable procedure prerequisites satisfied						

O**P-AA-101-201** Revision 6 Page 39 of 52

		-	TTACHMEN							
Pers	onal C	Clearan	ce Form Pa	-	/Lift Sect	ion		EXCEPTIO	NAL PCO	
$D \rightarrow A$			Page 1 of				0			—
personal clearance# $P D D \Phi 1$		•••••	MA	STER TAG LO		laster	rege	BARD		
WORKER ASSIGNED: MAINT. PERSON	\sim		SHIFT HOURS	DAYS	<u>></u>	EXT:	246	<u>3</u> BEEPER:	546	3
WORKING DEPARTMENT: MAD W/O OR W/R #:	0000	0000		EARANCE EQU	IP. TAG: 1	EZ1- C	00 Z			
COMPONENT DESCRIPTION: LPCS / A' RHR W	ATER_	LEG P	P JOB DESCRI	PTION:R	EPLACE_	Pune				
COMPONENT DESCRIPTION: LPCS/A' RHR WA	1501	<u>`</u>	DATE:	TODAY	s Date	<u>е ехт: </u> <u>2</u>	464	BEEPER:	2464	
EQUIP. TAG /EQUIPMENT NAME	C/O SEQ	TAG TYPE	C/O POSITION	C/O BY	VERIF. BY	SFTY. VERIF.	RTS SEQ	RTS POSITION	RTS BY	VERIF. BY
IEZI- COOZ, LPCS/A RHR WTR LEG Pp C/S	1	CI	NAT				3	NAT		
1621- COO2, LPCS/A RHE WTR LEG 10 BKR JAPTIOE - D3	٢	RD	OFF				2	02		ļ
IEZI-FOJZ, LPCS WTR LEG Pp SULTION	3	RD	CLOSED				1	OPEN		
1821- FO34 LPCS WTR LEG PP DischARGE	3	RD	CLOSED	-		ļ	1	OPEN		
1221- FO35, LPLS WTR LEG P. Min FLOW	3	RD	CLOSED				1_	OPEN		<u> </u>
							ļ			ļ
					<u> </u>					
]		<u> </u>			
CLEARANCE PREPARER:		DATE	Toonys	DATE	ON ORDER		lint. E	DUPERVISOR		
SPECIAL INSTRUCTIONS YES DE NO I IF YES										
FIRST APPROVAL:			SE							
IF WORK WILL CONTINUE UNDER DIFFERENT CREW, THEN										
WORKER RELEASE:	DATE/TIM	E OF COM				_ WORK W	ILL CONT	INUE, SEE ATT	ACHED PA	.RT 2 (√)

ATTACHMENT 2 Personal Clearance Form Part 3: Testing/Manipulation Section Page 3 of 4

PERSONAL CLEARANCE #_____

PAGE _____ OF _____

RECORD ALL MANIPULATIONS (HANG AND LIFT) ASSOCIATED WITH THIS PCO (ADDITIONAL COPIES MAY BE USED AS NEEDED)

.

. AS FOUND MANIP. POSIT. VERIF. RH RH RH VERIF. SFTY. EQUIP. TAG /EQUIPMENT NAME SEQ POSITION POSITION ΒY BY SEQ POSITION BY BY VERIF.

EXCEPTIONAL PCC

ATTACHMENT 2 Personal Clearance Form Part 4: Special Instructions Section Page 4 of 4

		EXCEPT	
PCO #			
NOTE TO MMD: Piping NOT DR	BETWEEN WATER LEG F		VALVES
OPS: ON RTS, Fil	L + VENT SYSTEMS	S AS NECESSARY.	

OP-AA-101-201 Revision 6 Page 40 of 52

ATTACHMENT 2 Personal Clearance Form Part 2: Work Continuation Section Page 2 of 4

PCO # _____

SIGN ON SIGN ON SIGN OFF SIGN OFF WORK SUPERVISOR EXT. BEEPER LEAD WORKER EXT. BEEPER DATE TIME DATE TIME ORIGINAL LEAD WORKER INFORMATION IS LISTED ON ATTACHMENT 2 PERSONAL CLEARANCE FORM PART 1: HANG/LIFT SECTION :

EXCEPTIONAL PCO

VERIFICATION OF COMPLETION

Job Performance Measure No.
Examinee's Name:
Examiner's Name:
Date performed:
Number of attempts:
Time to complete:
Question Documentation:
Question:
Response:

Result: SAT or UNSAT

Examiner's signature and date: _____

LASALLE COUNTY NUCLEAR STATION

JOB PERFORMANCE MEASURE

Review a Radiation Work Permit

Examination Level: RO /SRO /SRO(I)

Date: April 8, 2002

Developed by: Raymond Keith Walton Date: March 14, 2002

JOB PERFORMANCE MEASURE

Facility: LaSalle Nuclear Station	Task No: <u>A.3</u>
Task Title: <u>Review a Radiation Work Permit</u>	Job Performance Measure No:
K/A Reference: <u>2.3.10</u>	K/A Importance: <u>2.9/3.3</u>
Examinee:	
NRC Examiner:	Date:
Time Started:	Time Finished:
Estimated Time to Completion:	Time Critical Task: NO
Method of testing: Performance: X Simulated Actual	Location: <u>X</u> Simulator

Task Standard:

Worker will exceed yearly allowed dose limit but not daily dose limit. Worker needs dosimetry and Full Set of anticontamination clothing. Worker needs RP coverage into Locked High Radiation Area.

Required Materials:

A completed RWP for TIP room. Ensure dose rate on the survey map is >500rad/hr in the work area. Expected time to complete the task is 15 minutes.

General References (Available for candidate review): RP-AA-203, Exposure Review and Authorization, Rev 0 RP-AA-460, Controls for High and Very High Radiation Areas, Rev 1.

READ TO THE EXAMINEE:

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. Tell me when you have successfully complete the task.

Initial Conditions:

Unit 1 is operating in Mode 1. Your current radiation exposure history is as follows:

- Annual Non LaSalle Station TEDE Dose
 Annual LaSalle Station TEDE Dose
 1490 mrem
 420 mrem
- Previous 24 hour DDE dose at LaSalle from 10 mrem
 RWPs other than RWP 2002-0999

You are not considered to have a High Lifetime Exposure. Initiating Cue:

You have been assigned to the FIN maintenance team and have been tasked to support a maintenance activity inside the TIP room. To complete the task will take at least 15 minutes. Review your dose and area maps to determine how to complete this task:

- Without exceeding any exposure control levels
- What controls you need to gain access to the room
- Suiting requirements
- Dosimetry.

Simulator Setup Instructions:

1. Need: an RWP

Rad Survey map of TIP room with radiation levels of 500 mrad/hr.

LaSalle Station

Old RAPS RWP#: 010162

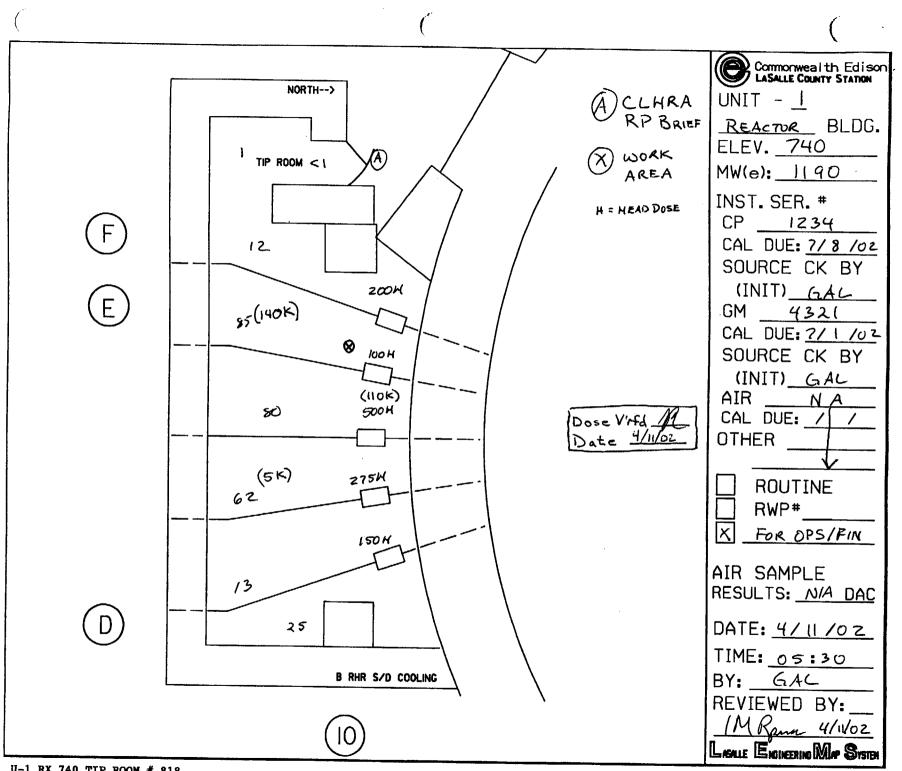
	Radiation	Work Per	mit
×	Radiation	Protection	Information

RWP#: 01010805

Rev:

0

Survey Frequency Requirements:		Shi	elding Recommended:
Radiation: R	outine		None
Contamination: Re	outine	☑	Temporary
Airborne: Re	outine		Permanent


Pre-Job Briefing Notes:

THIS IS A HIGH RISK RWP. A PRE-JOB BRIEFING IS REQUIRED FOR ALL HIGH RISK EVOLUTIONS.

RPT Coverage / Comments:

	Initial	ENSURE ADEQUATE SURVEYS FOR WORK UNDER THIS RWP.
\checkmark	Intermittant	Identify low dose area to workers when performing job specific surveys. Perform pre and post shield surveys as needed.
	Continuous	If insulation is removed from contaminated system, survey exposed area and survey/ label bags of removed insulation. Survey waste generated during job and direct transport if ALARA is compromised.
Survey catch containments during and after breach/use. Obtain representative air samples for breach (particulate, iodine, and/or noble gas as appropriate)and docum If alpha, hot particles, or noble gas conditions are encountered follow station procedures for contingency.		Obtain representative air samples for breach (particulate, iodine, and/or noble gas as appropriate) and document results.

RP Supervisor		ALARA Review By	
064640917	12/27/2000	N/A	
Prepared By		Terminated By	
353587633	09/25/2000		
Job Supervisor			

U-1 RX 740 TIP ROOM # 818

Name	Title
<u>RP-AA-1</u>	RADIATION PROTECTION (NO SITE APPROVAL)
<u>RP-AA-10</u>	RADIATION PROTECTION PROCESS DESCRIPTION (NO SITE APPROVAL)
<u>RP-AA-1002</u>	RADIATION PROTECTION STOP WORK AUTHORITY
<u>RP-AA-1003</u>	RADIATION PROTECTION EVENT-FREE CLOCK
<u>RP-AA-1004</u>	CORPORATE ROG RPM EVENT NOTIFICATIONS
<u>RP-AA-1005</u>	CONDITION REPORT (CR) INITIATION
<u>RP-AA-1081</u>	RADIATION PROTECTION FUNDAMENTALS
<u>RP-AA-200</u>	NRC FORM 4 AND BADGE REGISTRATION FORM
<u>RP-AA-201</u>	ACCESS TO THE RCA FOR ESCORTED VISITORS
<u>RP-AA-201-1001</u>	RADIOLOGICAL INSTRUCTION SHEET FOR ESCORTED VISITORS
<u>RP-AA-202</u>	QUANTITATIVE RESPIRATOR FIT TESTING
<u>RP-AA-203</u>	EXPOSURE CONTROL AND AUTHORIZATION
<u>RP-AA-210</u>	DOSIMETRY ISSUE, USAGE, AND CONTROL
<u>RP-AA-210-1001</u>	DOSIMETRY LOGS AND FORMS
<u>RP-AA-211</u>	PERFORMANCE TESTING OF PERSONNEL DOSIMETRY SERVICES
<u>RP-AA-212</u>	QUARTERLY AREA TLD SURVEILLANCE
<u>RP-AA-213</u>	PERSONNEL EXPOSURE INVESTIGATIONS
RP-AA-220	BIOASSAY PROGRAM
<u>RP-AA-221</u>	WHOLE BODY COUNT DATA REVIEW
<u>RP-AA-222</u>	METHODS FOR ESTIMATING INTERNAL EXPOSURE FROM IN VIVO AND IN VITRO BIOASSAY DATA
<u>RP-AA-250</u>	EXTERNAL DOSE ASSESSMENTS FROM CONTAMINATION
<u>RP-AA-270</u>	PRENATAL AND POSTNATAL PROGRAMS
<u>RP-AA-271</u>	CALCULATING DOSE EQUIVALENT TO THE EMBRYO/FETUS
<u>RP-AA-280</u>	GENERATION OF THE REGULATORY GUIDE 1.16 REPORT
RP-AA-280	OCCUPATIONAL EXPOSURE REPORTING
<u>RP-AA-281</u>	COMPARISON OF PERSONAL DOSIMETER RESULTS
<u>RP-AA-282</u>	PERSONAL DOSE REQUESTS / NRC FORM 5 REPORT
RP-AA-282	PERSONAL DOSE REQUESTS / NRC FORM 5 REPORT SUPERSEDED BY RP-AA-280
<u>RP-AA-304</u>	UNCONDITIONAL RELEASE SURVEYS
<u>RP-AA-350</u>	ASSESSMENT OF RADIOLOGICALLY CONTAMINATED PERSONNEL
<u>RP-AA-351</u>	DECONTAMINATION OF PERSONNEL
<u>RP-AA-376</u>	RADIOLOGICAL POSTINGS, LABELING, AND MARKINGS
RP-AA-376-1001	RADIOLOGICAL POSTING, LABELING, AND MARKING STANDARD
14 74 070 1001	
<u>RP-AA-376-2001</u>	LABELING CONTAINERS AND MARKING OF MATERIAL FOR RADIOLOGICAL PURPOSES

VERIFICATION OF COMPLETION

Job Performance Measure No
Examinee's Name:
Examiner's Name:
Date performed:
Number of attempts:
Time to complete:
Question Documentation:
Question:
Response:

Result: SAT or UNSAT

Examiner's signature and date:

LASALLE COUNTY NUCLEAR STATION

JOB PERFORMANCE MEASURE

Sound Site Assembly Siren from Remote Shutdown Panel

Examination Level: RO

Date: April 8, 2002

Developed by: <u>Raymond Keith Walton</u> Date: <u>March 21, 2002</u>

Reviewed by: _____

Date: _____

Approved by: _____

Date:_____

JOB PERFORMANCE MEASURE

Facility: <u>LaSalle Nuclear Station</u>	Task No: <u>A.4</u>
Task Title: <u>NARS Form Notification</u>	
K/A Reference:2.4.43	K/A Importance: <u>2.8/3.5</u>
Examinee:	
NRC Examiner:	Date:
Time Started:	Time Finished:
Estimated Time to Completion:	Time Critical Task: NO
<u>Method of testing:</u> Performance: <u>X</u> Simulated Actual	Location: Simulator Plant
Task Standard:	
Required Materials: EP-AA-113, Protective Actions, Rev 2	

LOP-CQ-02, LOP-CQ-02, Rev. 3,4/29/98

General References: EP-AA-113, Protective Actions

READ TO THE EXAMINEE:

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. Tell me when you have successfully complete the task.

Initial Conditions: You are an extra NSO. An Emergency has been declared on Unit 1. The control room has been evacuated.

Initiating Cue:

The Shift Manager has directed you to sound the assembly siren from the remote shutdown panel IAW EP-AA-113, "Protective Actions," Attachment 4, step 1.1.2.

Simulator Setup Instructions:

1. None (In Plant)

Initial Conditions:

You are an extra NSO. An Emergency has been declared on Unit 1. The control room has been evacuated.

Initiating Cue:

The Shift Manager has directed you to sound the assembly siren from the remote shutdown panel IAW EP-AA-113, "Protective Actions", Attachment 4, step 1.1.2.

	JOB PERFORMANCE MEASURE				
(D	(Denote critical steps with an asterisk)				
CUE: Provide candidate copy of completed NARS form. START time clock when candidate understands task.			SAT	JNSAT	Comment #
	Element	Expected Response			
1.	REFERs to EP-AA-113, Attach. 4	Reviews EP-AA-113, attachment 4.			
*2.	LOCATES Remote Shutdown Panel	Locates Remote Shutdown Panel.			
*3.	PUSHES large button labeled, "EVAC Initiate".	Cue: Alarm sounds for 2 minutes. (May use time compression)			
*4.	Uses plant Gaitronics mounted on column south of divisional separation door (in Div 1 room) aisle-way. "Attention, attention, plant assembly has been ordered. All persons are to report to your assigned assembly area."	Locates Gaitronics (may also use plant telephone by dialing #4747, although this message is limited by a 30 second timer.) Repeats message 3 times maximum over the next 10 - 15 minutes.			

CUE: This completes this JPM.

Enter Stop Time: _____

VERIFICATION OF COMPLETION

Job Performance Measure No.
Examinee's Name:
Examiner's Name:
Date performed:
Number of attempts:
Fime to complete:
Question Documentation:
Question:
Response:

Result: SAT or UNSAT

Examiner's signature and date: _____

LASALLE COUNTY NUCLEAR STATION

JOB PERFORMANCE MEASURE

Classify the GSEP Event, Determine PARS and Complete a NARS Form for Transmittal

Examination Level: SRO / SRO(U)

Date: April 8, 2002

Developed by: <u>Raymond Keith Walton</u> Date: <u>3/14/2002</u>

JOB PERFORMANCE MEASURE

Facility: LaSalle Nuclear Station	Task No: <u>A.4</u>		
Task Title:Classify GSEP Event, Determine PARS and	nd Complete a NARS Form for Transmittal		
K/A Reference: 2.4.38	K/A Importance: <u>2.2/4.0</u>		
Examinee:			
NRC Examiner:	Date:		
Time Started:	Time Finished:		
Time Critical Task: YES, From time candidate classif NARS form and complete data transmission within 1			
Estimated Time to Completion: <u>10 min</u>			
Method of testing: Performance: X Simulated Actual	Location: X Simulator Plant		
Task Standard: Classify event as FG-1 and recommend evacuation of S	Sub-area 1.		
Required Materials: Blank NARS form from EP-AA-114, Attachment 1.			
General References: EP-AA-114, Notifications, Rev. 0 LaSalle JPM P-EP-04, Rev 3, 7/21/1999			
READ TO THE EXAMINEE: I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. Tell me when you have successfully complete the task.			

Initial Conditions:

You are the Shift Manager with the following plant conditions: Unit 1 has experienced a small LOCA. All rods are in, Drywell pressure is stable a 4 psig, All required PCIS isolations are complete, Reactor pressure is 800 psig and lowering slowly, Reactor level is 36" with the MDRFP on line, Containment rad levels have risen to 8100 R/hr, U1 SBGT operating maintaining dP at -0.3 inch water. Stack WRGM reading 7.8E2 uCi/sec, SBGT WRGM reading 6.5E2 uCi/sec. The A-Model is <u>NOT</u> available.

Initiating Cue:

As Acting Station Director, classify this GSEP event, determine the Protective Action Recommendations for Offsite Personnel and prepare a Nuclear Accident Reporting System form for transmittal by a GSEP communicator. This is a time critical JPM.

.

Simulator Setup Instructions:

1. None

JOB PERFORMANCE MEASURE

INITIAL CONDITIONS

This is a Time Critical JPM.

Initial Conditions:

You are the Shift Manager with the following plant conditions:

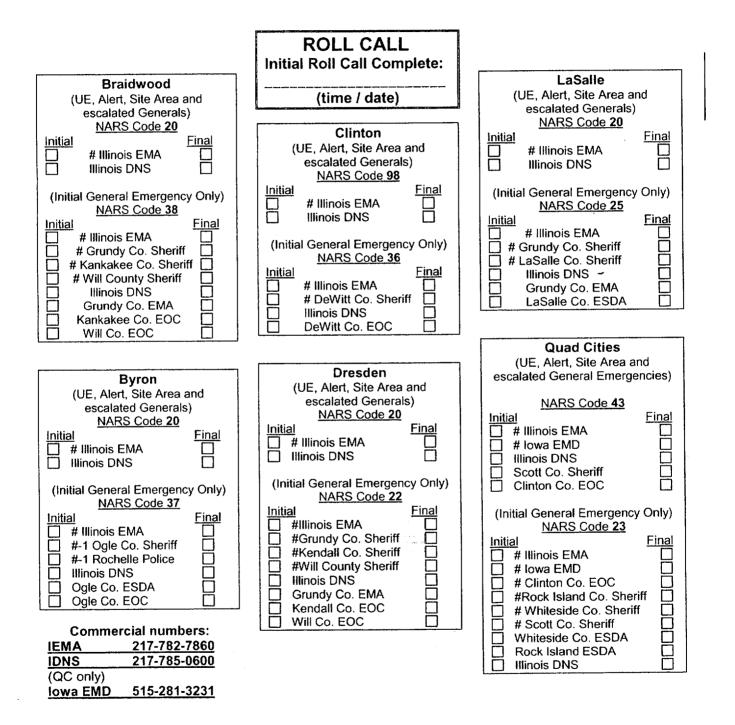
- Unit 1 has experienced a small LOCA.
- All rods are in
- Drywell pressure is stable a 4 psig, (no venting in progress)
- All required PCIS isolations are complete
- Reactor pressure is 800 psig and lowering slowly
- Reactor level is 36" with the MDRFP on line
- Containment rad levels have risen to 8100 R/hr
- U1 SBGT operating maintaining dP at -0.3 inch water
- Stack WRGM reading 7.8E2 uCi/sec, SBGT WRGM reading 6.5E2 uCi/sec.
- The A-Model is NOT available.
- Wind Direction is 295 degrees.
- Wind Speed is 10 mph.

Initiating Cue:

As the Acting Station Director, you must:

- 1. Classify this GSEP event
- 2. Determine the Protective Action Recommendations for Offsite Personnel
- 3. Prepare a Nuclear Accident Reporting System form for transmittal by a GSEP communicator.

JOB PERFORMANCE MEASURE							
(Denote critical steps with an asterisk)							
Provide candidate with copy of EP-AP-114, Notifications after candidate locates procedure.				UNSAT	Comment #		
	Element	Expected Response					
*1.	Determines that GSEP event is an General Emergency FG-1.	CUE: Start time for 15-minute reporting requirement					
2.	Locates/Review EP-AP-114-100 Locates blank copy of NARs form.	CUE: Provide blank NARS form to candidate.					
*3.	FILLS out NARS form.	 Fills out NARS form as follows: 1. Status: Exercise or Drill. 2. Station: LaSalle 3. Accident Classification: General Emergency. 4. Accident Classification Time: actual time. 5. Release to Env.: Occurring or None. 6. Type of Release: Gas. 					
_	REFERS to EP-AA-111, Attach. 5, "LaSalle PAR Determination Flowchart."	NARS Form Block 9, Recommended Actions: Candidate Circles [B]. Enters "Sub Area 1".					
5.	Task Completed.	Hands form to examiner.					


(CUE) THIS COMPLETES THIS JPM Record Stop Time: _____

	EP-AA-114-100							
	Revision 2							
$ \langle \langle X \rangle \rangle $	Page 8 of 16							
	HMENT 1							
V Nuclear Accident Reporting System (NARS)								
Page 5 of 6								
UTILITY MESSAGE NO	STATE MESSAGE NO. <u>N/A</u>							
1.STATUS2.STATION[A] ACTUAL[A] BRAIDWOOD[B] DRILL/EXERCISE[B] BYRON	[C] CLINTON (E)LASALLE [G] ZION [D] DRESDEN [F] QUAD CITIES							
[A] UNUSUAL EVENT TIME: [B] ALERT [C] SITE AREA EMERGENCY DATE:	NT CLASSIFIED ACCIDENT TERMINATED TIME: N/A DATE: N/A							
5. <u>RELEASE STATUS</u> [A] NONE [B] OCCURRING [C] TERMINATED [A] NOT APPLICABLE [B] GASEOUS [C] LIQUID	E 295 (DEGREES FROM) 8. WIND SPEED [A] METERS/SEC.: (B)MILES/HR.: 10							
9. RECOMMENDED ACTIONS								
UTILITY RECOMMENDATION [A] NONE (B) EVACUATE SUB-AREAS (ILLINOIS):								
[C] EVACUATE SUB-AREAS (IOWA):								
STATE RECOMMENDATION [D] NONE								
[E] SHELTER SUB-AREAS:								
[F] EVACUATE SUB-AREAS:								
[G] RECOMMEND POTASSIUM IODIDE (KI) P	PER PROCEDURES							
[H] COMMENCE RETURN OF PUBLIC [I] OTHER								
10. ADDITIONAL INFORMATION	one							
· · · · · · · · · · · · · · · · · · ·								
11. TRANSMITTED BY: <u>NAME</u>	PHONE NUMBER TIME/DATE							
[A] EXELON:								
[B] STATE:								
[C] COUNTY:								
12. RECEIVED BY: <u>NAME</u>	ORGANIZATION TIME/DATE							
NAME	ORGANIZATION TIME/DATE							
	EXELON							
••								
Verified With:								

EP-AA-114-100 Revision 2 Page 9 of 16

ATTACHMENT 1 Nuclear Accident Reporting System (NARS)

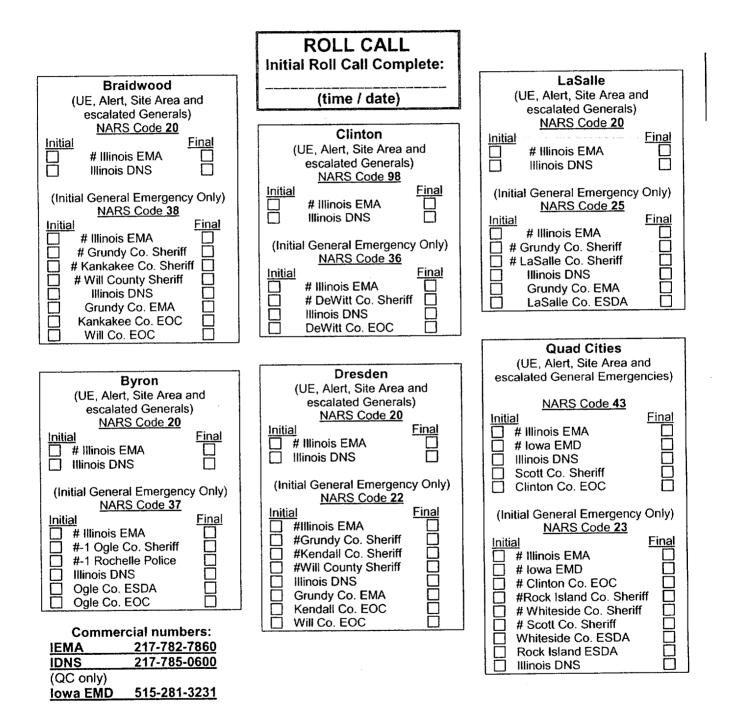
Page 6 of 6

NOTE: # Indicates that this agency is required to be notified within <u>15 minutes</u>.

#-1, Only one needs to answer for notification

EP-AA-114-100 Revision 2 Page 8 of 16

ATTACHMENT 1 Nuclear Accident Reporting System (NARS)


Page 5 of 6

UTILITY MESSAGE NO	STATE MESSAGE NO						
1.STATUS [A] ACTUAL [B] DRILL/EXERCISE2.STATION [A] BRAIDWOOD [B] BYRON[C]	C] CLINTON [E] LASALLI D] DRESDEN [F] QUAD C	E [G] ZION ITIES					
[A] UNUSUAL EVENT TIME: [B] ALERT [C] SITE AREA EMERGENCY DATE:	TIME:	NT TERMINATED					
5.RELEASE STATUS [A] NONE6.TYPE OF RELEASE [A] NOT APPLICABLE[B] OCCURRING [C] TERMINATED[B] GASEOUS [C] LIQUID	[A] M	D SPEED ETERS/SEC.: IILES/HR.:					
 9. RECOMMENDED ACTIONS UTILITY RECOMMENDATION [A] NONE [B] EVACUATE SUB-AREAS (ILLINOIS): [C] EVACUATE SUB-AREAS (IOWA): STATE RECOMMENDATION [D] NONE [E] SHELTER SUB-AREAS: [F] EVACUATE SUB-AREAS: [G] RECOMMEND POTASSIUM IODIDE (KI) PER PROCEDURES [H] COMMENCE RETURN OF PUBLIC [I] OTHER 10. ADDITIONAL INFORMATION							
11. TRANSMITTED BY: NAME [A] EXELON:	PHONE NUMBER	TIME/DATE					
[C] COUNTY: 12. RECEIVED BY: <u>NAME</u>	ORGANIZATION	TIME/DATE					
NAME Approved By:	ORGANIZATION	TIME/DATE					
Verified With:							

EP-AA-114-100 Revision 2 Page 9 of 16

ATTACHMENT 1 Nuclear Accident Reporting System (NARS)

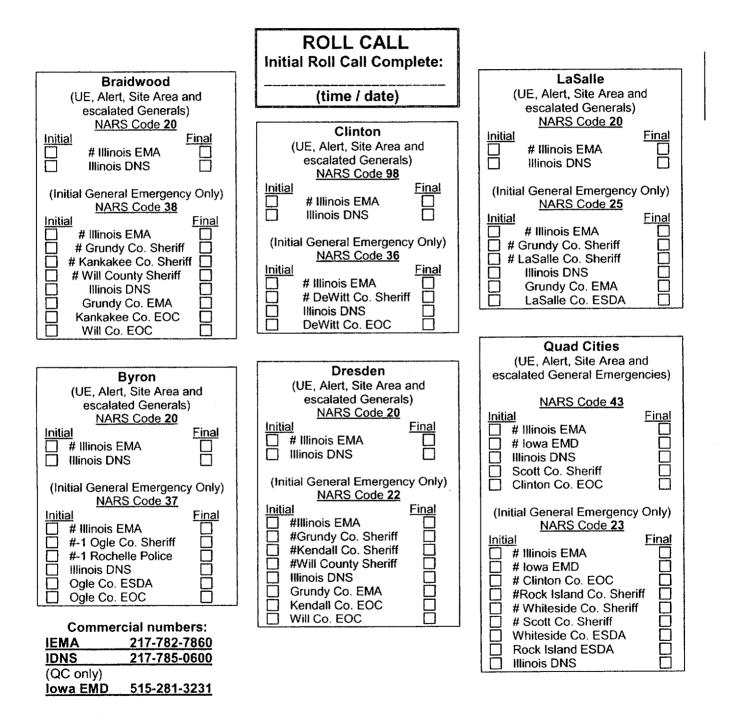
Page 6 of 6

NOTE: # Indicates that this agency is required to be notified within <u>15 minutes</u>.

#-1, Only one needs to answer for notification

EP-AA-114-100 Revision 2 Page 8 of 16

ATTACHMENT 1 Nuclear Accident Reporting System (NARS)


Page 5 of 6

UTILITY MESSAGE NO	STATE MESSAGE NO.							
1.STATUS [A] ACTUAL2.STATION [A] BRAIDWOOD [B] DRILL/EXERCISE[B] DRILL/EXERCISE[B] BYRON[C]	C] CLINTON [E] LASALL D] DRESDEN [F] QUAD C	E [G] ZION						
3. ONSITE CONDITION 4. ACCIDEN	T CLASSIFIED ACCIDE	NT TERMINATED						
[A] UNUSUAL EVENT TIME:	TIME:							
[B] ALERT	DATE:							
5. <u>RELEASE STATUS</u> 6. <u>TYPE OF RELEASE</u>	7. <u>WIND DIR</u> 8. <u>WINI</u>	<u>D SPEED</u>						
[A] NONE [A] NOT APPLICABLE		IETERS/SEC.:						
[B] OCCURRING [B] GASEOUS [C] TERMINATED [C] LIQUID	(DEGREES FROM)	IILES/HR.:						
9. RECOMMENDED ACTIONS								
UTILITY RECOMMENDATION [A] NONE								
[B] EVACUATE SUB-AREAS (ILLINOIS):								
[C] EVACUATE SUB-AREAS (IOWA):								
STATE RECOMMENDATION	STATE RECOMMENDATION							
[D] NONE								
[E] SHELTER SUB-AREAS:								
[G] RECOMMEND POTASSIUM IODIDE (KI) PE								
[H] COMMENCE RETURN OF PUBLIC								
[I] OTHER	······							
10. ADDITIONAL INFORMATION								
	·							
11. TRANSMITTED BY: NAME	PHONE NUMBER	TIME/DATE						
[A] EXELON:								
[B] STATE:	·							
[C] COUNTY:								
12. RECEIVED BY: NAME	ORGANIZATION	TIME/DATE						
NAME	ORGANIZATION	TIME/DATE						
Approved By:								
Verified With:								

EP-AA-114-100 Revision 2 Page 9 of 16

ATTACHMENT 1 Nuclear Accident Reporting System (NARS)

Page 6 of 6

NOTE: # Indicates that this agency is required to be notified within <u>15 minutes</u>.

#-1, Only one needs to answer for notification

VERIFICATION OF COMPLETION

Job Performance Measure No. ______
Examinee's Name:
Examiner's Name:
Date performed:
Number of attempts:
Time to complete:
Question Documentation:
Question:_______
Response:_______

Result: SAT or UNSAT

Examiner's signature and date: