

4

Westinghouse Electric Company Nuclear Services P.O. Box 355 Pittsburgh, Pennsylvania 15230-0355 USA

Document Control Desk U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

Attention: Chief, Information Management Branch Division of Program Management Policy Development and Analysis Staff Direct tel: (412) 374-5036 Direct fax: (412) 374-4011 e-mail: galem1js@westinghouse.com

Our ref: CAW-02-1535

June 27, 2002

APPLICATION FOR WITHHOLDING PROPRIETARY INFORMATION FROM PUBLIC DISCLOSURE

Subject: WCAP-15902-P, Rev. 0, Entitled "Conditional Extension of the Rod Misalignment Technical Specification for Indian Point Unit 2" (Proprietary)

The proprietary information for which withholding is being requested in the above-referenced report is further identified in Affidavit CAW-02-1535 signed by the owner of the proprietary information, Westinghouse Electric Company LLC. The affidavit, which accompanies this letter, sets forth the basis on which the information may be withheld from public disclosure by the Commission and addresses with specificity the considerations listed in paragraph (b)(4) of 10 CFR Section 2.790 of the Commission's regulations.

Accordingly, this letter authorizes the utilization of the accompanying Affidavit by the Westinghouse Owners Group.

Correspondence with respect to the proprietary aspects of the application for withholding or the Westinghouse affidavit should reference this letter, CAW-02-1535 and should be addressed to the undersigned.

Very truly yours,

Galunt

J. S. Galembush, Acting Manager Regulatory and Licensing Engineering

Enclosure

1007

AFFIDAVIT

COMMONWEALTH OF PENNSYLVANIA:

SS

COUNTY OF ALLEGHENY:

Before me, the undersigned authority, personally appeared John S. Galembush, who, being by me duly sworn according to law, deposes and says that he is authorized to execute this Affidavit on behalf of Westinghouse Electric Company, LLC ("Westinghouse"), and that the averments of fact set forth in this Affidavit are true and correct to the best of his knowledge, information, and belief:

Hu

John S. Galembush, Acting Manager Regulatory and Licensing Engineering

Sworn to and subscribed before me this $27^{1/2}$ day of $______, 2002$

nça Public

ARY

Notarial Sea Kay E. Gongaware, Notary Public Monroeville Boro, Allegheny County My Commission Expires Feb. 7, 2005 Member, Pennsylvania Association of Notaries

- (1) I am Acting Manager, Regulatory and Licensing Engineering, in the Nuclear Services, of the Westinghouse Electric Company, LLC ("Westinghouse") and as such, I have been specifically delegated the function of reviewing the proprietary information sought to be withheld from public disclosure in connection with nuclear power plant licensing and rulemaking proceedings, and am authorized to apply for its withholding on behalf of Westinghouse Electric Company, LLC.
- (2) I am making this Affidavit in conformance with the provisions of 10 CFR Section 2.790 of the Commission's regulations and in conjunction with the Westinghouse application for withholding accompanying this Affidavit.
- (3) I have personal knowledge of the criteria and procedures utilized by the Westinghouse Electric Company, LLC in designating information as a trade secret, privileged or as confidential commercial or financial information.
- (4) Pursuant to the provisions of paragraph (b)(4) of Section 2.790 of the Commission's regulations, the following is furnished for consideration by the Commission in determining whether the information sought to be withheld from public disclosure should be withheld.
 - (i) The information sought to be withheld from public disclosure is owned and has been held in confidence by Westinghouse.
 - (ii) The information is of a type customarily held in confidence by Westinghouse and not customarily disclosed to the public. Westinghouse has a rational basis for determining the types of information customarily held in confidence by it and, in that connection, utilizes a system to determine when and whether to hold certain types of information in confidence. The application of that system and the substance of that system constitutes Westinghouse policy and provides the rational basis required.

Under that system, information is held in confidence if it falls in one or more of the following areas of potential competitive advantage:

- (a) The information reveals the distinguishing aspects of a process (or component, structure, tool, method, etc.) where prevention of its use by any of Westinghouse's competitors without license from Westinghouse constitutes a competitive economic advantage over other companies.
- (b) It consists of supporting data, including test data, relative to a process (or component, structure, tool, method, etc.) the application of which data secures a competitive economic advantage, e.g., by optimization or improved marketability.

ι....

- (c) Its use by a competitor would reduce his expenditure of resources or improve his competitive position in the design, manufacture, shipment, installation, assurance of quality, or licensing a similar product.
- (d) It reveals cost or price information, production capacities, budget levels, or commercial strategies of Westinghouse, its customers or suppliers.
- (e) It reveals aspects of past, present, or future Westinghouse or customer funded development plans and programs of potential commercial value to Westinghouse.
- (f) It contains patentable ideas, for which patent protection may be desirable.

There are sound policy reasons behind the Westinghouse system which include the following:

- (a) The use of such information by Westinghouse gives Westinghouse a competitive advantage over its competitors. It is, therefore, withheld from disclosure to protect the Westinghouse competitive position.
- (b) It is information which is marketable in many ways. The extent to which such information is available to competitors diminishes the Westinghouse ability to sell products and services involving the use of the information.
- (c) Use by our competitor would put Westinghouse at a competitive disadvantage by reducing his expenditure of resources at our expense.
- (d) Each component of proprietary information pertinent to a particular competitive advantage is potentially as valuable as the total competitive advantage. If competitors acquire components of proprietary information, any one component may be the key to the entire puzzle, thereby depriving Westinghouse of a competitive advantage.
- (e) Unrestricted disclosure would jeopardize the position of prominence of Westinghouse in the world market, and thereby give a market advantage to the competition of those countries.
- (f) The Westinghouse capacity to invest corporate assets in research and development depends upon the success in obtaining and maintaining a competitive advantage.
- (iii) The information is being transmitted to the Commission in confidence and, under the provisions of 10 CFR Section 2.790, it is to be received in confidence by the Commission.

- (iv) The information sought to be protected is not available in public sources or available information has not been previously employed in the same original manner or method to the best of our knowledge.
- (v) The proprietary information sought to be withheld in this submittal is that which is appropriately marked in WCAP-15902-P, "Conditional Extension of the Rod Misalignment Technical Specification for Indian Point Unit 2," for information in support of Indian Point Unit 2 Technical Specifications licensing amendment change transmitted to Entergy Nuclear Operations Inc. via Westinghouse Letter CAC-02-120, dated June 27, 2002 for submittal to the Commission. The proprietary information was provided by Westinghouse Electric Company, LLC.

This information is part of that which will enable Westinghouse to:

(a) Assist the customers in the licensing and NRC approval of the Technical Specification changes associated with this program.

Further this information has substantial commercial value as follows:

- (a) Westinghouse plans to sell the use of similar information to its customers for the purpose of extending the Rod Misalignment Technical Specification.
- (b) Westinghouse can sell support and defense of the technology to its customers in the licensing process.

Public disclosure of this proprietary information is likely to cause substantial harm to the competitive position of Westinghouse because it would enhance the ability of competitors to provide similar calculation, evaluation and licensing defense services for commercial power reactors without commensurate expenses. Also, public disclosure of the information would enable others to use the information to meet NRC requirements for licensing documentation without purchasing the right to use the information.

The development of the technology described in part by the information is the result of applying the results of many years of experience in an intensive Westinghouse effort and the expenditure of a considerable sum of money.

In order for competitors of Westinghouse to duplicate this information, similar technical programs would have to be performed and a significant manpower effort, having the requisite talent and experience, would have to be expended for development of analytical techniques and data in support of this program.

Further the deponent sayeth not.

COPYRIGHT NOTICE

The reports transmitted herewith each bear a Westinghouse copyright notice. The NRC is permitted to make the number of copies for the information contained in these reports which are necessary for its internal use in connection with generic and plant-specific reviews and approvals as well as the issuance, denial, amendment, transfer, renewal, modification, suspension, revocation, or violation of a license, permit, order, or regulation subject to the requirements of 10 CFR 2.790 regarding restrictions on public disclosure to the extent such information has been identified as proprietary by Westinghouse, copyright protection not withstanding. With respect to the non-proprietary versions of these reports, the NRC is permitted to make the number of copies beyond those necessary for its internal use which are necessary in order to have one copy available for public viewing in the appropriate docket files in local public document rooms as may be required by NRC regulations if the number of copies submitted is insufficient for this purpose. Copies made by the NRC must include the copyright notice in all instances and the proprietary notice if the original was identified as proprietary.

PROPRIETARY INFORMATION NOTICE

. **.** . ♥

Transmitted herewith are proprietary and/or non-proprietary versions of documents furnished to the NRC in connection with requests for generic and/or plant-specific review and approval.

In order to conform to the requirements of 10 CFR 2.790 of the Commission's regulations concerning the protection of proprietary information so submitted to the NRC, the information which is proprietary in the proprietary version is contained within brackets, and where the proprietary information has been deleted in the non-proprietary version, only the brackets remain (the information that was contained within the brackets in the proprietary versions having been deleted). The justification for claiming the information so designated as proprietary is indicated in both versions by means of lower case letters (a) through (f) located as a superscript immediately following the brackets enclosing each item of information being identified as proprietary or in the margin opposite such information. These lower case letters refer to the types of information Westinghouse customarily holds in confidence identified in Sections (4)(ii)(a) through (4)(ii)(f) of the affidavit accompanying this transmittal pursuant to 10 CFR 2.790(b)(1).

Westinghouse Non-Proprietary Class 3

WCAP-15902-NP Revision 0 June 2002

Conditional Extension of the Rod Misalignment Technical Specification for Indian Point Unit 2

WESTINGHOUSE NON-PROPRIETARY CLASS 3

WCAP-15902-NP

Conditional Extension of the Rod Misalignment Technical Specification for Indian Point Unit 2

June, 2002

R. J. Fetterman

Verified:

F. F. Cortazar

m Approved Piplica, Manager Core Analysis C

Westinghouse Electric Company LLC Nuclear Fuel 4350 Northern Pike Monroeville, Pennsylvania 15146-2886

© 2002 Westinghouse Electric Company LLC, All Rights Reserved

ABSTRACT

This report proposes modifying the Technical Specification for allowable rod misalignment from the current ± 12 steps indicated to a value up to a maximum of ± 18 steps indicated, depending upon the minimum available peaking factor margin. Such a Technical Specifications change is sought to minimize disruptions to normal plant operations due to frequent and erroneous indications of rod misalignment from the Analog Rod Position Indicator (ARPI).

The required margins to the hot rod and hot spot peaking factor ($F_{\Delta H}$ and F_Q) limits will be determined by examining the changes in these peaking factors between similar cases with misalignments of ±12 and ±18 steps indicated. These resulting required margins will be determined such that they are cycle independent for Indian Point 2. It will also be shown that plant safety will not be compromised by this Technical Specifications change. "This page intentionally blank."

ACKNOWLEDGEMENTS

The author gratefully acknowledges the following individuals for their contributions to the completion of this report: F. F. Cortazar and C. R. Tuley.

"This page intentionally blank."

TABLE OF CONTENTS

1	INT	FRODUCTION	1-1
2	DE	SCRIPTION OF ROD CONTROL SYSTEM FAILURES	2-1
3	AN	ALYSES SUPPORTING NORMAL OPERATION	3-1
	3.1	ANALYSIS METHODOLOGY	
	3.2	CORE MODELS USED FOR ANALYSIS	
	3.3	MISALIGNMENT CASES ANALYZED	
	3.4	ANALYSIS RESULTS, POWER > 85% RTP	
	3.5	ANALYSIS RESULTS, POWER ≤ 85% RTP	
	3.6	PROPOSED TECHNICAL SPECIFICATION CHANGES	
4	SAI	FETY ANALYSIS IMPACTS	
5	CO	NCLUSIONS	
6	REI	FERENCES	6-1
A	APF	PENDIX	A-1

"This page intentionally blank."

an anna a casharra

LIST OF TABLES

Table 3.1	Design Models Used in Rod Misalignment Analyses	-2
Table 3.2	Summary of Misalignment Cases Analyzed; Change in Peak $F_{\Delta H}$ and F_Q for Increased Misalignment Beyond $~12$ Steps Indicated	11
Table 3.3	Summary of 18 Step Indicated Hot Full Power Rod Misalignment Cases Analyzed 3-	12
Table 3.4	Summary of 15 Step Indicated Rod Misalignment Cases Analyzed	28
Table 3.5	Summary of 18 Step Indicated Part-Power Rod Misalignment Cases Analyzed	35
Table 3.6	Summary of 21 Step Indicated Part-Power Rod Misalignment Cases Analyzed	41
Table 3.7	Summary of 24 Step Indicated Part-Power Rod Misalignment Cases Analyzed	47

"This page intentionally blank."

· ----

LIST OF FIGURES

Figure 3.1	Indian Point 2 Control and Shutdown Rod Configuration By Subgroup and Power Cabinet	3-7
Figure 3.2	Indian Point 2 Control Rod Insertion Limits	3-9
Figure 3.3	Permissible Increase in Rod Misalignment Vs. Available $F_{\Delta H}$ and F_Q Margin	-10
Figure A.1:	Case 99; BOL HFP Current Cycle F _Q Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05	4-3
Figure A.2:	Case 99; BOL HFP Current Cycle F _Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05	\-4
Figure A.3:	Case 106; BOL HFP Future Cycle $F_{\Delta H}$ Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05	\ -5
Figure A.4:	Case 106; BOL HFP Future Cycle $F_{\Delta H}$ Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05	\ -6
Figure A.5:	Case 116; MOL HFP Future Cycle $F_{\Delta H}$ Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05	X-7
Figure A.6:	Case 116; MOL HFP Future Cycle $F_{\Delta H}$ Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05	A-8
Figure A.7:	Case 116; MOL HFP Future Cycle F _Q Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05	x -9
Figure A.8:	Case 116; MOL HFP Future Cycle F _Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05 A-	10
Figure A.9:	Case 117; EOL HFP Current Cycle F _Q Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rod C-05	11
Figure A.10:	Case 117; EOL HFP Current Cycle F _Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rod C-05	12
Figure A.11:	Case 118; EOL HFP Current Cycle F _Q Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05 A-	13

Figure A.12:	Case 118; EOL HFP Current Cycle F _Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05 A-14
Figure A.13:	Case 119; EOL HFP Current Cycle $F_{\Delta H}$ Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05
Figure A.14:	Case 119; EOL HFP Current Cycle $F_{\Delta H}$ Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05 A-16
Figure A.15:	Case 124; EOL HFP Current Cycle F _Q Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In
Figure A.16:	Case 124; EOL HFP Current Cycle F _Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In
Figure A.17:	Case 128; EOL HFP Future $\rm F_Q$ Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rod C-05 A-19
Figure A.18:	Case 128; EOL HFP Future Cycle F_Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rod C-05
Figure A.19:	Case 129; EOL HFP Future Cycle $F_{\Delta H}$ Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05
Figure A.20:	Case 129; EOL HFP Future Cycle $F_{\Delta H}$ Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05 A-22
Figure A.21:	Case 129; EOL HFP Future Cycle F_Q Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05
Figure A.22:	Case 129; EOL HFP Future Cycle F _Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05 A-24
Figure A.23:	Case 130; EOL HFP Future Cycle $F_{\Delta H}$ Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05
Figure A.24:	Case 130; EOL HFP Future Cycle $F_{\Delta H}$ Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05 A-26
Figure A.25:	Case 339; BOL 50% RTP Current Cycle F _Q Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

:

Figure A.26:	Case 339; BOL 50% RTP Current Cycle F_Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05A-28
Figure A.27:	Case 345; BOL 50% RTP Future Cycle $F_{\Delta H}$ Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05A-29
Figure A.28:	Case 345; BOL 50% RTP Future Cycle $F_{\Delta H}$ Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05A-30
Figure A.29:	Case 345; BOL 50% RTP Future Cycle F _Q Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05
Figure A.30:	Case 345; BOL 50% RTP Future Cycle F _Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05A-32
Figure A.31:	Case 351; MOL 85% RTP Future Cycle $F_{\Delta H}$ Versus Axial Offset, Control Bank D at 142 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05
Figure A.32:	Case 351; MOL 85% RTP Future Cycle $F_{\Delta H}$ Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 142 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05A-34
Figure A.33:	Case 357; EOL 50% RTP Current Cycle $F_{\Delta H}$ Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05
Figure A.34:	Case 357; EOL 50% RTP Current Cycle $F_{\Delta H}$ Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05A-36
Figure A.35:	Case 357; EOL 50% RTP Current Cycle F _Q Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05
Figure A.36:	Case 357; EOL 50% RTP Current Cycle F _Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05A-38
Figure A.37:	Case 370; EOL 85% RTP Future Cycle $F_{\Delta H}$ Versus Axial Offset, Control Bank D at 142 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05
Figure A.38:	Case 370; EOL 85% RTP Future Cycle $F_{\Delta H}$ Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 142 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05A-40

Figure A.39:	Case 371; EOL 50% RTP Future Cycle $F_{\Delta H}$ Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05	A-41
Figure A.40:	Case 371; EOL 50% RTP Future Cycle $F_{\Delta H}$ Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05	A-42
Figure A.41:	Case 371; EOL 50% RTP Future Cycle F _Q Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05	A-43
Figure A.42:	Case 371; EOL 50% RTP Future Cycle F _Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05	A-44
Figure A.43:	Case 372; EOL 50% RTP Future Cycle $F_{\Delta H}$ Versus Axial Offset, Control Banks D/C at 68/191 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05	A-45
Figure A.44:	Case 372; EOL 50% RTP Future Cycle $F_{\Delta H}$ Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Banks D/C at 68/191 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05	A-46
Figure A.45:	Case 372; EOL 50% RTP Future Cycle F _Q Versus Axial Offset, Control Bank D/C at 68/191 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05	A-47
Figure A.46:	Case 372; EOL 50% RTP Future Cycle F _Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D/C at 68/191 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05	A-48
Figure A.47:	Case 373; EOL 50% RTP Future Cycle $F_{\Delta H}$ Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05	A-49
Figure A.48:	Case 373; EOL 50% RTP Future Cycle $F_{\Delta H}$ Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05	A-50
Figure A.49:	Case 373; EOL 50% RTP Future Cycle F _Q Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05	A-51
Figure A.50:	Case 373; EOL 50% RTP Future Cycle F _Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05	. A-52
Figure A.51:	Case 376; EOL 85% RTP Future Cycle F _Q Versus Axial Offset, Control Bank D at 142 and Cabinet 2AC Misaligned In Except for Rods C-05	. A-53
Figure A.52:	Case 376; EOL 85% RTP Future Cycle F _Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 142 and Cabinet 2AC Misaligned In Except for Rod C-05	. A-54

1 INTRODUCTION

The current Westinghouse licensing basis supports an indicated rod misalignment of ± 12 steps for any rod(s) within a bank from the bank demand position. As the analog rod position indication system (ARPI) has an uncertainty of 12 steps, the actual misalignment may be as large as ± 24 steps. In most cases, these indicated misalignments are false readings caused by fluctuations in the temperature of the control rod drive shafts. For example, such fluctuations can occur after rod control cluster assemblies (RCCAs) are withdrawn from the core during startup. However, when an indication of a misalignment does occur, false or otherwise, the reactor operator must take corrective action per the Technical Specifications.

Increasing the maximum allowable indicated misalignment to ± 18 steps (actual misalignment of ± 30 steps) for core powers above 85% rated thermal power (RTP) and ± 24 steps (actual misalignment of ± 36 steps) for core powers less than or equal to 85% rated thermal power (RTP) will provide relief to the aforementioned conditions of false misalignment indications from the ARPI. For real misalignments, these misalignment increases generally yield small but acceptable increases in the hot rod and hot spot peaking factors, $F_{\Delta H}$ and F_Q . This report will briefly review the feasible single failures of the rod control system that could yield misalignments of single and multiple rods. These feasible single failures will then form the basis for the cases analyzed and documented in this report to support the increase in the misalignment permitted by the Technical Specifications.

"This page intentionally blank."

2 DESCRIPTION OF ROD CONTROL SYSTEM FAILURES

To determine the misalignment cases to be analyzed for this Technical Specification change, an evaluation of the rod control system was performed, drawing from the Failure Mode and Effects Analysis (FMEA) documented in Reference 1. This evaluation considered single failures within the rod control system logic cabinets, power cabinets and the control rod drive mechanisms (CRDMs). This evaluation also considered the impacts of the revised current order timing previously documented in Reference 2.

This evaluation has determined that a single failure of the rod control system can result in six categories of failure mechanisms within the system:

A.]]^{a,c}. Β. ſ C. []^{a,c}. D. Γ]^{a,c}.

1^{a,c}.

E. [

]^{a,c}.

F. [

]^{a,c}.

3 ANALYSES SUPPORTING NORMAL OPERATION

For the remainder of this report, the failure mechanisms discussed in Section 2 will be referred to by the letter they are listed as; i.e. failures A through F. When analyzing these failure mechanisms for peaking factor impacts, the following cabinet configurations must be considered:

- 1. 1AC: groups CA1, CC1, SA1
- 2. 2AC: groups CA2, CC2, SA2
- 3. 1BD: groups CB1, CD1, SB1
- 4. 2BD: groups CB2, CD2, SB2
- 5. SCD: groups SC, SD

The above configurations are also illustrated in Figure 3.1. The group nomenclature used to describe the power cabinets is defined as follows: the first letter (C or S) refers to a control or shutdown bank; the second letter (A, B, C or D) refers to the bank; the number (1 or 2) refers to the group number. For example, power cabinet 1AC controls group CA1, which is group 1 of control bank A. Power cabinet 2BD controls group SB2, which is group 2 of shutdown bank B. Note that the Indian Point 2 plant does not have a shutdown bank E (SE), which would be the third group of rods in power cabinet SCD.

[

 $]^{a,c}$.

3.1 ANALYSIS METHODOLOGY

The failure mechanism categories described in Section 2 will be analyzed using the USNRC-approved PHOENIX-P/ANC core design system documented in References 3 and 4. For each failure analyzed, calculations are performed for misalignments of ± 24 steps plus additional misalignments and compared to the corresponding non-misaligned reference case.

The $F_{\Delta H}$ and F_O for these cases are calculated and compared [

]^{a,c}.

3.2 CORE MODELS USED FOR ANALYSIS

To perform the analysis of the possible rod misalignments, two different ANC models of the Indian Point 2 core were used. The first model represents the planned design for 24 month cycle operation. The second model represents an 18 month transition cycle. These two models are summarized in Table 3.1 below:

Design Parameter	Current Cycle	Future Cycle
Cycle Length (End of Full Power Capability, EFPD)	660	[] ^{a,c}
No. of Feed Assemblies	88	[] ^{a,c}
No. Feeds Under Lead Bank (No. @ w/o U235)	8 @ 4.95	[] ^{a,c}
Feed Enrichments (No. @ w/o U235)	32 @ 4.60 8 @ 4.80 48 @ 4.95	[] ^{a,c}
Axial Blankets (w/o U235)	8, 6" 2.6 w/o Annular 80, 8" 3.2 w/o Annular	[] ^{a,c}
Burnable Absorbers (No. / Type / Length)	848 IFBA, 120" centered 7664 IFBA, 128" centered 112 WABA, 132" centered 1040 WABA, 120" centered	[] ^{a,c}
$F_{\Delta H}$ Limit	1.70	[] ^{a,c}
F _Q Limit	2.50	[] ^{a,c}

Table 3.1 Design Models Used in Rod Misalignment Analyses

3.3 MISALIGNMENT CASES ANALYZED

For the failure mechanism categories listed in Section 2, several distinct subsets of cases are analyzed in ANC. These cases are considered at [

]^{a,c}. Some cases are also examined at other cycle burnups, although these cases were found to generally yield less limiting increases in peaking factors from an increase in the rod misalignment. Most of the calculations are performed assuming the reference condition as hot full power (HFP) [

]^{a,c}; the Indian Point 2 RILs are illustrated in Figure 3.2. Several of these cases are repeated at other reference rod conditions above the RILs, and at part power conditions such as 85% and 50% rated thermal power. The subsets of cases analyzed are summarized below:

1. [ا^{a,c}. [2.]^{a,c}. 3. []^{a,c}. [4. $]^{a,c}$. 5. [6. [[7.

]^{a,c}.

]^{a,c}.

8. [

The basic analysis approach used in this report proposes dividing the rod misalignment Technical Specification into two modes of surveillance: operation at core powers greater than 85% rated thermal power (RTP); operation at core powers less than or equal to 85% RTP.

]^{a,c}.

For the first mode of surveillance, the specific HFP cases analyzed for an additional 6 steps of misalignment are summarized in Table 3.3. The failure mechanisms listed in Table 3.3 are described in Section 2. Several of the limiting 6 step additional misalignment cases were repeated with only 3 steps of additional misalignment (± 27 steps total) as listed in Table 3.4. The performance of the 3 step misalignment cases provide completeness and verify the bounding nature of the evaluation process utilized in this report. Results from these two tables are summarized in Table 3.2.

For the second mode of surveillance, additional cases were performed at part power conditions as listed in Tables 3.5 through 3.7 for additional misalignments of 6, 9 and 12 steps (30, 33 and 36 steps total). The results of the 12 additional step cases in Table 3.7 are used to determine an acceptable rod misalignment limit for core powers less than or equal to 85% RTP. The performance of the 6 and 9 step misalignment part-power cases provide completeness and verify the bounding nature of the evaluation process utilized in this report. Results from these three tables are also summarized in Table 3.2.

3.4 ANALYSIS RESULTS, POWER > 85% RTP

A complete description of all cases analyzed is presented in Tables 3.3 through 3.7. A summary of all cases analyzed and the limiting results to support the rod misalignment Technical Specifications change is given in Table 3.2. This data is presented as the change in the peak $F_{\Delta H}$ and F_Q for an increase in the rod misalignment beyond the current licensing basis of ±12 steps indicated (±24 steps actual).

Note that with the current $F_{\Delta H}$ and F_Q Technical Specifications, margins to the limits generally increase as power level decreases:

$$F_{\Delta H}^{LIMIT} = F_{\Delta H}^{HFP} [1 + 0.3(1 - P)]$$
(1)

$$F_Q^{LIMIT} = \frac{F_Q^{HFP}}{P}, P > 0.5$$
⁽²⁾

Then, since $F_{\Delta H}$ and F_Q margins are usually a minimum at HFP, the amount of margin required to allow the permissible indicated misalignment to be increased from ±12 to ±18 steps will be determined based on the HFP data for the additional ±6 step misalignments from Table 3.3 and summarized in Table 3.2. For all HFP ±6 step misalignment cases, the 95/95 increases in $F_{\Delta H}$ and F_Q are []^{a,c} and []^{a,c} respectively, and the maximum increases in $F_{\Delta H}$ and F_Q are []^{a,c} and []^{a,c} respectively. These results can be conservatively bounded by required $F_{\Delta H}$ and F_Q margins of []^{a,c} and []^{a,c}, respectively, for increased rod misalignment of ±6 steps. Note that these required margins are an increase of []^{a,c} and []^{a,c} respectively over the 95/95 values and an increase of []^{a,c} and []^{a,c} and [

Examining the ± 3 step misalignments from Table 3.4, and summarized in Table 3.2, the 95/95 increases in $F_{\Delta H}$ and F_Q are [$]^{a,c}$ and [$]^{a,c}$ respectively, and the maximum increases in $F_{\Delta H}$ and F_Q are [$]^{a,c}$ and [$]^{a,c}$ respectively. These results can be conservatively bounded by required $F_{\Delta H}$ and F_Q margins of [$]^{a,c}$ and [$]^{a,c}$ respectively. Note that these required margins are an increase of [$]^{a,c}$ and [$]^{a,c}$ respectively over the 95/95 values and an increase of [$]^{a,c}$ and [$]^{a,c}$ respectively over the 95/95 values and an increase of [$]^{a,c}$ and [$]^{a,c}$ respectively over the 95/95 values and an increase of [$]^{a,c}$ and [$]^{a,c}$ respectively over the observed maximum values for all ± 3 step cases. The analysis approach of the ± 3 step cases is also conservative in that most of the cases analyzed [

]^{a,c} were chosen based on which cases provided limiting results in the ± 6 step analysis. [

 $]^{a,c}$.

Therefore, the proposed $F_{\Delta H}$ and F_Q margins for an additional 3 steps of misalignment are half of the limits proposed for an additional 6 steps. This would suggest that margin required for an increase in the permissible misalignment for core powers greater than 85% RTP can then be specified as a linear function of the available peaking factor margin, with the misalignment increase being determined from the minimum of the available $F_{\Delta H}$ or F_Q margin. The proposed rod misalignment limit for core powers greater than 85% RTP is illustrated in Figure 3.3.

3.5 ANALYSIS RESULTS, POWER $\leq 85\%$ RTP

The ± 6 , ± 9 and ± 12 additional step part-power misalignment cases are listed in Table 3.5 through 3.7 respectively, and summarized in Table 3.2. The 95/95 increases in the ± 6 , ± 9 and ± 12 additional step $F_{\Delta H}$ and F_Q are []^{a,c} and []^{a,c}, []^{a,c} and []^{a,c}, and []^{a,c} and []

]^{a,c}, respectively, larger than the HFP-only ± 6 additional step increases. However, by 85% power, the Technical Specification $F_{\Delta H}$ and F_Q limits have increased by 4.5% and 17%, respectively, as defined in Equations 1 and 2. [

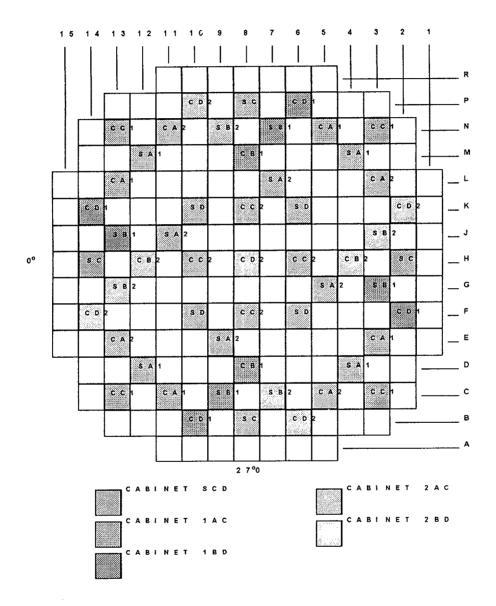
]^{a,c}, the proposed rod misalignment Technical Specification limit of ±18 steps indicated for core powers above 85% RTP can be increased for core powers less than or equal to 85% RTP. At 85% RTP, the peaking factor limit increases of 4.5% in $F_{\Delta H}$ and 17% in F_O [

 $]^{a,c}$ in F_Q due to the additional ±12 additional steps of rod misalignment. The analysis approach of the part-power misalignment cases is also conservative in that

most of the cases analyzed [chosen based on which cases provided limiting results in the ± 6 step analysis. [

]^{a,c} were

 $]^{a,c}$. Therefore, the proposed


allowable indicated misalignment is ± 24 steps for core powers of 85% RTP or less.

3.6 PROPOSED TECHNICAL SPECIFICATION CHANGES

A graphic representation of the proposed Technical Specification for core powers greater than 85% RTP discussed in Section 3.4 is shown in Figure 3.3. The amount of available margin must be determined at least once every 30 EFPD during normal incore flux map surveillance. For Indian Point 2, the amount of F_Q margin will be based on the F_Q surveillance methodology (Reference 6), which accounts for any transient and burnup effects on the measured steady-state F_Q . The required peaking factors margins for additional misalignments at core powers above 85% RTP are also summarized below:

Indicated	Additional	l Margin		
Misalignment (Steps)	Misalignment (Steps)	$\mathbf{F}_{\Delta \mathbf{H}}$	FQ	
12	0	[] ^{a,c}	[] ^{a,c}	
13	1	[] ^{a,c}	[] ^{a,c}	
14	2	[] ^{a,c}	[] ^{a,c}	
15	3	[] ^{a,c}	[] ^{a,c}	
16	4	[] ^{a,c}	[] ^{a,c}	
17	5	[] ^{a,c}	[] ^{a,c}	
18	6	[] ^{a,c}	[] ^{a,c}	

For core powers of 85% RTP or less, as discussed in Section 3.5, the allowable indicated rod misalignment will be ± 24 steps. At this amount of misalignment, the increase in the peaking factors relative to the current limit of ± 12 steps is [$]^{a,c}$ as defined in Equations 1 and 2 of Section 3.4.

.

٠

Figure 3.1 Indian P oint 2 Control and Shutdown Rod Con guration By Subgroup and Power Cabinet

3-7

"This page intentionally blank."

.

•

•

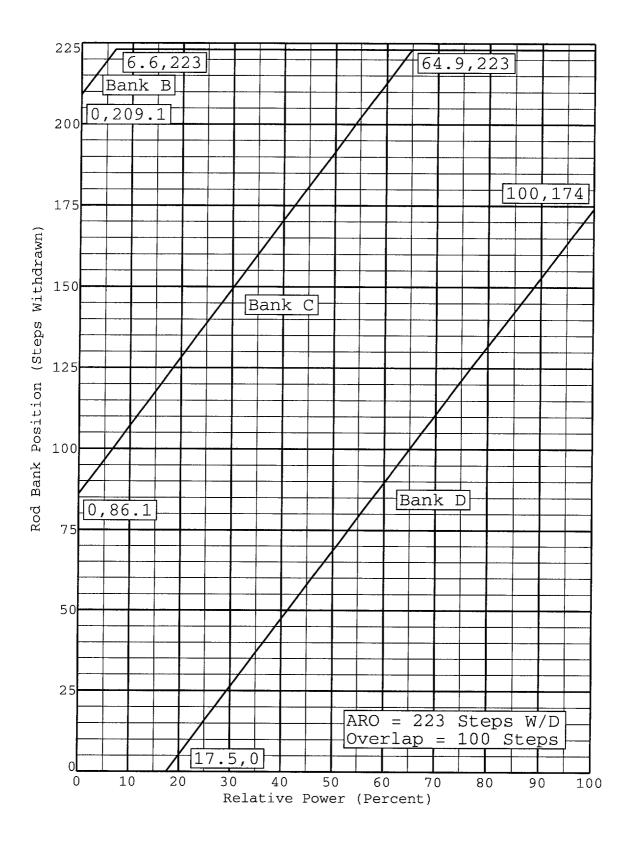


Figure 3.2 Indian Point 2 Control Rod Insertion Limits

Figure 3.3 Permissible Increase in Rod Misalignment Vs. Available $F_{\Delta H}$ and F_Q Margin

a,c

Power, Indicated Misalignment, No. Points, Summary Table No.	Peak	Distribution Function		Iean), %	1	l. Dev. 5), %		5/95 lue, %	Max (Case	k. % 2 No.)
HFP ±18	F _{ΔH}	Extreme Value	[] ^{a,c}	[] ^{a,c}]] ^{a,c}	[] ^{a,c}
[] ^{a,c} Table 3.3	F _Q	Beta	[] ^{a,c}	[] ^{a,c}	[] ^{a,c}	[] ^{a,c}
All Powers ±15	F _{ΔH}	Weibell	[] ^{a,c}	[] ^{a,c}	[] ^{a,c}]] ^{a,c}
[] ^{a,c} Table 3.4	FQ	Beta	[] ^{a,c}	[] ^{a,c}	[] ^{a,c}	[] ^{a,c}
Part Power ±18	F _{ΔH}	Beta	[] ^{a,c}	[] ^{a,c}	[] ^{a,c}]] ^{a,c}
[] ^{a,c} Table 3.5	F _Q	Weibell	[] ^{a,c}	[] ^{a,c}	[] ^{a,c}	[] ^{a,c}
Part Power ±21	F _{ΔH}	Beta	[]a,c	[] ^{a,c}	I] ^{a,c}	[] ^{a,c}
[] ^{a,c} Table 3.6	F _Q	Weibell	[] ^{a,c}	[] ^{a,c}]] ^{a,c}	[] ^{a,c}
Part Power ±24	F _{ΔH}	Beta	[] ^{a,c}	[] ^{a,c}	[] ^{a,c}]] ^{a,c}
[] ^{a,c} Table 3.7	F _Q	Weibell	[] ^{a,c}	[] ^{a,c}]] ^{a,c}]] ^{a,c}

Case No.	Burnup	urnup Power	Power Cycle	Failure Mechanism	Reference Bank Position	Rod(s) Misaligned	Peaking Factor % Increase for Additional 6 Steps		
					FOSICION		$\mathbf{F}_{\Delta \mathbf{H}}$	$\mathbf{F}_{\mathbf{Q}}$	
1	BOL	HFP	Current	А	D at 174	Γ		a,c	
2	BOL	HFP	Current	D	D at 174				
3	BOL	HFP	Current	А	D at 186				
4	BOL	HFP	Current	D	D at 186				
5	BOL	HFP	Current	А	D at 198				
6	BOL	HFP	Current	А	D at 210				
7	BOL	HFP	Current	А	D at 174				
8	BOL	HFP	Current	D	D at 174				
9	BOL	HFP	Future	А	D at 174				
10	BOL	HFP	Future	D	D at 174				
11	BOL	HFP	Future	A	D at 186				
12	BOL	HFP	Future	D	D at 186				

 Table 3.3
 Summary of 18 Step Indicated Hot Full Power Rod Misalignment Cases Analyzed (Sheet 1 of 16)

Case No.	Burnup	Power	Cycle	Failure Mechanism	Reference Bank Position	Rod(s) Misaligned	Increase for	Factor % • Additional teps	
					rosition		$\mathbf{F}_{\Delta \mathbf{H}}$	FQ	
13	BOL	HFP	Future	А	D at 198	Γ		a,c	
14	BOL	HFP	Future	Α	D at 210				
15	BOL	HFP	Future	Α	D at 174			4	
16	BOL	HFP	Future	D	D at 174				
17	MOL	HFP	Current	A	D at 174				
18	MOL	HFP	Current	D	D at 174				
19	MOL	HFP	Current	A	D at 174				
20	MOL	HFP	Current	D	D at 174				
21	MOL	HFP	Future	Α	D at 174				
22	MOL	HFP	Future	D	D at 174				
23	MOL	HFP	Future	A	D at 174				
24	MOL	HFP	Future	D	D at 174				

Table 3.3	Summary of 18 Step Indicated Hot Full Power Rod Misalignment Cases Analyzed (S	Sheet 2 of 16)
-----------	--	----------------

Case No.	Burnup	Power	Power Cycle	Failure Mechanism	Reference Bank Position	Rod(s) Misaligned	Peaking J Increase for 6 St	
					Position		$\mathbf{F}_{\Delta \mathbf{H}}$	FQ
25	EOL	HFP	Current	A	D at 174	Г		a,c
26	EOL	HFP	Current	D	D at 174			
27	EOL	HFP	Current	A	D at 186			
28	EOL	HFP	Current	D	D at 186			
29	EOL	HFP	Current	A	D at 198			
30	EOL	HFP	Current	A	D at 210			
31	EOL	HFP	Future	A	D at 174			
32	EOL	HFP	Future	D	D at 174			
33	EOL	HFP	Future	Α	D at 186			
34	EOL	HFP	Future	D	D at 186			
35	EOL	HFP	Future	А	D at 198			
36	EOL	HFP	Future	А	D at 210			

 Table 3.3
 Summary of 18 Step Indicated Hot Full Power Rod Misalignment Cases Analyzed (Sheet 3 of 16)

Case No.	Burnup	rnup Power	Cycle	Failure Mechanism	Reference Bank Position	Rod(s) Misaligned	Peaking Factor % Increase for Additional 6 Steps		
- • • •							$\mathbf{F}_{\Delta \mathbf{H}}$	$\mathbf{F}_{\mathbf{Q}}$	
37	BOL	HFP	Current	A	D at 174	Г		a,c	
38	BOL	HFP	Current	D	D at 174			;	
39	BOL	HFP	Current	А	D at 174				
40	BOL	HFP	Current	D	D at 174				
41	BOL	HFP	Current	А	D at 174				
42	BOL	HFP	Current	D	D at 174				
43	BOL	HFP	Future	А	D at 174				
44	BOL	HFP	Future	D	D at 174				
45	BOL	HFP	Future	А	D at 174				
46	BOL	HFP	Future	D	D at 174				
47	BOL	HFP	Future	А	D at 174				
48	BOL	HFP	Future	D	D at 174				

Table 3.3Summary of 18 Step Indicated Hot Full Power Rod Misalignment Cases Analyzed (Sheet 4 of 16)

Case No.		Power Cycle	Failure Mechanism	Reference Bank Position	Rod (s) Misaligned	Peaking Factor % Increase for Additional 6 Steps		
					rosition		$\mathbf{F}_{\Delta \mathbf{H}}$	FQ
49	MOL	HFP	Current	А	D at 174	Γ		a,c
50	MOL	HFP	Current	D	D at 174			
51	MOL	HFP	Current	Α	D at 174			
52	MOL	HFP	Current	D	D at 174			
53	MOL	HFP	Future	А	D at 174			
54	MOL	HFP	Future	D	D at 174			
55	MOL	HFP	Future	А	D at 174			
56	MOL	HFP	Future	D	D at 174			
57	EOL	HFP	Current	А	D at 174			
58	EOL	HFP	Current	D	D at 174			
59	EOL	HFP	Current	А	D at 174			
60	EOL	HFP	Current	D	D at 174			

 Table 3.3
 Summary of 18 Step Indicated Hot Full Power Rod Misalignment Cases Analyzed (Sheet 5 of 16)

Case No.	Burnup	Power Cycle	Failure Mechanism	Reference Bank Position	Rod(s) Misaligned	Peaking Factor % Increase for Additional 6 Steps		
					rusiuun		$\mathbf{F}_{\Delta \mathbf{H}}$	FQ
61	EOL	HFP	Current	А	D at 174	Г		a,c
62	EOL	HFP	Current	D	D at 174			
63	EOL	HFP	Current	A	D at 198			
64	EOL	HFP	Current	А	D at 198			
65	EOL	HFP	Future	А	D at 174			
66	EOL	HFP	Future	D	D at 174			
67	EOL	HFP	Future	А	D at 174			
68	EOL	HFP	Future	D	D at 174			
69	EOL	HFP	Future	А	D at 174			
70	EOL	HFP	Future	D	D at 174			
71	EOL	HFP	Future	Α	D at 198			
72	EOL	HFP	Future	Α	D at 198			

 Table 3.3
 Summary of 18 Step Indicated Hot Full Power Rod Misalignment Cases Analyzed (Sheet 6 of 16)

Case No.	Burnup	Power	Power Cycle	Failure Mechanism	Reference Bank Position	Rod(s) Misaligned	Increase for	Factor % Additional teps
					Position		$\mathbf{F}_{\Delta \mathbf{H}}$	FQ
73	BOL	HFP	Current	A	D at 174			
74	BOL	HFP	Current	D	D at 174			
75	BOL	HFP	Current	A	D at 174			
76	BOL	HFP	Current	D	D at 174			
77	BOL	HFP	Future	A	D at 174			
78	BOL	HFP	Future	D	D at 174			
79	BOL	HFP	Future	A	D at 174			
80	BOL	HFP	Future	D	D at 174			
81	EOL	HFP	Current	A	D at 174			
82	EOL	HFP	Current	D	D at 174			
83	EOL	HFP	Current	А	D at 174			
84	EOL	HFP	Current	D	D at 174			

 Table 3.3
 Summary of 18 Step Indicated Hot Full Power Rod Misalignment Cases Analyzed (Sheet 7 of 16)

Case No.	Burnup	Power	Power Cycle	Failure Mechanism	Reference Bank	Rod(s) Misaligned	Peaking Factor % Increase for Additional 6 Steps		
					Position		$\mathbf{F}_{\Delta \mathbf{H}}$	FQ	
85	EOL	HFP	Current	Α	D at 174	Γ			
86	EOL	HFP	Current	D	D at 174				
87	EOL	HFP	Current	Α	D at 174				
88	EOL	HFP	Current	D	D at 174				
89	EOL	HFP	Future	A	D at 174				
90	EOL	HFP	Future	D	D at 174				
91	EOL	HFP	Future	Α	D at 174				
92	EOL	HFP	Future	D	D at 174				
93	EOL	HFP	Future	A	D at 174				
94	EOL	HFP	Future	D	D at 174				
95	EOL	HFP	Future	A	D at 174				

 Table 3.3
 Summary of 18 Step Indicated Hot Full Power Rod Misalignment Cases Analyzed (Sheet 8 of 16)

Table 5.5	summa	ry of 18 St	tep Indicate	ed Hot Full Pow	er Rod Misalig	nment Cases Analyzed	(Sheet 9 of 1	(6)
Case No.	Burnup	Power	Cycle	Failure Mechanism	Reference Bank Position	Rod(s) Misaligned	Increase for	Factor % Additional teps
					1 05/110/1		$\mathbf{F}_{\Delta \mathbf{H}}$	FQ

^μ ²⁰ Table 3.3 Summony of 18 Ston Indicated Hat Full Derver Ded Mireli ~

Case No.		Power	Cycle	Fallure]	Reference Bank Position	Rod(s) Misaligned	Increase for Additional 6 Steps	
							$\mathbf{F}_{\Delta \mathbf{H}}$	FQ
96	EOL	HFP	Future	D	D at 174			— a,
97	BOL	HFP	Current	A	D at 174			
98	BOL	HFP	Current	А	D at 174			
99	BOL	HFP	Current	A	D at 223 (ARO)			
100	BOL	HFP	Current	A	D at 174			
101	BOL	HFP	Current	А	D at 223 (ARO)			
102	BOL	HFP	Current	А	D at 174			
103	BOL	HFP	Current	A	D at 223 (ARO)			
104	BOL	HFP	Future	А	D at 174			

Case No.	Burnup	Power	Cycle	Failure Mechanism	Reference Bank Position	Rod(s) Misaligned	Peaking Factor % Increase for Additional 6 Steps		
					Position		$\mathbf{F}_{\Delta \mathbf{H}}$	FQ	
105	BOL	HFP	Future	A	D at 174			a,c	
106	BOL	HFP	Future	А	D at 223 (ARO)				
107	BOL	HFP	Future	Α	D at 174				
108	BOL	HFP	Future	A	D at 223 (ARO)				
109	BOL	HFP	Future	A	D at 174				
110	BOL	HFP	Future	Α	D at 223 (ARO)				
111	MOL	HFP	Current	А	D at 174				
112	MOL	HFP	Current	Α	D at 174				
113	MOL	HFP	Current	А	D at 223 (ARO)				

Table 3.3Summary of 18 Step Indicated Hot Full Power Rod Misalignment Cases Analyzed (Sheet 10 of 16)

Case No.	Burnup	Power	Cycle	Failure Mechanism	Reference Bank Position	Rod(s) Misaligned	Increase for	Factor % Additional teps
					Position		$\mathbf{F}_{\Delta \mathbf{H}}$	FQ
114	MOL	HFP	Future	А	D at 174			- a,c
115	MOL	HFP	Future	А	D at 174			
116	MOL	HFP	Future	A	D at 223 (ARO)			
117	EOL	HFP	Current	А	D at 174			
118	EOL	HFP	Current	А	D at 174			
119	EOL	HFP	Current	A	D at 223 (ARO)			
120	EOL	HFP	Current	A	D at 174			
121	EOL	HFP	Current	А	D at 174			
122	EOL	HFP	Current	A	D at 174			
123	EOL	HFP	Current	А	D at 174			

 Table 3.3
 Summary of 18 Step Indicated Hot Full Power Rod Misalignment Cases Analyzed (Sheet 11 of 16)

Case No.	Burnup	Power	Cycle	Failure Mechanism	Reference Bank Position	Rod(s) Misaligned	Increase for	Factor % Additional teps
	E .				rosition		$\mathbf{F}_{\Delta \mathbf{H}}$	FQ
124	EOL	HFP	Current	А	D at 174	Г		a,c
125	EOL	HFP	Current	А	D at 174			
126	EOL	HFP	Current	А	D at 174			
127	EOL	HFP	Current	А	D at 174			
128	EOL	HFP	Future	А	D at 174			
129	EOL	HFP	Future	А	D at 174			
130	EOL	HFP	Future	А	D at 223 (ARO)			
131	EOL	HFP	Future	А	D at 174			
132	EOL	HFP	Future	А	D at 174			
133	EOL	HFP	Future	А	D at 174			
134	EOL	HFP	Future	А	D at 174			

Table 3.3Summary of 18 Step Indicated Hot Full Power Rod Misalignment Cases Analyzed (Sheet 12 of 16)

ŝ
¹
4

Table 3.3Summary of 18 Step Indicated Hot Full Power Rod Misalignment Cases Analyzed (Sheet 13 of 16)

Case No.	Burnup	Power	Cycle	Failure Mechanism	Reference Bank Position	Rod(s) Misaligned	Peaking Increase for 6 St	
					Position		$\mathbf{F}_{\Delta\mathbf{H}}$	FQ
135	EOL	HFP	Future	А	D at 174	Г		
136	EOL	HFP	Future	AB	D at 174			
137	EOL	HFP	Future	А	D at 174			
138	EOL	HFP	Future	A	D at 174			
139	BOL	HFP	Current	В	D at 174			
140	BOL	HFP	Current	В	D at 174			
141	BOL	HFP	Current	В	D at 174			
142	BOL	HFP	Current	В	D at 174			
143	BOL	HFP	Future	В	D at 174			
144	BOL	HFP	Future	В	D at 174			
145	BOL	HFP	Future	В	D at 174			
146	BOL	HFP	Future	В	D at 174			

Case	Burnup	Power Cycle	Cycle	Failure	Mashaniana Dank	Rod(s) Misaligned	Peaking Factor % Increase for Additional 6 Steps		
No.				Mechanism	Position		F _{ΔH}	FQ	
147	EOL	HFP	Current	B	D at 174			a,c	
148	EOL	HFP	Current	В	D at 174				
149	EOL	HFP	Future	В	D at 174				
150	EOL	HFP	Future	В	D at 174				
151	BOL	HFP	Current	С	D at 174				
152	BOL	HFP	Future	С	D at 174				
153	EOL	HFP	Current	С	D at 174				
154	EOL	HFP	Future	С	D at 174				
155	BOL	HFP	Current	Е	D at 174				
156	BOL	HFP	Current	E	D at 186				
157	BOL	HFP	Future	E	D at 174				

 Table 3.3
 Summary of 18 Step Indicated Hot Full Power Rod Misalignment Cases Analyzed (Sheet 14 of 16)

Case No.	Burnup	Power	Cycle	Failure Mechanism	Reference Bank Position	Rod(s) Misaligned	Increase fo	Factor % or Additional Steps
					1 0511011		$\mathbf{F}_{\Delta\mathbf{H}}$	FQ
158	BOL	HFP	Future	E	D at 186	Γ		a,c
159	EOL	HFP	Current	Е	D at 174			
160	EOL	HFP	Current	Е	D at 174			
161	EOL	HFP	Current	Е	D at 174			
162	EOL	HFP	Future	E	D at 174			
163	EOL	HFP	Future	E	D at 174			
164	EOL	HFP	Future	Е	D at 174			
165	BOL	HFP	Current	F	D at 174			
166	BOL	HFP	Future	F	D at 174			

L

 Table 3.3
 Summary of 18 Step Indicated Hot Full Power Rod Misalignment Cases Analyzed (Sheet 15 of 16)

Case No.	Burnup	Power	Cycle	Failure Mechanism	Reference Bank	Rod(s) Misaligned	Peaking I Increase for 6 St	Additional
					Position		$\mathbf{F}_{\Delta \mathbf{H}}$	FQ
167	EOL	HFP	Current	F	D at 174			a,c
168	EOL	HFP	Future	F	D at 174			
(*)	Signifies	that plots of	peaking facto	rs and increases du	e to additional ster report.	os of misalignment are includ	ed in the Appen	dix of this

Table 3.3Summary of 18 Step Indicated Hot Full Power Rod Misalignment Cases Analyzed (Sheet 16 of 16)

Case No.	Burnup	Power	Cycle	Failure Mechanism	Reference Bank	Rods Misaligned	Increase for	Factor % Additional teps
					Position		$\mathbf{F}_{\Delta \mathbf{H}}$	FQ
169	BOL	HFP	Current	A	D at 174			a,c
170	BOL	HFP	Current	D	D at 174			
171	BOL	HFP	Future	А	D at 174			
172	BOL	HFP	Future	D	D at 174			
173	EOL	HFP	Current	D	D at 174			
174	EOL	HFP	Current	А	D at 186			
175	EOL	HFP	Current	D	D at 186			
176	EOL	HFP	Future	D	D at 174			
177	EOL	HFP	Future	А	D at 186			
178	EOL	HFP	Future	D	D at 186			
179	BOL	HFP	Current	A	D at 174			
180	BOL	HFP	Current	D	D at 174			

 Table 3.4
 Summary of 15 Step Indicated Rod Misalignment Cases Analyzed (Sheet 1 of 7)

Case No.	Burnup	Power	Cycle	Failure Mechanism	Reference Bank	Rods Misaligned	Peaking Factor % Increase for Additional 3 Steps		
					Position		$\mathbf{F}_{\Delta \mathbf{H}}$	FQ	
181	BOL	HFP	Future	А	D at 174	Г		a,c	
182	BOL	HFP	Future	D	D at 174				
183	EOL	HFP	Current	А	D at 174				
184	EOL	HFP	Current	D	D at 174				
185	EOL	HFP	Future	Α	D at 174				
186	EOL	HFP	Future	D	D at 174				
187	BOL	HFP	Current	A	D at 174				
188	BOL	HFP	Current	D	D at 174				
189	BOL	HFP	Future	A	D at 174				
190	BOL	HFP	Future	D	D at 174				
191	EOL	HFP	Current	Α	D at 174				
192	EOL	HFP	Current	D	D at 174				

Table 3.4Summary of 15 Step Indicated Rod Misalignment Cases Analyzed (Sheet 2 of 7)

Case No.	Burnup	Power	Cycle	Failure Mechanism	Reference Bank Position	Rods Misaligned	Increase for	Factor % • Additional teps
					rosition		$\mathbf{F}_{\Delta \mathbf{H}}$	FQ
193	EOL	HFP	Future	А	D at 174	Г		
194	EOL	HFP	Future	D	D at 174			
195	BOL	HFP	Current	А	D at 174			
196	BOL	HFP	Current	A	D at 174			
197	BOL	HFP	Current	А	D at 223 (ARO)			
198	BOL	HFP	Current	A	D at 174			
199	BOL	HFP	Current	А	D at 174			
200	BOL	HFP	Current	A	D at 223 (ARO)			
201	BOL	HFP	Future	Α	D at 174			

 Table 3.4
 Summary of 15 Step Indicated Rod Misalignment Cases Analyzed (Sheet 3 of 7)

Case No.	Burnup	Power	Cycle	Failure Mechanism	Reference Bank Position	Rods Misaligned	Increase for	Factor % Additional teps
							$\mathbf{F}_{\Delta \mathbf{H}}$	F _Q
202	BOL	HFP	Future	А	D at 174			a,c
203	BOL	HFP	Future	А	D at 223 (ARO)			
204	BOL	HFP	Future	Α	D at 174			
205	BOL	HFP	Future	Α	D at 174			
206	BOL	HFP	Future	A	D at 223 (ARO)			
207	MOL	HFP	Current	А	D at 174			
208	MOL	HFP	Current	A	D at 223 (ARO)			
209	MOL	HFP	Future	A	D at 174			
210	MOL	HFP	Future	А	D at 223 (ARO)			

 Table 3.4
 Summary of 15 Step Indicated Rod Misalignment Cases Analyzed (Sheet 4 of 7)

Case	Burnup	Power	Power Cycle	Failure Mechanism	Reference Bank	Rods Misaligned	Peaking Factor % Increase for Additional 3 Steps	
No.				WICCHUMASIA	Position		$\mathbf{F}_{\Delta \mathbf{H}}$	$\mathbf{F}_{\mathbf{Q}}$
211	EOL	HFP	Current	А	D at 174			a,c
212	EOL	HFP	Current	A	D at 174			
213	EOL	HFP	Current	А	D at 223 (ARO)			
214	EOL	HFP	Current	А	D at 174			
215	EOL	HFP	Current	A	D at 174			
216	EOL	HFP	Current	А	D at 174			
217	EOL	HFP	Current	А	D at 174			
218	EOL	HFP	Current	А	D at 174			
219	EOL	HFP	Current	А	D at 174			
220	EOL	HFP	Future	A	D at 174			

Table 3.4 Summary of 15 Step Indicated Rod Misalignment Cases Analyzed (Sheet 5 of 7)

Case No.	Burnup	Power	Cycle	Failure Mechanism	Koniz Vode Micoligned	Rods Misaligned	Peaking Factor % Increase for Additional 3 Steps		
					rosition		$\mathbf{F}_{\Delta \mathbf{H}}$	FQ	
221	EOL	HFP	Future	A	D at 174	Γ		a,c	
222	EOL	HFP	Future	Α	D at 223 (ARO)				
223	EOL	HFP	Future	А	D at 174				
224	EOL	HFP	Future	А	D at 174				
225	EOL	HFP	Future	А	D at 174				
226	EOL	HFP	Future	Α	D at 174				
227	EOL	HFP	Future	А	D at 174				
228	EOL	HFP	Future	А	D at 174				
229	EOL	HFP	Current	С	D at 174				
230	EOL	HFP	Future	С	D at 174				
231	BOL	HFP	Current	E	D at 186				

Table 3.4 Summary of 15 Step Indicated Rod Misalignment Cases Analyzed (Sheet 6 of 7)

Case No.	Burnup	Power	Cycle	Failure Mechanism	Reference Bank	Rods Misaligned	Peaking Factor % Increase for Additiona 3 Steps	
					Position		$\mathbf{F}_{\Delta\mathbf{H}}$	FQ
232	BOL	HFP	Future	E	D at 186			a,c
233	BOL	HFP	Current	F	D at 174			
234	BOL	HFP	Current	F	D at 174			

Table 3.4 Summary of 15 Step Indicated Rod Misalignment Cases Analyzed (Sheet 7 of 7)

Case No.	Burnup	Power	Cycle	Failure Mechanism	Reference Bank	Rods Misaligned	Peaking Factor % Increase for Additional 6 Steps		
					Position		$\mathbf{F}_{\Delta\mathbf{H}}$	FQ	
235	BOL	85	Current	A	D at 174			a,c	
236	BOL	85	Current	А	D at 142				
237	BOL	50	Current	A	D at 174				
238	BOL	50	Current	А	D at 68, C at 191				
239	BOL	50	Current	A	D at 223 (ARO)				
240	BOL	85	Current	A	D at 223 (ARO)				
241	BOL	85	Future	A	D at 174				
242	BOL	85	Future	A	D at 142				

Table 3.5Summary of 18 Step Indicated Part-Power Rod Misalignment Cases Analyzed (Sheet 1 of 6)

Case No.	Burnup	Power	Cycle	Failure Mechanism	Reference Bank Position	Rods Misaligned	Peaking Factor % Increase for Additional 6 Steps		
					rosition		$\mathbf{F}_{\Delta \mathbf{H}}$	F _Q	
243	BOL	50	Future	А	D at 174	Γ		a,c	
244	BOL	50	Future	А	D at 68, C at 191				
245	BOL	50	Future	А	D at 223 (ARO)				
246	BOL	85	Future	A	D at 223 (ARO)				
247	MOL	85	Current	А	D at 174				
248	MOL	85	Current	Α	D at 142				
249	MOL	85	Current	А	D at 223 (ARO)				
250	MOL	85	Future	А	D at 174				

Table 3.5 Summary of 18 Step Indicated Part-Power Rod Misalignment Cases Analyzed (Sheet 2 of 6)

Case No.		Power	Cycle	Failure Mechanism	Reference Bank Position	Rods Misaligned	Increase for	Factor % • Additional teps
					TOSICION		F _{ΔH}	FQ
251	MOL	85	Future	A	D at 142	Γ		a,c
252	MOL	85	Future	A	D at 223 (ARO)			
253	EOL	85	Current	A	D at 174			
254	EOL	85	Current	A	D at 142			
255	EOL	50	Current	А	D at 174			
256	EOL	50	Current	A	D at 68, C at 191			
257	EOL	50	Current	A	D at 223 (ARO)			
258	EOL	85	Current	A	D at 223 (ARO)			

Table 3.5Summary of 18 Step Indicated Part-Power Rod Misalignment Cases Analyzed (Sheet 3 of 6)

Case No.	Burnup	Power	Cycle	Failure Mechanism	Reference Bank Position	Rods Misaligned	Peaking Factor % Increase for Additional 6 Steps	
					Position		F _{ΔH}	FQ
259	EOL	85	Current	A	D at 174	Γ		a,c
260	EOL	85	Current	А	D at 174			
261	EOL	85	Current	A	D at 174			
262	EOL	85	Current	А	D at 142			
263	EOL	85	Current	А	D at 174			
264	EOL	85	Current	А	D at 142			
265	EOL	50	Current	А	D at 174			
266	EOL	50	Current	A	D at 68, C at 191			
267	EOL	85	Current	С	D at 142			
268	EOL	85	Current	С	D at 174			

 Table 3.5
 Summary of 18 Step Indicated Part-Power Rod Misalignment Cases Analyzed (Sheet 4 of 6)

Case No.		Power	Cycle	Failure Mechanism	Reference Bank Rods Misaligned Position		Peaking Factor % Increase for Additional 6 Steps		
					rosition		$\mathbf{F}_{\Delta \mathbf{H}}$	FQ	
269	EOL	85	Future	А	D at 174			a,c	
270	EOL	85	Future	Α	D at 142				
271	EOL	50	Future	Α	D at 174				
272	EOL	50	Future	А	D at 68, C at 191				
273	EOL	50	Future	А	D at 223 (ARO)				
274	EOL	85	Future	Α	D at 223 (ARO)				
275	EOL	85	Future	Α	D at 174				
276	EOL	85	Future	А	D at 174				

Table 3.5 Summary of 18 Step Indicated Part-Power Rod Misalignment Cases Analyzed (Sheet 5 of 6)

Case No.	Case No. Burnup	Power	Cycle	Failure Mechanism	Reference Bank		Peaking Factor % Increase for Additional 6 Steps	
1.01					Position		$\mathbf{F}_{\Delta \mathbf{H}}$	FQ
277	EOL	85	Future	A	D at 174	Г		
278	EOL	85	Future	A	D at 142			
279	EOL	85	Future	A	D at 174			
280	EOL	85	Future	A	D at 142			
281	EOL	50	Future	A	D at 174			
282	EOL	50	Future	А	D at 68, C at 191			
283	EOL	85	Future	С	D at 142			
284	EOL	85	Future	С	D at 174			

Table 3.5 Summary of 18 Step Indicated Part-Power Rod Misalignment Cases Analyzed (Sheet 6 of 6)

Case No.		Power	Cycle	Failure Mechanism	Reference Bank Position	Rods Misaligned	Increase for	Factor % • Additional teps
					rosition		$\mathbf{F}_{\Delta \mathbf{H}}$	FQ
285	BOL	85	Current	A	D at 174			
286	BOL	85	Current	Α	D at 142			
287	BOL	50	Current	А	D at 174			
288	BOL	50	Current	A	D at 68, C at 191			
289	BOL	50	Current	A	D at 223 (ARO)			
290	BOL	85	Current	A	D at 223 (ARO)			
291	BOL	85	Future	A	D at 174			
292	BOL	85	Future	A	D at 142			

 Table 3.6
 Summary of 21 Step Indicated Part-Power Rod Misalignment Cases Analyzed (Sheet 1 of 6)

Case No.	Burnup	Power	Cycle	Failure Mechanism	Reference Bank Position	Rods Misaligned	Peaking Factor % Increase for Additional 9 Steps	
					rosition		$\mathbf{F}_{\Delta \mathbf{H}}$	FQ
293	BOL	50	Future	А	D at 174			a,c
294	BOL	50	Future	А	D at 68, C at 191			
295	BOL	50	Future	А	D at 223 (ARO)			
296	BOL	85	Future	A	D at 223 (ARO)			
297	MOL	85	Current	A	D at 174			
298	MOL	85	Current	A	D at 142			
299	MOL	85	Current	A	D at 223 (ARO)			
300	MOL	85	Future	A	D at 174			

Table 3.6 Summary of 21 Step Indicated Part-Power Rod Misalignment Cases Analyzed (Sheet 2 of 6)

Case No.	Burnup	Power	Cycle	Failure Mechanism	Reference Bank	Rods Misaligned		Factor % Additional teps
		•			Position		$\mathbf{F}_{\Delta\mathbf{H}}$	FQ
301	MOL	85	Future	A	D at 142			a,c
302	MOL	85	Future	А	D at 223 (ARO)			
303	EOL	85	Current	A	D at 174			
304	EOL	85	Current	A	D at 142			
305	EOL	50	Current	A	D at 174			
306	EOL	50	Current	A	D at 68, C at 191			
307	EOL	50	Current	A	D at 223 (ARO)			
308	EOL	85	Current	A	D at 223 (ARO)			

Table 3.6Summary of 21 Step Indicated Part-Power Rod Misalignment Cases Analyzed (Sheet 3 of 6)

Case No.	Burnup	Power	Cycle	Failure Mechanism	Reference Bank Position	Rods Misaligned	Peaking Factor % Increase for Additional 9 Steps	
					I USHION		$\mathbf{F}_{\Delta \mathbf{H}}$	FQ
309	EOL	85	Current	А	D at 174	Γ		a,c
310	EOL	85	Current	А	D at 174			
311	EOL	85	Current	A	D at 174			
312	EOL	85	Current	А	D at 142			
313	EOL	85	Current	А	D at 174			
314	EOL	85	Current	А	D at 142			
315	EOL	50	Current	А	D at 174			
316	EOL	50	Current	А	D at 68, C at 191			
317	EOL	85	Current	С	D at 142			
318	EOL	85	Current	С	D at 174			

 Table 3.6
 Summary of 21 Step Indicated Part-Power Rod Misalignment Cases Analyzed (Sheet 4 of 6)

Case No.	Burnup	Power	Cycle	Failure Mechanism	Reference Bank Position	Rods Misaligned	Peaking Factor % Increase for Additional 9 Steps	
							$\mathbf{F}_{\Delta \mathbf{H}}$	FQ
319	EOL	85	Future	A	D at 174			
320	EOL	85	Future	A	D at 142			
321	EOL	50	Future	А	D at 174			
322	EOL	50	Future	Α	D at 68, C at 191			
323	EOL	50	Future	Α	D at 223 (ARO)			
324	EOL	85	Future	A	D at 223 (ARO)			
325	EOL	85	Future	A	D at 174			
326	EOL	85	Future	А	D at 174			

Table 3.6 Summary of 21 Step Indicated Part-Power Rod Misalignment Cases Analyzed (Sheet 5 of 6)

ŝ
ī
4
T

⁵ Table 3.6 Summary of 21 Step Indicated Part-Power Rod Misalignment Cases Analyzed (Sheet 6 of 6)

Case No.	Burnup	Power	Cycle	Failure Mechanism	Reference Bank Position	Rods Misaligned	Peaking Factor % Increase for Additional 9 Steps	
							$\mathbf{F}_{\Delta \mathbf{H}}$	FQ
327	EOL	85	Future	A	D at 174	Γ		a,c
328	EOL	85	Future	A	D at 142			
329	EOL	85	Future	A	D at 174			
330	EOL	85	Future	А	D at 142			
331	EOL	50	Future	А	D at 174			
332	EOL	50	Future	A	D at 68, C at 191			
333	EOL	85	Future	С	D at 142			
334	EOL	85	Future	С	D at 174			

Case No.	Burnup	Power	Cycle	Failure Mechanism	Reference Bank Position	Rods Misaligned	Peaking Factor % Increase for Additional 12 Steps	
							$\mathbf{F}_{\Delta \mathbf{H}}$	FQ
335	BOL	85	Current	A	D at 174	Γ		a,c
336	BOL	85	Current	A	D at 142			
337	BOL	50	Current	A	D at 174			
338	BOL	50	Current	A	D at 68, C at 191			
339	BOL	50	Current	A	D at 223 (ARO)			
340	BOL	85	Current	A	D at 223 (ARO)			
341	BOL	85	Future	А	D at 174			
342	BOL	85	Future	А	D at 142			

Table 3.7Summary of 24 Step Indicated Part-Power Rod Misalignment Cases Analyzed (Sheet 1 of 6)

S	
4	
∞	

Peaking Factor % Increase for Additional Reference Failure Case 12 Steps Burnup Power Cycle Bank **Rods Misaligned** No. Mechanism Position FQ $\mathbf{F}_{\Delta\mathbf{H}}$ a,c BOL D at 174 343 50 Future Α BOL 50 D at 68, C at 344 Future Α 191 345 BOL 50 Future А D at 223 (ARO) BOL 85 D at 223 346 Future Α (ARO) 85 347 MOL Current D at 174 Α 348 MOL 85 Current Α D at 142 349 MOL 85 Current D at 223 Α (ARO) 350 MOL 85 Future Α D at 174

Table 3.7	Summary of 24 Step	Indicated Part-Power	Rod Misalignment C	Cases Analyzed	(Sheet 2 of 6)
-----------	--------------------	-----------------------------	---------------------------	----------------	----------------

Case No.		up Power	Cycle	Failure Mechanism	Reference Bank Position	Rods Misaligned	Peaking Factor % Increase for Additional 12 Steps	
					TUSHUM		$\mathbf{F}_{\Delta \mathbf{H}}$	FQ
351	MOL	85	Future	A	D at 142			a,c
352	MOL	85	Future	А	D at 223 (ARO)			
353	EOL	85	Current	A	D at 174			
354	EOL	85	Current	A	D at 142			
355	EOL	50	Current	A	D at 174			
356	EOL	50	Current	A	D at 68, C at 191			
357	EOL	50	Current	A	D at 223 (ARO)			
358	EOL	85	Current	А	D at 223 (ARO)			

Table 3.7Summary of 24 Step Indicated Part-Power Rod Misalignment Cases Analyzed (Sheet 3 of 6)

Case No.		urnup Power	r Cycle	Failure Mechanism	Reference Bank	Rods Misaligned	Peaking Factor % Increase for Additional 12 Steps	
					Position		$\mathbf{F}_{\Delta \mathbf{H}}$	$\mathbf{F}_{\mathbf{Q}}$
359	EOL	85	Current	A	D at 174			– a,c
360	EOL	85	Current	А	D at 174			
361	EOL	85	Current	А	D at 174			
362	EOL	85	Current	A	D at 142			
363	EOL	85	Current	A	D at 174			
364	EOL	85	Current	A	D at 142			
365	EOL	50	Current	A	D at 174			
366	EOL	50	Current	А	D at 68, C at 191			
367	EOL	85	Current	С	D at 142			
368	EOL	85	Current	С	D at 174			

Table 3.7Summary of 24 Step Indicated Part-Power Rod Misalignment Cases Analyzed (Sheet 4 of 6)

3-50

Case No.	Burnup	Power		Bank Rods Misaligned	Peaking I Increase for 12 S	Additional		
					Position		$\mathbf{F}_{\Delta \mathbf{H}}$	FQ
369	EOL	85	Future	A	D at 174			— a,c
370	EOL	85	Future	A	D at 142			
371	EOL	50	Future	A	D at 174			
372	EOL	50	Future	A	D at 68, C at 191			
373	EOL	50	Future	A	D at 223 (ARO)			
374	EOL	85	Future	A	D at 223 (ARO)			
375	EOL	85	Future	A	D at 174			
376	EOL	85	Future	А	D at 142			

Table 3.7Summary of 24 Step Indicated Part-Power Rod Misalignment Cases Analyzed (Sheet 5 of 6)

Case No. Burnup	nup Power	Cycle	Failure Mechanism	Reference Bank	Rods Misaligned	Peaking Factor % Increase for Additional 12 Steps		
					Position		$\mathbf{F}_{\Delta \mathbf{H}}$	FQ
377	EOL	85	Future	A	D at 174			a,c
378	EOL	85	Future	А	D at 142			
379	EOL	85	Future	А	D at 174			
380	EOL	85	Future	А	D at 142			
381	EOL	50	Future	А	D at 174			
382	EOL	50	Future	А	D at 68, C at 191			
383	EOL	85	Future	С	D at 142			
384	EOL	85	Future	С	D at 174			
(*)	Signifies th report.	at plots of po	eaking factors	and increases due	to additional steps	of misalignment are included	d in the Appendi	x of this

 Table 3.7
 Summary of 24 Step Indicated Part-Power Rod Misalignment Cases Analyzed (Sheet 6 of 6)

3-52

4 SAFETY ANALYSIS IMPACTS

Section 3 discussed the effects of increased misalignment on the normal operation peaking factors. This section will address the effects on safety analysis inputs used for the reload safety evaluation (Reference 7).

An increase in rod misalignment does not have a significant impact on any of the [

 $]^{a,c}$. An increase in the rod misalignment also will not adversely effect the [$]^{a,c}$ or data generated for the evaluation of [$]^{a,c}$.

Another possible impact of the increase in the rod misalignment is an increase in the rod insertion allowance (RIA), the worth of the rods at their insertion limits or RILs. The RIA has a direct impact on the available trip reactivity and the shutdown margin (SDM) assumed in several transient analyses including steamline break. The maximum increase in the RIA, and hence largest reduction in the trip worth and SDM, would be due to an entire bank being misaligned in deeper than the RIL, consistent with failure category C described in Section 3.3. However, the available trip worth and SDM also assume that the core is subcritical with an N-1 rod configuration, where the highest individual worth rod is stuck out of the core, consistent with failure category D. As stated above, rod misalignments resulting from a [

 $]^{a,c}$. Therefore, for the trip reactivity and SDM one does not need to assume an increase in the RIA due to [$]^{a,c}$. In addition, the reduction in available SDM due to the WSR is much greater than the worth that would be lost due to an increase in the RIA. As such, the proposed changes to the rod misalignment Tech Spec do not have an adverse impact on the available trip worth or SDM.

Safety analyses inputs that would be affected by an increase in the allowable misalignment are the rod ejection F_Q , the ejected rod worth $\Delta \rho_{EJ}$, and the available trip worth following a rod ejection.

The rod ejection parameters can be affected by an increased rod misalignment of the RIL rods at HZP prior to the ejection. Misalignments of individual rods, bank groups and entire banks were considered to determine the limiting effects on F_Q and $\Delta \rho_{EJ}$. Calculations were also performed for both cycles

described in Section 2, assuming an additional 12 steps of rod misalignment at the HZP RIL. Results of these calculations show maximum increases of $[]^{a,c}$ in F_Q and $[]^{a,c}$ in $\Delta \rho_{EJ}$ for the current cycle and $[]^{a,c}$ in F_Q and $[]^{a,c}$ in $\Delta \rho_{EJ}$ for the current for the two cycles, indicating that the results are reasonably independent of the cycle design. Then for application of this Technical Specification change, [

la'c

The safety analysis of the rod ejection transient also assumes a certain amount of available trip worth following the rod ejection. Since the ejected rod is assumed to damage a neighboring RCCA drive housing, the trip worth for this transient is defined as the change in core reactivity between the HZP, RIL condition and the HZP, all rods inserted (ARI) minus the ejected rod and the neighboring rod. For this part of the rod ejection transient, the limiting misalignment will be the [

]^{a,c}. Inserting [

]^{a,c}. Then

for application of this Technical Specification, the trip worth available following a rod ejection calculated as part of the reload safety evaluation [

 $]^{a,c}$. The $[]^{a,c}$ pcm is approximately $[]^{a,c}$ than the maximum calculated value for either cycle.

5 CONCLUSIONS

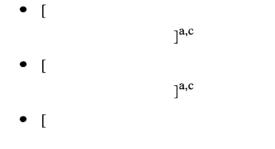
An extension of the allowable indicated rod misalignment of ± 12 steps to ± 18 steps may be permitted for core powers above 85% RTP as long as it is demonstrated that sufficient peaking factor margin is available. To increase the allowable indicated misalignment by 6 steps for operation above 85% of rated thermal power, $[]^{a,c} F_Q$ margin and $[]^{a,c} F_{\Delta H}$ margin must be available. The amount of required margin is also linearly dependent upon the amount of additional misalignment desired, as shown in Figure 3.3 and summarized below:

Indicated	Additional	Required Margin		
Misalignment (Steps)	Misalignment (Steps)	F _{ΔH}	F _Q	
12	0	[] ^{a,c}	[] ^{a,c}	
13	1	[] ^{a,c}	[] ^{a,c}	
14	2	[] ^{a,c}	[] ^{a,c}	
15	3	[] ^{a,c}	[] ^{a,c}	
16	4	[] ^{a,c}	[] ^{a,c}	
17	5	[] ^{a,c}	[] ^{a,c}	
18	6	[] ^{a,c}	[] ^{a,c}	

Indicated misalignments of up to 24 steps are also permitted for all powers of 85% RTP or less.

The analysis documented in this report has been performed such that the above mentioned excess peaking factor margin required for additional indicated rod misalignment is [

]^{a,c}.


The analysis documented in this report is conservative and appropriate based on the following assumptions on rod insertion:

- The rod insertion limits (RILs) shown in Figure 3.2 determine the maximum bank demand position as a function of core power;
- The all rods out (ARO) demand position can be as deep as []^{a,c}, which corresponds to the top of the active fuel stack for the Indian Point 2 Cycle 15 feed fuel assemblies.

The results of this report are also conservative and appropriate for any future change in the RILs that would reduce the maximum allowable rod insertion and for any ARO position above [

]^{a,c}. Any future change to the RILs or the ARO position that would permit deeper rod insertion would also require an evaluation of the results of this report.

As part of the reload specific safety evaluation, design calculations will include the following additional conservatisms to bound the maximum increases in rod misalignment any time during the cycle:

]^{a,c}

6 REFERENCES

- 1. Shopsky, W. E., Failure Mode and Effects Analysis (FMEA) of the Solid State Full Length Rod Control System, WCAP-8976, Rev. 0 (Non-Proprietary Class 3), August 1977.
- 2. Baker, T., et. al., *Rod Control System Evaluation Program*, WCAP-13864, Revision 1-A (Non-Proprietary Class 3), November 1994.
- 3. Nguyen, T. Q., et. al., *Qualification of the PHOENIX-P/ANC Nuclear Design System for Pressurized Water Reactor Cores*, WCAP-11596-P-A (Westinghouse Proprietary), June 1988.
- 4. Liu, Y. S., et. al., ANC: A Westinghouse Advanced Nodal Computer Code, WCAP-10965-P-A (Westinghouse Proprietary), December 1985.
- 5. Morita, T. et. al., *Topical Report Power Distribution Control and Load Following Procedures*, WCAP-8385 (Westinghouse Proprietary), September 1974.
- 6. Miller, R. W. et. al., Relaxation of Constant Axial Offset Control FQ Surveillance Technical Specification, WCAP-10216-P-A, Revision 1, February 1994.
- 7. Davidson, S. L., et. al., Westinghouse Reload Safety Evaluation Methodology, WCAP-9272-P-A, July, 1985.

"This page intentionally blank."

-

A APPENDIX

This section provides some additional detail to the cases highlighted in Tables 3.3 and 3.7. These cases yielded the limiting increase in $F_{\Delta H}$, F_Q or both. The following figures provide the misaligned peaking factors compared to the reference non-misaligned case, and the percent differences relative to 24 steps of total misalignment (±12 steps indicated). Data in these figures are provided as a function of axial offset, covering the maximum expected range for Indian Point 2. The data summarized in Tables 3.3 through 3.7 represents the maximum points from these figures.

"This page intentionally blank."

Figure A.1: Case 99; BOL HFP Current Cycle F_Q Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

 Figure A.2:
 Case 99; BOL HFP Current Cycle F_Q Difference Relative to 12 Step

 Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO)

 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

 Figure A.3:
 Case 106; BOL HFP Future Cycle F_{ΔH} Versus Axial Offset, Control Bank D

 at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and

 G-05

 Figure A.4:
 Case 106; BOL HFP Future Cycle F_{ΔH} Difference Relative to 12 Step

 Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO)

 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.5: Case 116; MOL HFP Future Cycle F_{∆H} Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05 Figure A.6:Case 116; MOL HFP Future Cycle $F_{\Delta H}$ Difference Relative to 12 StepIndicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO)and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.7: Case 116; MOL HFP Future Cycle F_Q Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

 Figure A.8:
 Case 116; MOL HFP Future Cycle F_Q Difference Relative to 12 Step

 Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO)

 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.9: Case 117; EOL HFP Current Cycle F_Q Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rod C-05

.____

_

Figure A.10: Case 117; EOL HFP Current Cycle F_Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rod C-05

a,c

~

Figure A.11: Case 118; EOL HFP Current Cycle F_Q Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

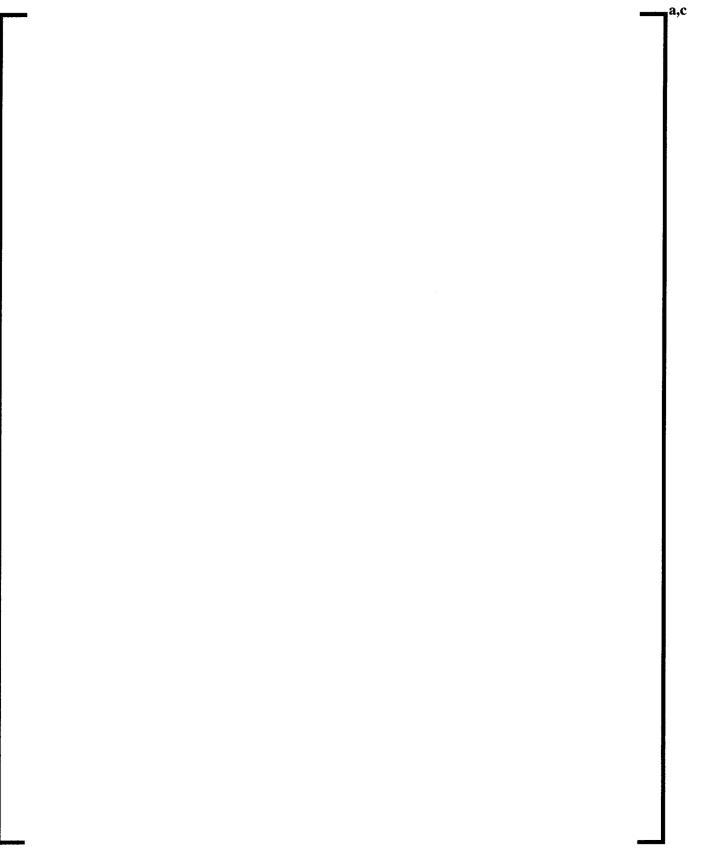


Figure A.12: Case 118; EOL HFP Current Cycle F_Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.13: Case 119; EOL HFP Current Cycle $F_{\Delta H}$ Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.14: Case 119; EOL HFP Current Cycle F_{∆H} Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.15: Case 124; EOL HFP Current Cycle F_Q Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In

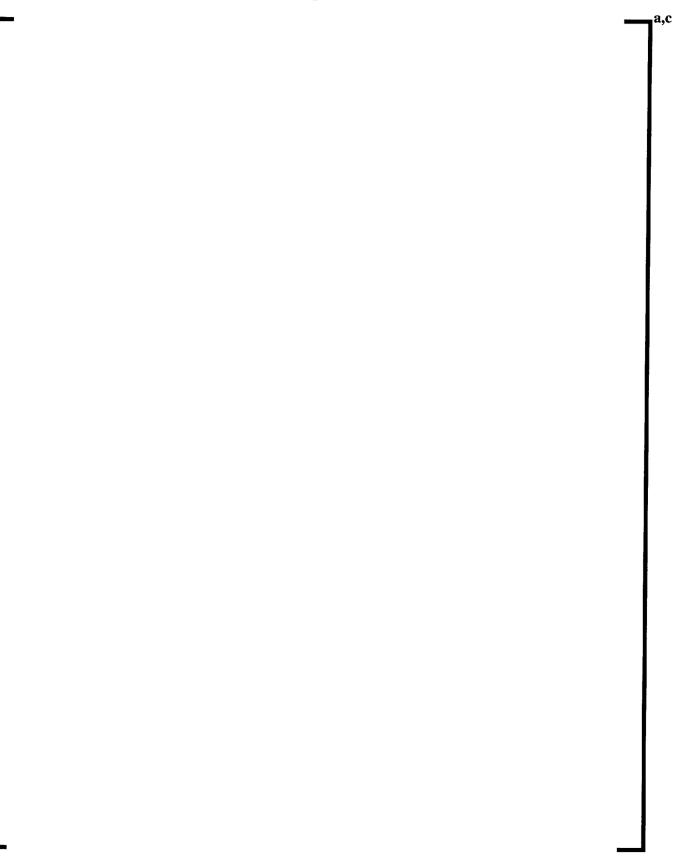


Figure A.16: Case 124; EOL HFP Current Cycle F_Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In

Figure A.17: Case 128; EOL HFP Future F_Q Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rod C-05

Figure A.18: Case 128; EOL HFP Future Cycle F_Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rod C-05

Figure A.19: Case 129; EOL HFP Future Cycle $F_{\Delta H}$ Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

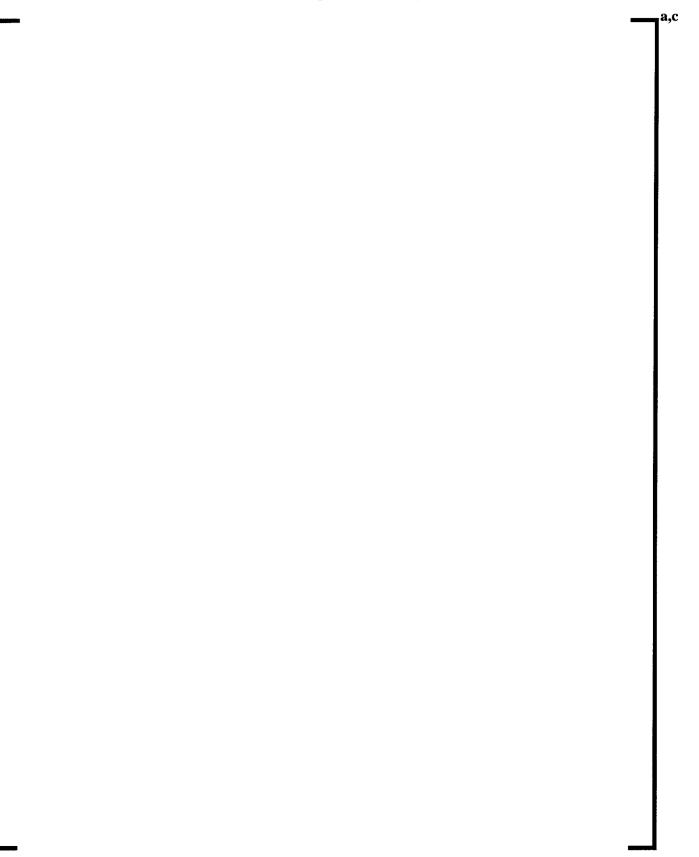


Figure A.20: Case 129; EOL HFP Future Cycle $F_{\Delta H}$ Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.21: Case 129; EOL HFP Future Cycle F_Q Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.22: Case 129; EOL HFP Future Cycle F_Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.23: Case 130; EOL HFP Future Cycle F_{ΔH} Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

 Figure A.24: Case 130; EOL HFP Future Cycle F_{∆H} Difference Relative to 12 Step

 Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO)

 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

a,c

Figure A.25: Case 339; BOL 50% RTP Current Cycle F_Q Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05 Figure A.26: Case 339; BOL 50% RTP Current Cycle F_Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.27: Case 345; BOL 50% RTP Future Cycle F_{∆H} Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05 Figure A.28: Case 345; BOL 50% RTP Future Cycle F_{∆H} Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.29: Case 345; BOL 50% RTP Future Cycle F_Q Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05 Figure A.30: Case 345; BOL 50% RTP Future Cycle F_Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.31: Case 351; MOL 85% RTP Future Cycle $F_{\Delta H}$ Versus Axial Offset, Control Bank D at 142 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.32: Case 351; MOL 85% RTP Future Cycle $F_{\Delta H}$ Difference Relative to 12 StepIndicated Misalignment Versus Axial Offset, Control Bank D at 142 andCabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.33: Case 357; EOL 50% RTP Current Cycle F_{∆H} Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

 Figure A.34: Case 357; EOL 50% RTP Current Cycle F_{∆H} Difference Relative to 12 Step

 Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO)

 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.35: Case 357; EOL 50% RTP Current Cycle F_Q Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05 Figure A.36: Case 357; EOL 50% RTP Current Cycle F_Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.37: Case 370; EOL 85% RTP Future Cycle $F_{\Delta H}$ Versus Axial Offset, Control Bank D at 142 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.38: Case 370; EOL 85% RTP Future Cycle F_{∆H} Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 142 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.39: Case 371; EOL 50% RTP Future Cycle F_{∆H} Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.40: Case 371; EOL 50% RTP Future Cycle F_{∆H} Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.41: Case 371; EOL 50% RTP Future Cycle F_Q Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.42: Case 371; EOL 50% RTP Future Cycle F_Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 174 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

a,c

.

Figure A.43: Case 372; EOL 50% RTP Future Cycle F_{∆H} Versus Axial Offset, Control Banks D/C at 68/191 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.44: Case 372; EOL 50% RTP Future Cycle F_{△H} Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Banks D/C at 68/191 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.45: Case 372; EOL 50% RTP Future Cycle F_Q Versus Axial Offset, Control Bank D/C at 68/191 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.46: Case 372; EOL 50% RTP Future Cycle F_Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D/C at 68/191 and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.47: Case 373; EOL 50% RTP Future Cycle F_{ΔH} Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05 Figure A.48: Case 373; EOL 50% RTP Future Cycle F_{∆H} Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

Figure A.49: Case 373; EOL 50% RTP Future Cycle F_Q Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05 Figure A.50: Case 373; EOL 50% RTP Future Cycle F_Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 223 (ARO) and Cabinet 2AC Misaligned In Except for Rods C-05 and G-05

a,c

the second se

Figure A.51: Case 376; EOL 85% RTP Future Cycle F_Q Versus Axial Offset, Control Bank D at 142 and Cabinet 2AC Misaligned In Except for Rods C-05

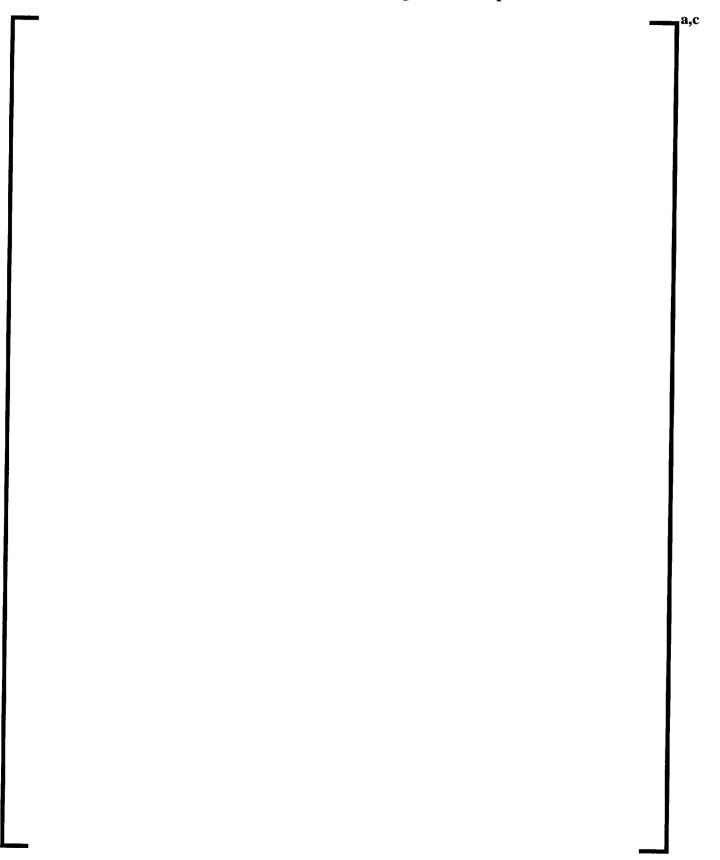


Figure A.52: Case 376; EOL 85% RTP Future Cycle F_Q Difference Relative to 12 Step Indicated Misalignment Versus Axial Offset, Control Bank D at 142 and Cabinet 2AC Misaligned In Except for Rod C-05

a,c

_ . _ .