SOLVIA Verification Manual Linear Examples

EXAMPLE A30
SCORDELIS-LO CYLINDRICAL ROOF, CUBIC SHELL

Objective

To verify the curved isoparametric SHELL element when subjected to gravity loading.

Physical Problem

A cylindrical shell roof subjected to gravity loading is considered, see figure below. The shell roof is
supported on diaphragms at the ends and it is free along the longitudinal sides.

R =300 in
E=23.0-10° psi

L =600 in

v=20.0

h = 3.0 in (thickness)
¢ = 40°

Shell weight = 90.0 Ib/sq-ft

diaphragm

Finite Element Model

Due to symmetry, only one quarter of the cylindrical shell roof needs to be considered. The part A-B-
C-D in the figure above is modeled using two cubic isoparametric SHELL elements, see figures on
page A30.3. Symmetrical boundary conditions are applied along the two sides defined by nodal points
between nodes 4 and 1 (line 4-1) and between nodes 3 and 4 (line 3-4). The nodes corresponding to
the diaphragm side (line 1-2) are fixed for translation in the Y- and Z-directions.

Solution Results

This example problem has been used extensively as a benchmark problem for shell elements. The
analytical shallow shell solution generally quoted for the vertical deflection at the centre of the free
edge (point B in the figure above) is -3.703 inches [1] although some authors use -3.696 inches. A
deep shell exact analytical solution quoted is -3.53 inches. Input data is shown on page A30.8, for the
two element model. The problem has also been analyzed with 8, 32 and 72 SHELL elements.
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Number of Displacement Stress-rr Stress-Ir
elements Z-direction
Point B Point C Point B
2 (2x1) -3.558 1305.4 24.47
8 (4x2) -3.598 1302.1 -26.26
32 (8x4) -3.611 12735 0.88
72 (12x6) -3.615 1271.5 2.82

A contour plot and the circumferential stress (stress-rr) and axial stress (stress-ss) along the line CB
are shown in the figures on pages A30.4 to A30.7 for the four models.

User Hints

« Note that only two SHELL elements with 4x4x2 Gauss integration points can be used to model
this example problem resulting into good agreement with theoretical results for displacements.

« A further description of this example problem can be found in [2].

References

[1]  Scordelis, A.C., Lo, X.S., "Computer Analysis of Cylindrical Shells", J. Amer. Concr. Inst.,
Vol. 61, pp. 539-560, 1964.

[2] Larsson, G. and Olsson, H., "An Engineering Error Measure for Finite Element Analysis",
Finite Element News, April 1988.
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SOLVIA-PRE input

HEADING 'A30 SCORDELIS-LO CYLINDRICAL ROOF, CUBIC SHELL'

*

DATABASE CREATE
*
ANALYSIS TYPE=STATIC MASSMATRIX=LUMPED
SYSTEM 1 CYLINDRICAL
COORDINATES
ENTRIES NODE R THETA XL
1 300 90 300

2 300 50 300
3 300 50 0
4 300 90 0

*

MATERIAL 1 ELASTIC E=3.E6 NU=0. DEN=0.208333

*

EGROUP 1 SHELL STRESSREFERENCE=ELEMENT RESULTS=NSTRESSES
THICKNESS 1 3.0

GSURFACE 1 2 3 4 EL1=2 EL2=1 NODES=16 SYSTEM=1

*x

FIXBOUNDARIES 246 INPUT=LINE / 4 1

FIXBOUNDARIES 23 INPUT=LINE ,/ 1 2

FIXBOUNDARIES 156 INPUT=LINE ,/ 3 4

*

LOADS MASSPROPORTIONAL ZFACTOR=1l. ACC=-1.

*

MESH NNUMBERS=MYNODES NSYMBOLS=YES ENUMBER=YES
MESH BCODE=ALL EAXES=STRESS-RST

*

SOLVIA

END

SOLVIA-POST input

* A30 SCORDELIS-LO CYLINDRICAL ROOF, CUBIC SHELL

*

DATABASE CREATE
*

WRITE FILENAME='a30.lis'

*

MESH CONTOUR=MISES VECTOR=REACTION
*
EPLINE NAME=LINE-CB
1 4117 3 TO 2 411 7 3
*
ELINE LINENAME=LINE-CB KIND=SRR OUTPUT=ALL SUBFRAME=21
ELINE LINENAME=LINE-CB KIND=SSS OUTPUT=ALL
*
NLIST ZONENAME=N3 DIRECTION=23
MASS-PROPERTIES
END
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EXAMPLE A31

SCORDELIS-LO CYLINDRICAL ROOY, PLATE

Objective

To verify the PLATE element when applied to a curved shell structure subjected to gravity loading.

Physical Problem
Same as for Example A30.

Finite Element Model

As for the previous example only one quarter of the structure needs to be modeled. A 12x12x4 mesh
of PLATE elements is used, see figures on page A31.2.

Solution Results

Using the input data shown on pages A31.4 and A31.5 the vertical deflection at point B of figure on
page A30-1 is predicted to be -3.521 inches.

A contour plot of the vertical displacement and the variation of the bending moment about the X-axis
(corresponding to bending stresses in the circumferential direction, the x,-direction in the selected
Local Cylindrical System) for two lines are shown in the figures on page A31.3. The line "X-0" is
identical to line CD and the line "X-12" is parallel to line CD but goes through the midpoints of the
quadrilaterals nearest line CD.

User Hints

« Note that even though a large number of PLATE elements is used, the displacement solution for
the considered point B is still not as good as the solution obtained in Example A30, where only
two isoparametric SHELL elements are used. One reason is that the PLATE element is flat and the
cylindrical shell roof is, therefore, approximated by straight segments. Another reason is that the
membrane action of the PLATE element is the same as for a constant strain triangle. The mem-
brane forces are constant over each element, which limits the capability of the PLATE element to
describe structures, where the membrane forces vary significantly.

o The recommended finite element to model this example structure is, therefore, the SHELL
element.
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SOLVIA-PRE input

HEADING 'A31 SCORDELIS-LO CYLINDRICAL ROOF, PLATE'
*

DATABASE CREATE
*
ANALYSIS TYPE=STATIC MASSMATRIX=LUMPED
SYSTEM 1 CYLINDRICAL
COORDINATES
ENTRIES NODE R THETA XL
1 300 90 300

2 300 50 300
3 300 50 0
4 300 90 0

*

MATERIAL 1 ELASTIC E=3.E6 DENSITY=0.208333
*

EGROUP 1 PLATE

STRESSTABLE 1 1 2 3 4 5 6 7

GSURFACE 1 2 3 4 EL1=12 EL2=12 SYSTEM=1
EDATA ,/ 1 3.0
*
FIXBOUNDARY 246 INPUT=LINE / 4 1
FIXBOUNDARY 23 INPUT=LINE / 1 2
FIXBOUNDARY 156 INPUT=LINE ,/ 3 4

*

LOADS MASSPROPORTIONAL ZFACTOR=1. ACCGRA=-1.

*

SET HEIGHT=0.25 NSYMBOLS=MYNODES NNUMBERS=MYNODES
MESH BCODE=ALL

ZONE NAME=C-B INPUT=GLOBAL-LIMITS XMAX=25

MESH ZONENAME=C-B ENUMBERS=YES

*

SOLVIA

END
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SOLVIA Verification Manual Linear Examples

SOLVIA-POST input

* A31 SCORDELIS-LO CYLINDRICAL ROOF, PLATE

*

DATABASE CREATE

*
WRITE FILENAME='a3l.lis'

*

MESH OUTLINE=YES ORIGINAL=DASHED CONTOUR=DZ
*

EPLINE NAME=X-0

531 24 1 STEP 4 TO 575 2 4 1
EPLINE NAME=X-12

532 4 73 / 530374 ,/ 536 47 3 / 534 374
540 4 73 / 538 37 4 / 544 4 7 3 / 542 3 7 4
548 4 7 3 /4 546 3 7 4 ,/ 552 4 7 3 / 550 3 7 4
556 4 7 3 / 554 37 4 / 56047 3 / 558 37 4
564 4 73 / 562 3 7 4 / 568 4 7 3 / 566 37 4
572 4 7 3 / 570 37 4 ,/ 576 4 7 3 / 574 3 7 4

*

SYSTEM 1 CYLINDRICAL

ELINE LINENAME=X-0 KIND=M1l OUTPUT=ALL SYSTEM=1 SUBFRAME=21
ELINE LINENAME=X-12 KIND=M11l OUTPUT=ALL SYSTEM=1

*

NLIST ZONENAME=N3 DIRECTION=234

MASS-PROPERTIES

END
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EXAMPLE A32

PINCHED CYLINDRICAL SHELL, SHELL ELEMENTS

Objective

To verify the membrane and bending behaviour of the SHELL element when applied to a curved
structure.

Physical Problem

The thin cylindrical shell structure shown in the figure below is analyzed for its static response. The
cylinder is freely supported at its ends and is loaded by two centrally located and diametrically
opposed concentrated forces.

RIGID DIAPHRAGM
SUPPORT (v=w=v=0)

E=3.0-10 psi

v=0.3

t=1.01n.
R/t=100
L/R=2

P =300000 Ibf.

RIGID DIAPHRAGM
SUPPORT (v=w=v=0)

Finite Element Model

Using the three symmetry planes of the structure and the load, only one eighth of the cylinder is
analyzed. The 16-node SHELL element is employed using different fineness of the mesh.

Version 99.0 A32.1
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Solution Results

The analytical solution for this problem is reported in [1].

The input data used for one of the models (thirty-six 16-node SHELL element, integration 4x4x2) is
shown on pages A32.8 and A32.9.

The displacement in Z-direction and the membrane stress-ss (global X-direction) at point C for the
different models are shown in the table on the following page.

The graphic results from SOLVIA-POST contain deformed mesh, radial displacement and shell
stresses along the line BC. Stress-11 is the stress in the circumferential direction (the x,-direction) and
membrane stress-22 is the membrane stress in axial direction (the x -direction).

User Hints

o In SOLVIA-POST the line coordinates are calculated as a line polygon, i.e. the program assumes
straight lines between the nodal points. The coordinates on the abscissa of the diagrams in the
figures from SOLVIA-POST are, therefore, not equal to the arc length along the circle BC.

» A rather fine mesh around the point of load application is necessary when stress results are
desired. If only a displacement solution is of interest a coarser mesh can be used.

» Note that the lower integration order 3x3x2 results in significantly worse stress prediction along
the line BC than the 4x4x2 integration order, see figures on page A32.6.

Z-displacement Membrane stress-ss SOLVIA-POST
at point C at point C results on page

Analytical solution -1.642 —-4.72-10*

16-node SHELL

36 elements -1.395 -6.28-10* A32.4
Integration 4x4x2

LINE RATIO=1.0

16-nocde SHELL

36 elements -1.622 -5.83-10* A32.5
Integration 4x4x2

LINE RATIO=4.0

16-node SHELL

36 elements -1.673 -11.45-10* A32.6
Integration 3x3x2

LINE RATIO=4.0

16-node SHELL

144 elements -1.664 ~5.27-10* A32.7
Integration 4x4x2

LINE RATIO=4.0
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Reference

[1] Lindberg, G.M.,, Olson, M.D. and Cowper, E.R., "New Developments in the Finite Element
Analysis of Shells", National Research Council of Canada, Quarterly Bulletin of the Division
of Mechanical Engineering and the National Aeronautical Establishment, Vol.4, pp. 1-38,
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SOLVIA-PRE input

HEADING 'A32 PINCHED CYLINDRICAL SHELL, SHELL ELEMENTS'
*

DATABASE CREATE
*
SYSTEM 1 CYLINDRICAL
COORDINATES
ENTRIES NODE R THETA XL
1 160 90 100
2 100 0 100
3 100 0 0
4 100 90 0
LINE CYLINDRICAL N1=3 N2=4 EL=6 MIDNODES=2 NFIRST=5

*

MATERIAL 1 ELASTIC E=3.E7 NU=0.3

*

EGROUP 1 SHELL STRESSREFERENCE=ELEMENT RESULTS=NSTRESSES
GSURFACE 1 2 3 4 EL1=6 EL2=6 NODES=16 SYSTEM=1

THICKNESS 1 1.0
*

FIXBOUNDARIES 23 INPUT=LINES / 1 2
FIXBOUNDARIES 345 INPUT=LINES / 2 3
FIXBOUNDARIES 156 INPUT=LINES ,/ 3 4
FIXBOUNDARIES 246 INPUT=LINES / 4 1

*

LOADS CONCENTRATED
4 3 -75000.
*
SET NSYMBOLS=MYNODES PLOTORIENTATION=PORTRAIT
MESH ENUMBER=YES NNUMBERS=MYNODES VECTOR=LOAD
MESH EAXES=STRESS~-RST
*
SOLVIA
END
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SOLVIA-POST input

* A32 PINCHED CYLINDRICAL SHELL, SHELL ELEMENTS
*

DATABASE CREATE
*

WRITE FILENAME='a32.lis’
*
SUBFRAME 21
MESH ORIGINAL=YES VECTOR=LOAD
*
NPLINE NAME=LINE-BC
3 5T0 21 4
*
SYSTEM 1 CYLINDRICAL
NLINE LINENAME=LINE-BC DIRECTION=3 OUTPUT=ALL SYSTEM=1
*
EPLINE NAME=BC
3¢ 37114 TO 31 3 7 11 4
ELINE LINENAME=BC KIND=S11 OUTPUT=ALL SYSTEM=1 SUBFRAME=21
*
SHELLSURFACE PLOTRESULTS=MID
ELINE LINENAME=BC KIND=S22 OUTPUT=ALL SYSTEM=1
END

Version 99.0 A32.9
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EXAMPLE A33

PINCHED CYLINDRICAL SHELL, PLATE ELEMENTS

Objective

To verify the membrane and bending behaviour of the PLATE element when modeling a cylindrical
shell surface.

Physical Problem

The same shell structure as described in Example A32 is considered, see figure on page A32.1.

Finite Element Model

As for Example A32 only one eighth of the cylinder need to be considered. The finite element model
consists of 576 PLATE elements as shown in the figures on page A33.2 giving a total number of 1739
equations.

Solution Results

The input data used for the 12x12x4 diamond mesh is shown on pages A33.4 and A33.5.

The resulting deformation of the finite element model and the radial deflection along line BC is
shown in the top figure on page A33.3. The membrane force in the global X-direction (x, direction of
the Local Cylindrical System) and bending moment M, (about global X-direction corresponding to
bending stresses in the circumferential direction, the x, direction) at the stresstable points on the line
BC are displayed in the bottom figure on page A33.3.

The theoretical solution is given in [1].
3,. = displacement in Z-direction at point C.
o, = membrane stress at point C in global X-direction.

8, [in] O, [psi]
Theory SOLVIA Theory SOLVIA
-1.642 -1.619 -4.72-.10*  -3.30-10*

User Hints

« As discussed already for Examples A30 and A31, a larger number of elements is required in
general when modeling a curved shell structure by PLATE elements.
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Reference

(1]

Analysis of Shells", National Research Council of Canada, Quarterly Bulletin of the Division

of Mechanical Engineering and the National Aeronautical Establishment, Vol. 4, pp. 1-38,

Lindberg, G.M., Olson, M.D. and Cowper, E.R., "New Developments in the Finite Element
1969.
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SOLVIA-PRE input

HEADING 'A33 PINCHED CYLINDRICAL SHELL, PLATE ELEMENTS'

*

DATABASE CREATE
*
SYSTEM 1 CYLINDRICAL
COORDINATES
ENTRIES NODE R THETA XL
1 100 90 100
2 100 0 100
3 100 0 0
4 100 90 0
LINE CYLINDRICAL N1=3 N2=4 EL=12 NFIRST=5

*

MATERIAL 1 ELASTIC E=3.E7 NU=0.3

*

EGROUP 1 PLATE
GSURFACE 1 2 3 4 EL1=12 EL2=12 SYSTEM=1
EDATA ,/ 1 1.0

STRESSTABLE 1 1 2 3 4 5 6 7
*

FIXBOUNDARIES 23 INPUT=LINES
FIXBOUNDARIES 345 INPUT=LINES
FIXBOUNDARIES 156 INPUT=LINES
FIXBOUNDARIES 246 INPUT=LINES
*
LOADS CONCENTRATED

4 3 -75000.

*

SET PLOTORIENTATION=PORTRAIT
MESH NSYMBOLS=MYNODES NNUMBERS=MYNODES

ZONE NAME=EDGE INPUT=GLOBAL-LIMITS XMAX=5
MESH ZONENAME=EDGE ENUMBER=YES NSYMBOLS=MYNODES
*

SOLVIA

END

NN\
B W
R NREN
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SCLVIA-POST input

* A33 PINCHED CYLINDRICAL SHELL, PLATE ELEMENTS

*

DATABASE CREATE
*

WRITE FILENAME='a33.lis'
*
SUBFRAME 21
MESH VECTOR=LOAD
*
NPLINE NAME=LINE-BC
3 5 TO 15 4
*
SYSTEM 1 CYLINDRICAL
NLINE LINENAME=LINE-BC DIRECTION=3 OUTPUT=ALL SYSTEM=1
*
EPLINE NAME=BC-LINE
575 1 4 2 STEP -4 70 521 1 4 2
*
BLINE LINENAME=BC-LINE KIND=F22 OUTPUT=ALL SYSTEM=1 SUBFRAME=21
ELINE LINENAME=BC-LINE KIND=M11l OUTPUT=ALL SYSTEM=1
END
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EXAMPLE A34

ANALYSIS OF CONCENTRIC FLUID-FILLED CYLINDERS

Objective

To verify the behaviour of the FLUID2 element in a fluid-structure static analysis.

Physical Problem

Five concentric fluid-filled cylinders are analyzed for an axial load applied to the stiff end cap as
shown in the figure below.

Total load 2.04.10* N

| |

L \ \ \\ stift cap
| 4 / 4 2
| 1A 1 ih N 2
. U " U N Cylinders (6351-T6 aluminum)
’ S IR Young's modulus E = 6.895-10'° N/m*
‘ (A Poisson's ratioc  v=0.33
H 4 H 1
25.250 ' 1 q M ]
‘ 1 0 df 7 Fluid (Light hydraulic oil)
! A R I Bulk modulus K =1.64-10° N/m?
l A 4 M H 4
% 4 1 N %
M » 1 11 r %
I A 4 U U 4
A { [ f 1 line of symmetry
o ! Y {cm)
1’—3.213—’
——yy
4.610—
4.775
6.050
6.203—
6.655
6.820
7.925 ——
I 8.090
Finite Element Model

Because of symmetry only one half of the cylinders need to be considered in the axisymmetric model
shown in the figures on page A34.2. The finite element model consists of 8-node PLANE and
FLUID2 AXISYMMETRIC elements. Fluid and structural elements are modeled with separate nodes.
The nodal displacement in the Y-direction for adjacent structural and fluid element nodes are
constrained. The stiff cap is simulated using rigid links to the cylinder nodes. The top fluid nodes are
constrained to move in the Z-direction with the top cylinder nodes. Irrotational displacement
conditions are enforced in the fluid elements.

The total load of 20400 N corresponds to the axisymmetric model load of 3246.76 N since the
circumferential extension is | radian.
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Solution Results

The input data on page A34.3 - A34.5 was used in the finite element analysis. The calculated fluid
pressures are compared with the experimental pressures presented in [1].

Cylinder Pressure [N/mz]
Experimental SOLVIA
1 5.57-10* 523-10*
2 4.52.10* 428-10*
3 3.40-10* 3.32-10*
4 2.53.10* 2.33-10*
5 1.41-10* 125-10*

The deformed configuration as well as the radial displacement along the cylinder at radius Y =3.213
cm (line INNER) and the pressure variation along the line RADIUS are displayed by SOLVIA-POST
in the top figures on page A34.3. Note that meter is used in the input data for this example.

Reference

[1] Munro, M. and Piekarski, K., "Stress Induced Radial Pressure Gradients in Liquid-Filled
Multiple Concentric Cylinders", J. of Appl. Mech., Vol. 44, No. 2, pp. 218-221, 1977.
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A34  ANALYSIS OF CONCENTRIC FLUID-FILLEC CYLINDERS A34 ANALYSIS OF CONCENTRIC FLUIC-FILLED CYLINDERS
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SOLVIA-POST 99.0 SOLVIA ENGINEERING A8 SOLVIA-POST 99.0 SOLVIA ENGINEERING AB

SOLVIA-PRE input

HEADING 'A34 ANALYSIS OF CONCENTRIC FLUID-FILLED CYLINDERS'

*

DATABASE CREATE
MASTER IDOF=100111

SET NODES=8 MYNODES=200
PARAMETER $EL=30

*

COORDINATES / ENTRIES NODE Y

* fluid top nodes 1 - 10:
1 / 2 .03213 [/ 3 .03373
5 .04775 / 6 .06050 [/ 7 .06203

9 .06820 ,/ 10 .07925

* structure top nodes 12 - 20:

12 .03213 ,/ 13 .03373 / 14 .04610
16 .06050 / 17 .06203 / 18 .06655
20 .07925 ,/ 21 .08090

* fluid and structure bottom nodes:
NGENERATION ZSTEP=-.25250 NSTEP=100 [/
*
MATERIAL 1 ELASTIC E=6.895E10 NU=0.33
MATERIAL 2 FLUID K=1.64E9

*

EGROUP 1 PLANE AXISYMMETRIC MATERIAL=1

GSURFACE 13 12 112 113 EL2=$EL
GSURFACE 15 14 114 115 EL2=$EL
GSURFACE 17 16 116 117 ELZ=SEL
GSURFACE 19 18 118 119 EL2=$SEL
GSURFACE 21 20 120 121 EL2=$EL

*
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SOLVIA-PRE input (cont.)

Linear Examples

EGROUP 2 FLUIDZ AXISYMMETRIC MATERIAL=2 IRROTATIONALITY=YES

GSURFACE 2 1 101 102 EL2=$EL NCOINCIDE=NO
GSURFACE 4 3 103 104 EL2=$EL NCOINCIDE=NO
GSURFACE 6 5 105 106 EL2=3$EL NCOINCIDE=NO
GSURFACE 8 7 107 108 EL2=$EL NCOINCIDE=NO
GSURFACE 10 9 109 110 EL2=S$EL NCOINCIDE=NO

*

CONSTRAINTS INPUT=LINES M-INPUT=LINES
* gnl sn2 sdir mnl mn2 mdir

2 102 2 12 11z 2
3103 2 13 113
4 104 2 14 114 2
5 105 2 15 115 2
6 106 2 16 116 2
7 107 2 17 117 2
8 108 2 18 118 2
9 109 2 19 119 2
10 110 2 20 120 2
CONSTRAINTS INPUT=NODES ,/ DELETE 1 TO 10

CONSTRAINTS INPUT=LINES
* nl n2 dir master mdir

1 2 3 1 3
3 4 3 1 3
5 6 3 1 3
7 8 3 1 3
9 10 3 1 3

*

RIGIDLINK INPUT=LINES
* nl n2 master

12 13 1
14 15 1
le 17 1
18 19 1
20 21 1

*

FIXBOUNDARIES 2 INPUT=LINE / 1 101
FIXBOUNDARIES 2 INPUT=NODES / 2 TO 10
ZONE SYM GLOBAL-LIMITS ZMAX=-.25
FIXBOUNDARIES 3 INPUT=ZONE ZONE1=SYM

*

LOADS CONCENTRATED / 1 3 -3246.76084

*

SET PLOTORIENTATION=PORTRAIT

MESH VECTOR=LOAD

ZONE TOP GLOBAL-LIMITS ZMIN=-0.01

ZONE TOPFLUID OPERATION=ADD ZONE1=TOP

ZONE TOPSOLID OPERATION=ADD ZONE1=TOP

ZONE TOPFLUID OPERATION=INTERSECT ZONE1=FLUID2
ZONE TOPSOLID OPERATION=INTERSECT ZONEl1=PLANE
SUBFRAME 14

MESH TOPFLUID NNUM=MY NSYM=YES

MESH TOPSOLID NNUM=MY NSYM=YES GSCALE=QLD
MESH TOPFLUID NSYM=YES BCODE=ALL

MESH TOPSOLID NSYM=YES BCODE=ALL GSCALE=0LD

*

LIST LINE 112 12

SOLVIA

END
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SOLVIA-POST input

* A34 ANALYSIS OF CONCENTRIC FLUID-FILLED CYLINDERS
*

DATABASE CREATE

WRITE FILENAME='a34.lis'

*

SET PLOTORIENTATION=PORTRAIT
*
NPLINE NAME=INNER
12 202 TO 260 112
*
EGROUP 2
EPLINE NAME=RADIUS
30 2 4 STEP 30 TO 150 2 4
*
MESH PLINES=ALL SUBFRAME=2111
NLINE LINENAME=INNER DIRECTION=2 SUBFRAME=2222
ELINE LINENAME=RADIUS KIND=PRESSURE SYMBOL=1 SUBFRAME=2221
*

MESH DMAX=3 VECTOR=LOAD

*

ZONE NAME=FLUID INPUT=ELEMENT
30 STEP 30 TO 150

ELIST ZONENAME=FLUID

*

END
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EXAMPLE A35

Z-SECTION CANTILEVER UNDER DISTRIBUTED EDGE LOAD

Objective

To verify the membrane behaviour of the SHELL element when subjected to distributed edge loading.
Physical Problem

A Z-section cantilever is subjected to pure torsional loading at its free end as seen in the figure below.
At the end X=0, the cantilever is rigidly built-in. This problem is further described in [1] page 35.

Thickness 0.1 m

L
L=100m
a=25m
F=0.6 MN
‘\j b=1.0m
a jb c=20m
b

p Elastic material

E=2.1-10" N/m?
v=0.3

Finite Element Model

A uniform mesh of 24 cubic SHELL elements are used in the model as seen in the figure on page
A35.2. The edge load is defined by SHELL line forces acting in the local SHELL edge direction.

Solution Results

The theoretical solution for this problem is given in [1], pp. 35-41. The stress distribution over the
cross-section is defined at a point located 2.5 m along the cantilever from the built-in end. The axial
membrane stress varies linearly over the flanges and is constant over the web. The membrane shear
stress varies quadratically over the flanges and varies linearly over the web.

Using the input data shown on page A35.5 the following results are obtained:

Line coord. Cubic SHELL Analytical [MPa]
Stress-ir Stress-1s Stress-1t Stress-rs
0. -110.3 -0.07 -107.9 0.
1. 36.5 -5.96 36.0 -5.85
36.5 5.96 36.0 5.85
4, -110.3 0.07 -107.9 0.
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The contour plot of stress-rr and the stress distribution at X = 2.5 m can be seen in figures on page
A35.3. The cubic SHELL element performs very well in this example and the quadratic distribution
of the shear stresses is in good agreement with the analytical solution.

User Hints

¢ The results of an analysis using the 9-node SHELL element can be found on page A35.4. The
distribution of the direct stress, stress-rt, is in good agreement with the analytical solution, but the
shear stress distribution is relatively poor.

Reference

[11] NAFEMS, Background to Benchmarks, 1993.
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A35 Z-SECTION CANTILEVER UNDER DISTRIBUTED EDGE LOAD
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9-NODE SHELL
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SOLVIA-PRE input

HEAD 'A35 Z-SECTION CANTILEVER UNDER DISTRIBUTED EDGE LOAD'

*

DATABASE CREATE

*

COORDINATES
1 0. 1. 1. , 2 0. 1. 0.
3 0. -1. 0. / 4 0. -1. -1.
5 10. -1. -1. / 6 10. -1. O.
7 10. 1. 0. ,/ 8 10. 1. 1.

*

MATERIAL 1 ELASTIC E=210.E9 NU=0.3

*

EGROUP 1 SHELL RESULTS=NSTRESSES STRESSREFERENCE=ELEMENT

THICKNESS 1 0.1

GSURFACE 6 3 4 5 EL1=8 EL2=1 NODES=16
GSURFACE 7 2 3 6 EL1=8 EL2=1 NODES=16
GSURFACE 8 1 2 7 EL1=8 EL2=1 NODES=16
LOADS ELEMENT TYPE=FORCE INPUT=LINE

5 6 edge 0.6E6 0.6E6
7 8 edge -0.6E6 -0.6E6
*

FIXBOUNDARIES INPUT=LINE
12 / 23 / 34

*

VIEW 1ID=1 XVIEW=2. YVIEW=-1. ZVIEW=0.5

SET VIEW=1

MESH ENUMBERS=YES NNUMBERS=MYNODES NSYMBOLS=MYNODES,

VECTOR=LOAD BCODE=ALL

*

SOLVIA

END

SOLVIA-POST input

* A35 Z-SECTION CANTILEVER UNDER DISTRIBUTED EDGE LOAD
*

DATABASE CREATE
*

WRITE FILENAME='a35.lis'
*
SHELLSURFACE PLOTRESULTS=MID
VIEW ID=1 XVIEW=2. YVIEW=-1. ZVIEW=0.5
MESH VIEW=1 OUTLINE=SHELI, CONTOUR=SRR ORIGINAL=YES
*
EPLINE NAME=SECTION
6 31062 / 14 31062 ,/ 22 310 6 2
ELINE LINENAME=SECTION KIND=SRR OUTPUT=ALL SUBFRAME=21
ELINE LINENAME=SECTION KIND=SRS OUTPUT=ALL
*
NMAX DIRECTION=123 NUMBER=2
END
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EXAMPLE A36
CYLINDRICAL PRESSURE VESSEL WITH HEMISPHERICAL ENDS

Objective

To verify the PLANE AXISYMMETRIC element under distributed loading when used for
axisymmetric shell bending problems.

Physical Problem

A pressurized cylinder is capped by hemispheres of the same thickness as shown in the figure below.
The radius to thickness ratio is 40 so thin shell theory is applicable. This problem is described in [1].

\ E=2.1-10"" N/m?

v=0.3
DE a=10m (mean radius)
h=0.025m (thickness)
Xy p=110° N/m?

Finite Element Model

Due to symmetry only half of the pressure vessel is modeled using 38 PLANE AXISYMMETRIC
elements as shown in the bottom figure on page A36.2.

Most of the local bending is concentrated to the joint between the cylinder and the cap and a fine
mesh is used for that part. The element meshing of the model is performed as described in [1].

Solution Results

The theoretical solution for this problem can be found in [2] p. 484. Combining the maximum

bending stress and the membrane stress at the outer surface we get

1.293-a-p,
2

=25.22.10° N/m®>  where p, == and C=—2>
C a—-h/2

Stress-1T =

where p is the internal pressure applied at radius a - b/2. The factor C is introduced to calculate
equivalent loads acting at the midsurface, see Example A2.
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SOLVIA calculates maximum axial stress at nodal point 7 to be stress-rr = 25.3-10° N/m? .

The deformed mesh and the distribution of the axial stress and the hoop stress at the outer surface of
the cylinder can be seen in the figures on page A36.3.

Input data used in the SOLVIA analysis is found on pages A36.4 and A36.5.

References
{11 NAFEMS, Background to Benchmarks, 1993.

[2] Timoshenko, S.P. and Woinowsky-Krieger, S., Theory of Plates and Shells, Second Edition,
McGraw-Hill, 1959.
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SOLVIA-PRE input

HEAD 'A36 CYLINDRICAL PRESSURE VESSEL WITH HEMISPHERICAL ENDS'

*

DATABASE CREATE

*

MASTER IDOF=100111

*

SET NODES=8

SYSTEM 1 CYLINDRICAL Z=1.5

COORDINATES
ENTRIES NODE R THETA
L0125 90.
.9875 90.

.0125 11.068
.9875 11.068

OY UL W
O OO

.0125 0.
.9875 0.
SYSTEM O
COORDINATES
ENTRIES NODE Y Z
7 1.0125 1.4034
8 0.9875 1.4034
9 1.0125 1.1136
10 0.9875 1.1136
11 1.0125
12 0.9875

*

MATERIAL 1 ELASTIC E=210.E9 NU=0.3

*

EGROUP 1 PLANE AXISYMMETRIC RESULTS=NSTRESSES
GSURFACE 2 4 3 EL1=12 EL2=1 SYSTEM=1
GSURFACE 4 6 5 EL1=8 EL2=1 SYSTEM=1
GSURFACE 6 8 7 EL1=4 EL2=1 SYSTEM=0
GSURFACE 8 10 9 EL1=6 EL2=1 SYSTEM=0
GSURFACE 10 12 11 EL1=8 EL2=1 SYSTEM=0

*
LOADS ELEMENT INPUT=LINE

O Ul w

2 4 1.E6
4 6 1.E6
6 8 1.E6
8 10 1.E6
10 12 1.E6

*

FIXBOUNDARIES 2 INPUT=LINE ,/ 1 2
FIXBOUNDARIES 3 INPUT=LINE / 11 12
*

MESH BCODE=ALL OUTLINE=YES SUBFRAME=21
MESH VECTOR=LOAD

*

SOLVIA

END
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SOLVIA-POST input

* A36 CYLINDRICAL PRESSURE VESSEL WITH HEMISPHERICAL ENDS
*

DATABASE CREATE STRESSREFERENCE=ELEMENT

WRITE FILENAME='a36.lis’

*

SET PLOTORIENTATION=PORTRAIT

MESH ORIGINAL=YES VECTOR=LOAD OUTLINE=YES NSYMBOLS=MYNODES
MESH ORIGINAL=YES VECTOR=REACTION

*

SET PLOTORIENTATION=LANDSCAPE
*
EPLINE NAME=OUTER
1 47 3 TO 38 4 7 3
ELINE LINENAME=OUTER KIND=SRR OUTPUT=ALL SUBFRAME=21
ELINE LINENAME=OUTER KIND=STT
*
SUMMATION KIND=LOAD
SUMMATION KIND=REACTION DETAILS=YES
END
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EXAMPLE A37

FREQUENCY ANALYSIS OF CANTILEVER WITH OFF-CENTER MASSES

Objective

To verify the dynamic behaviour of the BEAM and GENERAL Mass elements and the use of rigid
links in frequency analysis.

Physical Problem

A cantilever beam with two off-center point masses as shown in the figure below is considered. The
point masses are connected to the tip end of the beam using rigid links. The off-center distance is 2 m.
At the other end the beam is rigidly built-in. The six lowest frequencies and eigenmodes of the beam
structure are analyzed. This example is described in [1].

M, O__

‘ L
N a
N
a
Mz O—L
Beam cross section
L=10m Elastic material
a=2m E=2-10" N/m?
D D=0.5m v=023
M, =1 k
1 =10000 kg p = 8000 kg/m>
M, =1000 kg

Finite Element Model

The cantilever beam is modeled using five standard BEAM elements with a circularsolid section. The
point masses are modeled using GENERAL Mass element with one node per element. Rigid links are
connecting the BEAM elements with the Mass elements. A consistent mass matrix assumption must
be used in this example, and the subspace iteration method is employed in the eigenvalue calcula-
tions. The calculational model is shown in the figure on page A37.2.

Solution Results

Using the input data shown on pages A37.4 and A37.5 the following results are obtained:
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Mode Reference freq. fr [1] SOLVIA
1 1.723 1.722
2 1.727 1.725
3 7.413 7.410
4 9.972 9.946
5 18.155 18.044
5 26.957 26.694
User Hints

» GENERAL Mass elements and consistent mass matrix assumption must be used when concen-
trated point masses are coupled to a structure via rigid links. If a lumped mass matrix is used or the
point masses are defined using concentrated nodal masses the off-diagonal terms from the rigid
link transformation are lost and the solution result will be in error.

¢ The standard section BEAM element is formulated including shear deformation. The NAFEMS®
results refer to an exact 3-D beam element excluding the shear effects. This can be verified by
using the general BEAM section and setting the shear areas in s- and t-directions to zero.

Reference
[1] NAFEMS, The Standard NAFEMS Benchmarks, TSNB, Rev. 3, October 5, 1990.

A37 FREQUENCY ANALYSIS OF CANTILEVER WITH OFF~CENTER MASSES

ORIGINAL ———— L. Zz

P
r §
EAXES=RST

MASTER
G000CO

B ittty
C 222222

SOLVIA-PRE 99.0 SOLVIA ENGINEERING AB
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REFERENCE +— — 2.
MAX DISPL. +— 8.3295E-3
MODE { FREQ 1.7219

SOLVIA~POST $9.0

Y

A37 FREQUENCY ANALYSIS OF CANTILEVER WITH OFF-CENTER MASSES

REFERENCE +— —if. z
MAX DISPL. —+ 8.5216E-3 !
MODE 2 FREQ {.7254 Wy
///
&
\\ -~
\{\\

SOLVIA ENGINEERING AB

A37 FREQUENCY ANALYSIS OF CANTILEVER WITH OFF-CENTER MASSES

REFERENCE — — 1. 2 REFERENCE —  — 2. Y
MAX DISPL. +—i 0.020801 /k MAX DISPL. +—i 7.8288E-3 |
MODE 3 FREQ 7.4099 v y MODE 4 FREQ 9.9462 X
<&
\\ |
\
\
/// }\
~ = \
6\\\\\ [ >
\\
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| SOLVIA-POST 99.0 SOLVIA ENGINEERING AB
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A37 FREGQUENCY ANALYSIS OF CANTILEVER WITH OFF-CENTER MASSES

REFERENCE = ~ 1. z REFERENCE +— — 2. Y
MAX DISPL. — 0.01427¢ /|\ MAX DISPL. — 0.010945 L
MODE 5 FREQ 18.044 X y MCDE 6 FREQ 26.694 X

-1

P

SOLVIA-POST 95.0 SOLVIA ENGINEERING AB

SOLVIA-POST input

* A37 FREQUENCY ANALYSIS OF CANTILEVER WITH OFF-CENTER MASSES
*

DATABASE CREATE

WRITE FILENAME='a37.lis’

*

FREQUENCIES

MASS-PROPERTIES
*

SET RESPONSETYPE=VIBRATIONMODE ORIGINAL=DASHED
SET NSYMBOLS=MYNODES
*

SUBFRAME 21

MESH VIEW=% TIME=1
MESH VIEW=I TIME=2
SUBFRAME 21

MESH VIEW=I TIME=3
MESH VIEW=Z TIME=4
SUBFRAME 21

MESH VIEW=I TIME=5
MESH VIEW=% TIME=6
END
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SOLVIA-PRE input

HEAD 'A37 FREQUENCY ANALYSIS OF CANTILEVER WITH OFF-CENTER MASSES'
*

DATABASE CREATE

*

ANALYSIS TYPE=DYNAMIC MASSMATRIX=CONSISTENT
FREQUENCIES SUBSPACE-ITERATION NEIG=6

COORDINATES
1
2 10.
3 10. 2.
4 10. -2.

*

MATERIAL 1 ELASTIC E=200.E9 NU=0.3 DENSITY=8000.
*
EGROUP 1 BEAM
SECTION 1 CIRCULARSOLID D=0.5
BEAMVECTOR
1 0. 0. 1.
GLINE N1=1 N2=2 AUX=-1 EL=5
*
EGROUP 2 GENERAL
MATRIXSET 1 MASSMATRIX

1 1.E4
2 1.E4
3 1.E4

4 0. / 5 0. / 6 0.
MATRIXSET 2 MASSMATRIX

1 1.E3
2 1.E3
3 1.E3

4 0. / 5 0. / 6 0.
EDATA / 11 / 2 2
ENODES / 13 / 24

*

FIXBOUNDARIES / 1
RIGIDLINK

32 / 42

*

MESH NSYMBOLS=YES NNUMBERS=MYNODES BCODE=ALL EAXES=RST

*

SOLVIA
END
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EXAMPLE A38
SIMPLY SUPPORTED SKEW PLATE UNDER PRESSURE LOAD

Objective

To verify the SHELL element under distributed load when using distorted elements.

Physical Problem

A simply supported skew plate under pressure load is considered as shown in the figure below. The
pressure load acts in the negative Z-direction. The material in the plate is linear elastic isotropic. The
problem is described in [1].

Uniform thickness 0.01 m

Elastic material

L=Im E=2.1-10"" N/m?
a=150° v=0.3
B=30° Pressure p = 700 N/m?

C

Finite Element Model

The skew plate is generated using 4x4 cubic SHELL elements. The Z-displacement is fixed for all
edges. The element stresses are evaluated at the element nodal points. The finite element mesh
corresponds to the fine mesh described in [1], see figure on page A38.2. However, a good stress
solution would require a finer mesh.

Solution Results

The theoretical solution to this problem is discussed in [1] and is based on classical thin plate theory.
The primary results are the maximum and minimum principal stresses on the lower surface at the
plate centre.

The input data used in the SOLVIA analysis is shown on page A38.5. A finite element model using
8x8 4-node SHELL elements is also used to compare with the NAFEMS results.
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Stresses on the bottom surface NAFEMS Cubic SHELL 4-node SHELL
Max. principal stress [MN/m2] 0.802 0.793 0.757
Mid. principal stress [MN/mz] 0.456 0.400 0.421

The distribution of stress-xx along the diagonal BD and the distribution of stress-yy along the
diagonal AC can be seen in the top figures on page A38.3. Contour plots of stress-xx and maximum
principal stress can also be seen on page A38.3.

The corresponding SOLVIA-POST results for the 4-node SHELL element analysis can be seen on
page A38.4. The mesh consists of 8x8 elements. Note the large stress jumps in the stress distribution.

User Hints

¢ Note that SOLVIA-PRE gives a warning message regarding the element distortion in the model
(skew distortion of 60 degrees).

« Note the stress concentration at the corners B and D. A more detailed discussion regarding error
sources can be found in [1].

» Simply supported boundary conditions for a square plate are discussed in Example A27.

Reference
[1] NAFEMS, Background to Benchmarks, 1993.

A38 SIMPLY SUPPORTED SKEW PLATE UNDER PRESSURE LOAD
ORTGINAL ——— 0.2 Y ORIGINAL ———1 0.1 z
D! TIME |
3 L« t,
§ MASTER
000000
B 001000 PRESSURE
C 011000 ~—
D {C1000 700
SOLVIA-PRE 99 0 _ SOLVIA ENGINEERING A8
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A38 SIMPLY SUPPCRTED SKEW PLATE UNDER PRESSURE LOAD
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A38 SIMPLY SUPPORTED SKEW PLATE UNDER PRESSURE LDAD
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A38 SIMPLY SUPPQRTED SKEW PLATE UNDER PRESSURE LOAD
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SHELL BOT
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44196

MIN-3.7242E6
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A38 SIMPLY SUPPORTED SXEW PLATE UNDER PRESSURE LCAD
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SOLVIA-PRE input

HEADING 'A38 SIMPLY SUPPORTED SKEW PLATE UNDER PRESSURE LOAD'

*

DATABASE CREATE
*
COORDINATES
1 0.258819045 0.965925826 ,/ 2 0. O.
3 0.258819045 -0.965925826 ,/ 4 0.51763809 0.

*

MATERIAL 1 ELASTIC E=2.1E11 NU=0.3

*

EGROUP 1 SHELL RESULTS=NSTRESSES

THICKNESS 1 0.01

GSURFACE 1 2 3 4 ELl1=4 EL2=4 NODES=16

LOADS ELEMENT TYPE=PRESSURE INPUT=SURFACE
1234 T 700.

*

FIXBOUNDARIES 3 INPUT=LINES

FIXBOUNDARIES 1 INPUT=NODES

FIXBOUNDARIES 2 INPUT=NODES
*

VIEW 1ID=1 XVIEW=0. YVIEW=-1. ZVIEW=0.1

SET NSYMBOLS=MYNODES NNUMBERS=MYNODES

MESH VIEW=%Z ENUMBER=YES BCODE=ALL SUBFRAME=21

MESH VIEW=1 VECTOR=LOAD

*

SOLVIA

END

NN
R
FEREN

SOLVIA-POST input

* A38 SIMPLY SUPPORTED SKEW PLATE UNDER PRESSURE LOAD
*
DATABASE CREATE
WRITE FILENAME='a38.lis'
*
SET VIEW=2Z PLOTORIENTATION=PORTRAIT
SHELLSURFACE PLOTRESULTS=BOTTOM LISTRESULTS=BOTTOM
*
EPLINE NAME=DIAG-DB
4 214 16 4 STEP 3 TO 13 2 14 16 4
EPLINE NAME=DIAG-AC
16 3 15 13 1 STEP -5 TO 1 3 15 13 1
ELINE LINENAME=DIAG-DB KIND=SXX OUTPUT=ALL
ELINE LINENAME=DIAG-AC KIND=SYY OUTPUT=ALL
*
MESH CONTOUR=SXX OUTLINE=YES
MESH CONTOUR=SPMAX OUTLINE=YES
EMAX SELECT=S-EFFECTIVE NUMBER=3 TYPE=MAXIMUM
END
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EXAMPLE A39

ORTHOTROPIC PLATE UNDER PRESSURE LOAD

Objective

To verify the bending and twisting behaviour of the SHELL element when the material is orthotropic
and the SHELL element is subjected to a uniform pressure load.

Physical Problem
A simply supported square plate under uniform loading, as shown in the figure below, is considered.
y. b
_ A B
C=0.30m
h =0.015 m (thickness)
F
* p=10-10° N/m? (pressure)
E, =1.35548.-10" N/m?
2t ! E - X, E, =1.12950-10° N/m?
V,p = 3.847826-1072
: G,, =1.17-10° N/m*
[ 2C !

Finite Element Model

Because of symmetry only one quarter of the plate need to be considered, A-B-C-D. An orthotropic
linear elastic material model is used with the principal material axes a and b coinciding with the
global coordinate axes X and Y, respectively. Two finite element models have been used, one model
consists of 16 cubic SHELL elements as shown in the figure on page A39.3 and the other model
consists of 144 4-node SHELL elements.

Solution Results

The theoretical solution for this problem (without transverse shear deformation) is discussed in [1],
chapt.11. The expression for the deflection w in the Z-direction takes the form of a double
trigonometrical series,

. mmx . n
w=Y Y ansinTen "
a b

m=1,3,5.. n=L35.

and the expression for the coefficients a,, is given on page 371, [1].
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From this expression for the deflection in the Z-direction, the bending and twisting moments in the
plate are easily derived using eq. 212, [1].

The input data for the model with 16-node SHELL elements is shown on pages A39.6 and A39.7.

Vertical deflection, w(m):

Location Theory* 16-node SHELL 4-node SHELL
16 elements 144 elements

C 3.543-107* 3.602-107* 3.591-107*

E 2.529-107* 2.573-107* 2.564.107*

F 1.935.107* 1.975-10™ 1.966-107

Stress (N/ m? ):

Location  Stress Theory* 16-node SHELL 4-node SHELL
comp. 16 elements 144 elements

C Oy: ~9.997-10° ~1.008-10° -1.004-10°
o, -9.827-10* -9.816-10* -9.884-10*

E x ~17.584.10° ~7.664.10° (el. 14, -7.217-10° (el. 138,
o, ~17.147.10* —7.145-10* point 3) ~7.032-10* point 3)

E x —7.664-10° (el. 15, ~8.010-10° (el. 139,
O, —7.145.10* point 4) —7.337-10* point 4)

* The theoretical results include terms up to m =n = 29.

The deformed models are shown on pages A39.4 and A39.5. The distribution of stress-xx along side
D-C and stress-yy along side A-C of the plate are also shown on pages A39.4 and A39.5.

User Hints

» Note that a finer mesh is necessary when modeling this simply supported plate when orthotropic
material is used than when isotropic material is used. This is evident from the large gradient of the
O, -stress occuring along the line A-C, which in turn is due to the very small E-modulus in the Y-

direction. Detailed shear stresses and reactions would require a finer mesh than used here, see
Example A27.

Reference

[I] Timoshenko, S.P. and Woinowsky-Krieger, S., Theory of Plates and Shells, Second Edition,
McGraw-Hill, 1959.
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SOLVIA-PRE input

HEADING 'A39 ORTHOTROPIC PLATE UNDER PRESSURE LOAD'
*
DATABASE CREATE
MASTER IDOF=110001
COORDINATES
1 0.3 0.3 / 2 0. 0.3 / 3 / 4 0.3
5 0.15 0. ,/ 6 0.15 0.15
*
MATERIAL 1 ORTHOTROPIC EA=1.35548E10 EB=1.1295E9,
NUAB=3.847826E-2 GAB=1.17E9 GAC=1.17E9
*
EGROUP 1 SHELL RESULTS=NSTRESSES
GSURFACE 1 2 3 4 ELl=4 EL2=4 NODES=16
THICKNESS 1 0.015
EDATA / ENTRIES FEL BETA
1 0. TO 16 O.
LOADS ELEMENT INPUT=SURFACE
1234 T 1000
*
FIXBOUNDARY 4 INPUT=LINE /
FIXBOUNDARY 5 INPUT=LINE /
FIXBOUNDARY 3 INPUT=LINE /
*
VIEW ID=1 XVIEW=1. YVIEW=-0.5 ZVIEW=0.5
SET NSYMBOLS=MYNODES NNUMBERS=MYNODES VIEW=1
MESH VECTOR=LOAD
MESH ENUMBERS=YES BCODE=ALL
*
SOLVIA
END

R W
B W

/S 41
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SOLVIA-POST input

* A.39 ORTHOTROPIC PLATE UNDER PRESSURE LOAD

*

DATABASE CREATE

*

WRITE FILENAME='a39.1lis'

*
VIEW ID=1 XVIEW=1l. YVIEW=-0.5 ZVIEW=0.5
SET VIEW=1 OUTLINE=YES NSYMBOLS=MYNODES
MESH ORIGINAL=YES CONTOUR=MISES VECTOR=REACTION
*
EPLINE NAME=A-C

4 26 10 3 STEP 4 TO 16 2 6 10 3
EPLINE NAME=D-C

13 41173 TO 16 4 11 7 3

*
ELINE LINENAME=A-C KIND=SYY OUTPUT=ALL SUBFRAME=21
ELINE LINENAME=D-C KIND=SXX OUTPUT=ALL
*

ZONE NAME=RESULT INPUT=ELEMENTS

14 15
SHELLSURFACE LISTRESULTS=TOP
ELIST ZONENAME=RESULT

*
ZONE NAME=CEF INPUT=NODES / 3 5 6
NLIST ZONENAME=CEF
END
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EXAMPLE A40
HEMISPHERICAL SHELL UNDER POINT LOADS

Objective

To verify the 4-node SHELL element bending behaviour when applied to a curved structure,

Physical Problem

A hemispherical shell is subjected to concentrated radial loads at its free edge as shown in the figure
below. One pair of loads is directed inwards towards the centre of the hemisphere and the other pair
of loads is directed outwards away from the centre. This problem is described in [1].

Thickness=0.04 m

R=10m
E=68.25-10° N/m*
v=0.3

P = 4000 N

Finite Element Model

Due to symmetry only one quarter of the hemisphere need to be considered in the analysis, region
A-C-E in the figure above. The finite element mesh is generated in a spherical coordinate system
using 4-ncde SHELL elements. SKEW degree-of-freedom Systems are defined for the symmetry
planes X = 0 and Y = 0. Along edge A-E there is symmetry about the XZ-plane. Along edge C-E
there is symmetry about the YZ-plane. Edge A-C is free to move. At point E the Z-displacement is
fixed. The finite element model is shown in the bottom figure on page A40.2.

Solution Results

The analytical solution for this problem is discussed in [1]. The input data used in the SOLVIA
analysis is shown on pages A40.4 and A40.5.

The reported target value from NAFEMS is the outward displacement in the X-direction at point A,
u, =0.185m

In the SOLVIA analysis the calculated displacement in the X-direction at point A (node 13, radial
direction) is

u, =0.1832m
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The figures on page A40.3 show a contour plot of the von Mises stress distribution and a contour plot
of the radial displacements (in the x, direction of the Local Spherical System). Note that the bending
in the structure is concentrated to the corners where the loads are acting.

Reference
[1] NAFEMS, Background to Benchmarks, 1993.

A40 HEMISPHERICAL SHELL UNDER POINT LOADS

ORIGINAL —— 2. 7

TIME ¢ /L\
-7 -

FORCE

-

2000

MASTER

600030
B 0101G!
C 100011
D 1111
SOLVIA-PRE 99.0 SOLVIA ENGINEERING AB
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MAX DISPL.
TIME !

SOLVIA-POST $9.0

A40 HEMISPHERICAL SHELL UNDER POINT LOADS

ORIGINAL ey 2.

—— 0.20451

LOAD
-

2000

MISES
SHELL TOP
MAX 1.113SE7

.0600E7
.5213E6
.4430E6
.3647E6
.2863E6
.2080E6
. 1297¢E6
.0514E6

Wh AN ®WY—

i
MIN 2.5123E6
SOLVIA ENGINEERING AB

MAX DISPL
TIME

SOLVIA-POST 99.0

A40 HEMISPHERICAL SHELL UNDER POINT LOADS

ORIGINAL — 2.
.+ 0.20451

REACTION
Pl
24192

X3-DIR DISPL

SYSTEM
MAX 0.18319
n . 16029
.11449
.068695
.022899
.022893
.068696
11449
.16023

[aNeloloNeoloNoNe)

MIN-G. 18319

SOLVIA ENGINEERING AB
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SOLVIA-PRE input

HEADING 'A40 HEMISPHERICAL SHELL UNDER POINT LOADS'

*

DATABASE CREATE
*
SYSTEM 1 SPHERICAL
COORDINATES / ENTRIES NODE R THETA PHI
i 10. 0. TO 13 10. 0. 90.
14 10. 90. TO 26 10. S80. 90.
DELETE 14
SKEWSYSTEMS EULERANGLES
1 0. ToO 13 0. 90.
14 0. TO 26 -90.
NSKEWS INPUT=NODES
11 TO 26 26

*

MATERIAL 1 ELASTIC E=68.25E9 NU=0.3

*

EGROUP 1 SHELL

THICKNESS 1 0.04

GSURFACE 1 13 26 1 EL1=12 EL2=8 NODES=4 SYSTEM=1,
BLENDING=ANGLES

*

FIXBOUNDARIES 156 / 1 15 TO 26

FIXBOUNDARIES 246 / 1 TO 13

FIXBOUNDARIES 3 /1
LOADS CONCENTRATED

13 3 2000

26 3 -2000

*

MESH NSYMBOLS=MYNODES NNUMBERS=MYNODES VECTOR=LOAD BCODE=ALL
*

SOLVIA

END

SOLVIA-POST input

* A40 HEMISPHERICAL SHELL UNDER POINT LOADS
*

DATABASE CREATE

SYSTEM 1 SPHERICAL

*

WRITE FILENAME='a40.lis'

*

SET OUTLINE=YES ORIGINAL=YES

MESH CONTOUR=MISES VECTOR=LOAD

MESH CONTOUR=D3 VECTOR=REACTION SYSTEM=1

*

NLIST ZONENAME=MYNODES DIRECTION=123 SYSTEM=1
SUMMATION KIND=ENERGY

END
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SOLVIA Verification Manual Linear Examples

EXAMPLE A41
BEAM ON ELASTIC FOUNDATION

Objective

To verify the capability to model a beam supported by an elastic foundation.

Physical Problem

A beam, shown in the figure below, resting on an elastic foundation and subjected to a concentrated
transverse load at mid-span is considered.

I TS S S _

=

L2 Liz
Beam properties: L = 100 in. E=2.1-10° psi
b=1in. v=0.3
h=101in.
Foundation stiffness: k,=5.0-10° psi
Concentrated loads data: P=1.0-10* Ibf

Finite Element Model

The finite element model used for the analysis is shown in the figure on page A40.2. Thirteen BEAM
elements are used to model one-half of the beam. Axial-translational SPRING elements are used to
represent the lumped stiffness of the elastic foundation.

Solution Results

The input data on pages A40.3 and A40.4 is used in the finite element analysis. The analytical
solution for the beam on elastic foundation is found in [1].

Deflection at mid-span, {in.): Bending moment at mid-span, (Ibf-in.):
Theory SOLVIA Theory SOLVIA
-1.6348-107 -1.6348-107° -1.53-10*  -1.49.10*

The distribution of the transverse displacement and the bending moment along the beam predicted by
the finite element analysis are shown in the figures on page A40.3.

Version 99.0 A4l.1
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User Hints

The differential equation for the beam on an elastic foundation is of the same form as the
differential equation for an axisymmetric cylinder, see Example A.2. The finite element repre-
sentation is, however, here accomplished by BEAM and SPRING elements.

It is important to have a fine enough mesh close to the applied load in this example since the
significant displacements occur close to the load and decrease rapidly with increasing distance
from the applied load.

The stiffness of the SPRING elements is calculated based on lumping of the foundation stiffness,
so that half of the foundation stiffness under each BEAM element is represented by the SPRING
elements at each of the two BEAM end nodes. If an ISOBEAM element with, say, 3 nodes were
used, a consistent lumping of the stiffness would be recommended so that, for each ISOBEAM
element, 1/6th of the foundation stiffness is attributed to the end nodes, and 4/6th to the midside
node.

Note that a small positive (upward) displacement cccurs for a few nodes, see page A40.3. If no
tension can develop in the foundation, a nonlinear analysis could be carried out using the nonlinear
DISP-FORCE option for the SPRING elements. The foundation material would then be modeled
to be elastic in compression but with zero stiffness in tension.

Reference

(1]

Timoshenko, S.P., Strength of Materials, Part II, Third Edition, D. Van Nostrand Comp., 1958.

A4l BEAM ON ELASTIC FOUNDATION

MAX DISPL. —— 1 .6348E-3 Y
TIME |
[ | «
8 9 {0 11
7 12 13
8 9 10 11 12 13 14
o
LOAD
-—
5000
SOLVIA-POST $9.0 SOLVIA ENGINEERING AB
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SOLVIA-PRE input

HEADING 'A41l
*
DATABASE CREATE
MASTER IDOF=001110
COORDINATES
1 0. 0. TO 7 15. TO
15 0. -1060. TO 21 15. -10. TO
*
MATERIAL 1 ELASTIC E=2.1E6 NU=0.3

*

ENODES

1 1512 70 13 15 13 14
*

EGROUP 2

PROPERTYSET 1 K=6.25E5
PROPERTYSET 2 K=1.25E6
PROPERTYSET 3 K=1.875E6
PROPERTYSET 4 K=2.50E6
ENODES

1 115 TO 14 14 28

EDATA / ENTRIES

11 / 22

*

Version 99.0

TO 6 2 /

BEAM RESULT=FORCES

EGROUP 1
SECTION 1 GENERAL RINERTIA=3.1233 SINERTIA=0.8333333,
TINERTIA=83.333333 AREA=10.

7 3

BEAM ON ELASTIC FOUNDATION'

14

28

EL PROPERTYSET

/

A413

SPRING DIRECTION=AXIALTRANSLATION

8

4 7

14
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SOLVIA-PRE input (cont.)

FIXBOUNDARIES / 15 TO 28
FIXBOUNDARIES 16 ,/ 1
LOADS CONCENTRATED
1 2 -5000.
*
SOLVIA
END

SOLVIA-POST input

* A41 BEAM ON ELASTIC FOUNDATION

*

DATABASE CREATE

*

WRITE FILENAME='a4l.lis'

*

MESH VIEW=Z ENUMBER=YES NSYMBOL=YES VECTOR=LOAD
*
NPLINE NAME=AXIAL ,/ 1 TO 14
NLINE LINENAME=AXIAL DIRECTION=2 SUBFRAME=21
*
EGROUP 1
EPLINE NAME=BEAM
1 12 TO 13 1 2
ELINE LINENAME=BEAM KIND=MT OUTPUT=ALL
*
NLIST
ELIST
END

Version 99.0 Adl.4
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EXAMPLE A42

PERFORATED TENSION STRIP

Objective

To verify the performance of the PLANE STRESS element when employed to model stress
concentrations around holes.

Physical Problem

The rectangular perforated strip, shown in the figure below, subjected to a uniform tension at two
opposite sides, is considered.

= L — L =56 mm

P P b =20 mm
T —] S d =10 mm
| -~ d — h=1 mm (thickness)
b _ -\A B z

— k L E=7.0-10* N/'m?
J —] ¢ . v =025
p =250 N/m?
i} 3
y
Finite Element Model

The finite element model considered for the analysis is shown on page A42.3. Using symmetry
considerations, one-quarter of the strip is modeled with thirty 8-node PLANE STRESS elements.

Solution Results

The analytical solution for the stress o,, at location C and D in the figure above is given in [1].

The input data on pages A42.7 and A42.8 gives the following results:

Stress o, at location C, (N/ mm?* ): Stress o,, at location D, (N/ mm? ):
Theory SOLVIA Theory SOLVIA
107.5 108.6 18.75 16.49

The calculated stress values are output at nodes 5 and 6, which correspend to the locations C and D,
respectively.

The contour lines of von Mises effective stress and the mean stress (negative hydrostatic pressure) are
shown on page A42.4. The mean stress is defined as

— 1
G e _3(Gxx +ny + 0'zz)

Version 99.0 A42.1



SOLVIA Verification Manual Linear Examples

The contour lines of maximum deviation from nodal mean values of effective stress and pressure are
also shown on page A42.4. The left top figure on page A42.5 shows the sum of the effective stress
deviation and the pressure deviation. A contour plot of the displacement is also shown on page A42.5.
The stress o,, along the symmetry line C-D and the radial displacement along a line from A to C are

shown in bottom figure on page A42.5.

For comparison, the contour lines of effective stress and deviation of effective stress are shown on
page A42.9 for a refined mesh. We may note that the maximum value of effective stress deviation
have decreased about a factor of 4 compared to the corresponding value on page A42.4 for the coarser
model.

The value of o, for the finer mesh at locations C and D are 108.8 (N/ mm’* ) and 17.55 (N/ mm? )
respectively.

The figures on page A42.6 show principal stresses and Tresca effective stress in the first finite ele-
ment model as displayed by SOLVIA-POST when element stresses are output at integration points by
SOLVIA.

User Hints

¢ The stress deviation plots may be used as a tool for determining whether a good enough mesh has
been used. In this example one can see that elements, which are distorted from the rectangular
shape, see figure on page A42.3, give a higher stress and pressure deviation. Note that no deviation
can occur, for example, at the locations C and D since these nodes are coupled only to one element
so that the mean value at these nodes is based only on one stress value. A deviation with value
zero can, therefore, not be used as a proof that the corresponding stress value is associated with
zero error. An exact solution would have zero stress deviations but requires also that other criteria
are satisfied. One such criterion is that the boundary conditions for stresses must be satisfied [2].

References
[1]  Timoshenko, S.P., and Goodier, J.N., Theory of Elasticity, Third Edition, McGraw-Hill, 1970,
pPp. 94-95.

[2] Larsson, G., and Olsson, H., "An Engineering Error Measure for Finite Element Analysis",
Finite Element News, April, 1988.
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A42 PERFORATED TENSION STRIP

ORIGINAL 2
ey [ 7

SOLVIA-PRE 59.0

SOLVIA ENGINEERING AB

PRESSURE
«—
25

A42 PERFORATED TENSION STRIP

ORIGINAL — 2.

DISTORTION
MAX 45.000

.188
.563
.938
.313
19.688
14.063
8.4375
2.8125

e
MIN O

SOLVIA-PRE 99.0 SOLVIA ENGINEERING AB
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A42 PERFORATED TENSION STRIP

ORIGINAL — 2. z
MAX DISPL. — 0.012889 L
TIME | ¥

T

LOAD
—
55.556

MISES
MAX 108.25

101.76
.788

813
.838
.863
.888
.93
.938

MIN 4.4508

SOLVIA-POST 99.0 SOLVIA ENGINEERING AB

A42 PERFORATED TENSIGON STRIP

MAX DISPL.+— 0.01288% Z

TIME | Ly
SRR

DEVIATION OF
MISES
MAX 2.6786

L5112
L1764
.8415
.5067
L1719
.83706
.50224
.16741

COoOQ———nN

MIN O

SOLVIA-POST 99.0 SOLVIA ENGINEERING AB

A42 PERFORATED TENSION STRIP

MAX DISPL.+—t 0.012889 z
TIME | L,

MEAN STRESS
HAX 36.405

MIN-13.721

SOLVIA-POST 99.0 SOLVIA ENGINEERING AB

A42 PERFORATED TENSION STRIP
MAX DISPL. H—— 0.012889 Z

TIME | Ly

DEVIATION OF
PRESSURE
MAX 1.2596

. 1809
.0235
.86601
.70855
.55110
.39364
.23618
.078728

MIN O

SOLYIA-POST $9.0 SOLVIA ENGINEERING AB
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A42 PERFCRATED TENSION STRIP

MAX DISPL. = 0.012889
TIME 1

SOLVIA-POST 99.0 SOLVIA EN
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AND PRESSURE
MAX 3.9382
é 3.692¢
3.1998
2.707S
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| 0.24614
MIN O

GINEERING AB

A42

MAX DISPL. —— 0.012889%9

TIME 1

SOLVIA-POST 99.0

PERFORATED TENSION STRIP
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SOLVIA ENGINEERING AB
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A42A PERFORATED TENSION STRIP, RESULTS=STRESSES

MAX DISPL.+— 0.012889 4
7
IME v

TRESCA
MAX 108.56

102.10

§§ 11.748

MIN §.2944

SOLVIA-POST 99.0 SOLVIA ENGINEERING AB

A42A PERFORATED TENSION STRIP, RESULTS=STRESSES

MAX DISPL. —— 0.012889 Z

TIME 1 LY

PRINCIPAL
STRESS MAX
MAX L08.56
gg 101.65
.848

.043

.238

.433

.628

. 18.823
5§ 5.0177
MIN-1.8848

SOLVIA-POST 9%.0 SOLVIA ENGINEERING AB

A42A PERFORATED TENSION STRIP, RESULTS=STRESSES
MAX DISPL.+— 0.012889 z

TIME ¢ |__Y

PRINCIPAL
STRESS MIN.

MAX 0.40800

~2.1298

MIN-40.197

SOLVIA-POST S9.0 SOLVIA ENGINEERING AB

A42A PERFORATED TENSION STRIP, RESULTS=STRESSES
MAX DISPL. ~—i 0.012889 Z

TIME ‘ Ly

SPRINCIPAL
102.96

-102.96
SOLVIA ENGINEERING AB

SOLVIA-POST 99.0
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SOLVIA-PRE input

HEADING 'A42 PERFORATED
*

DATABASE CREATE

MASTER IDOF=100111

*

COORDINATES

ENTRIES NODES Y
1 10.
2 0.
3 0.
4 0.
5 5.
6 10.
7 10.
8 0.

*

LINE ARC 4 5

LINE STRAIGHT 37

LINE STRAIGHT 7 6

LINE COMBINED 367

*

TENSION STRIP'

7

28.
28.
10.
5.
0.
0.
10.
0.

EL=6 MIDNODES=1 NCENTER=8 NFIRST=9
EL=3 MIDNODES=1
EL=3 MIDNODES=1 RATIO=0.1

MATERIAL 1 ELASTIC E=7.0E4 NU=0.25

*

EGROUP 1 PLANE STRESS2
GSURFACE 1 2

GSURFACE 3 4

EDATA ,/ 1 1

*

FIXBOUNDARIES 2 INPUT=LIN

FIXBOUNDARIES 3 INPUT=LIN

FIXBOUNDARIES ,/ 8

*

LOADS ELEMENT INPUT=LINE
1 2 -25.

*

RESULTS=NSTRESSES

ES
ES

N
3 7 EL1=3 EL2=2 NODES=8
5 6 ELl1=4 EL2=6 NODES=8

/ 23 / 34
/ 56

SET PLOTORIENTATION=PORTRAIT NSYMBOLS=MYNODES

MESH NNUMBERS=MYNODES VECTOR=LOAD
MESH CONTOUR=DISTORTION ENUMBERS=YES

*

SOLVIA
END

Version 99.0
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SOLVIA-POST input

* A42 PERFORATED TENSION STRIP
*
DATABASE CREATE
WRITE FILENAME='a42.lis’
*
SET PLOTORIENTATION=PORTRAIT
SET OUTLINE=YES
MESH ORIGINAL=DASHED CONTOUR=MISES VECTOR=LOAD
MESH CONTOUR=SDEVIATION
*
MESH CONTOUR=SMEAN
MESH CONTOUR=PDEVIATION
*
MESH CONTOUR=SPDEVIATION
MESH CONTOUR=DISPLACEMENTS
*
EPLINE NAME=LINE-CD
30 374 TO 27 374
SET PLOTORIENTATION=LANDSCAPE
ELINE LINENAME=LINE-CD KIND=SZZ SUBFRAME=21
*
NPLINE NAME=LINE-AC
4 9 TO 19 5
NVARIABLE NAME=Y DIRECTION=2 KIND=COORDINATE
NVARIABLE NAME=% DIRECTION=3 KIND=COORDINATE
NVARIABLE NAME=DY DIRECTION=2 KIND=DISPLACEMENT
NVARIABLE NAME=DZ DIRECTION=3 KIND=DISPLACEMENT
RESULTANT NAME=RADIAL-D STRING='(DY*Y+DZ*Z)/(SQRT(Y*Y+Z*Z))"

*

RLINE LINENAME=LINE-AC RESULTANTNAME=RADIAL-D
*

ZONE NAME=EDGE INPUT=ELEMENTS ,/ 27 TO 30
ELIST ZONENAME=EDGE

END
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A42B  PERFORATED TENSION STRIP, FINE MESH A428 PERFORATED TENSION STRIP, FINE MESH
ORIGINAL +— = 2. z MAX DISPL. r— 0.012899 z
MAX DISPL. - 0.012899 TIME 1
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EXAMPLE A43

FRACTURE MECHANICS ANALYSIS OF A TENSILE SPECIMEN

Objective

To verify the performance of the PLANE STRAIN element when used for linear elastic fracture
mechanics analysis.

Physical Problem

The tensile specimen with an edge crack, as shown in the figure below, is analyzed for its elastic
response. The stress intensity factor K, [1] is to be determined for the given geometry and load

conditions.
z
L LP
L=032m
b=0.16 m
a=0.040m
L2
h = 1.0 m (thickness)
E=2.0-10" N/m?
v=0.29
KR Y p=10-10° N/m?
—a—|
L/2
R

Finite Element Model

The finite element model considered is shown on page A43.4. Twenty 8-node PLANE STRAIN
elements are used to model the top half of the specimen. At the crack tip, node 11 in the model, six
quarter-point triangular elements with 1/ ¥R stress singularities are used.

Version 99.0 Ad43.1
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Solution Results

The analytical solution for K is as follows:

K, = E ~ G
(1-v)
and
G=_d0
dA
where
G = energy release rate
E = Young's modulus

Poisson's ratio

i

dA = change in crack area
II

total potential energy

The strain energy release rate at the crack tip node is obtained as

G=-o a
ox; t
where
x{ = coordinates of the crack tip nodal point (node 11 in this example)
a; = components of the unit vector in the direction of crack propagation

ot
I

1.0 = specimen thickness

The following SOLVIA numerical solution is obtained by using the input data on pages A43.6 and
A43.7:

oIl

=— 0627677107
dy

The above value represents only the contribution of the material in the upper half of the specimen.
Thus, the total energy release rate, G, is obtained as

G= 2(0.627677 : 10‘6)%% =0.125535-107°

This yields that
K,=532.7

The value compares very well with the reference solution K; = 531.7 given in ref. [1].

The deformed mesh is shown on page A43.5 as displayed by SOLVIA-POST.
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User Hints

» Accurate results are obtained in this solution, although a coarse finite element discretization is
used.

¢ Note that the zone definitions made in SOLVIA-PRE prior to the SOLVIA command can also be
used in SOLVIA-POST. The zone definitions are transferred by the SOLVIA program to the
porthole file. When loading the SOLVIA-POST database the zone definitions are stored in the
database.

Reference

[1]  Tada, H., Paris, P.C. and Irwin, G.R., The Stress Analysis of Cracks Handbook, Del Research
Corp., Hellertown, PENN., 1973.
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CRIGINAL — 0.005
ZONE TRIANG

SOLVIA-PRE 95.0

A43 FRACTURE MECHANICS ANALYSIS OF A TENSILE SPECIMEN

Z ORIGINAL +——- 0.005 z

[, ZONE TRIANG L,

SOLVIA ENGINEERING AB

ORIGINAL t———=xH. 0.02

A43 FRACTURE MECHANICS ANALYSIS OF A TENSILE SPECIMEN

TIME |

SOLVIA-PRE 99.0

PRESSURE
-
1000

DISTORTION
MAX 52.911

.604
.990
.377
.763
. 149
.S535
$.9209
3.3070

MIN Q
SOLVIA ENGINEERING AB
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A43 FRACTURE MECHANICS ANALYSIS OF A TENSILE SPECIMEN

SOLVIA-POST 99.0 SOLVIA ENGINEERING AB

ORIGINAL — — 0.02 z
MAX DISPL . —— | .3366E-9 |

TIME ¢ Y

LOAD

—

53.333

A43  FRACTURE MECHANICS ANALYSIS OF A TENSILE SPECIMEN

MAX DISPL. —— 4.8874E~10
TIME | L_
ZONE TRIANG

MISES
MAX 12816

g 12023
10437
8851.2
7265.4
5679.6
4093.9
2508 . ¢
§§ 922.39

SOLVIA ENGINEERING AB

SOLVIA-POST 99.0
L.

MIN 129.51
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SOLVIA-PRE input

HEADING 'A43 FRACTURE MECHANICS ANALYSIS OF A TENSILE SPECIMEN'
*

DATABASE CREATE

MASTER IDOF=100111

COORDINATES / ENTRIES NODE Y 2
1 .08 .04
2 .08
3 .16
4 .16 .04
5 .16 .16 TO
7 .0 .16
8 .0 .04
S .0

SYSTEM 1 CYLINDRICAL Y=0.04

COCORDINATES / ENTRIES NODE R THETA
10 .02 180.
11 .0 0.
12 .02 0.

SET MYNODES=0 NODES=8
LINE CYLINDRICAL 12 10 EL=6 MIDNODES=1

*

MATERIAL 1 ELASTIC E=2.07El11l NU=0.29
*

EGROUP 1 PLANE STRAIN
GSURFACE 1 2 3 EL1=2 EL2=1
GSURFACE 6 1 4 EL1=2 EL2=1
GSURFACE 7 8 1

LINE STRAIGHT 9 EL=2 MIDNODES=1

LINE COMBINED 281

GSURFACE 9 10 12 2  EL1l=1 EL2=6

GSURFACE 11 12 10 11 EL1l=1 EL2=6

*

ZONE NAME=TRIANG INPUT=CYLINDRICAL-LIMITS SYSTEM=1 RMAX=0.02
MESH ZONENAME=TRIANG NSYMBOLS=YES NNUMBERS=YES SUBFRAME=21

4
5
6 ELl=2 EL2=2
8
9

COORDINATES / ENTRIES NODE R THETA
65 .005 0
67 .005 30 TO
71 .005 150
66 .005 180

MESH ZONENAME=TRIANG NNUMBERS=YES NSYMBOLS=YES
*

STRAINENERGY 11
*
LOADS ELEMENT
3R -1.E3 STEP 2 TO 7 R -1.E3
*
FIXBOUNDARIES 3 INPUT=LINES ,/ 11 12 ,/ 122 / 2 3
FIXBOUNDARIES 2 INPUT=NODES ,/ 11
*

MESH VECTOR=LOAD CONTOUR=DISTORTION SUBFRAME=11
*

SOLVIA
END
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SOLVIA-POST input

* A43 FRACTURE MECHANICS ANALYSIS OF A TENSILE SPECIMEN
*

DATABASE CREATE

*

WRITE FILENAME='a43.lis'

*

ENERGYRELEASERATE

*

MESH VECTOR=LOAD ORIGINAL=DASHED
MESH ZONENAME=TRIANG CONTOUR=MISES
END
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EXAMPLE A44
FUNDAMENTAL FREQUENCY OF CANTILEVER, PLANE STRESS

Objective

To verify the dynamic behaviour of the PLANE STRESS element in frequency analysis when
employing SKEW degree-of-freedom Systems.

Physical Problem

A cantilever beam of rectangular cross-section as shown in the figure below is considered. The
cantilever is the same as previously analyzed for a static load in Example A14.

L=10 m
DE’ b=0.05m
g

h=0.10m
8 =30°
: E=2.0-10" N/m?
[ L v=0.30

p="7800 kg/m?

Finite Element Model

The cantilever beam is modeled using ten 8-node PLANE STRESS elements with a consistent mass
matrix, see the top figure on page A44.3. Since the model is inclined in the Global System, a SKEW
degree-of-freedom System is used. The subspace iteration method is used for the frequency
calculations.

Solution Results

The lowest natural frequency of a cantilever beam is given in [1], p. 108 as:

A* [EI
f=—um/—
2nl° Y m

where

A =1.87510407

m = mass/unit length

In this formula rotary inertia and shear deformations are not considered.

Version 99.0 Ad4.1



SOLVIA Verification Manual Linear Examples

Insertion of the numerical values gives for the fundamental mode in the Y-Z plane:
f=81.80Hz

The SOLVIA solution using the input data on pages A44.4 and A44.5 gives the following result:
f=81.19 Hz

The bottom figure on page A44.3 and the top figure on page A44.4 show the mode shape of the two
lowest frequencies as displayed by SOLVIA-POST.

User Hints

s Note that the consistent element mass matrix for the PLANE element is always calculated using
3x3 Gauss integration and that the user has no control over it. This ensures that the entire mass of
the element is accounted for in the mass matrix.

* For a pinned-pinned beam [1] p. 181 gives the following expression for the ratio between the
frequency including rotary inertia and shear deformations and the frequency including flexural
effects only:

oo _ 1~_“_2_(l).[1+£j
(f)ﬂex. 2L2 A KG
where

10(1+v)

=/ for a rectangular section
12+11v

Assuming the effects of rotary inertia and shear deformation to be of the same order for a
cantilever, we obtain the following estimate

(f)rot.+shear =80.43 Hz

The SOLVIA solution for a consistent mass matrix gives a higher value for the lowest natural
frequency than this analytical estimate.

» Of course, the determinant search method can also be used and it gives the same frequency results.

Reference

[1]  Blevins, R.D., Formulas for Natural Frequency and Mode Shape, Van Nostrand Reinhold
Company, 1979.
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FUNDAMENTAL FREQUENCY OF CANTILEVER, PLANE STRESS

A44
ORIGINAL —— 0.1 z
Ly
c
ozi“b
NAXES=SKEW
MASTER
1001t
B 110:11
C 111ttt

SOLVIA-PRE 99.0 SOLVIA ENGINEERING AB

A44  FUNDAMENTAL FREGUENCY OF CANTILEVER, PLANE STRESS

REFERENCE +— — 0.1
MAX DISPL. —— 0.31957 LY

MODE | FREQ 8!1.192

SOLVIA ENGINEERING AB

SOLVIA-POST 389.0
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A44  FUNDAMENTAL FREQUENCY OF CANTILEVER, PLANE STRESS

REFERENCE —  —1 0.t y4
MAX DISPL. —— 0.31853 ]__
MODE 2 FREQ 488.83 Y

SOLVIA-POST 99.0 SOLVIA ENGINEERING AB

SOLVIA-PRE input

HEADING 'A44 FUNDAMENTAL FREQUENCY OF CANTILEVER, PLANE STRESS'
*

DATABASE CREATE

MASTER IDOF=100111

ANALYSIS TYPE=DYNAMIC MASSMATRIX=CONSISTENT

FREQUENCIES SUBSPACE-ITERATION NEIG=2 SSTOL=1.E-8

*

SKEWSYSTEMS EULERANGLES

1 30.
SYSTEM 1 CARTESIAN PHI=30
COORDINATES
ENTRIES NODE YL ZL
1 0 0
2 0 0.05
3 0 0.1
4 1 0
5 1 0.1

*

MATERIAL 1 ELASTIC E=2.E11 NU=0.3 DENSITY=7800
*
EGROUP 1 PLANE STRESS2
GSURFACE 5 3 1 4 EL1=10 EL2=1 NODES=8
EDATA / ENTRIES EL THICK
1 0.05

*
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SOLVIA-PRE input (cont.)

NSKEWS INPUT=LINE

13 1
FIXBOUNDARIES 2 / 1 3
FIXBOUNDARIES / 2

*

SET NSYMBOLS=MYNODES

MESH BCODE=ALL NAXES=SKEW ENUMBERS=YES
*

SOLVIA

END

SOLVIA-POST input

* Ad4  PFUNDAMENTAL FREQUENCY OF CANTILEVER, PLANE STRESS
*

DATABASE CREATE

*

WRITE FILENAME='a44.lis'

*

SET RESPONSETYPE=VIBRATIONMCDE

*

MESH TIME=1 ORIGINAL=DASHED

MESH TIME=2 ORIGINAL=DASHED OUTLINE=YES
*

FREQUENCIES

MASS-PROPERTIES

END
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EXAMPLE A45

FUNDAMENTAL FREQUENCY OF CANTILEVER, PLANE STRAIN

Objective

To verify the dynamic behaviour of the PLANE STRAIN element in frequency analysis and when
employing SKEW degree-of-freedom Systems.

Physical Problem

Same as in figure on page Ad4.1.

Finite Element Model

Same as in figure on page A44.3 except that PLANE STRAIN elements and a lumped mass
distribution are used. The determinant search method is used for the frequency solution.

Solution Results

To obtain the same theoretical solution as for the plane stress case of Example A44 the following
material data is used:

142y

E* = vy -E=1.89349-10"' N/ m?
I+v
V= (1: j= 0230769
v

where E and v are the Young's modulus and Poisson's ratio, respectively, as used in Example A44.
The theoretical solution given in Example A44 is

f=81.80Hz
The input data on page A45.3 gives the following result:

f=280.76 Hz

The figures on page A45.2 show the mode shape of the two lowest frequencies as displayed by
SOLVIA-POST.

User Hints

» An analysis using the consistent mass discretization yields the result f = 81.19 Hz which is exactly
equal to the result obtained in Example A44 (which should be the case).
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A4S FUNDAMENTAL FREQUENCY OF CANTILEVER,
REFERENCE +— — 0.1

MAX DISPL. +—— 0.071133
MODE | FREQ 80.762

SOLVIA-POST 99.0

PLANE STRAIN

SOLVIA ENGINEERING AB

A45  FUNDAMENTAL FREQUENCY OF CANTILEVER,

REFERENCE +— — 0.1
MAX DISPL. +—i 0.06885
MODE 2 FREQ 478.11

SOLVIA-POST 95.0

PLLANE STRAIN

SOLVIA ENGINEERING AB
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SOLVIA-PRE input

HEADING 'A45 FUNDAMENTAL FREQUENCY OF CANTILEVER, PLANE STRAIN'
*

DATABASE CREATE

MASTER IDOF=100111

ANALYSIS TYPE=DYNAMIC MASSMATRIX=LUMPED

FREQUENCIES DETERMINANT-SEARCH NEIG=2

*

SKEWSYSTEMS EULERANGLES

1 30.
SYSTEM 1 CARTESIAN PHI=30
COORDINATES
ENTRIES NODE YL 2L
1 0 0
2 0 0.05
3 0 0.1
4 1 0
5 1 0.1

*

MATERIAL 1 ELASTIC E=1.839348Ell NU=0.230769 DENSITY=7800
*

EGROUP 1 PLANE STRAIN

GSURFACE 5 3 1 4 EL1=10 EL2=1 NODES=8

*

NSKEWS INPUT=LINE

13 1

FIXBOUNDARIES 2 / 1 3
FIXBOUNDARIES /2

*

SOLVIA

END

SOLVIA-POST input

* A45 FUNDAMENTAL FREQUENCY OF CANTILEVER, PLANE STRAIN

*

DATABASE CREATE

*

WRITE FILENAME='a45.lis'

*

SET RESPONSETYPE=VIBRATIONMODE

*

MESH TIME=1 ORIGINAL=DASHED

MESH TIME=2 ORIGINAL=DASHED OUTLINE=YES
*

FREQUENCIES

MASS-PROPERTIES

END
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EXAMPLE A4d6

FUNDAMENTAL FREQUENCY OF CANTILEVER, SOLID

Objective

To verify the dynamical behaviour of the SOLID element in frequency analysis when employing
SKEW degree-of-freedom Systems.

Physical Problem

Same as in the figure on page A44.1.

Finite Element Model

The finite element model considered is shown on page A46.2. Ten 20-node SOLID elements are used
in the model. A consistent mass discretization and the determinant search method of frequency analy-
sis are used.

Solution Results
The theoretical solution for this problem is given in Example A44.

The input data on pages A46.4 and A46.5 is used in the finite element analysis and gives the
following results:

Fundamental frequency for motion in the Y-Z plane (mode 2):

Beam theory SOLVIA

81.80 81.16

The mode shapes of the two lowest frequencies as calculated in the finite element analysis are shown
on page A46.3. '

User Hints
+ Note that the consistent element mass matrix for the SOLID element is always calculated using

3%3x3 Gauss points and that the user has no control over it. This ensures that the entire mass of the
element is accounted for in the mass matrix.
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A46 FUNDAMENTAL FREQUENCY OF CANTILEVER, SOLID

ORIGINAL —— 0.0S

SOLVIA-PRE 99.0

Ad46  FUNDAMENTAL FREQUENCY OF CANTILEVER, SOLID

ORIGINAL +——— 0.05 7
X/L\Y
C
OI/L‘{ b
NAXES=SKEW

SOLVIA-PRE 939.0 SOLVIA ENGINEERING AB
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A46  FUNDAMENTAL FREQUENCY COF CANTILEVER, SOLID

REFERENCE — —0.0S z
MAX DISPL. +—— 0.32035 /l\
MODE | FREQ 40.893 X v

SOLVIA-POST $9.0 SOLVIA ENGINEERING AB

A46  FUNDAMENTAL FREQUENCY OF CANTILEVER, SOLID

REFERENCE — —0.0S z
MAX DISPL. — 0.3195 /L\
MODE 2 FREQ 81.16 X v

y\ DISPLACEMENT
AV MAX 0.31950

.29953
.25959
.21966
17972
.13978
.099843
.059906
.019969

COOO0OOoOOoOOO

MIN ©
SOLYIA-POST 99.0 SOLVIA ENGINEERING AB
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SOLVIA-PRE input

HEADING 'A46 FUNDAMENTAL FREQUENCY OF CANTILEVER, SOLID'

*

DATABASE CREATE

*

MASTER IDOF=000111

ANALYSIS TYPE=DYNAMIC MASSMATRIX=CONSISTENT
FREQUENCIES DETERMINANT-SEARCH NEIG=2

*

SKEWSYSTEMS EULERANGLES / 1 30.

SYSTEM 1 CARTESIAN PHI=30

COORDINATES

ENTRIES NODE XL YL ZL
1 -0.025 1.0 0.1

2 -0.025 0.0 0.1

3 0.025 0.0 0.1

4 0.025 1.0 0.1

5 -0.025 1.0 0.0

6 -0.025 0.0 0.0

7 0.025 0.0 0.0

8 0.025 1.0 0.0

9 0.0 0.0 0.0

10 0.0 0.0 0.1
11 -0.025 0.0 0.05
12 0.025 0.0 0.05

*

MATERIAL 1 BELASTIC E=2.E1l NU=0.3 DENSITY=7800
*
EGROUP 1 SOLID
GVOLUME 1 2 3 4 5 6 7 8 EL1=10 EL2=1 EL3=1 NODES=20
*
NSKEWS INPUT=SURFACE
2367 1
*
FIXBOUNDARIES 123 / 11 12
FIXBOUNDARIES 2 / 236 7 9 10
*
SET NSYMBOLS=MYNODES
MESH NNUMBERS=MYNODES BCODE=ALL
MESH NAXES=SKEW ENUMBERS=YES
*
SOLVIA
END

Version 99.0 Ad6.4



SOLVIA Verification Manual Linear Examples

SOLVIA-POST input

* A46 FUNDAMENTAL FREQUENCY OF CANTILEVER, SOLID
*

DATABASE CREATE

*

WRITE FILENAME='a46.lis'
*

FREQUENCIES
MASS-PROPERTIES

*

SET RESPONSETYPE=VIBRATIONMODE ORIGINAL=DASHED NSYMBOLS=MYNODES
*

MESH TIME=1 OUTLINE=YES

MESH TIME=2 CONTOUR=DISPLACEMENT

END
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EXAMPLE A47
FUNDAMENTAL FREQUENCY OF CANTILEVER, BEAM

Objective

To verify the dynamical behaviour of the BEAM element in frequency analysis when employing
SKEW degree-of-freedom Systems.

Physical Problem

Same as in figure on page A44.1.

Finite Element Model

The inclined cantilever is modeled using ten BEAM elements as shown on page A47.2. The element
stiffness matrices are calculated in closed form and the mass is represented using a lumped mass
matrix. The subspace iteration method of analysis is used.

Solution Results

The theoretical solution for this problem is presented in Example A44.
The input data on page A47.4 gives the following result:

Fundamental frequency (Hz) for motion in the Y-Z plane (mode 2):

Beam theory SOLVIA

81.80 - 80.94

The mode shapes of the fundamental frequencies calculated in the finite element analysis for the X-Y
and Y-Z planes are shown on page A47.3 as displayed by SOLVIA-POST.

User Hints

¢ Employing consistent mass matrix in this finite element analysis gives a fundamental frequency,
f = 81.15 Hz. Note that the consistent mass matrix for the BEAM element does not include contri-
butions due to shear deformation.

Version 99.0 Ad7.1



SOLVIA Verification Manual Linear Examples

A47  FUNDAMENTAL FREQUENCY OF CANTILEVER, BEAM

ORIGINAL +—— 0.05 L_
Y

MASTER

000000
B oi1titt
SOLVIA ENGINEERING AB

SOLVIA-PRE 99.0

A47 FUNDAMENTAL FREQUENCY OF CANTILEVER, BEAM

ORIGINAL by 0.1 Z
Ly
11
t
|
r< s
EAXES=RST
SCLYIA-PRE 99.0 SOLVIA ENGINEERING AB
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A47 FUNDAMENTAL FREQUENCY OF CANTILEVER, BEAM

REFERENCE +— — 0.05 z
MAX DISPL. +—i 0.31878 PR
MODE ! FREQ 40.652 Ny
DISPLACEMENT
0.31878
SOLVIA-POST $9.0 SOLVIA ENGINEERING AB

A47 FUNDAMENTAL FREQUENCY GOF CANTILEVER, BEAM

REFERENCE ~ — 0.05 z
MAX DISPL. +—— 0.31808 L
MODE 2 FREQ 80.942 Y

SOLVIA-POST S99.0 SOLVIA ENGINEERING AB
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SOLVIA-PRE input

HEADING 'A47 FUNDAMENTAL FREQUENCY OF CANTILEVER, BEAM'
*
DATABASE CREATE
ANALYSIS TYPE=DYNAMIC MASSMATRIX=LUMPED
FREQUENCIES SUBSPACE-ITERATION NEIG=2
*
SKEWSYSTEMS EULERANGLES
1 30
SYSTEM 1 CARTESIAN PHI=30
COORDINATES ,/ ENTRIES NODE YL 2L
1 00 TO 11 10
NSKEWS
11 TO 11 1
*

MATERIAL 1 ELASTIC E=2.Ell NU=0.3 DENSITY=7800
*
EGROUP 1 BEAM
SECTION 1 RECTANGULAR WTOP=0.05 D=0.1
BEAMVECTOR ,/ 1 1.
ENODES
1 -112 To 10 -1 10 11
*

FIXBOUNDARIES / 1

*

SET VIEW=X NSYMBOLS=YES
MESH ENUMBER=YES BCODE=ALL
MESH NNUMBER=YES EAXES=RST
*

SOLVIA

END

SOLVIA-POST input

* A47 FUNDAMENTAL FREQUENCY OF CANTILEVER, BEAM
*

DATABASE CREATE
*

WRITE FILENAME='a47.lis’
*

FREQUENCIES
MASS-PROPERTIES

*

SET RESPONSETYPE=VIBRATIONMODE ORIGINAL=DASHED NSYMBOLS=YES
*

MESH VIEW=I TIME=1 VECTOR=DISPLACEMENT

MESH VIEW=X TIME=2

*

NMAX DIRECTION=1346 NUMBER=5

END
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EXAMPLE A48
FUNDAMENTAL FREQUENCY OF CANTILEVER, ISOBEAM

Objective

To verify the dynamical behaviour of the ISOBEAM element in frequency analysis when employing
SKEW degree-of-freedom Systems.

Physical Problem

Same as in figure on page A44.1.

Finite Element Model

The inclined cantilever beam is modeled using ten parabolic ISOBEAM elements as shown on page
A43.2. The element stiffness matrices are evaluated using 2x4x4 Gauss points and the mass is
represented in a diagonal mass matrix. The determinant search method of frequency analysis is used.

Solution Results

The theoretical solution is the same as in Example A44.
The input data on page A48.4 gives the following result:

Fundamental frequency (Hz):

Beam theory SOLVIA

81.80 81.30

The mode shapes of the fundamental frequencies in the finite element analysis for the X-Y and Y-Z
planes are shown on page A48.3.

User Hints

+ Employing a consistent mass matrix in the finite element analysis gives a fundamental frequency
f=8124Hz

¢ Note that the shear factor for the ISOBEAM element is always equal to 1.0 and the user has not
control over it.
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A48  FUNDAMENTAL FREQUENCY OF CANTILEVER,

ORIGINAL —— 0.05

SOLVIA-PRE 99.0

ISOBEAM

MASTER
000000

B t1itit
SOLVIA ENGINEERING AB

A48 FUNDAMENTAL FREQUENCY OF CANTILEVER,

ORIGINAL —————— 0.1

SOLVIA-PRE 99.0

ISOBEAM

r
EAXES=RST
SOLVIA ENGINEERING AB
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REFERENCE —~ —0.05
MAX DISPL. = 0.31975%
MODE 1 FREQ 40.801

A48 FUNDAMENTAL FREQUENCY OF CANTILEVER,

ISOBEAM

REFERENCE +— — 0.1
MAX DISPL. + 0.31915
MODE 2 FREQ 81.298

SOLVIA-POST 99.0

SOLVIA ENGINEERING AB

SOLVIA-PCST 99.0
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SOLVIA-PRE input

HEADING 'A48 FUNDAMENTAL FREQUENCY OF CANTILEVER, ISOBEAM'
*

DATABASE CREATE

ANALYSIS TYPE=DYNAMIC MASSMATRIX=LUMPED

FREQUENCIES DETERMINANT-SEARCH NEIG=2

*

SKEWSYSTEMS EULERANGLES

1 30

SYSTEM 1 CARTESIAN PHI=30
COORDINATES

1 TO 21 0. 1. ,/ 22 0. 0.10.1
NSKEWS

11 1O 221

*

MATERIAL 1 ELASTIC E=2.E1l NU=0.3 DENSITY=7800
*
EGROUP 1 ISOBEAM
SECTION 1 SDIM=0.100 TDIM=0.050
ENODES
ENTRIES EL AUX N1 N2 N3
1 22 1 3 2 TO 10 22 19 21 20

*

FIXBOUNDARIES / 1 22

*

MESH VIEW=X ENUMBERS=YES BCODE=ALL
MESH VIEW=X NNUMBERS=YES EAXES=RST
*

SOLVIA

END

SOLVIA-POST input

* A48 FUNDAMENTAL FREQUENCY OF CANTILEVER, ISOBEAM

*

DATABASE CREATE

*

WRITE FILENAME='a48.lis'

*

FREQUENCIES

MASS-PROPERTIES

*

VIEW ID=1 ZVIEW=1. ROTATION=-90.

VIEW ID=2 XVIEW=1. ROTATION=-30.

SET RESPONSETYPE=VIBRATIONMODE ORIGINAL=DASHED NSYMBOLS=YES
*

MESH VIEW=1 TIME=1 SUBFRAME=12

MESH VIEW=2 TIME=2

*

NPLINE NAME-BEAM / 1 TO 21

NLINE LINENAME=BEAM DIRECTION=1 TIME=1 SUBFRAME=21
NLINE LINENAME=BEAM DIRECTION=3 TIME=2 OUTPUT=ALL
END
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EXAMPLE A49

FUNDAMENTAL FREQUENCY OF CANTILEVER, PLATE

Objective

To verify the dynamical behaviour of the PLATE element in frequency analysis when employing
SKEW degree-of-freedom Systems.

Physical Problem

Same as in figure on page A44.1.

Finite Element Model

The finite element model consists of twenty PLATE elements as shown in the top figure on page
A49.2. A lumped mass matrix is employed in the analysis, i.e. 1/3rd of the element mass is attributed
to each element translational degree of freedom. The displacements are constrained to be zero in the
X-direction. The subspace iteration method of frequency analysis is used.

Solution Results

The theoretical solution for this problem is presented in Example A44.
Using the input data on page A49.3 the following result is obtained in the finite element analysis:

Fundamental frequency (Hz):

Beam theory SOLVIA

81.80 81.16

The bottom figure on page A49.2 shows the mode shape corresponding to the fundamental frequency
calculated in the finite element analysis.

User Hints
* A more refined finite element model (40 PLATE elements) and a lumped mass matrix yields the
result f = 81.61 Hz while using a consistent mass matrix for this refined model gives f = 81.76 Hz.

+ Note that the consistent element mass matrix is not a consistent matrix in the usual sense, because
linear variations in the displacements over the element are assumed and no mass is attributed to
the rotational degrees of freedom.
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A4S

ORIGINAL +————0.05

SOLVIA~PRE 99.0

FUNDAMENTAL FREQUENCY OF CANTILEVER,

PLATE

SOLVIA ENGINEERING AB

MASTER
100001

B 111101

-
A49 FUNDAMENTAL FREQUENCY OF CANTILEVER, PLATE
REFERENCE — —i 0.05 7
MAX DISPL. —i 0.31797 )\
MODE | FREQ 81.158 X v
SOLVIA-POST 99.0 SOLVIA ENGINEERING AB
Version 99.0 Ad49.2
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SOLVIA-PRE input

HEADING 'A49 FUNDAMENTAL FREQUENCY OF CANTILEVER,
*

DATABASE CREATE

MASTER IDOF=100001

ANALYSIS TYPE=DYNAMIC MASSMATRIX=LUMPED
FREQUENCIES SUBSPACE-ITERATION NEIG=1

*

SKEWSYSTEM EULERANGLES

1 30
SYSTEM 1 CARTESIAN PHI=30
COORDINATES

r /7 2 0.0 / 3 0.051. / 4 0. 1.

*

MATERIAL 1 ELASTIC E=2.E1l NU=0.3 DENSITY=7800

*

EGROUP 1 PLATE
GSURFACE 1 2 3 4 EL1=1 EL2=5
EDATA ,/ 1 0.1

*

NSKEWS INPUT=SURFACE
1234 1
FIXBOUNDARIES 234 ,/ 1 2

*

MESH NSYMBOLS=MYNODES NNUMBERS=MYNODES BCODE=ALL
*

SOLVIA

END

SOLVIA-POST input

* A49 FUNDAMENTAL FREQUENCY OF CANTILEVER, PLATE
*

DATABASE CREATE
*

WRITE FILENAME='a49.1lis'
*

FREQUENCIES
MASS-PROPERTIES

*

SET RESPONSETYPE=VIBRATIONMODE ORIGINAL=DASHED
* .

MESH OUTLINE=YES NSYMBOL=YES

NMAX DIRECTION=345 NUMBER=3

END

Version 99.0 A49.3
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EXAMPLE A50

FUNDAMENTAL FREQUENCY OF CANTILEVER, SHELL

Objective

To verify the dynamical behaviour of the SHELL element in frequency analysis when employing
SKEW degree-of-freedom Systems.

Physical Problem

Same as in figure on page A44.1.

Finite Element Model

Five 9-node SHELL elements are used to model the cantilever beam as shown in figures on page
AS0.2. The element stiffness matrix is calculated using a shear factor of 5/6. A consistent mass
discretization is used. The determinant search method of analysis is employed in the frequency
analysis.

Solution Results

The theoretical solution for this problem is presented in Example A44.
The input data on page A50.4 gives the following result:

Fundamental frequency (Hz) for motion in the Y-Z plane (mode 2):

Beam theory SOLVIA

81.80 81.00

The figures on page A50.3 shows the mode shapes corresponding to the fundamental frequencies
calculated in the finite element analysis.

User Hints

+ Employing a lumped mass matrix in the finite element analysis yields the result f = 80.73 Hz.
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AS0  FUNDAMENTAL FREQUENCY OF CANTILEVER, SHELL

CRIGINAL ——— 0.05 z
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0gooco
B 111101
C titi1y
SOLVIA-PRE 99.0 SOLVIA ENGINEERING AB

AS0  FUNDAMENTAL FREQUENCY OF CANTILEVER, SHELL

ORIGINAL — 0.05 d

t

|
i
P
r S

EAXES=RST
SOLVIA-PRE 99.0 SOLVIA ENGINEERING AB
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SOLVIA-POST 99.0

SOLVIA ENGINEERING AB

AS0  FUNDAMENTAL FREQUENCY OF CANTILEVER, SHELL
REFERENCE — —0.05 Z
MAX DISPL. +——4 0.31759 /k
MCDE I FREQ 40.S42 X v
DISPLACEMENT

MAX 0.31759
g .29774

! 0 25804

©0.21834
17865
13895
099247
.059548
.019849

[cNoNoNoNoNoNoNal

MIN O

AS0
REFERENCE +— — 0.05

MAX DISPL. —— 0.31794
MODE 2 FREQ 81.003

SOLVIA-POST 939.0

FUNDAMENTAL FREQUENCY OF CANTILEVER, SHELL

SOLVIA

ENGINEERING AB
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SOLVIA-PRE input

HEADING 'A50 FUNDAMENTAL FREQUENCY OF CANTILEVER, SHELL'
*

DATABASE CREATE

ANALYSIS TYPE=DYNAMIC MASSMATRIX=CONSISTENT

FREQUENCIES DETERMINANT-SEARCH NEIG=2

*

SKEWSYSTEM EULERANGLES
1 30.
SYSTEM 1 CARTESIAN PHI=30
COORDINATES
i1 1T™© 3 0.05 / 4 0.051. / 5 0. 1.

*

MATERIAL 1 ELASTIC E=2.E11 NU=0.3 DENSITY=7800
*
EGROUP 1 SHELL
THICKNESS 1 T1=0.1
GSURFACE 1 3 4 5 ELl=1 EL2=5 NODES=9
*
NSKEWS INPUT=SURFACE
1345 1
FIXBOUNDARIES 12346 ,/ 1 3
FIXBOUNDARIES [/ 2
*
SET NSYMBOLS=MYNODES
MESH NNUMBERS=MYNODES ENUMBERS=YES BCODE=ALL
MESH EAXES=RST
*
SOLVIA
END

SOLVIA-POST input

* A.50 FUNDAMENTAL FREQUENCY OF CANTILEVER, SHELL

*
DATABASE CREATE

*

WRITE FILENAME='a50.lis’
*

FREQUENCIES
MASS-PROPERTIES

*

SET RESPONSETYPE=VIBRATIONMODE ORIGINAL=DASHED NSYMBOL=MYNODES
*

MESH TIME=1 CONTOUR=DISPLACEMENTS

MESH TIME=2 OUTLINE=YES

*

NMAX NUMBER=3

END
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EXAMPLE A51

FUNDAMENTAL FREQUENCY OF A SIMPLY SUPPORTED PLATE

Objective

To verify the dynamical behaviour of the SHELL element in frequency analysis.

Physical Problem

The figure below shows the simply supported plate to be analyzed.

i

E=2.0-10" N/m?

v=0.3
a a=200 m
h=0.01 m

p = 7850 kg/m’

[
2y

Finite Element Model

The figure on page A51.2 shows the finite element model. Because of symmetry, only one quarter of
the plate need to be modeled. Four 9-node SHELL elements are used. A lumped mass matrix is
employed and the subspace iteration method is used for the frequency calculation.

Solution Results

The first natural frequency of a simply supported plate is given for example in [1] p. 258 as follows:

f-—_ﬂ:_. E-h’
"7 a? V12.p-h-(—v?)

Insertion of the numerical values gives
, =12.00 Hz

The SOLVIA solution using the input data on page A51.4 gives
f, =12.17Hz

The corresponding mode shape and distributions of von Mises effective stress and strain energy
density are given in figures on page A51.3.
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The calculated sum of the strain energy for the first mode is 2923.41 Nm which is equal to
LoT Ko, =1(2nf,)" =292341
as it should.

User Hints

» Note that full integration (default) is necessary when a consistent mass matrix is used since
reduced integration (2x2x2) gives a spurious mode of very small frequency for this example.

+ A consistent mass matrix gives 12.15 Hz for the fundamental mode.
+ Simply supported boundary conditions for a plate are discussed in Example A27.

e A finer mesh should be used if detailed stresses are to be calculated.

Reference

[11  Blevins, R.D., Formulas for Natural Frequency and Mode Shape, Van Nostrand Reinhold
Company, 1979.

AS1 FUNDAMENTAL FREQUENCY OF A SIMPLY SUPPORTED PLATE

ORIGINAL b———— 0.1 Z

MASTER
110001
110011
11010t
101t
111001
111011
111104
SOLVIA-PRE 99.0 SOLVIA ENGINEERING AB

OMmMmonOw
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AS51  FUNDAMENTAL FREQUENCY OF A SIMPLY SUPPGORTED PLATE

REFERENCE +——— 0.1 z
MAX DISPL. —— 0.22527
MODE { FREQ 12.17 X/A\Y

REACTION

-—

13911

MISES
SHELL TOP

MAX 8.2203E8

.8416E8
.0842E8
.3269€E8
.5695E8
.8122E8
.0548E8
.2975E8
& 2.5401E8

Wb by~~~

MIN 2.1614E8
SOLVIA-POST 99.0 SOLVIA ENGINEERING AB

AS!  FUNDAMENTAL FREQUENCY OF A SIMPLY SUPPORTED PLATE

MAX DISPL. —— 0.22527 z
MODE 1 FREQ {2.17 /l\

STRAINENERGY
DENSITY
SHELL TOP

MAX 2.0584E6

.9392E6
.6987E6
. 458286
217786
.7723ES
.3675ES
.9627ES
.5579ES

MIN {.3555ES
SOLVIA-POST 99.0 SOLVIA ENGINEERING AB
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SOLVIA-PRE input

HEADING 'A51 FUNDAMENTAL FREQUENCY OF A SIMPLY SUPPORTED PLATE'
*
DATABASE CREATE
MASTER IDOF=110001
ANALYSIS TYPE=DYNAMIC MASSMATRIX=LUMPED
FREQUENCIES SUBSPACE-ITERATION NEIG=1 MODALSTRESSES=YES
*
COORDINATES
1/ 2 1. / 3 1.1. / 4 0. 1.

*

MATERIAL 1 ELASTIC E=2.El1 NU=0.3 DENSITY=7850
*

EGROUP 1 SHELL

GSURFACE 1 2 3 4 EL1=2 EL2=2 NODES=9

THICKNESS 1 0.01

*

FIXBOUNDARIES 3 INPUT=LINES / 2
FIXBOUNDARIES 4 INPUT=LINES ,/ 1
FIXBOUNDARIES 5 INPUT=LINES / 4
*

SET NSYMBOLS=MYNODES MIDSURFACE=NO
MESH ENUMBERS=YES BCODE=ALL

*

SOLVIA

END

ol SRS

SOLVIA-POST input

* AS1 FUNDAMENTAL FREQUENCY OF A SIMPLY SUPPORTED PLATE

*

DATABASE CREATE
*

WRITE FILENAME='a51.lis’

*

FREQUENCIES

MASS-PROPERTIES

*

SET RESPONSETYPE=VIBRATIONMODE
MESH CONTOUR=MISES VECTOR=REACTION ORIGINAL=YES
MESH CONTOUR=ENERGY

*

NMAX NUMBER=3

SUMMATION KIND=ENERGY DETAILS=YES
END
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EXAMPLE A52

WAVE PROPAGATION IN A ROD

Objective

To verify the dynamical behaviour of the TRUSS element in wave propagation analysis.

Physical Problem

A uniform bar free at both ends is considered, see figure below. An axial step force is applied at one
end of the bar at time 0.
z

P_7 +—y

N\
a
a=0.1m E=2.0-10° N/m®
L=1.0m p=1000 kg/ m*
P [N]

» t [s]

Finite Element Model

The finite element model is shown in the top figure on page A52.4. The bar is modeled using ten
2-node TRUSS elements. The explicit central difference method is chosen for the time integration and
a lumped mass matrix is employed.

The time step At is selected according to
L

At==2=1_. |2
c E
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where
L., = length of one truss element
¢ = wave velocity in the material
p = mass density
E = Young's modulus

Since the step load is applied at time O it is necessary to specify the corresponding initial acceleration
according to

P
a,=—
m,
where
m, = mass at node 1
P = applied force
a, = acceleration at node 1

Solution Results

The theoretical solution for this problem is presented, for example, in [1].

The input data on page A52.5 gives the following results considering 4 time steps:

Longitudinal stress in bar, ¢ (N/ m? ):

Theory SOLVIA
Before wave front 0 0
After wave front ~-1.0-10° -1.0-10°

The wave front can be seen in the SOLVIA solution to advance one element length per specified time
step, which is in agreement with the theoretical solution.

The velocity and acceleration time history for the typical node 2 is shown in the bottom figure on
page A52.4.

User Hints

» In this example with equal lengths of the TRUSS elements the exact theoretical solution is
obtained by selecting the time step to be equal to the critical time step.

¢ Note that the load vector input by time functions at the start of the solution (time=0) is not used in
SOLVIA. Instead the load vector R at time O is assumed to be

"R=M'U+C'U+'F

Version 99.0 AS52.2
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where °U and °U are the initial velocity and acceleration vectors and M and C are the mass and
damping matrices, respectively. 'F is a vector with the nodal equivalent forces corresponding to
the initial displacements. Therefore, the initial acceleration is specified as described above to
simulate the applied force at time 0. To start the central difference solution procedure U is
calculated from the initial conditions as

2

A[U=OU+At-0(]+é2E—'OU

» Note that the finite element model is completely free to move in the X-direction. If this model is
used for a static problem, no solution would be possible since the model contains rigid body
modes (and the solution is non-unique). In the dynamic case, however, the inertia of the bar results
in a unique solution, and no solution difficulties are encountered.

¢ In explicit time integration the total system stiffness matrix is not calculated and no matrix
factorization is carried out because with explicit time integration the mass matrix in SOLVIA is
required to be diagonal. The solution for one time step is therefore obtained very effectively but a
large number of time steps may need to be used, since the time step At must satisfy

At<At, =
T

where T, is the smallest period of the finite element assemblage with n degrees of freedom.

Reference

[1] Zukas, J.A., Nicholas, T., Swift, H.F., Greszczuk, L.B. and Curran, D.R., Impact Dynamics,
John Wiley & Sons, 1982.
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A52 WAVE PROPAGATION IN A ROD
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SOLVIA-PRE input

HEADING 'A52 WAVE PROPAGATION IN A ROD'
*
DATABASE CREATE
MASTER IDOF=101111 NSTEP=4 DT=7.071E-5
ANALYSIS TYPE=DYNAMIC MASSMATRIX=LUMPED METHOD=CENTRAL
*
COORDINATES

1 TO 11 0. 1.

*

INITIAL ACCELERATION

1 0. 2.E3 0.

*

MATERIAL 1 ELASTIC E=2.E9 DENSITY=1000
*
EGROUP 1 TRUSS
ENODES
1 12 TO 10 10 11
EDATA ,/ 1 0.01
*

LOADS CONCENTRATED
1 2 1000.
*
SET VIEW=X NSYMBOLS=YES
MESH NNUMBERS=YES ENUMBERS=YES VECTOR=LOAD
*
SOLVIA
END

SOLVIA-POST input

* A52 WAVE PROPAGATION IN A ROD

*
DATABASE CREATE

*

WRITE FILENAME='a52.1lis'
*

MASS-PROPERTIES

*

SUBFRAME 21

NHISTORY NODE=2 DIRECTION=2 KIND=VELOCITY SYMBOL=1
NHISTORY NODE=2 DIRECTION=2 KIND=ACCELERATION SYMBOL=1
*

ELIST TSTART=7.071E-5 TEND=2.8284E-4

END
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EXAMPLE AS3

WAVE PROPAGATION IN A WATER COLUMN

Objective

To verify the dynamical behaviour of the FLUID3 element in wave propagation analysis.

Physical Problem

Same as in the figure on page A52.1 except that the rod is replaced by a water column of the same
wave velocity c.

-

Finite Element Model

Ten 8-node FLUID3 elements are modeling the water column as shown in the top figure on page
AS53.2. A lumped mass matrix is used in the analysis and the explicit central difference method is
chosen for the time integration. The element stiffness matrices are calculated using one-point-
integration. Time step and initial conditions are selected as for Example A52.

Solution Results

The theoretical solution is the one presented in Example A52.

The input data on page A53.3 gives the following results:

Pressure in water column, p (N / mz):

Theory SOLVIA
Before wave front 0 0
After wave front -1.0-10° -1.0-10°

The bottom figure on page A53.2 shows the pressure distribution in the water column at the fourth
time step predicted by the finite element analysis which is in excellent agreement with the analytical
solution.

User Hints
See Example A52.
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AS53 WAVE PROPAGATION IN A WATER COLUMN
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SOLVIA-PRE input

HEADING 'A53 WAVE PROPAGATION IN A WATER COLUMN'
*
DATABASE CREATE
MASTER IDOF=101111 NSTEP=4 DT=7.0710E-5
ANALYSIS TYPE=DYNAMIC MASSMATRIX=LUMPED METHOD=CENTRAL
*
COORDINATES
r .10. .2 /, 2 O0.0. .12 / 3 / 4 .1
*
INITIAL ACCELERATION
1 0. 2.E3 TO 4 0. 2.E3

*

NGENERATION NSTEP=4 YSTEP=1. / 1 TO 4

*

MATERIAL 1 FLUID K=2.E9 DENSITY=1000.
*
EGROUP 1 FLUID3 RSINT=1 TINT=1
GVOLUME 1 2 3 4 5 6 7 8 EL1=1 EL2=1 EL3=10 NODES=8
*
LOADS ELEMENT INPUT=SURFACE
1234 1.E5

*
MESH NSYMBOLS=MYNODES NNUMBERS=MYNODES VECTOR=LOAD
*

SOLVIA

END

SOLVIA-POST input

* A53 WAVE PROPAGATION IN A WATER COLUMN
*

DATABASE CREATE
*

WRITE FILENAME='a53.lis'

*

SUBFRAME 21

NHISTORY NODE=4 DIRECTION=2 KIND=VELOCITY SYMBOL=1

*

EPLINE NAME=COLUMN ,/ 1 1 TO 10 1

ELINE LINENAME=COLUMN KIND=PRESSURE SYMBOL=1 OUTPUT=ALL
END
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EXAMPLE A54

CANTILEVER SUBJECTED TO GROUND MOTION

Objective

To verify the dynamical behaviour of the BEAM element and the solution procedure for mass
propertional loading due to a ground acceleration.

Physical Problem

A water tower subjected to ground acceleration, as shown in the figure below, is considered. The time
history of the ground motion is also shown in the figure.

u (1)
M
k=2.7-10° Ibf/ ft
M =3000 1bf-s?/ ft
a,=32.2 ft/s*
a [t}
k
Qg +————————- |
I
]
]
|
Y {
I
} ‘ t [s]
0.025 0.050
TIINSSSS —~ X
a (t)

Finite Element Model

One BEAM element is used to model the tower and the water tank is modeled as a concentrated mass.
The transverse stiffness is set equal to the spring constant k for the tower. Thus

3EL_ k=2.7-10° Ibf/ft

o
and we select (for ease of computation)
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I=1 ft*

L =10ft

E=0.9-10° Ibf/ ft?
The Newmark method of time integration is chosen with ot = 0.25 and 8= 0.50. The time step size is
0.005 sec.
Solution Results

The input data on page A54.4 is used in the finite element analysis. The table below shows the
calculated results for some time steps in the analysis together with the analytical solution and results
reported in [1].

Transverse displacement, u(t) [ft]

Time Analytical Ref. [1] SOLVIA
0.010 0.000214 0.0002 0.000239
0.020 0.00169 0.0017 0.00173
0.030 0.00551 0.0055 0.00554
0.040 0.0113 0.0114 0.0113
0.050 0.0174 0.0176 0.0174
0.075 0.0255 - 0.0254

The figures on page A54.3 shows the time history of the transverse displacement, velocity and
acceleration at the top of the water tower and the bending moment at the built-in end of the BEAM
element, as displayed by SOLVIA-POST.

User Hints
« Note that the forces to which the model is subjected are calculated as
MU + KU = -Md, i,

where d, is a vector with zeroes in all components except +1 (plus one) in each of the components

corresponding to the X-displacements. Hence, the same acceleration forces are applied to all X-
displacements degrees of freedom, which means that arrival time differences in the accelerations
at different supports are not modeled.

+ Note that a ground acceleration in the negative X-direction corresponds to an applied mass
proportional loading in the positive X-direction.

« Note also that the X-Y-Z system is moving with the ground and we obtain a response measured in
this moving system. Therefore, to obtain, for example, the absolute acceleration response (which is
measured in a fixed system) it is necessary to add or subtract the ground acceleration time history
depending on whether the ground acceleration acts in the positive or negative coordinate direction.

Reference

[11 Clough, R.W. and Penzien, J., Dynamics of Structures, McGraw-Hill, 1975, pp. 102-105.
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SOLVIA-PRE input

HEADING 'A54 CANTILEVER SUBJECTED TO GROUND MOTION'
*
DATABASE CREATE
MASTER IDOF=001110 NSTEP=50 DT=0.005
ANALYSIS TYPE=DYNAMIC MASSMATRIX=LUMPED METHOD=NEWMARK,
DELTA=0.5 ALPHA=0.25
*
TIMEFUNCTION 1
0. 0. / .025 1./ .0500. ,/ 1. 0.
*
COORDINATES
1, 2 0.10. / 3 -3.
*

MASSES / 2 3000. 3000. 3000.
*

MATERIAL 1 ELASTIC E=0.9E9

*

EGROUP 1 BEAM RESULT=FORCES

SECTION 1 GENERAL RINERTIA=1. SINERTIA=1. TINERTIA=1. AREA=1.
ENODES ,/ 1 3 1 2

*

FIXBOUNDARIES / 1 3

LOADS MASSPROPORTIONAL XFACTOR=1. ACCGRA=32.2
*

SOLVIA

END

SOLVIA-POST input

* A54 CANTILEVER SUBJECTED TO GROUND MOTION
*

DATABASE CREATE
*

WRITE FILENAME='a54.lis'

*

SUBFRAME 21

NHISTORY NODE=2 DIRECTION=1 KIND=DISPLACEMENT OUTPUT=ALL
NHISTORY NODE=2 DIRECTION=1 KIND=VELOCITY

*

SUBFRAME 21

NHISTORY NODE=2 DIRECTION=1 KIND=ACCELERATION

EHISTORY EL=1 POINT=1 KIND=MT

END
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EXAMPLE AS5
CYLINDRICAL TUBE UNDER STEP LOADING

Objective

To verify the dynamical behaviour of the PLANE AXISYMMETRIC element and the use of direct
time integration.

Physical Problem

A cylindrical tube initially at rest is subjected to a uniform circumferential line load at its midspan at
time t=0%, as shown in the figure below.

|

L2
P P T y
L/2?
L -
; 4
|
| D {
P [Ib/in] L=18.01n
5 i D= 6.0in
10 h= 0.3in
E = 3.0-107 psi
v= 03
p =3.663-107 Ibf.sec?/ in.*
» 1 [s]

Finite Element Model

The finite element model used in the analysis is shown in the left figure on page A55.2. Using
symmetry considerations only one-half of the tube is modeled with sixteen 8-node PLANE
AXISYMMETRIC elements. The trapezoidal rule (the Newmark method with ¢=0.25 and =0.50) is
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employed in the analysis to obtain the step-by-step dynamic response. A step size of 0.00001 sec. is
used and the solution response is evaluated for 60 steps in the analysis. A consistent mass matrix is
used.

Solution Results

The theoretical solution for this problem is presented in [1] pp. 55-56. The input data on page A55.3
is used in the finite element analysis.

The right figure on page A55.2 shows the deformed finite element mesh at time t=0.00060 sec. and a
time-history curve of the radial displacements at the symmetry boundary. The calculated results are in
good agreement with the theoretical solution.

User Hints

¢ The trapezoidal rule is unconditionally stable, and the time step size is therefore selected based on
accuracy considerations only. Note that a time step for use of the central difference method would
be considerably smaller.

Reference

[1] "SAPIV - A Structural Analysis Program for Static and Dynamic Response of Linear
Systems", Report EERC 73-11, Univ. of Calif., Berkeley, Calif., 1974 (revised).
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SOLVIA-PRE input

HEADING 'A55 CYLINDRICAL TUBE UNDER STEP LOADING'
*
DATABASE CREATE
MASTER IDOF=100111 NSTEP=60 DT=1.E-5
ANALYSIS TYPE=DYNAMIC MASSMATRIX=CONSISTENT METHOD=NEWMARK
*
TIMEFUNCTION 1
0. 3000. / 1 3000.
*
COORDINATES ,/ ENTRIES NODE Y z
1 3.15 ,/ 2 3.15 9. ,/ 3 2.85 9. / 4 2.85

*

MATERIAL 1 ELASTIC E=3,0E7 NU=0.3 DENSITY=3.663E-2
*
EGROUP 1 PLANE AXISYMMETRIC
GSURFACE 1 2 3 4 EL1=16 EL2=1 NODES=8
*
FIXBOUNDARIES 3 INPUT=LINES ,/ 1 4
FIXBOUNDARIES 2 INPUT=NODES / 2
*
LOADS CONCENTRATED
12 0.5
*
SET PLOTORIENTATION=PORTRAIT NSYMBOLS=MYNODES
MESH NNUMBERS=MYNODES ENUMBERS=YES BCODE=ALL SUBFRAME=21
MESH VECTOR=LOAD EAXES=RST
*
SOLVIA
END

SOLVIA-POST input

* AS55 CYLINDRICAL TUBE UNDER STEP LOADING
*

DATABASE CREATE

WRITE FILENAME='aS55.lis’

*

SET PLOTORIENTATION=PORTRAIT

VIEW ID=1 XVIEW=1 ROT=-90

MESH VIEW=1 ORIGINAL=DASHED SUBFRAME=12
*

NHISTORY NODE=1 DIRECTION=2 OUTPUT=ALL
END
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EXAMPLE A56

FREQUENCIES OF A WATER-FILLED ACOUSTIC CAVITY

Objective
To verify the PLANE conduction element in SOLVIA-TEMP when used for frequency analysis.

Physical Problem

The acoustic cavity considered for the analysis is shown in the figure below. The cavity is bounded by
rigid walls and filled with water which is assumed to be inviscid [1]. The natural frequencies of the
cavity are to be determined.

I PN INI4
- ; 7
% ]
/ / Rigid boundary
/| ? / a=121in
4 wat é b=20in
f ? B=3.16-10° psi (bulk modulus)
| /] é p=9.35-107 Ibsec’/in* (density)
%
%
¢ oz B
K ? Material specification to SOLVIA-TEMP:
V] 3.16-10° (conductivity)
% s
? é 9.35.107 (specific heat per unit volume)
"
% /]
~ Yz 7/
Finite Element Model

The wave equation governing the motion of the fluid inside the cavity is

% 9% 1 9%, _ B
8y2+822—02 ot?’ °= o

_,
on

where ¢ is the velocity potential, ¢ is the velocity of sound in water, B is the bulk modulus and p is the
density of the water. The natural frequencies of the cavity can be obtained by performing a frequency
analysis of a planar heat flow problem in which the conductivity (k) and specific heat (c) correspond
to B and p, respectively. Using this approach, the finite element model shown in the top figure on

page A56.3 is employed in the analysis. Four 8-node PLANE conduction elements are used to model
the cavity. The degrees-of-freedom of all the nodal points are left free corresponding to the boundary

at the boundary
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conditions of the cavity. In the finite element frequency analysis, a consistent heat capacity
assumption is used.

Solution Results

The input data shown on page A56.4 is used in the finite element frequency analysis. The lowest four
frequencies predicted by the finite element model are shown in the table below. Analytical solutions
evaluated using formulas given in {1] are also shown for comparison.

SOLVIA-TEMP Analytical *[1]
w (n=0m=0) 0 0
w,(n=0m=1) 9166 9132
w;(n=1Lm=0) 15277 15220
w,(n=1Lm=1) 17763 17749

2 2
) w=mn-c- (EJ +(£n_] m,n =0,1,2,3,..
a b

Contour plots of temperature eigenvectors can be seen in the bottom figure on page A56.3.

User Hints
* SOLVIA-TEMP calculates the eigenvalues to the equation
K¢=CoA
where
K = heat conductivity matrix
C = heat capacity matrix
¢ = matrix containing eigenvectors
A = diagonal matrix with eigenvalues

To obtain the circular eigenfrequencies w, of the wave equation, we must, therefore, take the
square root of the SOLVIA-TEMP eigenvalues.

» Since only the gradient of the potential is zero at the boundaries while the potential is free, there is
one zero frequency (rigid body) mode in this problem:.

Reference

[1] Blevins, R.D., Formulas for Natural Frequency and Mede Shape, Van Nostrand Reinhold,
1979, pp. 337-341.
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AS6 FREQUENCIES OF A WATER-FILLED ACOUSTIC CAVITY

ORIGINAL F—— 2. z ORIGINAL +—— 2. z

L
EAXES=RST
SOLVIA-PRE 99.0 SOLVIA ENGINEERING AB
AS6 FREQUENCIES OF A WATER-FILLED ACOUSTIC CAVITY
REFERENCE ——i 2. z REFERENCE F——t 2. 4

MODE 2 EIGENYV 8 4018E7 | . MODE 4 EIGENV 3.1S5S51E8 L
Y Y
TEMPERATURE TEMPERATURE

MAX 9.4980 MAX 12.608

8.3107 g 11.032

5.9362 .8797

3.5617 7278

1.1872 .5759

1.1872 .5759

3.5617 1.7278

-5.9362 .8757

5483107 -11.032

MIN-9.4980 MIN-12.608

SOLVIA-POST 99.0 SOLVIA ENGINEERING AB
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SOLVIA-PRE input

HEAD 'A56 FREQUENCIES OF A WATER-FILLED ACOUSTIC CAVITY'

*

DATABASE CREATE

*

T-ANALYSIS HEATMATRIX=CONSISTENT
T-FREQUENCIES NEIG=4 IRBM=1

COORDINATES
ENTRIES NODE Y Z
1 0. 0.
2 12. 0.
3 12. 20.
4 0. 20.

*

T-MATERTAL 1 CONDUCTION K=3.16E5 SPECIFICHEAT=9.35E-5
*

EGROUP 1 PLANE STRAIN

GSURFACE 1 2 3 4 EL1=2 EL2=2 NODES=8

*

SET NSYMBOLS=MYNODES

MESH NNUMBERS=MYNODES EAXES=RST SUBFRAME=21
MESH ENUMBERS=YES GSCALE=OLD

*

SOLVIA-TEMP

END

SOLVIA-POST input

* A56 FREQUENCIES OF A WATER-FILLED ACOUSTIC CAVITY
*
T-DATABASE CREATE
*
W

RITE FILENAME='a56.1lis'

*

FREQUENCIES

*

SET RESPONSETYPE=VIBRATIONMODE OUTLINE=YES NSYMBOLS=YES
*

MESH CONTOUR=TEMPERATURE TIME=2 SUBFRAME=21

MESH CONTOUR=TEMPERATURE TIME=4

END
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