PSEG Nuclear LLC P.O. Box 236, Hancocks Bridge, New Jersey 08038-0236

JUN 2 7 2002

LR-N02-0233

United States Nuclear Regulatory Commission Document Control Desk Washington, DC 20555

Gentlemen:

REVISED CORE OPERATING LIMITS REPORT - CYCLE 15 SALEM GENERATING STATION UNIT NO. 1 FACILITY OPERATING LICENSE DPR-70 DOCKET NO. 50-272

In accordance with section 6.9.1.9 of the Salem Unit 1 Technical Specifications, PSEG Nuclear LLC submits Revision 1 of the Core Operating Limits Report (COLR) for Salem Unit 1 Cycle 15 (NFS-0190, Rev. 1) in Attachment 1 to this letter.

Revision 1 of the COLR clarifies section 2.3, noting that a more restrictive Axial Flux Difference band may be prescribed by plant procedure.

Should you have any questions, please contact Mr. Paul Duke at (856) 339-1466.

Sincerely,

G. Salamon Manager - Nuclear Safety & Licensing

Attachment

Document Control Desk LR-N02-0233

Mr. H. J. Miller, Administrator - Region I
U. S. Nuclear Regulatory Commission
475 Allendale Road
King of Prussia, PA 19406

Mr. R. Fretz, Licensing Project Manager - Salem U. S. Nuclear Regulatory Commission Mail Stop 8B2 Washington, DC 20555

USNRC Senior Resident Inspector - Salem (X24)

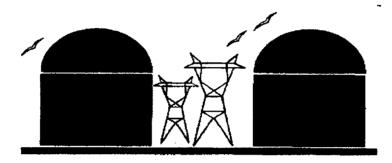
Mr. K. Tosch, Manager IV Bureau of Nuclear Engineering PO Box 415 Trenton, NJ 08625

LR-N02-0233

-

Document Control Desk Attachment 1

> SALEM GENERATING STATION UNIT NO. 1 FACILITY OPERATING LICENSE DPR-70 DOCKET NO. 50-272


_

CORE OPERATING LIMITS REPORT - CYCLE 15 REVISION 1

PSEG Nuclear LLC

NFS-0190 Revision 1 June 2002

Core Operating Limits Report for Salem Unit 1, Cycle 15

PREPARED:

DATE: 6/12/2002

Michael R. Merholz Senior Engineer

seh P2 scane REVIEWED:

DATE: 6/13/2002

Joseph P. Dascanio Lead Engineer

CONCURRANCE:

-0-

DATE: 6/13/2002

Thomas K. Ross Supervisor, SR&SA

tor MM Mannion APPROVED: s

DATE: 6/13/2002

Michael M. Mannion Manager, Nuclear Fuel

Page 1 of 11

NFS-0190 Revision 1 June 2002

PSEG Nuclear LLC SALEM UNIT 1 CYCLE 15 COLR

Page 1a of 11

LIST OF EFFECTIVE PAGES

Page	Revision Level
Page 1	1
Page 1a	1
Pages 2 through 5	0
Page 6	1
Page 7	0
Page 8	1
Pages 9 through 11	0

SUMMARY OF CHANGES

Revision 1: The purpose of Revision 1 is to modify the requirements of Section 2.3, Axial Flux Difference (Specification 3/4.2.1). In addition, page 1a was added to document the list of effective pages and summary of changes.

NFS-0190 Revision 0 February 2001

PSEG Nuclear LLC SALEM UNIT 1 CYCLE 15 COLR

Page 2 of 11

TABLE OF CONTENTS

Section <u>Number</u>	Section Title	Page <u>Number</u>
	Table of Contents	2
	List of Figures	3

1.0	Core Operating Limits Report	4
2.0	Operating Limits	5
2.1	Moderator Temperature Coefficient (Specification 3/4.1.1.3)	5
2.2	Control Rod Insertion Limits (Specification 3/4.1.3.5)	6
2.3	Axial Flux Difference (Specification 3/4.2.1)	6
2.4	Heat Flux Hot Channel Factor – $F_q(z)$ (Specification 3/4.2.2)	6
2.5	Nuclear Enthaply Rise Hot Channel Factor $F^{N}_{\Delta H}$ (Specification 3/4.2.3)	8
3.0	References	8

.

NFS-0190 Revision 0 February 2001

PSEG Nuclear LLC SALEM UNIT I CYCLE 15 COLR

Page 3 of 11

LIST OF FIGURES

Figure <u>Number</u>	<u>Figure Title</u>	Page <u>Number</u>
1	Rod Bank Insertion Limits vs. Thermal Power	9
2	Axial Flux Difference Limits as a Function of Rated Thermal Power	10
3	$K(z)$ – Normalized $F_q(z)$ as a Function of Core Height	11

NFS-0190 Revision 0 February 2001

PSEG Nuclear LLC SALEM UNIT 1 CYCLE 15 COLR

Page 4 of 11

1.0 CORE OPERATING LIMITS REPORT

This Core Operating Limits Report (COLR) for Salem Unit 1 Cycle 15 has been prepared in accordance with the requirements of Technical Specification 6.9.1.9.

The Technical Specifications affected by this report are listed below:

3/4.1.1.3	Moderator Temperature Coefficient
3/4.1.3.5	Control Rod Insertion Limits
3/4.2.1	Axial Flux Difference
3/4.2.2	Heat Flux Hot Channel Factor - $F_Q(Z)$
3/4.2.3	Nuclear Enthalpy Rise Hot Channel Factor - $F^{N}\Delta_{H}$

NFS-0190 Revision 0 February 2001

PSEG Nuclear LLC SALEM UNIT 1 CYCLE 15 COLR

Page 5 of 11

2.0 OPERATING LIMITS

The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC-approved methodologies specified in Technical Specification 6.9.1.9.

2.1 <u>Moderator Temperature Coefficient</u> (Specification 3/4.1.1.3)

2.1.1 The Moderator Temperature Coefficient (MTC) limits are:

The BOL/ARO/HZP-MTC shall be less positive than $0 \Delta k/k/^{\circ}F$.

The EOL/ARO/RTP-MTC shall be less negative than -4.5x10⁻⁴ $\Delta k/k/^{\circ}F$.

2.1.2 The MTC Surveillance limit is:

The 300 ppm/ARO/RTP-MTC should be less negative than or equal to $-3.8 \times 10^{-4} \Delta k/k/^{\circ}F$.

where: BOL stands for Beginning of Cycle Life

ARO stands for All Rods Out

HZP stands for Hot Zero THERMAL POWER

EOL stands for End of Cycle Life

RTP stands for Rated THERMAL POWER

NFS-0190 Revision I June 2002	PSEG Nuclear LLC SALEM UNIT 1 CYCLE 15 COLR	
-------------------------------------	--	--

2.2 Control Rod Insertion Limits (Specification 3/4.1.3.5)

2.2.1 The control rod banks shall be limited in physical insertion as shown in Figure 1.

2.3 Axial Flux Difference (Specification 3/4.2.1)

[Constant Axial Offset Control (CAOC) Methodology]

2.3.1 The Axial Flux Difference (AFD) target band shall be the more restrictive of

(+6%, -9%) or the target band as defined in Reference 2.

2.3.2 The AFD Acceptable Operation Limits are provided in Figure 2.

2.4 <u>Heat Flux Hot Channel Factor</u> - F₀(Z) (Specification 3/4.2.2)

[F_{xy} Methodology]

$$F_Q(Z) \leq \frac{F_Q^{RTP}}{P} * K(Z) \text{ for } P > 0.5$$

$$F_Q(Z) \leq \frac{F_Q^{RTP}}{0.5} * K(Z) \text{ for } P \leq 0.5$$

where: $P = \frac{THERMAL POWER}{RATED THERMAL POWER}$

 $2.4.1 \quad F_Q^{RTP} = 2.40$

2.4.2 K(Z) is provided in Figure 3.

2.4.3
$$F_{xy}^{\ L} = F_{xy}^{\ RTP} [1.0 + PF_{xy}(1.0 - P)]$$

where: $F_{xy}^{RTP} = 1.79$ for the unrodded core planes

2.13 for the core plane containing Bank D control rods

 $PF_{xy} = 0.3$

Page 6 of 11

NFS-0190 Revision 0 February 2001

PSEG Nuclear LLC SALEM UNIT 1 CYCLE 15 COLR

2.4.4 If the Power Distribution Monitoring System (PDMS) is used for core power distribution surveillance and is OPERABLE, as defined in Technical Specification 3.3.3.14, the uncertainty, U_{FQ} , to be applied to the Heat Flux Hot Channel Factor $F_O(z)$ shall be calculated by the following formula:

$$U_{FQ} = \left(1.0 + \frac{U_Q}{100.0}\right) \bullet U_e$$

where:

 U_Q = Uncertainty for power peaking factor as defined in equation 5-19 of Reference 1.

 $U_e = Engineering uncertainty factor.$ = 1.03

Note: UFO= PDMS Surveillance Report Core Monitor Fxy Uncertainty in %.

2.4.5 If the INCORE movable detectors are used for core power distribution surveillance, the uncertainty, U_{FQ} , to be applied to the Heat Flux Hot Channel Factor $F_O(z)$ shall be calculated by the following formula:

 $U_{FQ} = U_{qu} \bullet U_{e}$ where:

 U_{qu} = Base F_Q measurement uncertainty. = 1.05

- $U_e =$ Engineering uncertainty factor.
 - = 1.03

NFS-0190	PSEG Nuclear LLC
Revision 1	SALEM UNIT 1 CYCLE 15 COLR
June 2002	

Page 8 of 11

2.5 <u>Nuclear Enthalpy Rise Hot Channel Factor</u> - F^N_{ΔH} (Specification 3/4.2.3)

$$F^{N} \Delta H = F \Delta H^{RTP} [1.0 + PF \Delta H (1.0 - P)]$$

where:
$$P = \frac{THERMAL POWER}{RATED THERMAL POWER}$$

2.5.1 If RTP = 3411 MWt; then,

 $F_{\Delta H}^{RTP} = 1.65$

If RTP >3411 MWt and RTP \leq 3459 MWt; then,

 $F_{\Delta H}^{RTP}(RFA \text{ with } IFM) = 1.65 \text{ and } F_{\Delta H}^{RTP}(V5H \text{ without } IFM) = 1.57$

- 2.5.2 $PF_{\Delta H} = 0.3$
- 2.5.3 If the Power Distribution Monitoring System (PDMS) is used for core power distribution surveillance and is OPERABLE, as defined in Technical Specification 3.3.3.14, the uncertainty, U_{FAH} , to be applied to the Nuclear Enthalpy Rise Hot Channel Factor, F_{AH}^{N} , shall be calculated by the following formula:

$$U_{F\Delta H} = 1.0 + \frac{U_{\Delta H}}{100.0}$$

where:

- $U_{\Delta H}$ = Uncertainty for enthalpy rise as defined in equation 5-19 of Reference 1.
- 2.5.4 If the INCORE movable detectors are used for core power distribution surveillance, the uncertainty, U_{FAH} , to be applied to the Nuclear Enthalpy Rise Hot Channel Factor F_{AH}^{N} shall be calculated by the following formula:

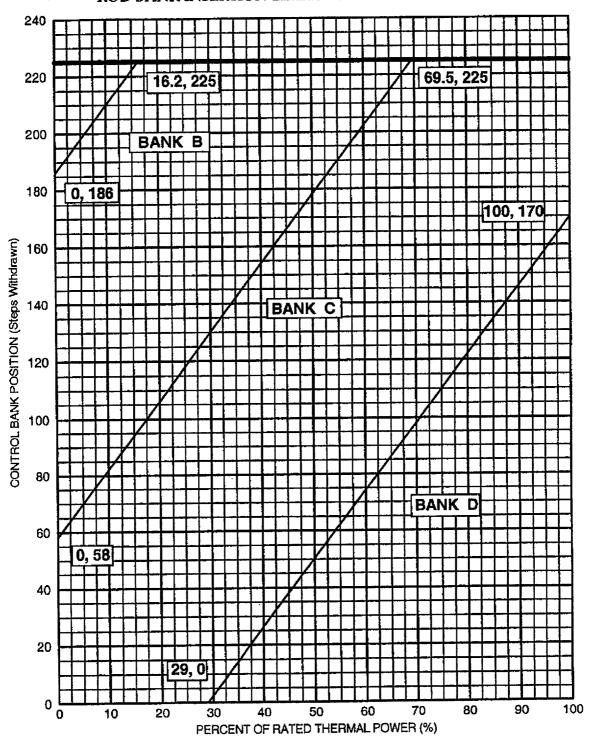
$$U_{F\Delta H} = U_{F\Delta Hm}$$

where:

 $U_{F\Delta Hm}$ = Base $F_{\Delta H}$ measurement uncertainty. = 1.04

3.0 <u>REFERENCES</u>

- 1. WCAP-12472-P-A, <u>BEACON Core_Monitoring and Operations Support_System</u>, August 1994.
- 2. SI.RE-RA.ZZ-0011(Q), Tables.


NFS-0190 **Revision** 0

February 2001

PSEG Nuclear LLC SALEM UNIT 1 CYCLE 15 COLR

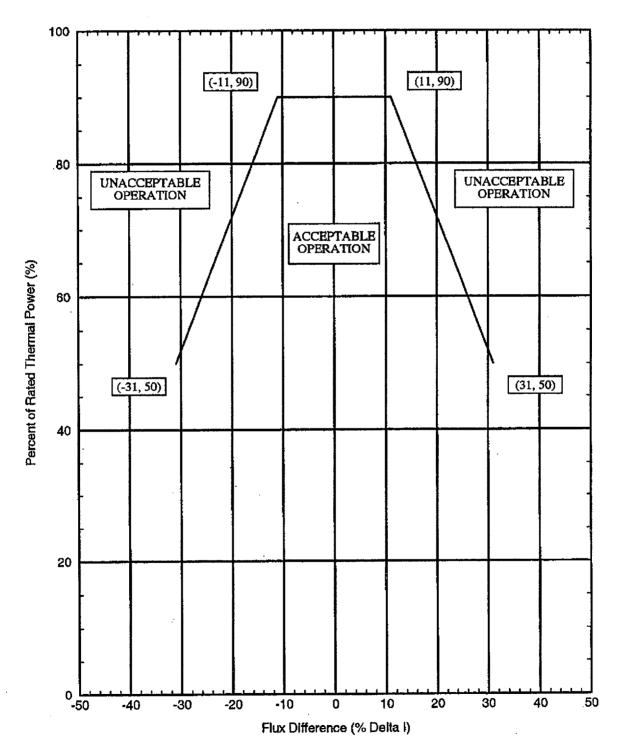
FIGURE 1

414

ROD BANK INSERTION LIMITS vs. THERMAL POWER

Page 9 of 11

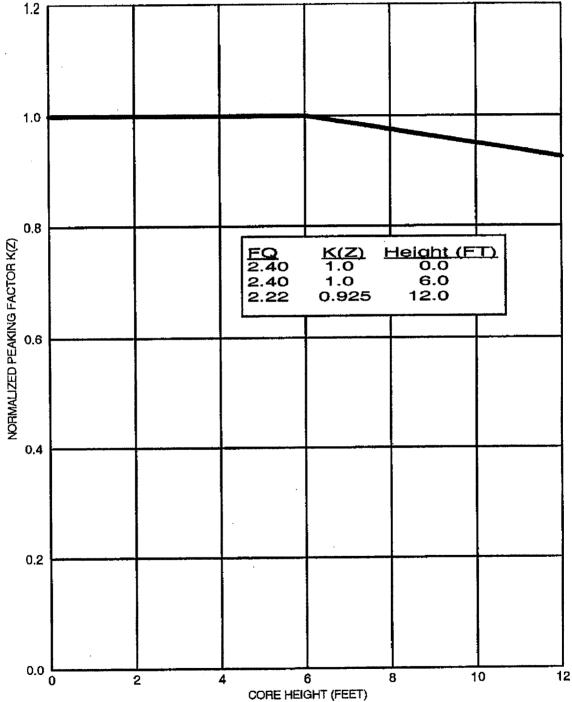
÷


NFS-0190 Revision 0 February 2001

PSEG Nuclear LLC SALEM UNIT 1 CYCLE 15 COLR

Page 10 of 11

FIGURE 2


AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER

NFS-0190 Revision 0 February 2001

PSEG Nuclear LLC SALEM UNIT 1 CYCLE 15 COLR

FIGURE 3

K(Z) - NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT

Page 11 of 11