WSRC-TR-00454 Rev. 0 November, 2000

Figure 1.4-14 Savannah River Basin

Col

WSRC-TR-00454 Rev. 0 November, 2000

Figure 1.4-15

5 Savannah River Basin Dams Upstream of SRS

Oe

WSRC-TR-00454 Rev. 0 November, 2000

(Note: Figure 1.4-17 is intentionally omitted.).

Figure 1.4-16 Monthly Range and Mean Water Temperature of Fourmile Branch for June 1985 Through September 1987

WSRC-TR-00454 Rev. 0 November, 2000

Figure 1.4-18. Comparison of chronostratigraphic, lithostratigraphic, and hydrostratigraphc units in the SRS region.

DI							CADE OF NORTH AMERICAN GEOLOGY														í.	S.	
(" DHAD								GEOLOGIC TIM						E SCALE						GEOLOGICAL SOCIETY OF AMERICA			
CENOZOIC								MESOZOIC						PALEOZOIC					PR	EC	AMBRI	AN	
AGE (184)	AGMETTIC OLLMITT 		еросн		AGE	3 g	AGE 10	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		ЕРОСН	AGE		an wear AG	AGE (Me)	PERIOD	EPOCH	AGE	PICAS -		AGE (Mai)	EON	ERA.	BOY. AGES (Ma)
		ATEN:	PLICE	<u>ام</u>	CALABIAN PIACENZIAN	- 8.91 - 1.6 - 3.4	70-	885 3			MAASTRICHTIAN	- 66.4		280	IIAN	LATE	TATANAN RAZANAN UPRIAN	- 345 - 333 - 333	, 2 % 1			LATE	- 670
•Ē			<u></u>	-	ZANCLEAN MESSIMIAN	- 63		" 🖬		LATE	CAMPANIAN	84.0 87.8 97.8 91 91 2.3 97.8 2.3	4.6 24 1.5		RN	EARLY	SAKMARIAN	1140	-12	1000			
		NE		L	TORTONIAN		*		SUC					**	FEROUS	LATE	ABSELIAN CZELIAN KABINOVIAN	236 ui 2141 3i 3i - 316 ai - 330	-12		OZOIC		
		OGE	CENE	-	SERRAVALLIAN		100 -		LACEC	EAMLT	ALRIAN		-2.5	300 -			BASHIGRIAN		- 20			MIDDLE	
	× 30	I E	ž	ł	LANGHIAN	- 16.8	110							220	Ž,		SERPUKHOYIAN						
N -				E	BURDIGALIAN		128		E	G	APTIAN	+119	•	340	VBB0	EARLY	VIBEAN	+ 333	12	1500 -	Ĕ		
ļĘ					HAINATIUDA	23.7			Ū	NEOCOMIA	HAUTERIVIAN	-124 131	-•	340	3 1	ļ	TOURNAISIAN	+ 362	- 8 - 10	1780-	PROT		
18-	TERTIAR		OLIGOCENE	•	CHATTIAN		130-1				YALANGINIAN		-131		VONIAN		FRAEMAN	+ 387	-12			EADI V	
		c				38.0				цят	TITHONIAN	144		<u> </u>			EWELIAN	1 347	277	2000-		EARLY	
		<		E	RUPELIAN		150-				KIMMERIDGIAN				ä	EARLY	GEDINNIAN		-18 2	2250			
1.1		=					140-				OXFORDIAN		15		NY	LATE	LUDLOVIAN	414					
		х ц		L	PRABOWAN	- 34.6	170- 188- 9		<u>0</u>	MHOCL &	CALLOVIAN		-169		NAN BILUF	EARLY	LLANDOVERIAN	N 438	-•	2500 -			
*		- Z				40.0			SS		BATHONIAN	170	1	++4Q ·		LATE	ASHGILLIAN		-12				
	10	U U U							Ň		BAJOCIAN	183	34				CARADOCIAN		18	2750		LATE	
4		ō	N.	- 14		1			E		TOARCIAN	- 187	브		ž	MODUE	LLANVERAN		-18				
			Ö		LUTETIAN				Ĩ	EARLY	PLIENSBACHAN	- 103	32	-	8	EARLY	ARENIGIAN	478	178 -+18 88 -+129	3996	R		-+ >>>=
	n	A	ũ				200							808	RO		TREMADOCIAN	+ **			里	MODLE	
	н Б			E	YPRESIAN		210-		U		NORIAN CARMAN	208			z	LATE	TREMPEALEAUAN FRANCOMIAN				ARCI		
1			-			+ 57.8	200		12			- 775			RIA	MIDOLE	DRESBACHIAN						
t					THANETIAN		230	11	¥				[n		CAMB	EARLY	+		⊢ ª			EARLY	
			EOC		UNHAMED						LADINIAN	236	-10						1	3734	1	l	
u-	- 5		ž	E	DANIAN	- 86.4	200			EAMLY	SCYTHIAN	1 240	20	1	1]	<u> </u>				1		1

Figure 1.4-19. Geologic time scale. Decade of North American Geology, (1998).

WSRC-TR-00454 Rev. 0 November, 2000

104

Figure 1.4-20. Hydraulic head difference across the Crouch Branch confining unit, July 1990 (modified from Bledsoe et al., 1990).

WSRC-TR-00454 Rev. 0 November, 2000

05

Figure 1.4-21. Location of type and reference wells for hydrostratigraphic units at SRS.

G00204r1

1 Dle

Figure 1.4-22. Hydrogeologic nomenclature for the SRS region.

348

WSRC-TR-00454 Rev. 0 November, 2000

107

Figure 1.4-23. Location of aquifer and confining systems in the SRS region.

Figure 1.4-24. Potentiometric surface of the Upper Three Runs/Steed Pond aquifers, 1998 (water table map).

C08

350

Figure 1.4-25. Potentiometric surface of the Gordon aquifer.

351

WSRC-TR-00454 Rev. 0 November, 2000

Figure 1.4-26. Potentiometric surface of the Crouch Branch aquifer.

WSRC-TR-00454 Rev. 0 November, 2000

Figure 1.4-27. Potentiometric surface of the Upper Three Runs Creek aquifer (water table) for the General Separations Area.

353

CII

WSRC-TR-00454 Rev. 0 November, 2000

C12

Figure 1.4-29. The location of industrial and municipal groundwater users near SRS.

WSRC-TR-00454 Rev. 0 Nóvember, 2000

C13

Figure 1.4-30. Relationship of SRS to regional geological provinces and terranes.

Figure 1.4-31. Piedmont Terrane.

C14

WSRC-TR-00454 Rev. 0 November, 2000

C15

WSRC-TR-00454 Rev. 0 November, 2000

C16

Figure 1.4-33. Location of Mesozoic rift basins along the entire eastern continental margin of North America from the gulf coast through Nova Scotia.

WSRC-TR-00454 Rev. 0 November, 2000

C17

WSRC-TR-00454 Rev. 0 November, 2000

C18

Figure 1.4-36. Geologic map of the SRS.

WSRC-TR-00454 Rev. 0 November, 2000

C19

Figure 1.4-37. Spatial relationships of depositional environments typical of the Tertiary sediments at the SRS.

C20

WSRC-TR-00454 Rev. 0 November, 2000

Cal

Figure 1.4-39. Lithologic and geophysical signature typical of the Tertiary section n the General Separations Area, Savannah River Site.

WSRC-TR-00454 Rev. 0 November, 2000

Figure 1.4-40. Spatial relationships of depositional environments typical of the Dry Branch and Tinker/Santee (Utley) sediments at SRS. Progradation seaward pus the tidal flat/marsh/shoreline (inner shelf) sediments of the Dry Branch Formation over the middle shelf sediments typical f the Santee Formation in the General Separations area, SRS.

C22

WSRC-TR-00454 Rev. 0 November, 2000

Figure 1.4-41. Carbonate dissolution in the Tinker/Santee (Utley) interval resulting in consolidation and slumping of the overlying sediments of the Tobacco Road and Dry Branch Formations into the resulting lows.

C23

WSRC-TR-00454 Rev. 0 November, 2000

Figure 1.4-42. Distribution of Carolina Bays within the SRS.

024

WSRC-TR-00454 Rev. 0 November, 2000

Figure 1.4-43. Diagram illustrating the stratigraphic and lateral distribution of soft zones due to silica replacement of carbonate in the GSA. Replacement/precipitation occurs along bedding planes, microfracture systems, and zones of enhanced permeability resulting in highly irregular pods, stringers, and sheets of silica replaced carbonate (i.e., soft zones).

Cas

WSRC-TR-00454 Rev. 0 November, 2000

Figure 1.4-44. Regional physiographic provinces of South Carolina.

Caq

WSRC-TR-00454 Rev. 0 November, 2000

Figure 1.4-45. Regional geologic map of the southeastern US.

(27

WSRC-TR-00454 Rev. 0 November, 2000

Figure 1.4-46. Geologic map of basement lithologies beneath the Savannah River Site and vicinity with adjacent piedmont (from Dennis et al. 1997).

Figure 1.4-47. Map of the basement surface at the SRS.

.

WSRC-TR-00454 Rev. 0 November, 2000

Figure 1.4-48. Free air gravity anomaly map for SRS and vicinity (40 km radius). Based on data from Domoracki (1994).

Figure 1.4-49. Aeromagnetic anomaly map for SRS and vicinity (40 km radius) Based on Petty et al., (1965).

Figure 1.4-50. Generalized geologic cross-section of the Dunbarton Basin (from Chowns e a., 1996).

WSRC-TR-00454 Rev. 0 November, 2000

Figure 1.4-51. A cross-section through the continental margin and Baltimore trough (offshore New Jersey). This is a typical Atlantic-type margin showing the geometry of oceanic crust to the east and continental crust to the west. After Sheridan and Grow (1988).

Figure 1.4-52. Crustal geometry for offshore South and North Carolina show a geometry of thinning crust (Klitgord et al; 1988).

C29

Regional Scale Faults for SRS and Vicinity

Figure 1.4-54. Faults that involve Coastal Plain sediments that are considered regionally significant based on their extent and amounts of offset.

C30

WSRC-TR-00454 Rev. 0 November, 2000

(31

Figure 1.4-55. The Cape Fear arch near the North Carolina-South Carolina border.

Figure 1.4-56. Other arches in the region include the Norfolk arch near the North Carolina-Virginia border, and the Yamacraw arch near the South Carolina-Georgia border.

(32

033

Figure 1.4-57. Previously unrecognized Cretaceous and Cenozoic fault zones found by Prowell, (1983). Of 131 fault localities cited, 26 are within North and South Carolina.

WSRC-TR-00454 Rev. 0 November, 2000

C34

WSRC-TR-00454 Rev. 0 November, 2000

Figure 1.4-59. . Location of sand blows.

WSRC-TR-00454 Rev. 0 November, 2000

Figure 1.4-60. Location of historical seismic events, 1568 - 1993.

C36

WSRC-TR-00454 Rev. 0 November, 2000

C37

Figure 1.4-61. MMI intensity isoseismals for the Charleston event.

WSRC-TR-00454 Rev. 0 November, 2000

C38

Figure 1.4-63. SRS short period recording stations.

Figure 1.4-64. Summary fault plane solutions for southeastern United Stares.

C39

WSRC-TR-00454 Rev. 0 November, 2000

Figure 1.4-65. Isoseismal map for the June, 1985 earthquake.

C40

WSRC-TR-00454 Rev. 0 November, 2000

C4

Figure 1.4-66. Fault plane solution for the June, 1985 earthquake..

392

Figure 1.4-67. Location of strong motion accelerographs.

WSRC-TR-00454 Rev. 0 November, 2000

Figure 1.4-68. Seismic network for SRS and the surrounding region.

C42

Figure 1.4-69. Response spectrum envelope developed by URS/Blume (1982).

Figure 1.4-70. Interim site spectrum versus Blume envelope.

C43

PC-3 Response Spectra Envelopes

Figure 1.4-71. PC-3 response spectra envelopes.

C44

•

NPH Design Criteria and Other Characterization Information For MOX Facility at Savannah River Site

WSRC-TR-00454 Rev. 0 November, 2000

PC-4 Response Spectra Envelopes

Figure 1.4-72. PC-4 response spectra envelopes.

WSRC-TR-00454 Rev. 0 November, 2000

Comparison - PC-3, PC-4, URS/Blume, SRS Interim Spectra (5% damping)

Figure 1.4-73. Comparison - PC-3, PC-4, Blume, SRS Interim spectra (5% damping).

046

WSRC-TR-00454 Rev. 0 November, 2000

Recommended SRS-Specific Soil Surface Hazard (Sv)-Envelope

Figure 1.4-73.1. Combined EPRI and LLNL soil surface hazard envelope (probability of exceedence vs. 5% damped spectral velocity) for oscillator frequencies of 1, 2.5, 5, and 10 Hz. fsdf

C47

Figure 1.4-74. Example seismic cone penetromter S-wave interpretation (solid lines). Measurement taken in F-Area.

SRS Recommended G/Gmax

Figure 1.4-75. SRS Recommended G/Gmax.

C48

SRS Recommended Damping

Figure 1.4-76. SRS recommended damping.

Comparison of DOE Revised PC-3 Design Basis Spectrum (Gutierrez, 1999) to PC-3 Design Spectrum (WSRC, 1997)

649

Figure 1.4-79. Correlation Between Normalized CPT Tip Resistance and Cyclic Stress Ratio Required for Initial Liquefaction Due to Magnitude 7.5 Earthquake and SRS Soils (WSRC, 1995).

Figure 1.4-80. Volumetric Strain as a Function of Factor of Safety Against Initial Liquefaction for SRS Soils (WSRC, 1995).

Figure 1.4-81. Pore Pressure Ratio Versus Cyclic Shear Strain for the Santee Formation at the ITP Facility (WSRC, 1995).

~ •