

GE Nuclear Energy

ESBWR Technology Program : TRACG

Bharat Shiralkar

NRC Staff - GE Meeting June 20 and 21, 2002 Rockville, Maryland

ESBWR Technology Program Elements

TRACG for ESBWR

- TRACG Models
- TRACG Qualification
- TRACG Application

TRACG Model Description

- TRACG Model Description, NEDE-32176P, Rev. 1 submitted to NRC (Reactor Systems and Containment Branches)
- Acceptability review performed by both branches
- Details of models have been discussed several times with both branches

TRACG Nodalization for ECCS/ Transient Analysis

ESBWR TRACG LOCA MODEL

TRACG Nodalization for Containment Analysis

BSS-6

Reactor Systems Branch Reviews

- NRC Letter of July 5, 1996 : Staff Review of General Electric's LTR NEDE-32167P, "TRACG Model Description" Revision 1, related to Reactor Systems Area
 - *Revised LTR is acceptable for detailed future review*
 - 5 Open issues
 - Lack of BOP model not needed, treated as BC
 - Lack of turbulent mixing model assessment not used
 - Lack of assessment of Upper plenum and Steam dryer models Upper plenum model is not used; steam dryer model has been assessed
 - Lack of boron mixing assessment assessment performed
 - **One group 3D kinetics model needs assessment assessment performed**
- Subsequently, Reactor Systems Branch has reviewed and accepted Revision 2 for operating plant transients
 - Rev 2 is the same as Rev 1, but without specific references to SBWR
 - No changes to models

ESBWR-specific TRACG qualification remains to be reviewed

Containment Branch Review

- Letter of July 31, 1996: Staff Review of General Electric's LTR NEDE-32167P, "TRACG Model Description" Revision 1, related to Containment Area
 - Several concerns identified for containment modeling
 - Needs extensive comparitive studies using both experimental data and other containment models
 - Areas identified

Steam/noncondensible mixing and noncondensible distribution

Thermal stratification in suppression pool

Applicability of flow regime map for containment volumes

Applicability of heat transfer correlations for containment volumes

- GE has developed conservative approaches to address calculations of gas mixing and suppression pool stratification
- GE has since performed extensive qualification against the SBWR and ESBWR integral tests of containment response

TRACG can be used to perform conservative calculations for containment pressures and temperatures

TRACG Qualification

- TRACG has been systematically assessed against:
 - Separate effects tests
 - Component performance tests
 - Integral system effects tests
 - BWR plant data
- "Generic BWR" and early SBWR qualification studies documented in base TRACG Qualification LTR NEDE-32177P Rev 1
- Supplemented by "TRACG Qualification for SBWR", NEDC-32725P Vol. 1 and 2
- Further supplemented by TRACG Qualification for ESBWR-specific TEPSS tests

Base Qualification Report, NEDE-32177P, Rev.1

• Separate Effects Tests

Test	Assessment Objective
FRIGG OF-64 Void Fraction Tests	Void fraction (interfacial shear)
Christensen Subcooled Boiling Void Fraction tests	Void fraction (interfacial shear and heat transfer)
Wilson and Bartolomei Bubble Rise Tests	Void fraction (interfacial shear at low flow)
EBWR Void Fraction Tests	Void fraction (interfacial shear), large Dh
PSTF Level Swell Tests	Void fraction/two-phase level (interfacial shear)
THTF Film Boiling Heat Transfer Test	Wall and interfacial heat transfer
Core Spray Heat Transfer Tests	Wall and interfacial heat transfer, radiative heat transfer
Upper tieplate counter current flow limiting (CCFL) tests	CCFL corrrelation
Marviken Critical Flow tests	Critical flow
PSTF Critical Flow Tests	Critical flow
Edwards Blowdown test	Critical flow
FRIGG Natural Circulation and Stability Tests	Pressure drop. oscillation inception and magnitude
ATLAS Pressure Drop Tests	Bundle pressure drop components
ATLAS Flow Oscillation Critical Power Tests	Boiling transition, post-dryout heat transfer and rewetting
ATLAS Pressurization Transients	∆CPR/ICPR
SPERT Reactivity Insertion Test	Neutronic parameters and kinetics

Component Performance Tests

Test	Assessment Objective
Jet Pump Performance Tests	M and N- ratios
Full-scale Separator Performance Tests (GE)	Carryover, carryunder and pressure drop
SSTF Upper Plenum Mixing Tests	Subcooling distribution at top of bundles
Toshiba GIRAFFE Phase I Tests	PCCS performance /condensation in presence of noncondensibles

• Integral System Tests

Test	Assessment Objective	
TLTA Tests	Integral system ECCS/LOCA response	
FIST Tests	Integral system ECCS/LOCA response	
GIST Tests	Integral system ECCS/LOCA response	
SSTF Tests	Multi-channel refill/reflood response	
GIRAFFE Phase II Tests	Integral system ECCS/LOCA response	
Tokyo Institute of Technology Geysering Experiment	Low pressure stability response	

Base Qualification Report

• Operating Plant Data

Test	Assessment Objective
Peach Bottom Turbine Trip Tests	Pressure, fission power, downcomer level response
Hatch Two-Pump Trip Test	Core flow, fission power, downcomer level response
Hatch MSIV Closure Test	Pressure and downcomer level response
LaSalle Instability Event	Oscillation inception and magnitude
Leibstadt Stability Tests	Oscillation inception and magnitude
Forsmark Stability Tests	Oscillation inception and magnitude
Cofrentes Stability Event	Oscillation inception and magnitude

Assessment studies added in SBWR Qualification Report

• Separate Effects Tests

Test	Assessment Objective		
Toshiba Low Pressure Void Fraction Tests	Void fraction (interfacial shear) at low pressure		
Ontario Hydro Void Fraction Tests	Void fraction (interfacial shear) for large Dh		

Component Performance Tests

Test	Assessment Objective	
PANTHERS PCC Performance	PCC heat removal (full scale)	
PANTHERS IC Performance	IC heat removal (full scale)	
PANDA PCCS Performance	PCC heat removal (scaled)	
PSTF Mark III tests	Suppression Pool Stratification	

Assessment studies added in SBWR Qualification Report

• Integral System Tests

Test	Assessment Objective
GIRAFFE/Helium Tests	Long term containment response with light noncondensibles
GIRAFFE/SIT	Integral LOCA response (vessel inventory, GDCS performance)
1/6 th Scale Boron Mixing Tests	Boron mixing and stratification
PSTF MARK III Containment Response	Short term containment response
4T/MARK II Containment Response	Short term containment response
PANDA Transient Tests	Long term containment response

• Natural Circulation and Flow Oscillation Tests

Test	Assessment Objective	
Dodewaard Steady State	Natural circulation	
Dodewaard Startup	Plant startup	
CRIEPI Low Pressure Oscillation Tests	Low pressure flow oscillations	
PANDA Exploratory Tests	Low pressure flow oscillations	

ESBWR-specific assessment

- PANDA TEPSS program conducted for ESBWR configuration
- TRACG qualification completed for TEPSS tests (separate report)
 - Long term containment response tests
 - Tests with helium injection to simulate hydrogen release
 - Late GDCS phase response
- CRIEPI High Pressure Thermal Hydraulic Stability Tests
 - Pressure range up to operating pressure

TRACG Qualification Review Status

- NEDE-32177 Rev. 1 reviewed primarily by Reactor Systems Branch
 - Responses to RAIs were provided by GE
 - NRC evaluated RAI responses
- *Rev 2 (Rev 1 minus SBWR-specific assessment) reviewed and accepted for BWR AOO application*
- TRACG Qualification for ESBWR
 - SBWR Qualification Report completed after NRC review terminated Includes PANTHERS, PANDA, GIRAFFE-Helium and GIRAFFE-SIT tests Reviewed by Utility Analysis & Test Review Team
 - TRACG Qualification of TEPSS Tests
 - Not submitted for NRC review

Examples of TRACG Qualification Results

- PANTHERS PCC Heat Removal for Steam
- PANTHERS PCC Performance with Noncondensibles
- PANTHERS IC Heat Removal vs. Inlet Pressure
- GIRAFFE-SIT GDCS Line Break
- PANDA Test M3 Long Term Containment Response

PANTHERS PCC Heat Removal for Steam

Heat Rejection Rate (kW)

PANTHERS PCC Performance with Noncondensibles

Inlet Pressure (kPa)

PANTHERS IC Heat Removal vs. Inlet Pressure

Inlet Steam Flow (kg/s)

GIRAFFE-SIT GDCS Line Break – RPV Pressure

TIME(S)

GIRAFFE-SIT GDCS Line Break – Drywell & Wetwell Pressure

6/21/02

4.00E-01

2.00E-01

0.00E+00

BSS-22

GIRAFFE-SIT GDCS Line Break – Chimney Level

TIME(S)

PANDA Test M3 – Long Term Containment Response

PANDA Test M3 – Long Term Containment Response

Summary of TRACG Qualification

- Assessment accuracy (error) compiled for all comparisons
- Adequacy established by comparing against:
 - Experimental uncertainty
 - Design margin
 - Engineering judgment
- Examples in following charts

ESBWR-specific Test ProgramTRACG Accuracy for Chimney Void Fraction

Test Program	Average Difference (bias)		Standard Deviation of Differences	
Ontario Hydro Void Fraction (3.2)	Absolute	Relative	Absolute	Relative
Time average chimney void fraction	x.xx%	x.xx%	x.xx%	x.xx%
Bartolomei et al. (3.3)	Absolute	Relative	Absolute	Relative
Tests at 4.6 MPa	x.xx%	-	x.xx%	-
Wilson et al. (3.3)	Absolute	Relative	Absolute	Relative
Tests at 2.2 MPa	x.xx%	-	x.xx%	-
EBWR (3.3)	Absolute	Relative	Absolute	Relative
Chimney center (4.2 MPa) Chimney edge (4.2 MPa)	x% x%	-	x%	-

Test Program	Average Difference (bias)		Standard I Differ	Deviation of rences
PANTHERS IC (4.2)	Absolute	Relative	Absolute	Relative
IC heat transfer rate	x kW	X.X%	x kW	X.X%

Test Program	Average Difference (bias)		Standard Deviation of Differences	
PANTHERS PCC (4.1)	Absolute	Relative	Absolute	Relative
Condenser efficiency for steam/air inlet conditions	X.XX	x.xx%	X.XX	x.xx%
Condenser heat removal for pure-steam inlet conditions	x MW	x.xx%	x MW	x.xx%
PANDA/PCC (4.3)	Absolute	Relative	Absolute	Relative
Condenser efficiency for steam/air inlet conditions	X.XX	x.xx%	X.XX	x.xx%
Condenser heat removal for pure-steam inlet conditions	x kW	x.xx%	x kW	x.xx%

TRACG Accuracy for Long Term Containment Pressure

Test Program	Average Difference (bias)		Standard Deviation of Differences	
GIRAFFE Helium (5.2)	Absolute	Relative	Absolute	Relative
DW peak pressure	x.x kPa	x.xx%	x.x kPa	x.xx%
GIRAFFE SIT (5.3)	Absolute	Relative	Absolute	Relative
DW pressure at end of test	x.x kPa	x.xx%	x.x kPa	x.xx%
PANDA Transient (5.7)	Absolute	Relative	Absolute	Relative
DW peak pressure	x.x kPa	x.xx%	x.x kPa	x.xx%

- Phenomena requiring more modeling detail
 - PCC model with a single tube representation not adequate when light noncondensibles (hydrogen) are present

6 tube model compared better with data

Recommended for hydrogen release scenarios

- PANDA tests showed unequal load sharing among PCCs as heat load dropped off

However total heat removal adequately calculated by TRACG

- Phenomena requiring bounding models
 - Boron mixing
 - Suppression pool stratification
 - Stratification of steam leakage flow into Wetwell Gas Space
 - Mixing of Drywell Noncondensible Gases
 - Bounding approaches developed based on assessment results

Sound design approaches developed

TRACG Application to ESBWR

Analysis Type	Analysis Method	
	BWR	ESBWR
Steady state	ISCOR	ISCOR
Transients		
· Pressurization	TRACG	TRACG
 Loss of feedwater heating 	PANACEA	PANACEA
ATWS	ODYN/TASC	TRACG
Stability	ODYSY/TRACG	ODYSY/TRACG
LOCA/ECCS	SAFER	TRACG
LOCA/containment		
 Pressure/temperature response 	M3CPT/SUPERHEX	TRACG
· Loads	Approved Methodology	Approved Methodology

TRACG is the primary analysis code for ESBWR

TRACG Application for AOOs

- TRACG is applied to all AOOs in SSAR Chapter 15 and ASME vessel overpressure protection events in Chapter 5, <u>except_for</u>:
 - Control Rod Withdrawal Error (analyzed with PANACEA)
 - Control Rod Drop Accident (incredible event for FMCRDs)
 - Stability (in conjunction with ODYSY frequency domain code)
 - Radiological release events (Fuel handling accident)
- Pressurization events are limiting for CPR
- Four events need to be considered:
 - Single control valve closure: slow pressurization event terminated by high simulated thermal power
 - Feedwater controller failure: turbine trip on high water level
 - Loss of AC Power (bypass valves available): fast pressurization event
 - Load rejection with bypass failure to open: fast pressurization event
- TRACG application methodology approved for BWR AOOs will be extended to ESBWR analysis
 - Transients and limiting events are milder than for operating plants

Reactor Pressure Response to Isolation Events

ESBWR has slower pressurization - no relief valves open

TRACG Application for ECCS/LOCA

- No new phenomena are introduced in ESBWR ECCS/LOCA
 - Operating BWRs have ADS to depressurize system and allow LPCI to inject
- Tests and analysis show that core does not uncover for any break
 - Minimum two-phase level in chimney above core is greater than 2 m for limiting break (GDCS/BD line break)
- GE intends to follow Reg Guide 1.157
 - Uncertainties in high ranked model parameters and plant parameters will be quantified
- However, statistical analysis of PCT is not meaningful
 - No core heatup
- Propose performing best estimate and bounding calculations of mixture level with key uncertainties set to bounding values (say, 2 σ)
- Approach consistent with level of ECCS margin built into design
 - Uncertainty in calculation bounded as per Reg Guide intent

TRACG Application for Containment

- GE is not proposing a best estimate analysis of containment response with TRACG
- Assessment studies demonstrate that effects of pool stratification and noncondensible distribution can be modeled conservatively
- ESBWR containment response to LOCA is mild and has ample margin to design limits
- Propose a conservative application approach
 - Key parameters that affect containment response will be identified

Model parameters (pool stratification, wetwell gas space stratification, drywell stratification and hideout, PCC heat transfer coefficients, decay heat, critical flow, etc.)

Initial conditions (drywell and wetwell pressures and temperatures, drywell relative humidity, PCC pool initial temperature, suppression pool initial temperature, etc)

Analysis assumptions (leakage from drywell to wetwell gas space,, etc)

- Key parameters will be treated conservatively
- Bounding calculations will be performed to demonstrate margins to design limits

TRACG Application for ATWS

- Because of low event probability, detailed statistical quantification of uncertainty not required
- Accepted approach utilizes a realistic calculation with some conservatism to cover uncertainties
- TRACG calculations will include a bounding approach to boron mixing
 - Established from assessment studies

TRACG Application for Stability Analysis

- ODYSY (frequency domain code) is used for decay ratio calculations at operating conditions
 - Previous frequency domain calculations have demonstrated large stability margins
 - Margins corroborated by ORNL calculations
 - Decay ratios also calculated for harmonic modes (regional stability)
- ESBWR will also implement hardware solutions (e.g. Confirmation Density Algorithm) approved for operating plants
- TRACG is used to establish startup procedures to avoid possibility of low pressure flow oscillations
 - Qualified against available low pressure data

- TRACG Model Description
 - Unchanged from previous version reviewed by NRC and accepted for AOOs for operating plants
- TRACG Qualification
 - Rev. 2 has been reviewed and accepted by NRC for AOOs for operating plants
 - Significant amount of additional qualification performed, particularly for long term containment response
 - Accuracy of models quantified for prediction of key parameters
 - Model limitations identified and bounding approaches developed to treat these limitations
- TRACG Application
 - AOOs extend operating plant approach to ESBWR
 - ECCS/LOCA account for uncertainties in manner commensurate with margin
 - Containment/LOCA bounding models and input parameters