GE Nuclear Energy

ESBWR Plant Performance

Y.K. Cheung

NRC Staff - GE Meeting June 20 and 21, 2002 Rockville, Maryland

Outline

- Normal Operation
- Transients
- LOCA and Containment
- Comparison to operating plants and ABWR
- Summary

• Parametric studies show that

- Minimum Critical Power Ratio (MCPR) and Stability Ratio are strong functions of core flow
- Design was enhanced to increase core flow for improved plant performance

Key Design Parameters Affecting Natural Circulation

Core flow depends on

- driving head
- losses through the loop
- Driving head
 - proportion to chimney height
 - Void Fraction
- Loop losses
 - downcomer
 - Single-phase pressure drop, handbook loss coefficient
 - core (fuel bundle)
 - Two-phase pressure drop, data/correlation
 - chimney ~ very small
 - Separator
 - Two-phase pressure drop, data/correlation

Schematic of Flow and Pressure Drops in a Reactor

Performance PS0206-1

Downcomer Losses Depend on the Plant Design

• Jet pump plant

- Large loss at the jet pump suction (~ 0.034 sq.m. per jet pump)

• Internal pump plant

- Very large loss at the internal pump minimum flow area
- Natural circulation plant (ESBWR)
 - insignificant loss

Comparison of ESBWR and ABWR

	ESBWR	ABWR
Fuel Length	3.05 m	3.66 m
Chimney/upper plenum	tall	short
Downcomer flow area	open	restricted

- Key parameters that increase core flow in ESBWR
 - Shorter fuel
 - Tall chimney
 - Un-restricted downcomer

Effect of Downcomer Flow Area on Total Core Flow

Effects of ESBWR Design Features on Natural Circulation Flow

Performance PS0206-1

Page 9

Comparison of Natural Circulation Flow for BWRs

POWFLO-2.xls chart 9(3)

ESBWR has 2 to 3 times more natural circulation flow; power/flow ratio same as pumped plants at rated condition

Minimum Critical Power Ratio (MCPR)

- Assures no boiling transition will occur during normal plant operational transients
- MCPR is the ratio of the critical bundle power, at which boiling transition is calculated to occur, to the operating bundle power
- Operating limit MCPR = Safety limiting MCPR + Δ CPR

ESBWR $\triangle CPR$

• ESBWR Transient Analyses -- $\triangle CPR$

Case	Event and condition	Δ _{CPR}
1	Generator load rejection with failure of all bypass valves (Stop valve position scram, similar to ABWR – K6/7)	0.095
2	Feedwater controller failure, (maximum demand at 150%)	0.101

• For 33% Bypass capacity, limiting \triangle CPR is 0.1

Margins to Operating Limit MCPR

ESBWR Design Target	1.38	
Bypass Capacity	33%	
Scram signal	Valve Position	
Safety Limit MCPR for GE12	1.09	
Target ∆CPR	0.1	
Operating Limit MCPR	1.19	
Margin to Operating Limit	16%	

LOCA and Containment Responses

- TRACG used to perform both the LOCA and containment analyses
- For LOCA (0 to 1 hours)
 - Fine nodalization in RPV, coarse nodalization in containment to provide system responses to the RPV
 - Key output: mixture level inside shroud and Peak Cladding Temperature (PCT)
- For containment (0 to 72 hours)
 - Fine nodalization in containment, coarse nodalization in RPV to provide system responses to the containment
 - Key output: Long term containment pressure

Main Steam Line Break – Largest Pipe Break

• Objective

- To demonstrate the LOCA and Containment responses after a postulated pipe break
- To show the design margins in the ESBWR

• Key assumptions

- 4 PCCs with a total capacity of 54 MW
- No credit for the ICs
- For long term containment calculation, leakage flow between DW and WW included as

$$\frac{A}{\sqrt{k}} = 1.0 \text{cm}^2$$

Main Steam Line Break – LOCA

Nodalization

Fine nodalization in RPV, coarse nodalization in containment

• Key design objectives

- Core covered by mixture at all times
- No core heatup

Performance PS0206-1

Page 16

Mixture Levels Inside Shroud and Downcomer

MSL Break LOCA – Downcomer and GDCS Pool Levels

RPV, DW and WW Pressures

Note 1: Bounding estimate, DW Press = all air in WW + PCC vent submergence, before GDCS drain Note 2: Bounding estimate, DW Press = all air in WW + PCC vent submergence, after GDCS drain

DW pressure shows > 20% Margin to the design pressure

Performance PS0206-1

Differential Pressure (DW – WW)

1 450 20

Reactor Decay Heat and PCCS Heat Removal

PCCS removes heat during the blowdown phase, limiting suppression pool heatup

PCC Tube Total and Partial Air Pressures

Performance PS0206-1

Page 22

GDCS Flow

Page 23

Main Steam Line Break – Containment

Nodalization

Fine nodalization in containment, coarse nodalization in RPV

Key design objectives

 Long term DW pressure below design value with margin

MSL Break Containment – RPV, DW and WW Press.

WW Airspace Temperatures

Performance PS0206-1

Page 26

Reactor Decay Heat and PCCS Condensation Power

Performance PS0206-1

Page 27

Total PCCS Drain Flow to RPV

Differential Pressure (DW – WW)

Leakage Flow (DW to WW)

Page 30

Summary of Main Steam Line Break (largest break) Analyses

- ESBWR has large margin (> 3m) to core uncovery and heatup
- Calculated DW pressure shows > 20% Margin to the design pressure
- Total PCCS heat removal capacity greater than decay heat (after 2 hours)
- Overall pressure and level (inventory) responses are mild in nature, <u>NO</u> requirements for fast action

Other breaks expected to have similar responses

Design Features Affecting LOCA Response

	ESBWR	ABWR	BWR5	BWR4
Large pipes below core	No	No	Yes	Yes
Core height, m	3.05	3.66	~3.66	~3.66
TAF above RPV bottom	~ 1/4	~ 1/2	~1/2	~1/2
Separator standpipes	Long	Short	Short	Short
Vessel height, m	27.7	21.1	~21.9	~21.8
Water volume outside shroud (above TAF), m ³	222	88	94	92

ESBWR has much more water inventory!

Comparison of Mixture Levels Inside Shroud Following a Pipe Break

ESBWR has large margin to core uncovery and heatup – other breaks expected to have similar responses

ESBWR Features That Improve Transient Pressure Response

- Taller reactor vessel
- Large steam volume in the chimney region
- Higher safety valve setpoint to prevent valve opening and inventory loss

Reactor Pressure Response to Isolation Events

Performance PS0206-1

Page 35

ESBWR Design Features That Improve Containment Response

• Wetwell gas space volume increased

- GDCS pool gas space connected to wetwell
- 10 to 25% increase in wetwell volume after GDCS pool drains

• PCCS capacity increased

Total PCCS heat removal capacity greater than decay heat (after 2 hours)

• Containment overpressure relief system added

Containment Pressure Following a Pipe Break

Summary

• Natural circulation flow increased

- Un-restricted downcomer, tall chimney, shorter fuel & taller vessel
- Power/flow ratio same as pump plants at rated condition

LOCA response improved

- Taller vessel and larger initial inventory in the vessel downcomer
- No need for fast acting, high pressure and large flow rate inventory makeup
- Large margin to core uncovery and heatup

Containment response improved

- Wetwell volume increased by moving GDCS pool
- Containment overpressure relief system added
- ESBWR containment has > 20% margin to design pressure even with lower containment design pressure than ABWR/SBWR

ESBWR design features improve plant performance

nance PS0206-1