CERTIFICATE

This is to certify that the attached proceedings before the United States Nuclear Regulatory Commission in the matter of:

> Name of Proceeding: Advisory Committee on Reactor Safeguards Materials & Metallurgy and Plant Operations Joint

> > Subcommittee Meeting

Docket Number:

Location:

Rockville, Maryland

were held as herein appears, and that this is the original transcript thereof for the file of the United States Nuclear Regulatory Commission taken by me and, thereafter reduced to typewriting by me or under the direction of the court reporting company, and that the transcript is a true and accurate record of the foregoing proceedings.

N/A

Debra Wilensky *O* Official Reporter Neal R. Gross & Co., Inc.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

www.nealrgross.com

(202) 234-4433

۰.

MRP Presentations								
Alloy 600 ITG Status	Mathews	15 min						
Alloy 600 Crack Growth Rate	Hickling	45 min						
Probabilistic Fracture Mechanics Model	Riccardella	45 min						
Collateral Damage	Mathews	10 min						
Technical Assessment of DB Degradation Mechanisms	White	30 min						
Industry Inspection Plan	Lashley	60 min						
ACRS 6/5/02.2	·							

MRP Crack Growth Rate Approach: Overview

- Goal was to establish appropriate CGR guidelines for generic application to thick-section Alloy 600 base material under PWSCC conditions
- MRP panel of international experts on SCC (includes ANL/NRC Research) was established August 2001 and has met several times to date
- Extensive consideration was given to the likely OD environment in the annulus between a leaking CRDM nozzle and the RPV head (prior to Davis Besse incident)
- Relevant arguments remain valid today as long as leak rates are low (typically < 1 liter/h or 0.004 gpm)
- · Plant experience has shown this to be the usual case

b_

ACRS 6/5/02.6

MRP Crack Growth Rate Approach: Overview (con.)

- Relevant, worldwide CGR results were obtained and reevaluated so as to screen out inappropriate test data
- Recommended MRP curve for CGR as a function of stress intensity factor (K) was derived taking into account the statistics of heat-to-heat variations and the strong effect of temperature
- Curve was compared with existing field data and recommendations developed for its use in assessing axial/circumferential flaws
- Screened CGR data for base material feeds directly into the probabilistic risk assessment being carried out by SIA

8-

ACRS 6/5/02.7

Core members of MRP Expert Panel on PWSCC of Alloy 600

Name	Organization	Name	Organization
Peter Andresen	GE-GRC	Anders Jenssen	Studsvik, Sweden
Steve Attanasio	KAPL	George Licina	SIA
Warren Bamford	Westinghouse	Bill Mills	Bettis
Luisa-Maria Castano	CIEMAT, Spain	Raj Pathania	EPRI
Bill Cullen	NRC Research	Peter Scott	Framatome-ANP, France
Steve Fyfitch	Framatome-ANP	Bill Shack	ANL
John Hickling	EPRI	Glenn White	DEI
Rich Jacko	Westinghouse	Toshio Yonezawa	MHI, Japan
Christer Jansson	SwedPower, Sweden	Ken Yoon	Framatome-ANP

• Distrib the log values methc	D	ACRS 6/5/02.29			_																	D
and old g	Priva		<u> </u>	25	24 24	22	20	61	17	16	Ŧ	12	= =	· •	» J	6	~ +		, –	Heat		eriva
describing (al fit to the e 26 heats, v	ation of	Log-Mean Log-Mean		Sandvik	Inco	Huntington	Not Listed Tecphy	Huntington	Sandvik	Not Listed Sumitomo Metal	Huntington	Schneider-Creuso Huntington	Creusot-Imphy	B&WTP	Schneider-Creuso B&WTP	VDM	Tecphy	French Supplier	Creusot-Imphy	Material		ation o
CGR var ordered using m	MR	of Heat Log-Means	mick-mail luoc	Thick-wall Tube	Rolled Bar	Plate	Forged Bar Rolled Bar	Thick-wall Tube	Thick-wall Tube	Forged Bar Thick-wall Tube	Rolled Plate	1 Forged Bar Thick-wall Tube	Forged Place	Thick-wall Tube	1 Forged Bar Thick-wall Tube	Rolled Plate	Rolled Bar	CRDM Nozzle	Forged Bar	Form		f MRI
nost li	C C	26 Heats		J 1.J			در –	12	27	- 12	Ē			, - ;	<u>ะ</u> -	1.5 4		4 ت	21	of Data Points	Number	р 0
ian ran kely es	GR	1.34E-12	1.755-15	2.18E-13	4.44E-10 2.51E-13	4.97E-13	6.31E-13 5.18E-13	7.21E-13	1.00E-12	1.02E-12	1.29E-12	1.62E-12	1.94E-12	2.65E-12	3.19E-12 3.07E-12	3.92E-12	4.96E-12	5.08E-12	6.01E-12	SI Units	Log Mean	GR
then ta timator	Cun	1.86E-03	2.07 574	3.03E-04	5.15E-04 3.48E-04	6.89E-04	8.74E-04 7 18E-04	1.0-366.6	1.39E-03	1.41E-03	1.78E-03	2.24E-03	2.69E-03	3.68E-03	4.42E-03	5.43E-03	6.88E-03	7.03E-03	8.32E-03	English Units	Power-Law	Cur
the α	le le				*	1			_1,_1					<u>.</u>		e i	11	4 I <u>-</u>	 -		•• !	ve
e a Q as		F																				

(

ACRS 6/5/02.30

P

(

Comparison of MRP database with available plant CGR data Large uncertainties exist in reported values of CGRs from operating plants due to: uncertainties in ultrasonic measurements of crack size at two or more different times uncertainties in the estimates of K, which depend on estimates of residual stress uncertainties in the actual operating temperatures of CRDM nozzles in different plants and in different countries Limited US data (from D.C. Cook nozzle #75) lie well below the MRP curve

Comparison of MRP database with available plant CGR data

- Agreement with French field data is quite reasonable considering the uncertainties involved
- Supports the choice of the 75th percentile curve from the MRP distribution as representative of the rates expected for axial crack growth in CRDM nozzles
- In no case did the actual <u>measured</u> CGR in the throughwall direction exceed 4 mm/yr (0.16 in/yr) for data from French plants of fundamentally Westinghouse design
- This figure was adopted in France, independent of nominal upper head temperature, to justify continued operation with axial cracks up to 11 mm (0.43 inches) deep for a one-year fuel cycle

ACRS 6/5/02.38

Key Elements of RPV Head Nozzle PFM Analysis

- · Probability of Leakage
 - Weibull Model based on Experience to Date
 - Incorporated into Monte Carlo Model
- Fracture mechanics modeling for Stress Intensity Factors
 - Through-Wall Cracks
 - Part Through Wall Cracks
- Stress Corrosion Crack Growth Statistics
- Effect of Inspections
 - Inspection Interval
 - Inspection Reliability

ACRS 6/5/02.47

b_

Stres	s In Ba	tensi &W 1	ty Fa ſype	acto Pla	r Res nt	ults
	Nozzle	Circumfere	ential Crack	Stress	Intensity	
	Angle	Ler	Length		1/2	
	<u>~~</u>	Degrees	Inches	Uphill	Downhill	
	ľ	70	0.9664	20.8	N/A	
	1	160	5 1540	10.0	N/A	
High Yield,		180	5.3140	0.64	N/A	
arga Gan Casa		220	6,4950	0.63	N/A	
Large Gap Case	1	260	7.6760	0.63	N/A	
		300	8.8570	0.62	N/A	
	18°	30	1.0170	27.2	27.2	
		70	2.3730	24.0	24.0	
	1 1	160	5.4240	24.5	24.5	
	[180	5.5920	23.4	1.0	
	[220	6.8350	23.8	2.4	
		260	8.0770	26.9	6.0	
		300	9.3200	26.5	11.5	
	26°	30	1.0830	29.7	29.7	
	1	70	2.5260	26.1	26.1	
	1 1	160	5.7750	26.5	26.5	
	1 1	180	5.9530	28.4	0.4	
	1 1	220	7.2760	23.2	1.7	
	1 F	260	8.5990	23.6	7.5	
		300	9.9220	24.9	16.6	
	38°	30	1.2380	34.4	34.4	
		/0	2.8830	27.1	27.1	
		160	6.6020	29.2	29.2	
	1 F	180	6.8060	37.7	4.5	
	1 F	220	8.3190	31.2	6.7	
	1 F	200	9.8310	26.6	12.7	107
ACRS 6/5/02.53	ь		11.3440	29.9	25.9	

 \sim

Inspection Frequency Runs: Probabilities of Detection

- Bare Metal Visual Inspections (BMV)
 - Initial POD = 0.6
 - POD for Subsequent Exams = 0.2 x Initial POD (when Leakage missed)
- Non-Destructive Examinations (NDE)
 - POD = f(crack depth) per EPRI-TR-1020741
 - 80% Coverage Assumed

¹Dimitrijevic, V. and Ammirato, F., "Use of Nondestructive Evaluation Data to Improve Analysis of Reactor Pressure Vessel Integrity, " EPRI Report TR-102074, Yankee Atomic Electric Co. March 1993

b

ACRS 6/5/02.67

Deterministic Crack Growth Analyses			
 Uses Expert 2 x 75th Per da/dt = C(K 	Panel recommen rcentile of all data (-8.19)1.16 Temperature	ided crack grov	wth law
		L L	
	(°F)		
	(°F) 580	3.604x10 ⁻⁷	1
	(°F) 580 590	3.604x10 ⁻⁷ 4.665x10 ⁻⁷	
	(°F) 580 590 600	3.604x10 ⁻⁷ 4.665x10 ⁻⁷ 6.008x10 ⁻⁷	
	(°F) 580 590 600 602	3.604x10 ⁻⁷ 4.665x10 ⁻⁷ 6.008x10 ⁻⁷ 6.316x10 ⁻⁷	

Deterministic Crack Growth Analyses

- Uses Stress Intensity Factors from plant specific analysis of Westinghouse plant
 - High Angle Nozzle (43.5° nozzle angle)
 - Higher Ks than B&W plant results

	Circ. Crac	Circ. Crack Length	
	Degrees	Inches	Ksi*in 1/2
	30	1.16	34.4
	70	2.70	27.1
	160	6.16	29.2
	180	6.34	47.2
	220	7.75	51.9
	260	9.16	58.1
ACRS 6/5/02.73	300	10.57	63.7

b

Deterministic Crack Growth Analysis Results

Temperature	Time for Initial F Circumference t and 300°	law Size of 30° Grow to 165° (EFPY)
(°F)	Westinghouse-Type Plant	
	165°	300°
580	23.7	31.7
590	18.3	24.6
600	14.2	19.1
602	13.5	18.2
605	12.5	16.8

	mau	ix		
	Extent of Wastage			
PRELIMINART	Initial Tight Annulus	Enlarged Annulus	Small Cavity	Large Cavity
Deaerated Boric Acid Corrosion Sonc. Boric Acid Corrosion but DO: ≈ 0-10 ppb		Low	rates	<u>.</u>
Dry BA or Boric Oxide Crystal Corrosion Corrosion in Contact with Dry Crystals and Humidity	Low rates			
ingle-Phase Erosion otential Erosion if High Steam Velocities	Possible for high leak rates	Less likely than	for tight annulus	Large flow area precludes high velocities
low Accelerated Corrosion (FAC) ow-Oxygen Dissolution through Surface Oxides	Possible if and t	liquid velocities h emperature low er	tigh enough nough	Unlikely as oxygen stabilizes
mpingement / Flashing-Induced Erosion Proplet and Particle Impact Opposite Crack Outlet	Possible if droplets right size and momentum			ntum
revice Corrosion iquid Ionic Path from Top Head Surface	Believed not to be not passivate in	e likely because lo an aerated, concer	w alloy steel does ntrated boric acid	Not possible because no crevice geometry
Occluded Region" Galvanic Corrosion priven by Potential Difference Btw Dissimilar Metals	Possible at locations where liquid solution exists			
Molten" Boric Acid Corrosion orrosion in Pure or Nearly Pure Melted BA Crystals	Possible but rate expected to be lower than for aerated BAC			
Verated Boric Acid Corrosion (BAC) Voncentrated Boric Acid Solution with Oxygen	Not possible due to low oxygen deep in crevice	Unlikely	Possibly	Up to 1-5 inches per year
	PRELIMINARY eaerated Boric Acid Corrosion and Boric Acid Corrosion but D0; = 0-10 ppb rry BA or Boric Oxide Crystal Corrosion prosion in Contact with Dry Crystals and Humidity ingle-Phase Erosion motion of High Steam Velocities low Accelerated Corrosion (FAC) w-Oxygen Dissolution through Surface Oxides npingement / Flashing-Induced Erosion roplet and Particle Impact Opposite Crack Outlet revice Corrosion quid Jonic Path from Top Head Surface Occluded Region" Galvanic Corrosion riven by Potential Difference Brw Dissimilar Metals Mollen" Boric Acid Corrosion (BAC) prosion in Pure or Nearly Pure Melted BA Crystals erated Boric Acid Solution with Oxygen	PRELIMINARY Initial Tight Annulus beaerated Boric Acid Corrosion one. Boric Acid Corrosion but Do: = 0-10 ppb Initial Tight Annulus beaerated Boric Acid Corrosion orosion in Contact with Dry Crystal Corrosion prosion in Contact with Dry Crystal corrosion prosion in Contact with Dry Crystals and Humidity ingle-Phase Erosion menual Erosion if High Steam Velocities Possible for high leak rates low Accelerated Corrosion (FAC) wo-Oxygen Dissolution through Surface Oxides Possible if and to and to prosten and Particle Impact Opposite Crack Outlet revice Corrosion opter and Particle Impact Opposite Crack Outlet revice Corrosion outled Region" Galvanic Corrosion riven by Potential Difference Btw Dissimilar Metals Possible not passible to morision in Pure or Nearly Pure Melted BA Crystals Wolken" Boric Acid Corrosion omenurated Boric Acid Solution with Oxygen Not possible due to low oxygen deep in crevice	PRELIMINARY Extent o Initial Tight Annulus Enlarged Annulus eaerated Boric Acid Corrosion one. Boric Acid Corrosion one. Boric Acid Corrosion prosion in Contact with Dry Crystal corrosion prosion in Contact with Dry Crystal and Humidity Low prossible for high nemula Erosion (FAC) wo-Oxyem Dissolution through Surface Oxides Possible for high leak rates Less likely than leak rates how Accelerated Corrosion protein and Particle Impact Opposite Crack Outlet Possible if liquid velocities fi and temperature low et not passivate in an aerated, concer Decluded Region" Galvanic Corrosion romosion in Pure or Nearly Pure Melted BA Crystals Possible but rate expected to oxygem deep in crevice Wolten" Boric Acid Corrosion (BAC) mentrated Boric Acid Solution with Oxygem Not possible due to low oxygem deep in crevice	Extent of Wastage Initial Tight Annulus Enlarged Annulus Small Cavity eaerated Boric Acid Corrosion one. Boric Acid Corrosion one. Boric Acid Corrosion pry BA or Boric Oxide Crystal Corrosion rymosion in Contact with Dry Crystals and Humidity ingle-Phase Erosion Membrid Erosion (FAC) wo-Oxyen Dissolution through Surface Oxides prossible for high use Oxyen Dissolution through Surface Oxides project and Particle Impact Opposite Crack Outlet revice Corrosion quid lonic Path from Top Head Surface Doccluded Region" Galvanic Corrosion riven by Potential Difference Brw Dissinitar Metals Believed not to be likely because low alloy steel does not passivate in an aerated, concentrated boric acid Possible at locations where liquid solution work by Potential Difference Brw Dissinitar Metals Possible but rate expected to be lower than for revice Corrosion norno in Pure or Nearly Pure Meted BA Crystals erated Boric Acid Corrosion (BAC) menurated Boric Acid Solution with Oxygen Not possible due to low oxygen deep in revice Unlikely Possibly

.

Leak	Rate i	s Main	on Prog Contro	Iression	n a <i>ramete</i>
	Increasing Leak Rate		PRELIMINAR		
Nazzle/Weid Condition	ieak path to annulus	Hean path to annulus	leak path to annukus	likely crack in nozze wall reaches above lop of weld on OD and ID	crack in nozzłe wał reaches relativeły high above top of weld on CO and ID
Annulus Condition	 	possibly some opening up of annulus	ikely some opening up of annukus	They require some opening up of annulus	T. Iskely requires some operang up of annulus
Leak Rate	hypotheocal 2010 leak rate	< on the order of 0 001 gpm	roughly between 0 001 and 0 01 gpm	roughty between 0 01 and 0 1 gpm	> on the order of 0.1 gpm
Liquid Velocity Exting Crack	0 r/s	. F less than on the order of 0.01 ft/s	roughly between 0.01 and 0.1 ft/s	roughly between 0 1 and 1 ft/s	▼ > on the order of 1 h/s
Local Temperature	600°F	Cose to 600°F	at least roughly 500°F	7 roughly between 212 and 500°F	Close to 212'F
Liquid Location	 T- fills annulus up to hypothetical blockage 	all liquid vaporizes close to bottom of annulus	iquid fim unikely to exist high in annulus	t liquid film may cover much of annukus walls	louid firm covers local top surface of head
Possible Significant Mechanisms	t . thone	* possibly very minor galvanic	* possibly some galvanic corrosion * erosion unti annulus opens sightly	* kkely some galvanic corrosion * minor erosion and FAC, * possibly aerated BAC # annukus to noneed any wh	aerated BAC on top of head, "possibly molten BAC, galvanic controsion, eroeion, or FAC
Pounds of Boric Acid Deposits Released in 2 years	T	t < on the order of 7 itos	t roughly 7 to 70 lbs	roughly 70 to 700 lbs	> on the order of 700 lbs
		all or most other leaving CRDM nozzles	≜ EPRI&C	E Annulus Tests	Davis-Bassa Nozzla #3

CRDM/CEDM J-Groove Weld Inspection Bases

- Circumferential cracks in the J-groove weld do not pose a significant risk of nozzle ejection.
- Lack-of-fusion: extent to still maintain structural integrity is similar to the acceptable extent of through-wall circumferential cracking (i.e. >75% of the circumference).

ACRS 6/5/02.109

Figure 1 PWR RPV Head Penetrations Inspection Flowchart

** 100% of the CRDM/CEDM penetrations and associated J-groove welds or portions thereof that can be examined without incurring undue hardship

NRC's Vessel Head Penetration Cracking and Vessel Head Degradation Presentations

Presenters

Allen Hiser, 301-415-1034 Andrea Lee, 301-415-2735 Mark Kirk,301-415-6015 Jack Grobe, 630-829-9700 Ed Hackett, 301-415-5660

Advisory Committee on Reactor Safeguards Materials & Metallurgy and Plant Operations Subcommittees Rockville, MD June 5, 2002

STATUS OF NRC BULLETIN 2001-01 REVIEWS

"CIRCUMFERENTIAL CRACKING OF VHP NOZZLES"

Allen Hiser

Presentation to ACRS Subcommittee

June 5, 2002

STATUS

- No additional inspection findings since ACRS meeting in April 2002
- MRP presentation of proposed inspection plan in late May 2002
- NRC staff is considering generic communication to address interim guidance for vessel head penetration nozzle and vessel head inspections
- Interactions with the industry continue to provide technical basis for NRC staff development of long-term inspection requirements, including activities within the appropriate ASME Code groups

STATUS OF BULLETIN 2002-01, "REACTOR PRESSURE VESSEL HEAD DEGRADATION AND REACTOR COOLANT PRESSURE BOUNDARY INTEGRITY"

Briefing of the Advisory Committee on Reactor Safeguards

June 5, 2002

Andrea D. Lee 301-415-2735

BULLETIN 2002-01 - REQUESTED INFORMATION

Issued March 18, 2002 to assess all PWR plants

Within 15-days

Summary of the RPV head inspection and maintenance programs

Evaluation of the ability of inspection and maintenance programs to identify degradation

Description of any conditions that could have lead to degradation and the corrective actions taken to address such conditions

Plans, basis, and schedule for future inspections of the RPV head and VHP nozzles

Basis for continued operation until the inspections can be performed

Within 30-days after inspection: Results

Within 60-days: Boric acid corrosion prevention program for ensuring integrity of the rest of the reactor coolant pressure boundary

-2-

BULLETIN 2002-6 REVIEW STATUS

15-day responses from all 69 PWRs except for Davis-Besse

Staff has not identified any plants with conditions similar to those that lead to the degradation at Davis-Besse

Priority categorization for contacting plants

High priority (7 plants) : Beaver Valley 1, Callaway, Fort Calhoun, Indian Point 2, Indian Point 3, Salem 2, and St. Lucie 1

Medium priority (4 plants): Calvert Cliffs 1, San Onofre 2, Sequoyah 1, and Sequoyah 2

Low priority (8 plants): Catawba 1, Catawba 2, Farley 2, Harris, Millstone 3, Point Beach 1, Point Beach 2, and San Onofre 3

No concern (49 plants)

For most licensees, telephone conferences and supplemental responses have resolved questions on material condition of RPV head

-3-

60-day responses from 68 of 69 PWRs

60 day responses were due May 18

Staff review started (approximately 20%) but not complete

NRC Assessment of Margin Available at Davis Besse

<u>Mark Kirk</u>, Wally Norris, Nilesh Chokshi

RES/DET/MEB

Paul Williams, Richard Bass

Oak Ridge National Laboratory

VG 1

Gery Wilkowski , Dave Rudland

Engineering Mechanics Corporation of Columbus

ACRS Briefing: Materials and Metallurgy & Plant Operations Subcommittees USNRC Headquarters • Rockville, MD • 5th May 2002

Overview of Presentation

с «С

Deterministic assessment of margins

- Scope of investigation
- Analytical tools
- Findings to date

Next steps

- Further deterministic analysis
- Probabilistic analysis

RES Assessment of Davis-Besse "Margins"

Analytical Tools

 Most realistic representation of the geometry of both the wastage area and the overall head design

VG 4

- Wastage modeled as pit at top of head
- More refined cladding model (than possible in 3D)
- Allowed easier investigation of additional wastage area needed to produce failure

Details of Analyses

	3D FE Model (<i>ORNL</i>)	Axi-Symmetric FE Model (<i>EMC</i> ²)		
Loading	P = Design (2165 psi) or higher			
Loading	T = Operating (60)	500°F), no gradients		
Material Properties	On next page.			
	All penetrations modeled			
Geometry	Straight walled 3D cavity	Axial pit at apex of head		
	 Geometry digitized from early photo. 			
	Failure occurs when the average through-thickness equivalent plastic strain in the cladding exceeds 5.5%			
Failure Criteria	5.5% corresponds to the strain at the beginning of plastic instability. Derived from			
	 11.15% strain in a uni-axial tension test Assumption that "failure" occurs at same stress level under uni-axial and bi-axial loading. 			

VG 5

Material Stress-Strain Properties

RPV Steel

Cladding

VG 6

Summary of Findings → As-Found Condition ←

- At operating pressure (2165 psi) the 3D FE model predicts 2% plastic strain in the cladding
 - No failure predicted relative to assumed failure criteria

VG 7
Summary of Findings → Margin on Overpressure ←

Depending upon

- The particular failure strain (5.5% vs. 11%)
- The strain value (average, minimum, etc.)
- Cladding thickness (design, average measured, minimum measured)

used in the analysis, different margins on overpressure result:

- SIA (Industry) 3D Analysis: $P_{fail} / P_{oper} = 2.1 2.6$
- ORNL (NRC) 3D Analysis: $P_{fail} / P_{oper} = 1.4 2.0$
- EMC² (NRC) 2D Analysis: $P_{fail} / P_{oper} = 1.1 1.4$

<u>Note</u>: Only the most pessimistic overpressure margins do not exceed the SRV set-point of 110% P_{oper}

Summary of Findings → Additional Cavity Growth Needed to Fail ←

- About 1.9-in. more wastage needed (along maximum growth axis) to cause failure at the operating pressure, assuming
 - 5.5% failure strain (average through thickness
 - Average thickness cladding
 - Appropriateness of axi-symmetric model

Next Steps

- Better definition of failure criteria
 - Calibration relative to appropriate data, if data is available
 - Determination of significance of different failure criteria (for probabilistic analysis up to 2500 psi)
- Cavity growth rate
 - Growth rate data
 - Growth models
- Probabilistic analysis

Next Steps (details)

- Re-analyses using ORNL "best-estimate" 3-D FE model of existing cavity up to 2500 psi to quantify failure probabilities
- Further evaluation of clad failure criteria by analyzing measured data obtained from (6-in. dia. x 0.25 in. thick.) SS burst disks
- 3-D FE analyses of cavity growth scenarios to refine estimates of critical wastage area at P_{oper}

Davis-Besse Nuclear Power Station

Background

Charles and the second s

- Significant Reactor Pressure Vessel Head degradation discovered March 6, 2002
- NRC chartered an Augmented Inspection Team (AIT) March 12, 2002
- NRC issued a Confirmatory Action Letter (CAL) on March 13, 2002

2

NRC established the IMC 0350 Oversight Panel April 29, 2002

Implementation of IMC 0350 at Davis-Besse

- Reactor Vessel Head Degradation represents a significant and complex technical and regulatory issue
- Plant is in an extended shutdown with a regulatory hold in effect (CAL)
- IMC 0350 enhances the agency's focus on clearly defining and addressing plant specific issues prior to restart
- IMC 0350 provides focused and coordinated regulatory oversight of Davis-Besse

IMC 0350 Panel Goals

- Provide oversight and assessment of licensee performance during the shutdown and through restart
- Assure that restart issues are identified and resolved
- Integrate and prioritize agency resources to maximize agency effectiveness and minimize regulatory burden
- Provide a single focus to ensure consistent and effective communication with external stake holders

IMC 0350 Panel Goals

- Continue oversight after plant restart until plant is returned to the routine Reactor Oversight Process
- Create a comprehensive public record of agency decisions and actions

Panel Members

- Jack Grobe, Director, Division of Reactor Safety, RIII
- Bill Dean, Deputy Director, Division of Inspection Program Management, NRR
- Christine Lipa, Branch Chief, Division of Reactor Projects, RIII
- John Jacobson, Branch Chief, Division of Reactor Safety, RIII

- Tony Mendiola, Section Chief, NRR
- Doug Pickett, Project Manager, NRR
- Scott Thomas, Senior Resident Inspector, RIII
- Sonia Burgess, Senior Reactor Analyst, RIII

Overview of the IMC 0350 Process

- Routine Reactor Oversight Process suspended
- IMC 0350 Panel provides Oversight and Assessment of Licensee Performance
- IMC 0350 Panel Process Plan details major tasks related to Oversight and Restart
- IMC 0350 Restart Checklist identifies all necessary restart items
- Periodic internal and external meetings to discuss licensee progress towards restart

License submitted Return to Service Plan - May 21, 2002

- Reactor Head Resolution Plan
- Containment Extent of Condition Plan
- System Health Assurance Plan
- Program Technical Compliance Plan
- Management and Human Performance Excellence Plan

8

Restart and Post-Restart Test Plan

Current Inspections

- AIT follow-up (May June)
- Vessel Head Replacement (May September)
- Extent of Condition Boric Acid (May August)

DAVIS-BESSE REACTOR VESSEL HEAD DEGRADATION LESSONS LEARNED TASK FORCE

Briefing for Materials and Metallurgy & Operations Subcommittees Advisory Committee on Reactor Safeguards

> Ed Hackett Assistant Team Leader Davis-Besse Lessons Learned Task Force

> > June 5, 2002

Objective/Scope

The Task Force will conduct an independent evaluation of the NRC staff's regulatory processes related to assuring reactor vessel head integrity in order to identify and recommend areas of improvement applicable to the NRC and/or the industry. The scope of the task force effort will include the following five areas: reactor oversight process issues, regulatory process issues, research activities, applicable practices used in the international community, and the NRC's generic issue process.

Charter

- Reactor Oversight Process Issues evaluate the underlying causes of the Davis-Besse reactor vessel head degradation, and assess whether enhancements to the NRC's reactor oversight process are warranted.
- Regulatory Process Issues evaluate regulations, the licensing review process, and other NRC regulatory processes such as generic communications to determine whether enhancements are warranted.
- Research Activities determine whether there are any issues associated with the NRC process of using reactor operating experience and the results of various research programs, including research performed by NRC, requiring improvement.
- International Practices identify and evaluate foreign regulatory practices related to reactor vessel head degradation to possibly enhance NRC programs and practices.
- Generic Issue Process evaluate the NRC process for identifying and responding to emerging technical issues, including the implementation of short-term and long-term follow-on efforts by the licensee and NRC.

ţ

Team Composition

4

• Art Howell (Region IV)

Team Leader

• Ed Hackett (RES)

Assistant Team Leader

• Elaine Raphael (NRR)

Administrative Assistant

- Russell Bywater (Region IV)
- Patrick Castleman (NMSS)
- Joseph Donoghue (NRR)
- Robert Haag (Region II)
- Thomas Koshy (NRR)

- Ron Lloyd (RES)
- Observer State of Ohio Representative

Schedule

6

(1) Preparation Phase (6/3 - 6/23)

(2) Review Phase (6/24 - 9/3)

The Task Force expects to complete activities in September, 2002 with the issuance of a comprehensive report documenting team review activities and presenting analyses, conclusions and recommendations.

Current Status

• All team members reported officially on June 3 and are physically located at NRC HQ

- Team Orientation and Initial Briefings have been completed (June 3-5)
- Preliminary Region III Office Visit scheduled for June 6
- Site Visit and Public Entrance scheduled for June 12 in Oak Harbour, OH
- Interviews with key NRC managers are in progress
- Detailed review plans are being drafted

MANAGEMENT BY LEAKAGE DETECTION

Allen Hiser

Presentation to ACRS Subcommittee

June 5, 2002

ISSUES

- What are appropriate inspection methods and frequencies as related to cracking of nozzles and/or J-groove weld?
- Technical specifications ("no pressure boundary leakage") and ASME Code (determine and correct identified leakage sources)
 - Do not appear to permit operation with "known" reactor coolant pressure boundary leakage
 - Current equipment not capable of detecting low leakage amounts from vessel head nozzle cracking
- What is the role of leakage detection for vessel head nozzles?

2

• Limited to defense in depth?

INDUSTRY PROPOSED INSPECTION PLAN

- Industry proposal discussed on May 22 to be presented later
 - Does not consider explicitly vessel head degradation experience
 - Technical basis is in progress report is not available
 - Can rely on bare metal visual examinations for moderate susceptibility plants
 - Limited to Alloy 600 heads
 - Assumes "robust" Generic Letter 88-05 program, effectively implemented
- Summary of NRC staff comments on industry proposal
 - "Relevant" visual conditions requires definition
 - Inspection methods and frequencies requires technical basis
 - Capability and recent experience with NDE should be considered and included
 - Is the plan benchmarked to the onset of unacceptable conditions (leakage?) or discovery of conditions at Oconee?
 - Appropriate application of RG 1.174?
 - Delay of scope expansion to next RFO requires technical basis

STAFF ACTIVITIES AND CONCERNS

- Understanding of Davis-Besse degradation mechanisms and rates
 - Physical evidence and laboratory demonstrations
- Industry proposal needs a sufficient technical basis for inspection methods and frequencies
- Staff is considering a generic communication to bridge from current situation to "permanent" requirements
- Staff & industry are working to develop technical basis for longer-term inspection requirements
- Has the Davis-Besse experience raised the bar for vessel head nozzle cracking acceptability (axial vs. circumferential cracking)?

Advisory Committee on Reactor Safeguards Update of the Davis-Besse Nuclear Power Station Reactor Pressure Vessel Closure Head Activities

June 5, 2002

Agenda

Introduction - Jim Powers Update of RPV Closure Head Field Activities - Mark McLaughlin RPV Closure Head Replacement - Bob Schrauder Root Cause Analysis - Steve Loehlein Concluding Remarks

2

- Jim Powers

Update of RPV Closure Head Field Activities

Mark McLaughlin Field Activities Team Leader

	UT Examination Results
Nozzle #	Summary of Results
1*	9 Axial Flaws, 2 through-wall (TW)
2*	9 Axial Flaws, 1 Circumferential Flaw, 6 TW
3*	4 Axial Flaws, 2 TW
5*	1 Axial Flaw
46	No Flaw Indication
47	1 Axial Flaw
58	No Recordable Indications

* Heat number M3935 material

Abrasive Water Jet

Area Removed from RPV Closure Head

Underneath RPV Closure Head

10

Davis-Besse Nuclear-Power

RPV Closure Head Cutout

Sample Plan

- Phase 1
 - Corrosion products/boric acid deposits from top of head
 - Deposits scraped from CRD nozzle 3 below the flange
 - Draft report issued for Davis-Besse review
- Phase 2
 - Corrosion products/boric acid deposits from nozzle 2 removal
- Phase 3
 - Nozzle 3 and nozzle 3 corrosion area
 - Nozzle 2

RPV Closure Head Cutout

Nozzle ³ Cutout Cladding Interface

Reactor Pressure Vessel Closure Head (RVPCH) Replacement

Bob Schrauder Engineering Services

RPVCH Replacement Considerations

- Evaluated several replacement options
 - Repair existing RPVCH
 - Fabricate new RPVCH
 - Purchase existing RPVCH

RPVCH Replacement Considerations

- The Midland RPVCH is
 - Similar in design to the Davis-Besse RPVCH
 - Readily available
 - Not contaminated

Replacement RPVCH

- Midland RPVCH was fabricated by Babcock and Wilcox
 - Manufactured to ASME Boiler & Pressure Vessel Code Section III, Code Class A, 1968 Edition, Summer 1968 Addenda
 - Accepted by Consumers Power and an Authorized Nuclear Inspector as an acceptable ASME component
 - Hydrostatically tested at 3125 psig per ASME
 Code Requirements

Replacement RPVCH

- Framatome-Advanced Nuclear Power (FRA-ANP) has purchased Midland RPVCH and is compiling/validating the ASME Code Data Package
- FRA-ANP is reconciling the Midland RPVCH against Davis-Besse design requirements
- FRA-ANP activities are governed by their safetyrelated Quality Assurance program, including 10CFR21 reporting

*#*5

uclean

Replacement RPVCH Comparison to Davis-Besse RPVCH

Davis-Besse

Midland

Material of Construction Closure Head Closure Head Flange CRDM Nozzle CRDM Flange

SA-533, GR B Cl 1 SA-508, Cl 2 Inconel SB-167 SA-182, F-304

Same SA-508-64, Cl 2 Same Same

Design Pressure Temperature

2500 psig 650 degree F Same Same

21

HEN OC

Replacement RPVCH CRD Nozzles

- Midland's Control Rod Drive (CRD) nozzles are similar to Davis-Besse
 - 68 Nozzles: Material Heat M7929
 - 1 Nozzle: Material Heat M6623
- Alignment of control rods to RPVCH nozzles is consistent with original Davis-Besse design

Replacement RPVCH

- Minor machining of 4 out of 8 vessel-to-head keyway surfaces is required
- The Midland CRDM
 flange indexing pin hole
 locations will be modified
 to match the proper DavisBesse azimuth-orientation

Replacement RPVCH

- Minor differences in RPVCH O-ring design
 - O-ring grooves are slightly different requiring the use of smaller diameter O-rings (0.455 in. vs 0.500 in.)
 - New O-rings will be installed

Examinations of Replacement RPVCH

- Examinations to supplement ASME Code Data Package:
 - Visual examinations
 - Radiography (RT) of flange-to-dome weld
 - Lifting attachments prevented full coverage
 - RT of nozzle-to-flange welds
 - PT examination of the CRDM nozzle J-groove welds

Examinations of Replacement RPVCH

- Preservice Inspections
 - Magnetic Particle (MT) examination of flangeto-dome weld
 - Ultrasonic (UT) examination of flange-to-dome weld
 - Liquid Penetrant (PT) examination of peripheral CRDM nozzle-to-flange welds

Examinations of Replacement RPVCH

- Additional Non-Destructive Examinations
 - Chemical smears
 - Baseline UT of CRD nozzles
 - Eddy Current Testing (ET) of CRD nozzles

Installation of the Replacement RPVCH at Davis-Besse

- Davis-Besse Containment Building will require temporary access opening
- Original RPVCH will be moved outside Containment Building for storage and/or disposal
- Davis-Besse Service Structure will be used
- Inspection ports will be installed on replacement support skirt

Installation of the Replacement RPVCH at Davis-Besse (continued)

- Original Davis-Besse control rod location and core configuration will be used
 - Existing CRD Mechanisms will be used
 - CRD Mechanisms nozzle flange split nut ring modification will be performed
 - Upgraded gasket design will be incorporated

RPVCH Planned Post-Installation Activities

- Fill and vent RCS
 - Perform visual inspection for leakage
- Bring plant to normal operating temperature and pressure using Reactor Coolant Pump heat
 - Perform visual inspection for leakage
- Perform control rod drop time testing per Technical Specifications

NRC Approvals Identified to Date

- 10 CFR 50.55a approvals
 - Existing request RR-A2 for flange-to-dome weld volumetric examination
 - Existing request RR-E4 for VT-2 visual examination of containment building access opening following restoration
- No Technical Specification changes

Root Cause Investigation

Steve Loehlein Root Cause Investigation Team Leader

Key Questions

- Was there a new mechanism that caused this degradation?
- Was there adequate guidance/knowledge available to have prevented the degradation to the RPV closure head?

Key Conclusions

- The degradation to the RPV closure head was caused by Primary Water Stress Corrosion Cracking (PWSCC) of the Control Rod Drive (CRD) nozzle which led to leaks that were undetected allowing boric acid corrosion to occur
- The existing guidance/knowledge was adequate for preventing unacceptable RPV closure head degradation from CRD nozzle leaks

Timeline of Key Events

Conclusions Regarding Identified Cracking

- Cracking mechanism is PWSCC
 - Flaw characteristics found at Davis-Besse are similar to other plants with confirmed PWSCC
 - No factors indicating sulfide-induced intergranular stress corrosion cracking (IGSCC) due to chemistry transients
 - No other cracking mechanism deemed credible

Estimated Crack Propagation Timeframe

- Longest through-wall cracks estimated to have initiated in 1990 (+/- 3 years)
- Estimated time for flaw to propagate through-wall is 4-6 years
- Consistent with proposed EPRI Material Reliability Program crack growth rate curve

Leakage From Cracked Nozzles

- Through-wall cracking in nozzle or J-groove weld leads to leaks into annulus region
- Leakage rate is a function of crack length above J-groove weld and degree of cracking through the weld
- Leakage rate increases significantly as crack lengthens above the J-groove weld due to increase in crack width
- Previous industry observations indicated very low leakage rates

Davis-Besse

Leakage Rate from Cracked Nozzle

- Davis-Besse axial cracks above weld were longer than reported from other plants (1.1 inches for nozzle 2 and 1.2 inches for nozzle 3)
- Analytical leakage predictions yield wide range of results (.025 to >1 gpm) depending on method and assumed geometry used
- Estimated leak rate based on boric acid deposits and unidentified leakage are in the range of 0.04 to 0.2 gpm

Nozzle 3 Crack Finite Element Model

Davis-Besse Nuclear Poisson Sauch

Source of Corrosion

- Degradation at nozzle 2 and 3 is due to boric acid corrosion
- Boric acid corrosion is a known mechanism capable of producing such significant degradation
- There is a history of boric acid corrosion incidents on RPV heads in the industry

Degradation Sequence

Stage 1 - Crack Initiation Progression
Stage 2 - Minor Weepage / Latency Period
Stage 3 - Deep Annulus Corrosive Attack
Stage 4 - General Boric Acid Corrosion

Stage 1 Crack Initiation Progression

- Nozzle 3 cracks resulted from PWSCC
- Cracks grew at rate consistent with industry data
- RCS leakage miniscule

Stage 2 Minor Weepage/Latency Period

- Leakage entered annulus between Alloy 600 nozzle and low alloy steel RPV closure head
- Fit allowed capillary flow path
- Latency period could involve several mechanisms (e.g., steam cutting, galvanic corrosion, crevice corrosion, and flow accelerated corrosion)
- Annular gap increased due to localized corrosion resulting in leakage flow (residual and dry steam) reaching surface
- Leak rate controlled by number of cracks and size of cracks (length and width)

Stage 3 Deep Annulus Corrosive Attack

- Oxygen penetration in annulus increased due to decreasing velocity and differential pressure in annulus
- Preferential corrosion occurred in the vicinity of crack (consistent with EPRI-6 test)
- Exiting steam mass flow from annulus region not sufficient to wet surrounding areas
- Nozzle 2 progressed to this stage

Stage 4 General Boric Acid Corrosion

- Corrosion progression limited by crack growth rate and leakage through crack
- Annulus flooded with moist steam
- Boric acid accumulates on head
- Increased leakage provides localized cooling of head allowing greater wetted area
- Affected area governed by thermodynamics and material properties (e.g., viscosity, density, slope)
- General corrosion of oxygenated surface

Corrosion Rates From Industry Testing

- EPRI and industry testing (effect of boric acid on low alloy steel) demonstrates corrosion rates of 0.6 to 5.0 inches per year
- EPRI 6 Test
 - Tests performed using deaerated, hightemperature water (600° F)
 - Orientation, geometry and materials simulated RPV head nozzles
 - Flow rates of 0.01 and 0.10 gpm used in test

50

Davis-Besse

Estimated Reactor Vessel Closure Head Corrosion Rates

- 4 years of stage 4 corrosion
- Maximum radial progression ~7 inches
- Average rate ~2 inches per year
- Lateral direction corrosion rate ~1/2 that of axial direction
- Consistent with EPRI Boric Acid Corrosion Guidebook

Root Cause Summary

Inadequate inspection of the RPV closure head prevented early detection of nozzle leakage, resulting in prolonged boric acid corrosion and significant degradation.

Concluding Remarks

Safety Margin Assessment of Davis-Besse Head Wastage Condition

Presented by: Dr. Nathaniel G. Cofie Structural Integrity Associates June 2002

Summary of Analysis

- **Three-Dimensional Finite Element Model** ٠
- Entire Head, Damaged Nozzle and Adjacent • **Nozzles Modeled**
- Incremental Elastic-Plastic, Large Strain Analysis • performed
- **Conservative Stress-Strain Curve used in analysis**
 - Uniform elongation limited to 11.15%
- Conservative failure criterion applied to analysis •
 - Failure assumed to occur if a row of elements has strains > uniform elongation

PRS-99-021/RISKBASE/2

Summary of Analysis (cont'd)

- Predicted failure pressure is 5600 psi (> 2 times • normal operating pressure) for average clad thickness of 0.297 in. Predicted failure pressure is 4600 psi for minimum measured clad thickness of 0.24 in.
- Analysis procedure and failure criterion • compared against physical disk burst tests to demonstrate that burst pressure predictions are conservative

PRS-99-021/RISKBASE/3

FEM of Davis-Besse Head Wastage Condition

PRS-99-021/RISKBASE/4

Analysis Cases and Results

Load Case	Predicted Pressure @ 11% Strain	Predicted FEM Instability Pressure
Original footprint with 0.297 in. thick clad (20.5 in ²)	5600 psi	>8000 psi
Original footprint with 0.24 in. thick clad (20.5 in ²)	4600 psi	>4800 psi
Enlarged footprint with 0.24 in. thick clad (self-similar) (41 in ²)	>2750 psi	>4000 psi

PRS-99-021/RISKBASE/5

Stress-Strain Data for Type 308 Weld Metal

Reference	YS ksi	UTS ksi	Elong %	RA %	Matl Type
NUREG/CR-6235	20.8	62	38.4	70.8	Base
NUREG/CR-4538	22.2	67.3	39	70.8	Base
NUREG/CR-4538	22.8	68.8	40.5	70.8	Base
NUREG/CR-4687	20.1	65.2	53.8	71.3	Base
EPRI NP-4768	23.1	61.3	47	74	Base
EPRI NP-4768	24.8	62.6	45	70	Base
EPRI NP-4768	33.2	72.7	42	67	Base
ASME 72PVP12	34	84	54	75	Base
······································		Ave.Base	45.0	71.2	
EPRI NP-4668	44.8	62.9	22	46	SAW
EPRI NP-4768	36	61.8	25	67	SAW
EPRI NP-4768	40.8	70.3	25	69	SAW
NUREG/CR-6098	37.4	68	26.4		SAW
NUREG/CR-6389	49.1	68.1	30	46	SAW
NUREG/CR-6389	45	67.1	33	42.4	SAW
NUREG/CR-6389	54.3	74	15.5	63	SAW
NUREG/CR-6389	51.8	71.8	13.7	54	SAW
NUREG/CR-4878	471	67.6	31.5	44.2	SAW
NUREG/CR-4878	28.3	67.5	34.5	47	SAW-Ann
		Ave.SAW	25.7	53.2	
EPRI NP-4668	45.7	65.1	26	58	SMAW
EPRI NP-4768	46.8	61.4	37	48	SMAW
EPRI NP-4768	49.4	64.7	35	46	SMAW
NUREG/CR-4878	40.8	70.3	24.8	68.6	SMAW
		Ave.SMAW	30.7	55.2	
NUREG/CR-4538	44.3	65.4 33		74.3	Weld
NUREG/CR-4538	42.2	64.3	30	72.9	Weld
		Ave.SAW&SMAW	27.3	53.8	

PRS-99-021/RISKBASE/6

PVRC Disk Burst Test Specimens

GEOMETRY	THICKNESS (t)	FILLET RADIUS ®
А	0.25 in.	0.375 in.
В	0.125 in.	0.125 in.
С	0.125 in.	0.375 in.
02055R0		

PRS-99-021/RISKBASE/7

PVRC Disk Burst Test Stainless Steel Material Properties

Modulus of Elasticity, E, e ⁶ psi:	28.3
Poisson's Ration, v:	0.3

0.25 Y.S.	S _{ult}	ε _{ult}	Reduction	A ^[1]	n ^[1]
(psi)	(psi)	(in/in)	In Area	(psi)	
34,000	84,000	0.54	0.74	193,060	0.494

[1] Stress Strain Curve Assumed to be of form $\sigma = A(\epsilon)^n$

Axisymmetric FEMs of Disk Burst Specimens

3-Dimensional FEMs of Disk Burst Specimens

PRS-99-021/RISKBASE/10

Demonstration of FEM Convergence on Disk Burst Specimens

Typical FEM Result on Disk Burst Specimen – Geometry A

PRS-99-021/RISKBASE/12

Demonstration of Failure Criterion on Disk Burst Specimens

PRS-99-021/RISKBASE/13

Failure Criteria Comparisons

Model	Model	Failure Pressure (psi)			
Туре	Geometry	Burst Test	Instability	Failure Criteria (Unif.Elong.)	
Axisymmetric	A	15000	14005	~11000	
Axisymmetric	В	6800	6694	~5500	
Axisymmetric	C	7700	6997	~5750	
3-Dimensional	A	15000	13997	~11000	
3-Dimensional	В	6800	6671	~5500	
3-Dimensional	С	7700	6974	~5750	

Conclusion

The analysis procedure and failure criterion used in the Davis-Besse RPV head wastage evaluation is conservative compared with physical burst test results.

