

GPU Nuclear, Inc. Three Mile Island Nuclear Station Route 441 South Post Office Box 480 Middletown, PA 17057-0480 Tel 717-948-8461

E910-02-025 May 22, 2002

U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, DC 20555

Subject: Saxton Nuclear Experimental Corporation (SNEC) Operating License No., DPR-4 Docket No. 50-146 Submittal of Information to NRC in April 8, 2002 and May 8, 2002 Meetings

Gentlemen,

Two meetings between NRC and GPU Nuclear, Inc. were held in Rockville, Md. The intent of the meetings was to discuss SNEC's License Termination Plan (LTP), dose modeling and characterization issues addressed in NRC's requests for additional information. This letter summarizes the information that was provided to the NRC in these meetings.

Reference NRC Letter dated March 28, 2002, Subject: "Saxton Nuclear Experimental Facility – Discussion Topics for April 8, 2002 Meeting (TAC No. MA8076)"

During this meeting GPU Nuclear, Inc. provided the following:

- 1. K_d Report titled "K_d Study of Site Soils and Construction Debris from the SNEC Decommissioning Project," Argonne National Laboratory, February 2002.
- 2. SNEC Calculation E900-01-005, "Determination of Surface Area Factors," April 5, 2002.
- 3. CD-ROM RESRAD 6.1 Dose Model Files for SNEC Surface Model.
- 4. CD-ROM RESRAD 6.1 Dose Model Files for SNEC Subsurface Model and also final URS report.
- 5. Presentation handouts addressing the above referenced NRC letter.

Reference NRC Letter dated May 1, 2002, Subject: "Saxton Nuclear Experimental Facility – Discussion Topics for May 8, 2002 Meeting (TAC No. MA8076)"

During this meeting GPU Nuclear, Inc. provided the following:

1. Report titled – "Embedded Pipe Radiation Survey Report," Cophysics Corp. January 2002.

A001

- 2. SNEC Calculation E900-01-030, Revision1, "SNEC Radionuclide List," April 30, 2002.
- 3. Table of RESRAD Input Values for SNEC surface model.
- 4. Presentation handouts addressing the above referenced NRC letter.

If you have any questions concerning this information please contact Mr. James Byrne at (717) 948-8461.

Sincerely,

G. A. Kuehn Program Director, SNEC

cc: NRC Project Manager NRC Project Scientist, Region 1

	Calcul	ation Sheet			
Subject		Calc. No.		Rev. No.	Sheet No.
Determination of Surface Area Factors		E900-01-005		0	_1of_1
			100		
Originator	Date	Reviewed by		Date	1
Pat Donnachie Camuche	April 5, 2002	Art Paynter	-415	- 5A	20102
				<u> </u>	

1. Purpose \checkmark

Determine surface area factors in support of the SNEC License Termination Plan (LTP).

2. Summary of results

Summary results of the applicable computer runs, input data and supporting information are attached. See Section 5 below for specific tables and graphs.

3. References:

- 1. RESRAD-BUILD Version 3.0
- 2. DandD Version 1.0

4. Assumptions and Basic Data

Surface area factors have been developed using comparative analyses between DandD, 1.0 and RESRAD-BUILD, 3.0. These area factors will be used to develop $DCGL_{EMC}$ screening values for residual radioactivity on building surfaces. DandD surface area screening values from the SNEC LTP were used as inputs into the RESRAD-BUILD, 3.0 program to determine the annual default dose at 36 m². This dose was then used to ratio against doses calculated for 25, 16, 9, 4, and 1 m² areas. The calculated ratio is equal to the area factor value for the respective area sizes. The surface area DCGL can be multiplied by the derived area factor to determine the DCGL_{EMC}.

5. Calculation

Hard copies of the summary tables and derived graphs are attached. 25 mrem/yr surface screening values $(dpm/100 \text{ cm}^2)$ for 26 nuclides were converted to pCi/m² and entered as input into the RESRAD-BUILD program. The calculated RESRAD-BUILD dose at 36 m² was then compared to doses derived for smaller areas (i.e. 1, 4, 9, 16, & 25 m²) to determine area factors. Graphs have also been developed to display the lin-log nature of the data.

Table 1 - Calculation Sheet for SNEC Surface Area Factors and $DCGL_{EMC}$ Development. Table 2 - SNEC Surface Area Factors for $DCGL_{EMC}$.

Appendix A - Area Factor Graphs for 26 Nuclides

Table 1

Calculation Sheet for SNEC Surface Area Factors and $DCGL_{EMC}$ Development

•

, 2°

.

÷

٠.

DR = RESRADBLD Dose Rate (mrem/year) for Area x. AF = Area Factor for Area x

Al - Alcal	-actor for Area	<u>^</u>									2 2 1		1
	25 mrem/yr Scre	ening Values	DR@36 m ²	DR@25	AF 25 m ²	DR@16	AF 16 m ²	DR@9	AF 9 m ²	DR@4	$AF 4 m^2$	DR@1	AF 1 m ²
	DandD	RESRADBLD											
Nuclide	dpm/100cm ²	pCi/m ²											
Am-241	2.70E+01	1.22E+03	. 5.07	3.45	1.5	2.21	2.3	1.24	4.1	0.55	9.2	0.14	36.2
C-14	3.70E+06	1.67E+08	11.50	8.02	1.4	5.14	2.2	2.90	4.0	1.29	8.9	0.32	35.9
Cm-243	3.90E+01	1.76E+03	4.78	3.32	1.4	2.12	2.3	1.19	4.0	0.53	9.0	0.13	36.8
Cm-244	4.90E+01	2.21E+03	4.74	3.29	1.4	2.11	2.2	1.18	4.0	0.53	8.9	0.13	36.5
Co-60	7.00E+03	3.15E+05	8.21	6.95	1.2	5.59	1.5	4.09	2.0	2.44	3.4	0.81	10.1
Cs-134	1.30E+04	5.86E+05	9.01	7.63	1.2	6.14	1.5	4.50	2.0	2.70	3.3	0.89	10.1
Cs-137	2.80E+04	1.26E+06	9.38	7.74	1.2	6.08	1.5	4.36	2.2	2.55	3.7	0.84	11.2
Eu-152	1.30E+04	5.86E+05	8.10	6.76	1.2	5.37	1.5	3.89	2.1	2.30	3.5	0.76	10.7
Eu-154	1.10E+04	4.95E+05	7.40	6.15	1.2	4.87	1.5	3.51	2.1	2.10	3.5	0.68	10.9
Eu-155	1.60E+05	7.21E+06	6.50	5.21	1.2	3.95	1.6	2.73	2.4	1.54	4.2	0.49	13.3
Fe-55	4.50E+06	2.03E+08	5.38	3.74	1.4	2.39	2.3	1.35	4.0	0.60	9.0	0.15	35.9
H-3	1.20E+08	5.41E+09	11.80	8.23	1.4	5.26	2.2	2.96	4.0	1.32	8.9	0.33	35.8
Nb-94	8.30E+03	3.74E+05	7.74	6.40	1.2	5.04	1.5	3.61	2.1	2.12	3.7	0.69	11.2
Ni-59	4.20E+06	1.89E+08	5.54	3.85	1.4	2.46		1.38	4.0	0.61	9.1	0.15	36.9
Ni-63	1.80E+06	8.11E+07	5.64	3.92	1.4	2.51	2.2	1.41	4.0	0.63	9.0	0.16	35.3
Pu-238	3.00E+01	1.35E+03	4.80	3.33	1.4	2.13		1.20	4.0	0.53	9.1	0.13	
Pu-239	2.80E+01	1.26E+03	4.96	3.45	1.4	2.21	2.2	1.24	4.0	0.55	9.0	0.14	
Pu-240	2.80E+01	1.26E+03	4.96	3.45	1.4	2.21	2.2	1.24	4.0	0.55	9.0	0.14	
Pu-241	8.80E+02	3.96E+04	2.78	1.93	1.4	1.24	2.2	0.70	4.0	0.31	9.0	0.08	
Pu-242	2.90E+01	1.31E+03	4.94	3.43		2.20		1.24	4.0	0.55	9.0	0.14	
Sb-125	4.40E+04	1.98E+06	8.60	7.40	1.2	6.00		4.43	1.9	2.66	3.2	0.89	9.7
Sr-90	8.70E+03	3.92E+05	5.90		1.4	2.64		1.50	3.9	0.67	8.8	0.17	34.7
Tc-99	1.30E+06	5.86E+07	6.50	4.51	1.4	2.89		1.63		0.73	8.9	0.18	36.1
U-234	9.00E+01	4.05E+03	4.83	3.35	1.4	2.15		1.21	4.0	0.54	8.9	0.13	37.2
U-235	9.10E+01	4.10E+03	4.56	3.17	1.4	2.03		1.14	4.0	0.51	8.9	0.13	35.1
U-238	1.00E+02	4.50E+03	4.80	3.33	1.4	2.13	2.3	1.20	4.0	0.53	9.1	0.13	36.9

 $1 \text{ dpm}/100 \text{ cm}^2 = 45.045 \text{ pCi/m}^2$

·

ut/smee/sneceme, xis

Table 2

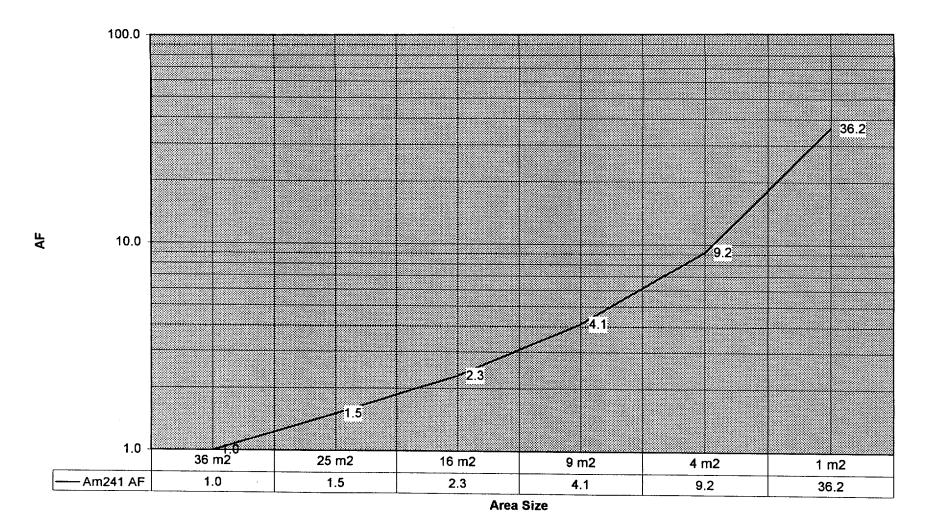
•

,

Nuclide	36 m ²	25 m ²	16 m ²	9 m ²	4 m ²	1 m ²
Am-241	1.0	1.5	2.3	4.1	9.2	36.2
C-14	1.0	1.4	2.2	4.0	8.9	35.9
Cm-243	1.0	1.4	2.3	4.0	9.0	36.8
Cm-244	1.0	1.4	2.2	4.0	8.9	36.5
Co-60	1.0	1.2	1.5	2.0	3.4	10.1
Cs-134	1.0	1.2	1.5	2.0	3.3	10.1
Cs-137	1.0	1.2	1.5	2.2	3.7	11.2
Eu-152	1.0	1.2	1.5	2.1	3.5	10.7
Eu-154	1.0	1.2	1.5	2.1	3.5	10.9
Eu-155	1.0	1.2	1.6	2.4	4.2	13.3
Fe-55	1.0	1.4	2.3	4.0	9.0	35.9
H-3	1.0	1.4	2.2	4.0	8.9	35.8
Nb-94	1.0	1.2	1.5	2.1	3.7	11.2
Ni-59	1.0	1.4	2.3	4.0	9.1	36.9
Ni-63	1.0	1.4	2.2	4.0	9.0	35.3
Pu-238	1.0	1.4	2.3	4.0	9.1	36.9
Pu-239	1.0	1.4	2.2	4.0	9.0	35.4
Pu-240	1.0	1.4	2.2	4.0	9.0	35.4
Pu-241	1.0	1.4	2.2	4.0	9.0	34.8
Pu-242	1.0	1.4	2.2	4.0	9.0	35.3
Sb-125	1.0	1.2	1.4	1.9	3.2	9.7
Sr-90	1.0	1.4	2.2	3.9	8.8	34.7
Тс-99	1.0	1.4	2.2	4.0	8.9	36.1
U-234	1.0	1.4	2.2	4.0	8.9	37.2
U-235	1.0	1.4	2.2	4.0	8.9	35.1
U-238	1.0	1.4	2.3	4.0	9.1	36.9

SNEC Surface Area Factors for $\mathsf{DCGL}_{\mathsf{EMC}}$

Am241 Area Factors

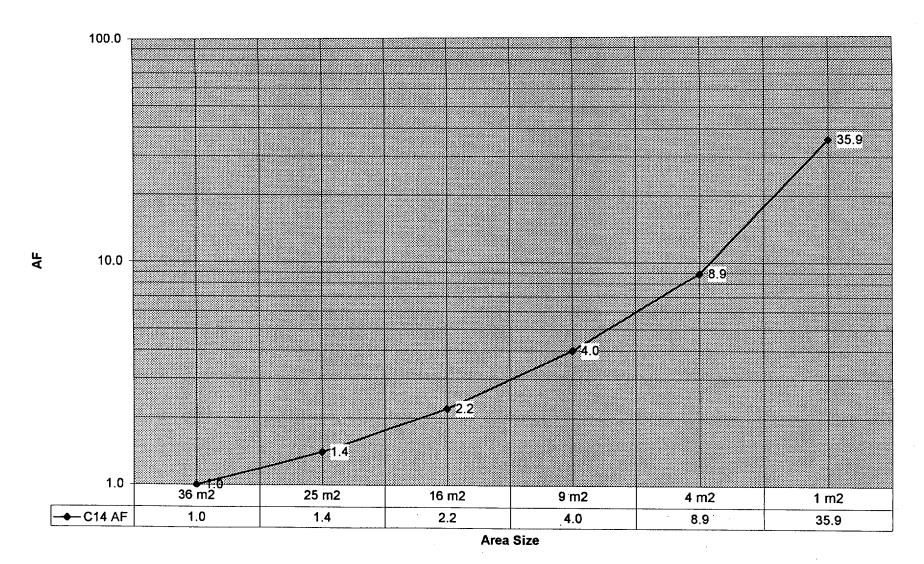

-

ستون .

.

~

:

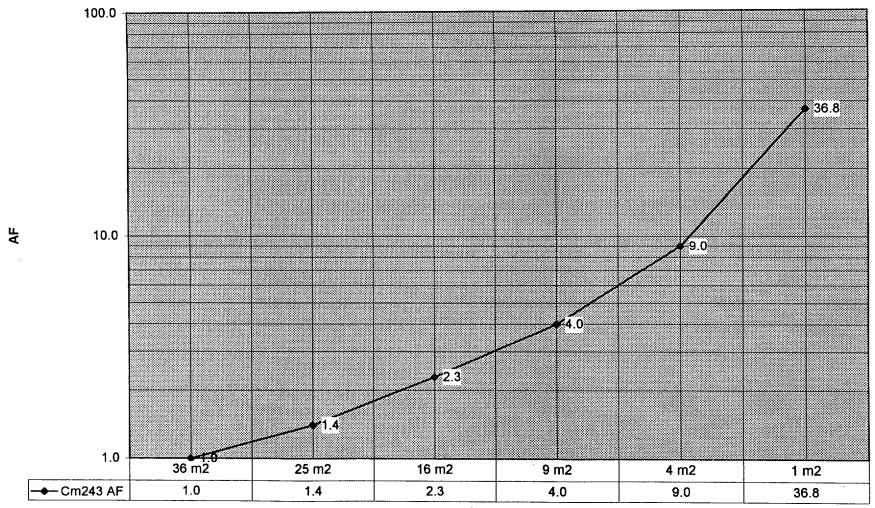


C14 Area Factors

.

-

••

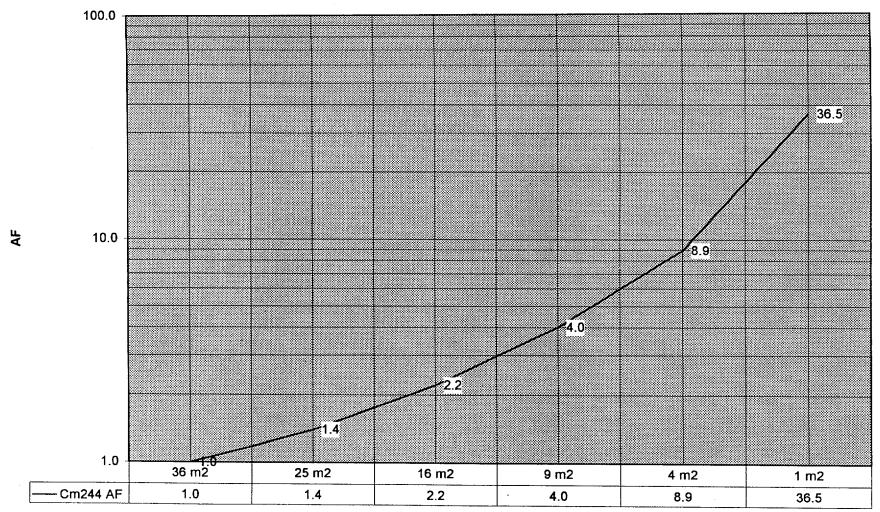

• .

Cm243 Area Factors

•

e.

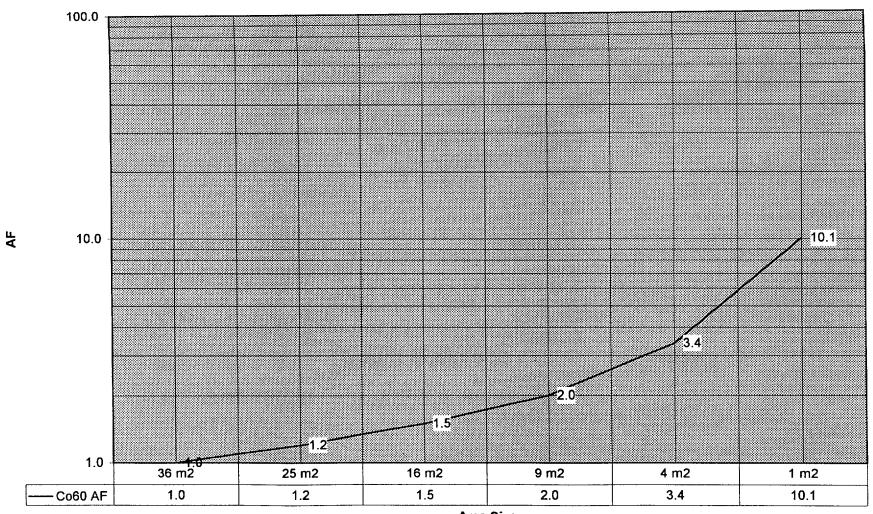
٠.



Cm244 Area Factos

.

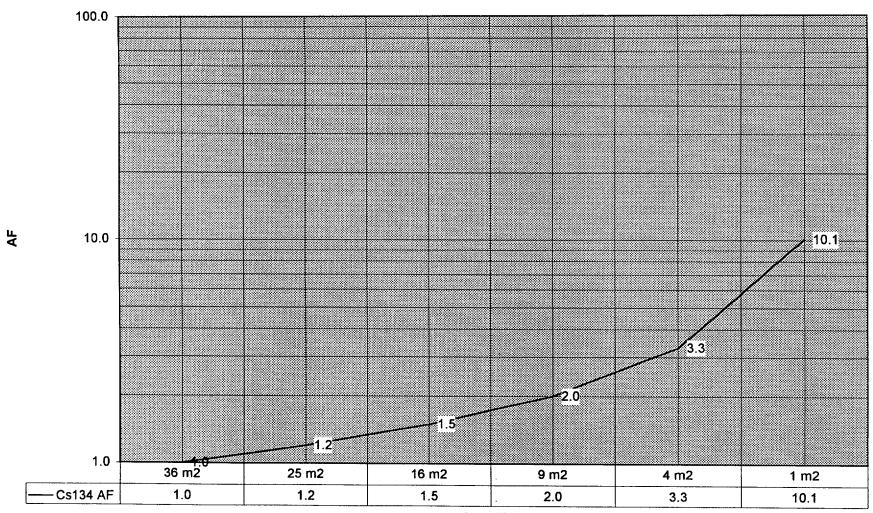
•


..

Co60 Area Factors

•

.


Cs134 Area Factors

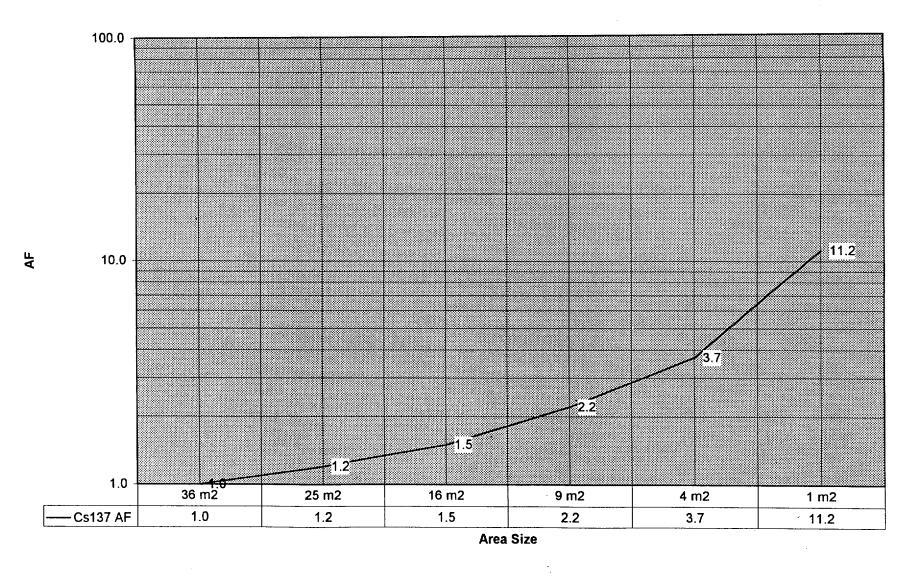
.

.

•

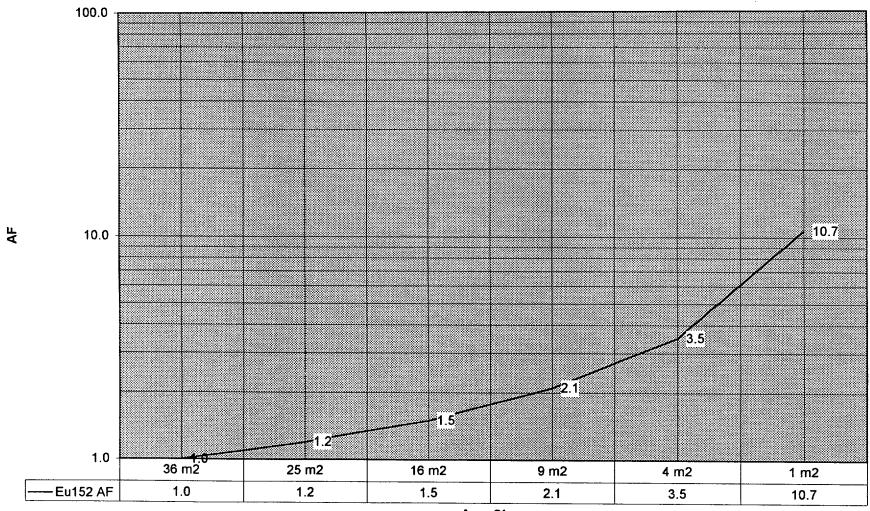
• .

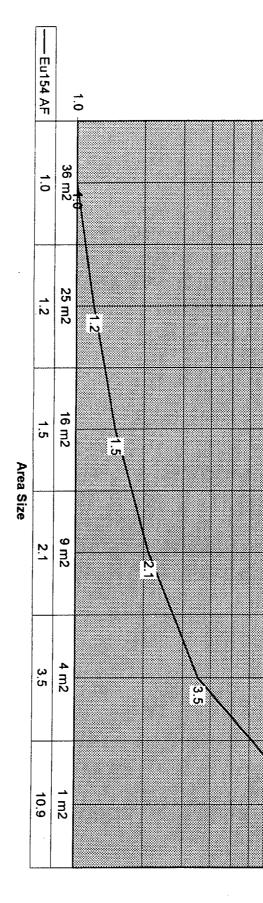
Cs137 Area Factors


.

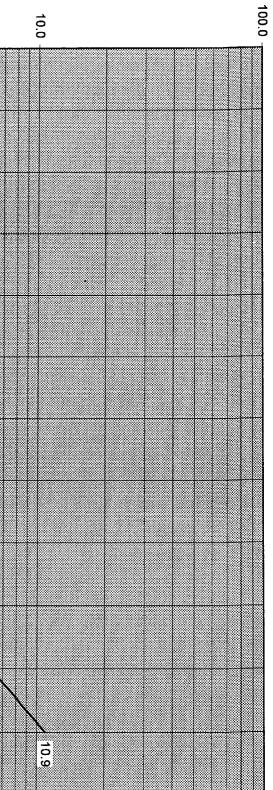
•

...


• .

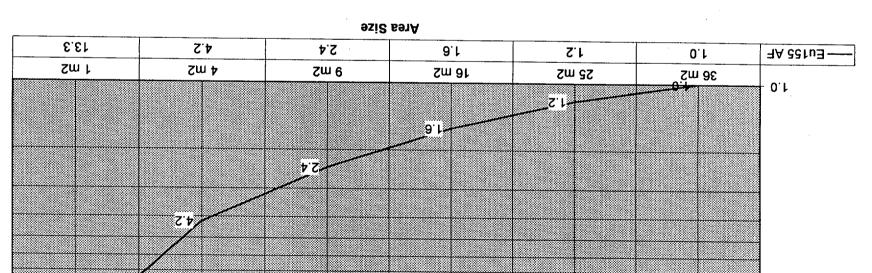

J.

Eu152 Area Factors


•

•

AF

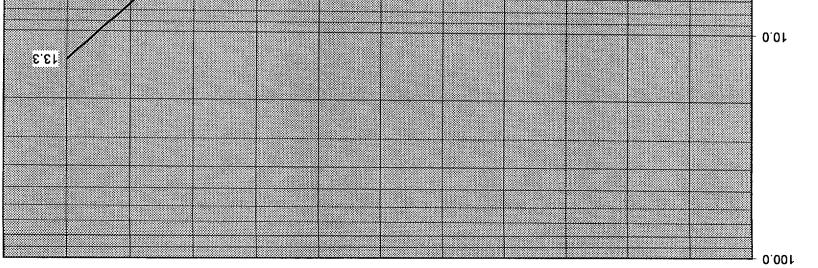


Eu154 Area Factors

•

ĩ

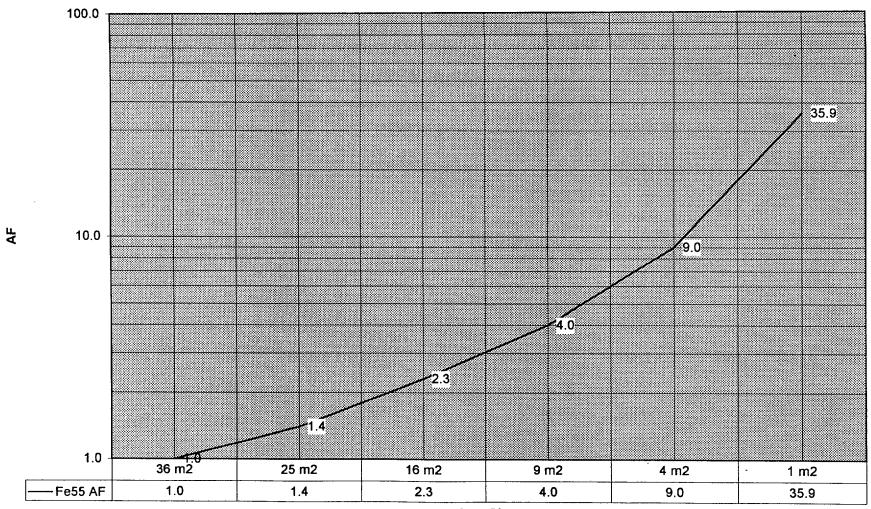
.•


Eu155 Area Factors

.

· •

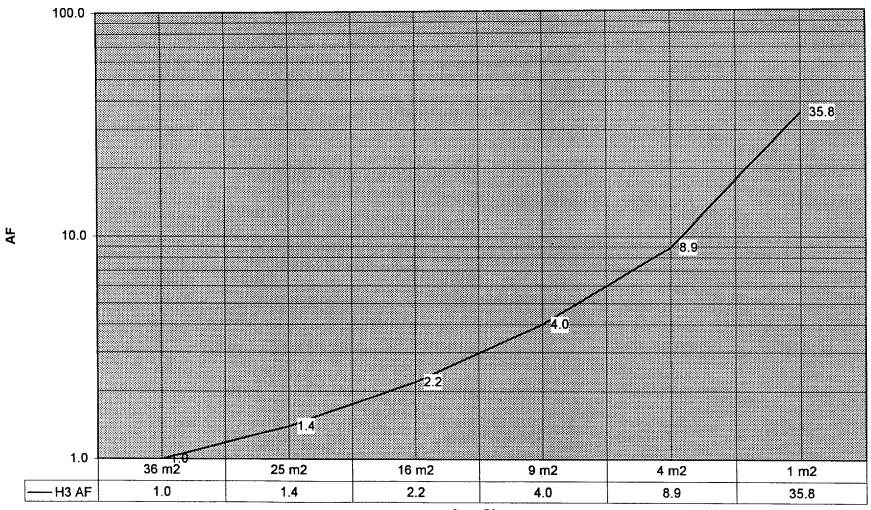
.


•

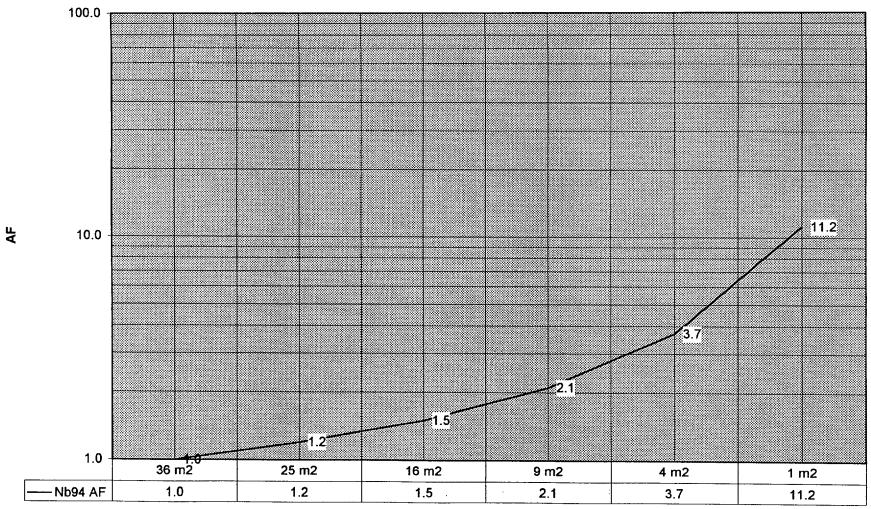
AF

Fe55 Area Factors

÷


· Area Size

H3 Area Factors


•

.

٠.

Nb94 Area Factors

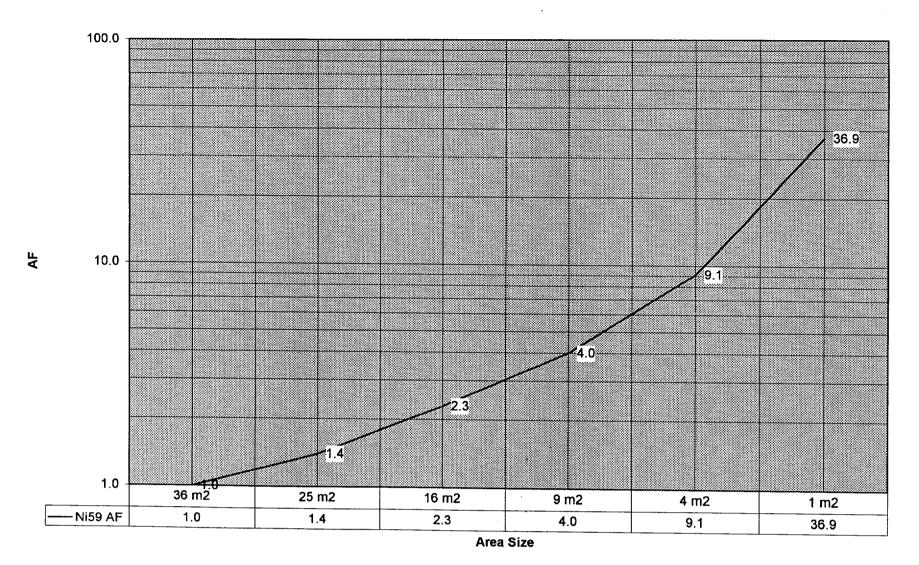
Area Size

. ·

•

بر

• .


.

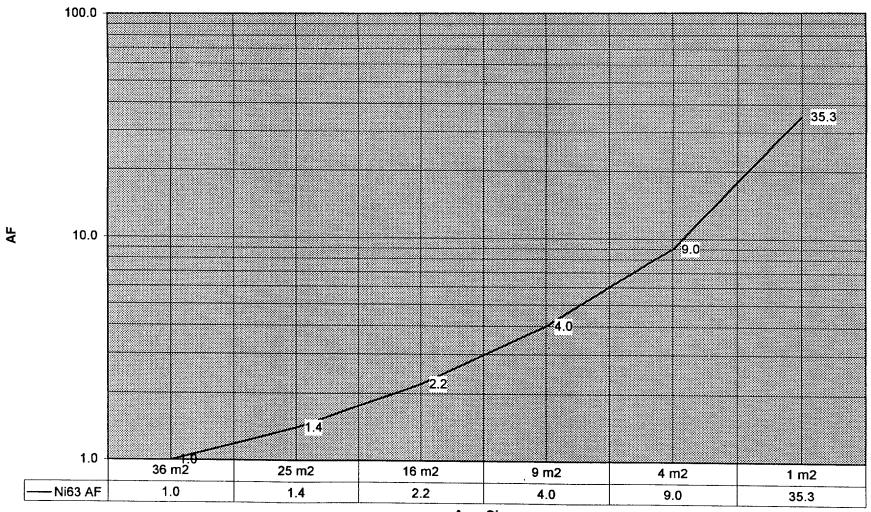
.

Ni59 Area Factors

-

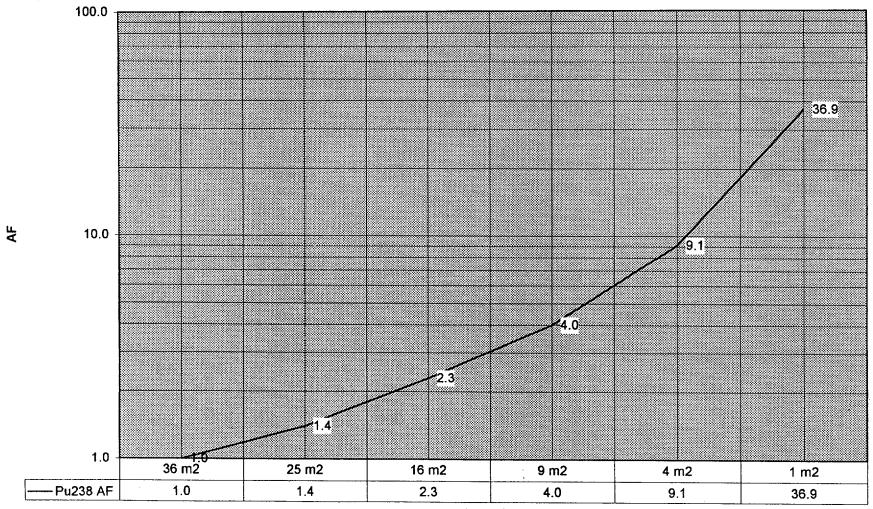
٠.

Ni63 Area Factors


.

•

•

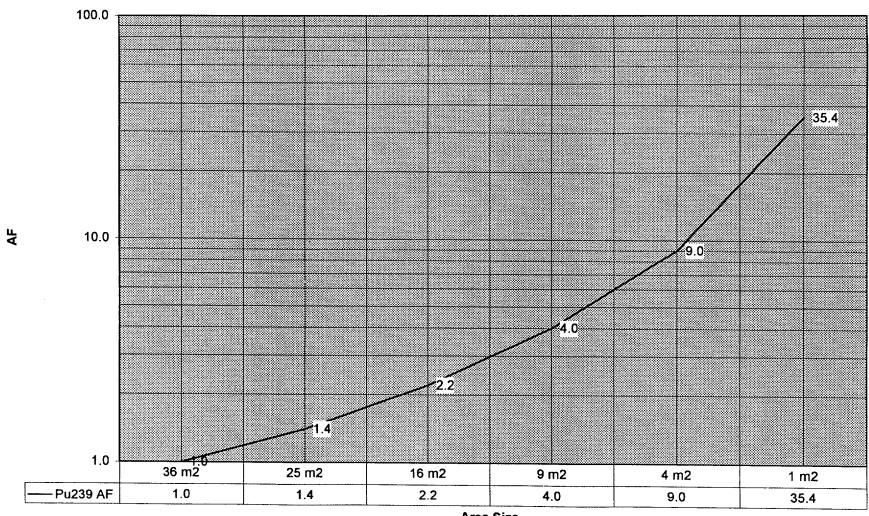

.

.

Pu238 Area Factors

•

Area Size

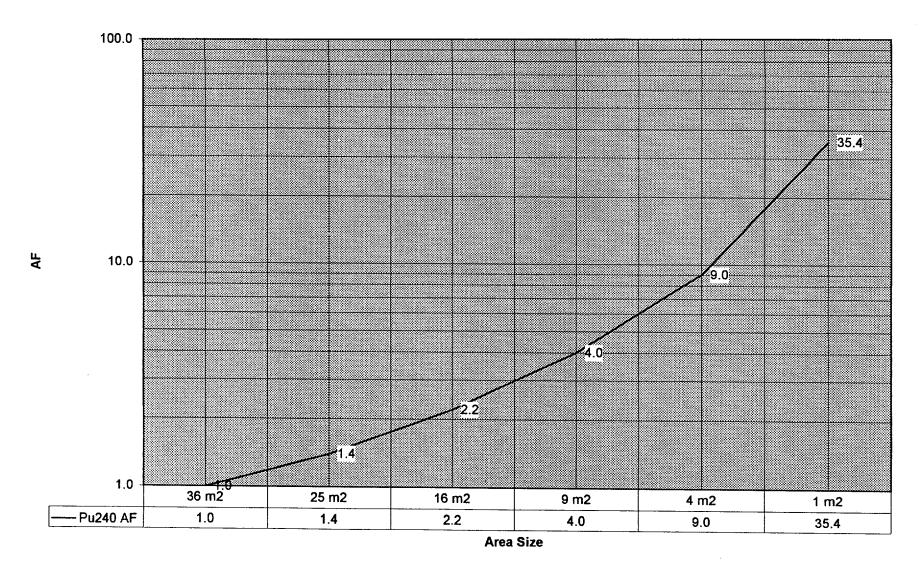

.

•

Pu239 Area Factors

-

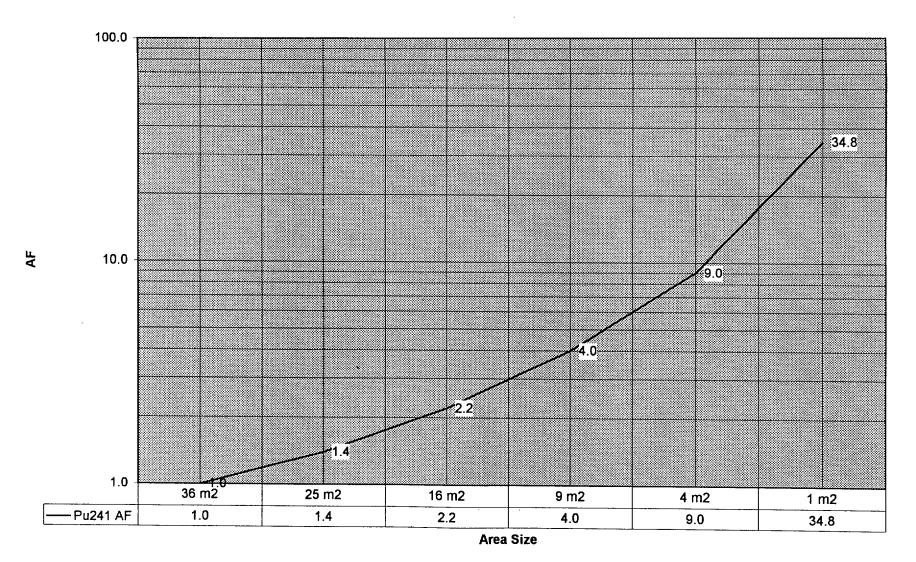
..


Area Size

•

Pu240 Area Factors

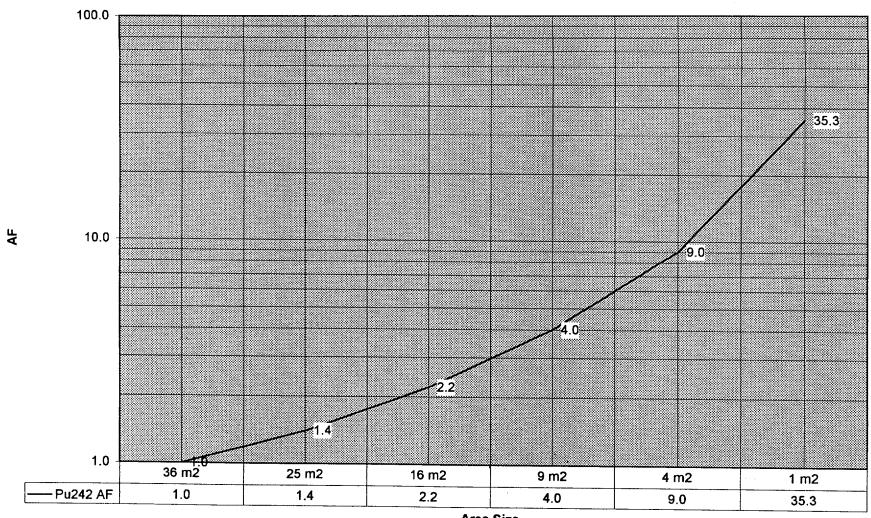
•


•.

Pu241 Area Factors

•

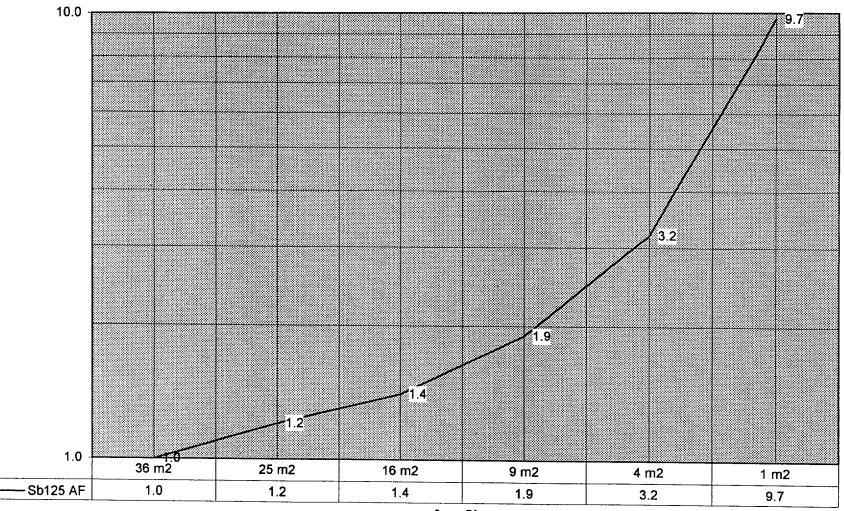
•.



Pu242 Area Factors

•

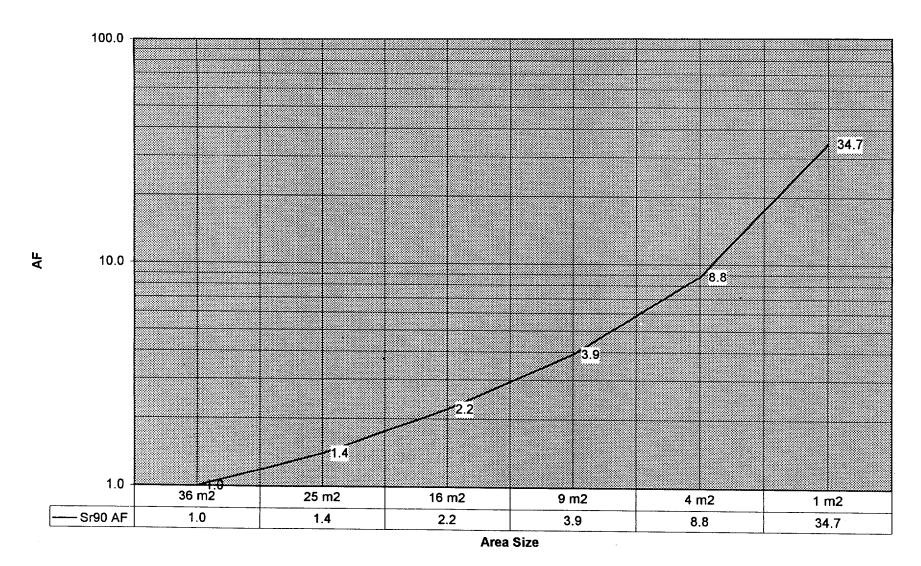
-


• .

Sb125 Area Factors

•

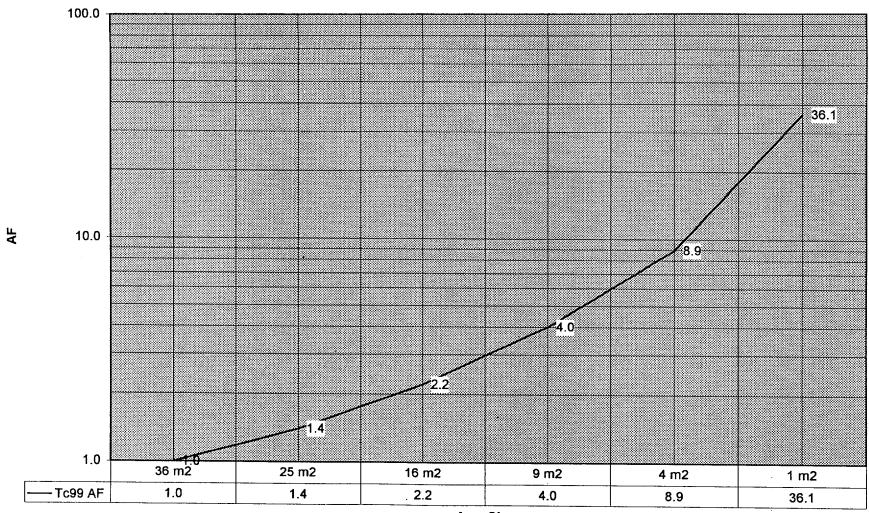
~



AF

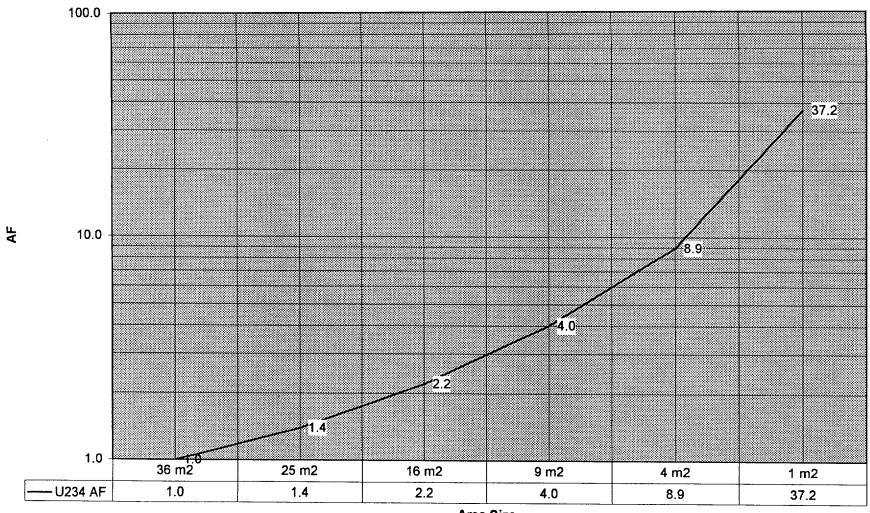
Sr90 Area Factors

•


٠.

Tc99 Area Factors

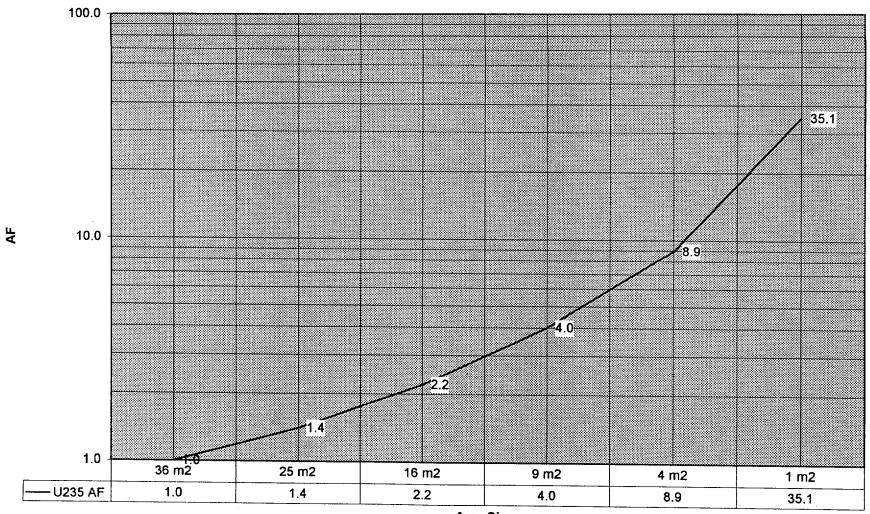
•


.

U234 Area Factors

*

•.

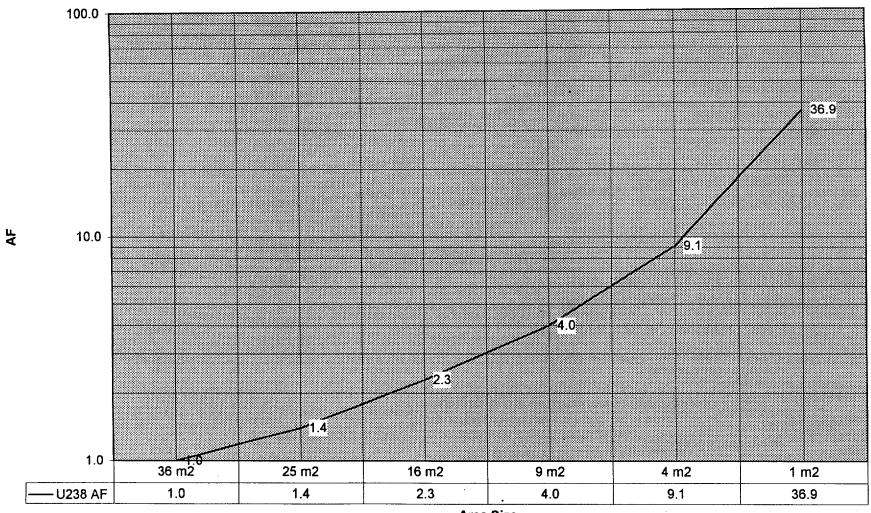


U235 Area Factors

•

٠

۰.



Area Size

.

U238 Area Factors

1

ANALYTICAL CHEMISTRY LABORATORY ANALYTICAL CHEMISTRY LABORATORY **ANALYTICAL CHEMISTRY** LABORATORY **ANALYTICAL CHEMISTRY** LABORATORY ANALYTICAL CHEMISTRY LABORATORY **ANALYTICAL CHEMISTRY** LABORATORY ANALYTICAL CHEMISTRY LABORATORY **ANALYTICAL CHEMISTRY** LABORATORY **ANALYTICAL CHEMISTRY** LABORATORY **ANALYTICAL CHEMISTRY** LABORATORY **ANALYTICAL CHEMISTRY** Laboratory

K_d STUDY OF SITE SOILS AND CONSTRUCTION DEBRIS FROM THE SNEC DECOMMISSIONING PROJECT*

by

D. L. Bowers and F. Markun Argonne National Laboratory Chemical Technology Division Analytical Chemistry Laboratory Argonne, IL 60439

and

K. A. Orlandini Argonne National Laboratory Environmental Research Division Argonne, IL 60439

for

Three Mile Island GPU Nuclear SOB-1 Route 441 South Middletown, PA, 17057

February 2002

Argonne National Laboratory, Argonne, Illinois 60439 operated by The University of Chicago for the United States Department of Energy

Chemical Technology Division Chemical Technology Division Chemical Technology Division Chemical Technology Division Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States government, and operated by The University of Chicago under the provisions of a contract with the Department of Energy.

DISCLAIMER-

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Table of Contents

INTRODUCTION	page 1
EXPERIMENTAL	2
RESULTS AND DISCUSSION	4

-

List of Tables

Table 1.	Requested Radionuclides	page 1
Table 2.	Soil Data	2
Table 3.	Soil Identification and Analysis	3
Table 4.	Amounts of Isotopes or Elements Added	3
Table 5.	Comparison of Ambient Soil Measurements	5
Table 6.	Metals in Soil* (mg/Kg)	6
Table 7.	K _d Values (L/Kg)	7

-

K_d STUDY OF SITE SOILS AND CONSTRUCTION DEBRIS FROM THE SNEC DECOMMISSIONING PROJECT

by D. L. Bowers and F. Markun Argonne National Laboratory Analytical Chemistry Laboratory Argonne, IL 60439 and K. A. Orlandini Argonne National Laboratory

Environmental Technology Division Argonne, IL 60439

INTRODUCTION

Distribution coefficients (K_d) values are used in the RESRAD code to predict the behavior of radionuclides in soil. This behavior determines the movement of these nuclides from the soil in contact with groundwater. Depending on how each of these radioactive elements migrate, RESRAD will calculate the rate of movement from an individual site. These data are necessary in regulatory matters such as monitoring and surveillance issues. GPU Nuclear has contracted with Argonne to provide K_d measurements for their Saxton Nuclear Experimental Corporation Facility (SNEC). A list of radionuclides of concern (Table 1) was provided along with various soils and groundwater. In nearly all cases, Argonne provided experimentally the data for the list using either radioactive or stable elements (and stand-ins) to establish the values. The distribution for certain nuclides (³H and ¹⁴C) were estimated because of the uncertainty in the chemical form that these radionuclides would exhibit in the particular environmental condition. In the latter case, the K_d values (e.g. tritium oxide) are generally very low anyway.

Table 1. Rev	questeu Kaulonuenues
²⁴¹ Am	^{59,63} Ni
^{242,243,244} Cm	²³⁸⁻²⁴² Pu
⁶⁰ Co	¹²⁵ Sb
^{134,137} Cs	⁹⁰ Sr
152,154,155Eu	⁹⁹ Tc
⁵⁵ Fe	234,235,238U
³ H	¹⁴ C
⁹⁴ Nb	

 Table 1. Requested Radionuclides

EXPERIMENTAL

Samples for measurement of distribution coefficient were prepared from materials provided by GPU. Aliquots of the solids were air dried (Table 2) to obtain dry weight equivalents. Weighed, dried solids were given a preliminary examination by gamma counting using a high purity germanium detector (123% efficiency). Close agreement with the GPU "GAMMA SCAN" results were found except for sample #2. In the aliquot of the material examined by us, the Cs-137 and Co-60 contents were found to be 60 and 0.5 pCi/gram respectively (Table 5). We calibrated the germanium crystal using similar geometry and a NIST reference sediment (SRM 00389).

Sample	As Received	Dry Wt.	Dry/Wet	For 100 gram Dry-Basis
S-1	58 grams	45	0.78	128
S-2	13.5	4.7	0.35	289*
S-3	22	18.5	0.84	119
S-4	57	47.3	0.83	121
S-6	26.5	22.9	0.86	116

 Table 2.
 Soil Data

NOTE: All other materials were nearly dry as received.

* Sample #2 was so highly hydrated that the sample for K_d measurement consisted of 133 grams dry-basis, 240 grams (ml) water associated (not recoverable by centrifugation) plus 100 ml site water added.

Site solids of 100 grams were combined with 100 ml of site water; both phases were matched according to location of recovery indicated by GPU labels. Before mixing the phases, each water portion was treated with an aliquot from a stock solution containing a variety of stable and radio tracers. A list of the elements and concentrations used are given in Table 4. A total of nine samples (two phases each) were treated with all selected radionuclides and stable elements. The ninth sample was a control, being an acid solution.

Sample	Location	Date	Time	Weight (g)	Gamma Scan Results *	Water Source	Initial pH
1	River Sediment	6/21/01	15:45	1362	< 0.06 pCi/g	River Water	8
2	SSGS Debris	2/20/01	13:30	4089	190 (0.65- ⁶⁰ Co)	SSGS Tunnel End	7
3	Ash/Cinder Material	6/21/01	17:15	1664	< 0.08	GEO-1	6
4	CV Backfill Material	6/21/01	15:15	2024	0.2	GEO-5	6
5	CV Area Fill Soil	6/21/01	14:00	1810	< 0.09	GEO-4	6
6	CV Area Clay Material	6/21/01	14:30	2289	< 0.1	GEO-4	7
7	Weathered Bedrock/Clay	6/21/01	15:50	1878	< 0.09	GEO-5	6
8	Unweathered Bedrock	6/21/01	13:00	2882	Not Required	MW-4	10+

Table 3. Soil Identification and Analysis

Data sheet from GPU enclosed with initial sample shipment.

*Data are for ¹³⁷Cs unless otherwise noted.

Nuclide	Initial Concentration Gammas per minute or Mass per 100 ml
Fe 59	90,000
Cs 137	92,000
Pu 239	1.55 µg
Am 241	-1030
U 235	5.17 μg
Тс 99	5.17 µg
Cd 109	970
Zn 65	2420
Co 60	1310
Ce 139	690
Hg 203	890
Sn 113	1030
Mn 54	-1400
Y 88	2050

Table 4. Amounts of Isotopes or Elements Added

NOTE: Include 5.17 μg each of a stable element mixture including Lead, Cadmium, Cobalt, Chromium, Copper, Strontium, Tin, Thallium, Zinc, and Zirconium The contact period was for 20 days (September 26 - October 16, 2001). A brief mixing was done at the initial date and on five occasions during the contact, (September 28, October 1, 5, 8, 12, and 15). On October 16, all samples were first centrifuged to separate phases. Each recovered aqueous phase was run through a 0.45 μ membrane filter before examination for tracer recovery. The pH of the recovered aqueous phases was close to neutral (6.5 by narrow range paper). The solutions were analyzed using Inductively Coupled Plasma/Mass Spectrometry (ICP/MS) or by gamma spectrometry previously mentioned.

RESULTS AND DISCUSSION

From these data, the K_d values were calculated. This value is arrived at by simply dividing the analyte of interest remaining in solution into the amount of analyte in the soil. If there were small amounts of a particular element present in the soil relative to the amount of spike, the K_d value was determined by the initial and final concentration of the element/radionuclide in the groundwater. This relationship was affected by the presence of that element/radionuclide in the initial soil that is significant relative to the spike. To understand better the soil chemistry, an analysis of the soil was deemed necessary. For example, for Pb K_d measurements, we added 5µg/sample. The initial soil contained from 3 to 1085 µg/g Pb or 300 to >100,000 µg Pb/sample (100g). A one gram aliquot of each soil sample was leached with a strong mineral acid (2M HNO₃) to determine the elements of interest. Results are shown in Table 6. Where appropriate, these data were used to calculate the K_d using both the initial concentration of the soil and remaining amount in liquid after soil/groundwater contact. NOTE: The soil analysis was important. Without these data, the K_d values would have been biased low.

Table 7 lists the final K_d values along with footnotes detailing estimated values and substituted or stand-in elements. The measured values in the first approximation, appear to be reasonable based on experience with similar type soils.

Sample	Cs-137 GPU	Cs-137 ANL
S-1	< 0.06 pCi/gram	$0.062 \pm 0.005 \text{ pCi/g}$
S-2*	[see Table 4]	60 ± 0.2
S-3	< 0.08	0.138 ± 0.015
S-4	0.2	0.347 ± -0.021
S-5	< 0.09	0.083 ± 0.008
S-6	< 0.1	0.095 ± 0.007
S-7	< 0.09	< 0.003
S-8		< 0.003

 Table 5. Comparison of Ambient Soil Measurements

*ANL measurement, $Co-60 = 0.5 \pm 0.1$

NOTE: Calibration at ANL with NIST SRM 00389

 Table 6. Metals in Soil* (mg/Kg)

					(116/116)			
·	S1	S2	S3	S4	S 5	S6	S7	GR. S8
Cr	14.8	170	5.0	19	11	14	13	9.4
Mn	350	590	13.4	360	370	575	140	620
Со	17	22	1.8	9.6	12	14	11	12
Ni	32	98	4.0	13	16	18	25	23
Cu	13	370	15	19	8.8	25	32	25
Zn	104	1800	9.3	65	61	50	58	50
Sr	14	6.30	18	21	14	20	15	8.3
Zr	2.2	4.8	3.0	2.1	3.6	2.0	2.2	3.4
Cd	0.27	7.4	< 0.01	<0.01	0.06	<0.01	<0.01	0.13
Sn	5.4	25	0.70	1.0	0.37	0.43	0.32	0.44
Sb	0.41	7.6	0.58	0.31	0.23	0.23	0.25	0.25
Ba	86	158	69	78	62	126	76	70
Tl	0.09	0.80	0.54	0.13	0.15	0.16	0.06	0.05
Pb	19	1085	29	36	14	26	7.0	2.6
U	0.47	1.2	0.32	1.0	0.50	1.2	0.76	0.52

*Concentration values by acid leaching.

		~ -						6
	<u>S1</u>	<u>S2</u>	<u>S3</u>	<u>S4</u>	<u>S5</u>	<u>S6</u>	<u>S7</u>	⁶ GR. S8
TI	264	644	67	483	290	223	242	126
Тс-99	8.1	54	54	8.6	1.4	1.6	1.3	1.3
U-235	37	16	> 5200	17	34	106	> 5200	226
Pu-239	> 600	> 160	> 600	> 400	> 400	> 400	> 600	> 400
<u>Cs-137</u>	2340	2433	2131	> 14149	13618	2864	> 9746	> 28341
Sr	60	25	475	28	11	24	114	60
Sb	1100	153	5200	2070	1100	1800	>5000	1900
Pb	46,000	1.6E5	58,000	81,000	31,000	98,000	9,700	26,000
¹ C-14	~1	~1	~1	~1	~1	~1	~1	~1
² H-3	~1	~1	~1	~1	~1	~1	~1	~1
³ Am-241	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000
Co-60	>1000	>1000	200	>1000	>1000	>1000	>1000	>1000
Mn-54	>1000	>1000	51	>1000	>1000	>1000	>1000	>1000
Zn	>1000	>5000	>300	>1000	>1000	>1000	>1000	>1000
Y-88	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000
⁴ Ce-139	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000
Fe-59	>10,000	>10,000	>10,000	>10,000	>10,000	>10,000	>10,000	>10,000
Hg-203	>100	>100	>100	>100	>100	>100	>100	>100
Sn-113	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000
Cd	>1300	8300	>200	>200	>200	>200	20	250
Ni	>10,000	>10,000	>4,000	>10,000	>10,000	>10,000	1300	1500
Cu	3300	>10,000	5600	5600	3000	>10,000	5700	>10,000
Cr	28,000	19,000	7500	>50,000	950	7,000	>36,000	1800
⁵ Zr	>600	80	>500	>500	>500	>500	>500	>500

 Table 7. K_d Values (L/Kg)

¹The K_d value of 1 is an estimate for C-14 and assumes C-14 is in carbonate form.

²The K_d value of 1 is an estimate for H-3 and assumes H-3 is oxide or water.

³Am-241 values same for other trivalent actinides as Cm-242.

⁴Ce-139 is a stand-in for all rare earths as Eu-154. Y-88 is also a rare earth like element.

⁵Zr is a stand-in for Nb-94. Chemical similarity of these elements provides the basis for the substitution.

⁶GR.S8 was pulverized or ground.

.

CALCULATION COVER SHEET

Subject:	Calculation No.	Revision Number
SNEC Radionuclide List	E900-01-030	1

All revised areas denoted by change bars in right margin. Change bars denote only Revision 1 changes.

- 1. Section 1 Reworded third sentence.
- 2. Section 2 Summary of Results: Revised the Radionuclide List Table. Eliminated the inside/outside CV delineation and made the table a general radionuclide list.
- 3. Section 3 Renumbered references. Added reference 3.11.
- Section 4c&e Added NCRP 45 information on background uranium in section 4c. Revised section 4e to eliminate the use of only 5 radionuclides outside the CV.
- 5. Section 5, Conclusions: Revised to use the list of 11 radionuclides inside the CV and select applicable radionuclides outside CV based on characterization data.
- 6. Section 6 Revised title from Attachments to Appendices. Added Appendix numbers to Table 1-5.
- 7. Table 2 Removed columns related to DCGLs.
- 8. Table 4 Fixed footnote numbering and added new footnotes.
- 9. Table 5 Re-titled the External table to Effective Dose Equivalent.

	Signature	Date
Originator	Pat Donnachie / A America /	4/30/02
Reviewer	Barry Brosey / B. 3	4/30/02
Additional Reviewer	N/A	
Additional Reviewer	N/A	
Additional Reviewer	N/A	
Management Approval	A.F. Paynter / MAADE	O2 May O2
	$\overline{}$	

put m. m.s. Distribution lues 0.22 0.6 Tranguiar lues Varies Varies Lognormai lues Varies Varies Lognormai lues Na Na Na Na Na Na Na <th>PARAMETERS</th> <th>Basic</th> <th>SINCO RAIIDA OL VAINS</th> <th>e or values</th> <th></th> <th></th>	PARAMETERS	Basic	SINCO RAIIDA OL VAINS	e or values		
In Sol (m) 0.3 0.2 0.5 Translate Translate Elevent Values Varies Varies Varies Varies Varies Lognormal Elevent Values Varies Varies Varies Varies Lognormal R(c) T128 NiA NiA NiA NiA R(c) NiA NiA NiA NiA NiA R(c) 0.010 0.010 0.010 0.010 0.010 R(c) 0.010 0.010 0.010 0.010 0.010 R(c		RESRAD Input	Min.	Max.	Distribution	Default Distribution
Default Values Varies Varies Control Nat Lognomal RC) 712 Nix Nix Nix Nix Nix Not Used 0.23 0.54 Nix Nix Nix Not Used 0.2 0.64 Nix Nix Nix Not Used Nix Nix Nix Nix Nix 112 Nix Nix Nix Nix Nix 1 0.00 Nix Nix Nix<	hickness of Soil Evasion Layer of C-14 in Soil (0.2	0.6	Triangular	
Default Values Varies Varies Varies Lognomat R() 712.5 N/A N/A N/A R() 712.5 N/A N/A N/A 1 NA N/A N/A N/A 1 NA N/A N/A N/A 1 N/A N/A N/A N/A 1 0.07 3.13 4.83 Uniform 0.066 0.712 0.192 Uniform 0.073 0.073 0.712 Uniform 0.066 0.712 Uniform Uniform 0.073 0.72 0.066	inaccimilation Factors Fresh Water		Varies	Varies	Lognormal	
		Default Values	Varies	Varies	Lognormal	
		Mattheod	0.28	0.64	N/A	
RC() TUDUE NA NA NA NA 12.8 NA NA NA NA NA 1 NA NA NA NA NA 1 NA NA NA NA NA 10 NA NA NA NA NA 100 NA NA NA NA NA 1000 NA NA NA NA NA 11 0.182 0.182	ontaminated 20ne Effective Porosity	DASO JON	ALA ALA	NIA	N/A	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	rea of Contaminated Zone (m ⁿ 2)	0001	YA!		AVA AVA	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	isic Radiation Dose Limit (mrem/y) (NRC)	97	NIA	AN		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	noth Parallel to Aquifer Flow (m)	112.8	NA	N/A	NA	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	nickness of Contaminated Zone 1 (m)		N/A	N/A	NA	
1 NA NA NA NA NA NA 3 NA NA NA NA NA NA NA 36 NA NA NA NA NA NA NA 36 NA NA NA NA NA NA NA 360 NA NA NA NA NA NA NA 360 NA NA NA NA NA NA NA 360 NA NA NA NA NA NA NA Anter 0.0003 0.1000345 0.010004 0.10006 0.1000 0.1000 Capacity 0.16 0.13 0.13 0.13 0.1100 0.1000 Anter 0.0003 0.05 0.1000 0.1000 0.1000 0.1000 Capacity 0.010 0.1000 0.1000 0.1000 0.1000 0.1000 Anter NA N	me Since Placement of Materials (vr)	0	N/A	NA	N/A	
3 NA NA NA NA 10 NA NA NA NA NA 16 NA NA NA NA NA 160 NA NA NA NA NA 160 NA NA NA NA NA 1000 NA NA NA NA NA 1000 NA NA NA NA NA Interter 0.0135 0.132 0.132 Uniform Distribution 0.13 0.13 0.132 Uniform Distribution 0.13 0.13 0.132 Uniform Distribution 0.13 0.13 Uniform Uniform Distr(my/r) 0.13 0.13 <t< td=""><td>The Onloc Ladonnoin of Intachian U.V.</td><td></td><td>NIA</td><td>NA</td><td>NA</td><td></td></t<>	The Onloc Ladonnoin of Intachian U.V.		NIA	NA	NA	
10 NA NA NA NA NA 36 NA NA NA NA NA NA 36 NA NA NA NA NA NA 66 NA NA NA NA NA NA 66 NA NA NA NA NA NA 66 100 NA NA NA NA NA 60003 0.00034 0.00039 0.0005 0.0005 Loguniform 6000346 0.00039 0.0006 0.122 Uniform NA 60003 0.0003 0.0005 0.0005 Uniform NA 6000356 0.0003 0.0005 Uniform Uniform 60001 1.28 1.327 Uniform Uniform 60001 0.81 1.327 Uniform NA 60001 0.3 0.3 0.3 Uniform 60001 0.3 0.3	mes for Calculations (yr)	- 0	NIA	NIA	NA	
30 NA NA NA NA NA 160 NA NA NA NA NA NA 1000 NA NA NA NA NA NA 1000 NA NA NA NA NA NA 1000 NA NA NA NA NA NA 0.1000 NA NA NA NA NA NA 0.100345 0.00039 0.1000 0.1010 Uniform 0.1010 0.146 1.28 0.35 0.66 Uniform 0.1010 0.010 NA NA NA NA NA Not Used NA NA NA NA NA 0.01 0.1 0.1 NA NA NA 0.01 0.1 0.1 NA NA NA 0.01 0.1 0.1 NA NA NA 0.01 0.1	mes tor Calculations (yr)		VIIV	NIA	NIA	
30 NA NA NA NA NA NA 350 NA NA<	mes for Calculations (yr)	2	YN.		AN AN	
150 NA NA NA NA NA 1000 135 0.192 0.192 Uniform 0.136 0.0090 0.0009 0.0009 Uniform 0.135 0.35 0.56 Uniform 0.46 NA NA NA 0.136 0.57 Uniform NA 0.46 NA NA NA 0.66 Uniform NA NA 0.61 0.57 0.66 Uniform 0.66 0.67 Uniform NA Not Used NA NA NA 0.66 0.73 Uniform Uniform 0.61 0.57 Uniform Uniform 0.61 0.65 Uniform Uniform <t< td=""><td>mes for Calculations (yr)</td><td>30</td><td>AN</td><td>AN</td><td>AN AN</td><td></td></t<>	mes for Calculations (yr)	30	AN	AN	AN AN	
350 N/A N/A N/A N/A N/A 1000 N/A N/A N/A N/A N/A 1000 N/A N/A N/A N/A N/A 1000 N/A 132 Uniform Uniform 0.136 0.00346 0.00039 0.192 Uniform 0.100345 0.00039 0.00069 0.0006 Loguniform 0.16 N/A N/A N/A N/A 0.000346 0.00039 0.0006 Loguniform Loguniform 0.001 N/A N/A N/A N/A N/A 0.00345 0.0003 0.6006 Loguniform Loguniform 0.16 N/A N/A N/A N/A 0.001 N/A N/A N/A N/A 0.01 0.55 0.55 0.65 Uniform 0.01 0.55 0.67 2.035 Uniform 0.01 0.55 0.67 N/A	mes for Calculations (vr)	150	NA	NA	NA	
1000 N/A N/A N/A 10000 N/A N/A N/A 10000 3/3 4/33 Uniform 6.6 0.073 0.132 Uniform 6.6 0.073 0.132 Uniform 0.136 0.073 0.132 Uniform 0.136 0.07006 Loguiform Loguiform 0.10 NA N/A N/A N/A 0.106 NA N/A N/A N/A 0.106 0.35 0.366 Uniform Loguiform 0.106 NA N/A N/A N/A Not Used NA N/A N/A N/A 0.01 0.35 0.35 0.4 Uniform 0.035 0.36 0.36 Uniform N/A 0.01 N/A N/A N/A N/A 0.01 0.35 0.35 Uniform 0.35 0.01 0.35 0.35 Uniform	mee for Calculations (vr)	350	MA	NA	NA	
1000 NA NA NA 6,13 0.073 0,132 0.10160m 10160m 6,13 0.073 0,132 0.10160m 10160m 6,13 0.00345 0.00069 0.0006 Loguniform 0,00345 0.00069 0.0006 Loguniform 10160m 0,00146 0.35 0.560 Uniform 10160m 0,0116 0.35 0.56 Uniform 10160m 0,0116 0.35 0.56 Uniform 10160m 0,0116 0.35 0.66 Uniform 10160m 0,016 0.35 0.667 Uniform 10160m 0,016 0.35 Uniform 1327 Uniform 0,01 0.35 0.366 Uniform 10160m <tr< td=""><td>times for Calculations (ur)</td><td>1000</td><td>NIA</td><td>A/A</td><td>NA</td><td></td></tr<>	times for Calculations (ur)	1000	NIA	A/A	NA	
Non-Order 3.13 4.83 Uniform 4,07 3.13 4.83 Uniform 6,15 0.079 0.132 Uniform 6,15 0.079 0.132 Uniform 0,136 0.0009 0.0006 Loguniform 0,16 0.100 Uniform Uniform 0,16 0.35 2.5400 Loguniform 0,16 0.35 0.56 Uniform 0,16 0.35 0.56 Uniform 0,16 1.28 1.92 Uniform 0,16 0.67 Uniform Uniform 0,01 0.65 0.67 Uniform 0,01 0.73 0.67 Uniform 0,01 0.67 0.74 Uniform 0,01 0.66 1.32 Uniform 0,01 0.66 Uniform Uniform 0,01 0.31 0.4 Uniform 0,01 0.31 0.4 Uniform 0,02	Imes for calculations (y)		NIA	NIA	N/A	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	imes for Calculations (yr)	10001	AN			Bounded Londormal-N (1.4 - 13)
0.136 0.079 0.132 Unitom 6.6 0.006 1.12 Unitom 0.0355 0.0006 0.0016 Legunitom 0.0355 0.056 Unitom Unitom 0.16 0.182 0.056 Unitom 0.16 0.18 0.056 Unitom 0.16 1.28 1.92 Unitom 0.16 0.135 0.61 Unitom 0.16 0.55 0.67 Unitom 0.135 0.61 1.22 Unitom 0.15 0.65 Unitom No 0.135 0.61 Unitom No 0.16 1.132 Unitom No 0.16 1.132 Unitom No 0.16 0.13 0.4 No 0.16 1.132 Unitom No 0.16 0.13 0.1 Unitom 0.16 1.132 Unitom No 0.16 0.105 0.05 <td>verage Annual Wind Speed (m/sec)</td> <td>4.07</td> <td>3.13</td> <td>4.83</td> <td>OUIOIII</td> <td></td>	verage Annual Wind Speed (m/sec)	4.07	3.13	4.83	OUIOIII	
6.6 4.05 7.12 Uniform ñ(y (m/yr) 0.000345 0.00006 Loguniform 0.1000345 0.36 0.560 Uniform 0.1001 0.1001 NiA NiA 0 NiA NiA NiA 0.1001 1.5 0.56 Uniform 0 NiA NiA NiA Not Used NiA NiA NiA 0.59 0.57 Uniform NiA 0.59 0.5 0.57 Uniform 0.59 0.55 0.57 Uniform 0.59 0.57 Uniform NiA 0.61 0.35 0.4 Uniform 0.50 0.57 Uniform NiA 0.61 1.327 Uniform Uniform 0.35 0.688 1.327 Uniform Uniform 0.61 1.28 1.327 Uniform Uniform 0.61 0.35 0.688 1.327 Uniform <td>Containinated Zone Field Capacity</td> <td>0.136</td> <td>0.079</td> <td>0.192</td> <td>Uniform</td> <td>None Assigned</td>	Containinated Zone Field Capacity	0.136	0.079	0.192	Uniform	None Assigned
	Contaminated Zone h Daramater	9.9	4.05	7.12	Uniform	Bounded Longormal-N (0.5 - 30)
My (m/yr) $\frac{0.360}{0.35}$ 2.6400 Loguniform Imitorm 0 0.35 0.35 0.56 Uniform Imitorm 0.10 N(x) N(x) N(x) N(x) N(x) 0.10 0.35 0.35 0.56 Uniform Imitorm 0.10 N(x) N(x) N(x) N(x) N(x) 0.59 0.5 0.57 Uniform Imitorm 0.04 NiA NA NiA Imitorm 0.35 0.3 0.4 Uniform Imitorm 0.35 0.35 0.36 Uniform Imitorm 0.05 0.35 0.4 Uniform Imitorm 0.01 1.327 Uniform Imitorm Imitorm 0.01 0.35 0			0,0009	0.0006	Loguniform	Continuous Logarithmic (5E-08 - 0.2)
32.3 0.000 NIA WIA WIA WIA 0.46 0.35 0.56 0.101form NIA 1.6 1.28 1.32 1.01form NIA Not Used NIA NIA NIA 0.6 0.5 0.57 Uniform NIA 0.59 0.57 0.17 Uniform NIA Not Used NIA NIA NIA NIA 0.53 0.57 0.57 Uniform NIA 0.336 0.58 1.327 Uniform NIA 0.356 0.33 0.4 Uniform NIA 0.356 0.33 0.3 0.4 Uniform 0.356 0.33 0.3 0.4 Uniform 0.356 0.33 0.3 0.4 Uniform 0.35 0.33 0.3 Uniform 0 0.35 0.33 0.4 Uniform 0 0.023 0.33 0.05 Uni	contaminated Zone Erosion Rate (myr)		00000	26400	Locuniform	Bounded Londormal-N (0.004 - 9250)
$ \begin{array}{c ccccc} & 0.46 & 0.36 & 0.36 & 0.00 & $	ontaminated Zone Hydraulic Conductivity (m/yi		7000	0101	1 niferen	Truncated Normal (0 157 - 0 693)
	contaminated Zone Total Porosity	0.46	0.30	00'0		
	over Depth (m)	0	NIA	NA	NA	
	over Denth Frosion Rate (m/vr)	Not Used	NA	NA	N/A	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ensity of Contaminated Zone (d/cc)	16	1.28	1.92	Uniform	Truncated Normal (0.809 - 2.23)
	atisity of Contantination Forte (groot	Not Ilsed	NA	NA	NA	
	elisity of cover material (groc)	0.50	50	0.67	Uniform	Uniform (0.5 - 0.75)
0.2 NIA NiA </td <td></td> <td>0</td> <td>2 KREADO</td> <td>2 03E+01</td> <td>Truncated Lognormal-N</td> <td></td>		0	2 KREADO	2 03E+01	Truncated Lognormal-N	
Out Image I	umidity in Air (g/m^3)	•	4.00LTVV	10.100 W	None Accimed	
Overthead NA NA NA NA 0.336 0.688 1.327 Uniform 0.336 0.33 0.4 Uniform 0.336 0.33 0.4 Uniform 0.336 0.33 0.4 Uniform 0.34 1.22 1.92 Uniform 1.6 1.28 1.92 Uniform Non-Dispersion N/A N/A NA Not Used N/A N/A NA 0.028 0.005 0.05 Uniform 0.028 0.013 0.03 Uniform 0.136 0.013 0.03 Uniform 0.336 0.13 0.110 0.0 0 30 1.32 Uniform 0.36 0.132 0.192 Uniform 0.33 0.27.3 365 Uniform 0.41 0.28 0.192 Uniform 0.33 0.328 0.365 Uniform 0.33 <t< td=""><td>rigation (m/yr)</td><td>0.2</td><td>1</td><td>1</td><td>Noile Assigned</td><td></td></t<>	rigation (m/yr)	0.2	1	1	Noile Assigned	
0.336 0.688 1.327 Uniform 0.35 0.3 0.4 Uniform 0.35 0.3 0.4 Uniform 0.35 0.3 0.4 Uniform 0.35 1.28 1.92 Uniform 1.6 1.28 1.92 Uniform 0.028 0.065 Uniform NIA 0.102 0.013 0.05 Uniform 0.102 0.113 0.03 Uniform 0.36 0.141 Uniform Iniform 0.31 0.13 0.141 Uniform 0.31 0.13 0.141 Uniform 0.31 0.132 0.141 Uniform 1 1 0.31 0.192 Uniform 1 1.3 0.192 Uniform Iniform 1 1.3 0.192 Uniform Iniform 1 1.3 0.192 Uniform Iniform 1 0.192 0.192	rigation Mode (Overhead)	Overhead	N/A	AN	NA	
(m*2) 0.3 0.4 Uniform 6.00E+06 None Assigned 1.6 1.28 1.92 Uniform 1.6 1.28 1.92 Uniform 6.00E+06 Non -Dispersion N/A Not-Used N/A N/A N/A 0.028 0.005 0.06 Loguniform 0.136 0.013 0.03 Uniform 0.36 0.11 0.41 Uniform 0.31 0.41 Uniform 1 0.32 0.013 0.141 Uniform 0.31 0.41 0.41 Uniform 1 1.3 3.41 Uniform 1 1.92 Uniform 1 1 1.92 Uniform 1 1 1.28 1.92 Uniform 1 0.192 0.192 Uniform 1 0.192 0.192 Uniform 1 0.192 0.1	recipitation (m/v)	0.936	0.688	1.327	Uniform	None Assigned
(m/2) 6.00E+06 None Assigned 1.6 1.28 1.92 Uniform 1.6 1.28 1.92 Uniform Not Used N/A N/A N/A Not Used N/A N/A N/A 0.028 0.005 0.06 Loguniform 0.136 0.013 0.03 Uniform 0.36 0.11 0.41 Uniform 0.36 0.31 0.41 Uniform 0.36 0.11 0.41 Uniform 1 0.31 0.41 Uniform 1 0.31 0.41 Uniform 1 1.28 1.92 Uniform 1.6 1.28 0.192 Uniform 1.18 0.192 0.192 Uniform 1.16 1.28 0.192 Uniform 1.18 0.192 Uniform Uniform 1.18 0.192 Uniform Uniform 1.16 0.192 <td>unoff Crefficient</td> <td>0.35</td> <td>0.3</td> <td>0.4</td> <td>Uniform</td> <td>Uniform (0.1 - 0.8)</td>	unoff Crefficient	0.35	0.3	0.4	Uniform	Uniform (0.1 - 0.8)
I.6 1.28 1.92 Unitom Mon-Uspersion NIA NIA NIA Not Used NIA NIA NIA Not Used NIA NIA NIA 0.028 0.005 0.06 Loguniform 0.13 0.033 Uniform Uniform 0.36 0.31 0.41 Uniform 0.36 0.31 0.41 Uniform 0.36 0.31 0.41 Uniform 0.36 0.31 0.41 Uniform 0.36 0.192 0.192 Uniform 1 0.31 0.41 Uniform 16 1.28 1.92 Uniform 1.61 1.28 0.54 Uniform 1 N/A N/A N/A 1 N/A N/A N/A 1.82 0.192 Uniform N/A 1 0.192 0.192 Uniform 1 0.192 0.192	utor councies Actorshod Area for Nearby Stream or Pond (m'				None Assigned	None Assigned
(MB) Non-Dispersion N/A N/A N/A N/A Not Used N/A N/A N/A N/A N/A 0.028 0.005 0.06 Loguniform N/A 0.028 0.013 0.03 Uniform Uniform 0.03 0.013 0.03 Uniform N/A 0.05 0.013 0.03 Uniform N/A 0.05 0.013 0.03 Uniform N/A 0.05 0.013 0.013 Uniform N/A 0.136 10 50 Uniform N/A 1(m/Y) 32.3 0.192 Uniform N/A 1(m/Y) 32.3 0.54 Uniform N/A 0.55 0.54 0.54 Uniform N/A	atelshed Area to Nearly Shearly of a tria (III		1 28	1.92	Uniform	Truncated Normal (0.809 - 2.23)
Important Not Used NA	ensity of Saturated Zone (groc)		NIA	NIA	NIA	
Norused Norused Norused Norused Norused Norused Norused Norused Loguniform Loguniform <thloguniform< th=""> <thlogun< td=""><td>odel: Non-dispersion (NU) of Mass-balarice (</td><td>1</td><td>VIN</td><td>NIA</td><td>NIA</td><td></td></thlogun<></thloguniform<>	odel: Non-dispersion (NU) of Mass-balarice (1	VIN	NIA	NIA	
0.028 0.028 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.011 <th< td=""><td>aturated Zone b Parameter</td><td>Not Used</td><td>2 DOR</td><td>0.05</td><td>loamiform</td><td>Truncated Normal (0.075 - 0.635)</td></th<>	aturated Zone b Parameter	Not Used	2 DOR	0.05	loamiform	Truncated Normal (0.075 - 0.635)
01.31 0.03 0.03 Uniform 0.02 0.013 0.03 Uniform 0.36 0.31 0.41 Uniform 0.36 0.31 0.41 Uniform 0 0 None Assigned 0 None Assigned 1 0 None Assigned 286.2 207.3 366 Uniform 0.192 0.192 Uniform 0.186 0.073 365 Uniform 1.6 1.28 1.92 Uniform 0.182 0.54 Uniform 0.31 0.54 Uniform 1 N/A N/A	aturated Zone Effective Porosity	0.020	45 50	000 63	Inform	Bounded Londormal-N (0.004 - 9250)
0.02 0.013 0.03 0.013 0.013 0.014 0.000 0 0.36 0.31 0.41 Uniform Uniform 0 None Assigned Uniform 30 10 50 Uniform Uniform Uniform c) 0.136 0.0192 Uniform Uniform 0 1.6 1.28 1.92 Uniform one 1 0.41 0.28 0.54 Uniform a 0.33 0.362 25400 Loguniform a 0 0.54 Uniform Uniform	aturated Zone Hydraulic Conductivity (m/yr)	18.70	10.00	00.000		Bounded I oncormal-N (0 00007 - 0 5)
0.36 0.31 0.41 Unitom 0 None Assigned 30 10 50 Unitom 30 10 50 Unitom 31 0.136 0.079 0.192 Unitom 286.2 207.3 365 Unitom - 0.136 0.192 Unitom - - 0.136 0.192 Unitom - - 0.136 0.192 Unitom - - ad Zone 1 1.6 1.28 1.32 Unitom - 31 ata 0.3162 0.54 Unitom - - 31 ata 1 N/A N/A N/A - - 0 0.55 0.5 0.0160m - - - -	aturated Zone Hydraulic Gradient	0.02	510'D	0.0		Truncated Normal (0 157 - 0 603)
0 None Assigned 30 10 60 Uniform 30 10 60 Uniform 286.2 207.3 365 Uniform 286.2 207.3 365 Uniform 0.136 0.192 Uniform Iniform ed Zone 1 1.6 1.28 1.92 Uniform ad Zone 1 0.41 0.28 0.54 Uniform 32.3 0.362 25400 Loguniform Iniform 37tata 1 N/A N/A N/A Iniform a 1 (m) 0.25 0 0.54 Uniform Iniform	aturated Zone Total Porosity	0.36	0.31	0.41	Currorm	
30 10 50 Uniform 286.2 207.3 365 Uniform 286.2 207.3 365 Uniform 0.136 0.079 0.192 Uniform 0.136 1.28 1.32 Uniform ed Zone 1 0.41 0.28 0.54 Uniform aturated Zone 1 0.41 0.28 0.54 Uniform 32.3 0.362 25400 Loguniform 1 N/A N/A N/A a 1 (m) 0.55 0.55 Uniform	Vater Tahle Dron Rate (m/vr)	0			None Assigned	None Assigned
286.2 207.3 365 Uniform 286.2 207.3 365 Uniform 0.136 0.079 0.192 Uniform 0.136 1.28 1.32 Uniform ed Zone 1 1.6 1.28 1.32 Uniform act Zone 1 0.41 0.28 0.54 Uniform strated Zone 1 (m/yr) 32.3 0.362 25400 Loguniform 313 0.362 0.54 MA MA 0 0 0.5 Uniform 0	Vall Drime Intoke Denth (m)	30	10	60	Uniform	Triangular (6 -30)
(g/cc) 0.136 0.079 0.192 Uniform (g/cc) 1.6 1.28 1.92 Uniform ed Zone 1 0.41 0.28 0.54 Uniform act Zone 1 0.31 0.362 25400 Loguniform Strated Zone 1 (m/yr) 32.3 0.362 25400 Loguniform at 1 (m) 0.26 0.56 Uniform 0		286.7	207.3	365	Uniform	None Assigned
(g/cc) 1.6 1.28 1.92 Uniform ed Zone 1 0.41 0.28 0.54 Uniform ed Zone 1 0.41 0.28 0.54 Uniform strated Zone 1 (m/yr) 32.3 0.362 25400 Loguniform at 1 (m/yr) 0.25 0.54 Uniform 0.14 at 1 (m) 0.25 0.54 Uniform 0.14			0.079	0.192	Uniform	None Assigned
me 1 (m/yr) 1.0 1.28 0.54 Uniform 0.41 0.28 0.54 Uniform 0.41 0.362 25400 Loguniform 1 N/A N/A N/A N/A 0.56 0.65 Uniform 0.26 0.5 Uniform	aturated zone rield Capacity		00 1	4 82	Inform	Truncated Normal (0.809 - 2.23)
me 1 (m/r) 0.41 0.28 0.34 0.0000 0.000 0	Density of Unsaturated Zone 1 (g/cc)	1. 0	1.20	201		Truncated Normal (0.075 - 0.635)
ne 1 (m/yr) 32.3 0.362 25400 Logunitorm 1 N/A N/A N/A 0.25 0 0.5 Uniform	:ffective Porosity of Unsaturated Zone 1		0.28	C.04	IIIOIIIO .	
1 N/A N/A N/A 0.25 0 0.6 0.6 Uniform	Ivdraulic Conductivity of Unsaturated Zone 1 (r		0.362	25400	Loguniform	Bounded Longormal-IN (U.UU4 - 323U)
25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	Jumber of Unsaturated Zone Strata		NA	NA	NA	NA
	hickness of Unsaturated Zone 1 (m)	0.25	0	0.5	Uniform	Bounded Longormal-N (0.18 - 320)

	Total nonsity of Unsaturated Zone 1	0.46	0.35	0.66	Chitorn	I I III Caten I VOI II al, 10.101 - 0.000
00	Incaturated Zone 1 b Parameter	5.6	4.05	7.12	Uniform	Bounded Longormal-N (0.5 - 30)
	Insaturated Zone Field Capacity	0.136	0.079	0.192	Uniform	None Assigned
	Evternal Gamma Shielding Factor	0.6612	4.400E-02	-	Bounded Lognormal-N	
-	ndoor Dust Filtration Factor	0.4	0.15	0.95	Uniform	
	ndoor Time Fraction	0.66	0	L	Continuos Linear	
-	nhalation Rate (m^3/vr)	8400	4380	13100	Triangular	
	Ase I cading for Inhalation (n/m/3)	0.00000314	0	0.0001	Continuos Linear	
2 1	reaction of Time Shert Orthonics	0.12	1	1	None Assigned	
	Contaminated Eraction of Aduatic Fond		0	1	Triangular	
	Contaminated Fraction of Drinking Water	•	1	1	None Assigned	
	Contaminated Fraction of Household Water	Not Used	N/A	NA	N/A	
	Contaminated Fraction of Irrigation Water	1	1	1	None Assigned	
	Contaminated Fraction of Livestock Water	-	1	1	None Assigned	
	Contaminated Fraction of Meat	•	1	1	None Assigned	
		-	1	ł	None Assigned	
	Contaminated Eraction of Plant Food	-	1	1	None Assigned	
	Prinking Water Intake (I.Vr)	478.5	90.4	1860	Truncated Lognormal-N	
1 11	Fish Consumption (ka/vr)	20.6	1	1	None Assigned	
. u	Fruit Venetable and Grain Consumption (kg/vr)	111.8	135	318	Triangular	
1	Lasty Veretable Consumption (ko/vr)	21.4	1	1	None Assigned	
	Meat and Poultry Consumption (kg/vr)	67	1	1	None Assigned	
	Milk Constitution	233	60	200	Triangular	
	Other Seafood Consumntion (ka/vr)	0.9	1	1	None Assigned	
Ju	Soil Indestion Rate (r/vr)	18.3	0	36.5	Triangular	
	Denth of Roots (m)	0.9	0.3	4	Uniform	
	Depth of Soit Mivibu Laver (m)	0.15	0	0.6	Triangular	
	Aesthering Removal Constant of all Vegetation	20	6.1	84	Triangular	
	Met Cron Vield for Endder (kolm^3)	1.1	1	1	None Assigned	
	Met Crop Vield for Leafy (kr/m^2)	1.6	1	1	None Assigned	
-	Wet Crop Yield for Non-Leafy (ko/m^2)	0.7	0.397	7.72	Truncated Lognormal-N	
-	Wet Foliar Inception Fraction of Leafy Vegetables	0.25	0.06	0.95	Triangular	
10.	Storage Times for Livestock Fodder	0	1	1	None Assigned	
<u></u>	history Mater Intaka for Milk	60	1		None Assigned	

٦

SNEC INPUT 4-16-02

COZ

5/7/2002

5000 5000 6000 6000 600 GPU Max. 5 5 6 5 5 5 6 600 600 GPU Max. 28341 28341 28341 28341 28341 28341 28341 28341 28341 28341 28341 28341 28341 28341 28341 28341 28341 28341 28341 28341 28341 28341 28341 28341 28341 28341 28341 28341 28341 28341 2800 600 600 600 600 600 600 600 600 60 600 60 600 60 600 60 600 60 600	1 1 1 0		Distribution Coefficient for Americium & Curium	Value Used	ANL Min.	ANL Max.	Distribution Type	
0.0 0.0 0.00 0	6 2 Standand Zane (cm ³ /g) 000 000 000 000 6 1 Standand Zane (cm ³ /g) 01		1. Contaminated Zone (cm ^A 3/g)	1000	1000	5000		
0 0	(1) (2) (3) (3) (4) <td></td> <td>2. Unsaturated Zone (cm^A3/g)</td> <td>1000</td> <td>1000</td> <td>5000</td> <td></td> <td></td>		2. Unsaturated Zone (cm ^A 3/g)	1000	1000	5000		
(1) (1) <td>Image: constraint of carbon in the carbon in the</td> <td></td> <td>3. Saturated Zone (cm^A3/g)</td> <td>1000</td> <td>1000</td> <td>5000</td> <td></td> <td></td>	Image: constraint of carbon in the		3. Saturated Zone (cm ^A 3/g)	1000	1000	5000		
00 1 0 0 0 0 0 0 00 0 1 0	1 1 Continuend Zone (mrV3) -1 0			ANL Value	GPU Min.	GPU Max.	Distribution Type	
(6) (7) (1) <td>1 0</td> <td></td> <td>1. Contaminated Zone (cm^3/g)</td> <td>-</td> <td>0</td> <td>5</td> <td>Uniform</td> <td></td>	1 0		1. Contaminated Zone (cm^3/g)	-	0	5	Uniform	
(10) (10) (10) (10) (10) (10) (11) <th< td=""><td>Image: constraint of the constraint of the</td><td></td><td></td><td>2</td><td>0</td><td>5</td><td>Uniform</td><td></td></th<>	Image: constraint of the			2	0	5	Uniform	
Image: manual production of calitimation conflictuation conflictuatin conflictuatin conflictuation conflictuation conflictuation conf	Image: Contribution Coefficient for Coe			2	0	5	Uniform	
0 1 Configuration Care (corrig) 2311 23411 Configuration Care (corrig) 2311 23411 0 2 Distribution Care (corrig) 2311	(1) (1) <td></td> <td>Distribution Coefficient for Cesium</td> <td>Value Used</td> <td>ANL Min.</td> <td>ANL Max.</td> <td>Distribution Type</td> <td></td>		Distribution Coefficient for Cesium	Value Used	ANL Min.	ANL Max.	Distribution Type	
(1) (1) (2) <td>60 P 2 Constanted Zone (cmr⁻3(a)) 2311 2331<</td> <td></td> <td>1. Contaminated Zone (cm^{A3/g})</td> <td>2131</td> <td>2131</td> <td>28341</td> <td></td> <td></td>	60 P 2 Constanted Zone (cmr ⁻ 3(a)) 2311 2331<		1. Contaminated Zone (cm ^{A3/g})	2131	2131	28341		
(1) 3 Subtrated Zave (cm ³)(3) (2131) 2131 21341 (2131) 2131 21341 (2131) 21341 (2131) (2111) (21111) (2111) (2111)	Image: Constraint and Constraint of Columnic Columni			2131	2131	28341	and the second	
Image: Continuent Zone (cm ²)g) Zone (cm ²)g) <thzone (cm<sup="">2)g) <thzone (cm<sup="">2)g)</thzone></thzone>	Image: Constraint of Condition Conficient for Colotit Value Used All. Min. Min. Min. Distribution Type Fig Partinated Zone (cmr/3g) 200 200 1000 000			2131	2131	28341		
61 F 1. Continued Zone (mr/26) 200	Ref P 1 Continuents Zone (cm ² (3)) 200 200 000<			Value Used	ANL Min.	ANL Max.	Distribution Type	
B Commentand Conditional Condinalana Conditional Conditervicianal Conditional Conditio	En 2 2 2 0 00000 00000 0000		1. Contaminated Zone (cm^3/d)	200	200	1000		
estimate for a (mm2) 3 Saturated Zone (mm2) <td>(1) (1)<td></td><td>2. Unsaturated Zone (cm^A3/a)</td><td>200</td><td>200</td><td>1000</td><td></td><td></td></td>	(1) (1) <td></td> <td>2. Unsaturated Zone (cm^A3/a)</td> <td>200</td> <td>200</td> <td>1000</td> <td></td> <td></td>		2. Unsaturated Zone (cm ^A 3/a)	200	200	1000		
Image: Control of Configuration Configuration Control Volume Molecular Volume Molecular Control metal Control Control End on the control Control <thcontrol< th=""> Control C</thcontrol<>	Image: Constraint of the curring of the cur		3 Saturated Zone (cm [,] 3/d)	200	200	1000		
(1) (1) <td>Ref P 1. Commaneled Zone (cm³/3) 1000 1000 6</td> <td></td> <td></td> <td>Value Used</td> <td>ANL Min.</td> <td>ANL Max.</td> <td>Distribution Type</td> <td></td>	Ref P 1. Commaneled Zone (cm ³ /3) 1000 1000 6			Value Used	ANL Min.	ANL Max.	Distribution Type	
(6) (7) (1) <td>(6) P 3 Unstitution Coefficient for hydrogen (000</td> <td></td> <td>1. Contaminated Zone (cm^v3/d)</td> <td>1000</td> <td>1000</td> <td>5000</td> <td></td> <td></td>	(6) P 3 Unstitution Coefficient for hydrogen (000		1. Contaminated Zone (cm ^v 3/d)	1000	1000	5000		
(1) (2) <td>Image: Instance Zone (cm²)(30,</td> <td></td> <td></td> <td>1000</td> <td>1000</td> <td>5000</td> <td></td> <td></td>	Image: Instance Zone (cm ²)(30,			1000	1000	5000		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Image: Distribution Coefficient for Hydrogen ANL Value (SPU) GPU Min. CPU Min. CPU Min. Distribution Type Rife P Unstantanted Zine (arr/3g) -1(0.23) 0 0.5 Uniform Rife P Unstantanted Zine (arr/3g) -1(0.23) 0 0.5 Uniform Rife P Unstantanted Zine (arr/3g) -1(0.23) 0 0.5 Uniform Rife P Unstantanted Zine (arr/3g) 10000 10000 50000 Uniform Rife P Contaminated Zine (arr/3g) 10000 10000 50000 Uniform Rife P Contaminated Zine (arr/3g) 10000 10000 50000 Uniform Rife P Unstanted Zine (arr/3g) 10000 10000 50000 Uniform Rife P Unstanted Zine (arr/3g) 10000 50000 Distribution Type Rife P Unstanted Zine (arr/3g) 10000 50000 Distribution Type Rife P Unstanted Zine (a			1000	1000	5000		
Rife P 1. Containanted Zone (cm ³ (3)) 1(0.25) 0 0.5 Unitionm	Ris P 1. Contaminated Zone (cm ² /g) -1 (0.25) 0 0.5 Uniform Ris P 2. Unsuttanted Zone (cm ² /g) -1 (0.25) 0 0.5 Uniform Ris P 2. Unsuttanted Zone (cm ² /g) -1 (0.25) 0 0.5 Uniform Ris P 2. Unsuttanted Zone (cm ² /g) 100000 100000 60000 Uniform Ris P 2. Unsuttanted Zone (cm ² /g) 100000 100000 60000 Uniform Ris P 1. Contaminated Zone (cm ² /g) 10000 60000 0.0000 Uniform Ris P 1. Contaminated Zone (cm ² /g) 10000 60000 10000 10000 Ris P 1. Contaminated Zone (cm ² /g) 10000 10000 10000 10000 Ris P 1. Contaminated Zone (cm ² /g) 10000 16000 16000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000				GPU Min.	GPU Max.	Distribution Type	
RefP2 Unsutrated Zone (cm ² 3g)-1(0.25)00.6UnitomRefP3 Saturated Zone (cm ² 3g)-1(0.25)00.60.000UnitomRefP1 Contaminated Zone (cm ² 3g)00001000060000Distribution TypeRefP2 Unstantated Zone (cm ² 3g)00001000060000Distribution TypeRefP2 Unstantated Zone (cm ² 3g)00001000060000Distribution TypeRefP1 Contaminated Zone (cm ² 3g)0000100000000Distribution TypeRefP1 Contaminated Zone (cm ² 3g)0000970060000Distribution TypeRefP2 Unstantated Zone (cm ² 3g)9700870060000Distribution TypeRefP2 Unstantated Zone (cm ² 3g)1300970060000Distribution TypeRefP2 Unstantated Zone (cm ² 3g)13001000010000Distribution TypeRefP2 Unstantated Zone (cm ² 3g)130010000RefDistribution TypeRefP2 Unstantated Zone (cm ² 3g)130010000RefDistribution TypeRefP2 Unstantated Zone (cm ³ 3g)130010000RefDistribution TypeRefP2 Unstantated Zone (cm ³ 3g)11000RefAUL Min.AUL Min.RefP2 Unstantated Zone (cm ³ 3g)11000RefAUL Min.Distribution TypeRefP2 Unst	Right P Unsettuated Zone (cm ³ (g)) -1(0.25) 0 0.5 Uniform Right P 1 Staturated Zone (cm ³ (g)) 1(0.25) 0 0.5 Uniform Right P 1 Constructed Zone (cm ³ (g)) 1(0.000) 60000 0.55000 Uniform Right P 1 Constructed Zone (cm ³ (g)) 10000 60000 50000 Distribution Type Right P 1 Constructed Zone (cm ³ (g)) 10000 60000 50000 Distribution Type Right P 1 Constructed Zone (cm ³ (g)) 9700 9700 160000 0000 0000 Right Distribution Coefficient for Lead Value Lead ANL Min. ANL Min. Distribution Type Right P Constructed Zone (cm ³ (g)) 9700 9700 160000 <		1. Contaminated Zone (cm ^v 3/g)	~1 (0.25)	0	0.6	Uniform	
Interf P 3 Saturated Zone (cm ³ 3g) - 10 25) 0 0.55 Uniform Fit P 1 Contaminated Zone (cm ³ 3g) - 10 020 6000 6000 6000 0 bistribution Type Fit P 1 Contaminated Zone (cm ³ 3g) 1000 1000 6000 6000 0 bistribution Type Fit P 2 Contaminated Zone (cm ³ 3g) 1000 1000 6000 6000 0 bistribution Type Fit P 1 Contaminated Zone (cm ³ 3g) 9700 9700 6000 6000 0 bistribution Type Fit P 1 Contaminated Zone (cm ³ 3g) 9700 9700 6000 0 bistribution Type Fit P 1 Contaminated Zone (cm ³ 3g) 9700 9700 6000 0 bistribution Type Fit P 1 Contaminated Zone (cm ³ 3g) 9700 9700 10000 0 bistribution Type Fit D 1 Statused Zone (cm ³ 3g) 1300 10000 10000 0 bistribution Type Fit D 1 Contaminated Zone (c	refs p 3 Saturated Zone (cm ³ (3)) 1 (0.25) 0 0.5 0.101100m R16 F Commanated Zone (cm ³ (3)) Value Usad OPU Min. OPU Max. Distribution Type R16 F Commanated Zone (cm ³ (3)) 10000 60000 60000 Distribution Type R16 F Commanated Zone (cm ³ (3)) 10000 60000 60000 Distribution Type R16 F Commanated Zone (cm ³ (3)) 10000 60000 60000 Distribution Type R16 F Commanated Zone (cm ³ (3)) 9700 60000 60000 0000 60000 R16 1 Commanated Zone (cm ³ (3)) 9700 66000 66000 0			~1 (0.25)	0	0.5	Uniform	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Interplete Distribution Coefficient for Iron Value Used CPU Max. Distribution Type R16 P 1 Contaminated Zone (cm ³ g) 10000 60000 60000 Distribution Type R16 P 1 Contaminated Zone (cm ³ g) 10000 60000 60000 Bistribution Type R16 P 1 Contaminated Zone (cm ³ g) 10000 60000 60000 Bistribution Type R16 P 1 Contaminated Zone (cm ³ g) 9700 9700 16000 0000 60000 Distribution Type R16 P 1 Contaminated Zone (cm ³ g) 9700 9700 16000 0000		3. Saturated Zone (cm ⁴ 3/d)	~1 (0.25)	0	0.5	Uniform	
R6 P 1. Contamated Zone (cm ³ /3) 1000 1000 50	Rife P 1. Contaminated Zone (cm ³ /g) 10000 10000 50		Distribution Coefficient for Iron	Value Used	GPU Min.	GPU Max.	Distribution Type	
Ris P 2 Unsuturated Zone (omr30) 10000 10000 50000 </td <td>Rife P 2. Unstaturated Zone (cm³/3g) 10000 10000 6</td> <td></td> <td>1. Contaminated Zone (cm^3/g)</td> <td>10000</td> <td>10000</td> <td>50000</td> <td></td> <td></td>	Rife P 2. Unstaturated Zone (cm ³ /3g) 10000 10000 6		1. Contaminated Zone (cm^3/g)	10000	10000	50000		
p1 3 Saturated Zone (cm ³)3(1) 10000 10000 5000 <	Ref P 3 Saturated Zone (cm ³ 3g) 10000 10000 60000 60000 60000 60000 R16 P 1 Contaminated Zone (cm ³ 3g) 8700 8700 8700 65000 9700 9500 <t< td=""><td></td><td>2. Unsaturated Zone (cm^A3/g)</td><td>10000</td><td>10000</td><td>50000</td><td>A REAL PROPERTY AND A REAL</td><td></td></t<>		2. Unsaturated Zone (cm ^A 3/g)	10000	10000	50000	A REAL PROPERTY AND A REAL	
	multiply Distribution Coefficient for Lead Value Used AML Mm. AML Distribution Type Image Rie P 2. Unsaturated Zone (cmr3g) 9700 9700 160000 Distribution Type Image Ima		3. Saturated Zone (cm^3/g)	10000	10000	50000		
R16 P 1. Contaminated Zone (om*3g) 9700 9700 160000 <th16000< th=""> <th16000< th=""> 160000<!--</td--><td>R16P11. Contaminated Zone (cm³dy)9700970016000160001R16P2. Unseturated Zone (cm³dy)97009700160001600001R16P3. Saturated Zone (cm³dy)9700130013001600001R16P2. Unseturated Zone (cm³dy)130013001300100001R16P2. Unseturated Zone (cm³dy)130013001000011R16P1. Contaminated Zone (cm³dy)130013001000011R16P1. Contaminated Zone (cm³dy)160130010000111R16P1. Unseturated Zone (cm³dy)1601606001111R16P2. Unseturated Zone (cm³dy)160160600111<td< td=""><td></td><td>Distribution Coefficient for Lead</td><td>Value Used</td><td>ANL Min.</td><td>ANL Max.</td><td>Distribution Type</td><td></td></td<></td></th16000<></th16000<>	R16P11. Contaminated Zone (cm ³ dy)9700970016000160001R16P2. Unseturated Zone (cm ³ dy)97009700160001600001R16P3. Saturated Zone (cm ³ dy)9700130013001600001R16P2. Unseturated Zone (cm ³ dy)130013001300100001R16P2. Unseturated Zone (cm ³ dy)130013001000011R16P1. Contaminated Zone (cm ³ dy)130013001000011R16P1. Contaminated Zone (cm ³ dy)160130010000111R16P1. Unseturated Zone (cm ³ dy)1601606001111R16P2. Unseturated Zone (cm ³ dy)160160600111 <td< td=""><td></td><td>Distribution Coefficient for Lead</td><td>Value Used</td><td>ANL Min.</td><td>ANL Max.</td><td>Distribution Type</td><td></td></td<>		Distribution Coefficient for Lead	Value Used	ANL Min.	ANL Max.	Distribution Type	
RisP2. Unsaturated Zone (cm ³ /3(k))9700970	Rf6 P 2 Unstanted Zone (cm ³ (g)) 9700 9700 9700 16000 1 Rf6 P 1 Contaminated Zone (cm ³ (g)) 1300 1300 1300 10000 Distribution Type Rf6 P 1 Contaminated Zone (cm ³ (g)) 1300 1300 1300 10000 Distribution Type Rf6 P 1 Contaminated Zone (cm ³ (g)) 1300 1300 10000 Distribution Type Rf6 P 2 Unstanted Zone (cm ³ (g)) 1300 1300 10000 Distribution Type Rf6 P 1 Contaminated Zone (cm ³ (g)) 160 600 Distribution Type Rf6 P 1 Contaminated Zone (cm ³ (g)) 160 600 Distribution Type Rf6 P 1 Contaminated Zone (cm ³ (g)) 11 11 475 Distribution Type Rf6 P 1 0000 0000 Endot Endot Endot Endot Endot Endot <td></td> <td></td> <td>9700</td> <td>9700</td> <td>160000</td> <td></td> <td></td>			9700	9700	160000		
R16P3. Saturated Zone (cm ³ /3)970097009700160001600016000R16P1. Contaminated Zone (cm ³ /3)130013001300130013001300R16P2. Unsaturated Zone (cm ³ /3)13001300130010000130010000R16P1. Contaminated Zone (cm ³ /3)13001300100001000010000R16P1. Contaminated Zone (cm ³ /3)13001300100001000010000R16P1. Contaminated Zone (cm ³ /3)160600100001000010000R16P2. Unsaturated Zone (cm ³ /3)1601606001000010000R16P1. Contaminated Zone (cm ³ /3)1601606001000010000R16P1. Contaminated Zone (cm ³ /3)1111475Distribution TypeR16P2. Unsaturated Zone (cm ³ /3)1111475Distribution TypeR16P1. Contaminated Zone (cm ³ /3)1111475Distribution TypeR16P2. Unstaturated Zone (cm ³ /3)1111475Distribution TypeR16P1. Contaminated Zone (cm ³ /3)1111475Distribution TypeR16P2. Unstaturated Zone (cm ³ /3)1111475Distribution TypeR16P2. Unstaturated Zone (cm ³ /3)1111475Distribution Type	Ref P 3. Saturated Zone (cm ³ 3g) 9700 9700 16000 160000 <t< td=""><td></td><td></td><td>9700</td><td>9700</td><td>160000</td><td></td><td></td></t<>			9700	9700	160000		
Met Distribution Coefficient for Nickel Value Used ANL Max. Distribution Type R16 P 1 Condumated Zone (cm ³ g) 1300 <	Image: Distribution Coefficient for Nickel Value Used ANL Mm. ANL Mm. Distribution Type Rife P 1 Contaminated Zone (cm ³ dg) 1300 1300 10000 Distribution Type Rife P 3 Saturated Zone (cm ³ dg) 1300 1300 10000 Distribution Type Rife P 0 Saturated Zone (cm ³ dg) 1300 1300 10000 Distribution Type Rife P 1 Contaminated Zone (cm ³ dg) 1300 1300 0000 Distribution Type Rife P 1 Contaminated Zone (cm ³ dg) 160 160 600 Distribution Type Rife P 1 Contaminated Zone (cm ³ dg) 160 160 600 Distribution Type Rife P 1 Contaminated Zone (cm ³ dg) 11 11 475 Distribution Type Rife P 1 Contaminated Zone (cm ³ dg) 11 475 Distribution Type Rife P 1 Contaminated Zone (cm ³ dg) 11 475 Distribution Type Rife <t< td=""><td></td><td>Saturated</td><td>9700</td><td>9700</td><td>160000</td><td></td><td></td></t<>		Saturated	9700	9700	160000		
RifePI. Contaminated Zone (cm ³ g)1300130013001000010000RifeP2. Unsutrated Zone (cm ³ g)1300130010000Pictribution TypeRifeP3. Unsutrated Zone (cm ³ g)1300130010000Pictribution TypeRifeP1. Contaminated Zone (cm ³ g)160600Distribution TypeRifeP3. Unsutrated Zone (cm ³ g)160600Distribution TypeRifeP3. Unsutrated Zone (cm ³ g)1111475RifeP1. Contaminated Zone (cm ³ g)1111475RifeP3. Sutrated Zone (cm ³ g)1111475RifeP1. Contaminated Zone (cm ³ g)11476Distribution TypeRifeP3. Sutrated Zone (cm ³ g)16600SottDistribution TypeRifeP1. Contaminated Zone (cm ³ g)11476Distribution TypeRifeP3. Sutrated Zone (cm ³ g)16600SottDistribution TypeRifeP3. Sutrated Zone (cm ³ g)1111	Rt P 1 Contaminated Zone (cm ³ (d)) 1300 1300 10000 10000 10000 Rt P 2 Unsaturated Zone (cm ³ (d)) 1300 1300 1300 10000		Distribution Coefficient for Nickel	Value Used	ANL Min.	ANL Max.	Distribution Type	
RifeP2. Unsaturated Zone (cm^3(3))1300130013001000010000RifeP3. Saturated Zone (cm^3(3))NameNameNameNameNameRifeP1. Contaminated Zone (cm^3(3))160160600NameNameNameRifeP2. Unsaturated Zone (cm^3(3))160160600600NameNameRifeP2. Unsaturated Zone (cm^3(3))160160600600NameNameRifeP1. Contaminated Zone (cm^3(3))11111111ATNameNameRifeP2. Unsaturated Zone (cm^3(3))111111475NameNameNameRifeP2. Unsaturated Zone (cm^3(3))111111475NameNameNameRifeP3. Saturated Zone (cm^3(3))1111475NameNameNameRifeP1. Contaminated Zone (cm^3(3))1616600NameNameNameRifeP1. Contaminated Zone (cm^3(3))1111475NameNameNameRifeP1. Contaminated Zone (cm^3(3))1616600NameNameNameRifeP1. Contaminated Zone (cm^3(3))1616600NameNameNameRifeP2. Unsaturated Zone (cm^3(3))1617A75NameNameRifeP <td>Ris P 2 Unsaturated Zone (cm³3g) 1300 1300 1300 10000 10000 10000 Ris P 1 Saturated Zone (cm³3g) Value Used AIL Distribution Type Distribution Type Ris P 1 Contaminated Zone (cm³3g) 160 160 600 Distribution Type Ris P 2 Unsaturated Zone (cm³3g) 160 160 600 Distribution Type Ris P 3 Saturated Zone (cm³3g) 160 160 600 Distribution Type Ris Distribution Coefficient for Vitanium Value Used AIL NIL NIL AIL AIL</td> <td></td> <td>1. Contaminated Zone (cm^3/g)</td> <td>1300</td> <td>1300</td> <td>10000</td> <td></td> <td></td>	Ris P 2 Unsaturated Zone (cm ³ 3g) 1300 1300 1300 10000 10000 10000 Ris P 1 Saturated Zone (cm ³ 3g) Value Used AIL Distribution Type Distribution Type Ris P 1 Contaminated Zone (cm ³ 3g) 160 160 600 Distribution Type Ris P 2 Unsaturated Zone (cm ³ 3g) 160 160 600 Distribution Type Ris P 3 Saturated Zone (cm ³ 3g) 160 160 600 Distribution Type Ris Distribution Coefficient for Vitanium Value Used AIL NIL NIL AIL		1. Contaminated Zone (cm^3/g)	1300	1300	10000		
R16P3 Saturated Zone (cm ³ 3g)1300130010000R16P1 Contaminated Zone (cm ³ 3g)160160160160R16P2 Unsaturated Zone (cm ³ 3g)160160600160R16P2 Unsaturated Zone (cm ³ 3g)160160600160R16P2 Unsaturated Zone (cm ³ 3g)110111111111R16P2 Unsaturated Zone (cm ³ 3g)111111111111R16P2 Unsaturated Zone (cm ³ 3g)111111111111R16P2 Unsaturated Zone (cm ³ 3g)111111111115R16P2 Unsaturated Zone (cm ³ 3g)111111115111116R16P2 Unsaturated Zone (cm ³ 3g)111111115115111115R16P2 Unsaturated Zone (cm ³ 3g)11111115115115115R16P2 Unsaturated Zone (cm ³ 3g)16165001515R16P2 Unsaturated Zone (cm ³ 3g)16165001616R16P2 Unsaturated Zone (cm ³ 3g)16166001616R16P2 Unsaturated Zone (cm ³ 3g)161111517516R16P2 Unsaturated Zone (cm ³ 3g)1616500161616R16P2 Unsaturated Zone (cm ³ 3g)16 <t< td=""><td>Prise P 3 Saturated Zone (cm³3g) 1300 1300 10000 10000 Rie P 1 Contaminated Zone (cm³3g) Unstribution Coefficient for Plutonium Value Used ANL Max. Distribution Type Rie P 1. Contaminated Zone (cm³3g) 160 160 600 Bistribution Type Rie P 3. Saturated Zone (cm³3g) 160 160 600 Bistribution Type Rie P 1. Contaminated Zone (cm³3g) 11 11 475 Distribution Type Rie P 2. Unsaturated Zone (cm³3g) 11 11 475 Distribution Type Rie P 3. Saturated Zone (cm³3g) 11 11 475 Distribution Type Rie D 2. Unsaturated Zone (cm³3g) 11 476 ML Max. Distribution Type Rie D 2. Unsaturated Zone (cm³3g) 11 475 Distribution Type Rie D 2. Unsaturated Zone (cm³3g) 11 476 Distribution Type</td><td></td><td></td><td>1300</td><td>1300</td><td>10000</td><td></td><td></td></t<>	Prise P 3 Saturated Zone (cm ³ 3g) 1300 1300 10000 10000 Rie P 1 Contaminated Zone (cm ³ 3g) Unstribution Coefficient for Plutonium Value Used ANL Max. Distribution Type Rie P 1. Contaminated Zone (cm ³ 3g) 160 160 600 Bistribution Type Rie P 3. Saturated Zone (cm ³ 3g) 160 160 600 Bistribution Type Rie P 1. Contaminated Zone (cm ³ 3g) 11 11 475 Distribution Type Rie P 2. Unsaturated Zone (cm ³ 3g) 11 11 475 Distribution Type Rie P 3. Saturated Zone (cm ³ 3g) 11 11 475 Distribution Type Rie D 2. Unsaturated Zone (cm ³ 3g) 11 476 ML Max. Distribution Type Rie D 2. Unsaturated Zone (cm ³ 3g) 11 475 Distribution Type Rie D 2. Unsaturated Zone (cm ³ 3g) 11 476 Distribution Type			1300	1300	10000		
Distribution Coefficient for Plutonium Value Used ANL Min. ANL Max. Distribution Type R16 P 1. Contaminated Zone (cm ³ 3(g) 160 600 600 17/pe R16 P 3. Sutrated Zone (cm ³ 3(g) 160 160 600 600 17/pe R16 P 1. Contaminated Zone (cm ³ 3(g) 160 600 600 10 10 R16 P 1. Contaminated Zone (cm ³ 3(g) 11 11 475 Distribution Type R16 P 2. Unsaturated Zone (cm ³ 3(g) 11 11 475 Distribution Type R16 P 1. Contaminated Zone (cm ³ 3(g) 11 475 Distribution Type R16 P 1. Contaminated Zone (cm ³ 3(g) 11 475 Distribution Type R16 P 1. Contaminated Zone (cm ³ 3(g) 11 475 Distribution Type R16 P 1. Ant Min. AnL Min. AnL Min. Ant Min. Ant Min. R16 P 1. Ant M	Distribution Coefficient for Plutonium Value Used ANL Max. Distribution Type Ris P 1 Contaminated Zone (cm ⁽³ d)) 160 600 600 001 000 Ris P 2 Unsaturated Zone (cm ⁽³ d)) 160 160 600 000 </td <td></td> <td>Satura</td> <td>1300</td> <td>1300</td> <td>10000</td> <td></td> <td></td>		Satura	1300	1300	10000		
R16P1. Contaminated Zone (cm ⁻³ g)160160600600600R16P2. Unsaturated Zone (cm ⁻³ g)160160160600160160R16P1. Contaminated Zone (cm ⁻³ g)160160600100100100R16P1. Contaminated Zone (cm ⁻³ g)111111475100100R16P2. Unsaturated Zone (cm ⁻³ g)111111475100100R16P2. Unsaturated Zone (cm ⁻³ g)1111475100100100R16P2. Unsaturated Zone (cm ⁻³ g)1111475100100100R16P2. Unsaturated Zone (cm ⁻³ g)1616600100100100R16P2. Unsaturated Zone (cm ⁻³ g)1616620100100100R16P2. Unsaturated Zone (cm ⁻³ g)16166200100100100R16P2. Unsaturated Zone (cm ⁻³ g)16166200100100100R16P2. Unsaturated Zone (cm ⁻³ g)16166200100100100R16P3. Saturated Zone (cm ⁻³ g)16166200100100100R16P3. Saturated Zone (cm ⁻³ g)16166200100100100R16P3. Saturated Zone (cm ⁻³ g)161616 <td>R1 F 1 Contaminated Zone (cm³3(g) 160 160 600</td> <td></td> <td>Distribution Coefficient for Plutonium</td> <td>Value Used</td> <td>ANL Min.</td> <td>ANL Max.</td> <td>Distribution Type</td> <td></td>	R1 F 1 Contaminated Zone (cm ³ 3(g) 160 160 600		Distribution Coefficient for Plutonium	Value Used	ANL Min.	ANL Max.	Distribution Type	
Ris P Z. Unsaturated Zone (cm ³ 3g) 160 160 600<	Ris P 2. Unsaturated Zone (cm ³ /3g) 160 160 600			160	160	600		
ND P on contractor Zone (cm ⁻ /3g) ND	R10 P. Orbitation Coefficient for Strontium Value Used ANL Max. Distribution Type R16 P 1. Contaminated Zone (cm ³ /dy) 11 476 Distribution Type R16 P 2. Unsaturated Zone (cm ³ /dy) 11 476 Distribution Type R16 P 3. Saturated Zone (cm ³ /dy) 11 476 Distribution Type R16 P 1. Contaminated Zone (cm ³ /dy) 11 476 Distribution Type R16 P 1. Contaminated Zone (cm ³ /dy) 16 16 5200 Distribution Type R16 P 2. Unsaturated Zone (cm ³ /dy) 16 16 5200 Distribution Type R16 P 3. Saturated Zone (cm ³ /dy) 16 16 5200 Distribution Type R16 P 3. Saturated Zone (cm ³ /dy) 16 16 5200 Distribution Type R16 P 3. Saturated Zone (cm ³ /dy) 16 5200 Saturated Zone (cm ³ /dy) Not Max. R16 B 5200 5200		2. Unsaturated Zone (cirr'org)	100	100	000		
R16 P 1. Contaminated Zone (cm ³ /3) 11 1.1	R16P1. Contaminated Zone (cm ³ 3g)11 <th< td=""><td></td><td>oarnia</td><td>Value Lead</td><td>ANI Min</td><td>ANI May</td><td>Distribution Tyme</td><td></td></th<>		oarnia	Value Lead	ANI Min	ANI May	Distribution Tyme	
Rife P 2. Unsaturated Zone (cm/3/g) 11 11 475 2 Rife P 3. Saturated Zone (cm/3/g) 11 11 475 Distribution Type Rife P 1. Contaminated Zone (cm/3/g) 11 11 475 Distribution Type Rife P 1. Contaminated Zone (cm/3/g) 16	Fig P 2. Unsaturated Zone (cm/3g) 11 11 475 1 475 Rife P 3. Saturated Zone (cm/3g) 11 11 475 Distribution Type Rife P 1. Contaminated Zone (cm/3g) 11 11 475 Distribution Type Rife P 1. Contaminated Zone (cm/3g) 16 16 5200 Distribution Type Rife P 2. Unsaturated Zone (cm/3g) 16 16 5200 Distribution Type Rife P 3. Saturated Zone (cm/3g) 16 6200 Econo Econo Econo Rife P 3. Saturated Zone (cm/3g) 16 6200 Econo Econo<		1 Contaminated Zone (cm/3/n)	11	11	475		
Ris P 3. Saturated Zone (cm ³ 3g) 11 11 475 Ant Distribution Type Ris P 1. Contaminated Zone (cm ³ 3g) 16 ANL Min. ANL Max. Distribution Type Ris P 1. Contaminated Zone (cm ³ 3g) 16 16 5200 End Ris P 2. Unsaturated Zone (cm ³ 3g) 16 16 5200 End Ris P 3. Saturated Zone (cm ³ 3g) 16 16 5200 End Ris P 3. Saturated Zone (cm ³ 3g) 16 16 5200 End End NOTE: ANL Kd values may be "greater than" values. The ANL Min. value is the lowest reported value for this element and the ANL Max. value is the highest reported value. Monter End End<	Ris P 3. Saturated Zone (cm ³ 3g) 11 11 475 200 Ris P 1. Contaminated Zone (cm ³ 3g) Value Used ANL Min. ANL Max. Distribution Type Ris P 1. Contaminated Zone (cm ³ 3g) 16 16 16 5200 Distribution Type Ris P 2. Unsaturated Zone (cm ³ 3g) 16 16 5200 Distribution Type Ris P 3. Saturated Zone (cm ³ 3g) 16 16 500 Distribution Type NOTE: ANL Kd values may be "greater than" values. The ANL Min. value is the lowest reported value for this element and the ANL Max. value is the highest reported value. NoTE: Items in RED type face are SNEC input values. NOTE: Items with BLUE background are D & D default values, while items with a YELLOW background are RESRAD default values. Note: Ant values.			11	11	475		
Distribution Coefficient for Uranium Value Used ANL Max. Distribution Type R16 P 1. Contaminated Zone (cm ¹ 3/g) 16 5200 16 5200 R16 P 2. Unsaturated Zone (cm ¹ 3/g) 16 16 5200 16 5200 R16 P 3. Saturated Zone (cm ¹ 3/g) 16 16 5200 16	Distribution Coefficient for Uranium Value Used ANL Min. ANL Max. Distribution Type R16 P 1. Contaminated Zone (cm^3/3/g) 16 16 5200 Distribution Type R16 P 2. Unsaturated Zone (cm^3/3/g) 16 16 5200 Distribution Type R16 P 2. Unsaturated Zone (cm^3/3/g) 16 16 500 Distribution Type R16 P 3. Saturated Zone (cm^3/3/g) 16 16 500 Distribution Type R16 P 3. Saturated Zone (cm^3/3/g) 16 16 500 Distribution Type R16 P 3. Saturated Zone (cm^3/3/g) 16 16 500 Distribution Type NOTE: ANL Kd values may be "greater than" values. The ANL Min. value is the lowest reported value for this element and the ANL Max. value is the highest reported value. NOTE: tems with BLUE background are D & D default values, while items with a YELLOW background are RESRAD default values.			11	11	475		
R16 P 1. Contaminated Zone (cm^3/g) 16 16 5200 R16 P 2. Unsaturated Zone (cm^3/g) 16 16 5200 R16 P 3. Saturated Zone (cm^3/g) 16 5200 5200 R16 P 3. Saturated Zone (cm^3/g) 16 5200 5200 R16 P 3. Saturated Zone (cm^3/g) 16 16 5200 NOTE: ANL Kd values may be "greater than" values. The ANL Min. value is the lowest reported value for this element and the ANL Max. value is the highest reported value. NOTE: Items in RED type face are SNEC input values.	R16 P 1. Contaminated Zone (cm ^{1/3} /g) 16 5200 16 5200 R16 P 2. Unsaturated Zone (cm ^{1/3} /g) 16 16 5200 16 16 5200 R16 P 3. Saturated Zone (cm ^{1/3} /g) 16 16 5200 16 16 5200 NOTE: ANL Kd values may be "greater than" values. The ANL Min. value is the lowest reported value for this element and the ANL Max. value is the highest reported value. NOTE: items with BLUE background are D & D default values. NOTE: items with BLUE background are D & D default values. YELLOW background are RESRAD default values.			Value Used	ANL Min.	ANL Max.	Distribution Type	
R16 P 2. Unsaturated Zone (cm ^{-/3} /g) 16 5200 R16 P 3. Saturated Zone (cm ^{-/3} /g) 16 5200 R16 R16 16 5200 NOTE: ANL Kd values may be "greater than" values. The ANL Min. value is the lowest reported value for this element and the ANL Max. value is the highest reported value. NOTE: Items in RED type face are SNEC input values.	R16 P 2. Unsaturated Zone (cm ^{4/3} /g) 16 16 5200 R16 P 3. Saturated Zone (cm ^{4/3} /g) 16 16 5200 NOTE: ANL Kd values may be "greater than" values. The ANL Min. value is the lowest reported value for this element and the ANL Max. value is the highest reported value. NOTE: Items in RED type face are SNEC input values. NOTE: Items with BLUE background are D & D default values, while items with a YELLOW background are RESRAD default values.		1. Contaminated Zone (cm ^v 3/g)	1000	16	5200		
R16 P 3. Saturated Zone (cm^3(g)) 16 16 5200 NOTE: ANL Kd values may be "greater than" values. The ANL Min. value is the lowest reported value for this element and the ANL Max. value is the highest reported value. NOTE: Items in RED type face are SNEC input values.	R16 P 3: Saturated Zone (cm^3(g)) 16 16 5200 NOTE: ANL Kd values may be "greater than" values. The ANL Min. value is the lowest reported value for this element and the ANL Max. value is the highest reported value. NOTE: Items in RED type face are SNEC input values. Not avalue is the lowest reported value for this element and the ANL Max. value is the highest reported value. NOTE: Items with BLUE background are D & D default values, while items with a YELLOW background are RESRAD default values.		2. Unsaturated Zone (cm^3/g)	16	16	5200		
NOTE: ANL Kd values may be "greater than" values. The ANL Min. value is the lowest reported value for this element and the ANL Max. value is the highest reported value. NOTE: Items in RED type face are SNEC input values.	NOTE: ANL Kd values may be "greater than" values. The ANL Min. value is the lowest reported value for this element and the ANL Max. value is the highest reported value. NOTE: Items in RED type face are SNEC input values. NOTE: Items with BLUE background are D & D default values, while items with a <u>YELLOW</u> background are RESRAD default values.		3. Saturated Zone (cm^3/g)	16	16	5200		
NOTE: ANL Kd values may be "greater than" values. The ANL Min. value is the lowest reported value for this element and the ANL Max. value is the highest reported value. NOTE: Items in RED type face are SNEC input values.	NOTE: ANL Kd values may be "greater than" values. The ANL Min. value is the lowest reported value for this element and the ANL Max. value is the highest reported value. NOTE: Items in RED type face are SNEC input values. NOTE: Items with BLUE background are D & D default values, while items with a YELLOW background are RESRAD default values.							
	NOTE: Items in RED type face are SNEC input values. NOTE: Items with BLUE background are D & D default values, while items with a YELLOW background are RESRAD default values.	NOTE: ANL Kd va	lues may be "greater than" values. The ANL Min. value is the lowes	t reported value for this	element and the AN	IL Max. value is the h	ighest reported value.	
	NOTE: Items with BLUE background are D & D default values, while items with a YELLOW background are RESRAD default values.	NOTE: Items in R	ED type face are SNEC input values.					

٩

1

SNEC INPUT 4-18-02

5/7/2002

	Calcul	ation Sheet		
Subject	9. to	Calc. No.	Rev. No.	Sheet No.
SNEC Radionuclide List		E900-01-030	1	_10f_6
Originator	Date	Reviewed by	- Date	10/02
Pat Donnachie Wannachi	April 30, 2002	Barry Brosey B. Brow	- 4/3	

1. Purpose

The purpose of this calculation is to document the most representative list of radionuclides to be considered at SNEC and to provide verification why some radionuclides were selected and others were not. Chapter 5, Table 5-1 of the SNEC License Termination Plan (LTP), Revision 0, contains a list of 26 radionuclides that have derived concentration guidelines (DCGLs) calculated. These radionuclides were either identified as part of the site characterization process or based on current knowledge at the time. This data was selected from the SNEC Characterization Report (Reference 3.1). To date more analytical information has been collected in justifying a better representation of radionuclides found at SNEC. In addition, a formal process, based on regulatory guidance, has been implemented to select radionuclides applicable to the site.

Determining a representative list of radionuclides provides the following:

- a. Increased efficiencies and clearer guidance for sampling and analysis.
- b. Emphasis on radionuclides contributing significant doses to the public.
- c. More efficient regulatory review.
- d. Simplification of dose models.
- e. Analytical cost reduction.

2. Summary of results

Guidance from NUREG/CR-3474 and NUREG/CR-0130 (References 3.6 & 3.7) was used to first develop a comprehensive list of radionuclides (Table 4) that could potentially be found in media at SNEC, during its operation and post shutdown periods. From this list various criteria was used to deselect radionuclides. Information on site-specific radionuclides was also determined using results of characterization surveys, waste stream analyses and historical site assessments that are appropriate for each medium. Once a list was developed a 4-step process was used to deselect radionuclides that are not applicable to SNEC.

Step 1 - SNEC has been shut down for almost 30 years. All radionuclides with half lives less than 3 years have been deselected since they have decayed 10 half lives.

Step 2 - Over 500 samples in various media have been analyzed as part of the characterization process. Radionuclide results below minimum detectable activity (MDA) levels were deselected.

Step 3 – Radionuclides in media that were < 1% of the total mix activity and < 10% of the dose limit were also deselected. Per Appendix E of NUREG-1727 (Reference 8) radionuclides contributing < 10% of the dose limit can be screened out.

Step 4 - Evaluate which media contain certain radionuclides.

	Calcula	ation Sheet	
Subject		Calc. No.	Rev. No. Sheet No.
SNEC Radionuclide List		E900-01-030	1 2 of 6
Originator	Date	Reviewed by	Date 4/30/02
Pat Donnachie Hamulue	April 30, 2002	Barry Brosey B.B.	

As a result of the deselecting process and most recent characterization data, a table has been developed listing radionuclides present at the SNEC site. This table represents a comprehensive list of radionuclides potentially found in volumetric media and on surface areas.

SNEC Radionuclide List Table

H-3	Eu-152
C-14	Pu-238
Co-60	Pu-239
Ni-63	Pu-241
Sr-90	Am-241
Cs-137	

3. References:

.

- 3.1 SNEC Facility Site Characterization Report, May 1996
- 3.2 SNEC License Termination Plan, February 2000
- 3.3 SNEC Historical Site Assessment Report, March 2000
- 3.4 SNEC Soil Characterization Report, May 1995
- 3.5 File W:/Donnachie/Nuclide Laboratory Analysis Results.xls
- 3.6 NUREG/CR-3474, "Long-lived Activation Products in Reactor Materials", August 1984.
- 3.7 NUREG/CR-0130, "Technology, Safety, and Costs of Decommissioning a Reference Pressurized Water Reactor Power Station", June 1978.
- 3.8 NUREG-1727, "NMSS Decommissioning Standard Review Plan", September 2000.
- 3.9 Federal Guidance Report No. 11, "Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion", September 1988.
- 3.10 Federal Guidance Report No. 12, "External Exposure to Radionuclides in Air, Water, and Soil", September 1993.
- 3.11 NCRP Report No. 45, "Natural Background Radiation in the United States," pg 46, November 15, 1975.

	Calcula	ation Sheet		
Subject SNEC Radionuclide List		Calc. No. E900-01-030	Rev. No. 1	Sheet No. 3 of 6
Originator Pat Donnachie Damethie	Date April 30, 2002	Reviewed by Barry Brosey 3.B	Date 4 3	30/02
UV				

4. Assumptions and Basic Data

The following criteria was used to determine a reasonable list of radionuclides that are significant at the SNEC site (Reference Table 3.4):

- a. NUREG/CR- 0130 & 3474 guidance for selection of radionuclides in PWR station media. The following tables from these NUREGs were used to determine a comprehensive list of radionuclides from which a deselection process could be used, i.e. NUREG/CR-3474, Tables 1.1, 5.4 & 5.6 and NUREG/CR-0130, Volumes 1 & 2, Tables 7.3-5, 7.3-11, 7.3-14, C.1-3, C.1-5, E.2-1, E.2-2 & E.2-3. This list is consistent with the regulatory guidance for radionuclides of concern in bio-shield wall concrete, rebar, and surface contamination and site deposition from radioactive releases. A total of 71 radionuclides initially made the comprehensive list as a result of the NUREG tables review and, also, through the addition of some transuranic nuclides not contained in the NUREG tables. However, many radionuclides in the regulatory guidance are not applicable to SNEC based on short half-life, low relative abundance in media mix, or inconsequential dose contribution.
- b. Deselect radionuclides that have decayed 10 half lives (i.e. radionuclides with half-life < 3 years). This method takes into account SNEC's 30 year shut down period. A total of 31 radionuclides with half-lives less than 3 years were deselected from the initial list leaving 40 radionuclides remaining.
- c. Evaluate positively identified radionuclides (i.e. gamma emitters, hard to detect and transuranic nuclides) identified above MDA. Gamma scan results on over 540 samples were reviewed from the SNEC characterization electronic database. In addition, transuranic and hard to detect radionuclides were reviewed from technical reports and laboratory analysis data. Sample media consisted of smears, core bores, pipe scrapings, soil, sediment and water. Samples were obtained from CV system components & piping, structural concrete, surface & sub-surface soils, site wells, CV paint and SSGS related structures. A total of 21 radionuclides were deselected as being less than MDA leaving 19 radionuclides remaining. Of these 19, two radionuclides (Fe-55 & Cm-242) have half-lives less than 3 years but were detected slightly above MDA in a few samples. However, they are less than 1% of the mix activity and will be deselected.

Per Reference 3.11 one gram of natural uranium contains 0.33 uCi of U-238, 0.015 uCi of U-235 and 0.3 uCi of U-234, subject to minor variations in U-234. U-234, U-235 and U-238 have been detected in samples. Results of these uranium nuclides are listed in Table 2. An evaluation was made to determine if these uraniums were plant produced or naturally occurring. Table 3 presents the estimated activities for each uranium as it is found in nature. Nuclide ratios (U234/U238, U238/U235 & U234/U235) were calculated with specified uncertainty ranges. From this information SNEC samples contain naturally occurring uranium.

	Calcul	ation Sheet	
Subject	<u> </u>	Calc. No.	Rev. No. Sheet No.
SNEC Radionuclide List		E900-01-030	1 4 of 6
Originator	Date	Reviewed by	Date 4/30/02
Pat Donnachie	April 30, 2002	Barry Brosey B.3 ~	
() V			

The following technical reports and analytical data were reviewed:

SNEC Facility Characterization Report, May 1996:

Tables 4-1, 4-5, 4-6, 4-7, 4-8, 4-10, 4-13, 4-17, 4-20, 4-21, 4-25, 4-27, 4-28, 4-29, 4-30, 4-31, 4-53

SNEC License Termination Plan, February 2000 - Revision 0:

Tables 2-1, 2-2, 2-3, 2-4, 2-5, 2-6, 2-7, 2-8, 2-9, 2-10, 2-12, 2-14, 2-15, 2-16, 2-17

SNEC Historical Site Assessment Report, March 2000:

Sections 7.1 and 7.2, pp. 27-40

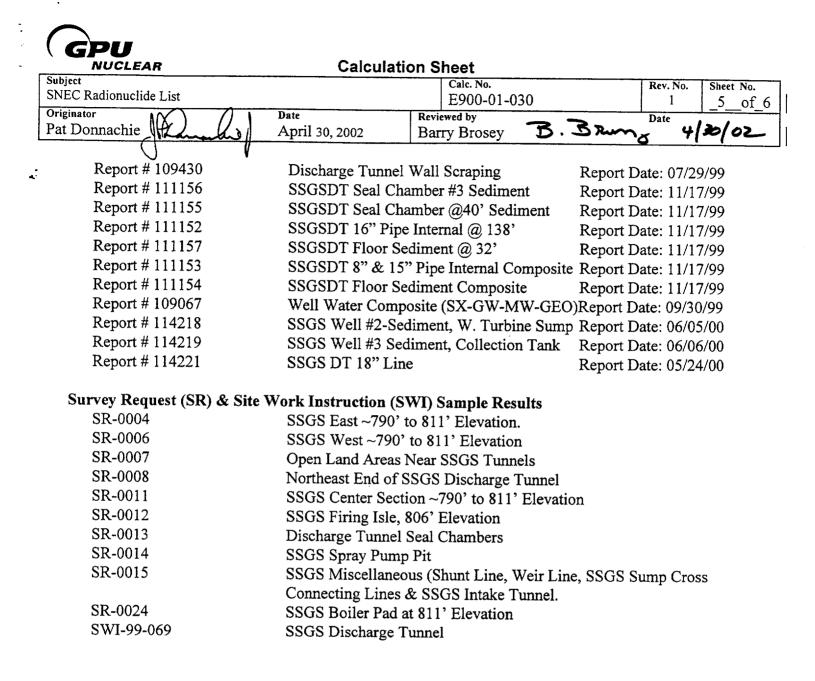
SNEC Soil Characterization Report, May 1995

Pp. 1-7, Appendices 1, 3 & 4

Off-site Laboratory Analyses

(BWXT Technologies, Inc.)		
Report #: 0011042	CV Concrete Samples	Report Date: 12/14/00
Report #: 0102059	CV Tunnel Sediment	Report Date: 03/26/01
Report #: 0101037	SSGS Soil Bag Sample	Report Date: 02/22/01
Report #: 0104005	North CV Yard Soil Bag #34L	Report Date: 05/21/01
Report #: 0104079	Well OW-6	Report Date: 05/28/01
Report #: 0106103	Weir Line Sediment Sample	Report Date: 08/09/01

(Teledyne Brown)


Report #: 38251	CV Yard Grid F-8 Soil	Report Date: 05/16/00
Report #: 38252	CV Yard Grid G-8) Soil	Report Date: 05/17/00
Report #: 38250	CV Yard Grid F-7 Soil	Report Date: 05/08/00
Report #: 16599	Discharge Tunnel 6" Drain Line Scraping	Report Date: 07/22/99
Report #: 38253	SSGS East Turbine Sump Area AV-133	Report Date: 05/05/00
Report #: 38254	SSGS Intake Tunnel AT-139	Report Date: 06/08/00
Report # 14181	Well Water Composite (SX-GW-MW-GEC	

(ERL)

÷

Report # 88236	Weir Pipe Sediment (70' from weir to river)	Report Date: 05/07/96
Report # 111151	Composite Spray Pond Soil 125, 126, 127	Report Date: 10/28/99
Report # 111158	Soil Sample SX9SL99202	Report Date: 11/17/99
Report # 115374	SSGS Footprint, Well # 7 Sediment	Report Date: 08/24.00
Report # 113454	SSGS East Sump Sediment @25'	Report Date: 04/25/00

W:/Donnachie/SNECNuclideListCalcForm.doc

d. Deselect radionuclides < 1% of media mix and < 10% of the dose limit per NUREG-1727, Appendix E. From the 19 radionuclides determined in Section C above, 8 radionuclides (Fe-55, Ni-59, Nb-94, Tc-99, Eu-154, Pu-242, Cm-242 & Cm-244) were further deselected due to a low abundance (< 1%) in the media mixes. In the 1996 Site Characterization Report, Table 4-1, Fe-55 was listed as 2.46% of the site's radionuclide inventory contained within the steel structures of the reactor vessel. In 1998 the reactor vessel was removed along with the steam generator and pressurizer as part of the Large Component Removal program. This program essentially reduced the Fe-55 to only 0.12% of the site inventory per the 2000 LTP, Table 2-1.</p>

Table 5 provides an analysis of how these radionuclides were deselected. Dose conversion factors were taken from Federal Guidance Report (FGR) 12, Table III-7 (Dose Coefficients for Exposure to Soil Contaminated to an Infinite Depth). Since these radionuclides are < 1% of the mix the

	Calcula	ation Sheet		
Subject SNEC Radionuclide List		Calc. No. E900-01-030	Rev. No.Sheet No.16of 6	5
Originator Pat Donnachie Hannelie	Date April 30, 2002	Reviewed by Barry Brosey B. Br.	Date 4/30/02	

applicable DCFs were adjusted down by 0.01. These radionuclides were then compared against Cs-137 (the predominant radionuclide on the site) to determine if the respective doses were greater than 10% of the Cs-137 dose. Since there were no DCFs for Fe-55 and Ni-59 in FGR 12, FGR 11, Tables 2.1 (Exposure-to-Dose Factors for Inhalation) and 2.2 (Exposure-to-Dose Factors for Ingestion) were used. The same dose analysis was performed for these two radionuclides. This reduced to a final list of 11 radionuclides (H-3, C-14, Co-60, Ni-63, Sr-90, Cs-137, Eu-152, Pu-238, Pu-239, Pu-241 & Am-241) that are considered present at SNEC.

- e. Evaluate locations where radionuclides have been identified on site and are most likely to occur (e.g. inside or outside the CV). From review of the different types of media from Section C and Table 1, it can be shown that all 11 radionuclides have the potential to be present inside the CV. However, for media (e.g. soil, water, concrete, metal) outside the CV the presence of these radionuclides can be more limited.
- 5. Conclusions

.

- 5.1 Based on the radionuclide deselection process, per the guidance in the subject NUREGs, the SNEC Radionuclide List Table in Section 2 lists the potential radionuclides of concern at SNEC. In addition, this is supported by recent characterization data that has been gathered from operational and decommissioning survey work over the last 5 years.
- 5.2 It is recommended that a total of eleven (11) radionuclides should be analyzed for all collected media and surveyed surfaces inside the CV. The revised radionuclide list should be updated into the next revision of the LTP. For media and surfaces surveyed in land areas and structures outside the CV it is recommended a review of the latest characterization data be used to select the applicable radionuclides of concern for the final site survey.

6. Appendices

- 6.1 Table 1 Radionuclide Analysis Results (Laboratory)
- 6.2 Table 2 Uranium Ratios
- 6.3 Table 3 Uranium Ratios in Nature
- 6.4 Table 4 Radionuclide Deselection List
- 6.5 Table 5 Radionuclides <10% Dose Impact

۰,

.

۶.

Table1

Radionuclide Analysis Results (Laboratory)

Area	Date	Am-241	C-14	Co-60	Čs-137	́H-3.	Ni-63	Eu-152	Pu-236	Pu-239	Pu-240	Pu-241	Sr-90	U-234	U-235	U-238	K-40	Ra-228	Th-232	Th-228
Proposed DCGL (pCl.g)	3.4 2019	1.5	3.7	,2.5	8.5	260	1700.	63	. 24	22	1 22 -		1.6	. 18	1.2		N/A	N/A	N/A	.N/A
SSGS Intake Tunnel AT-139	6/8/00		1.8		0.22					1965.0.00	dates a solar	1.1.10		0.65	1.12.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	0.45	9.79	1.06	2011 (See	1911 21 11
SSGSDT Seal Chamber #3 Sediment	11/17/99				43					0.0071				2.7	0.063	1.9			[]	[
SSGSDT Seal Chamber @40' Sediment	11/17/99				1.9					0.009				0.5	0.0096	0.41				
SSGSDT 16" Pipe Internal @138'	11/17/99		<u> </u>		3.8					0.02				4.5	0.097	2.8			<u>├───</u>	
SSGSDT Floor Sediment @32'	11/17/99	0.021			27				0.0037	0.012				2.3	0.062	1.7				
SSGSDT 8" & 15" Pipe Internal Comp. (160&163')	11/17/99				2.2					0.0081				1.6	0.031	1.1				<u> </u>
SSGSDT Floor Sediment Composite @100 & 326'	11/17/99	0.035			7					0.0042				1.6	0.031	1.1				
SSGS Footprint E. Turbine Area AV-133 (pumped)	6/5/00			0.37	97.8									1.1		0.57	2.58	0.326		
SSGS Footprint Well #7 Pumped Sediment	8/24/00			1.5	77									0.93	0.029	0.83				
SSGS E. Sump Sediment @25', AV183, Well #1	4/25/00	0.088			85									0.88	0.052	0.85				· · · ·
Discharge Tunnel Wall Scraping	7/29/99			0.84	120									1.2		0.74	1.7			
Discharge Tunnel 6" Drain Line Scraping	7/22/99	5.4		30	4800		55		1.6	2.5	2.5			0.45		0.57	39.8			t
SSGS Soil Bag #5	11/22/00			0.4	11.4									0.198	0.009	0.193			i	
Composite of Spray Pond Soil 125, 126 & 127	11/28/99	0.0035							0.0043					0.56	0.015	0.41				
SX9SL99202 (Subsurface #11 (4-6'))	11/17/99	0.012												0.45	0.014	0.4			I	
CV Tunnel Sediment	2/14/01			1.26	1250								9.67	1.12		1.46				
Weir Pipe Sediment ~70' out toward river from weir	5/7/96			0.51	46												4.3		0.54	
North CV Yard Soil Bag #34L	3/26/01	0.07		1.31	5.04				0.02	0.04	0.04		0.27	0.34	0.02	0.31				
CV Yard F-7, Loc #2, Truck R-2	5/8/00			0.175	210									0.36		0.24	16.7	1.19	1.49	
CV Yard R-2-4 (G-8) AZ-129	5/17/00			0.084	555	110								0.33		0.25	16.8	0.952	1.33	
CV Yard Grid #F-8 AY-129	5/16/00			0.104	612									0.38		0.28	20.4	1.11	1.55	
Sediment Westinghouse Lab Pad Drain Line Comp.	3/27/00	0.092		0.067	6.8		_							1	0.041	0.85	12	3	1.3	l
Soil	10/13/94			0.228	11.9												12.6	2.34		6.43
1994 Soil Remediation Report Results	11/9/94			0.968	33.1									0.33		0.24	14.6			1.23
1994 Soil Remediation Report Results	11/19/94			2.35	319									0.31		0.23		23.3		
OW-6 Well (pCi/L)	4/25/01													0.52						
OW-4R Well (pCi/L)	4/25/01													1.19		0.84				[
OW-5R (pCi/L)	4/25/01													2.38		2.1				<u> </u>
OW-3 (pCi/L)	4/25/01													0.49						
OW-3R (pCi/L)	4/25/01													0.94		0.44				
Weir Line 135' above river outlet	5/24/01				61.6									0.7	0.02	0.53				
CV Concrete (SX-01-CW-00-574)	10/18/00		33.62	0.04	1.37	40.86		0.1				275								
CV Concrete (SX-01-CW-00-637)	10/23/00	0.55	115		58.5	191						31.04								
CV Concrete (SX-01-CW-00-636)	10/27/00		22.4		5.08	66.6						46.78								
CV Concrete (SX-01-CW-00-626)	10/27/00	1.08	90.29	-	0.55	270.87						39.69								
CV Concrete (SX-01-CW-00-638)	10/18/00		67.48		11.1	225.26						23.52								
CV Concrete (SX-02-CW-00-639)	11/7/00		80.42		0.21	376.21						28.76								
CV Concrete (SX-02-CW-00-640)	5/25/95		98.39		27.7	518.57						10.07								
Discharge Tunnel Sediment (1st Seal ChamberCrud Pile 3" Vertical Drain Line)	7/22/99				67									0.72		0.68	2.4		0.33	
Discharge Tunnel Sediment -End of Tunnel (H3 in pCi/L)	7/21/99				21.2	210								0.28		0.38				
SSGS Footprint Collection Tank Area Aw-132/SSGS Well #3 Sediment					5.5									0.34		0.31	6.1			
SSGS DT 18" Line Sediment	5/24/00				3.1									1.1	0.029	0.84	9.3	4.8	2	

Note: Activity is specified as pCi/g unless specified otherwise.

.

-

4

.

Table 2

Uranium Ratios

					a U238/U235
SSGS Intake Tunnel AT-139	A. U-234:02	₩U-2351		U234/238 Ratio	Ratio 👘
SSGSDT Seal Chamber #3 Sediment	0.65		0.45	1.4	
	2.7	0.063	1.9	1.4	30.2
SSGSDT Seal Chamber @40' Sediment	0.5	0.0096	0.41	1.2	42.7
SSGSDT 16" Pipe Internal @138'	4.5	0.097	2.8	1.6	28.9
SSGSDT Floor Sediment @32'	2.3	0.062	1.7	1.4	27.4
SSGSDT 8" & 15" Pipe Internal Comp. (160&163')	1.6	0.031	1.1	1.5	35.5
SSGSDT Floor Sediment Composite @100 & 326	1.6	0.031	1.1	1.5	35.5
SSGS Footprint E. Turbine Area AV-133 (pumped)	1.1		0.57	1.9	
SSGS Footprint Well #7 Pumped Sediment	0.93	0.029	0.83	1.1	28.6
SSGS E. Sump Sediment @25', AV183, Well #1	. 0.88	0.052	0.85	1.0	16.3
Discharge Tunnel Wall Scraping	1.2		0.74	1.6	
Discharge Tunnel 6" Drain Line Scraping	0.45		0.57	0.8	
SSGS Soil Bag #5	0.198	0.009	0.193	1.0	21.4
Composite of Spray Pond Soil 125, 128 & 127	0.56	0.015	0.41	1.4	27.3
SX9SL99202 (Subsurface #11 (4-6'))	0.45	0.014	0.4	1.1	28.6
CV Tunnel Sediment	1.12	0.014	1.46	0.8	20.0
Weir Pipe Sediment ~70' out toward river from weir				0.0	
North CV Yard Soil Bag #34L					
CV Yard F-7, Loc #2, Truck R-2	0.34	0.02	0.31	1.1	15.5
	0.36		0.24	1.5	
CV Yard R-2-4 (G-8) AZ-129	0.33		0.25	1.3	
CV Yard Grid #F-8 AY-129	0.38		0.28	1.4	
Sediment Westinghouse Lab Pad Drain Line Comp.	1	0.041	0.85	1.2	20.7
Soil					
1994 Soil Remediation Report Results	0.33		0.24	1.4	
1994 Soil Remediation Report Results	0.31		0.23	1.3	
DW-6 Well (pCi/L)	0.52				
DW-4R Well (pCi/L)	1.19		0.84	1.4	
DW-5R (pCi/L)	2.38		2.1	1.1	
DW-3 (pCI/L)	0.49				
DW-3R (pCi/L)	0.94		0.44	2.1	· · · · · · · · · · · · · · · · · · ·
Weir Line 135' above river outlet	0.7	0.02	0.53	1.3	26.5
Discharge Tunnel Sediment (1st Seal ChamberCrud					20.0
Pile 3" Vertical Drain Line)	0.72		0.68	1.1	
Discharge Tunnel Sediment -End of Tunnel (H3 in Ci/L)	0.28		0.38	0.7	
SSGS Footprint Collection Tank Area Aw-132/SSGS					
Vell #3 Sediment	0.34		0.31	1.1	
SSGS DT 18" Line Sediment	1.1	0.029	0.84	1.3	29.0
Average				1.3	27.6

* Activity is in pCi/g unless specified otherwise.

Table 3Uranium Ratios in Nature

Radionuclide	Half-Life (Years)	Abundance in nature	λ	N	Activity in nature (disintegrations/yr/gm)
U-234	2.47E+05	0.000057	2.81E-06	2.57E+21	4,11E+11
U-235	7.10E+08	0.007196	9.76E-10	2.56E+21	1.80E+10
U-238	4.51E+09	0.99276	1.54E-10	2.53E+21	3.86E+11

Specific Activity (A)= λ N(%) where: λ =.693/t_{1/2}, N=atoms/mole(gm), %=fractional abundance in nature Avogadro Constant (atoms/mole) = 6.02E+23 atoms/mole

Nuclide Ratio	Ratio in nature	Ratio w/ +/- 50% uncertainty range *
U234/U238	1.1	0.55 - 1.65
U238/U235	21.4	10.7 - 32.1
U234/U235	22.9	11.45 - 34.35

4

* Calculated to account for analytical uncertainties.

Reference: Radiological Health Handbook, Section IV, January 1970.

,

-

4

Table 4 **Radionuclide Deselection List**

Isotope	Half Life (y)	Bioshield Concrete ^{1,2}	Rebar ³	Surface Contamination ⁴	Activated Reactor Components	Release Deposits ⁴	Half Life >3.0 y ⁷	Isotopes Detected @SNEC >MDA	Isotopes @SNEC > 1% of Mix ¹
H-3							A CALL YOU THE		Tourse York and
C-14	2.60E+00		No Yes		Rear Street Vision Street		R. S. Barris Y. C. Martin	Hold Contract Contraction	AN THE YOR CO
P-33	6.96E-02	Y Y							
S-35	2.40E-01	Y					+		
CI-36	3.01E+05	Ŷ	Y		}		Y		
Ar-37	9.50E-02	Y						 	
Ar-39	2.65E+02	Y				1	Y	†	
Ca-41	1.40E+05	Ŷ	Y		· · · · · · · · · · · · · · · · · · ·	· · · · · ·	Y		
Ca-45	4.47E-01	Y							
Sc-46	2.30E-01	Y							
Cr-51 Mn-53	7.59E-02	<u> </u>		Y		Y			
Mn-54	3.70E+06 8.56E-01	Y Y	Ý Y	Y		<u>v</u>	Y		
Fe-55	2.70E+00	Y	Y		Y Y	Y		Ŷ	
Fe-59	1.22E-01	<u>'</u>	· · · · · · · · ·		<u>'</u>	Y		¥	ļ
Co-57	7.42E-01				·	Y			
Co-58	1.94E-01	Ŷ		Y	Ŷ	Ŷ		+	
Co-60 👘	5.27E+00	Sec. Yes	Carry Carry	HAR MARKEN	SCOVER.	5	and Your Your Head	Y	Y
Ni-59	7.51E+04	Y	Y		Y		Y	Y	
Ni-63		at the Yest			Cover Y Cover H		WELL CALLY AND A	and a Y of the	2.2.2.Y
Zn-65	6.68E-01	Y	Y		Y				
Se-79	6.50E+04	Y	Y				Y		
Sr-89	1.38E-01			Y		Y			
Sr-90 Y-90	2.91E+01	. .	****	Y.			Marine Yangalan	The second second	÷≓7⊜-γ
Nb-92m	7.31E-03 3.60E+07			Y		Y			
Nb-93m	1.36E+07		Y				Ŷ		
Nb-95	3.50E+01	Y		Ŷ	Ŷ		Y		
Zr-93	1.53E+06		Y		T	Y	Ý Ý		
Mo-93	3.50E+03	Ý	- ÷				'		
Nb-94	2.03E+04	Y	Y		Ý		Y	Y	
Zr-95	1.75E-01			Ŷ	Ŷ	Y	······	····	
Tc-99	2.13E+05	Y	Y				Y	Y	
Ru-103	1.08E-01					Y			
Ag-108m	1.27E+02	Ŷ	Y				Y		
Ag-110m	6.85E-01					Y			
Sn-121m Sb-124	5.50E+01 1.65E-01	Y	Υ				Y		
Sb-125	2.77E+00	·				Y			
le-129m	9.21E-02					Y			
-129	1.57E+07		- y -				Y		
-131	2.20E-02			Ŷ		Y			
-133	2.37E-03					Ŷ			*
3a-133	1.07E+01	Y	Y				Ŷ		
Cs-134	2.06E+00	Y	Y	Y		Ŷ			
Cs-135	2.30E+06	Y	Y				Y		
Cs-136	3.59E-02			Y		Y			
3a-140	3.49E-02	the second						And any Yelen and	were Yesters
a-140	4.60E-02					Y			
Ce-141	8.90E-02					× ×	· · · · · · · · · · · · · · · · · · ·		
Ce-144	3.77E-03					Y			
-145 m-145	1.77E+01	Y	Y				Y		
Sm-146	1.03E+08	Ŷ	Y				Ý		
Sm-151	9.01E+01	Y	Y				Y		
							BECASTANA AND	a a sy year a s	s φ γ ⊂ια
u-154	1.60E+01	Y	Y				Y	Y	
u-155 b-158	1.81E+00	Y	<u>Y</u>						
10-166m	1.50E+02 1.20E+03	Ŷ	Y				Y		
If-178m	3.10E+01	- + +	Y				Y		
ъ-205	1.43E+07	Y	Y		· · · · · · · · · · · · · · · · · · ·		Y		
1-233	1.59E+05						Y		
10-238	8.76E+01	<u>+</u>	· · · · ·						
ນ-239		el e Y essa	Y C				Befolken (Ykrami) Kalen Ykraiter		National Propagation
u-241	1.32E+01	A STATE OF THE STATE OF	and the second				Contract Theorem		
u-242	3.79E+05						Y	Y	New York Card Strategy Con
m-242	4.40E-01							<u>'</u>	
m-244	1.76E+01						Y	Ý.	
	4.58E+02								

Footnotes: 1. NUREG/CR-0130, Volume 1, Table 7.3-5, "Radioactivity Levels at the Inner Surface of the Activated Biological Shield at Reactor Shutdown"
2. NUREG/CR-3474, Table 5.4, "Activation of PWR Bioshield (Ci/gm) Average Concrete 30 EFPY at Core Axial Midplane"
3. NUREG/CR-3474, Table 5.6, "Activation of PWR Bioshield (Ci/gm) Average Rebar 30 EFPY at Core Axial Midplane"
4. NUREG/CR-0130, Volume 1, Table 7.3-11, Isotopic Composition of Accumulated Surface Contamination in the Referenced PWR..."
5. NUREG/CR-0130, Volume 2, Table C.1-3, "Radioactivity Levels in Major Activated Reactor Components at Time of Reactor Shutdown"
6. NUREG/CR-0130, Volume 1, Table 7.3-14, "Est. Accumulated Activity of Radionuclides Deposited on the PWR Site"
7. SNEC shutdown 30 years leafungs with a balf life 30 years and therefore

7. SNEC shutdown 30 years. Isotopes with a half life <3.0 years and therefore, <0.1% of original activity (i.e. decayed 10 half lives) were deselected. 8. Listed isotope includes daughter(s).

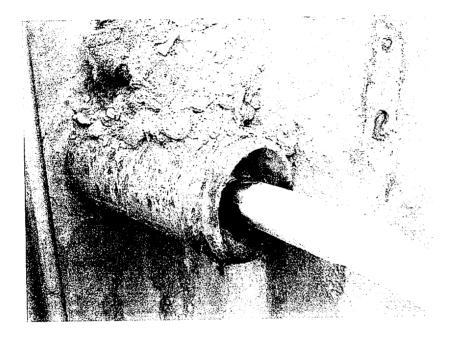
Table 5Radionuclides <10% Dose Impact</td>

	FGR #12 Table III-7				
lsotope	Sv m³/Bq s	mrem g/pCi y	1% Correction	% of Isotope x to Cs-137	<10% of dose? (Y/N)
Fe-55	0.00E+00	0.00E+00	0.00E+00	0.00%	n/a
Ni-59	0.00E+00	0.00E+00	0.00E+00	0.00%	n/a
Nb-94	5.18E-17	9.68E+00	9.68E-02	2.68%	v
Tc-99	6.72E-22	1.26E-04	1.26E-06	0.00%	v
Eu-154	4.11E-17	7.68E+00	7.68E-02	2.13%	v
Pu-242	6.85E-22	1.28E-04	1.28E-06	0.00%	v
Cm-242	9.15E-22	1.71E-04	1.71E-06	0.00%	y
Cm-244	6.74E-22	1.26E-04	1.26E-06	0.00%	y
Cs-137	1.93E-17	3.61E+00			

Effective Dose Equivalent

Ingestion

d,


	FGR#11 Table 2.2				
lsotope	Sv/Bq	mrem/pCi	1% Correction	% of Isotope x to Cs-137	<10% of dose? (Y/N)
Fe-55	1.64E-10	6.07E-07	6.07E-09	0.01%	V
Ni-59	5.67E-11	2.10E-07	2.10E-09	0.00%	v
Cs-137	1.35E-08	5.00E-05			

Inhalation

	FGR#11 Table 2.1				
Isotope	Sv/Bq	mrem/pCi	1% Correction	% of Isotope x to Cs-137	<10% of dose? (Y/N)
Fe-55	7.26E-09	2.69E-05	2.69E-07	0.84%	V
Ni-59	3.58E-10	1.32E-06	1.32E-08	0.04%	y v
Cs-137	8.63E-09	3.19E-05			,

Embedded Pipe Radiation Survey Report

GPU Nuclear Corp. Saxton Experimental Nuclear Co. Saxton, Pa.

By:

CoPhysics Corporation 1242 Route 208 Monroe, NY 10950

Site Work: October 2001 Report: January 2002

Contacts:

Barry Brosey, GPU Nuclear Corp. (717-948-8330)

Theodore Rahon, CoPhysics Corporation (845-783-4402)

CONTENTS

`

1.0 INTRODUCTION	3
2.0 OBJECTIVE	3
3.0 SURVEY METHODOLOGY	3
	3
3.1 General Survey Approach 3.2 Release Limits	4
3.2 Release Linnes 3.3 Instrumentation	5
3.4 Calibration	5
3.5 Pipe/Drain Preparation	5
3.6 Source Modeling	6
3.7 Techniques For Reducing/Evaluating Data	8
3.7.1 Spectrum Analysis	8
3.7.2 Radioactivity Calculation	9
3.7.3 Uncertainty Calculation	10
3.7.4 MDA Calculation	10
3.8 Quality Assurance	11
4.0 RESULTS AND DISCUSSION	12
4.1 Boiler Pad Piping	12
4.2 Cross-Over Line Between Intake Tunnel to Spray Pond	13
4.3 SSGS Sump Cross-Over Lines	13
4.4 Small Garage – Drain Openings	14
4.5 Yard Drain - Center and 16" Line Behind Garage	15
4.6 Yard Drain - Near Warehouse	16
4.7 18" Pipe in SSGS	16
4.8 12" Drain Line into Shunt (outside fence)	18
4.9 Unknown 12" Drainage Line Behind the Small Garage	19
4.10 3 Pipes in NW SSGS Above Seal Chamber 3	20
4.11 Pipe in SW SSGS Towards Screen Room	21
4.12 Drain Line from Warehouse to Shunt	22
4.13 Shunt Line and Yard Drain System Tie-ins	23
4.14 Summary of Embedded Pipe Systems Measured	25
5.0 CONCLUSION	26
REFERENCES	27
Appendix A – Photographs of Areas Surveyed	
Appendix B - Gamma Spectroscopy Results	
Appendix C – Geometric Models & Conversion Factor Calculations	
Appendix D - MicroShield Printouts	
Appendix E - Radionuclide Standard Calibration Certificates	

Appendix F – Gamma Spectrometer Quality Assurance Checks

.

1.0 INTRODUCTION

During October 2001, personnel from CoPhysics Corporation and GPU Nuclear performed *in situ* gamma spectroscopy measurements and scale/sediment sampling as part of study of radioactive contamination in embedded piping, on the site of the Saxton Nuclear Experimental Corporation (SNEC) Facility. 127 spectra were collected in approximately 10 pipes and drainage areas. Additionally, 39 QA/QC measurements were performed, and 29 scale/sediment samples were collected and analyzed in the on-site GPU laboratory.

2.0 OBJECTIVE

The objective of the survey was to measure gamma-emitting radionuclides (cesium-137 and cobalt-60) that may have been deposited in pipes and drains in and around the former coal plant via connections with the SNEC nuclear plant. The data are to be used as part of the site Final Status Survey and thus the sensitivity of the method must provide a minimum detectable activity sufficient to prove that release criteria are met.

3.0 SURVEY METHODOLOGY

3.1 General Survey Approach

GPU personnel specified several pipes and drain systems on the property that were thought to be relatively free of contamination and may be releasable (see site drawing below). Scraping samples were collected from the end of each pipe, if accessible. A NaI detector was then inserted into each pipe and gamma spectra were collected at various distances along the pipe length. Cesium-137 and cobalt-60 count rates were obtained from each spectrum and a surface activity (dpm/100 sq.cm) was calculated from the detector and pipe geometry parameters and the MicroShield¹ computer code.

The *in situ* gamma spectroscopic approach is best suited to provide results in activity per unit area (surface activity) or total activity per pipe. However, for comparison with sampling results, the *in situ* method was also used to estimate the radionuclide concentration (in pCi/g) in scale and sediment. This involved the dividing of the surface activity by an estimate of the scale thickness. However, the accuracy of such concentration results is most reliant upon field estimates of pipe scale thickness, which may be rather uncertain.

Both the *in situ* and sampling techniques have their advantages and disadvantages. Sampling provides a more accurate assessment of a radionuclide concentration in a single sample volume than the *in situ* measurement method. However, sampling alone does not provide a more accurate assessment of total activity per pipe length because in sampling, the fraction of

¹ MicroShield radiation shielding computer code is a product of Grove Engineering, Rockville, MD.

contaminated material actually sampled and the degree the sample is representative of the total volume of sampled materials is normally not known accurately.

3.2 Release Limits

GPU Nuclear is currently re-evaluating applicable site <u>volumetric</u> DCGL values (concentrations) using the dose modeling computer code RESRAD² version 6.1. The volumetric DCGL values for Cs-137 and Co-60 are expected to fall within the ranges specified in Table 3.2.

The original SNEC Facility <u>surface</u> DCGL values were assembled from US NRC default values developed using the US NRC's dose modeling computer code DandD. These surface limits will continue to be valid in the latest version of the SNEC Facility License Termination Plan (LTP). These surface activity DCGL's are also shown in Table 3.2.

	$\frac{1}{100} \frac{1}{100} \frac{1}$	Open Land Areas (pCi/g)
	Surface Area (dpm/100 cm ²)	Open Land Areas (peng)
Cs-137	28,000	> 8.5
Co-60	7,000	> 2.5

Table 3.2 – Applicable DCGL's

How the above DCGL values apply to embedded piping is not presently clear. Very thin layers of contamination in piping are essentially surface contamination. However, thicker layers, clogged piping, or sediment in sumps could be considered to be soil. Furthermore, most of the piping is underground and thus could be considered part of an open land area, survey unit.

If the embedded piping is considered to be part of an open land area, then the definition of the mass associated with the contamination is very important in calculating a concentration. To calculate a concentration, the contamination on the inner surface of a pipe could be divided by the mass of the entire pipe or by the mass of the scale alone. Additionally, if considered to be open land area contamination, the volume of these piping systems are extremely small with respect to the RESRAD surface soil area model of 10,000 square meters (upper 1 meter of soil at the site). The application of any reasonable area factor should then permit larger concentrations within these small volumes.

In this report, the activity measured is initially treated as surface activity contaminating the interior surface of the pipe or sump. Then, the thickness of the scale is estimated from visual observation. If no scale was visible, a 1/4" thickness was assumed. The radionuclide concentration is then calculated by dividing the surface activity by the estimate of scale thickness. This is a much more conservative approach than using the entire mass of the pipe as the divisor.

² RESRAD dose modeling computer code is a product of Argonne National Laboratories, Argonne, Illinois.

3.3 Instrumentation

The following instrumentation was used during gamma measurements:

• Portable multichannel analyzer (Aptec Model 5004 MCA), power supply (Aptec Model AH1PC), computer (generic portable PC)

• 1" x 4" NaI(Tl) gamma radiation detector (Alpha Spectra, Inc. Model i16/1.5B, Serial #110999B)

The 1 x 4" NaI gamma detector was protected by a 2" diameter, 18" long PVC housing. The 2" PVC housing was fitted with a threaded coupling to allow 1" diameter extensions to be added so that up to 30 feet of pipe could be surveyed during one insertion. Gamma spectroscopy measurements commenced in each pipe or sump by inserting the NaI detector into the pipe/sump either with or without a centering device, depending on pipe conditions.

A spectrum was then acquired for sufficient time to achieve a minimum detectable activity (MDA) of 1 cps or less in the cesium-137 region. Counting times ranged from 5 to 10 minutes. The minimum detectable activity of 1 cps for ¹³⁷Cs corresponds to about 400-dpm/100 cm² in a typical iron, yard drainpipe. MDA's for ceramic pipes, which contain elevated levels of naturally occurring radium and thorium, are higher, approximately 800-dpm/100 cm². Nominal concentration-based MDA's (in pCi/g) cannot be quoted because they are more dependent upon the mass of scale present, than detector capability. See the actual results for pipe-specific concentration MDA's.

3.4 Calibration

The NaI detector was exposed to NIST-traceable radionuclide standards in the laboratory and in the field to determine its intrinsic efficiencies. The resultant intrinsic efficiencies were:

- 0.39 counts per Cs-137 gamma (662 keV) (± 6%)
- 0.17 counts per Co-60 gamma (1332 keV) (± 6%)

Calibration certificates of the NIST-traceable standards are shown in Appendix E.

3.5 Pipe/Drain Preparation

Pipes were unearthed and broken open if not already accessible. Sediment was manually removed from sumps and yard drains before *in situ* measurements were performed (see photographs in Appendix A).

3.6 Source Modeling

During measurements, each detector-pipe geometry was recorded, for example, "detector centered in a 7.5" diameter pipe", or "detector resting on bottom of 12" diameter, horizontal pipe". Each such geometry was later modeled using the MicroShield computer code (ref. Grove Engineering, Inc., Version 5.05-00121). MicroShield was used to calculate the expected photon fluence from various geometries (models) of pipe or sump contamination.

Normally, each pipe model assumed a thin layer 0.64-cm (1/4") of contaminated scale coating the inner surface of the pipe. This was the typical scale thickness found in cast iron pipes at the SNEC site. The scale is assumed to be made up of iron, with a density of 2 g/cc. The scale is assumed to cover the full inner surface of the pipe section measured. Sump models assumed 2.54 cm (1") of sediment (density of 1.6 g/cc) on the floor of the sump. The 42" diameter Shunt Line was modeled as having a 1-foot wide x 1" deep layer of sediment along its bottom, with 1/2" of overlaying water.

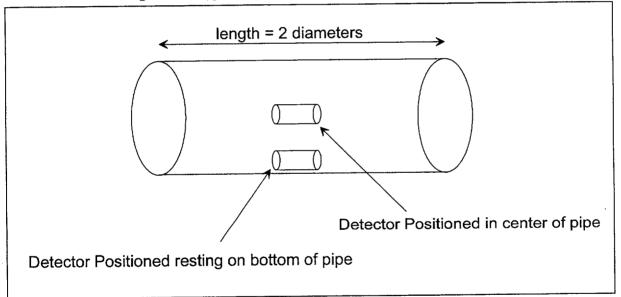


Figure 3.6 - Typical Pipe Model Showing 2 Detector Positions

The length of each pipe was modeled as 2 diameters, with the dose point (detector) placed half way along the length, either centered in the middle of the pipe diameter or resting on the bottom of the pipe wall (see Figure 1). If the contamination is uniformly distributed over the inner surface area or is concentrated along the bottom of the pipe, greater than 90% of the detector count rate will be due to activity within a 2-diameter length of pipe section.

The result of the MicroShield analysis is the gamma fluence rate in MeV/(cm²-sec) at the dose point, or detector. After division by the gamma-ray energy and the surface activity used, the

activity to gamma flux conversion factor is calculated in units of gammas/(cm^2 -sec) at the detector per uCi/ cm^2 on the inner surface of the pipe.

After multiplying by the detector intrinsic efficiency times the cross sectional area and applying unit conversions, the count rate to activity conversion factors are calculated in units of cps per $dpm/100 \text{ cm}^2$ for each geometry used. The activity conversion factors then are used to convert detector count rates into activities as discussed in the following section.

A list of models used is shown in Appendix C.

3.7 Techniques For Reducing/Evaluating Data

3.7.1 Spectrum Analysis

After the field work was complete, each spectrum was reviewed and analyzed as follows:

- Energy calibration (keV per channel) was checked and adjusted as necessary to account for temperature-based gain shifts. Note that the counting efficiencies do not change with temperature. Only the energy calibration changes, i.e., the location of the photopeaks. To correct for this, the naturally-occuring photopeaks (K-40, Bi-214, annihilation, etc.) in each spectrum as well as Cs-137 (if detectable) were used to perform an energy re-calibration if necessary.
- Regions of interest (ROI's) were then set up for Cs-137 (575 to 715 keV), Co-60 (1270 to 1390 keV), and radium-226 progeny (1650-1850 keV). The gross and net counts for the Cs-137 and Co-60 ROI's as well as the gross counts for the radium progeny ROI were recorded in a spreadsheet database. (see Spectrum A below for examples of ROI's.)
- The contribution from background radionuclides to the Cs-137 and Co-60 ROI's were estimated from the radium progeny ROI of each spectrum and then subtracted from the ROI's of interest. This removed the radium-226 progeny (609 keV) contribution to the Cs-137 ROI and also reduced the K-40 contribution to the Co-60 ROI.
- The adjusted net count rates for each ROI were calculated in the spreadsheet database. The spreadsheet was used to apply the activity conversion factors to calculate the radionuclide surface activities, their uncertainties, and the minimum detectable activities (MDA's) as discussed in following sections.
- The radionuclide concentrations in the scale were also estimated by multiplying the surface activity by an estimate of the scale thickness in each pipe or sump.
- 13 background spectra were used to estimate the contribution of radium progeny and other background radionuclides to the Cs-137 and Co-60 ROI's. The designated radium progeny ROI (1650-1850 keV) contained the 1764 keV Bi-214 photopeak as well as Compton background from thorium-232 progeny. The ratio of the radium progeny ROI to the Cs-137 and Co-60 ROI's were calculated from the averages of the background spectra. These ratios were used in the spreadsheet to correct each spectrum for the presence of radium and thorium.

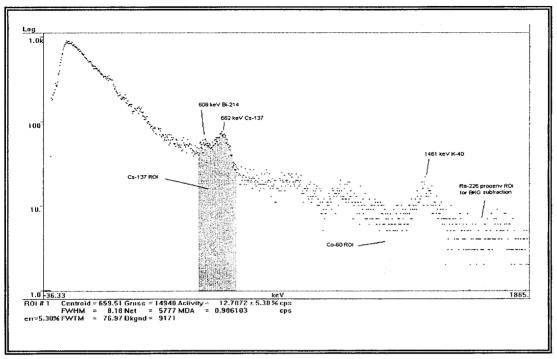


Figure 3.7 - Example Gamma-ray Spectrum

3.7.2 Radioactivity Calculation

The net count rates in the Cs-137 and Co-60 ROI's were adjusted for the contribution from background radionuclides and divided by their respective conversion factors to calculate the average Cs-137 and Co-60 activities in the pipe scale of sump sediment.

The calculation used is shown below:

Surface Activity = $(ROI_{NET} - ROI_{RA} + FAC) / (T + CONV)$

Where:		= sample spectrum ROI net counts
	ROI _{RA}	= estimated background radionuclide contribution to sample ROI
	FAC	= factor to estimate the radium contribution to the Cs-137 or Co-60 ROI
		= Cts in ROI of interest / cts in ROI_{RA}
	Т	= Sample spectrum live time (sec):
		Assume background-counting time = Sample counting time
		(conservative assumption).
	CONV	= count rate to activity conversion factor
		(cps per dpm/100 cm ²)

The resulting surface activity results and concentration estimates are shown in Appendix A.

3.7.3 Uncertainty Calculation

There are 2 background subtraction steps involved in the calculation of soil concentration: the subtraction of background due to background radionuclides and the subtraction of the Compton continuum under the photopeaks. The uncertainty due to this 2-step background subtraction process involves the summation of the variances of the individual uncertainties. In addition, a rough estimate of general systematic uncertainty (10 %) to account for model uncertainty, soil density variability, detector angular response, etc. was added to the Poisson uncertainty. This overall uncertainty was estimated using the following formula:

2-sigma Uncertainty = 2 * SQRT (
$$|ROI_{GR}| + |ROI_{BK}| + |ROI_{RA}| + FAC + ENDPT_{BK}$$
) / (T * CONV)
+ SYS

Where:

 ROI_{GR} = sample spectrum ROI gross counts ROI_{BK} = sample spectrum ROI background counts

- ROI_{RA} = estimated background radionuclide contribution to sample ROI
- FAC = factor to estimate the radium contribution to the Cs-137 or Co-60 ROI
 - = cts in ROI of interest / cts in ROI_{RA}
- T = Sample spectrum live time (sec): Assume background-counting time = Sample counting time (conservative assumption).
 ENDPT_{BK} = adjusted ROI endpt counts used to estimate Compton bkg line under peak
 - = (4 ch * .069 cps/lower ch + 4 ch * .039 cps/upper ch)*T for Cs-137 ROI; and (4 ch * 0.017 cps/lower ch + 4 ch * 0.014 cps/upper ch)*T for Co-60 ROI
- CONV = count rate to activity conversion factor(cps per dpm/100 cm² or cps per pCi/g)
- SYS = other systematic uncertainties = $\sim 10\%$ of the result

3.7.4 MDA Calculation

The minimum detectable activity (MDA) for Cs-137 and Co-60 in NaI-based gamma spectrometry is dependent on the detector efficiency, counting time and the quantity of interfering (i.e., background) radionuclides in the sample spectrum. For this project, the effect of interfering radionuclides (radium & progeny, K-40 etc.) is estimated by use of the radium progeny ROI (1600 to 1800 keV). These parameters are included in the following equation to calculate MDA:

 $MDA = 4.65 * SQRT (ROI_{SBK} + ROI_{RA} * FAC + ENDPT_{BK}) / (T * CONV)$

Where: see variable definition in prior section

3.8 Quality Assurance

In-field quality assurance checks included daily check source and background counts. Photopeak shape and resolution were reviewed in the field to ensure that the detector remained in good working order with no physical damage or adverse temperature / moisture effects.

Approximately 5% of the readings were duplicated, totaling 8 measurements. All of the 8 duplicates were within 2 standard deviations of the original measurements.

A listing of quality assurance checks is shown in Appendix F.

4.0 RESULTS AND DISCUSSION

The results of all measurements are shown in Appendix B. A more condensed summary of specific results for each pipe/drain system are redisplayed and discussed in the following sections. Applicable survey diagrams are shown within the sections and photographs of each area are shown in Appendix A.

Also discussed in each section is a comparison of sampling and *in situ* measurement results (concentrations). As discussed earlier, only approximate, not exact, comparisons are appropriate because of several reasons:

- 1. The sample locations and *in situ* measurement points are not perfectly aligned. That is, scale samples were normally collected at an accessible end or opening into the pipes surveyed, whereas *in situ* measurements were performed at greater depths into the pipes (see notations and/or survey diagrams). While moderate uniformity of radioactivity in a pipe can be expected (i.e., + factor of 2 or 3), perfect uniformity cannot be expected. In addition, increasing or decreasing concentration levels within piping are commonly observed when approaching or retreating from the source of the contamination within the system.
- 2. The sampled material was dried before analysis, whereas *in situ* results are presented "as found" in the environment, i.e., normally wet. Drying in the laboratory can concentrate the activity by approximately 20 to 50% over what is actually found in the environment.
- 3. As discussed earlier in this report, the *in situ* method more accurately measures surface activity rather than concentrations because the concentration estimate requires an estimate of scale thickness in the field, which can increase the overall uncertainty by as much as 50%.

Notwithstanding these basic differences in the sampling and *in situ* methods, most of the compared concentration results are in relatively good agreement (mostly within a factor of 2).

The following sections discuss the radiological status of each drain / pipe individually:

4.1 Boiler Pad Piping

Seven pipes had been dug up from the boiler pad area by GPU and staged on 2 pallets. The pipes were cast iron with diameters ranging from 3.75" to 9.5" and lengths ranging from 5 to 8 feet. One spectrum and one scale sample were collected from each pipe. Laboratory analysis of scale samples and in situ gamma spectroscopy results were in good agreement. All results are well within the previously discussed site DCGL's.

Measurement #		Gar		situ roscopic Res	ults		U Laborati npling Res		Description	Note
		(dpm/10)) sq.cm)	(estimate	ed pCi/g)		(pCi/g)			
		Cs-137 Co-60		Cs-137 Co-60		ID Cs-137 Co-60		Co-60		L <u></u>
100801 A	1	< 377	< 244	< 1.3	< 0,9	1510	0.12	<0.09	6" - "South Boiler Pad"	samp 24" from meas pt
100801 B	-	< 359	< 226	< 1.3	< 0.8	1511	<0.09	<0.09	6" - "SSGS 806 East End"	samp 9" from meas pt
100801 C	1	1355	< 227	< 1.2	< 0.8	1512	0.07	<0.09	8" - "Center"	samp 4" from meas pt
100801 D	1	< 356	< 241	< 1.3	< 0.8	1513	0.28	<0.09	10" - "Center"	samp 9" from meas pt
100801 E	1	< 306	< 209	< 1.1	< 0.7	1514	0.33	< 0.1	8"	samp 12" from meas p
100801 E	2	< 340	< 208	< 1.2	< 0.7	NoSamp				
100801 F	1	< 353	< 251	< 1.2	< 0.9	1515	< 1.3	< 1.4	4" - "South Boiler Pad"	samp 18" from meas p
100801 G	1	< 353	< 248	< 1.2	< 0.9	1516	0.345	< 0.07	4" - "SSGS East End"	samp 7" from meas pt

Table 4.1 – Results: Boiler Pad Piping

4.2 Cross-Over Line Between Intake Tunnel and Spray Pond Feed Line

Nine (9) pipe sections, making up the entire crossover line between the intake tunnel and spray pond feed line, had been dug up by GPU and staged on the ground near the SSGS Boiler Pad area. The pipes were steel with a 24" diameter and lengths of about 8 feet. Four spectra and four scale samples were collected from the pipes. Laboratory analysis of scale samples and *in situ* gamma spectroscopy results are in relative agreement considering the measurement and sampling points were not perfectly aligned. All results were well within the DCGL's.

Measureme	Measurement			situ oscopic Res	ults		U Laborat	· ·	Description	Note
#		(dpm/100 sq.cm) Cs-137 Co-60		(estimated pCi/g) Cs-137 Co-60		םו	(pCi/g) Cs-137 Co-60			
100901 A 100901 B 100901 C	1 1 1	458 < 499 < 393	< 269 < 302 < 255	1.6 < 1.8 < 1.4	< 0.9 < 1.1 < 0.9	1517 1519 1518	1.8 0.6 2.7	< 0.15 < 0.1 < 0.16	24" to spray pond #3 24" to spray pond #9 24" to spray pond #2	samp 36" from meas pt samp 12" from meas pt samp 30" from meas pt
100901 D	1	< 416	< 247	< 1.5	< 0.9	NoSamp			24" to spray pond #1	

Table 4.2 - Results: Cross-Over Line Between Intake Tunnel and Spray Pond Feed Line

4.3 SSGS Sump Cross-Over Lines

Two pipes were removed from the SSGS below-grade facility by GPU, and were staged for radioactive waste disposal in the Decommissioning Support Facility (DSF) building. These pipe sections were originally crossover lines between the SSGS facility sumps. Measurements and sampling were performed of these pipes as a test of the *in situ* methodology with known contaminated objects. Laboratory analysis of scale samples and *in situ* gamma spectroscopy results were in good agreement.

Measurement		Gam	In s na Spectro	itu scopic Res	sults	GPU Laboratory Sampling Result			Description	Note	
#		(dpm/100 Cs-137	0 sq.cm) Co-60	(estimate Cs-137	ed pCi/g) Co-60	ID	(pC Cs-137	i/g) Co-60			
100901 E 1 100901 F 1 100901 G 1	i i	78152 5445 33753	< 2077 < 1874 < 481	73.9 6.4 101.2	< 2.0 < 2.2 < 1.4	1521 NoSamp 1521	74 74	0.3 0.3	3.75" Sump to sump cross-over 3 "Sump to sump cross-over same as "E" - cut in thirds	meas. made exterior to pipe meas. made exterior to pipe meas. made inside pipe	

Table 4.3 – Results: SSGS Sump Crossover Lines

4.4 Small Garage – Drain Openings

One (1) drain/sump exists in each of the 4 bays of the small garage. The 15" diameter x 32" deep sumps are ceramic lined. One 6" diameter pipe drains each sump to a main header line that eventually ties in to the 42" diameter Shunt Line. One sediment sample and 2 or 3 *in situ* measurements were collected from each sump. Before measurements, most of the sediment was manually cleaned-out (approximately 1" remaining), except for Bay 2 in which measurements were performed before and after cleaning. Laboratory analysis of sediment samples and *in situ* gamma spectroscopy results were in good agreement. The *in situ* measurement MDA's for the sumps are relatively high because of the higher background due to naturally occurring radium and thorium in the ceramic sump material. However, all results and MDA's are within DCGL's.

Table 4.4 - Results: Small Garage - Drain Openings

Measurem	In situ Measurement Gamma Spectroscopic Results		sults	GPU Laboratory Sampling Result			Description	Note		
#	(dpm/100 sq.cm) (estimated pCi/g) (pCi/g) # Cs-137 Co-60 Cs-137 Co-60 ID Cs-137 Co-60									
101001 A	1	< 1921	< 1270	< 2.1	< 1.4	1525	0.42	< 0.06	Drain Sump - Garage Bay 1	sediment removed before meas.
101001 A	2	< 664	< 421	< 2.3	< 1.5	NoSamp			Drain Pipe - Garage Bay 1	
101001 B	1	< 2134	< 1209	< 3.8	< 2.1	1522	0.5	< 0.06	Drain Sump - Garage Bay 2	~12" sediment in place during meas.
101001 B	2	< 1994	< 1104	< 2.2	< 1.2	NoSamp			Drain Sump - Garage Bay 2	sediment removed before meas.
101001 B	3	< 695	< 422	< 2.4	< 1.5	NoSamp			Drain Pipe - Garage Bay 2	
101001 C	1	< 2064	< 1162	< 2.3	< 1.3	1523	0.2	< 0.06	Drain Sump - Garage Bay 3	sediment removed before meas.
101001 C	2	< 678	< 412	< 2.4	< 1.5	NoSamp			Drain Pipe - Garage Bay 3	• • • •
101001 C	1D	< 2051	< 1213	< 2.3	< 1.3	NoSamp			dup-Drain Pipe - Garage Bay 3	
101001 D	1	< 2014	< 1122	< 2.2	< 1.2	1524	1.4	0.06	Drain Sump - Garage Bay 4	sediment removed before meas.
101001 D	2	< 670	< 391	< 2.4	< 1.4	NoSamp			Drain Pipe - Garage Bay 4	

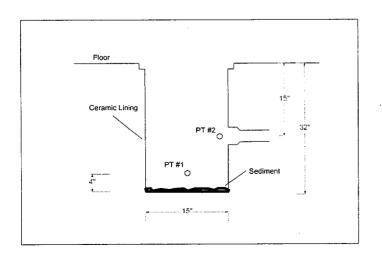


Figure 4.4 – Garage Drain Sectional View (Typical)

4.5 Yard Drain - Center Yard and 16" Line Behind Garage

The center yard drain near Grid Point AN133 was manually cleaned of most sediment (approximately 1" remaining). After cleaning, an *in situ* measurement was performed in the sump and then 3 additional measurements were performed in the attached 16" ceramic pipe. The same pipe was unea thed downstream, after it passed under or near the garage, just before it connects to the Shunt Line. Seven (7) additional measurements were performed there with the last measurement point actually protruding into the Shunt Line. A sample was collected of the sediment removed from the sump and a sample of the ceramic pipe wall was collected from the unearthed section because no scale was present there. Laboratory analysis of the samples and *in situ* gamma spectroscopy results were in good agreement. All results are well, within the DCGL's.

Table 4.5 - Results: Yard Drain, Center and 16" Line Behind Garage

Measurement #		Gam	In s ma Spectro	itu oscopic Res	sults	GPU Laboratory Sampling Result			Description	Note
		(dpm/100 sq.cm) Cs-137 Co-60		(estimated pCi/g) Cs-137 Co-60		ID	(pCi/g)			
								.		
101001 E	1	910	< 507	1.0	< 0.6	1526	1.1	< 0.03	Yard drain sump at AN133	sediment removed before meas
101001 E	2	< 335	< 203	< 1.2	< 0.7	NoSamp			16" drain pipe from sump	
101001 E	3	< 357	< 246	< 1.3	< 0.9	NoSamp	.		16" drain pipe from sump	
101001 E	4	< 372	< 247	< 1.3	< 0.9	NoSamp	-		16" drain pipe from sump	
102301A	1	< 443	< 250	< 1.6	< 0.9	1560	< 0.07	< 0.08	16" drain pipe from sump	sample of ceramic pipe wall
102301A	2	< 480	< 296	< 1.7	< 1.0	NoSamp			16" drain pipe from sump	
102301A	3	< 477	< 297	< 1.7	< 1.0	NoSamp			16" drain pipe from sump	
102301A	4	< 432	< 254	< 1.5	< 0.9	NoSamp			16" drain pipe from sump	
102301A	5	< 330	< 201	< 1.2	< 0.7	NoSamp			16" drain pipe from sump	
102301A	6	< 355	< 229	< 1.2	< 0.8	NoSamp			16" drain pipe from sump	
102301A	7	< 559	< 325	< 2.0	< 1.1	NoSamp			12" protruding into shunt	

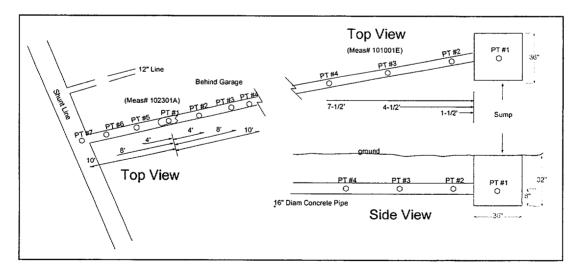


Figure 4.5 - Yard Drain, Center and 16" Line Behind Garage

4.6 Yard Drain - Near Warehouse

The yard drain near the Warehouse near Grid Point AO130 was manually cleaned of most of its sediment (approximately 1" remaining). After cleaning, an *in situ* measurement was performed in the sump and then 4 additional measurements were performed in the attached 12" corrugated steel pipe. A sample was collected of the sediment removed from the sump. Laboratory analysis of the sample and *in situ* gamma spectroscopy results was in good agreement. All results are well within the DCGL's.

Measurement #		In situ Gamma Spectroscopic Results				GPU Laboratory Sampling Result			Description	Note
		(dpm/100 sq.cm) Cs-137 Co-60		(estimated pCi/g) Cs-137 Co-60		ID	(pCi/g) Cs-137 Co-60			
101101A	1	< 1633	< 991	< 1.8	< 1.1	1527	0.7	< 0.07	Yard drain sump at AO130	sediment removed before meas.
101101A	2	< 372	< 241	< 1.3	< 0.8	NoSamp			12" drain pipe from sump	
101101A	3	< 397	< 247	< 1.4	< 0.9	NoSamp			12" drain pipe from sump	
101101A	4	< 375	< 229	< 1.3	< 0.8	NoSamp			12" drain pipe from sump	
101101A	5	< 309	< 182	< 1.1	< 0.6	NoSamp			12" drain pipe from sump	•

Table 4.6 - Results: Yard Drain Near Warehouse

Figure 4.6 - Yard Drain Near Warehouse

4.7 18" Pipe in SSGS Area Footprint

The 18" diameter steel pipe in the SSGS connects the discharge tunnel to the Screen/Rake section of the Intake Tunnel. One scale sample and 18 *in situ* measurements were collected as well as 3 additional samples collected previous to this study. Laboratory analysis of the 4 scale samples and *in situ* gamma spectroscopy results were in general agreement, with the sampling results about 2 to 3 times greater than the *in situ* result. The differences are likely due to the reasons discussed in Sections 3.1 and 4.0. However, results are well within DCGL's.

Measurem	ent	Gam	In s ma Spectro	iitu oscopic Re	sults		U Laborato Impling Re	•	Description	Note
		•••	0 sq.cm)		ed pCi/g)			Ci/g)		
#		Cs-137	Co-60	Cs-137	Co-60	SX ID#	Cs-137	Co-60		
101101B	1	236	< 83	0.8	< 0.3	1534	0.66	0.1	18" pipe in SSGS	5' from tunnel, in valve
101101B	2	209	< 85	0.7	< 0.3	344	1.2		18" pipe in SSGS	3' from tunnel
101101B	3	< 264	< 147	< 0.9	< 0.5	NoSamp			18" pipe in SSGS	1' from tunnel
101101B	4	< 174	< 133	< 0.6	< 0.5	NoSamp			18" pipe in SSGS	8.5' from tunnel
101101B	5	< 206	< 129	< 0.7	< 0.5	NoSamp			18" pipe in SSGS	11' from tunnel
101101B	6	< 211	< 109	< 0.7	< 0.4	NoSamp			18" pipe in SSGS	13' from tunnel
101101B	7	< 210	< 151	< 0.7	< 0.5	NoSamp			18" pipe in SSGS	15' from tunnel
101101B	8	< 232	< 173	< 0.8	< 0.6	NoSamp			18" pipe in SSGS	17' from tunnel
101101B	9	< 244	< 180	< 0.9	< 0.6	NoSamp			18" pipe in SSGS	19' from tunnel
101101B	10	< 262	< 155	< 0.9	< 0.5	NoSamp	·		18" pipe in SSGS	21' from tunnel
101101B	11	< 238	< 154	< 0.8 .	< 0.5	NoSamp			18" pipe in SSGS	23' from tunnel
101101B	12	< 285	< 180	< 1.0	< 0.6	NoSamp			18" pipe in SSGS	25' from tunnel
101101B	13	< 258	< 192	< 0.9	< 0.7	NoSamp			18" pipe in SSGS	27' from tunnel
101101B	14	< 208	< 154	< 0.7	< 0.5	NoSamp			18" pipe in SSGS	29' from tunnel
101101B	15	< 271	< 127	< 1.0	< 0.4	NoSamp			18" pipe in SSGS	31' from tunnel
101101B	16	< 274	< 160	< 1.0	< 0.6	NoSamp			18" pipe in SSGS	33' from tunnel
101101B	17	375	< 200	1.3	< 0.7	NoSamp			18" pipe in SSGS	35' from tunnel
101101B	18	283	< 135	1.0	< 0.5	938	3.2	< 0.15	18" pipe in SSGS	37' from tunnel
NoMeas						939	4.24	< 0.1	18" pipe in SSGS	42' from tunnel
NoMeas						953	1.76	< 0.11	18" pipe in SSGS	60' from tunnel

Table 4.7 – Results: 18" Pipe in SSGS Area Footprint

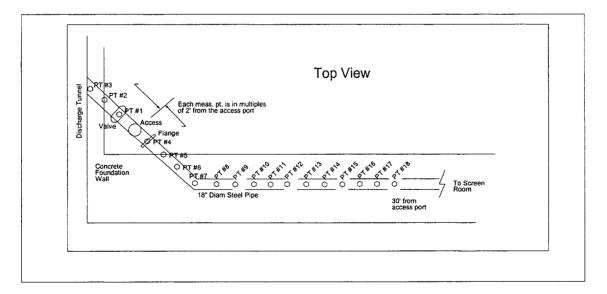


Figure 4.7 – 18" Pipe in SSGS Area Footprint

4.8 12" Drain Line into Shunt (outside fence)

The 12" diameter ceramic pipe outside the fence south of the garage was unearthed near Grid Point AL137. One ceramic sample and 12 *in situ* measurements were collected, 1 upstream from the entry point and 11 downstream towards the shunt line. The last measurement point was actually protruding into the shunt line. Laboratory analysis of the ceramic sample and *in situ* gamma spectroscopy results was in good agreement. No contamination was detected and thus all results were well within the DCGL's.

Measurem	ent	Gam	In s ma Spectro	itu oscopic Res	sults		U Laborati Ipling Res		Description	Note
#		(dpm/10) Cs-137	0 sq.cm) Co-60	(estimate Cs-137	ed pCi/g) Co-60	ID .	(pC Cs-137	/g) Co-60		
<u>"</u>	ŀ								I	
102201A	1	< 471	< 279	< 1.7	< 1.0	1558	< 0.1	< 0.1	12" pipe into shunt	sample of ceramic pipe wal
102201A	2	< 513	312	< 1.8	1.1	NoSamp			12" pipe into shunt	
102201A	3	< 474	< 269	< 1.7	< 0.9	NoSamp			12" pipe into shunt	
102201A	4	< 507	< 277	< 1.8	< 1.0	NoSamp			12" pipe into shunt	
102201A	5	< 549	< 330	< 1.9	< 1.2	NoSamp			12" pipe into shunt	
102201A	6	< 493	< 293	< 1.7	< 1.0	NoSamp			12" pipe into shunt	
102201A	7	< 512	< 308	< 1.8	< 1.1	NoSamp			12" pipe into shunt	
102201A	8	< 427	< 247	< 1.5	< 0.9	NoSamp			12" pipe into shunt	
102201A	9	< 336	< 221	< 1.2	< 0.8	NoSamp			12" pipe into shunt	
102201A	10	< 398	< 216	< 1.4	< 0.8	NoSamp			12" pipe into shunt	
102201A	11	< 345	< 203	< 1.2	< 0.7	NoSamp			12" pipe into shunt	
102201A	12	< 656	< 405	< 2.3	· < 1.4	NoSamp			protruding into shunt	
102201A	3D	< 488	< 299	< 1.7	< 1.1	NoSamp			dup-12" pipe into shunt	
102201A	12D	< 642	< 404	< 2.3	< 1.4	NoSamp			dup-protruding into shunt	

Table 4.8 - Results: 12" Drain Line into Shunt (outside fence)

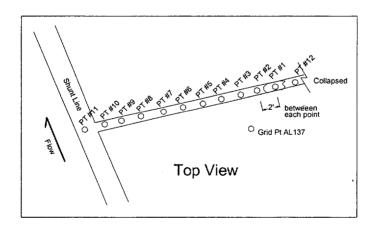


Figure 4.8 - 12" Drain Line into Shunt (outside fence)

4.9 Unknown 12" Drainage Line East of Small Garage

The 12" diameter ceramic pipe was unearthed behind the northern end of the garage. The origin of the pipe is unknown, but it comes from the direction of the boiler pad and probably drained a yard sump that is no longer present. One ceramic sample was collected and 8 *in situ* measurements were performed, 2 upstream from the entry point and 4 downstream towards the shunt line. The last measurement point was actually protruding into the shunt line. No detectable contamination was found, thus all results were well within DCGL's.

Measurement	ent	Gamr	In s na Spectro	iitu oscopic Res	sults		U Laborat		Description	Note
#		(dpm/100 Cs-137) sq.cm) Co-60	(estimate Cs-137	ed pCi/g) Co-60	ID	(pC Cs-137	i/g) Co-60		
102201B	1	< 446	< 237	< 1.6	< 0.8	1559	< 0.1	< 0.1	12" unknown line into shunt	sample of ceramic pipe wall
102201B	2	< 484	< 297	< 1.7	< 1.0	NoSamp			12" unknown line into shunt	
102201B	3	< 515	< 317	< 1.8	< 1.1	NoSamp			12" unknown line into shunt	
102201B	4	< 565	< 327	< 2.0	< 1.2	NoSamp			12" unknown line into shunt	
102201B	5	< 550	< 347	< 1.9	< 1.2	NoSamp			12" unknown line into shunt	
102201B	6	< 476	< 298	< 1.7	< 1.0	NoSamp			12" unknown line into shunt	
102201B	7	< 360	< 236	< 1.3	< 0.8	NoSamp			12" unknown line into shunt	
102201B	8	< 516	< 303	< 1.8	< 1.1	NoSamp			protruding into shunt	
102201B	8D	< 523	< 279	< 1.8	< 1.0	NoSamp			dup-protruding into shunt	

Table 4.9 - Results: Unknown 12" Drainage Line East of Small Garage

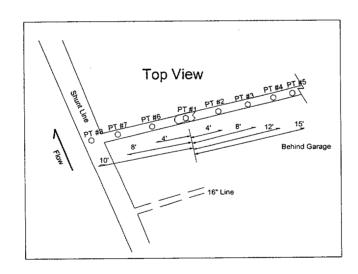


Figure 4.9 – Unknown 12" Drainage Line Behind the Small Garage

4.10 3 Pipes in NW SSGS Above Seal Chamber #3

The 3 steel pipes in the SSGS over seal chamber #3 originally emptied into the discharge tunnel. One scale sample from each of the 3 pipes was collected and 18 *in situ* measurements were performed. Laboratory analysis of the scale samples and *in situ* gamma spectroscopy results were in good agreement. While some of the results showed detectable cesium-137, all results are well within DCGL's.

Measureme	ent	Gamr	In s na Spectro	iitu oscopic Res	sults		U Laborat	· ·	Description	Note
		(dpm/100) sq.cm)	(estimate	ed pCi/g)			i/g)	1	
#		Cs-137	Co-60	Cs-137	Co-60	ID	Cs-137	Co-60		
102301B	1	< 243	< 155	< 0.9	< 0.5	1561	0.16	< 0.08	top 8" pipe SSGS	scale sample
102301B	2	< 241	< 142	< 0.8	< 0.5	NoSamp			top 8" pipe SSGS	'
102301B	3	< 379	< 236	< 1.3	< 0.8	NoSamp			top 8" pipe SSGS	
102301B	4	< 471	< 292	< 1.7	< 1.0	NoSamp			top 8" pipe SSGS	
102301B	5	< 384	< 251	< 1.4	< 0.9	NoSamp		-	top 8" pipe SSGS	
102301B	6	< 399	< 283	< 1.4	< 1.0	NoSamp			top 8" pipe SSGS	
102301B	7	< 424	< 254	< 1.5	< 0.9	NoSamp			top 8" pipe SSGS	
102301B	8	1178	< 174	4.1	< 0.6	1562	5.6	< 0.07	middle 6" pipe SSGS	scale sample
102301B	9	1478	< 242	5.2	< 0.9	NoSamp	-		middle 6" pipe SSGS	
102301B	10	1112	< 329	3.9	< 1.2	NoSamp	• - -		middle 6" pipe SSGS	
102301B	10D	1182	< 231	4.2	< 0.8	NoSamp			dup-middle 6" pipe SSGS	
102301B	11	518	< 238	1.8	< 0.8	NoSamp			middle 6" pipe SSGS	
102301B	12	639	< 286	2.3	< 1.0	NoSamp			middle 6" pipe SSGS	
102301B	13	520	< 340	1.8	< 1.2	1563	2.3	< 0.1	bottom 8" pipe SSGS	scale sample
102301B	14	638	< 143	2.2	< 0.5	NoSamp			bottom 8" pipe SSGS	
102301B	15	520	< 243	1.8	< 0.9	NoSamp			bottom 8" pipe SSGS	
102301B	16	471	< 296	1.7	< 1.0	NoSamp			bottom 8" pipe SSGS	
102301B	17	518	< 285	1.8	< 1.0	NoSamp			bottom 8" pipe SSGS	
102301B	18	< 390	< 274	< 1.4	< 1.0	NoSamp			bottom 8" pipe SSGS	

Table 4.10 - Results: 3 Pipes in NW SSGS Above Seal Chamber #3

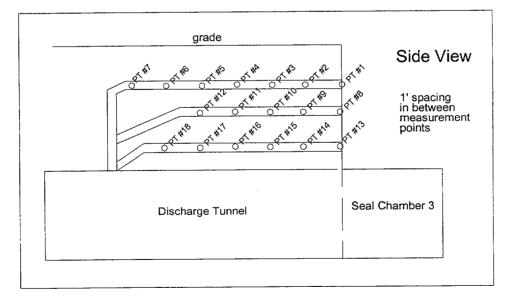


Figure 4.10 - 3 Pipes in NW SSGS Above Seal Chamber #3

4.11 Pipe in SW - SSGS Towards Intake Tunnel Screen Room

The 8" steel pipe in the southwest corner of the SSGS at the 803' level leads toward the screen room. One scale sample and 12 *in situ* measurements were collected. Laboratory analysis of the scale sample and *in situ* gamma spectroscopy results was in good agreement. While some of the results showed detectable cesium-137, all results are well within the DCGL's.

Measureme	ent	Gam	In s ma Spectro	itu oscopic Re:	sults		U Laborat	-	Description	Note
#		(dpm/10) Cs-137	0 sq.cm) Co-60	(estimate Cs-137	ed pCi/g) Co-60	ID	(pC Cs-137			
102301C		< 255	< 207	< 0.9	< 0.7	1580	0.27	< 0.06	8" SW SSGS 803	scale sample
102301C	2	< 289	< 185	< 1.0	< 0.7	1581	0.25	0.036	8" SW SSGS 803	loose sediment & scale
102301C	3	336	< 172	1.2	< 0.6	NoSamp			8" SW SSGS 803	
102301C	4	344	< 192	1.2	< 0.7	NoSamp			8" SW SSGS 803	
102301C	5	394	< 227	1.4	< 0.8	NoSamp			8" SW SSGS 803	
102301C	6	703	< 231	2.5	< 0.8	NoSamp			8" SW SSGS 803	
102301C	6d	819	< 207	2.9	< 0.7	NoSamp	.		dup - 8" SW SSGS 803	
102301C	7	659	< 207	2.3	< 0.7	NoSamp			8" SW SSGS 803	
102301C	8	646	< 218	2.3	< 0.8	NoSamp	.		8" SW SSGS 803	
102301C	9	652	< 191	2.3	< 0.7	NoSamp			8" SW SSGS 803	
102301C	9d	667	< 201	2.3	< 0.7	NoSamp			dup - 8" SW SSGS 803	
102301C	10	581	< 196	2.0	< 0.7	NoSamp			8" SW SSGS 803	
102301C	11	< 310	< 205	< 1.1	< 0.7	NoSamp			8" SW SSGS 803	*
102301C	12	< 307	< 193	< 1.1	< 0.7	NoSamp			8" SW SSGS 803	

Table 4.11 - Results: Pipe in SW - SSGS Towards Intake Tunnel Screen Room

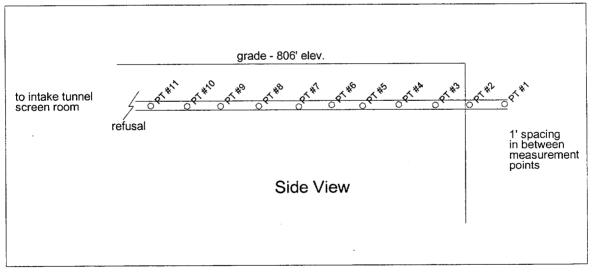


Figure 4.11 - Pipe in SW - SSGS Towards Intake Tunnel Screen Room

4.12 Drain Line from Warehouse to Shunt

The 18" ceramic pipe leads from the Warehouse to the Shunt line. The pipe was accessed via two 6 to 12 foot deep manholes. One sediment sample and 12 *in situ* measurements were collected. Laboratory analysis of the sample and *in situ* gamma spectroscopy results was in good agreement. All results are well within the DCGL's.

Measureme	ent	Gami	In s ma Spectro	iitu oscopic Res	sults		U Labora	· ·	Description	Note
#		(dpm/10) Cs-137	0 sq.cm) Co-60	(estimate Cs-137	ed pCi/g) Co-60	ID	(pC Cs-137	i/g) Co-60		
	I									• • • • • • • • • • • • • • • • • • •
102401A	1	< 309	< 205	< 1.1	< 0.7	1582	0.11	< 0.04	Warehouse to Shunt AK131	sediment from access hole
102401A	2	< 334	< 204	< 1.2	< 0.7	NoSamp			Warehouse to Shunt AK131	
102401A	3	< 325	< 228	< 1.1	< 0.8	NoSamp			Warehouse to Shunt AK131	
102401A	4	< 316	< 222	< 1.1	< 0.8	NoSamp			Warehouse to Shunt AK131	
102401A	5	< 336	< 224	< 1.2	< 0.8	NoSamp			Warehouse to Shunt AK131	
102401A	6	< 363	< 222	< 1.3	< 0.8	NoSamp			Warehouse to Shunt AK131	
102401A	7	< 346	< 214	< 1.2	< 0.8	NoSamp			Warehouse to Shunt AK131	
102401B	1	< 503	< 294	< 1.8	< 1.0	NoSamp			Warehouse to Shunt AG131	1
102401B	2	< 516	< 305	< 1.8	< 1.1	NoSamp			Warehouse to Shunt AG131	
102401B	3	< 522	< 358	< 1.8	< 1.3	NoSamp			Warehouse to Shunt AG131	
102401B	4	< 510	< 296	< 1.8	< 1.0	NoSamp		•	Warehouse to Shunt AG131	
102401B	5	< 497	< 311	< 1.8	< 1.1	NoSamp			Warehouse to Shunt AG131	

Table 4.12 - Results: Drain Line from Warehouse to Shunt

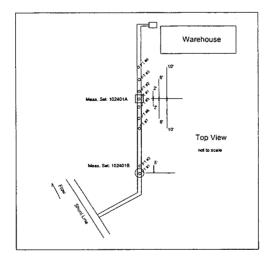


Figure 4.12 - Drain Line from Warehouse to Shunt

4.13 Shunt Line and Yard Drain System Tie-ins

The 42" diameter Shunt Line was accessed at 6 points: the intake, at a manhole, a 12" line connection, a 16" line connection, another 12" line connection, and the outfall. Readings from the two 12" lines and the 16" line connection were displayed previously in Sections 4.5, 4.8, and 4.9, and are listed again here. Three (3) sediment samples were collected and 9 *in situ* measurements were performed. Laboratory analysis of the samples and *in situ* gamma spectroscopy results were in good agreement. All results are well within the DCGL's.

The model ("L") used for this pipe assumed $\frac{1}{2}$ " of water overlying the sediment layer (assumed to be 1" thick) resting on the bottom of the pipe. This is a reasonable model for the tie-in locations. However, at the intake and spillway (outfall) locations, observations indicated that a 2 to 6" deep layer of water actually occurred. Such a clean water over-layer would render low levels of radionuclides near the DCGL's in the sediment essentially non-detectable. Thus, the first four results in Table 4.13 below are underestimates of the MDA's. Therefore, the reader should rely on the sampling result for these locations.

The Shunt Line has a relatively high flow of clean stream water continually flowing through it. Thus, accumulation of radionuclides in it is unlikely. The sampling and *in situ* results herein confirm this conclusion. However, if further study of the line is required, future measurements should be performed during a dry season and/or with the inflow diverted so as to perform *in situ* measurements without an overlaying layer of water.

Measureme	ent	Gam	In s na Spectro		sults		U Laborat opling Res		Description	Note
		(dpm/10) sq.cm)	(estimate	ed pCi/g)		(pC	;i/g)		
#		Cs-137	Co-60	Cs-137	Co-60	ID	Cs-137	Co-60		<u> </u>
102501B	1	< 412*	< 279*	< 1.4*	< 1.0*	1589	0.04	< 0.12	Shunt intake at AE 131	sediment sample
102501B	1D	< 409*	< 303*	< 1.4*	< 1.1*	"	*1		dup - Shunt intake at AE 131	11
102501C	1	< 418*	< 300*	< 1.5*	< 1.1*	1587	0.34	< 0.09	Shunt outfall at AX 145	sediment sample
102501C	2	< 409*	< 301*	< 1.4*	< 1.1*	1588	0.27	< 0.09	Shunt outfall at AX 145	sediment sample
102501A	1	< 694	< 430	< 2.4	< 1.5	NoSamp			Shunt at manhole at AE133	
102501A	2	< 661	< 390	< 2.3	< 1.4	NoSamp			Shunt at manhole at AE133	
102501A	3	< 617	< 399	< 2.2	< 1.4	NoSamp			Shunt at manhole at AE133	
102201A	12	< 656	< 405	< 2.3	< 1.4	NoSamp			12" protruding into shunt	
102201A	12D	< 642	< 404	< 2.3	< 1.4	NoSamp			dup - 12" protruding into shunt	
102201B	8	< 516	< 303	< 1.8	< 1.1	NoSamp			12" unk.protruding into shunt	
102201B	8D	< 523	< 279	< 1.8	< 1.0	NoSamp			dup -12" unk.protruding into shunt	
102301A	7	< 559	< 325	< 2.0	< 1.1	NoSamp			16" protruding into shunt	

Table 4.13 – Results: Shunt Line and Yard Drain System Tie-ins

* Overlaying water layer present not included in calculations, see discussion above.

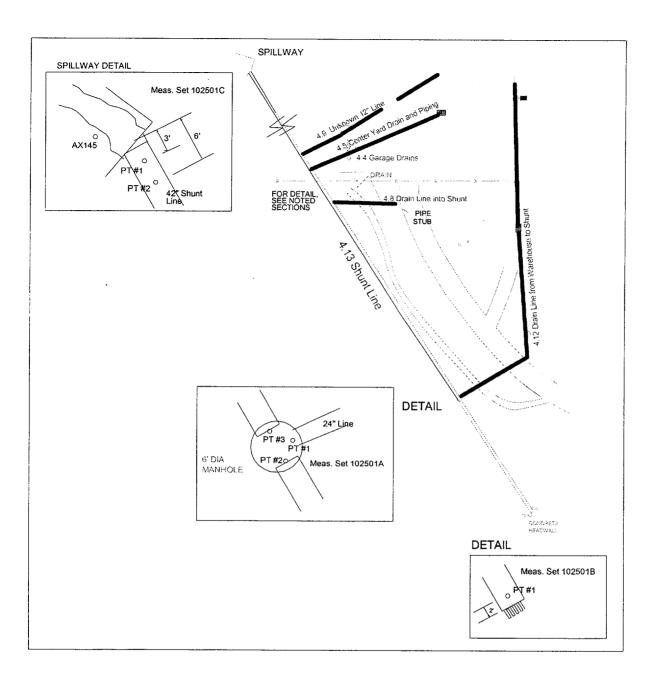


Figure 4.13 – Shunt Line and Yard Drain System Tie-ins

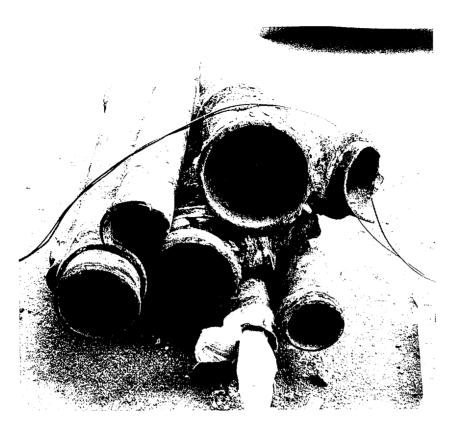
4.14 Summary of Embedded Pipe Systems Measured

The fraction of total pipe area surveyed was estimated for comparison to MARSSIM class 2 and 3 coverage recommendations. The fraction of total pipe area surveyed is proportional to the fraction of pipe length surveyed. The length of pipe surveyed per measurement point was conservatively estimated during detector calibration, i.e., the length of pipe easily visible to the detector was 2 pipe-diameters (> 90% spatial response). For example, for a 7.5 inch diameter pipe, each measurement viewed at least a 15-inch length of pipe. These pipe lengths surveyed were summed and entered into Table 4.14. The total length of pipe in a system was estimated from the site drawing.

Derest	$\frac{1 \text{ able 4.14} - \text{ Summ}}{1 \text{ able 4.14} - \text{ Summ}}$	X		*	γ····	500/ 0
Report	Drain Sub-System	Typical	Length	Total	Fraction	> 50% of
Section		Pipe	Measured	Length*	of Length	DCGL
		Diameter	(m)	(m)	Surveyed	Detected ?
		(in.)				
4.1	Boiler Pad Piping (partially removed)	3.75-9.5	3.1	14.2 (available) 338 (in ground)	0.22	no
4.2	Cross-Over Line Between Intake Tunnel to Spray Pond (removed)	24	4.9	~20	0.25	no
4.3	SSGS Sump Cross-Over Lines	3.75	N/A -	N/A -	N/A -	yes
	(removed – staged for disposal)		disposal	disposal	disposal	5
4.4	Small Garage – Drain Openings	15"sump + 6" line + ~12"header	2.5	23	0.11	no
4.5	Yard Drain - Center and 16" Line Behind Garage	16	9	46	0.20	no
4.6 &	Yard Drain - Near Warehouse, Drain	12	16	113	0.14	no
4.12	Line from Warehouse to Shunt	18				
4.7	18" Pipe in SSGS	18	16.6	19	0.87	no
4.8	12" Drain Line into Shunt (outside fence)	12	7	27	0.26	no
4.9	Unknown 12" Drainage Line Behind the Small Garage	12	8	50 (est.)	0.16	no
4.10	3 Pipes in NW SSGS Above Seal Chamber 3	5.75-7.5	4.9	7.4	0.66	no
4.11	Pipe in SW SSGS Towards Screen Room	7.5	3.4	5 (est.)	0.68	no
4.13	Shunt Line and Yard Drain System Tie-ins	42	16	~260	.06	no

Table 4.14 – Summary of Embedded Pipe Systems Measured

* Estimated Lengths

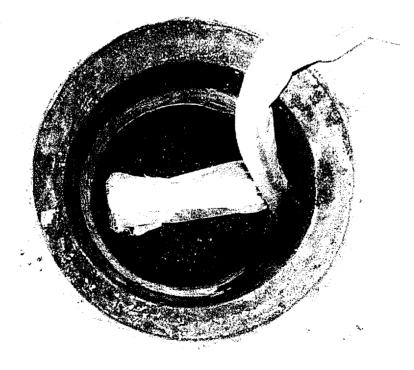

5.0 CONCLUSION

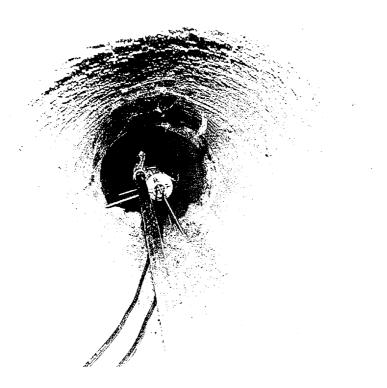
A survey of selected embedded and unearthed piping sections at the Saxton Nuclear Experimental Corporation (SNEC) Facility was performed using *in situ* gamma spectroscopy and sampling of pipe scale and sump sediment with subsequent laboratory analysis. The results show that radioactivity levels in these embedded systems are within site release limits (DCGL's), even using conservative assumptions regarding calculation of *in situ* radionuclide concentrations and application of the DCGL's to piping. It is anticipated that this piping will remain in place after license termination. Of the unearthed systems measured, one (SSGS sump crossover) showed levels exceeding a DCGL. These pipes had already been staged for eventual radioactive waste disposal.

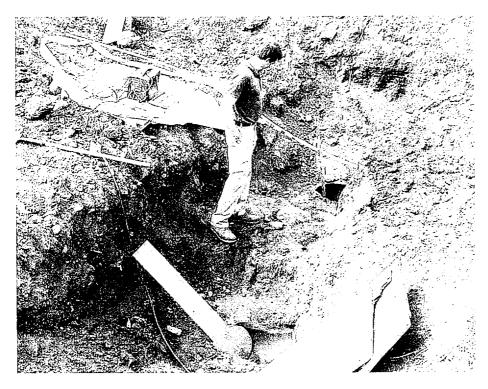
REFERENCES

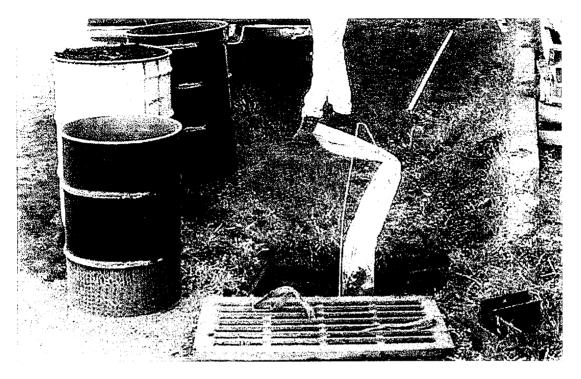
- 1. "Embedded Pipe Dose Calculation Method", EPRI 1000951, Final Report, Nov. 2000.
- 2. ANSI N42.12 "Calibration and Usage of Sodium Iodide Detector Systems", American National Standards Institute, 1980, 1985.
- 3. Saxton Nuclear, Survey Methodology to Support SNEC License Termination, E900-IMP-4520.04, Rev 0.
- 4. Saxton Nuclear, Operation of the Portable Gamma Spectroscopy System, E900-OPS-4524.43, Rev 0.
- 5. "Remediation of Embedded Piping: Trojan Nuclear Plant Decommissioning Experience", EPRI 1000908, Oct. 2000.
- 6. MicroShield Radiation Shielding Computer Code, Version 5.05, Grove Engineering, Rockville, MD.

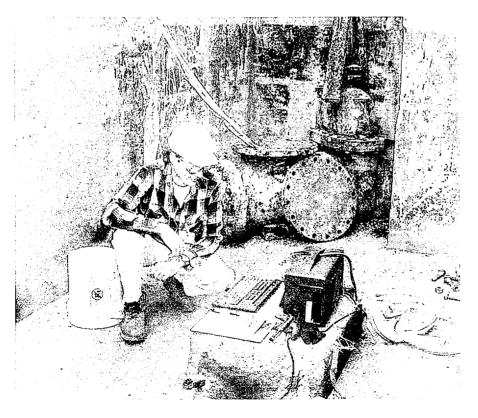
Appendix A – Photographs of Areas Surveyed

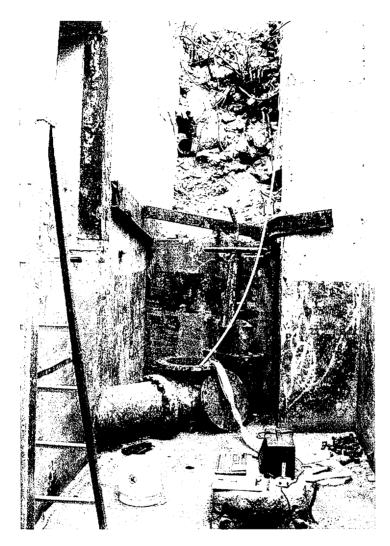

Photograph 4.1 – Boiler Pad Piping (Excavated Portion)

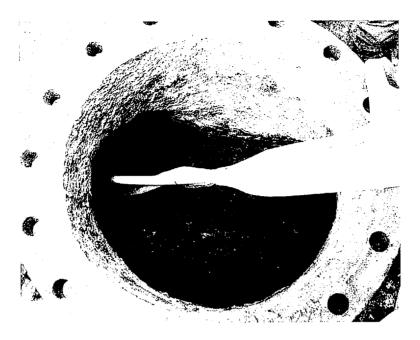

Photograph 4.2a - Cross-Over Line Between Intake Tunnel to Spray Pond


Photograph 4.2b - Cross-Over Line Between Intake Tunnel to Spray Pond

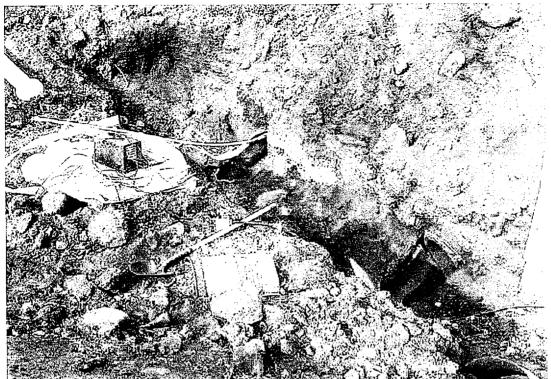

Photograph 4.4a – Small Garage – Drain Openings

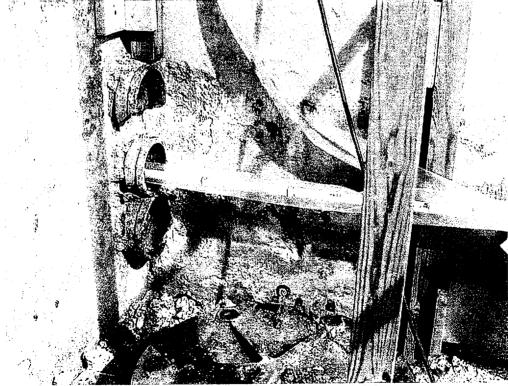

Photograph 4.5a – Center Yard Drain, Pipe Leading Away From Sump

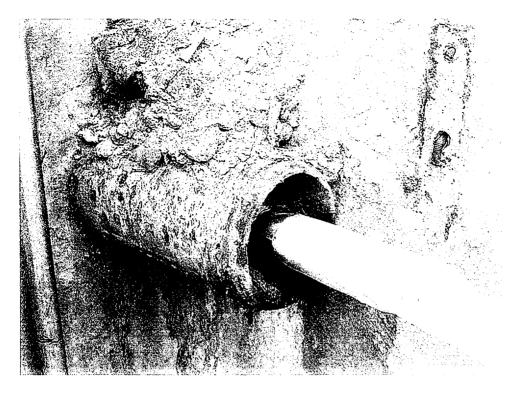

Photograph 4.5b - Center Yard Drain Pipe, Excavated Behind Garage (foreground)

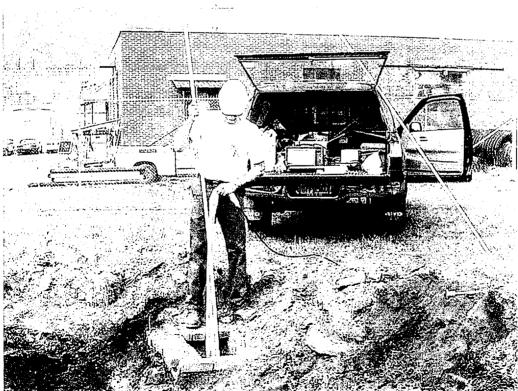

Photograph 4.6 – Yard Drain Near Warehouse

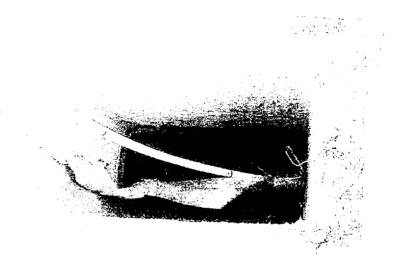
Photograph 4.7a – 18" Pipe in SSGS (upstream measurement)


Photograph 4.7b – 18" Pipe in SSGS (downstream measurement)


Photograph 4.7c - 18" Pipe in SSGS, Access Port


Photograph 4.8 – 12" Drain Line Outside Fence Near Garage

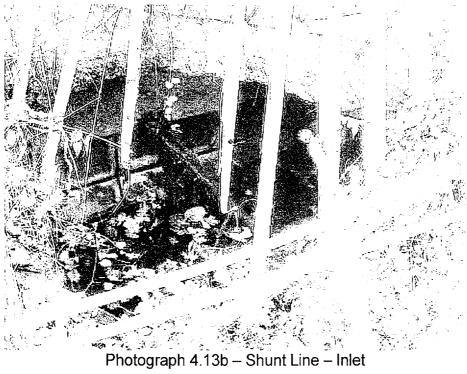

Photograph 4.9 – Unknown 12" Drain Line Behind Garage

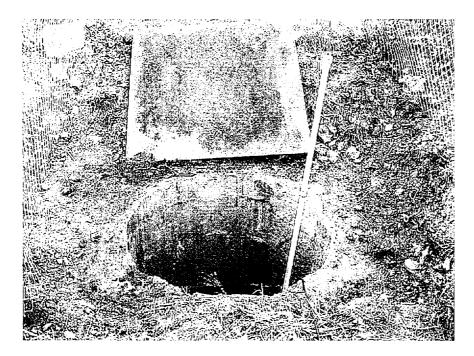

Photograph 4.10 – 3 Pipes in SSGS

Photograph 4.11 – 8" Pipe in SW SSGS Towards Screen Room

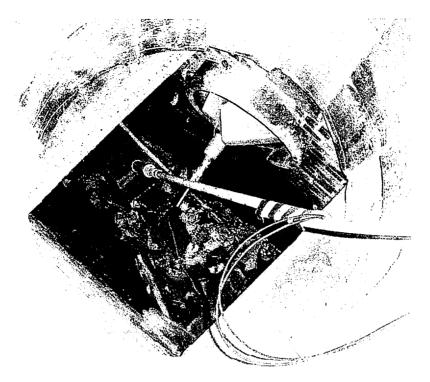

Photograph 4.12a – Drain Line From Warehouse to Shunt

Photograph 4.12b – Drain Line From Warehouse to Shunt

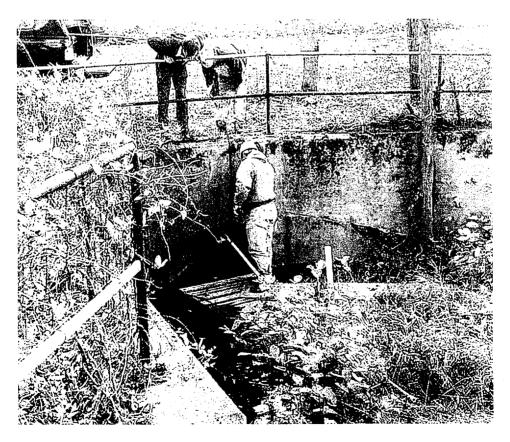

Photograph 4.12c – Drain Line From Warehouse to Shunt



Photograph 4.12d – Drain Line From Warehouse to Shunt



Photograph 4.13a - Shunt Line, Inlet



Photograph 4.13c - Shunt Line, 6' hole access

Photograph 4.13d – Shunt Line, 6' Hole Access, Showing Tie-in From Warehouse Line

Photograph 4.13e – Shunt Line, Spillway

Appendix B - SNEC Embedded Piping Survey Results

SNEC Embedded Pipe Survey, page 29

Appendix B - SNEC Embedded Piping Survey Results

Pipe	Sner		Dine of														GPU Lat	· · ·	
Pipe	Sner		- ihe oi	r Sump S	urface A	ctivity (dp	m/100 s	q.cm)	Sedimen	nt/Scale	C	oncentrati	on in Sedi	ment or S	cale (pCi/g	3)	Sampling	Result	
	lobor	Geom.		Cs-137			Co-60		Density	Thick.		Cs-137			Co-60		(pCi	/g)	
	#		Activity	"+-2s"	MDA	Activity	"+-2s"	MDA	(g/cc)	(cm)	Conc.	"+-2s"	MDA	Conc.	"+-2s"	MDA	Cs-137	Co-60	Description
00801 A	1	с	-22	207	377	-12	163	244	2	0.64	-0.1	0.7	1.3	0.0	0.6	0.9	0.12	<0.09	6" - "South Boiler Pad"
00801 B	1	č	132	215	359	9	149	226	2	0.64	-0.1	0.8	1.3	0.0	0.5	0.8	< 0.09	<0.09	6" - "SSGS 806 East End"
00801 C	1		132	208	355	41	154	220	2	0.64	0.4	0.0	1.3	0.0	0.5	0.8	0.03	<0.09	8" - "Center"
00801 D	1	A E	120	208	355 356	4 (157	175	241	2	0.64	0.4	0.7	1.2	0.6	0.5	0.8	0.07	<0.09	10" - "Center"
00801 E	1	A	-69	208 179	306	47	140	209	2	0.64	-0.2	0.6	1.1	0.0	0.5	0.0	0.33	< 0.09	8"
00801 E	2		-09	185	340	47 10	139	209	2	0.64	-0.2	0.0	1.2	0.2	0.5	0.7			8
00801 E	2	A M	-32	105	353	165	180	208 251	2	0.64	-0.1	0.7	1.2	0.6	0.5	0.9	< 1.1	< 1.2	4" - "South Boiler Pad"
00801 F	1	M	-32	197	353	217	185	248	2	0.64	-0.1 -0.1	0.7	1.2	0.8	0.0	0.9	0.345	< 0.07	4" - "SSGS East End"
	4						189	240 269		0.64	-0.1 1.6	1.1	1.2	0.8	0.7	0.9 0.9	0.345	< 0.07	
00901 A		H	458	309	431	101	229		2 2	0.64	-0.4	1.1	1.5	-0.3	· 0.8	1.1	0.6	< 0.15	24" to spray pond #3
00901 B	1	Н	-102	290 243	499	-91	229 186	302		0.64	-0.4	0.9	1.0	-0.3 0.6	0.8	0.9	2.7	< 0.16	24" to spray pond #9
00901 C	1	H	188		393	163	193	255 247	2 2	0.64	-0.5	0.9	1.4	-0.4	0.7	0.9			24" to spray pond #2
00901 D	1	H	-155	258	416	-102			2			0.9 17.9	1.5 8.4			0.9 2.0	 74		24" to spray pond #1
00901 E	1	N	78152	18975	8842	1082	1396	2077	•	4.763	73.9	3.5		1.0 0.5	1.3 1.4	2.0		0.3	3.75" Sump to sump cross-over
00901 F	1	P	5445	2929	3764	421	1203	1874	1	3.81	6.4		4.5	-0.2	0.9			0.3	3 "Sump to sump cross-over
00901 G	1	M	33713	7873	3468	-55	314	481	1	1.5	101.2 -0.7	23.6	10.4	-0.2 0.8	0.9 1.1	1.4 1.4	74 0.42	< 0.06	same as "E" - cut in thirds
01001 A	1	L.	-664	1158	1921	755	970	1270	1.6	2.54		1.3 1.4	2.1	0.8	1.1	1. 4 1.5			Drain Sump - Garage Bay 1
1001 A	2	c	183	384	664	169	313	421	2	0.64	0.6		2.3						Drain Pipe - Garage Bay 1
01001 B	1	L	1633	1446	2134	940	970 700	1209	1	2.54	2.9	2.6	3.8	1.7	1.7	2.1	0.5	< 0.06	Drain Sump - Garage Bay 2
01001 B	2	L	635	1179	1994	51	769	1104	1.6	2.54	0.7	1.3	2.2	0.1	0.9	1.2			Drain Sump - Garage Bay 2
01001 B	3	C	151	403	695	311	334	422	2	0.64	0.5	1.4	2.4	1.1	1.2	1.5			Drain Pipe - Garage Bay 2
01001 C	1	λ L	1367	1365	2064	29	795	1162	1.6	2.54	1.5	1.5	2.3	0.0	0.9	1.3	0.2	< 0.06	Drain Sump - Garage Bay 3
01001 C	2	C	396	436	678	223	314	412	2	0.64	1.4	1.5	2.4	0.8	1.1	1.5			Drain Pipe - Garage Bay 3
01001 C	1D	L	1948	1462	2051	-157	856	1213	1.6	2.54	2.2 0.9	1.6	2.3	-0.2	0.9 0.9	1.3			dup-Drain Pipe - Garage Bay 3
01001 D	1	L	841	1251	2014	461	828	1122	1.6	2.54		1.4	2.2	0.5		1.2	1.4	0.06	Drain Sump - Garage Bay 4
01001 D	2	C	-41	371	670	-125	298	391	2	0.64	-0.1	1.3	2.4	-0.4	1.0	1.4			Drain Pipe - Garage Bay 4
01001 E	1	ĸ	910	624	871	26	328	507	1.6	2.54	1.0	0.7	1.0	0.0	0.4	0.6	1.1	< 0.03	Yard drain sump at AN133
01001 E	2	F	173	213	335	-95	159	203	2	0.64	0.6	0.7	1.2	-0.3	0.6	0.7			16" drain pipe from sump
)1001 E	3	F	-221	243	357	178	184	246	2	0.64	-0.8	0.9	1.3	0.6	0.6	0.9			16" drain pipe from sump
01001 E	4	F	-156	236	372	63	171	247	2	0.64	-0.5	0.8	1.3	0.2	0.6	0.9			16" drain pipe from sump
01101A	1	J	420	968	1633	227	681	991	1.6	2.54	0.5	1.1	1.8	0.3	0.8	1.1	0.7	< 0.07	Yard drain sump at AO130
01101A	2	F	65	213	372	135	177	241	2	0.64	0.2	0.7	1.3	0.5	0.6	0.8			12" drain pipe from sump
01101A	3	F	222	253	397	178	190	247	2	0.64	0.8	0.9	1.4	0.6	0.7	0.9			12" drain pipe from sump
01101A	4	F	327	262	375	112	166	229	2	0.64	1.2	0.9	1.3	0.4	0.6	0.8		·	12" drain pipe from sump
01101A	5	F	-10	168	309	-43	133	182	2	0.64	0.0	0.6	1.1	-0.1	0.5	0.6	•••	•••	12" drain pipe from sump
01101B	1	G	236	124	160	-39	62	83	2	0.64	0.8	0.4	0.6	-0.1	0.2	0.3	0.66	0.1	18" pipe in SSGS
01101B	2	G	209	134	183	-114	91	85	2	0.64	0.7	0.5	0.6	-0.4	0.3	0.3	1.2	NoAnal	18" pipe in SSGS
01101B	3	G	70	156	264	-72	118	147	2	0.64	0.2	0.6	0.9	-0.3	0.4	0.5			18" pipe in SSGS
01101B	4	G	131	109	174	97	84	133	2	0.64	0.5	0.4	0.6	0.3	0.3	0.5			18" pipe in SSGS
01101B	5	G	146	128	206	4	78	129	2	0.64	0.5	0.5	0.7	0.0	0.3	. 0.5			18" pipe in SSGS
01101B	6	G	73	119	211	-72	98	109	2	0.64	0.3	0.4	0.7	-0.3	0.3	0.4			18" pipe in SSGS
01101B	7	G	61	119	210	7	90	151	2	0.64	0.2	0.4	0.7	0.0	0.3	0.5			18" pipe in SSGS
												,							
											Арр. В,	page 1	of 4						· ·

	ratory	GPU Lab	1						meters	Est.Para							_		
		Sampling	1)	cale (pCi/o	ment or S	on in Sedi	oncentratio	С	t/Scale	Sedimen	q.cm)	m/100 s	ctivity (dp	urface A	r Sump S	Pipe c			
		(pCi/	(l	Co-60			Cs-137		Thick.	Density		Co-60			Cs-137		Geom.	Spec	Pipe
Description	Co-60	Cs-137	MDA	"+-2s"	Conc.	MDA	"+-2s"	Conc.	(cm)	(g/cc)	MDA	"+-2s"	Activity	MDA	"+-2s"	Activity	Model	#	
18" pipe in SSGS			0.6	0.4	0.1	0.8	0.5	-0.2	0.64	2	173	106	18	232	138	-53	G	8	101101B
18" pipe in SSGS			0.6	0.4	0.2	0.9	0.5	0.6	0.64	2	180	112	46	244	152	163	G	9	101101B
18" pipe in SSGS			0.5	0.4	-0.3	0.9	0.6	0.5	0.64	2	155	124	-79	262	163	131	G	10	101101B
18" pipe in SSGS			0.5	0.3	0.1	0.8	0.5	0.3	0.64	2	154	98	41	238	145	89	G	11	101101B
18" pipe in SSGS			0.6	0.4	0.0	1.0	0.6	0.5	0.64	2	180	112	-2	285	178	131	G	12	101101B
18" pipe in SSGS			0.7	0.4	0.5	0.9	0.5	0.2	0.64	2	192	124	146	258	144	50	G	13	101101B
18" pipe in SSGS			0.5	0.3	0.5	0.7	0.5	0.4	0.64	2	154	95	131	208	130	111	G	14	101101B
18" pipe in SSGS			0.4	0.4	-0.3	1.0	0.6	0.6	0.64	2	127	117	-93	271	174	184	G	15	101101B
18" pipe in SSGS			0.6	0.3	0.0	1.0	0.6	0.8	0.64	2	160	96	6	274	174	233	G	16	101101B
18" pipe in SSGS			0.7	0.5	0.5	1.1	0.8	1.3	0.64	2	200	136	131	314	223	375	G	17	101101B
18" pipe in SSGS	< 0.15	3.2	0.5	0.3	0.3	0.8	0.6	1.0	0.64	2	135	85	75	221	161	283	G	18	101101B
18" pipe in SSGS	< 0.1	4.24																	NoMeas
18" pipe in SSGS	< 0.11	1.76																	NoMeas
12" pipe into shunt	< 0.1	< 0.1	1.0	0.8	0.7	1.7	1.0	0.6	0.64	2	279	222	201	471	281	174	F	1	102201A
12" pipe into shunt			1.1	0.9	1.1	1.8	1.1	0.9	0.64	2	312	261	312	513	319	262	F	2	102201A
12" pipe into shunt			0.9	0.9	-0.8	1.7	0.9	-0.1	0.64	2	269	245	-240	474	259	-16	F	3	102201A
12" pipe into shunt	• • •		1.0	0.9	-0.8	1.8	1.2	1.4	0.64	2	277	245	-215	507	347	399	F	4	102201A
12" pipe into shunt			1.2	0.9	0.9	1.9	1.1	0.2	0.64	2	330	263	269	549	307	58	F	5	102201A
12" pipe into shunt			1.0	0.7	0.1	1.7	1.0	0.4	0.64	2	293	203	33	493	287	119	F	6	102201A
12" pipe into shunt			1.1	0.7	0.1	1.8	1.1	0.7	0.64	2	308	211	21	512	313	199	F	7	102201A
12" pipe into shunt			0.9	0.6	0.1	1.5	0.9	-0.5	0.64	2	247	169	15 ·	427	265	-150	F	8	102201A
12" pipe into shunt			0.8	0.6	0.7	1.2	0.6	0.0	0.64	2	221	169	197	336	184	10	F	9	102201A
12" pipe into shunt			0.8	0.7	-0.5	1.4	0.9	0.9	0.64	2	216	188	-152	398	262	263	F	10	102201A
12" pipe into shunt			0.7	0.5	-0.3	1.2	0.7	-0.1	0.64	2	203	155	-74	345	195	-39	F	11	102201A
12" protruding into shun			2.4	1.7	0.9	3.9	2.1	-0.1	2.54	1.6	2124	1565	830	3505	1899	-89	I	12	102201A
dup-12" pipe into shunt			1.1	0.8	0.7	1.7	1.1	1.1	0.64	2	299	228	185	488	322	317	F	3D	102201A
dup-12" protruding into sh			2.3	1.9	1.7	3.8	3.0	-4.5	2.54	1.6	2119	1675	1556	3432	2721	-4093		12D	102201A
12" unknown line into shu	< 0.1	< 0.1	0.8	0.8	-1.0	1.6	1.1	1.3	0.64	2	237	232	-275	446	312	377	F	1	02201B
12" unknown line into shu			1.0	0.8	0.4	1.7	0.9	-0.1	0.64	2	297	218	115	484	265	-19	F	2	02201B
12" unknown line into shu			1.1	0.9	0.9	1.8	1.1	0.8	0.64	2	317	252	250	515	321	240	F	3	02201B
12" unknown line into shu			1.2	0.8	0.0	2.0	1.2	0.8	0.64	2	327	228	-12	565	344	219	F	4	102201B
12" unknown line into shu			1.2	0.9	0.8	1.9	1.3 -	-1.0	0.64	2	347	270	221	550	359	-296	F	5	102201B
12" unknown line into shu	•••		1.0	0.8	0.4	1.7	1.0	0.8	0.64	2	298	216	113	476	298	223	F	6	102201B
12" unknown line into shu			0.8	0.6	0.7	1.3	0.8	0.6	0.64	2	236	182	200	360	224	164	F	7	102201B
12" unk.protruding into shi			1.8	1.2	-0.1	3.1	1.8	-0.7	2.54	1.6	1593	1097	-64	2756	1610	-588	1	8	02201B
dup-12" unk.protruding into s			1.6	1.7	- 2.2	3.1	1.9	1.3	2.54	1.6	1465	1527	-1971	2795	1711	1128		8D	02201B
16" drain pipe from sum	< 0.08	< 0.07	0.9	0.6	-0.1	1.6	1.1	1.1	0.64	2	250	179	-35	443	300	327	G	1	02301A
16" drain pipe from sum		·	1.0	0.8	0.8	1.7	1.1	1.0	0.64	2	296	233	223	480	309	277	G	2	02301A
16" drain pipe from sum			1.0	0.8	0.6	1.7	1.1	-0.8	0.64	2	297	226	171	477	309	-234	G	3	102301A
16" drain pipe from sum			0.9	0.8	-0.6	1.5	0.9	0.5	0.64	2	254	213	-163	432	257	135	G	4	02301A
16" drain pipe from sum			0.7	0.5	0.1	1.2	0.7	0.4	0.64	2	201	137	31	330	199	116	G	5	02301A
16" drain pipe from sum			0.8	0.6	0.7	1.2	0.8	-0.4	0.64	2	229	179	195	355	214	-105	G	6	02301A
12" protruding into shun			1.9	1.3	0.3	3.3	2.3	2.8	2.54	1.6	1706	1190	275	2987	2071	2540		7	02301A
top 8" pipe SSGS	< 0.08	0.16	0.5	0.4	0.1	0.9	0.5	0.3	0.64	2	155	102	40	243	145	95	В	1	02301B

App. B, page 2 of 4

									Est.Para	·	I						GPU Lat	oratory	
		1	Pipe of	Sump S	urface A	ctivity (dp	m/100 so		Sedimer		С	oncentratio	on in Sed	iment or S	cale (nCi/c	1)	Sampling		
Pipe	Spee	c Geom.		Cs-137			Co-60		Density		Ĭ	Cs-137			Co-60	,	(pCi		
	#	Model	Activity	"+-2s"	MDA	Activity	"+-2s"	MDA	(g/cc)	(cm)	Conc.	"+-2s"	MDA	Conc.	"+-2s"	MDA	Cs-137	Co-60	Description
02301B	2	В	109	145	241	-39	104	142	2	0.64	0.4	0.5	0.8	-0.1	0.4	0.5			top 8" pipe SSGS
102301B	3	в	-197	251	379	-55	171	236	2	0.64	-0.7	0.9	1.3	-0.2	0.6	0.8			top 8" pipe SSGS
02301B	4	В	200	295	471	20	193	292	2	0.64	0.7	1.0	1.7	0.1	0.7	1.0			top 8" pipe SSGS
102301B	5	В	-319	280	384	98	178	251	2	0.64	-1.1	1.0	1.4	0.3	0.6	0.9			top 8" pipe SSGS
02301B	6	В	-248	273	399	207	211	283	2	0.64	-0.9	1.0	1.4	0.7	0.7	1.0			top 8" pipe SSGS
02301B	7	в	279	283	424	-65	184	254	2	0.64	1.0	1.0	1.5	-0.2	0.6	0.9			top 8" pipe SSGS
02301B	8	D	1178	392	355	-29	118	174	2	0.64	4.1	1.4	1.2	-0.1	0.4	0.6	5.6	< 0.07	middle 6" pipe SSGS
02301B	9	D	1478	504	477	137	158	242	2	0.64	5.2	1.8	1.7	0.5	0.6	0.9			middle 6" pipe SSGS
02301B	10	D	1112	494	558	-76	235	329	2	0.64	3.9	1.7	2.0	-0.3	0.8	1.2			middle 6" pipe SSGS
02301B	10D		1182	436	410	4	149	231	2	0.64	4.2	1.5	1.4	0.0	0.5	0.8			dup-middle 6" pipe SSGS
02301B	11	D	518	341	448	227	185	238	2	0.64	1.8	1.2	1.6	0.8	0.7	0.8			middle 6" pipe SSGS
02301B	12	D	639	359	448	206	214	286	2	0.64	2.3	1.3	1.6	0.7	0.8	1.0			middle 6" pipe SSGS
02301B	13	В	520	230	265	-149	246	340	2	0.64	1.8	0.8	0.9	-0.5	0.9	1.2	2.3	< 0.1	bottom 8" pipe SSGS
02301B	14	В	638	254	270	-56	106	143	2	0.64	2.2	0.9	1.0	-0.2	0.3	0.5	2.0		bottom 8" pipe SSGS
02301B	15	В	520	301	384	-19	163	243	2	0.64	1.8	1.1	1.3	-0.2	0.4	0.9			bottom 8" pipe SSGS
02301B	16	B	471	324	437	4	192	296	2	0.64	1.0	1.1	1.5	0.0	0.0	1.0			bottom 8" pipe SSGS
02301B	17	B	518	332	438	-102	212	285	2	0.64	1.7	1.1	1.5	-0,4	0.7	1.0			
02301B	18	В	-62	227	390	-20	182	200	2	0.64	-0.2	0.8	1.4	-0.4	0.6	1.0			bottom 8" pipe SSGS
02301C	1	B	-94	160	255	172	149	207	2	0.64	-0.2	0.6	0.9	-0.1	0.5	0.7	0.27	 < 0.06	bottom 8" pipe SSGS
02301C	2	В	202	191	289	26	121	185	2	0.64	-0.3	0.0	1.0	0.0	0.3	0.7	0.27	< 0.08 0.036	8" SW SSGS 803
02301C	3	B	336	209	283	-92	137	172	2	0.64	1.2	0.7	1.0	-0.3	0.4	0.6			8" SW SSGS 803
02301C	4	В	344	232	317	-92	144	192	2	0.64	1.2	0.8	1.1	-0.3	0.5	0.8			8" SW SSGS 803
02301C	5	В	394	274	380	-120	183	227	2	0.64	1.4	1.0	1.1	-0.2 -0.4	0.5	0.7			8" SW SSGS 803
02301C	6	8	703	312	346	168	167	231	2	0.64	2.5	1.0	1.3	-0.4 0.6	0.6	0.8			8" SW SSGS 803
02301C	6d	B	819	306	316	-172	182	207	2	0.64	2.9	1.1	1.2	-0.6	0.6	0.0		•••	8" SW SSGS 803
02301C	7	B	659	317	370	-169	183	207	2	0.64	2.5	1.1	1.1	-0.6	0.6	0.7		• • •	dup-8" SW SSGS 803
02301C	8	B	646	306	352	-31	148	218	2	0.64	2.3	1.1	1.2	-0.0 -0.1	0.0	0.8			8" SW SSGS 803
02301C	9	B	652	304	345	-147	165	191	2	0.64	2.3	1.1	1.2	-0.1	0.5	0.8			8" SW SSGS 803
02301C	9d	В	667	304	348	-78	152	201	2	0.64	2.3	1.1	1.2	-0.3	0.5				8" SW SSGS 803
02301C	30 10	B	581	284	335	-165	173	196	2	0.64	2.3	1.0		-0.3 -0.6		0.7			dup-8" SW SSGS 803
02301C	11	В	192	204	310	120	145	205		0.64		0.7	1.2 1.1		0.6	0.7			8" SW SSGS 803
02301C	12	B	263	201	307	-158	145	205 193	2	0.64	0.7 0.9	0.7		0.4	0.5	0.7			8" SW SSGS 803
02301C									2				1.1	-0.6	0.6	0.7			8" SW SSGS 803
	1	G	-252	214	309	14 20	142	205	2	0.64	-0.9	0.8	1.1	0.0	0.5	0.7	0.11	< 0.04	Warehouse to Shunt AK131
02401A	2	G	230	220	334	-38	147	204	2	0.64	0.8	0.8	1.2	-0.1	0.5	0.7		•	Warehouse to Shunt AK131
02401A	3	G	231	213	325	-22	156	228	2	0.64	0.8	0.7	1.1	-0.1	0.5	0.8			Warehouse to Shunt AK131
02401A	4	G	58	177	316	-29	154	222	2	0.64	0.2	0.6	1.1	-0.1	0.5	0.8			Warehouse to Shunt AK131
02401A	5	G	193	213	336	49	155	224	2	0.64	0.7	0.7	1.2	0.2	0.5	0.8			Warehouse to Shunt AK131
02401A	6	G	343	255	363	62	158	222	2	0.64	1.2	0.9	1.3	0.2	0.6	0.8			Warehouse to Shunt AK131
02401A	7	G	143	210	346	93	156	214	2	0.64	0.5	0.7	1.2	0.3	0.5	0.8			Warehouse to Shunt AK131
02401B	1	G	60	283	503	45	207	294	2	0.64	0.2	1.0	1.8	. 0.2	0.7	1.0			Warehouse to Shunt AG131
02401B	2	G	6	280	516	89	222	305	2	0.64	0.0	1.0	1.8	0.3	0.8	1.1			Warehouse to Shunt AG131
02401B	3	G	-416	370	522	132	259	358	2	0.64	-1.5	1.3	1.8	0.5	0.9	1.3			Warehouse to Shunt AG131
02401B	4	G	171	308	510	67	211	296	2	0.64	0.6	1.1	1.8	0.2	0.7	1.0			Warehouse to Shunt AG131
02401B	5	G	-19	274	497	222	243	311	2	0.64	-0.1	1.0	1.8	0.8	0.9	1.1			Warehouse to Shunt AG131

									Est.Para	ameters							GPU Lat	oratory	
]	Pipe o	r Sump S	urface A	ctivity (dp	m/100 s	q.cm)	Sedimer	nt/Scale	C	Concentrati	on in Sed	iment or S	cale (pCi/	g)	Sampling		
Pipe	Spe	c Geom.		Cs-137		[Co-60		Density	Thick.		Cs-137			Co-60		(pCi	/g)	
	#	Model	Activity	"+-2s"	MDA	Activity	"+-2s"	MDA	(g/cc)	(cm)	Conc.	"+-2s"	MDA	Conc.	"+-2s"	MDA	Cs-137	Co-60	Description
102501A	1	Н	-69	392	694	135	310	430	2	0.64	-0.2	1.4	2.4	0.5	1.1	1.5		• • •	Shunt at manhole at AE133
102501A	2	E E	1981	2308	3534	-499	1492	2049	1.6	2.54	2.2	2.6	3.9	-0.6	1.7	2.3			Shunt at manhole at AE133
102501A	3	1	-1048	2037	3299	1671	1631	2095	1.6	2.54	-1.2	2.3	3.7	1.9	1.8	2.3			Shunt at manhole at AE133
102501B	1	I	-458	1299	2200	-741	1151	1465	1.6	. 2.54	-0.5	1.4	2.4	-0.8	1.3	1.6	0.04	< 0.12	Shunt intake at AE 131
102501B	1d	1	-1234	1459	2188	436	1087	1593	1.6	2.54	-1.4	1.6	2.4	0.5	1.2	1.8	"	*	dup-Shunt intake at AE 131
102501C	1	1	1381	1451	2235	428	1070	1575	1.6	2.54	1.5	1.6	2.5	0.5	1.2	1.7	0.34	< 0.09	Shunt outfall at AX 145
102501C	2	I	-1296	1480	2184	451	1075	1578	1.6	2.54	-1.4	1.6	2.4	0.5	1.2	1.7	0.27	< 0.09	
bkg100801	1	А	-46	229	406	74	208	306	2	0.64	-0.2	0.8	1.4	0.3	0.7	1.1			
bkg100801	12	Α.	35	283	509	29	234	355	2	0.64	0.1	1.0	1.8	0.1	0.8	1.3			
bkg100901	I _1	Α	13	258	478	87	240	348	2	0.64	0.0	0.9	1.7	0.3	0.8	1.2			
bkg100901	2	Α	-133	251	411	-5	208	320	2	0.64	-0.5	0.9	1.4	0.0	0.7	1.1			
bkg101001	I 1	Α	36	258	464	-167	241	300	2	0.64	0.1	0.9	1.6	-0.6	0.8	1.1			
bkg101001	2	Α	-5	260	473	-62	230	332	2	0.64	0.0	0.9	1.7	-0.2	0.8	1.2			
bkg101101	1	Α	180	296	484	30	228	346	2	0.64	0.6	1.0	1.7	0.1	0.8	1.2			
bkg101101	2	Α	111	192	320	87	148	241	2	0.64	0.4	0.7	1.1	0.3	0.5	0.8			
bkg102201	1 1	Α	-40	222	399	12	183	278	2	0.64	-0.1	0.8	1.4	0.0	0.6	1.0			
bkg102202	2 2	. A	192	250	395	-49	179	257	2	0.64	0.7	0.9	1.4	-0.2	0.6	0.9			
bkg102301	i 1	Α	8	207	378	-46	170	242	2	0.64	0.0	0.7	1.3	-0.2	0.6	0.9			
bkg102301	2	Α	-144	212	329	117	168	244	2	0.64	-0.5	0.7	1.2	0.4	0.6	0.9			
bkg102401	1	Α	-111	202	327	33	145	219	2	0.64	-0.4	0.7	1.2	0.1	0.5	0.8			
bkg102401	12	Α	104	234	402	-5	172	261	2	0.64	0.4	0.8	1.4	0.0	0.6	0.9			

Appendix C - Geometric Models & Conversion Factor Calculations

Appendix C - Geometric Models & Conversion Factor Calculations

							Micro	shield							
		Dose Point (Detector)	Microshield	Micr	oshie	ld	Fluenc	e Rate	gam/(sqcr	n-sec) per			Detector		
Model	Model Geometry	Position	Activity	Shield 1 ((i.e., S	Source)	MeV/sq	cm-sec	(uCi/sqcr	n in srce)	1x4 Det B	Eff(c/gam)	Area	Conversi	on Factor
#			(uCi/cc)	Material	Dens	Thick	662	1332	662	1332	Cs-137	Co-60	(sq.cm)	(cps/(dpr	n/sqcm))
						(cm)								Cs-137	Co-60
Α	7.5" diameter pipe x 15" long	center of pipe	1.00E-06	iron	2	0.64	0.01406	0.03385	33185	39708	0.39	0.168	25.8	0.150	0.078
В	7.5" diameter pipe x 15" long	1.5" from bottom	1.00E-06	iron	2	0.64	0.0164	0.03965	38708	46511	0.39	0.168	25.8	0.175	0.091
С	5.5" diameter pipe x 11" long	center of pipe	1.00E-06	iron	2	0.64	0.01412	0.03401	33327	39895	0.39	0.168	25.8	0.151	0.078
D	5.5" diameter pipe x 11" long	1.5" from bottom	1.00E-06	iron	2	0.64	0.01537	0.03707	36277	43485	0.39	0.168	25.8	0.164	0.085
E	9.5" diameter pipe x 19" long	center of pipe	1.00E-06	iron	2	0.64	0.01402	0.03376	33091	39602	0.39	0.168	25.8	0.150	0.077
F	12" diameter pipe x 24" long	1.5" from bottom	1.00E-06	iron	2	0.64	0.01821	0.04421	42981	51860	0.39	0.168	25.8	0.195	0.101
G	18" diameter pipe x 36" long	1.5" from bottom	1.00E-06	iron	2	0.64	0.01974	0.04809	46592	56412	0.39	0.168	25.8	0.211	0.110
н	24" diameter pipe x 48" long	center of pipe	1.00E-06	iron	2	0.64	0.01381	0.03326	32595	39016	0.39	0.168	25.8	0.148	0.076
1	42" diameter pipe x 84" long	center of pipe, 12"x1" sed.layer	1.00E-06	concrete	1.6	2.54	0.01021	0.02505	6072	7404	0.39	0.168	25.8	0.028	0.014
J	21" x 35" sump floor	8" from bottom	1.00E-06	concrete	1.6	2.54	0.0166	0.04186	9872	12373	0.39	0.168	25.8	0.045	0.024
K	36" x 36" sump floor	8" from bottom	1.00E-06	concrete	1.6	2.54	0.02151	0.05463	12792	16147	0.39	0.168	25.8	0.058	0.032
L	15" diam sump floor	4" from bottom	1.00E-06	concrete	1.6	2.54	0.01829	0.04604	10877	13608	0.39	0.168	25.8	0.049	0.027
М	3.75" diam pipe x 7.5" long	center of pipe	1.00E-06	iron	2	0.64	0.01413	0.03402	33351	39907	0.39	0.168	25.8	0.151	0.078
N	3.75" diam pipe x 15" - clogged	ext.of pipe*, 4" frm center	1.00E-06	concrete	1	4.763	0.008301	0.02497	2633	3936	0.39	0.168	25.8	0.012	0.008
P	3" diam pipe x 12" - clogged	ext.of pipe*, 3.25" frm cent	1.00E-06	concrete	1	3.81	0.006458	0.01905	2560	3754	0.39	0.168	25.8	0.012	0.007
		• •													0.001

.

* 3/16" steel wall

Υ.

Appendix D - MicroShield Printouts

Page : 1 DOS File: TED1.MS5 Run Date: December 13, 2001 Run Time: 2:27:18 PM Duration: 00:00:26

File Ref:	
Date:	
By:	<u></u>
Checked:	

· · · ·

Case Title: 7.5" by 15" Description: Pipe Geometry - Center of Pipe Geometry: 11 - Annular Cylinder - Internal Dose Point

Source Dimensions

Heigh Radiu			l ft	3.0 in 3.5 in
	Do	se Poin	ts	
	х	¥		Z
# 1	0 cm	19.05	ċm	0 cm
	0.0 in	7.5	in	0.0 in
		Shields		•
	Name Din			al Density

ومناغليهم الباريك كركيك فكصليك أتبع			
Cyl. Core	8.89 in	Air	0.00122
Source	.252 in	Iron	2

4.0

40 40

Source Input Grouping Method : Actual Photon Energies

	oroubrud we		1	
Nuclide	curies	<u>becquerels</u>	µCi/cm ³	Bq/cm ³
Ba-137m	1.3349e-C09	4.9390e+001	9.4600e-007	3.500 2e-002
Co-60	1.4111e-009	5.2209e+001	1.00000 000	3.7000 e-002
Cs-137	1.4111e-009	5.2209e+001	1.0000e-006	3.700 0e-002

Buildup

The material reference is : Source

Integration Parameters

Radial Circumferential Y Direction (axial)

Energy MeV	Activity photons/sec	Fluence Rate MeV/cm²/sec No Buildup	Results Fluence Rate MeV/cm²/sec With Buildup	Exposure Rate mR/hr No Buildup	Exposure Rate mR/br With Buildup
0.0318	1.023e+00	1.552e-06	1.594e-06	1.293e-08	1.328e-08
0.0322	1.887e+00	2.997e-06	3.081e-06	2.412e-08	2.480e-08
0.0364	6.865e-01	1.752e-06	1.818e-06	9.953e-09	1.033e-08
0.6616	4.444e+01	1.406e-02	1.471e-02	2.725e-05	2.85le-05
0.6938	8.516e-03	2.829e-06	2.955e-06	5.461e-09	5.706e-09
1.1732	5.221e+01	2.972e-02	3.064e-02	5.311e-05	5.476e-05
1.3325	5.221e+01	<u>3.385e-02</u>	3. 481e- 02	5.873e-05	6.040e-05
TOTALS :	1.525e+02	7.764e-02	8.037e-02	1.50%a+0 4	1.437e-04

Page : 1 DOS File: TED2.MS5 Run Date: December 13, 2001 Run Time: 2:33:51 PM Duration: 00:00:26

- -

File Ref:	
Date:	
By:	
Checked:	

33:51 PM :00:26 Model "B" Case Title: 7.5" by 15" Description: Pipe Geometry - 2.25" From Center of Pipe Geometry: 11 - Annular Cylinder - Internal Dose Point

Source Dimensions
Height 38.1 cm 1 ft 3.0 in Radius 8.89 cm 3.5 in
Dose Points
X Y Z # 1 5.715 cm 19.05 cm 0 cm 2.3 ir 7.5 in 0.0 in
Shields

Shield Name	Dimension	Material	Density
Cyl. Core	8.89 in	Air	0.00122
Source	.252 in	Iron	2

40 40 40

Source Input Grouping Method : Actual Photon Energies uCi/cm³ Bg/cm³ <u>becquerels</u> Nuclide curies

Ba-137m	1.3349e-009	4.9390e+001	9.4500e-007	3.500 2e-002
			1.0000e-006	
Cs-137	1.4111e-009	5.2209e+001	1.0000e-006	3.7000 e-002

Buildup

The material reference is : Source

Integration Parameters

Radial	
Circumferent	lial
Y Direction	(axial)

Energy MeV 0.0318	Activity photons/sec 1.023e+00	<u>Fluence Rare</u> <u>MeV/cm²/sec</u> No <u>Buildup</u> 1.568e-06	Results Fluence Rate MeV/cm ² /sec With Buildup 1.610e-06	Exposure Rate mR/br No Buildup 1.306e-08 2.437e-08	Exposure Rate mR/hr With Buildup 1.341e-08 2.505e-08
0.0322 0.0364 0.6616 0.6938 1.1732 1.3325	1.887e+00 6.865e-01 4.444e+01 8.516e-03 5.221e+01 5.221e+01	3.028e-06 1.771e-06 <u>1.640e-02</u> 3.301e-06 3.479e-02 3.965e-02	3.112e-06 1.837e-06 1.734e-02 3.484e-06 3.613e-02 4.14e-02	1:006e-08 3:180e-05 6:374e-09 6:217e-05 6:879e-05	1.044e-08 3.361e-05 6.726e-09 6.456e-05 7.120e-05
TOTALS:	1.525e+02	9.085e-02	9.452e-02	1.608e-04	1.594e-04

Page : 1 DOS File: TED3.MS5 Run Date: December 13, 2001 Run Time: 2:38:24 PM Duration: 00:00:26

File Ref: Date: By: Checked:

Model. "Ċ Case Title: 5.5" by 11" Description: Pipe Geometry - Center of Pipe Geometry: 11 - Annular Cy_inder - Internal Dose Point

ł. 11

Height	urce Dimensions 27.94 cm 6.35 cm	11.0 in 2.5 in
	Dose Points Y 13.97 cm	Z 0 cm
0.0 in	5.5 in Shields	0.0 in

<u>Shield Name</u>	Dimension	Material	Density
Cyl. Core	6.35 in	Air	0.00122
Source	.252 in	Iron	2

10 40

40

Source Input

Grouping Method : Actual Photon Energies curies becquerels <u>µCi/cm³</u> Bg/cm³ Nuclide
 Ba-137m
 7.0893e-010
 2.6230e+001
 9.4600e-007
 3.5002e-002

 Co-60
 7.4940e-010
 2.7728e+001
 1.0000e-006
 3.7000e-002

 Cs-137
 7.4940e-010
 2.7728e+001
 1.0000e-006
 3.7000e-002

Buildup

The material reference is : Source

Integration Parameters

Radial Circumferential Y Direction (axial)

			Results		
Energy	Activity	Fluence Rate	Fluence Rate	Exposure Rate	Exposure Rate
MeV	phetons/sec	<u>MeV/cm²/sec</u>	<u>MeV/cm³/sec</u>	mE/hr	mR/hr
	-	No Buildup	With Buildup	<u>No Buildup</u>	<u>With Buildup</u>
0.0318	5.430e-01	1.561e-05	1.6C3e-06	1.300e-08	1.335e-08
0.0322	1.002e+00	3.014e-06	3.098e-06	2.425e-08	2. 493e-0 8
0.0364	3.646e-01	1.761e-06	1.827e-06	1.001e-08	1.038e-08
0.6616	2.360e+01	1.412e-02	1.477e-02	2.738e-05	2.86 4e- 05
0.6938	4.523e-03	2.842e-06	2.968e-06	5.47e-09	5.731e-09
1.1732	2.773e+01	2.986e-02	3.078e-02	5.335e-05	5.50 1e-05
1.3325	2.773e+01	3.401e-02	3.497e-02	5.9^0e-05	6.06 6e-0 5
TOTALS:	8.097e+01	7.799e-02	8.053e-02	1.399e-04	1.444e-04

Page : 1 DOS File: TED4.MS5 Run Date: December 13, 2001 Run Time: 2:44:16 PM Duration: 00:00:26

File Ref: Date:	·
By:	
Checked:	

....

Model "D" Case Title: 5.5" by 11" Description: Pipe Geometry - 1.25" From Center of Pipe Geometry: 11 - Annular Cylinder - Internal Dose Point

Height Radius	Source Dimension 27.94 cm 6.35 cm	2.5 in 2.5 in
	Dose Points Y Y 5 cm 13.97 3 in 5.5	
Shield Nam	Shields	cerial Density

Shield Hame		بالمقاط بالبتيا يتكفلان	-
Cyl. Core	6.35 in	Air	0.00122
Source	.252 in	Iron	2

40 40 40

£

Source Input

Source Input					
	Grouping Me	thod : Actual	Photon Energ	jie s	
<u>Nuclide</u> Ba-137m Co-60 Cs-137	<u>curies</u> 7.0893e-010 7.4940e-010 7.4940e-010	<u>becquerels</u> 2.6230e+001 2.7728e+001	<u>µCi/cm³</u> 9.4600e-007 1.0000e-006	Bg/cm ³ 3.5002e-002 3.7000e-002 3.7000e-002	

Buildup The material reference is : Source

Integration Parameters

Radial			
Circumferent	zial		
Y Direction	(axial)		

Energy MeV 0.0318 0.0322 0.0364 0.6616 0.6938 1.1732 1.3325	Activity photons/sec 5.430e-01 1.002e+00 3.646e-01 2.360e+01 4.523e-03 2.773e+01 2.773e+01	Eluence Rate MeV/cm ² /sec No Buildup 1.570e-06 3.031e-06 1.772e-06 1.537e-02 3.092e-06 3.254e-02 3.707e-02	Results Fluence Rate MeV/cm ² /sec With Buildup 1.612e-06 3.116e-06 1.639e-06 1.616e-02 3.246e-06 3.366e-02 3.824e-02	Exposure Rate mR/hr No. Buildup 1.307e-08 2.439e-08 1.007e-08 2.979e-05 5.970e-09 5.814e-05 6.431e-05	Exposure Rate mR/hr With Buildup 1.343e-08 2.508e-08 1.045e-08 3.132e-05 6.268e-09 6.016e-05 6.635e-05
TOTALS:	8.097e+01	8.498e-02	8.807e-02	1.523e-04	1.579e-04

Page : 1 DOS File: TED5.MS5 Run Date: December 13, 2001 Run Time: 2:50:24 PM Duration: 00:00:26

1.1

File Ref:	
Date: By:	
Checked:	

.

a44 - 24

÷

Model "E"

Case Title: 9.5" by 19" Description: Pipe Geometry - Center of Pipe Geometry: 11 - Annular Cylinder - Internal Dose Point

	Sourc	e Dimensions	
and an	Height 48.2 Radius 11.4	6 cm 1 ft 3 cm	7.0 in 4.5 in
	Dc	se Points	
- · ·	X #1 0 cm 0.0 in	¥ 24.13 cm 9.5 in	Z 0 cm 0.0 in
		Shi elds	
×	<u>Shield Name Dim</u> Cyl. Core 11 Source		0.00122

40 40 40

ŗ

Source Input

	Grouping Me	thod : Actual	Photon Energ	ies
Nuclide	curies	<u>becquerels</u>	µCi/cm ³	Bq/cm ³
Ba-137m	2.1571e-009	7.9814e+001	9.4600e-007	3.5002e-002
Co-60	2.2803e-009	8.4370e+001	1.0000e-006	3.7000e-002
Cs-137	2.2803e-009	8.4370e+001	1.0000e-006	3.7000 e-002

Buildup

The material reference is : Source

Radial	
Circumferent	ial
Y Direction	(axial)

			Results		
Energy	Activity	Fluence Rate	Fluence Rate	Exposure Rate	Exposure Rate
MeV	photons/sec	MeV/cm ² /sec	MeV/cm ² /sec	mR/hr	mR/hr
	-	No Buildup	With Buildup	No Buildup	<u>With Buildup</u>
0.0318	1.652e+00	1.546e-06	1.588e-06	· 1.288e-08	1.323e-08
0.0322	3.049e+00	2.986e-06	3.070e-06	2.403e-08	2.471e-08
0.0364	1.109e+00	1.746e-06	1.812e-06	9.918e-09	1.029e-08
0.6616	7.182e+01	1.402e-02	1.467e-02	2.718e-05	2.844e-05
0.6938	1.376e-02	2.821e-06	2.948e-06	5.446e-09	5.691e-09
1.1732	8.437e+01	2.964e-02	3.057e-02	5.296e-05	5.462e-05
1.3325	8.437e+01	3.376e-02	3.472e-02	5.857e-05	6.02 4e-05
			•		
TOTALS:	2.464e+02	7.742e-02	7.997e-02	1.389e-04	1.434e-04

Page : 1 DOS File: TED6.MS5 Run Date: December 13, 2001 Run Time: 3:59:11 PM Duration: 00:00:26

4.4 File Ref: Date: By: Checked:

.

Model "F Case Title: 12" by 24" Description: Pipe Geometry - 4.5" From Center of Pipe Geometry: 11 - Annular Cylinder - Internal Dose Point

11

		Se	ource	Dimensions	
	Heigh Radiu			0.96 cm 605 cm	2 ft 5.8 in
ŧ.	1]	X 11.43 4.5	cm	Points Y 30.48 cm · 1 ft	Z 0 cm 0.0 in

Shields

Shield Name	Dimension	<u>Material</u>	<u>Density</u>
Cyl. Core	14.605 in	h Air	0.00122
Source	.252 in	ı Iron	2

40

40

40

Source Input od : Actual Photon Energies . .

Grouping Met	chod : Actual	Photon Fuerd	160
Nuclide curies Ba-137m 3.4611e-009 Co-60 3.6586e-009	<u>becquerels</u> 1.2806e+002 1.3537e+002	<u>µCi/cm³</u> 9.4600e-067 1.0000e-006	Bcj/cm ³ 3.5002e-002 3.7000e-002 3.7000e-002

Buildup

The material reference is : Source

Integration Parameters

Radial Circumferential Y Direction (axial)

Energy MeV	Activity photons/sec	<u>Fluence Rate</u> <u>MeV/cm²/sec</u> No Buildup	Results Fluence Rate MeV/cm ² /sec With Buildup	<u>Exposure Rate</u> mR/hr No Buildup	Exposure Rate mR/hr With Buildup
0.0318	2.651e+00	1.566e-06	1.609e-06	1.305e-08	1.340e-08
0.0322	4.891e+00	3.025e-06	3.109e-06	2.434e-08	2.502e-08
0.0364	1.780e+00	1.770e-06	7.836e-06	1.005e-08	1.043e-08
0.6616	1.152e+02	<u>1.821e-02</u>	1.945e-02	3.531e-05	3.772e-05
0.6938	2.208e-02	3.567e-06	3.909e-06	7.080e-09	7.547e-09
1.1732	1.354e+02	3.876e-02	4.054e-02	6.927e-05	7.245e-05
1.3325	1.354e+02	4.421e-02	4.506e-02	7.569e-05	7.990e-05
TOTALS:	3.953e+02	1.012e-01	1.051e-01	1.813e-04	1.901e-04

Page :	T	
DOS File:		•
Run Date:	December 13,	2001
Run Time:	4:23:50 PM	
Duration:	00:00:27	

File Ref:	
Date:	
By:	
Checked:	

Model "G"

Case Title: 18" by 36" Description: Pipe Geometry - 7.5" From Center of Pipe Geometry: 11 - Annular Cylinder - Internal Dose Point

S Height Radius	ource Dimension 31.44 cm 21.225 cm	8 3 ft 8.8 in
X # 1 19.05 (. 7.5 :	Dose Points Y cm 45.72 (in 1 ft 6.0 ;	
Shield Name	Shields Dimension Mate	rial Density

Cyi. Core	22.23	ın	All	0.0012	4
Source	. 25	in	Iron	2	
000200					

Source Input

Grouping Method	l :	Actual	Photon	Energies	
-----------------	-----	--------	--------	----------	--

Nuclide	curies	becauerels	<u>uCi/cm³</u>	<u>Bq/cm³</u>
	7.7801e-009		9.4600e-007	3.5002e-002
Co-60		3.0429e+002	1.0000e-006	3.700 0e-002
				3.7000 e-002

Buildup

The material reference is : Source

Radial	40
Circumferential	40
Y Direction (axial)	4.0

Energy MeV	Activity photons/sec	<u>Fluence Rate</u> MeV/cm²/sec No Buildup	Results Fluence Rate MeV/cm²/sec With Buildup	<u>Exposure Rate</u> nR/hr <u>No Euildup</u>	Exposure Rate mR/hr With Buildup
0.0318 0.0322 0.0364	5.960e+00 1.100e+01 4.001e+00	1.564e-06 3.021e-06 1.768e-06	1.607e-06 3.106e-06 1.835e-06 2.130e-02	1.303e-08 2.451e-08 1.000e-08 3.557e-05	1.338e-08 2.499e-08 1.043e-08 4.130e-05
0.6616 0.6938 1.1732 1.3325	2.590e+02 4.964e-02 3.043e+02 3.043e+02	<u>1.974e-02</u> 3.976e-06 4.214e-02 4.809e-62	4.280e-06 4.440e-02 6.044e-02	7:6 16-09 7:6 16-05 8: 46-05	8.264e-09 7.934e-05 8.751e-05
TOTALS:	8.886e+02	1.10Ce-01	1.162e-01	1 9 e-04	2.08 2e-0 4

Page : 1 DCS File: TED8.MS5 Run Date: December 13, 2001 Run Time: 4:21:18 PM Duration: 00:00:27

- -

File Ref: _____ Date: _____ By: _____ Checked: _____

Model "H"

Case Title: 24" by 48" Description: Pipe Geometry - Center of Pipe Geometry: 11 - Annular Cylinder - Internal Dose Point

	Source Dimensions Height 121.92 cm 4 ft Radius 29.845 cm 11.8 in	
	Dose Points	
	X Y Z #1 0 cm 60.96 cm 0 cm 0.0 in 2 ft 0.0 in	
	Shields	
x	Shield Name Dimension Material Density Cyl. Core 29.845 in Air 0.00122 Source .25 in Iron 2	

40 40 40

Source Input

	Grouping Me	thoa : Actual	Photon Energ	169
Nuclide	curies	<u>becquerels</u>	$\mu Ci/cm^3$	Bg/cm ³
Ba-137m	1.3880e-008	5.1356e+002	9.4500e-007	3.500 2e-002
Co-60		3.10010.000	1.0000e-006	3.7000e-002
Cs-137	1.4672e-098	5.4287e+002	1.0000e-006	3.700 0e-002

Buildup

The material reference is : Source

Radial		
Circumfe	erential	
Y Direct	tion (ax	ial)

Energy MeV	Activity photons/sec	<u>Fluence Rate</u> <u>MeV/cm²/sec</u> No Buildur	Results Fluence Rate MeV/cm ² /sec With Buildup	Exposure Rate mR/hr No Buildup	Exposure Rate mR/hr With Buildup
0.0318	1.063e+01	1.525e-06	1.566e-06	1.270e-08	1.30 5e -08
0.0322	1.962e+01	2.945e-06	3.028e-06	2.370e-08	2.4 37e- 08
0.0364	7.138e+00	1.723e-06	1.789e-06	9.791e-09	1.01 6e-0 8
0.6616	4.621e+02	1.381e-02	1.447e-02	2.676e-05	2.804e-05
0.6938	8.855e-02	2.778e-06	2.907e-06	5.364e-09	5.612e-09
1,1732	5.429e+02	2.920e-02	3.014e-02	5.218e-05	5.386e-05
1.3325	5.429e+02	3.326e-02	3.424e-02	5.771e-05	5.9 40e- 05
TOTALS :	1.585e+03	7.628e-02	7.886e-02	1.367e-04	1.41 4e- 04

		Dilo Dof.
Page : 1		File Ref: Date: ///
File : SNEC6A.MSH	2001 TR	
File : SNEC6A.MSH Run date: December 27,	1999	By:
Run time: 9:27 a.m.	Model I	Checked:
	1100001	

CASE: 1'x1" rect.solid at bottom of 42" pipe, det.centered

GEOMETRY 11: Rectangular solid source - slab shields

Distance to detector	х	60 .960	cm.
Source width	W	30.480	11
Source length	L .	213.360	ti
Rectangular solid, thickness toward dose pt	T1	2.540	11
Thickness of second shield	Т2	1.270	
Microshield inserted air gap	air	57 .150 [`]	17

Source Volume: 16518.2 cubic centimeters

MATERIAL DENSITIES (g/cc):

Material	Source	Shield 2	Air gap
Air Aluminum Carbon			.001220
Concrete Hydrogen Iron Lead Lithium Nickel Tin Titanium Tungsten Urania	1.60		
Uranium Water Zirconium		1.0	

Model "I"

Page 2Model ZFile: SNEC6A.MSHCASE: 1'x1" rect.solid at bottom of 42" pipe, det.centered

BUILDUP FACTOR: 1.0 (no buildup)

INTEGRATION PARAMETERS:

Number	of	lateral	angle s	egments	(Ntheta)	•	5
Number	of	azimuth	al angle	segment	.s (Npsi)		5
Number	of	radial	segments	(Nradiu	ls)		5

SOURCE NUCLIDES:

Nuclide	Curies	Nuclide	Curies	Nuclide	Curies
	4.9554e-08 0.0000e+00	Co-60	4.9554e-08	Cs-137	4.9554e-08

RESULTS:

Group #	Energy (MeV)	Activity (photons/sec)	Dose point flux MeV/(sq cm)/sec	Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1.3359 1.1797 .6953 .6641	1.834e+03 1.834e+03 2.991e-01 1.650e+03	2.505e-02 2.177e-02 1.950e-06 1.021e-02	4.520e-05 4.045e-05 4.016e-09 2.117e-05
20	TOTALS :	5.317e+03	5.703e-02	1.068e-04

Page :	1
DOS File:	TED13.MS5
Run Date:	December 28, 2001
Run Time:	3:01:58 PM
Duration:	00:00:25

File Ref: _____ Date: _____ By: ____ Checked: _____

· .

HODEL "J"

Case Title: 21" by 35" Area Description: Sump Bottom Area - 1 in Thick Source Term Geometry: 13 - Rectangular Volume

Source Dimensions

Length	2.54	сm	1.0	in
Width	53.34	сm	1 ft 9.0	in
Height	88.9	CT.	2 ft 11.0	in

Dose Points

		X				Y		Z	
#	1	20.32	cm		44	1.45	cm	26.67	cm
		8.0	in	i	ft	5.5	in	10.5	in

Shields

Shield Name	Dimension	Material	Density
Source	735.0 in ³		
Air Gap		Air	0.00122

Source Input

	Grcuping Me	thod : Actual	Photon Energ	ies
<u>Nuclide</u>	curies	<u>becquerels</u>	$\mu Ci/cm^3$	ber/cm ³
Ba-137m	1.1394e-008	4.2158e+002	9.4600e-007	3.5002e-002
Co-60	1.2044e-008	4.4565 e+002	1.0000e-006	3.7000e-002
Cs-137	1.2044e-008	4.4565e+002	1.0000e-006	3.7000e-0'

Buildup The material reference is : Source

X Direction	40
Y Direction	40
Z Direction	40

Energy MeV	Activity photons/sec	<u>Fluence Rate</u> MeV/cm ² /sec	Results Fluence_Rate MeV/cm ² /sec	<u>Exposure Rate</u> mR/hr	Exposure Rate
	Para and and a second	No Evildup	With Builduo	No Buildup	Wich Buildup
0.0318	8.728e+00	4.923e-06	4.864e-06	3.351e-08	4.052e-08
0.0322	1.610 e +01	7.731e-06	9.401e-06	6.222e-08	7.566e-08
0.0364	5.860e+00	4.220e-06	5.470e-06	2.398e-08	3.108e-08
0.6616	3.793e+02	1.660e-02	2.002e-02	3. 219e-05	3.881e-05
0.6938	7.269e-02	3.352e-06	4.016e-06	6.472e-09	7.754e-09
1.1732	4.456e+02	3.646e-02	4.126e-02	6. 516e- 05	7.373e-05
1.3325	4.456e+02	4.186e-02	4.679e-02	7.262e-05	8.118e-05
TOTALS:	1.301e+03	9.494e-02	1.081e-01	1.701e-04	1.939e-04

Dec co or orrea.

MicroShield v5.05 (5.05-00121) GPU Nuclear

Page :	1
	TED14.MS5
Run Date:	December 28, 2001
Run Time:	3:02:56 PM
Duration:	00:00:26

,

• :

· ·

198 A. 10

and the second second second

MODEL "H"

Case Title: 36" by 36" Area Description: Sump Bottom Area - 1 in Thick Source Term Geometry: 13 - Rectangular Volume

Source Dimensions

Length	2.54	cm	1.0	in
Width	91.44	cm	3	ft
Height	91.44	CM	3	ft

Dose Points

		X		Y			Z	
#	1	20.32	cm	45.	72 cm		45.72	cm
		S.C	in	1 fr 6	.0 in	1	ft 6.0	in

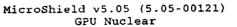
Shields

Shield Name	Dimension	Material	Density
Source	1296.0 in ³	Concrete	1.6
Air Gap		Air	0.00122

Source Input

	Grouping Me	thod : Actual	Photon Energ	ies
Nuclide	curies	becquerels	$\mu Ci/cm^3$	Bg/cm ³
Ba-137m	2.0091e-008	7.4336e+002	9.4500e-0 07	3.5002e-002
Co-60	2.1238e-008	7.8579e+002	1.0000e-006	3.7000e-002
Cs-137	2.1238e-008	7.8579e+0C2	1.0000e-006	3.7000e-002

Buildup


The material reference is : Source

Integration Parameters

Pequite

X Direction	40
Y Direction	40
Z Direction	40

			Results		•
Energy	Activity	<u>Fluence Rate</u>	<u> Eluence Rate</u>	Exposure Rate	Exposure Rate
MeV	photons/sec	<u>MeV/cm²/sec</u>	MeV/cm ² /sec	mR/hr	mR/hr
	-	<u>No Buildup</u>	With Buildup	No Buildup	<u>With Buildup</u>
0.0318	1.539e+01	4.818e-06	5.8310-06	4.013e-08	4.357e-08
0.0322	2.839e+01	9.261e-06	1.127e-05	7.453e-08	9.073e-08
0.0364	1.033e+01	5.076e-06	6.595e-06	2.884e-08	3.747e-08
0.6616	6.68 9e+ 02	2.151e-02	2.652e·02	4. 170e-0 5	5.141e-05
0.6938	1.282e-01	4.344e-06	5.320e-06	8.387e-09	1.027e-08
1.1732	7.858e+02	4.752e-02	5.462e-02	8. 492e- 05	9.761e-05
1.3325	7.858e+02	5.463e-02	6.194e-02	9.477e-05	1.075e-04
				1	
TOTALS:	2.295e+03	17e-01	1.431e-01	2.215e-04	2.567e-04

Buildup The material reference is : Source

Integration Parameters

40 40 40

Ra	adial	-		
Ci	ircumferent	ial		
Y	Direction	(axial)		

			Results		
Energy	Activity	<u>Fluence Rate</u>	Fluence Rate	<u>Exposure Rate</u>	Exposure Rate
MeV	photons/sec	MeV/cm ² /sec	<u>MeV/cm²/sec</u>	mR/hr	mR/hr
	L	No Buildup	With Buildup	No Buildup	<u>With Buildup</u>
0.0318	2.098e+00	4.497e-06	5.428e-05	3.745e-08	4.522e-08
0.0322	3.872e+00	8.639e-06	1.049e-05	6.952e-09	8.441e-08
0.0364	1.409e+00	4.706e-06	6.087e-C6	2.674e-08	3.459e-08
0.6616	9.120e+01	1.829e-02	2.196e-C2	3.546e-05	4.257e-05
0.6938	1.748e-02	3.692e-06	4.406e-06	7.129e-09	8.506e-09
1.1732	1.071e+02	4.012e-02	4.525e-02	7.169e-05	8.088e-05
1.3325	1.071e+02	4.604e-02	5.133e-02	7.988e-05	8.906e-05
TOTALS :	3.129e+02	1.045e-01	1.186e-01	1.872e-04	2.127e-04

Page : 1 DOS File: TED10.MS5 Run Date: December 13, 2001 Run Time: 4:30:12 PM Duration: 00:00:27

z

File Ref:	
Date:	
By:	· .
Checked:	

Model "M"

Case Title: 3.75" by 7.5" Description: Pipe Geometry - Center of Pipe Geometry: 11 - Annular Cylinder - Internal Dose Point

	So	urce Dimensions	
	Height	19.05 cm	7.5 in
	Radius	4.128 cm	1.6 in
		Dose Points	
	X	Y	Z
	#1 0 cm	9.525 cm	0 Cm
	0.0 in	C 3.8 in	0.0 in
		Shields	
	Shield Name	Dimension Mater	ial Density
-x		4.128 in Air	

.25 in

40

 $\frac{40}{40}$

Iron

2

 Source Input

 Grouping Method : Actual Photon Energies

 Nuclide
 curies
 becquerels
 μCi/cm³
 Bq/cm³

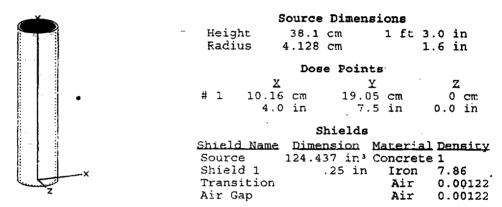
 Ba-137m
 3.1960e-010
 1.1825e+001
 9.4600e-007
 3.5002e-002

 Cc-60
 3.3785e-010
 1.2500e+001
 1.0000e-006
 3.7000e-002

 Cs-137
 3.3785e-010
 1.2500e+001
 1.0000e-006
 3.7000e-C02

Source

Buildup The material reference is : Source


Radial		
Circumferent	ial	
Y Direction	(axial)	

Energy MeV	Activity photons/sec	Fluence Rate MeV/cm²/sec No Buildur	Results Fluence Rate MaV/cm²/sec With Buildur	Exposure Rate mR/hr No Buildup	Exposure Rate mR/hr With Buildup
0.0318	2.448e-01	1.574e-06	1.617e-06	1.311e-08	1.347e-08
0.0322	4.517e-01	3.040e-06	3.125e-06	2.446e-08	2.515e-08
0.0364	1.644e-01	1.776e-06	1.842e-06	1.009e-08	1.047e-08
0.6616	1.064e+01	1.413e-02_	1.478e-02	2.740e-05	2.865e-05
0.6938	2.039e-03	2.844e-06	2.969e-06	5.490e-09	5.732e-09
1.1732	1.250e+01	2.987e-02	3.079e-02	5.338e-05	5.502e-05
1.3325	1.250e+01	<u>3.402e-02</u>	3.497e-02	5.903e-05	6.C67e-05
TOTALS :	3.650e+01	7.803e-02	8.054e-02	1.399e-04	1.444e-04

Page : 1		File Ref:
DOS File: TED11.MS5		Date:
Run Date: December 13, 2001		By:
Run Time: 4:41:09 PM		Checked:
Duration: 00:00:33	Model "N"	· · · · · · · · · · · · · · · · · · ·
	1 101001 11	

Case Title: SBP - Side Description: 3.75" D Pipe, 0.25" Wall Geometry: 7 - Cylinder Volume - Side Shields

40

40

40

• - -

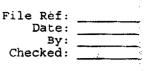
Source Input

	Grouping Me	thod : Actual	Photon Energy	,ies
Nuclide	curies	becquerels	µCi/cm ³	Bq/cm ³
Ba-137m	1.9290e-009	7.1374e+001	9.4600e-007	3.5002e-002
Co-60	2.0391e-009	7.5449e+001	1.0000e-006	3.7000e-002
Cs-137	2.0391e-009	7.5449e+001	1.0000e-006	3.7000e-002

Buildup

The material reference is : Shield 1

Integration Parameters


Radial Circumferential Y Direction (axial)

			Results		
Energy	Activir_	<u>Fluence Rate</u>	Fluence Rate	Exposure Rate	Exposure Rate
MeV	photons/sec	<u>MeV/cm²/sec</u>	MeV/cm ² /sec	mR/hr	mR/hr
		<u>No Buildup</u>	With Buildup	No Buildup	With Buildup
0.0318	1.478e+00	4.325e-22	4.782e-22	3.603e-24	3.983e-24
0.0322	2.726e+00	2.509e-21	2.893e-21	2.100e-23	2.329e-23
0.0364	9.921e-01	2.930e-17	3.327e-17	1.665e-19	1.890e-19
0.6616	6.422e+01	8.301e-03	1.463e-02	1.609e-05	2.836e-05
0.6938	1.231e-02	1.698e-05	2.951e-06	3.279e-09	5.697e-09
1.1732	7.545e+01	2.113e-02	3.173e-02	3.777e-05	5.670e-05
1.3325	7.545e+01	2.497e-02	3.631e-02	4.333e-05	6.300e-05
TOTALS :	2.203e+02	5.441e-02	8.267e-02	9.719e-05	1.431e-04
			•		

j.

Page :	1
DOS File:	TED12.MS5
Run Date:	December 13, 2001
Run Time:	4:46:14 PM
Duration:	00:00:33

Model "P"

.

Case Title: SBP - Side Description: 3" D Pipe, 0.25" Wall Geometry: 7 - Cylinder Volume - Side Shields

	Sc	ource Dimensio	ns
	Height	30.48 cm	1 ft
	Radius	3.175 cm	1.3 in
		Dose Points	
	х	Y	. Z
#	1 8.255	cm 15.24 d	
	3.3	in 6.0 i	ln 0.0 in
		Shields	

Shield Name	Dimension	Material	Density
Source	58.905 in³	Concrete	1
Shield 1	.25 in	Iron	7.86
Transition		Air	0.00122
Air Gap		Air	0.00122

Source Input

	Grouping Me	thod : Actual	Photon Energ	jies
Nuclide	curies	becquerels	$\mu Ci/cm^3$	Bg/cm ³
Ba-137m	9.1315e-010	3.3787e+001	9.4600e-007	3.5002e-002
Co-60	9.6528e-C10	3.5715e+001	1.0000e-006	3.7000e-002
Cs-137	9.6528e-010	3.5715e+001	1.0000e-006	3.7000e-002

Buildup

The material reference is : Shield 1

Radial	40
Circumferential	40
Y Direction (axial)	40

			Results		
Energy	Activity	<u>Fluence Rate</u>	<u>Eluence Rate</u>	Exposure Rate	Exposure Rate
MeV	photons/sec	<u>MeV/cm²/sec</u>	MeV/cm ² /sec	mR/hr	mR/hr
	-	No Buildup	With Buildup	<u>No Buildup</u>	<u>With Buildup</u>
0.0318	6.995e-01	4.169e-22	4.609e-22	3.473e-24	3.839e-24
0.0322	1.291e+00	2.514e-21	2.788e-21	2:023e-23	2.244e-23
0.0364	4.696e-01	2.804e-17	3.184e-17	1.593e-19	1.809e-19
0.6616	3.040e+01	_6.458e- <u>03_</u>	1.094e-02	1.252e-05	2.122e-05
0.6938	5.826e-03	1.319e-05	2.206e-06	2.547e-09	4.258e-09
1.1732	3.572e+01	1.618e-02	2.355e-02	2.891e-05	4.209e-05
1.3325	3.572e+01	<u>1.905e-02</u>	2.692e-02	3.305e-05	4.671e-05
TOTALS :	1.043e+02	4.169e-C2	6.142e-02	7.448e-05	1.100e-04

Appendix E - Radionuclide Standard Calibration Certificates

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT ENVIRONMENTAL MONITORING SYSTEMS LABORATORY-LAS VEGAS P.O. BOX 334776 LAS VEGAS, NEVADA 89103-3478 702/704-2100

Description

Principal Radionuclide	Cs-137
Total Mass of this Solution	Approx. 5 grams
Total Activity	Approx. 145 nanocuries
Half-life	30.1 years
Activity Concentration	29.0 nanocuries/gram
ſ	January 23, 1995
Date and Time of Standardization	0400 hours PST
Solution Number	94019-1

Measurement

Method of Measurement:

The activity of the primary solution was measured by four pi efficiency tracing. The activity of the dilution was measured using gamma spectroscopy counting.

.

Activity of daughter radionuclide:

The principal activity was accompanied at the quoted time by : of the daughter nuclide Barium-137m 27.4 nanocuries / gram

Useful Life

We recommend that this solution should not be used after January, 2001

.

U.S. DEPARTMENT OF COMMERCE National Institute of Standards & Technology Gaithersburg, MD 20899

REPORT OF TRACEABILITY

.

U.S. Environmental Protection Agency Environmental Monitoring Systems Laboratory Las Vegas, Nevada

	Radionuclide	Cesium-137	
Source	ce identification	94019-1, prepared	by EMSL
So	urce description	Liquid in 5-mL fla	me-sealed glass ampoule
	Source mass	Approximately 5.0	grams
Sou	rce composition	Cesium-137 plus 1 per gram of 0.1 m	00 μg of non-radioactive cesium ol·L ⁻¹ HCl
	Reference time	0700 EST January	23, 1995
	NIST DATA		EMSL DATA
Radioactivity concentration	1,095 Bq•g ⁻¹		1.073 Bq•g ⁻¹
Expanded uncertainty	0.90 percent (1.2)*		3.9 percent ⁽³⁾
Photon-emitting impurities	None observed ⁽⁴⁾		Less than 0.002 percent of the principal activity
Measuring instrument	NIST pressurized " chamber A calibrat anti-coincidence eff cxtrapolation techn	ed by 4πβ-γ ficiency-	Four pi efficiency tracing and gamma spectroscopy
Half-life	$1.102 \pm 0.006 \times 10^4$	days ⁽⁵⁾	
Difference from NIST			-2.01 percent ⁽⁶⁾
		For the Directo	
hersburg, MD 20899 ember 1995		J.M. Robin Hut Radioactivity G Physics Laborat	•

ş

5. S.

Gaithersbu September 1995

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT NATIONAL EXPOSUBE RESEARCH LABORATORY P.O. BOX 93478 LAS VEGAS, NEVADA 89193-3478

Calibration Certificate

CHARACTERIZATION RESEARCH DIVISION

Principal Radionuclide	Cobalt-60
Total Mass of this Solution	Approx. 5 grams
Fotal Activity	Approx. 241 nanocuries
Half-life	5.271 years
Activity Concentration	48.2 nanocuries/gram
ſ	March 1, 1995
ate and Time of Standardization	0400 hours PST
olution Number	94029-1

Measurement

Method of Measurement:

The activity of the dilution was measured using gamma spectroscopy with a germanium detector.

The activity of the primary solution was measured using gamma spectrometry.

Activity of daughter radionuclide:

The principal a	ctivity was accompanied at the	quoted time by less than:
	of the daughter n	nuclide
Jseful Life		

We recommend that this solution should not be used after...... January, 2004

U.S. DEPARTMENT OF COMMERCE National Institute of Standards & Technology Gaithersburg, MD 20899

REPORT OF TRACEABILITY

U.S. Environmental Protection Agency Environmental Monitoring Systems Laboratory Las Vegas, Nevada

	Radionuclide	Cobalt-60			
Sour	ce identification	94029-1, prepared by EMSL			
So	urce description	Liquid in 5-mL flame-sealed glass ampoule Approximately 5.0 grams			
	Source mass				
Sou	rce composition	Cobalt-60 plus 30 per gram of 0.1 m	µg of non-radioactive Co ⁺⁺ ol·L ⁻¹ HCl		
	Reference time	0700 EST March 1	I. 1995		
	NIST DATA		EMSL DATA		
Radioactivity concentration	1.774 Bq•g ⁻¹		1.783 Bq•g ⁻¹		
Expanded uncertainty	0.67 percent ^{(1,2)*}		3.7 percent ⁽³⁾		
Photon-emitting impurities	None observed (4)		None detected		
Measuring instrument	NIST pressurized " 4π tion chamber A calib $4\pi\beta$ - γ coincidence an coincidence counting	rated by d anti-	Gamma spectroscopy		
Half-life	1925.5 ± 0.5 days ⁽⁵⁾				

Difference from NIST

Gaithersburg, MD 20899 September 1995 +0.53 percent (6)

1.100

For the Director.

6

J.M. Robin Hutchinson, Group Leader Radioactivity Group Physics Laboratory

CERTIFICATE OF RADIOACTIVITY CALIBRATION

Isotope: Co-60

Half-Life: 5.27/4± 0.0005

Source No .: K-400

Was assayed as containing: 1.231 m Ci

As of: July 1, 1988

METHOD OF CALIBRATION:

The source was assayed on a 3" x 3" Nal (TI) crystal in conjunction with a) (MeV peak (a value of single-channel analyzer, using the gamma rays per decay was used in the calculations), against , in the same geometrical arrangement. standard No. The source was assayed in an internal proportional/large area, low) standard No. background counter against The source was assayed by alpha spectrometry on a surface barrier } detector in conjunction with a single-channel analyzer, against in the same geometrical arrangement. standard No. The source was prepared from a weighed aliquot of a solution whose activity in uCi/gm was determined by the method indicated above.) The source was assayed in a pressurized well type ionization chamber against Co-60 std. No. 19151 .(X) ERROR CALCULATION: b) Uncertainty due to random a) Uncertainty due to systematic errors: errors: Precision of source count. e.: % 1. In assay of standard: ± standard count e₂ and back-% 2. In weighing(s): ground count e_3 : Total uncertainty: TU = $a + b = \pm 5.0 \%$ $= \pm t \sqrt{e_1^2 + e_2^2 + e_1^2} = \pm$ % NOTES IPL participates in a NBS measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay (and later NBS certification) of Standard Reference Materials. (As in NRC Regulatory Guide 4.15) The total uncertainty is calculated at the 95% confidence level. (ス) This calibration is directly/indirectly based on NBS Standard Reference () Material No.

Quality Control

ISOTOPE PRODUCTS LABORATORIES 1800 No. Keystone St., Burbank, California 91504 Memorandum

Nuclear

Subject: Source Correlation

Date: October 18, 1985 4550-85-0291

From: Data Management and Analysis Engineer, B. B. Brosey LocationThree Mile Island Unit 2

Percent Transmission

To: Data Management and Analysis Supervisor, C. H. Distenfeld

A preliminary correlation between our 137Cs calibration sources has been performed. The EG&G supplied source (800 μ Ci 137Cs) was compared with the Amersham supplied source (11.44 μ Ci 137Cs). The results of this comparison indicate that the observed variation is approximately 3%.

The EG&G source is incapsulated in stainless steel and aluminum. A correction must be applied to this source and the equivalent activity is dependant on which end one counts. However, side on calibrations should produce consistent values.

EG&G Source Attenuation Calculation:

$$\rho s.s. \cong 7.86 \frac{g}{cm}^3$$
, $s.s = 0.0738 \frac{cm}{g}^2$
 $\rho A1 = 2.699 \frac{g}{cm}^3$, $A1 = 0.075024 \frac{cm}{g}^2$

S.S. capsule top 0.381cm thick	80.2%		
S.S. capsule sides and bottom 0.254cm thick	86.3%		
Al capsule top 0.762cm thick	85.7%		
Al capsule sides and bottom 0.635cm thick	87.9%		

. combined transmission

• 1.1.1.

S.S. 0.863 X A1 0.879 = 0.759 X 789.3 uCi (Decayed to October 1, 1985) = 599.1 uCi equivalent

Amersham source = 11.44 µCi (October, 1985)

The comparison was performed in our designated location in the suxiliary building. The sources were placed at 1 foot from the nose of our 1.5 inch radius lead attenuated sodium todide detector assembly, using the Davidson MCA with the high voltage supply attached. C. H. Distenfeld

...

....

Octob**er 18, 1985** 4550-85-0291

The Amersham source showed a cesium peak in Channel 105 for a 7010 second count. For a 10 channel region of interest from 105 to 115 (1/2 peak value), the total counts were 424.

-2-

 $\frac{424 \text{ counts in ROI}}{7010 \text{ seconds}} = 0.060485 \frac{c}{s}$

For the EG&G source, under the same conditions, the ROI (107-117) for 10 channels showed 2611 counts.

 $\frac{2611 \text{ counts in ROI}}{1000 \text{ seconds}} = 2.611 \text{ counts in ROI}$

Background for this areas - (CH 96-106 137Cs Detectable) =

598 counts in ROI	0.0092713	Ċ
64,500 seconds		S

	Gross		Bkgnd	Net
Amersham source	0.060485 <u>c</u> s	- 0	.0092713 <u>c</u> s	= 0.051214 <u>c</u> s
EG&G source	2.611 <u>c</u> s	- 0	.0092713 <u>c</u> s	= 2,60173 <u>c</u> s
Am. <u>0.05121</u> Activity 11.44	$\frac{4 \text{ c/s}}{\mu \text{ C1}} : \frac{2}{2}$. <u>60173 c/s</u> ΧμCi	∴ X = 58 59	1.2 µCi: EG&G 137Cs 9.1 µCi Reported

97.01% Reported error (EG&G) was + 5%

Barry H. Brosey Ext. 4191

kms

A0000848-8-83

Appendix F – Gamma Spectrometer Quality Assurance Checks

Appendix E - Gamma Spectrometer Quality Assurance Checks

	Spec# 1	Location	Note	COUNT R	ATE - CPS	% from mean
Date				662 keV ²	662 BKG ³	662 keV
10/8/2001	1	garage	w/ 30'cable	18.0	7.9	-2.8
10/8/2001	2	garage	w/ 30'cable	18.1	9.5	-2.2
10/9/2001	1	garage	w/ 30'cable	18.6	10.9	0.5
10/9/2001	2	garage	w/ 30'cable	18.7	8.2	1.0
10/10/2001	1	garage	w/ 30'cable	18.3	10.5	-1.2
10/10/2001	2	garage	w/ 30'cable	17.8	11.2	-3.9
10/11/2001	1	garage	w/ 30'cable	18.2	11.4	-1.7
10/11/2001	3	garage	w/ 50'cable	18. 9	no reading	2.1
10/11/2001	2	SSGS '	w/ 50'cable	18.6	2.6	0.5
10/22/2001	1	garage	w/ 30'cable	20.0	7.5	8.0
10/22/2001	2	garage	w/ 30'cable	18.7	7.5	1.0
10/23/2001	1	garage	w/ 30'cable	18.3	6.9	-1.2
10/23/2001	2	SSGS 803'	w/ 30'cable	18.7	5.4	1.0
10/24/2001	1	SSGS 803'	w/ 30'cable	18.4	5.2	-0.6
10/24/2001	2	garage	w/ 30'cable	18.6	7.6	0.5
10/25/2001	1	garage	w/ 30'cable	18.7	9.9	0.9
10/25/2001	2	garage	w/ 30'cable	18.2	7.4	-1.7
			Mean:	18.5	8.1	

SOURCE AND BACKGROUND CHECKS:

1 - 1=AM, 2=PM, 3=misc

2 - net photpeak count rate using GPU source #557 (Cs-137, 1.06 uCi, 10/8/82);

counting time = 10 min.; distance = 12"

3 - gross count rate in Cs-137 ROI from background spectra, also listed at bottom of Appendix B

DUPLICATE READINGS:

			Estimated Concentration in Sediment or Scale (pCi/g)						Difference	
		Cs-137			Co-60			(fraction of 1-sigma)		
Pipe ID	Spec#	Conc.	"+-2s"	MDA	Conc.	"+-2s"	MDA	Cs-137	Co-60	
101001 C	1	1.5	1.5	2.3	0.0	0.9	1.3	< MDA	< MDA	
н ,	1D	2.2	1.6	2.3	-0.2	0.9	1.3			
102201A	3	-0.1	0.9	1.7	-0.8	0.9	0.9	< MDA	< MDA	
+	3D	1.1	1.1	1.7	0.7	0.8	1.1			
102201A	12	-0.1	2.1	3.9	0.9	1.7	2.4	< MDA	< MDA	
	12D	-4.5	3.0	3.8	1.7	1.9	['] 2.3			
102201B	8	-0.7	1.8	3.1	-0.1	1.2	1.8	< MDA	< MDA	
77	8D	1.3	1.9	3.1	-2.2	1.7	1.6			
102301B	10	3.9	1.7	2.0	-0.3	0.8	1.2	0.3	< MDA	
**	10D	4.2	1.5	1.4	0.0	0.5	0.8			
102301C	6	2.5	1.1	1.2	0.6	0.6	0.8	0.7	< MDA	
n	6D	2.9	1.1	1.1	-0.6	0.6	0.7			
102301C	9	2.3	1.1	i .2	-0.5	0.6	0.7	0.1	< MDA	
*	9D	2.3	1.1	1.2	-0.3	0.5	0.7			
102501B	1	-0.5	1.4	2.4	-0.8	1.3	1.6	< MDA	< MDA	
N	1D	-1.4	1.6	2.4	0.5	1.2	1.8			