6.0 Environmental Impacts of the Uranium Fuel Cycle and Solid Waste Management

Environmental issues associated with the uranium fuel cycle and solid waste management are discussed in the *Generic Environmental Impact Statement for License Renewal of Nuclear Plants* (GEIS), NUREG-1437, Volumes 1 and 2 (NRC 1996; 1999). (a) The GEIS includes a determination of whether the analysis of the environmental issue could be applied to all plants and whether additional mitigation measures would be warranted. Issues are then assigned a Category 1 or a Category 2 designation. As set forth in the GEIS, Category 1 issues are those that meet all of the following criteria:

(1) The environmental impacts associated with the issue have been determined to apply either to all plants or, for some issues, to plants having a specific type of cooling system or other specified plant or site characteristic.

(2) A single significance level (i.e., SMALL, MODERATE, or LARGE) has been assigned to the impacts (except for collective off site radiological impacts from the fuel cycle and from high-level waste [HLW] and spent fuel disposal).

(3) Mitigation of adverse impacts associated with the issue has been considered in the analysis, and it has been determined that additional plant-specific mitigation measures are likely not to be sufficiently beneficial to warrant implementation.

For issues that meet the three Category 1 criteria, no additional plant-specific analysis is required unless new and significant information is identified.

Category 2 issues are those that do not meet one or more of the criteria for Category 1, and therefore, additional plant-specific review of these issues is required.

This chapter addresses the issues that are related to the uranium fuel cycle and solid waste management during the license renewal term that are listed in Table B-1 of 10 CFR Part 51, Subpart A, Appendix B, and are applicable to Peach Bottom Units 2 and 3. The generic potential impacts of the radiological and nonradiological environmental impacts of the uranium fuel cycle and transportation of nuclear fuel and wastes are described in detail in the GEIS based, in part, on the generic impacts provided in 10 CFR 51.51(b), Table S-3, "Table of Uranium Fuel Cycle Environmental Data," and in 10 CFR 51.52(c), Table S-4, "Environmental

⁽a) The GEIS was originally issued in 1996. Addendum 1 to the GEIS was issued in 1999. Hereafter, all references to the "GEIS" include the GEIS and its Addendum 1.

Impact of Transportation of Fuel and Waste to and from One Light-Water-Cooled Nuclear Power Reactor." The staff also addresses the impacts from radon-222 and technetium-99 in the GEIS.

6.1 The Uranium Fuel Cycle

Category 1 issues in 10 CFR Part 51, Subpart A, Appendix B, Table B-1 that are applicable to Peach Bottom Units 2 and 3 from the uranium fuel cycle and solid waste management are listed in Table 6-1.

Table 6-1. Category 1 Issues Applicable to the Uranium Fuel Cycle and Solid Waste Management During the Renewal Term

14	ISSUE—10 CFR Part 51, Subpart A, Appendix B, Table B-1	GEIS Section	
15	URANIUM FUEL CYCLE AND WASTE MANAGEMENT		
16 17	Offsite radiological impacts (individual effects from other than the disposal of spent fuel and high level waste)	6.1; 6.2.1; 6.2.2.1; 6.2.2.3; 6.2.3; 6.2.4; 6.6	
18	Offsite radiological impacts (collective effects)	6.1; 6.2.2.1; 6.2.3; 6.2.4; 6.6	
19	Offsite radiological impacts (spent fuel and high level waste)	6.1; 6.2.2.1; 6.2.3; 6.2.4; 6.6	
20	Nonradiological impacts of the uranium fuel cycle	6.1; 6.2.2.6; 6.2.2.7; 6.2.2.8; 6.2.2.9; 6.2.3; 6.2.4; 6.6	
21	Low-level waste storage and disposal	6.1; 6.2.2.2;6.4.2; 6.4.3; 6.4.3.1; 6.4.3.2; 6.4.3.3; 6.4.4; 6.4.4.1; 6.4.4.2; 6.4.4.3; 6.4.4.4; 6.4.4.5; 6.4.4.5.1; 6.4.4.5.2; 6.4.4.5.3; 6.4.4.5.4; 6.4.4.6;6.6	
22	Mixed waste storage and disposal	6.4.5.1; 6.4.5.2; 6.4.5.3; 6.4.5.4; 6.4.5.5; 6.4.5.6; 6.4.5.6.1; 6.4.5.6.2; 6.4.5.6.3; 6.4.5.6.4; 6.6	
23	On-site spent fuel	6.1; 6.4.6; 6.4.6.1; 6.4.6.2; 6.4.6.3; 6.4.6.4; 6.4.6.5; 6.4.6.6; 6.4.6.7; 6.6	
24	Nonradiological waste	6.1; 6.5; 6.5.1; 6.5.2; 6.5.3; 6.6	
25	Transportation	6.1; 6.3.1; 6.3.2.3; 6.3.3; 6.3.4; 6.6, Addendum 1	

Exelon Generation Company, LLC (Exelon) stated in its Environmental Report (ER; Exelon 2001) that it is not aware of any new and significant information associated with the renewal of the Peach Bottom Units 2 and 3 operating licenses. The staff has not identified any significant new information during its independent review of the Exelon ER (Exelon 2001), the staff's site visit, the scoping process, or its evaluation of other available information. Therefore, the staff concludes that there are no impacts related to these issues beyond those discussed in the GEIS. For these issues, the staff concluded in the GEIS that the impacts are SMALL except for the collective offsite radiological impacts from the fuel cycle and from HLW and spent fuel disposal, as discussed below, and that additional plant-specific mitigation measures are not likely to be sufficiently beneficial to be warranted.

A brief description of the staff review and the GEIS conclusions, as codified in Table B-1, 10 CFR 51, for each of these issues follows:

• Offsite radiological impacts (individual effects from other than the disposal of spent fuel and high level waste. Based on information in the GEIS, the Commission found that

Off-site impacts of the uranium fuel cycle have been considered by the Commission in Table S-3 of this part [10 CFR 51.51(b)]. Based on information in the GEIS, impacts on individuals from radioactive gaseous and liquid releases including radon-222 and technetium-99 are small.

The staff has not identified any new and significant information during its independent review of the Exelon ER, the staff's site visit, the scoping process, or its evaluation of other available information. Therefore, the staff concludes that there are no offsite radiological impacts of the uranium fuel cycle during the renewal term beyond those discussed in the GEIS.

• Offsite radiological impacts (collective effects). Based on information in the GEIS, the Commission found that

 The 100 year environmental dose commitment to the U.S. population from the fuel cycle, high level waste and spent fuel disposal excepted, is calculated to be about 14,800 person rem [148 person Sv], or 12 cancer fatalities, for each additional 20-year power reactor operating term. Much of this, especially the contribution of radon releases from mines and tailing piles, consists of tiny doses summed over large populations. This same dose calculation can theoretically be extended to include many tiny doses over additional thousands of years as well as doses outside the U.S. The result of such a calculation would be thousands of cancer fatalities from the fuel cycle, but this result assumes that even tiny doses have some statistical adverse health effect which will not ever be mitigated (for example no cancer cure in the next thousand years), and that these doses projected over thousands of years

 are meaningful. However, these assumptions are questionable. In particular, science cannot rule out the possibility that there will be no cancer fatalities from these tiny doses. For perspective, the doses are very small fractions of regulatory limits and even smaller fractions of natural background exposure to the same populations.

Nevertheless, despite all the uncertainty, some judgement as to the regulatory NEPA [National Environmental Policy Act] implications of these matters should be made and it makes no sense to repeat the same judgement in every case. Even taking the uncertainties into account, the Commission concludes that these impacts are acceptable in that these impacts would not be sufficiently large to require the NEPA conclusion, for any plant, that the option of extended operation under 10 CFR Part 54 should be eliminated. Accordingly, while the Commission has not assigned a single level of significance for the collective effects of the fuel cycle, this issue is considered Category 1.

The staff has not identified any new and significant information during its independent review of the Exelon ER, the staff's site visit, the scoping process, or its evaluation of other available information. Therefore, the staff concludes that there are no offsite radiological impacts (collective effects) from the uranium fuel cycle during the renewal term beyond those discussed in the GEIS.

 Offsite radiological impacts (spent fuel and HLW disposal). Based on information in the GEIS, the Commission found that

For the high level waste and spent fuel disposal component of the fuel cycle, there are no current regulatory limits for offsite releases of radionuclides for the current candidate repository site. However, if we assume that limits are developed along the lines of the 1995 National Academy of Sciences (NAS) report, "Technical Bases for Yucca Mountain Standards," and that in accordance with the Commission's Waste Confidence Decision, 10 CFR 51.23, a repository can and likely will be developed at some site which will comply with such limits, peak doses to virtually all individuals will be 100 millirem [1 mSv] per year or less. However, while the Commission has reasonable confidence that these assumptions will prove correct, there is considerable uncertainty since the limits are yet to be developed, no repository application has been completed or reviewed, and uncertainty is inherent in the models used to evaluate possible pathways to the human environment. The NAS report indicated that 100 millirem [1 mSv] per year should be considered as a starting point for limits for individual doses, but notes that some measure of consensus exists among national and international bodies that the limits should be a fraction of the 100 millirem [1 mSv] per year. The lifetime individual risk from 100 millirem [1 mSv] annual dose limit is about 3×10^{-3} .

31

> 39 40 41

42

Estimating cumulative doses to populations over thousands of years is more problematic. The likelihood and consequences of events that could seriously compromise the integrity of a deep geologic repository were evaluated by the Department of Energy in the "Final Environmental Impact Statement: Management of Commercially Generated Radioactive Waste," October 1980 [DOE 1980]. The evaluation estimated the 70-year whole-body dose commitment to the maximum individual and to the regional population resulting from several modes of breaching a reference repository in the year of closure, after 1,000 years, after 100,000 years, and after 100,000,000 years. Subsequently, the NRC and other federal agencies have expended considerable effort to develop models for the design and for the licensing of a HLW repository, especially for the candidate repository at Yucca Mountain. More meaningful estimates of doses to population may be possible in the future as more is understood about the performance of the proposed Yucca Mountain repository. Such estimates would involve very great uncertainty, especially with respect to cumulative population doses over thousands of years. The standard proposed by the NAS is a limit on maximum individual dose. The relationship of potential new regulatory requirements, based on the NAS report, and cumulative population impacts has not been determined, although the report articulates the view that protection of individuals will adequately protect the population for a repository at Yucca Mountain. However, EPA's generic repository standards in 40 CFR part 191 generally provide an indication of the order of magnitude of cumulative risk to population that could result from the licensing of a Yucca Mountain repository, assuming the ultimate standards will be within the range of standards now under consideration. The standards in 40 CFR part 191 protect the population by imposing "containment requirements" that limit the cumulative amount of radioactive material released over 10,000 years. Reporting performance standards that will be required by EPA are expected to result in releases and associated health consequences in the range between 10 and 100 premature cancer deaths with an upper limit of 1,000 premature cancer deaths world-wide for a 100,000 metric tonne (MTHM) repository.

Nevertheless, despite all the uncertainty, some judgement as to the regulatory NEPA implications of these matters should be made and it makes no sense to repeat the same judgement in every case. Even taking the uncertainties into account, the Commission concludes that these impacts are acceptable in that these impacts would not be sufficiently large to require the NEPA conclusion, for any plant, that the option of extended operation under 10 CFR part 54 should be eliminated. Accordingly, while the Commission has not assigned a single level of significance for the impacts of spent fuel and HLW disposal, this issue is considered Category 1.

Since the GEIS was originally issued in 1996, the EPA has published radiation protection standards for Yucca Mountain, Nevada, at 40 CFR Part 197 "Public Health and

Fuel Cycle

Environmental Radiation Protection Standards for Yucca Mountain, Nevada," on June 13, 2001 (66 FR 32132). The Energy Policy Act of 1992 (42 USC 10101 et seq.) directs that the NRC adopt these standards into its regulations for reviewing and licensing the repository. The NRC published its regulations at 10 CFR Part 63, on November 2, 2001 (66 FR 55792). These standards include the following: (1) 0.15 mSv/year (15 mrem/year) dose limit for members of the public during the storage period prior to repository closure, (2) 0.15 mSv/year (15 mrem/year) dose limit for the reasonably maximally exposed individual for 10,000 years following disposal, (3) 0.15 mSv/year (15 mrem/year) dose limit for the reasonably maximally exposed individual as a result of a human intrusion at or before 10,000 years after disposal, and (4) a groundwater protection standard that states for 10,000 years of undisturbed performance after disposal, radioactivity in a representative volume of ground water will not exceed (a) 0.0002 MBq/L (5 pCi/L) (radium-226 and radium-228), (b) 0.0006 Mbq/L (15 pCi/L) (gross alpha activity), and (c) 0.04 mSv/year (4 mrem/year) to the whole body or any organ (from combined beta and photon emitting radionuclides).

On February 15, 2002, subsequent to the receipt of a recommendation by the Secretary, Department of Energy, the President recommended the Yucca Mountain site for the development of a repository for the geologic disposal of spent nuclear fuel and HLW.

This change in regulatory status does not cause the staff to change its position with respect to the impact of spent fuel and HLW disposal. The staff still considers the Category 1 classification in the GEIS appropriate.

The staff has not identified any new and significant information during its independent review of the Exelon ER, the staff's site visit, the scoping process, or its evaluation of other available information. Therefore, the staff concludes that there are no offsite radiological impacts related to spent fuel and HLW disposal during the renewal term beyond those discussed in the GEIS.

 Nonradiological impacts of the uranium fuel cycle. Based on information in the GEIS, the Commission found that

The nonradiological impacts of the uranium fuel cycle resulting from the renewal of an operating license for any plant are found to be small.

The staff has not identified any new and significant information during its independent review of the Exelon ER, the staff's site visit, the scoping process, or its evaluation of other available information. Therefore, the staff concludes that there are no nonradiological impacts of the uranium fuel cycle during the renewal term beyond those discussed in the GEIS.

 <u>Low-level waste storage and disposal</u>. Based on information in the GEIS, the Commission found that

The comprehensive regulatory controls that are in place and the low public doses being achieved at reactors ensure that the radiological impacts to the environment will remain small during the term of a renewed license. The maximum additional on-site land that may be required for low-level waste storage during the term of a renewed license and associated impacts will be small. Nonradiological impacts on air and water will be negligible. The radiological and nonradiological environmental impacts of long-term disposal of low-level waste from any individual plant at licensed sites are small. In addition, the Commission concludes that there is reasonable assurance that sufficient low-level waste disposal capacity will be made available when needed for facilities to be decommissioned consistent with NRC decommissioning requirements.

The staff has not identified any new and significant information during its independent review of the Exelon ER, the staff's site visit, the scoping process, or its evaluation of other available information. Therefore, the staff concludes that there are no impacts of low-level waste storage and disposal associated with the renewal term beyond those discussed in the GEIS.

 <u>Mixed waste storage and disposal</u>. Based on information in the GEIS, the Commission found that

The comprehensive regulatory controls and the facilities and procedures that are in place ensure proper handling and storage, as well as negligible doses and exposure to toxic materials for the public and the environment at all plants. License renewal will not increase the small, continuing risk to human health and the environment posed by mixed waste at all plants. The radiological and nonradiological environmental impacts of long-term disposal of mixed waste from any individual plant at licensed sites are small. In addition, the Commission concludes that there is reasonable assurance that sufficient mixed waste disposal capacity will be made available when needed for facilities to be decommissioned consistent with NRC decommissioning requirements.

The staff has not identified any new and significant information during its independent review of the Exelon ER, the staff's site visit, the scoping process, or its evaluation of other available information. Therefore, the staff concludes that there are no impacts of mixed waste storage and disposal associated with the renewal term beyond those discussed in the GEIS.

Onsite spent fuel. Based on information in the GEIS, the Commission found that

The expected increase in the volume of spent fuel from an additional 20 years of operation can be safely accommodated on site with small environmental effects through dry or pool storage at all plants if a permanent repository or monitored retrievable storage is not available.

The staff has not identified any new and significant information during its independent review of the Exelon ER, the staff's site visit, the scoping process, or its evaluation of other available information. Therefore, the staff concludes that there are no impacts of onsite spent fuel associated with license renewal beyond those discussed in the GEIS.

• Nonradiological waste. Based on information in the GEIS, the Commission found that

No changes to generating systems are anticipated for license renewal. Facilities and procedures are in place to ensure continued proper handling and disposal at all plants.

The staff has not identified any new and significant information during its independent review of the Exelon ER, the staff's site visit, the scoping process, or its evaluation of other available information. Therefore, the staff concludes that there are no nonradiological waste impacts during the renewal term beyond those discussed in the GEIS.

Transportation. Based on information in the GEIS, the Commission found that

The impacts of transporting spent fuel enriched up to 5 percent uranium-235 with average burnup for the peak rod to current levels approved by NRC up to 62,000 MWd/MTU and the cumulative impacts of transporting HLW to a single repository, such as Yucca Mountain, Nevada are found to be consistent with the impact values contained in 10 CFR 51.52(c), Summary Table S-4 — Environmental Impact of Transportation of Fuel and Waste to and from One Light-Water-Cooled Nuclear Power Reactor. If fuel enrichment or burnup conditions are not met, the applicant must submit an assessment of the implications for the environmental impact values reported in Sec. 51.52.

Peach Bottom Units 2 and 3 meet the fuel-enrichment and burnup conditions set forth in Addendum 1 to the GEIS. The staff has not identified any new and significant information during its independent review of the Exelon ER, the staff's site visit, the scoping process, or its evaluation of other available information. Therefore, the staff concludes that there are no

1 2	impacts of transportation associated with license renewal beyond those discussed in the GEIS.
3 4 5	There are no Category 2 issues for the uranium fuel cycle and solid waste management.
6	6.2 References
7 8 9 10	10 CFR 51. Code of Federal Regulations, Title 10, <i>Energy,</i> Part 51, "Environmental Protection Regulations for Domestic Licensing and Related Regulatory Functions."
11 12 13	10 CFR 54. Code of Federal Regulations, Title 10, <i>Energy,</i> Part 54, "Requirements for Renewal of Operating Licenses for Nuclear Power Plants."
14 15 16	10 CFR 63. Code of Federal Regulations, Title 10, <i>Energy,</i> Part 63, "Disposal of High-Level Radioactive Wastes in a Geologic Repository at Yucca Mountain, Nevada."
17 18 19 20	40 CFR 191. Code of Federal Regulations, Title 40, <i>Protection of Environment</i> , Part 191, "Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Waste."
20 21 22 23 24	40 CFR 197. Code of Federal Regulations, Title 40, <i>Protection of Environment</i> , Part 197, "Public Health and Environmental Radiation Protection Standards for Management and Disposal for Yucca Mountain, Nevada."
25 26 27	66 FR 32132. "Public Health and Environmental Radiation Protection Standards for Yucca Mountain, NV." <i>Federal Register.</i> Vol. 66, No.114. June 13, 2001.
28 29 30	66 FR 55792 "Disposal of High-Level Radioactive Wastes in a Proposed Geologic Repository at Yucca Mountain, Nevada." <i>Federal Register.</i> Vol. 66, No. 213. November 2, 2001.
31 32	Energy Policy Act of 1992. 42 USC 10101, et seq.
33 34 35 36	Exelon Generation Company, LLC (Exelon). 2001. Applicant's Environmental Report – Operating License Renewal Stage Peach Bottom Units 2 and 3. Kennett Square, Pennsylvania.
37 38 39	National Academy of Sciences (NAS). 1995. <i>Technical Bases for Yucca Mountain Standards</i> . Washington, D.C.

Fuel Cycle

ı	0.5. Department of Energy (DOE). 1960. Final Environmental impact Statement.
2	Management of Commercially Generated Radioactive Waste. DOE/EIS-0046F,
3	Washington, D.C.
4	
5	U.S. Nuclear Regulatory Commission (NRC). 1996. Generic Environmental Impact Statement
6	for License Renewal of Nuclear Plants. NUREG-1437, Volumes 1 and 2, Washington, D.C.
7	
8	U.S. Nuclear Regulatory Commission (NRC). 1999. Generic Environmental Impact Statement
9	for License Renewal of Nuclear Plants, Main Report, "Section 6.3 - Transportation, Table 9.1,
0	Summary of findings on NEPA issues for license renewal of nuclear power plants, Final
1	Report," NUREG-1437, Volume 1, Addendum 1, Washington, D.C.