

Advanced Gas Reactor Fuel Development and Qualification Meeting INEEL May 21, 2002



# **Fuel Qualification Needs**

# **Commercial GT-MHR Near-Term Deployment**

#### and in addition

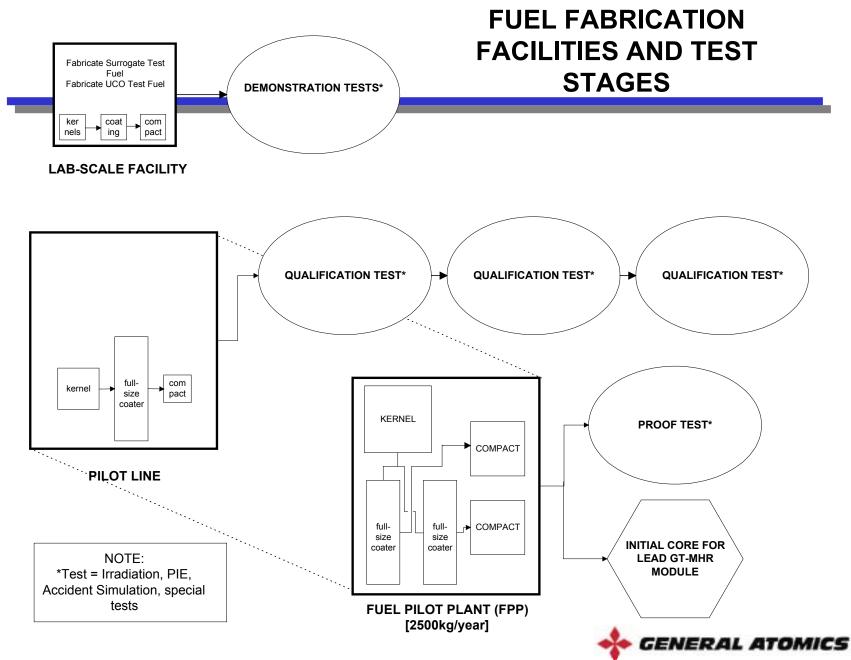
**Exploiting the Potential of Advanced Gas Reactors** 



## **GA Strategy for Near-Term Deployment**

- Build a Demonstration Plant to establish:
  - construction costs and schedule
  - licensing process
  - plant and fuel performance characteristics
  - operation and maintenance characteristics
  - satisfy NRC requirements for design certification
- GA intends to be a supplier of coated particle fuel




### **GT-MHR Fuel Plan Scope**

- Re-establish fuel fabrication capability
- Fabricate test fuel
- Demonstrate and qualify reference GT-MHR fuel
  - Gather process experience needed to fabricate cores for the lead GT-MHR
  - Gather data for fuel design, reactor design, and licensing
- Validate fission product transport source terms

4

• Fabricate cores for the lead GT-MHR





### **Re-Establish Fabrication Capability**

- ORNL laboratory facilities
  - supported by AAA program
  - UCO kernels, TRISO coating, thermosetting resin (TS) compacting
  - make fuel for near-term irradiations to demonstrate the fuel meets the GT-MHR performance requirements
- Fuel Pilot Line
  - full-scale coater (German technology), supporting UCO kernel line, TS compacting, improved QC
  - location expandable to produce initial core
  - make qualification test fuel
    - » irradiate and test fuel to qualify fuel design and fabrication process
  - conduct process improvement studies

### **Re-Establish Fabrication Capability**

- Fuel Manufacturing Pilot Plant (FPP)
  - expand fuel pilot line to FPP ~ 500 fuel assemblies/year
  - verify capability to make fuel meeting product spec
  - irradiate proof test fuel from initial production
    - » verify process are working as expected
  - fabricate fuel for lead GT-MHR



## Re-establish UCO Kernels Process

**UCO offers potential for improved performance** with respect to UO<sub>2</sub>

8

- UCO
  - 350 μm 19+% enriched U 500 μm natural U
- **Internal Gelation** 
  - eliminate TCE
- Establish production capability •
  - to meet specifications
  - supply kernels for coating
- **Key Technology Needs** 
  - uniformity of C/O among kernels
  - low reactivity w/Cl
  - scale-up and automation

# **Re-establish Coating**

- German coating technology
  - German coater internals
  - German procedures and process
  - likely straight-through
- Key Technology Needs
  - transfer of technology
  - fidelity to German process
    - » coolant/criticality
    - » gas metering (automated vs. manual)
  - translation of procedures to 350  $\mu\text{m}$  diameter kernels
  - IPyC coating conditions
  - automation



### **Re-establish Compact Process**

- Thermosetting Resin Process preferred
  - used by all other major programs
  - reference for Russian program
  - used in NPR targets
  - fewer steps
  - ultimate performance capability
    - » purity of materials
- Key Technology Needs
  - raw materials suppliers
  - process details
  - High temperature curing in vacuum furnace-avoid compact contamination
  - scale-up
  - automation



# **Quality Control**

- QC is to determine that the processes were carried out properly
- Demonstrate improved QC methods in Pilot Plant
- Key Technology Needs
  - methods for improved characterization
    - » PyC crystallite orientation correlated with performance
    - » SiC defects
    - » SiC microstructure
    - » IPyC permeability
    - » O/C in individual kernels
  - methods for improved economics in large-scale production
    - » non-destructive
    - » high-throughput

- » automated
- » in-line and near real time



## **Irradiation Testing - Initial Test**

- MHR-1 (HTR-EU2) (HFR, Petten, years 03 05)
  - Objectives
    - » demonstrate improved FSV compacting process for high quality fuel
  - Existing compacts
  - Low cost irradiation and possibly PIE, accident testing
  - Establishes cooperation with the EU HTR program



### **Irradiation Program - Initial US Test**

#### • MHR-1A (ATR, years 04-05)

- Samples fabricated at ORNL
  - » MHR-1 compacts (thermoplastic binder (FSV)
  - » thermosetting resins (TS) compacts w/MHR-1 particles
    - retrieve particles from KAPL
- Objectives
  - » Initial demonstration of TS compacts
  - » explore effects of accelerated testing
  - » restore compact testing capability in US
  - » establish multi-cell testing capability



### Irradiation Testing - Initial Test of Reference Fuel

#### • MHR-2 (ATR, years 04-06)

- TRISO-coated UCO in TS compacts made at ORNL
- Irradiated at peak GT-MHR conditions
- Objectives

» initial irradiation of GT-MHR fuel made in US



### Irradiation Testing - Qualification Tests

- Qualification Testing
  - Reference GT-MHR fuel fabricated in Pilot Line
  - Objectives
    - » demonstrate fuel fabricated in full-scale equipment
    - » obtain samples for coating and fission product testing to justify source term
    - » statistically significant data
  - Irradiation Conditions
    - » average
    - » bounding
    - » margin
  - Facility Capabilities
    - » test reactor with multi-cell capsules and low acceleration
    - » PIE/heating facilities



### **Irradiation Testing - Proof Test**

- Proof Test
  - fuel intended for the initial GT-MHR core fabricated in the Fuel Manufacturing Pilot Plant
  - Objectives
    - » demonstrate Pilot Plant fuel meets requirements as predicted from the Qualification Tests
    - » production equipment, full throughput, processes, procedures, and settings



# Fuel/Core Designer Data Needs

- Understand and quantify failure mechanisms
  - no/little kernel migration
  - Pd attack consistent with current data base
  - Properties of irradiated PyC and SiC
- Accident behavior for UCO at 25% burnup irradiated at 1250 °C
- Release of fission produces from failed particles vs. burnup
- FP distribution in the circuit



# GA 2002 Workscope

- Funded
  - MHR-1 (HFR-EU2)
  - High-level fuel development plan
  - Initiate licensing process
- Proposed
  - fuel development plan
  - irradiation test plan etc. for MHR-1A
  - updated fuel product specifications
  - irradiation test specification for MHR-2
  - support for pre-licensing activities w/NRC



### **Fuel Program Cost and Schedule**

| Task # | Task Description                                                   | \$M (02\$) | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 |
|--------|--------------------------------------------------------------------|------------|------|------|------|------|------|------|------|------|------|
| 3.1    | Fuel Demonstration Tests                                           | 11.2       |      |      |      |      |      |      |      |      |      |
| 3.1.1  | MHR-1 irradiation                                                  |            |      |      |      |      |      |      |      |      |      |
| 3.1.2  | Specifications and planning for MHR-1A                             |            |      |      |      |      |      |      |      |      |      |
| 3.1.3  | Fabricate fuel compacts for MHR-1A                                 |            |      |      |      |      |      |      |      |      |      |
| 3.1.4  | Design, fabricate, and assemble MHR-1A capsule                     |            |      |      |      |      |      |      |      |      |      |
| 3.1.5  | MHR-1A irradiation and PIE                                         |            |      |      |      |      |      |      |      |      |      |
| 3.1.6  | Specification for demonstration test MHR-2                         |            |      |      |      |      |      |      |      |      |      |
| 3.1.7  | Fabricate demonstration test fuel (MHR-2)                          |            |      |      |      |      |      |      |      |      |      |
| 3.1.8  | Design, fabricate, and assemble MHR-2                              |            |      |      |      |      |      |      |      |      |      |
| 3.1.9  | MHR-2 irradiation, PIE, and post-irradiation heating               |            |      |      |      |      |      |      |      |      |      |
|        |                                                                    |            |      |      |      |      |      |      |      |      |      |
|        |                                                                    |            |      |      |      |      |      |      |      |      |      |
| 3.2    | Reestablish Fuel Fabrication Capability                            | 17.3       |      |      |      |      |      |      |      |      |      |
| 3.2.1  | Update GT-MHR Fuel Product Specification                           |            |      |      |      |      |      |      |      |      |      |
| 3.2.2  | Design/set up equipment in pilot line                              |            |      |      |      |      |      |      |      |      |      |
| 3.2.3  | Establish processes and fab. qualification test fuel               |            |      |      |      |      |      |      |      |      |      |
| 3.2.4  | Improved QC methods                                                |            |      |      |      |      |      |      |      |      |      |
|        |                                                                    |            |      |      |      |      |      |      |      |      |      |
| 3.3    | Pilot Plant                                                        |            |      |      |      |      |      |      |      |      |      |
| 3.3.1  | Pilot plant design and construction                                |            |      |      |      |      |      |      |      |      |      |
| 3.3.2  | Pilot plant demonstration and proof test fuel fabrication          |            |      |      |      |      |      |      |      |      |      |
| 3.3.3  | Fabricate fuel for lead GT-MHR module initial core                 |            |      |      |      |      |      |      |      |      |      |
|        |                                                                    |            |      |      |      |      |      |      |      |      |      |
| 3.4    | Fuel Qualification                                                 | 25.2       |      |      |      |      |      |      |      |      |      |
| 3.4.1  | Develop fuel plan & support FY2002 fuel meetings with NRC          |            |      |      |      |      |      |      |      |      |      |
| 3.4.2  | Qualification test irradiations, PIE, and post-irradiation heating |            |      |      |      |      |      |      |      |      |      |
| 3.4.3  | Proof test irradiation, PIE, and post-irradiation heating          |            |      |      |      |      |      |      |      |      |      |
| 3.4.4  | Fuel performance model development and validation                  |            |      |      |      |      |      |      |      |      |      |
|        |                                                                    |            |      |      |      |      |      |      |      |      |      |
| 3.5    | Fission Product Transport Technology                               | 15         |      |      |      |      |      |      |      |      |      |
| 3.5.1  | Fission product transport tests                                    |            |      |      |      |      |      |      |      |      |      |
| 3.5.2  | Fuel performance and FP transport model devel.                     |            |      |      |      |      |      |      |      |      |      |
|        |                                                                    |            |      |      |      |      |      |      |      |      |      |
|        | Total (2002 - 2010, excluding Pilot Plant)                         | 68.7       | 0.7  | 7    | 10   | 10   | 11   | 10   | 9    | 7    | 4    |



# **Proposed Activities for 2003**

- Irradiation MHR-1
- Fab MHR-1A (ORNL)
- Fab MHR-2 (ORNL)
- Design and fabricate MHR-1A/2 capsules (INEEL)
- Start design of pilot line facility
- Start design and procuring equipment for pilot line
- Study automation of fab process and QC



### **Exploiting the Potential of Advanced Gas Reactors**

- Applications
  - Lower cost electricity production
  - Process heat applications (H<sub>2</sub> production, etc)
  - Transmutation and WPu disposal
- Capabilities
  - Higher process temperatures
  - Longer fuel cycles
  - Higher burnups
  - Higher fast neutron fluences
  - Higher accident temperature limits
  - Higher power densities
  - Lower fuel costs



# **Summary of Fuel Plan**

- Re-establish fuel fabrication capability
- Demonstrate and qualify reference GT-MHR fuel
  - Gather process experience needed to fabricate cores for the lead GT-MHR
  - Gather data for fuel design, reactor design, and licensing
- Validate codes used to generate FP source term



# Activities for 2004

- Complete design and start construction of pilot line
- Fabricate and install equipment in fuel pilot line
- Continue studies of improved QC methods
- Complete irradiation of MHR-1 and start PIE
- Start irradiation of MHR-2
- Begin performance model and fission product transport work

